

ANNEXE I

RAPPORT D'AUDIT DE LA CHAINE DE MESURE DE L'EFFLUENT MARIN DE 2013

RAPPORT D'AUDIT

VERIFICATION DU SYSTEME D'AUTOSURVEILLANCE DES REJETS EN MER D'EAUX USEES DU SITE

VALE / Nouvelle Calédonie (CCTP Agence de l'Eau RMC 2012).

N/Réf : CB677-2605191-JBe

Chargée de clientèle: jocelyne.carreau-bergeron@fr.bureauveritas.com

Dates des essais : Du 15 au 16 Avril 2013.

Inspecteur : Benoit DALIBARD

Rédacteur : Julien BERTELOOT

Date du rapport : 31 Mai 2013

Contrat entre les soussignés

D'une part VALE

Immeuble MALAWI 52 Avenue Foch BP 218

98845 NOUMEA - Nouvelle Calédonie

Et d'autre part BUREAU VERITAS

16 Chemin du Jubin

BP 26

69571 DARDILLY Cedex

Ci-après désigné "Bureau Veritas"

Représenté par Julien BERTELOOT

Tél: 04.72.29.32.70 Fax: 04.72.29.32.68

Courriel: julien.berteloot@fr.bureauveritas.com

Signature

SOMMAIRE

<u>1.</u>	CONTEXTE ET ENJEUX	3
1.1 1.2		3
<u>2.</u>	DESCRIPTIF DU POINT D'AUTOSURVEILLANCE	4
2.1		
2.2 2.3		
<u>3.</u>	COTATIONS / AVIS DE CONFORMITE :	<u>7</u>
3.1		7
3.2	PRELEVEUR AUTOMATIQUE D'ECHANTILLONS :	8 9
3.3		
3.4		11
	.4.1 Méthode de calcul des écarts analytiques :.4.2 Domaine d'Accréditation VALE :	
3	.4.2 Domaine a Accremation VALE	13
<u>4.</u>	CONCLUSION / AVIS TECHNIQUE :	14
<u>5.</u>	PRECONISATIONS D'AMELIORATIONS DU SYSTEME D'AUTO-SURVEILLANCE :	1 <u>5</u>
5.1		
5.2	2 HOMOGENEISATION AVANT ANALYSES:	16
<u>6.</u>	ANNEXES	17
6.1		
6.2		
6.3		
6.5		
0.5	X 022 X 020 1 110 1 0 010 11 11120	20

N° rapport: **CB677-2605191-JBe-ind 1**Page 2/28

1. CONTEXTE ET ENJEUX

1.1 Mission:

Le client confie à Bureau Veritas qui accepte les prestations suivantes :

Vérification périodique du système d'auto-surveillance du rejet en mer du site VALE.

Dans le présent rapport il sera également formulé des orientations d'amélioration du système d'autosurveillance actuel vis-à-vis des préconisations techniques Agence de l'eau Rhône Méditerranée Corse.

La présente mission consiste à évaluer le système d'auto-surveillance des rejets en mer sur les parties suivantes:

- Matériel et techniques de prélèvement automatique.
- Conservation des échantillons / conditionnement avant analyses.
- Analyses laboratoire (Inter-comparaison).
- Système qualité lié aux domaines ci-avant.

Ce type de contrôle « Agence de l'eau » sur les systèmes d'auto-surveillance visant la déclaration d'activité polluante doit être réalisé une fois par an.

Les prestations de Bureau Veritas ont eu lieu à l'adresse suivante :

Site VALE INCO Nouvelle Calédonie. Station de traitement des eaux industrielles.

1.2 Structure auditée :

La structure auditée est appelée « Département Lixiviation » ainsi que le « Département Laboratoire » les personnes rencontrées lors de l'audit sont :

- Mickael CABON (Chef de section Laboratoire)
- Jean-François REUILLARD (Responsable unité lixiviation)
- Gemmanick Cherika (Ingénieur procédé)

N°rapport: CB677-2605191-JBe-ind 1

Page 3/28

2. DESCRIPTIF DU POINT D'AUTOSURVEILLANCE

2.1 Matériels en place pour le prélèvement et les mesures continues:

La chaine de prélèvement auditée est composée des éléments suivants :

Débitmètre électromagnétique :

Marque	KROHNE
Modèle	OPTIFLUX 4300W
Gamme de mesure	0 – 4000 m3/h
N°TAG	285 FIT 00835

Sur conduite en aval des pompes de refoulement du bassin 285 TNK 016 « rejet diffuseur en mer ».

- Préleveur automatique d'échantillon :

Marque	SENTRY
Modèle	ISOLOK TYPE SAA
Gamme d'échantillonnage	3 à 15 cc ou 3 à 15 ml
N°TAG	285 SAO 004

N°rapport: **CB677-2605191-JBe-ind 1**Page 4/28

- PHmètre / Thermomètre :

Marque	YOKOGAWA
Modèle	EXA PH 202
Gamme d'échantillonnage	2 à 12 Unité de pH
N°TAG	285 SAO 004

La tête de mesure est située sur une passerelle au-dessus du bassin 285 TNK 016. La sonde est immergée dans ce même bassin qui est homogénéisé de manière naturelle par les effluents entrants.

N°rapport: **CB677-2605191-JBe-ind 1**Page 5/28

2.2 Matériel d'analyse laboratoire :

- Mesure de MEST (Gravimètrie sous vide sur filtre)
- ICP AES (éléments dissous)
- Spectromètrie d'absorption moléculaire (Cr6)

2.3 Contexte de partage des échantillons :

Les échantillons ont été reconstitués dans le préleveur de la station sur une durée de 12H dans le cadre d'un bilan d'autosurveillance interne.

Ils ont été partagés au laboratoire par homogénéisation manuelle depuis un bidon de 10 litres.

L'échantillon est réparti dans plusieurs flacons pour analyses interne et externes Bureau Veritas.

