NOUVELLE CALEDONIE

DAVAR IDR

RAPPORT D'ETUDE HYDRAULIQUE

FEVRIER 2003

N° 2.81.0192 R1

DAVAR IDR

ZONES INONDABLES DE LA RIVIERE KOUMAC

RAPPORT D'ETUDE HYDRAULIQUE

FEVRIER 2003

N° 2.81.0192 R1

SOMMAIRE

Lis	TE DES	PLANS ET FIGURE	F
OB.	JET DE	L'ÉTUDE	
1.	Нур	DROLOGIE	1
	1.1.	PRÉAMBULE	
	1.2.	LES DONNÉES PLUVIOMÉTRIQUES	
	1.3.	LES STATIONS HYDROMÉTRIQUES	
	1.4.	ANALYSE DES DONNÉES LIMNIMÉTRIQUES	3
	1.5.		
	1.6.	DÉBITS CARACTÉRISTIQUES	4
2.	Мог	DÉLISATION DES ÉCOULEMENTS	6
۷.		LA MODÉLISATION MATHÉMATIQUE	
	2.1.	2.1.1. PRINCIPES GÉNÉRAUX	
		2.1.2. LES LOIS D'ÉCOULEMENT	6
		2.1.3. MODÉLISATION DU LIT MINEUR	
		2.1.4. MODÉLISATION DU LIT MAJEUR2.1.5. DOCUMENTS TOPOGRAPHIQUES UTILISÉS	
	2.2.	LIMITES ET TOPOLOGIE DU MODÈLE	
	2.3.	CONDITIONS AUX LIMITES	8
	2.4.	RÉGLAGE DU MODÈLE	8
	2.5.	LES CRUES DE RÉFÉRENCE	11
	2.6.	CARTOGRAPHIE	11
Anı	NEXES		13
ANI	NEXE A	•	
	DES	SCRIPTION DE LA MÉTHODE SPEED	14
Anı	NEXE B	3	
	HYI	DROLOGIE	19
ΔNI	NEXE C		
, A, 41	, •	DRAIII IOHE	20

LISTE DES PLANS ET FIGURE

Plan n°1	Plan de situation général (en tête du rapport)
Plan n°2	Plan du bassin versant au 1/200 000 (annexe B)
Plan n°3	Décomposition du bassin aval (annexe B)
Figure 4	Ajustement statistique des débits réduits aux stations connues (annexe B)
Figure 5	Ajustement statistique des débits réduits de la Koumac (annexe B)
Figure 6	Schéma topologique du modèle numérique d'écoulement (annexe C)
Figure 7	Profil en long de la ligne d'eau de réglage (annexe C)
Figure 8	Profil en long des lignes de crues caractéristiques [niveau] (annexe C)
Figure 9	Profil en long des lignes de crues caractéristiques [charge] (annexe C)
Plan n°10	Cartographie des zones inondables pour la crue de période de retour 5 ans (annexe C)
Plan n°11	Cartographie des zones inondables pour la crue de période de retour 100 ans (annexe C)

OBJET DE L'ETUDE

La DAVAR (Direction des Affaires Vétérinaires, Alimentaires et rurales) souhaite connaître la délimitation des zones inondables de la Koumac, située au nord de la Nouvelle-Calédonie.

Elle a donc commandé au bureau d'étude local I.D.R. une étude hydraulique permettant l'établissement de ces limites ainsi que la représentation des courbes de niveau de la surface libre.

Cette étude a été sous-traitée à SOGREAH par IDR.

oOo

1. HYDROLOGIE

1.1. PREAMBULE

Cette étude hydrologique a pour but la détermination des débits caractéristiques de crue, c'est-à-dire des débits maximum de crue de période de retour comprise entre 5 et 100 ans.

Cette étude est conduite à partir des mesures effectuées en différentes stations hydrométriques ayant déjà fait l'objet d'analyse. Elle est complétée par les estimations de débits faites pour les plus fortes crues observées de la Koumac.

La démarche suivie se fonde sur la méthode SPEED mise au point à SOGREAH et qui utilise différentes relations associées à la théorie et à l'expérience (théorie de l'hydrogramme unitaire, théorie du gradex, formules de Montana et du temps de concentration). Ces relations conduisent à la formule de base utilisée pour les débits de crues exceptionnelles :

$$Q_T = \frac{S^{0.75}}{12} (P_T - P_0)$$
 si T > T_o

$$Q_T = \frac{S^{0.75}}{12} (Co.P_T)$$
 si T < T

avec

Q_T = débit de pointe de crue de période de retour T (années),

 P_T = précipitation journalière ponctuelle de même période T,

 $S = \text{superficie du bassin versant, en km}^2$,

P₀ = seuil probabiliste de ruissellement intégral, en mm,

To = période de retour limite de la théorie du Gradex,

Co = coefficient de proportionnalité des faibles crues aux pluies.

Cette formule permet de tirer la notion de débit réduit, égal au débit Q_T divisé par la superficie $S^{0.75}$ et multiplié par 12. Ce débit réduit est donc homogène à une pluie en mm.

Cette étude utilise donc la notion de débits réduits de façon à pouvoir comparer les stations entre elles et s'affranchir au mieux de la superficie. En effet, comme cela est exposé en annexe A, pour des bassins homogènes vis à vis de la géologie, de la couverture végétale et de la pluviométrie, les débits caractéristiques se confondent en terme de débits réduits.

1.2. LES DONNEES PLUVIOMETRIQUES

Des données de pluie nous ont été communiquées par la DAVAR aux stations suivantes (cf. plan n°2 en annexe 2) :

		PLUVIOGRAPH	ES		
STATION	BV	N°	X	Υ	Z (approché)
BONTE STE ANNE	DIAHOT	5700400700	441638	7740750	15
PAIMBOAS	DIAHOT	5700400200	450242	7731211	90
TIEBAGHI MINE	NEHOUE	5702300100	417712	7738125	460
BAMBOU	NEHOUE	5702300200	433000	7738000	130
PAGOU	OUAIEME	5703100400	461990	7723402	240
PAAGOUMENE	PAAGOUMENE	5706201700	417980	7731112	10

Aucune de ces stations n'est située sur le bassin versant de la rivière Koumac.

Malheureusement, ces données comportent beaucoup de lacunes ou sont des cumuls de pluies sur plusieurs jours.

Par ailleurs la taille des échantillons est relativement réduite (12 à 17 ans).

Tout ceci a conduit à une impossibilité d'effectuer un traitement statistique valable.

En revanche, nous avons pu en tirer les pluies suivantes lors des principaux cyclones pour lesquels nous disposons de laisses de crue.