N°rapport: **CB677-2605191-JBe-ind 1**

Page 6/28

3. COTATIONS / AVIS DE CONFORMITE :

3.1 Débitmètre :

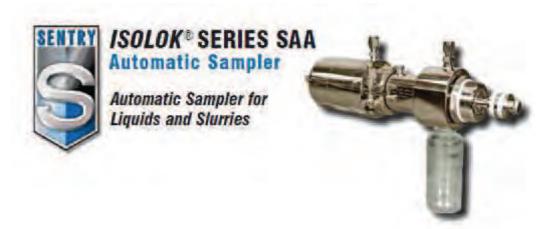
Le débitmètre électromagnétique est correctement implanté, les longueurs droites amont et aval sont conformes aux préconisations KROHNE.

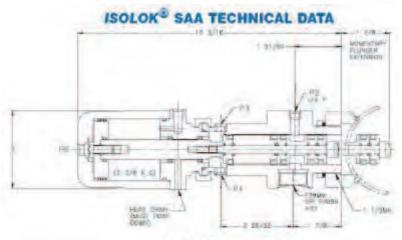
La gamme de mesure de l'appareil est adaptée aux régimes de fonctionnement observés.

Une vérification (test électronique interne du transmetteur) est réalisée chaque 6 mois par VALE.

Une mesure comparative 2H n'a pas pu être réalisée par Bureau Veritas pour cause d'accessibilité au centre d'une portion de longueurs droite de 6DN.

Pour le prochain contrôle. Il sera nécessaire de pouvoir accéder à une portion de longueur droite par exemple décrite ci-dessous ou autre :


Cette mesure pourra être réalisée à l'aide d'une nacelle / échafaudage et de notre débitmètre Ultrasons temps de transit raccordé CETIAT.


Me	sure de débit en écoulement en charge	Coef.	oui	non
1	Le débitmètre est-il installé conformément aux normes ou aux prescriptions du constructeur, le report éventuel de la mesure s'effectue t-il correctement ?	5	X	
2	Si une mesure comparative est possible , l'écart sur au moins 2 heures, entre les résultats de mesures obtenus sur le point de mesure et de manière déportée d'une part, et par l'organisme de contrôle d'autre part, est il ≤ à 10%?	5		
3	Si une mesure comparative est impossible et qu'un bilan eau (entrée - sortie ou autre) peut-être établi, est-il cohérent?	5	X	
	Si une mesure comparative est impossible et qu'un étalonnage du débitmètre par un laboratoire accrédité est régulièrement réalisé (au moins tous les 5 ans), l'incertitude de mesure du débitmètre est-elle ≤ à 5% ?	5		
5	Si une mesure comparative est impossible et qu'un contrôle de fonctionnement du débitmètre est assuré annuellement par le constructeur ou le fournisseur, le rapport d'intervention atteste t-il d'un bon fonctionnement du débitmètre ?	5	X	
	Résultat de la cotation sur 10		10	0.0

N°rapport: **CB677-2605191-JBe-ind 1**Page 7/28

3.2 Préleveur automatique d'échantillons :

SPECIFICAT	TONS
Sample Volume per Cycle	3 cc of 8 cc
Maximum Particle Size	3 mm (3 cc) or 7 mm (8 cc)
Basic Dicotrical Requirements (with Sentry controller)	115 VAC single phase, 50/80 Hz
Line Mounting Options	MNPS thread, In-clamp, instrument hub, ANSI flange
Compressed Air Requirements	2 SCFM @ 90 ps (05 m²mm @ 52 bar)
Materials of Construction	316 stamless steet other materials available
Plur ger Scale	II E. polyutethane, EPOM rubber. Kalrez*er custom
Cylinder Seals	Halar ^a , TFE, or custom
Net Weight, hist including controller or accessories	8-10 (b (3.5-4.5 kg)
Kairez e à registered trademark of E. I. Du Pont de Nemburs and Company, Halar is a registered trademark of Austmont, U.S.A. Inc. AWARNING	CE IN CONTRACT OF THE PROPERTY

N°rapport: **CB677-2605191-JBe-ind 1**Page 8/28

Pr	élèvement	Coef.	oui	non
1	Le point de prélèvement est-il correctement implanté (milieu homogène et brassé) ?	2	X	
2	Le circuit de prélèvement, y compris la boucle primaire, présente t-il un état de fonctionnement satisfaisant, son diamètre est-il ≥ à 9mm ?	1		X
3	Le volume de prélèvement par cycle est-il > à 50ml ?	1		X
4	La vitesse d'aspiration, y compris celle de la boucle primaire, est-elle ≥ à 0,5 m/s ?	1	X	
5	Le préleveur est-il asservi au débit, ou au volume écoulé, assure-t-il un nombre de prélèvements suffisant (à titre indicatif, une moyenne de 6 par heure de rejet effectif)? Les horaires de prélèvement et de totalisation des débits sont-ils synchronisés?	1		X
6	L'écart entre le volume théorique et le volume prélevé (sur au moins 2 heures) est- il ≤ à 10%?	3	X	
	Résultat de la cotation sur 10		6	.7

Le préleveur automatique ne respecte pas la norme ISO-5667-10 faisant référence pour la technique d'échantillonnage des eaux résiduaires.

3.2.1 Rappels l'implantation du prélèvement et les techniques à mettre en œuvre :

Le point de prélèvement sera situé dans un milieu homogène, donc suffisamment brassé et turbulent afin d'appréhender correctement les matières en suspension et flottantes. Un prélèvement dans un écoulement laminaire est donc le plus fréquemment à proscrire et une implantation à l'aval d'un organe de mesure de débit à conseiller.

En l'absence d'une telle installation, le point de prélèvement doit figurer suffisamment en aval du dernier raccordement. Sur les stations d'épuration, le point de prélèvement à l'entrée de la station se situera en amont des retours en tête.

L'installation d'un bac de prélèvement de volume modeste à pression atmosphérique est nécessaire pour un dispositif d'autosurveillance sur conduite en charge (après un relevage par exemple), celui-ci devant être alimenté en permanence par un piquage correctement implanté et dimensionné, situé si possible en amont du débitmètre.

Les prélèvements sont réalisés à l'aide de préleveurs échantillonneurs automatiques réfrigérés à 4° C et sont représentatifs de la qualité de l'effluent durant une période ne pouvant excéder en principe 24 heures lors de l'activité polluante.

Afin de limiter le nombre de manipulations des échantillons, l'utilisation d'un seul bidon par jour est conseillée. Pour des programmes d'autosurveillance soutenus (plusieurs fois par semaine), l'installation de préleveurs échantillonneurs multi flacons (4 X 12 litres au minimum) est à privilégier. Pour les préleveurs échantillonneurs installés en extérieur, il est nécessaire de prévoir un abri de protection.

N°rapport: **CB677-2605191-JBe-ind 1**Page 9/28

Ces matériels doivent obligatoirement respecter la norme ISO-5667-10, fixant des critères de fonctionnement et notamment :

☐ Une vitesse d'aspiration minimale de 0,5 m/s,
□ Un diamètre minimal du tuyau d'aspiration de 9 mm,
□ Un volume unitaire prélevé par cycle supérieur à 50 ml,
□ Un écart limite de 5% entre le volume d'échantillon prélevé et celui devant être théoriquement obtenu,
☐ L'existence d'un système de purge préalable du circuit de prélèvement avant chaque cycle de prélèvement
Un échantillon représentatif est obtenu si les règles suivantes sont respectées :
□ Asservissement du préleveur à une mesure en continu du débit du rejet (de préférence, le préleveur sera piloté par une impulsion délivrée par le débitmètre),
□ Fréquence soutenue des cycles de prélèvement, au minimum 6 à 7 en moyenne par heure de rejet effectif et 150 en moyenne journalière pour un rejet continu.
L'Agence de l'eau ou les Organismes réglementaires peuvent organiser des contrôles analytiques sur les échantillons constitués dans le cadre de l'autosurveillance.

Des doubles de ces échantillons (2 litres au minimum) devront donc être conservés durant au moins 24 heures dans une enceinte de préleveur réfrigéré à 4°C.

3.3 Mesure de pH / Température :

La mesure comparative Bureau Veritas avec ses appareils étalonnés sur les paramètres pH et température en continue est conforme.

	Bureau Veritas	VALE	Ecart toléré
Mesure de pH	8.87	9.05	0.2
Température (℃)	27.1	27.2	1

Les procédures de suivi et d'étalonnage des instruments mises en place pour ces paramètres sont conformes et suffisant.

N°rapport: **CB677-2605191-JBe-ind 1**Page 10/28

3.4 Analyses comparatives :

			СОМ	PAI	RATIF	ANAL	YTIQUE	Ē				
INCO NOUVE	LLE CA	LEDON					1/1900		LSEH			
Les analyses s					ALE		Ce labora	toire	est il ag	réé et (oı	ı) accrédite	oui
Les échantillons	s sont ils	correct	ement trait	és ?	oui	← Si ľ	ion, coi	ation	analytiq	ue rédu	ite de 40	0%
			res confor		14		-					
			tal de mes		14	Obser	vations		Inter-co	m parais c	n parfaite	
			obtenue si							•	•	
Concentration en mg/l	Station ou Etabliss	Labo de contrôle	Ecart (%)	Conformité	Station ou Etabliss	Labo de contrôle	Ecart (%)	Conformité	Station ou Etabliss	Labo de contrôle	Ecart (%)	Conformité
DBO5		3										
Mg	1130	1206	-3.25%	oui								
MEST	6.2	8.4	-	oui								
NK (N)		3										
SO4	5470	5080	3.70%	oui								
NO2 (NO2)		0.11										
NO3 (NO3)		10										
Azote Global (N)		0										
PT		0.16										
ST-DCO	50	33	20.48%	oui								
As	0.02	0.004	-	oui								
Co	0.01	0.022	-	oui								
Cr	0.03	0.039	-	oui								
Cu	0.01	0.02	-	oui								
Hg		0.5										
Ni	0.05	0.112	-	oui								
Pb	0.01	0.004	-	oui								
Zn	0.1	0.04	-	oui								
Cr6	0.03	0.05	-	oui								
CN		0.05										
AOX		0.23										
СОТ	2.7	2.9	-	oui								
Ca	494	418.8	8.24%	oui								
autre para.												

Conditionnement des échantillons avant analyses

Lors de l'audit l'exploitant a homogénéisé l'échantillon au laboratoire.

L'homogénéisation / partage de l'échantillon est manuel avec agitation d'un bidon de 10 litres. Vu le type d'effluent manipulé (clair avec peu de MEST ou particules) cette méthode est acceptable.

Il peut être envisagé « comme axe d'amélioration », de mettre en place un système d'homogénéisation mécanique avec pompage péristaltique pour répartition des échantillons en flacons. (Un système sera décrit en conclusion).

Bilan des analyses comparatives Commentaires :

L'inter-comparaison analytique est excellente malgré la remarque sur l'homogénéisation. Les bulletins de résultats des deux parties sont joints en annexe.