PLUIE JOURNALIERE	FRAN	BE	TI	OLINDA	FRANCK
(en mm)	10/03/1992	26/03/1996	27/03/1996	21-22/01/99	19-20/02/99
BAMBOU				166,5	23,5
PAAGOUMENE	223,5			187,5	69,5
PAGOU	161,1	405,3	310,5		
PAIMBOAS	297,2	226,3	206,4	163	135,7
TIEBAGHI MINE	261,7	134,1	89,4	178,4	83,5

1.3. LES STATIONS HYDROMETRIQUES

Les stations considérées sont récapitulées dans le tableau suivant. Elles ont toutes fait l'objet d'une étude de la part du cabinet HYDREX, étude visant à compléter le cas échéant les données de hauteur d'eau et à leur associer un débit en déterminant au moyen d'un modèle mathématique d'écoulement la relation niveau-débit au droit de chacune d'elles.

Rivière	Station	Code	Superficie	Date de l'étude	Période d'exploitation	Nombre de valeurs
BOGHEN	Aval Aremo	5702600102-9	113 km²	mars-97	1954 à maintenant	44
FATENAOUE		5704700301	112 km²	juil-98	1955 à maintenant	30
LA FOA	Pierrat		115 km²	oct-96	1980 à maintenant	16
POUEMBOUT	Boutana	5703900102	176 km²	mars-97	1955 à maintenant	33
TONTOUTA	Mine Liliane	5705200101	380 km²	juin-97	1954 à maintenant	32

1.4. ANALYSE DES DONNEES LIMNIMETRIQUES

L'ensemble des données de débit ont fait l'objet d'un traitement statistique selon une loi de Gumbel.

La figure 4 en annexe B présente les résultats obtenus.

On constate qu'au-delà du phénomène de période de retour 3 ans, il y a un bon alignement des points expérimentaux.

On peut penser qu'en deçà de la période de retour de 3 ans, les crues résultent de pluies faibles ne saturant pas le bassin versant. Au-delà, les pluies sont vraisemblablement associées à des phénomènes cycloniques ou à de fortes dépressions et permettent une saturation du sol.

1.5. APPLICATION A LA RIVIERE KOUMAC

En l'absence de station de mesure sur le bassin de la Koumac, nous avons tout d'abord cherché à déterminer les débits caractéristiques de la Koumac à partir des ajustements statistiques des bassins équipés.

L'utilisation du modèle numérique d'écoulement avec les débits obtenus de cette façon a révélé des niveaux d'écoulement bien trop élevés comparés aux niveaux observés lors des crues passées.

Nous avons alors effectué le raisonnement suivant : les crues associées aux cyclones Fran et Béti sont les plus fortes connues depuis 1989 soit en 13 ans de mesure. Elles conduisent à des niveaux d'écoulement relativement semblables. Statistiquement, on peut penser (en supposant que cet échantillon de 13 années est représentatif de la population mère) que leur période de retour est comprise entre 10 et 15 ans. Compte tenu des estimations des débits de chaque crue faites en différents points du modèle numérique (et donc pour différentes superficies de bassin associées) à partir des niveaux observés et

ETUDE DES ZONES INONDABLES DE LA RIVIERE KOUMAC

des pentes d'écoulement, nous en avons déduit un rectangle d'incertitude défini comme suit :

- période de retour = 10 à 15 ans,
- débit réduit = 300 à 400 mm.

Cela se traduit par un rectangle sur un graphique de Gumbel (cf figure 5 en annexe B).

Pour établir les valeurs des débits caractéristiques de période de retour supérieure, nous avons considéré le fait que les droites d'ajustement des pluies coupent l'axe des abscisses au point de pivot (cf annexe A), celui-ci étant directement lié au nombre moyen d'événements par an qui génèrent ces crues maximal annuelles. Nous avons raisonné sur les débits réduits de la même façon en considérant que le P0 est vraisemblablement faible sur la Nouvelle Calédonie.

Le nombre de cyclones ou de fortes dépressions intervenant en moyenne est de 0.44 à 1 par an selon les documents de Météo France. Compte tenu que le nombre d'événements par an N générant les crues max annuelles est égal à e^{-Y0}, Y0 étant le pivot, nous en déduisons que la valeur du pivot est comprise entre 0 et 0,82.

Fort de ces résultats, nous pouvons construire sur le graphique de Gumbel deux droites extrêmes entre lesquelles se situent vraisemblablement les valeurs caractéristiques du bassin.

L'application (cf figure 5 en annexe B) montre que la droite supérieure s'ajuste assez bien à l'échantillon des débits max annuels de la rivière Pouembout à Boutana, ce qui conforte la vraisemblance du raisonnement.

Les débits réduits caractéristiques se situent donc entre les valeurs moyennes et maximum suivantes :

Période de retour	Débit ré	duit (mm)
(ans)	Moyenne	Max
5	182	260
10	307	390
20	428	517
30	497	589
50	583	679
100	700	800

1.6. DEBITS CARACTERISTIQUES

Nous avons adopté comme valeurs caractéristiques, celles correspondant à la droite médiane. Nous avons cependant effectué un calcul d'écoulement pour le débit centennal associé à la droite supérieure afin d'apprécier la sensibilité des niveaux calculés à l'incertitude sur les débits.

Nous avons décomposé la partie du bassin versant faisant l'objet de calculs d'écoulement en plusieurs sous-bassins de façon à tenir compte de l'augmentation progressive du débit d'amont en aval (cf plan n°3 en annexe).

Nous en déduisons les débits caractéristiques suivants aux différents points d'introduction de débit du modèle numérique d'écoulement.

		Période (de retour	2 ans	5 ans	10 ans	20 ans	30 ans	50 ans	100 ans	100 ans max
POINT	Superficie	Débit réc	duit (mm)	45	182	307	428	497	583	700	800
		Point dapport					. ,				
P10	167	P10	Débit (m3/s)	174	705	1188	1657	1924	2257	2710	3097
P7b	182		Débit (m3/s)	186	752	1268	1767	2052	2407	2890	3303
170	102	C&d	Apport	12	47	79	110	128	150	181	206
P7	189		Débit (m3/s)	191	773	1304	1818	2111	2476	2973	3398
' /	109	C7d	Apport	5	21	36	51	59	69	83	95
P6	203		Débit (m3/s)	202	816	1376	1918	2227	2613	3137	3585
10	205	C6d	Apport	11	43	72	100	116	136	164	187
P5	218		Débit (m3/s)	213	860	1451	2024	2350	2756	3309	3782
2	210	ුරා _d	Apport	11	45	76	106	123	144	172	197
C3bg	223		Débit (m3/s)	216	875	1476	2058	2390	2804	3366	3847
3	223	C4gg	Apport	4	15	25	34	40	47	57	65
P3	233		Débit (m3/s)	224	904	1526	2127	2470	2897	3479	3976
3	233	C4d	Apport	7	29	49	69	80	93	113	129
CŒA	237		Débit (m3/s)	227	916	1545	2154	2502	2935	3524	4027
~~	20/	C2g4	Apport	3	12	20	27	32	37	45	51

2. MODELISATION DES ECOULEMENTS

2.1. LA MODELISATION MATHEMATIQUE

2.1.1. PRINCIPES GENERAUX

Le modèle mathématique est créé et exploité à l'aide du logiciel CARIMA mis au point par SOGREAH.