N°rapport: **CB677-2605191-JBe-ind 1**Page 11/28

Cellule Essais de performances VALE NOUMEA

3.4.1 Méthode de calcul des écarts analytiques :

ANNEXES: ETAT COMPARATIF ANALYTIQUE et METHODE DE CALCUL DES ECARTS

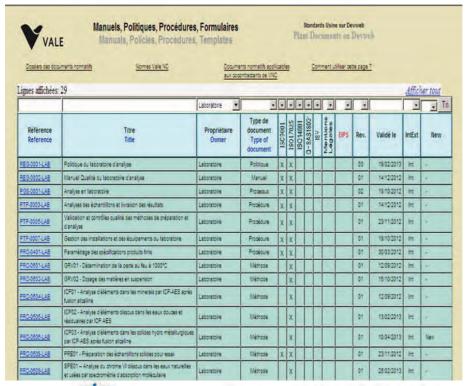
Paramètres	Limite intérieure d'expression du résultat	Seuil de comparaison	Concentration supérieure au seuil de comparaison et inférieure ou égale à	Concentration supérieure à
DBO5 en mg/l de O2	4	15	80	80
Ecart Maximum Toléré			30%	20%
DCO en mg/l de O2	30	80	250	250
Ecart Maximum Toléré			30%	10%
ST-DCO en mg/l de O2	10	20	150	150
Ecart Maximum Tolere			30%	10%
MEST en mg/l	5	15	100	100
Ecart Maximum Toléré			30%	20%
NK en mg/l de N	3	6		6
Ecarl Maximum Toléré				10%
NGL en mg/l de N	3	6	1 3	- 6
Ecart Maximum Toléré				20%
NH4 en mg/l de NH4	3	6		6
Ecart Maximum Toléré				10%
NO2 en mg/l de NO2	0.5	1	10 10	1 1
Ecart Maximum Toléré			3	20%
NO3 en mg/l de NO3	1	5		5
Ecart Maximum Toleré		1		20%
Pt en mg/t de P	0.5	1 1	1	
Ecart Maximum Toléré				20%
Mercure (Hg) en mg/l	-0.001	0.005	0.01	0.01
Ecart Maximum Tolere			60%	30%
Autres metaux et métalloïdes en mg/l	0.1	0.5	t	1
Ecart Maximum Tolere			60%	30%
AOX en mg/l	0.01	0.05	0.5	0.5
Ecart Maximum Tolere			60%	30%
COT en mg/t	2	5	15	15
Ecart Maximum Tolere			30%	10%
Test Daphnies en eq/m3	1	3	20	20
Ecart Maximum Tolere			30%	20%
CN en mg/l	0.1	0.5	1	
Ecart Maximum Toléré	100		60%	30%

Méthode de calcul des écarts (mesure des débits, résultats d'analyses) :

Soit a, le résultat de la mesure produit par la station ou l'établissement

Soit b, le résultat de la mesure produit par l'organisme ou le laboratoire de contrôle,

Soit C=(a+b)/2 la moyenne arithmétique des 2 mesures,


N°rapport: **CB677-2605191-JBe-ind 1**Page 12/28

Cellule Essais de performances VALE NOUMEA

3.4.2 Domaine d'Accréditation VALE :

Le laboratoire VALE est accrédité COFRAC pour certaines analyses de suivi sur site. Les certificats d'étalonnage et/ou vérification des instruments d'analyses nous ont été transmis.

Section Laboratoires - Convention n° 2882

ATTESTATION D'ACCREDITATION AVENANT N° 4

Le Cofrac atteste que l'organisme ci-dessous désigné NOM: VALE NOUVELLE-CALEDONIE S.A.S. 38 rue du Colisi 75008 PARIS Contact Tél : Fax : E-mail Monsieur Mickael CABON (687) 23.50.00 (687) 23.50.75 mickael.cabon@vale.com est accrédité selon la norme NF EN ISO/CEI 17025 version 2005 pour son laboratoire, site et périmètres d'accréditation précisément définis dans l'annexe technique suivante : Annexe technique n° 1 :: site du MONT DORE - NOUVELLE CALEDONIE accréditation n° 1-2025 prenant effet le 1^{er} novembre 2010 Cette accréditation est la preuve de la compétence technique du laboratoire pour les activités susmentionnées et du bon fonctionnement dans ce laboratoire d'un systeme de management de la qualité adapté (cf communiqué conjoint ISO / ILAC / IAF de janvier 2009). La présente attestation est valable du 1er novembre 2010 au 30 avril 2013 Fait à Paris, le 21 octobre 2010 Pour le Directeur Général du Cofrac, le Responsable de Pôle Stéphane BOIVIN

N°rapport: CB677-2605191-JBe-ind 1

Page 13/28

4. CONCLUSION / AVIS TECHNIQUE:

	JUAN E INCO NOUVELLE CALEBONIE MOUNEA FORE
station ou de établissement industriel de	e VALE INCO NOUVELLE CALEDONIE (NOUMEA TOM)
Numéro Interlocuteur	r MR MICKAEL CABON
Numéro Ouvrage	WASTE WATER TREATMENT PLANT
Date d'intervention	mardi 16 avr 2013
Organisme de contrôle	BUREAU VERITAS LYON
Laboratoire de contrôle	e LSEH
4.7	2
	es points d'autosurveillance
Point 1	1 Sortie station
Point 2	2
Point 3	3
Point 4	4
Point 5	5
Point 6	6
SYNTHESI	E DES COTATIONS
SYNTHESI Existe-t-il un système qualité performant ?	T Land To the Control of the Control
Existe-t-il un système qualité performant ?	9 oui Si NON Cotation globale -10%
Existe-t-il un système qualité performant ? Cotation des dispositifs de mesure de débit (sur10)	Si NON Cotation globale •10%
Existe-t-il un système qualité performant ?	Si NON Cotation globale •10% 10.0 Si une des cotations est < 6, le système est

Aucune cotation n'est inférieure à 6 / 10.

La note globale moyenne est de 8.9 / 10.

Des modifications importantes doivent être apportées au système de prélèvement automatique d'échantillon.

Sur les autres domaines concernés par l'audit (Inter-comparaison laboratoire, techniques d'analyse, suivi et entretien du matériel / système qualité) aucune remarque n'est formulée, les résultats sont de très bonne qualité.

N° rapport: **CB677-2605191-JBe-ind 1**Page 14/28

Cellule Essais de performances VALE NOUMEA

5. PRECONISATIONS D'AMELIORATIONS DU SYSTEME D'AUTO-SURVEILLANCE :

5.1 Préleveur automatique d'échantillon :

Comme décrit au paragraphe 3.2 le préleveur automatique d'échantillon ne répond pas aux critères de conformité d'une chaine de prélèvement représentative et conforme à la **ISO-5667-10**.