Ce logiciel permet de calculer les niveaux, débits et vitesses d'écoulement en régime permanent ou non permanent (transitoire).

Il traite simultanément les écoulements en lit ordinaire (lit mineur) et les écoulements dans les champs d'inondation (lit majeur), l'ensemble pouvant constituer un réseau maillé ou ramifié.

2.1.2. LES LOIS D'ECOULEMENT

Les lois d'écoulement utilisées sont :

- En lit mineur, le frottement rugueux avec prise en compte de la vitesse d'écoulement et de sa variation entre sections (phénomène d'inertie).
- En lit majeur, le frottement rugueux seul.
- Des lois de seuil ou d'orifice au droit des obstacles tels que ponts, digues, vannes etc...

Ces lois caractérisent aussi bien l'écoulement noyé (avec influence aval) que dénoyé (sans influence aval) et l'écoulement en charge pour les orifices.

2.1.3. MODELISATION DU LIT MINEUR

Le lit ordinaire est représenté par une série de points de calcul délimitant des tronçons élémentaires de rivière.

Chaque point correspond à un profil en travers dont la géométrie a été relevée ou estimée (par interpolation par exemple).

On associe à chaque section un ou plusieurs coefficients de rugosité (Strickler) qui résulte de l'examen des lieux ou des photographies disponibles.

Dans un tronçon, l'écoulement est conditionné par une section qui est une moyenne pondérée des sections des extrêmités du tronçon.

Aux phénomènes d'inertie (dissipation de l'énergie cinétique dans les secteurs divergents ou convergents) sont associés des coefficients de perte de charge par divergence ou convergence.

2.1.4. MODELISATION DU LIT MAJEUR

Les niveaux en lit majeur sont déterminés en différents points particuliers auxquels sont associés des casiers définis par une relation cote-surface. Ces casiers n'ont un intérêt que dans les situations où les volumes disponibles en champ d'inondation sont capables d'amortir d'une façon sensible, les hydrogrammes de crue et donc, seulement en régime non permanent.

Dans notre cas, compte tenu de la durée de la crue et des volumes induits, les phénomènes d'amortissement sont suffisamment faibles pour ne pas nécessiter de calcul en régime transitoire.

à reporter

La limite des casiers ne sert qu'à établir une relation niveau-volume et ne signifie aucunement que le niveau doit être considéré horizontal sur l'ensemble du casier et égal au niveau calculé au point de casier.

Les échanges entre casiers s'effectuent soit par frottement sans inertie (pas de prise en compte de la vitesse), soit par ouvrage ponctuel (seuil déversant, orifice...).

2.1.5. DOCUMENTS TOPOGRAPHIQUES UTILISES

Pour la construction du modèle, différents documents topographiques ont été utilisés. Ce sont :

- 17 profils en travers (lit mineur + lit majeur),
- 2 profils en long de digues bordant le lit mineur,
- du profil en long des routes formant seuil,
- du plan des ouvrages de franchissement (ponts et seuils),
- un plan au 1/12500ème comportant des points cotés et des courbes de niveau.

De façon à assurer une bonne qualité du travail, tant au niveau de la construction du modèle qu'à celui de la cartographie, les points cotés issus des profils en travers et en long ont été reportés sur plan.

Les points de calcul sont situés sur les plans 10 et 11 en annexe C. Les points du lit mineur sont repérés en abscisse par rapport à un axe curviligne dont les PK sont situés également sur ces plans.

2.2. LIMITES ET TOPOLOGIE DU MODELE

Le modèle s'étend depuis l'océan en aval jusqu'à 12,5 km en amont.

Il est composé de 88 points en lit mineur dont 63 sont des points fictifs nécessaires pour des raisons de règles topologiques ou pour assurer la conservation de charge aux nœuds. En effet, compte tenu des valeurs élevées des débits débordants, il est indispensable qu'il y ait égalité de charge aux points d'où partent ou reviennent de grandes quantité d'eau.

Il comporte également 39 points "casiers" en lit majeur et 78 liaisons entre ces points entre eux ou avec les points du lit mineur.

Le schéma topologique est fourni en annexe C (figure afin de permettre une meilleure lecture des tableaux de résultats. Seuls les points écrits en gros caractères sont à considérer pour l'analyse des résultats.

2.3. CONDITIONS AUX LIMITES

La résolution des équations régissant les écoulements nécessite de connaître les conditions aux limites du modèle.

Celles-ci sont constituées :

- Des débits introduits en amont et aux points situés en aval des affluents (cf chapitre précédent).
- Du niveau imposé en aval. Ce niveau est estimé à 1,39 NGNC lors des phénomènes exceptionnels. Il résulte d'un niveau de marée extrême de 1,07 augmenté d'une surcote de 0,32 liée au vent et aux dépressions.

2.4. REGLAGE DU MODELE

Les piézzomètres installés en différents points du secteur d'étude fournissent des niveaux mesurés lors de plusieurs crues passées. Il existe cependant des lacunes ; elles ont été comblées en établissant des corrélations entre différents événements. Le tableau page suivante présente le résultat de ce travail.

Ne connaissant pas les débits associés aux cyclones pour lesquels nous disposons de niveaux observés et mesurés, on ne peut pas véritablement parler de réglage du modèle.

Cependant, sur les secteurs amont où les écoulements s'effectuent entre deux versants relativements proches et sont donc en quelque sorte canalisés, il a été possible de calculer des fourchettes de débits pour les crues associées aux cyclones Fran et Débi en tenant compte de la pente et de la rugosité observée lors de la reconnaissance de terrain intervenue en novembre 2001.

Nous avons ensuite effectué un calcul d'écoulement avec le modèle numérique pour les valeurs moyennes des débits estimés, dont la période de retour est d'environ 15 ans.

TABLEAU DES NIVEAUX OBSERVES LORS DES CYCLONES

		Beti	Beti	Fran	Beti	Befi	Befi	Beti	Beti	Befi	Beti	Beti	Beti	Befi	Fran	Beti	Beti	Befi	Beti	Beti	Fran	Beti	Beti	Beti
	max	2,89	2,90	2,32	╁	4,83	4,59	6,94	6,57	7,16	7,38	7,12	6,80	00′6	9,13	12,09	14,65	17,30	!	18,32	19,46	23,77	25,82	├
FRANCK	20/02/1999	2,47	2,37	1,63	2,94	4,42	3,96	. 6,30	5,89	6,29	6,56	6,75	6,42	8,05	8,40	1,11	13,51	16,38	17,02	17,27	16/21	22,71	24,96	
OLINDA	21/01/99	2,58	2,48	1,74	3,06	4,49	4,08	6,44	6,05	6,43	6,76	6,86	6,48	8,32	8,55	11,14	13,85	16,59	Pr 17,24	17,48	18,13	22,94	25,2	25,59
DRENA	26/10/80	2,32	2,12	1,83	2,88	4,39	18'8	6,24	2,7	6,15	6,4	6,73	6,35	7,87	8,38	10,89	F. 13,80 =	16,40	17,05	17,40	18,67	22,47	24,68	- 25,39
BETI	27/03/96	2,89	2,90	2,25	5 25'85 W	4,83	4,59	6,94	25'9	91′2	7,38	7,12	8'9	9,00	9,12	12,09	14,65	17,30.	17,96	18,32	18,87	23,77	25,82	26,47
FRAN	10/03/92	2,68	F 2,73	2,32	3,35	4,7	4,43	6,79"	66'9	7,02	7,15	7,04	6,75	8,86	9,13	11,93	13,4	17,2"	- \$17,87	18,3	19,46	23,7		26,36
GR INO	22/01/90	2,49	2,44	1,49	2,93-	4,45	3,29	6,39	2,89	119"9	18′9	22'9	6,48	18,8,31	8,31	11,03	13,47	16,44	17,1	17,43	. 18,64	22,44	24,85	25,37
HARRY	12/02/89	2,57	2,58	1,76	3,18	4,54	4,28	6,49	6,18	6,71	96'9	6,89	6,56	8,48	8,48	11,14	###18;49	16,5	17,14	17,47	18,67	22,54	24,73	25,30
DELILAH	02/01/89	2,49	2,52	1,75	3,24	4,5	4,17	6,47	6,11	II 6,72	96'9	6,84	6,56	8,47	8,47	11,2	13,61	16,68	17,33	17,83	18,89	22,77	25,06	25,64
ă	<u>-</u>	12,65	12,78				11,82	10,2			9,54	10,07			8,885	7,16	5,46	5,48	3,67	3,64		1,92	0,88	0,91
Point de	mesure	E 01 002	E 01 004	E 01 005	E 02 001	E 02 003	E 02 005	E 03 002	E 03 004	E 04 001	E 04 002	E 04 005	E 04 007	E 05 001	E 05 002	E 06 002	E 07 001	E 07 003	E 08 001	E 08 002	E 08 005	E 09 002	E 10 002	E 10 003

= cote déterminée par corrélation

Le profil en long de la figure 7 montre les écarts existant entre calcul et observations faites en lit mineur.

Le tableau ci-après liste ces écarts pour l'ensemble des points de mesure.

	we (all 6,	,			
POINT	LAISSE	NIVEAU	ECART	COMMENTAIRE	1
P1-OCEA	2,89	3,085	0,195	E01002	
C1g2-COCE	2,9	2,892	-0,008	E01004	1
C1g4-CR4	2,25	2,106	-0,144	E01005] .
C2g3-C2g4	3,52	4,061	0,541	E02001	
C2g2-C1g2	4,83	5,128	0,298	E02003]
P2-P1	4,59	4,79	0,2	E02005]
C2b3	5,7	6	0,3	Buanderie du Maire	
P3	6,94	6,68	-0,26	E03002]
P3-C3g	6,57	7,162	0,592	E03004	
C4gg	7,38	7,36	-0,02	E04002] ,
C4gg-C2b3	7,16	7,247	0,087	E04001	calar Lube?
P3b	7,12	7,11	-0,01`	E04005	I tope
P3b-C3bg	6,8	7,253	0,453 .	E04007	'
C5ģ	9	9,08	0,08	E05001]
C5g	9,12	9,08	-0,04	E05002	
P6	12,09	11,99	-0,1 '	E06002].
P7	14,65	14,68	0,03	E07001	<u>.</u> .
\\\$8v-P8	17,96	18,238	0,278	E08001]
∖ S8v-P8	18,32	<u>18,322</u>	0,002	E08002	1
C8mg	18,87	19,56	0,69	E08005 19.46 pour Fran *	<u></u>
P9	23,77	24,22	0,45	E09002	_
P10-P109	26,47	27,139	0,669	E10003 <	T

MOYENNE = 0,248

On constate que l'écart moyen est inférieur à 30 cm ce qui est très acceptable compte tenu du fait que la précision des observations est de l'ordre de 30 cm (voir les points de mesure très rapprochés donnant des valeurs différentes).

Les écarts importants (de l'ordre de 50 cm ou plus) s'observent aux points de mesure suivants :

- E02001 (entre C2g3 et C2g4). Il faut remarquer que le niveau de référence n'est pas observé mais résulte d'une corrélation avec les autres événements. Ce niveau de référence n'est donc pas garanti.
- E03004 et E04007 sont situés de part et d'autre de la route. L'analyse de ces niveaux mesurés comparativement aux autres niveaux constatés aux alentours (tant en amont qu'en aval) montre, sinon une incohérence, du moins une forte baisse (en particulier comparés aux points E03002, E04001 et E04002). Cela peut provenir d'une erreur de calage altimétrique du sommet du tube de mesure. Quoi qu'il en soit, il n'a pas été possible de réduire l'écart de façon satisfaisante avec le modèle. Au pire, si le calage

des tubes est bon, on retiendra que le modèle conduit à des niveaux surestimés au franchissement de la route.

- E08005. Le niveau relevé à la suite de Fran est beaucoup plus proche des résultats de calcul (écart de 10 cm avec le calcul mais de 59 cm avec Beti). Ceci montre que la précision des niveaux observée est peut-être supérieure à 30 cm comme estimé initialement.
- E09002 et E10003. Ces deux points de mesure sont situés sur la partie amont du lit où les vitesses d'écoulement sont importantes du fait d'une limitation du lit en largeur.
 Il est fort possible qu'en crue, le lit se creuse puis se recomble à la décrue lorsque la capacité de transport solide diminue. L'aspect horizontal du lit mineur transversalement à l'écoulement tendrait à montrer que les écoulements ont effectivement lissé le fond sableux et graveleux du lit.

2.5. LES CRUES DE REFERENCE

Des calculs ont été effectués en introduisant les débits caractéristiques des crues de période de retour 5, 10, 20, 30 , 50 et 100 ans. Pour la crue centennale, un calcul supplémentaire a été réalisé en considérant la valeur haute de l'intervalle d'incertitude (cf chapitre précédent).