Pour palier a ce manque, il est nécessaire de mettre en place :

Un bac tampon de taille raisonnable (5 à 10 litre) alimenté en permanence par l'effluent en cours de rejet.

Ce bac tampon doit être alimenté par une conduite d'au moins 9 mm de diamètre et être naturellement homogénéisé par le flux introduit.

A côté de ce bac tampon doit être installé un préleveur automatique d'échantillon répondant à la ISO-5667-10.

Exemple de préleveur conforme : ENDRESS-HAUSER ASP STATION 2000.

Autre fournisseurs: (HYDREKA / NEOTEC ISCO / LANGE etc...)

Ce préleveur d'échantillon doit être réfrigéré et asservi / piloté par les impulsions du débitmètre électromagnétique (de quoi réaliser au moins 150 échantillons / jour d'un minimum de 50 ml par échantillon. Celui-ci prélèvera dans le bac tampon précédemment décrit par le biais d'un tuyau d'au moins 9 mm de diamètre intérieur.

Exemple en photographie :

N°rapport: **CB677-2605191-JBe-ind 1**

Page 15/28

5.2 Homogénéisation avant analyses :

L'homogénéisation de l'échantillon journalier reconstitué doit être réalisée dans un flacon PE d'au moins 12 litres et ayant une ouverture de col d'au moins 80mm.

Ce flacon est ensuite placé sous un système d'homogénéisation mécanique (type moteur vitesse variable avec agitateur à pâles ou agitateur magnétique grande dimension).

Lors de l'agitation, il ne doit pas apparaitre de phénomène de vortex (cône d'air) afin de ne pas oxygéner l'échantillon.

A ce système est ajoutée une pompe de type péristaltique qui vient aspirer dans le flacon en cours d'agitation.

Elle permettra de répartir l'échantillon dans plusieurs flacons pour partage / filtration et/ou analyse chez un sous traitant etc...

Exemple en photographie :

Après chaque utilisation. L'ensemble du système devra être soigneusement rincé / laver et purger.

Ce type de système est fortement conseillé lorsque les concentrations en MEST peuvent dépasser les 10 mg/l ou lors de présence de cristaux ou décantât organique / minéraux.

A titre d'information les préconisations décrites aux §5.1 et 5.2 représentent un investissement d'environ10 K€.

N°rapport: CB677-2605191-JBe-ind 1

Page 16/28

6. ANNEXES

Résultats d'analyses Bureau Veritas :

CARSO - LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Lascratino Agresi prod les sonives d'essas par le infratore de la Carta

Rapport d'analysé Edité le : 16/05/2013

BUREAU VERITAS Perf HSE Rhône-Alpes Auxergne

16 Chemin de Jubin

BP 26

DARDILLY Cedex 59571

Le rapport étabil ne concerne que les échantillons soumis à l'essai. Il comporte 2 pages, La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photograpi L'accréditation du COFRAC affecte de la compétence des laboratoires pour les seuls essais couverts par l'accréditat identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification dossier : LSE13-37897 identification echantilion LSE1304-30609-1

Doc Adm Client : Cde 1510003473 13-1882 - Aff 2506191/2/1

Référence client : 285 TNK 16 Eau usée Nature:

Prelevement: Réceptionne le 25/04/2013

Flaconnage CARSO-LSEHL

Les données concernant la réception, la concervation, le traifement analytique de l'échantillon et les incertitudes de mecure sont concultables au laboratoire. Pour décisier, ou non, la conformité à la spécification. Il n'a pas été tenu explicitement compte de l'incertitude accoclée au récultat.

Date pe début d'arialyse : 26/04/2013

Parametres analyt	ques	Repultato	Unites	Methodes	Nomies.	Series de Series	Selection de qualité	TABLE
Analyses physicochimiques		-						Γ
Analysis physicochimiques of	o base							ı
Carbone organique total (COT)		2.9	mgt C	Pyrogae in Linguelino per joie fuorità et III	or moves			l
Bufates		5080	mg/ 304-	Chromatographic innover	of by the others.			ŀ
Demande blochimique en oxygene (DBC) avec ATU (É jours)	0.1	-2	mg/ 02	Avecasidans	of access in			ŀ
Demande chimique en oxygène lindice 8T-DOO!		25	mg) (22	Constitutedoment	all etter			
Madères en suspension totales		8.4	mg/	Courses are little	neraprant.			L
Chrome heravalent (Cr M)		+ 0.06	mg/ Shill	State of the later	Santista salas AP			ľ
Dyanures totaus findice cyanure)		< 0.05	mg/ Ch-	Flui (Inthis) (CEA)	SP SP SECOND			L
A/O/X dissous après filtration		0.23	mgi Gi	Countries	OF BUILDING			1
Formes de / sacto								ı
Mirries	recote:	211	mgi NICO	Special contains a	the day speed			ı
Morates	95,050	+10	mgt NO3	Oversignment encor	of minimum is			ŀ
Azoté (Çeldah)	HALDER	+3	mgt Nr.	Datheter	are di pian			1
Azote global	ASSISTED.	0.0	mgt N	CHIEF	Nation laws			
Formes au ahospitore								ı