Les résultats font l'objet des tableaux de niveaux, débits et vitesse en annexe C.

Les lignes d'eau ont été reportées sur le profil en long 8, les lignes de charge sur la figure 9 en annexe C. Ce deuxième profil en long permet d'apprécier les risques de débordement accrus pouvant intervenir localement si des obstacles se dressent en bordure du lit (pile de pont, arbre...). Le phénomène de récupération de l'énergie cinétique est décrit au paragraphe 2.6 suivant.

On peut constater que les écarts de niveau entre les deux valeurs considérées pour la crue centennale sont de l'ordre de 30 cm voire 40 cm sur la partie amont, resserrée, du secteur d'étude.

2.6. CARTOGRAPHIE

Conformément au cahier des charges, la cartographie des zones inondables a été réalisée pour les crues de période de retour 5 et 100 ans.

Elle fait l'objet des pans le et 1 en annexe C.

Sur ces plans ont été portées d'une part les limites des zones inondables et, d'autre part, les équipotentielles de la surface libre.

Le tracé des équipotentielles tient compte du fait qu'en lit majeur, et pour les secteurs où le lit majeur ne dispose pas de point de calcul spécifique, le niveau de l'eau peut se rapprocher du niveau de la charge. La charge est la somme du niveau d'eau calculé et de l'énergie cinétique ($Z = z + V^2/2g$ où g est l'accélération de la pesanteur). En effet, si les écoulements en lit majeur s'effectuent par un ralentissement progressif de l'eau sans

+= 1/2 +H

Engary.

dissipation d'énergie autre que celle liée aux frottements, l'énergie cinétique se transforme en énergie potentielle (liée à la hauteur d'eau) : le niveau remonte d'amont en aval de la valeur de la variation d'énergie cinétique. C'est ce qui explique la courbure des équipotentielles apparaissant en certains points. La charge est également le niveau que peut atteindre l'eau en cas d'arrêt brutal sur un obstacle (pile de pont, arbres etc...).

Sur les plans figurent également les points de calcul ainsi que les niveaux et charges associés.

Les contours des zones inondables sont largement dépendantes des cotes et courbes de niveau disponibles sur le plan au 1/12500^{ème}. Il est apparu, par comparaison avec les profils en travers et en long levés par topographie terrestre, que des écarts notables existent, pouvant atteindre un mètre.

En ce qui concerne les processus de débordement mis en évidence par la cartographie, on peut faire les remarques suivantes :

- Les débordements sur la digue de rive droite, sur le secteur resserré amont, n'intervient que du fait de la récupération d'énergie cinétique ayant lieu entre lit mineur et sommet de berge, phénomène associé à la rugosité de la berge.
- Ceux qui apparaissent sur la digue de rive gauche entre les points de calcul P7 et P5a sont également liés, partiellement, à ce phénomène mais surtout aux points bas de la digue existant en quelques endroits.
- Pour la crue de période de retour 5 ans, les débordements sur cette digue de rive gauche n'ont lieu qu'à cause de ces points bas (au droit du point de calcul P67). Ce sont ces débordements, identifiés dès la construction du modèle, qui sont à l'origine de l'ajout de ce point de calcul.
- Toujours pour la crue de période de retour 5 ans, tout le lit majeur de rive droite situé en aval du point de calcul P7 (casiers C7d et C67d) n'est a priori inondé que par de faibles épaisseurs de lames d'eau (si l'on considère les cotes du plan au 1/12500ème comme exactes).

ANNEXE A DESCRIPTION DE LA MÉTHODE SPEED

La méthode SPEED (Système Probabiliste d'Etude par Evènements Discrets), développée par SOGREAH, est fondée d'une part sur une analyse particulière et régionale des pluies et, d'autre part, sur la relation mise en évidence par SOGREAH, en France et dans le monde entier, entre pluie et débit de crue.

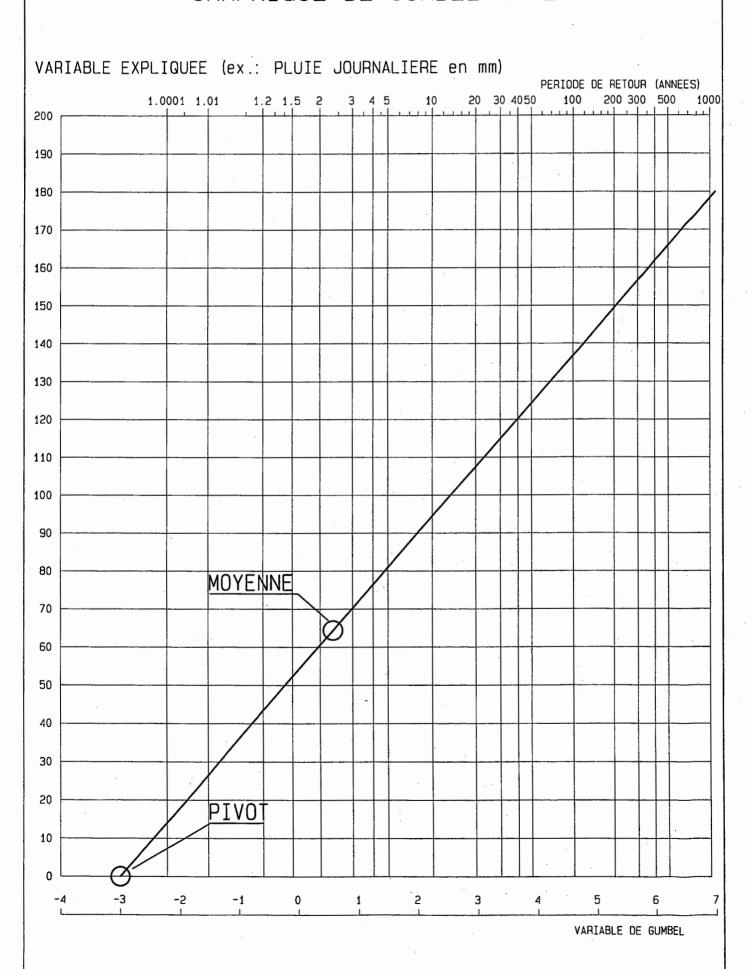
SPEED est un système probabiliste mis au point à partir de la théorie du Processus de Poisson et de la théorie de l'échantillonnage.

A1.1 L'ANALYSE REGIONALE DES PLUIES JOURNALIERES

A1.1.1 BASES THEORIQUES

La théorie adoptée est le processus de Poisson. Il est considéré que la pluie (comme d'autres évènements météorologiques accidentels - coups de vent, cyclones, orages etc.) satisfait aux axiomes de base de cette théorie.

Ceci implique en particulier que les maximums annuels (ou saisonniers) de la pluie journalière (Pj) suivent une loi de Gumbel. Cet ajustement des pluies observées sur graphique de Gumbel se traduit par une droite définie par (cf graphique page suivante):


- Y0, qui est le pivot de la distribution, c'est à dire la valeur de la variable de Gumbel pour laquelle la droite de Gumbel coupe l'axe Pj = 0.
 - Il est démontré que $n=e^{-Y0}$ est le nombre d'évènements indépendants d'où sont tirés les maximums annuels. Ce nombre n est proportionnel au nombre de perturbations météorologiques et on peut s'attendre à son invariance dans une région géographique, donc à l'invariance de Y0, pour des phénomènes de même origine.
- La moyenne PJm, qui est plus caractéristique du régime de pluie dont dépend le secteur.

Elle peut varier spatialement au contraire du paramètre Y0 (pour une même famille d'évènements), cette variation étant liée à des raisons géographiques (un même évènement pluvieux peut évoluer au cours de son déplacement). On démontre mathématiquement que la moyenne est associée à une variable de Gumbel de 0.5772 (variable d'Euler) soit une période de retour de 2,3 ans.

C'est cette moyenne PJm et le pivot Y0 qui sont utilisés pour caractériser les pluies sur le secteur d'étude. Dans l'étude qui suit nous considèrerons la pluie de période de retour 2 ans (PJ2) très proche de la moyenne (période de retour 2,3 ans).

Le Gradex est la pente de la droite de Gumbel utilisée pour évaluer les débits de crues rares.

GRAPHIQUE DE GUMBEL TYPE

A1.2 RELATION PLUIE-DEBIT

A1.2.1 BASES THEORIQUES

La relation pluie-débit à l'échelle d'une crue de période de retour T fait intervenir les variables suivantes :

- le débit de pointe Q_T (en m³/s) de la crue,
- le volume de la crue V_T (en millions de m³),
- le temps de base de la crue Tb (en heures),
- la pluie journalière Pit (en mm) telle que mesurée au pluviomètre,
- la pluie de durée te, P_T(te) (en mm), mesurée au pluviographe,
- le temps de concentration tc du bassin (qui est une constante, en heures),
- la superficie S du bassin versant (en km²),
- la lame ruissellée en crue R_T (en mm) : $R_T = 1000 \text{ V}_T/\text{S}$

Physiquement, une pluie P(te) provoque une crue de volume V et de débit de pointe Q : te est le temps de pluie efficace, c'est à dire qu'il y a ruissellement sur le bassin pendant la durée te.

Les relations ci-dessous sont toutes très classiques :

a) Théorie de l'hydrogramme unitaire :

- Il existe un temps caractéristique du bassin versant, le temps de concentration t_c.
- T_B = 1000 V/1,8Q est le temps de base de la crue triangulaire équivalente.

Ce qui signifie qu'à un accroissement de la pluie de durée efficace te, le bassin répond par un accroissement proportionnel des débits de la crue, sans changement du temps de base Tb.

- $T_B = t_e + t_c$ ne dépend pas de la quantité de pluie efficace $P(t_e)$
- $T_B = 2 t_c$ pour les phénomènes exceptionnels ($t_e = t_c$).

Il existe donc un hydrogramme type des crues exceptionnelles.

b) Théorie du Gradex

Elle relie les forts volumes de crue aux fortes pluies par :

$$R_t = P_T(t_c) - P_0(t_c) \text{ si } T > T_0$$

la loi probabiliste des lames d'eau ruisselées est parallèle à celle des pluies dès que le temps de retour est supérieur à T_0 (alors $t_e = t_c$).

c) Loi intensité-durée-fréquence

Pour des pluies cycloniques pures (dépressions océaniques ou cyclones tropicaux) on observe :

$$P_{\tau}(t) = a. P_{i\tau} t^{0.4}$$

(a vaut souvent 1/3).

Οù

 $P_{T}(t)$ = pluie de durée t et de période de retour T.

 $P_{i\tau}^{T}$ = pluie journalière de même période de retour.

Remarques:

- Le dépouillement des pluviogrammes pour l'étude des relations intensité-duréefréquence est une tâche particulièrement délicate: beaucoup d'études basées sur des dépouillements faux donnent des résultats erronés.
- D'autre part, il convient dans certaines régions de séparer les pluviogrammes de pluies cycloniques des enregistrements de pluies d'origine convective. Quand un régime de pluies cycloniques existe dans une région (c'est le cas de la France), c'est ce régime qui provoque les crues de forts temps de retour, quelle que soit la taille du bassin versant, sauf en cas de bassin imperméabilisé (hydrologie urbaine).

d) Formule de temps de base :

$$T_B = k.S^{0.417}$$

Cette dernière formule n'est pas classique, mais peut être rapprochée de la formule de Kirpich donnant le temps de concentration $t_c = K.(L/\sqrt{S})^{0.77}$, avec L = longueur du thalweg principal en km. Le calcul de T_B par les deux formules (avec $T_B = 2 t_c$) fournit des résultats extrêmement proches.

La combinaison de ces différentes formules conduit à :

$$Q_T = \frac{S^{0.75}}{12} (P_T - P_0)$$
 si $T > T_0$

Cette formule est extrêmement stable d'un bassin à l'autre bien que les paramètres d'ajustement des formules 1 à 4 soient très variables suivant les régions.