N°rapport: CB677-2605191-JBe-ind 1

Page 17/28

CARSO-LSEHL

Rapport d'analyse Page 2 / 2 Edité le : 16/05/2013

Identification échantillon : LSE 1304-30609-1

Destinataire : BUREAU VERITAS

Doc Adm Client: Cde 1510003473 13-1882 - Aff 2508191/2/1

Parametres analytiques	Resultats	Unites	Methodes	Normes	() troise or reacte	Tablecon Scale	COMMAC
Phosphore total	≺0.16	mga-P	White smaller of upon freprinting to in (Generalize)	AP SYMPLES			*
Mecaux							L
Digestion	20	-	(Agestini) dosse	LEANS MADE			
Auminium total	0.056	mg/l Al	ICPMS aires digestion	300 (720+1 or 67 20 (03) (720+2			*
Mercure total	- 4.0.0	ugi He	SAA year favore ayele.	25.000 tell			+
Arcenic total	< 0.004	melt he	(CPMS as in digester	201 (7304) (447) 201 (801 (7204)			÷
Chrome total	0.039	man Cr	ICP/MS sur-lin organism	20 //24-FeAF EV 00 / 128-2		. 4	
Sobalt total	0,022	mat Co	CPM6 airés digestion	390 (728+Cm h)* 35 (80) 1726+2			4
Culvre total	* 0.020	mg/l Cu	ICPMS wires digestion	800 (7304-640)F 500 (800 (7504-6			
Etain total	× 0.005	mail bri	ICPMS and digeton has report	80: (7394) at 17 31: 80 (7394)			4
Fer total	0.040	mg/l Fe	IOPIAES some domini	OF SVIDO LIME			4
Manganèse total	0.25	mg/l Mo	ICPANS no in digenoor	80: (7394) # NF 30: 80 (7394)			*
Nickel total	0.112	mg/ Ni	ICP/MS our in digention	80 (184) e AF 81 (0 1724)			
Fronts total	* 0 004	mg/ Pb	CPMS and digmor-	200 (1004) at 67 20 200 173947		-	÷
Zinc total	0.64	mg/s Zh	ICP/M6 works diperson	80 1734 (e/s)7 53 383 1734 (1 4	*
Calcium total	419.8	mgii Ce	ISPAES with Agmilion	SE EVEN HARE			
Magnesium total	1206	mg/ Mg	CPASS was specie	WEEV 200 1 (00.0)			=
Dioxines							
PCDD at PCDF							
Resultate Dioxines	Of res	-	HECCHEMS	SPRING SERVICE			+

AZOTE SLOBAL

DCO resultat sous reserve d'interferences des chiorures.

Nitrates : la limite de quantification a éte rénaussée en raison de la présence d'interférences.

Nitrites i délai de mise en analyse supeneur à 24 heures.

Chrome hexavalent délai de mise en analyse supereur à 24 heures.

COT : delai de prise en charge depasse.

Le calcul de l'azote global minorut pas les espéces azotees dont les concentrations sont inférieures à leur limite de quantification.

Fabien BOVETTO Responsable de Laboratoire

N°rapport: **CB677-2605191-JBe-ind 1**Page 18/28

CARSO - LABORATOIRE SANTE ENVIRONNEMENT HYGIÈNE DE LYON

LSE13-37597

RAPPORT D'ESSAL

ANALYSE DES PCDD ET PCDF

Date: 13/05/2013

L'essai LSE13-37897-1 a été réalisé à la demande de

BUREAU VERITAS Perf HSE Rhone-Alpes Auvergne 16 Chemin de Jubin

DARDILLY Cedex 69571

Code essai CARSO-LSEH: LSE13-37897-1

Référence client dossier Cde 1510003473 13-1882 - Aff 2506191/2/1

La reproduction de ce document n'est autorisée que sous la forme de fac-similé photographique intégral.

Il comporte 4 pages

Le rapport établi ne concerne que les échantillons soumis à l'essai.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Stephanie DEFOUR

Responsable de Laboratoire

N°rapport: **CB677-2605191-JBe-ind 1**Page 19/28

CARSO - L'ABORATOIRE SANTÉ ENVIRONNEMENT HYGIÈNE DE LYON

LSE13-37897

OBJET DE L'ESSAI

L'objet de ce l'apport d'essai référencé sous le code d'essai LSE13-37897 est l'analyse de PCDD et PCDF.

RESULTATS

Résumé des résultats en PCDD/F-TEQ

Référence dient échantillon	Référence CARSO-LISEH	PCDD/F-TEQ (OMS 1998)	PCDD(F-TEQ (OMS 2005)	Unite	Incertitude de mesure (=/-15%, TEF OMS 1998)
285 TNK 18	LSE1304-30609	0.00063	0.00058	ng/I de matière brute (nd=0)	+1-0.00009

Les résultats du tableau sont ceux obtenus avec zero pour les congénéres non déféctes Les résultats complets sont rapportés dans la deuxième partie du rapport.

Dans le cas d'echantillors contenant de la matière grasse, le pourcentage est déterminé par pesée.

Dans le cas d'échantillons dont la teneur en eau est communiquée, cette demiére est déterminé par dessication puis pesée de la perte de poids de l'échantillon

INFORMATIONS SPECIFIQUES A L'ESSAI

Description	Information		
Date de réception des échantillons	25/04/2013		
Méthode(s) interne(s) d'analyse	LSE1304-30809	MET008	
Norme(s) de reférence	EPA1613		
Instrument de mesure HRGC/HRMS Volume injecté en micro-litres Volume final	Autospec. 1 à 3 micr 25 à 50 m		
Ecart par rapport à la norme	LSE1304-30609	Auoun écan	
Observations spécifiques à l'essai ;	Rien å signaler		

Les prélèvements ont été réalisés par le client.