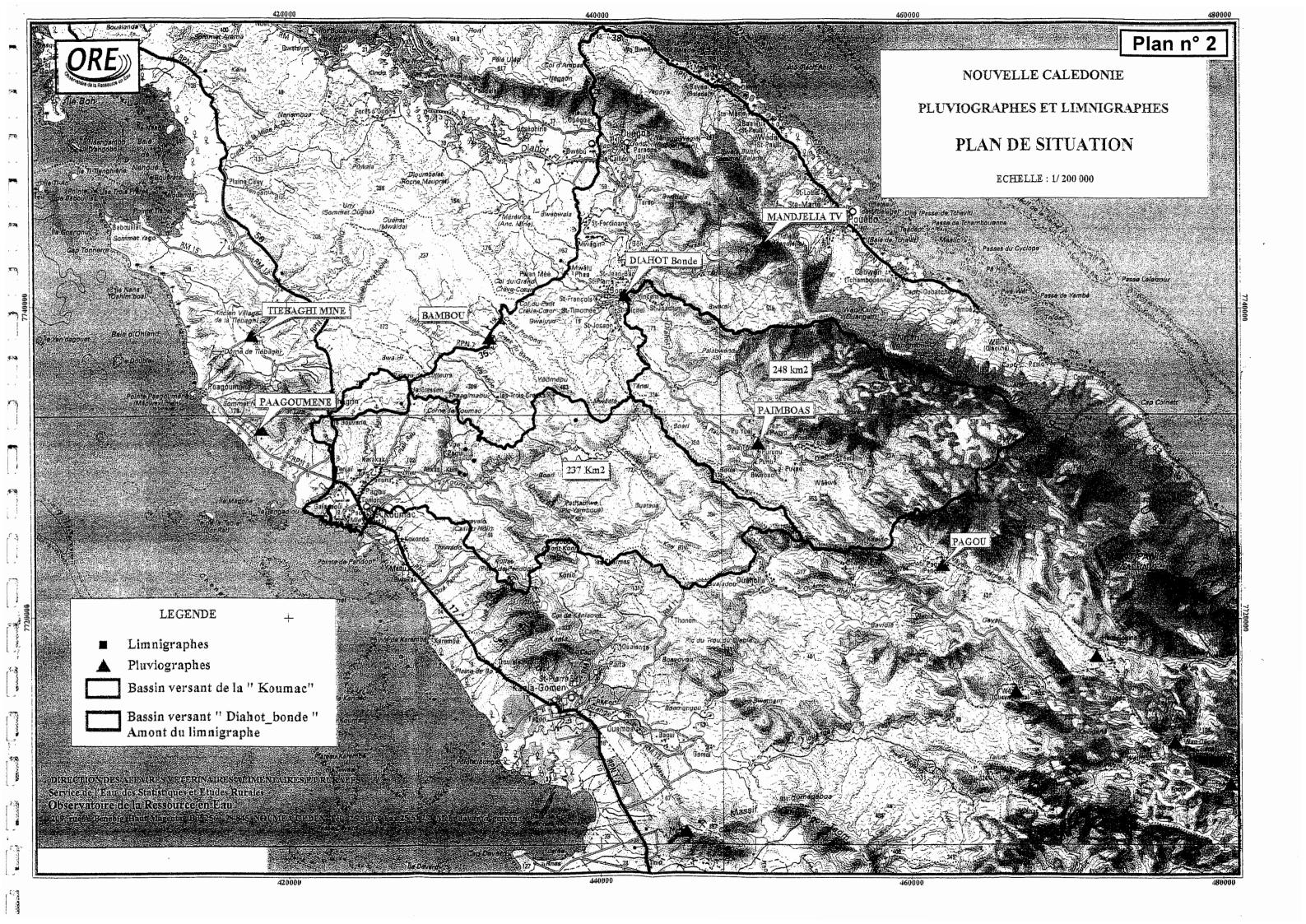
Quand on dispose de données concomitantes de pluies journalières sur le bassin et de débits de pointe de crue à l'exutoire, on compare graphiquement les quantités P et $12.Q/S^{0,75}$: on trouve systématiquement (dès que T dépasse une certaine valeur T_0) une droite des crues parallèle à celle des pluies (ce qui justifie le coefficient 1/12) et décalée de P_0 . Cette relation probabiliste permet de déterminer P_0 bassin par bassin.

ETUDE DES ZONES INONDABLES DE LA RIVIERE KOUMAC

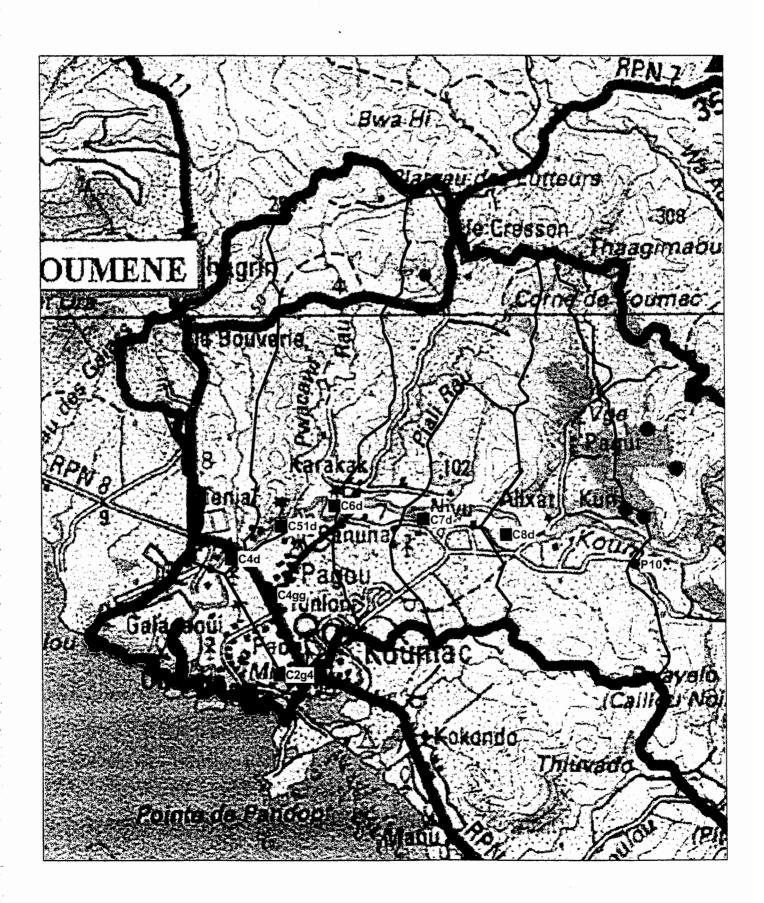
On a vérifié expérimentalement que cette formule est valable pour des bassins versants tout petits (à condition qu'ils soient "naturels") et jusqu'à des bassins de 500 à 1000 km², voire plus (comme pour la méthode du Gradex).

Il faut remarquer que, dans cette formule, P_T est la pluie journalière afférente à un pluviomètre particulier, dit pluviomètre caractéristique du bassin.

Enfin, pour T < To, on effectue l'ajustement direct à partir des observations (après correction des erreurs d'échantillonnage). En effet, pour ces épisodes de période de retour relativement faible, une partie de la pluie tombée sert à remplir la nappe et les flaques de surface (théorie des "aires contributives").


On a pu déterminer que le paramètre P_0 prend, en France, une valeur souvent proche de 60 mm, hors bassins karstiques. P_0 dépend de la nature du sols, de son degré d'altération et de l'épaisseur de la couche altérée.

On voit que l'on obtient une formulation probabiliste du débit de pointe $Q_{\scriptscriptstyle T}$ en fonction de la superficie qui :


- est très proche de l'ancienne formulation SOGREAH (Q = $A.S^{\alpha}$ avec α compris entre 0,75 et 0,8),
- fait intervenir directement la pluie journalière P_T,

est compatible avec les deux théories les plus vraisemblables en hydrologie, Gradex et hydrogramme unitaire.