N°rapport: **CB677-2605191-JBe-ind 1**Page 20/28

CARSO - LABORATOIRE SANTÉ ENVIRONNEMENT HYGIÈNE DE LYON

LSE13-37897

Essai LSE13-37897 : Echantillon LSE1304-30609

ANALYSE DES PCDD ET PCDF

Client BUREAU VERITAS Référence client échantillon :

285 TNK 16

Date: 13/05/2013

Masse brute analysée (g)

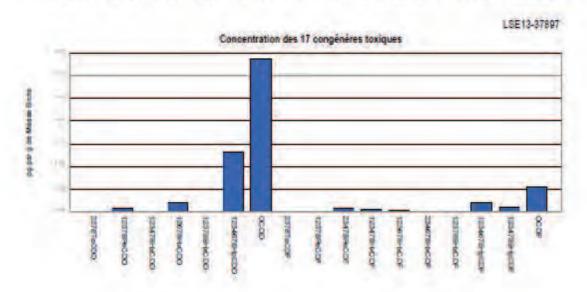
514.05

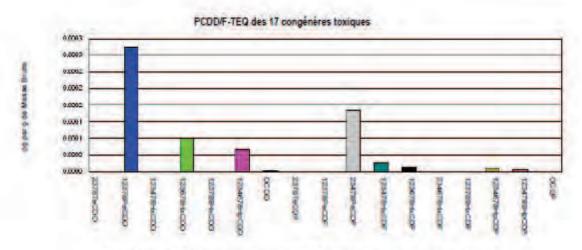
Date de début d'analyse Fighier HRIGC/HRIMS : 30/04/2013 03MAYT

	7EF (0966)	tic per extell	ingli be Matters Straffy etrolyses		Signature:	Salar spig der Slaves Fruit probjesse	P.8
Somme des TeCDD Somme des PeCDD Somme des HxCDD Somme des HpCDD OCDD Somme Te-aux OCCO	0.0001	5.951	0.0135				35
Somme des TeCOF Somme des PECDF Somme des HXCDF Sommé des HDCDF OCDF Somme Te-aux/OCDF	0.0001	1.161	0.0022				15
2,3,7,8-TeCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	0.1 0.1 0.1 0.1 0.01	nd 0.151 n8 0.408 nd 2.734	nd 0.0003 nd 0.0008 nd 0.0063		0.165 0.186 0.21	0.0003 0.0004 0.0004	52 83 62 59
2.5.7.6-TeCDF 1.2.3.7.8-PeCDF 2.3.4.7.8-PeCDF 1.2.3.4.7.8-HXCDF 1.2.3.6.7.8-HXCDF 1.2.3.7.8.9-HXCDF 1.2.3.7.8.9-HXCDF 1.2.3.4.6.7.8-HXCDF 1.2.3.4.6.7.8-HXCDF 1.2.3.4.6.7.8-HXCDF	0.1 0.00 0.0 0.1 0.1 0.1 0.1 0.1 0.1	nd hd 0.141 0.11 0.063 nd hd 0.188	nd ng 0.0003 0.0002 0.0001 nd nd 0.0008 0.0004		0.162 0.112 0.186 0.082	0.0003 0.0002 0.0002 0.0002	53 53 72 64 68 72 65 60 50
3701-2378 TCDD							-80
PCCCIF-TEQ en polextrat	0.32	ra edución is	to commission to	eciali coliferation	violentification		

Resultats TEQ totaux	en ng/ de matière brute	
PCDD/F-TEQ nd=5 (lower bound)	0.00063	
PCDD/F-TEQ no- 1/2 lod (medium bound)	D.00086	
PCDD/F-TEQ nd-lod (upper bound)	0.00103	

mine bound-inner
Anduri bound-inner
express
supe bound-inner
inde




N°rapport: **CB677-2605191-JBe-ind 1**Page 21/28

Cellule Essais de performances VALE NOUMEA

CARSO - LABORATOIRE SANTÉ ENVIRONNEMENT HYGIÈNE DE LYON

Dans le cas des échantillons agro-alimentaires, LOQ = Limite de quantification telle que définie dans l'annexe III du règlement (UE) n° 252/2012. Il s'agit de la concentration de l'analyte dans l'extrait qui produit une réponse instrumentale aux deux ions suivis avec un rapport S/B (signal sur bruit) de 3.1 pour le signal le moins intense et remplit les critéres d'identification tels que définis dans la méthode EPA 1513, Révision B.

N°rapport: **CB677-2605191-JBe-ind 1**Page 22/28

6.2 Résultats d'analyses VALE :

Certificat d'Analyses : LAB-CA-28484

Numero de demande : 28464 Reference de votre demande / NA

Client 'Llieviation

Daté de soumission des echantitions : 17/04/2013

Nombre d'échantition(s)

Las conditats to se supported qui au derantime aname à l'antenne par les nimes parties de la conditate de conditate de la cond

Approuve par Mickae: Capon

Le 19/04/2013

Commentaires.

Nº LIMS de l'échantillon : 669 283

Identité du produit 285-TNK16-A

Nont complémentaire :

Date et heure de prélevement : 17/04/2013 06:00:00

Matrice de l'échantillon : Eau résiduaire

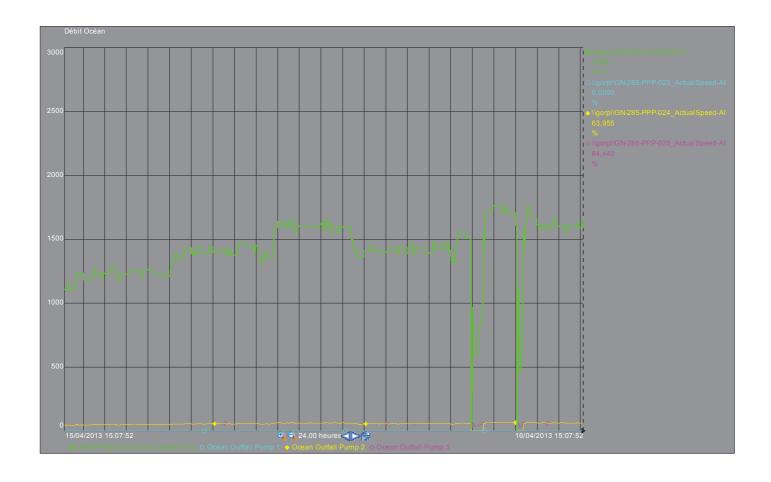
CONTRACTOR OF THE PARTY OF THE	6.000	100	6.00	Performance .	110.00
Méthode	Analyte	LD	LQ	Résultat	Unité
CALOS	304		-	3470	mg/l
GRV02-COFRAC	MES		50.	6.2	mgn
PH01	он	*	104	8.2	
SPECK-COFRAC	ICHVI	0.01	0.1	0.03	mgri
SPE03	200	10	50	#\$C	mgll
T1710	0	(0.0)	1	11.16	911
TITTE	TA	2	25	14	mg
	TAC	2	25	34	mg
TURBI	Turb	2.1	10.	2.8	NTU
ICPO2-COFRAC	AL	0.1	1	40,1	mgill
	As	0,02	0.1	-0,02	mgil
	Ca .	1	1	494	mg
	ca	0.01	0.1	-0.01	mgil
	CO	0.01	10,0	10,01	mg/l
	ė.	0.01	0.1	0.05	mgli
	Du	(0.0)	0.1	=0.01	mg
	Fe	0.1	1	-9,1	mg/r
	4	(0,1	1	34.2	mgil

N°rapport: CB677-2605191-JBe-ind 1 Page 23/28

ICP02-COFRAC	Mg	0.1	1	1130	mgd
	Mn	0.01	0,1	0,32	mgit
	Na	1	1	642	mgrl
	Ni	0.01	10, 1	0.05	mel
	P	0.4	1	.<0.1	mgil
	Pb	0.01	20,7	<0.01	mgri
	'S	1	1	1830	mgrl
	S	0	1		mg/l
	3n	0.01	.0,1	<0.01	merl
	Zn.	0.1	1	<0.1	mgrl
COTNTSI	COT	0.3	3,0	2.7	mgrl
	NT	0.5	5,0	0.6	mgrl

N° rapport: **CB677-2605191-JBe-ind 1**Page 24/28

VALE NOUMEA


Cellule Essais de performances

6.3 Conditions de fonctionnement lors de l'audit

Echantillonneur de la 285-TNK16 : fréquence de prélèvement

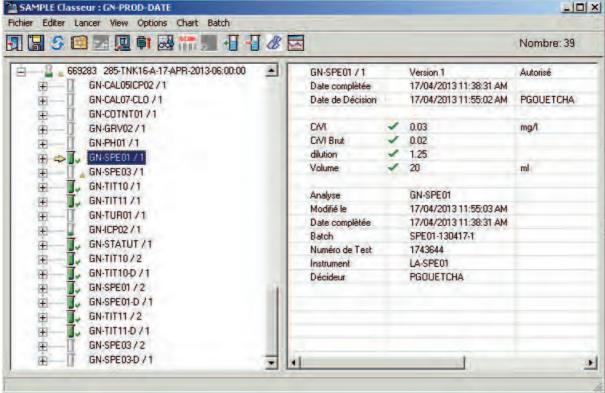
Flow (m3/h)	Last value (min)	New values (min)
0,01	14	4,7
500	14	4,7
750	9,6	3,2
1000	7,2	2,4
1250	5,8	1,9
1500	4,8	1,6
1750	4,1	1,4
2000	3,6	1,2
2250	3,2	1,1
4000	2,9	1,0

N°rapport: **CB677-2605191-JBe-ind 1**Page 25/28

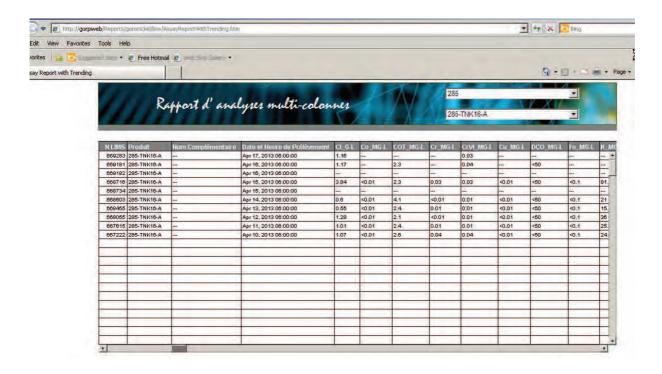
6.4 Documents laboratoire:

2 – Accréditation – Portée sur le site du cofrac www.cofrac.fr rechercher par organisme – vale.

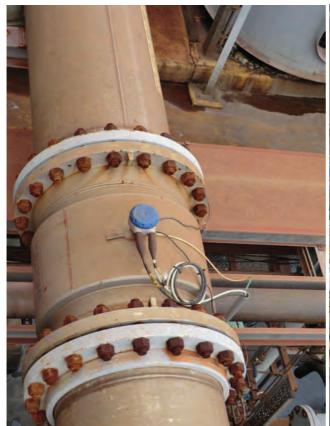
Pour info, les méthodes accréditées ont changé de référence suite au changement de référencement des documents de Vale et la portée d'accréditation sera mise à jour sur le site du Cofrac d'ici quelques semaines (le Cofrac a d'ailleurs rendu son rapport avec un avis favorable suite au dernier audit de renouvellement les 26 et 27 février dernier)



3 – LIMS et rapport d'analyse


Ci-dessous une copie d'écran du LIMS pour l'enregistrement des échantillons et des résultats (inclus résultats de contrôle qualité – échantillon de référence, blancs, duplicata) et les données de tracabilité (qui – quand – avec quel instrument...)

N°rapport: **CB677-2605191-JBe-ind 1**Page 26/28


Les résultats validés (par le personnel habilité) est visible en ligne pour les clients (opération et service environnement). Ci-dessous on voit une ligne vide pour le 15 avril qui contiendra l'analyse du Hg hebdomadaire, une ligne vide pour le 16 avril qui contiendra l'analyse mensuel de la DBO5. Les cellules vides pour la seconde ligne du 16 et celle du 17 sont les analyses pas encore faites ou validées pour ces 2 journées

N° rapport: **CB677-2605191-JBe-ind 1**Page 27/28

6.5 Quelques photographies :

N° rapport: **CB677-2605191-JBe-ind 1**Page 28/28

ANNEXE II

CARTE DE LOCALISATION DE L'EMISSAIRE