ANNEXE B HYDROLOGIE

DECOMPOSITION DU BASSIN AVAL

SOGREAH 17-02-2003 / 12:10 **VERSANT SUD DE LA NOUVELLE CALEDONIE ANALYSE DES DEBITS REDUITS** Débit réduit (mm) PERIODE DE RETOUR (ANNEES) 200 300 500 1000 1 mois 122ans 3 4 5 20 30 4050 × Rivière POUEMBOUT à BOUTANA [176 km2] □ Rivière FATANOUE [112 km2] △ Rivière TONTOUTA à la MINE LILIANE [380 km²] o Rivière LA FOA à PIERRAT [115 km2] X -4 -3 0 1 2 3 4 5 Fréquence empirique : P=r/(n+1) - WEIBULL -2 -1 Papier Gumbel

SOGREAH 17-02-2003 / 12:10 ANALYSE DES DEBITS CARACTERISTIQUES DE LA KOUMAC **ANALYSE DES DEBITS REDUITS** Débit réduit (mm) **PERIODE DE RETOUR (ANNEES)** 200 300 500 1 mois 20 30 4050 122ans 3 4 5 × Rivière POUEMBOUT à BOUTANA [176 km2] 0 1 2 3 4 5 Fréquence empirique : P=r/(n+1) - WEIBULL -4 -3

ANNEXE C HYDRAULIQUE

Résultats aux points du lit mineur

	Vitesse	0.63	0.63	0.29	2.69	0.45	0.34	1.82	96.0	0.22	0.11	0.5	1.84	0.12	0.1	1.51	1.31	0.11	0.16	1.99	6.04	0.14	0.07	1.93	1.37	0.07	0.16	3.15	2.03	0.14	0.13	1.82	3.09	0.12	0.14	3.76
O100 max	Débit	4027	4027	1873.4	1873.4	1873.4	1408.5	1408.5	1408.5	1408.5	742.4	742.4	742.4	742.4	637.6	637.6	637.6	637.6	920.1	920.1	920.1	920.1	449.9	449.9	449.9	449.9	982.7	982.7	982.7	982.7	894.9	894.9	894.9	894.9	1066.2	1066.2
	Niveau		1.39	1.39	3.81	4.17	4.17	4.01	6.42	6.47	6.47	6.46	7.18	7.35	7.35	7.3	7.79	7.88	7.88	7.68	6.87	8.73	8.73	8.54	8.92	9.02	6.02	8.77	10.59	10.8	10.8	10.66	11.15	11.64	11.64	11.07
	Vitesse	0.55	0.55	0.26	2.56	0.41	0.31	1.75	0.91	0.2	0.11	0.48	1.81	0.11	0.1	1.51	1.32	0.1	0.15	2.01	5.64	0.13	0.07	1.94	1.41	0.07	0.15	3.1	1.93	0.13	0.13	1.77	. 3	0.11	0.13	3.66
Q 100	Débit	3525	3525	1666	1666	1666	1256.4	1256.4	1256.4	1256.4	668.8	8.899	8.899	8.899	585.7	585.7	585.7	585.7	845.5	845.5	845.5	845.5	423.9	423.9	423.9	423.9	881.9	881.9	881.9	881.9	820.8	820.8	820.8	820.8	978.7	978.7
	Niveau	1.39	1.39	1.39	3.69	4.02	4.02	3.87	6.2	6.24	6.24	6.23	6.97	7.14	7.14	7.08	7.59	7.68	7.68	7.48	6.82	8.44	8.44	8.25	99.8	8.76	8.76	8.52	10.34	10.53	10.53	10.41	10.01	11.37	11.37	10.82
	Vitesse	0.46	0.46	0.22	2.39	0.37	0.28	1.65	0.85	0.18	0.1	0.46	1.77	0.1	0.09	1.52	1.33	0.1	0.14	2.03	5.12	0.12	90.0	1.95	1.48	0.07	0.14	3.07	1.79	0.12	0.12	1.7	2.89	0.1	Н	3.54
Q50	Débit		2933	1415.5	1415.5	1415.5	1072.9	1072.9	1072.9	1072.9	579.5	579.5	579.5	579.5	521.2	521.2	521.2	521.2	748.3	748.3	748.3	748.3	390.2	390.2	390.2	390.2	764	764	764	764	731.7	731.7	731.7	731.7	876.4	876.4
	Niveau	1.39	1.39	1.39	3.53	3.82	3.82	3.69	5.92	Н	5.95	5.94	6.7	98.9	98.9	8.9	7.35	7.44	7.44	7.23	6.73	8.07	8.07	7.88	8.33	8.44	8.44	8.2	10.05	10.21	10.21	10.1	10.01	11.03		10.52
	Vitesse N	0.39	0.39	0.19	2.26	0.34	0.26	1.57	8.0	0.16	60.0	0.44	1.75	60.0	0.08	1.53	1.34	60.0	0.13	2.04	4.7	0.12	90.0	1.94	1.54	0.07	0.13	3.06	1.69	0.11	0.11	1.64	2.79	0.1	-	3.44
030	Débit	2502	2502	1229.2	1229.2	1229.2	936.9	639.6	639.6	936.9	512.2	512.2	512.2	512.2	471.8	471.8	471.8	471.8	670.9	670.9	670.9	670.9	362.3	362.3	362.3	362.3	678.6	678.6	678.6	678.6	664.2	664.2	664.2	664.2	800.2	800.2
	Niveau	1.39	1.39	1.39	3.41	3.66	3.66	3.54	5.69	5.72	5.72	5.71	6.48	6.63	6.63	6.57	7.15	7.24	7.24	7.03	99.9	7.79	7.79	7.6	8.07	8.19	8.19	7.96	9.83	86.6	86.6	9.87	10.37	10.77	10.77	10.29
	Vitesse	0.34	0.34	0.17	2.15	0.3	0.23	1.51	0.76	0.15	0.08	0.42	1.73	0.08	0.08	1.55	1.35	0.08	0.12	2.05	4.33	0.11	0.06	1.93	1.61	0.07	0.12	3.07	1.6	0.11	0.1	1.58	-	⊢	-	3.34
Q20	Débit	2154	2154	1075.3	1075.3	1075.3	823.2	823.2	823.2	823.2	454.7	454.7	454.7	454.7	429.3	429.3	429.3	429.3	603.1	603.1	603.1	603.1	337.7	337.7	337.7	337.7	8.609	8.609	8.609	8.609	607	209	409	209	734.5	734.5
	Niveau	1.39	_		-1	-	3.52	3.41	5.48	5.51	5.51	5.5	6.28	6.43	6.43	6.37	6.97	7.07	7.07	6.85	6.59	7.54	7.54	7.35	7.85	7.99	7.99	7.75	9.65	9.78	9.78	89.6	10.18	10.55	10.55	10.1
	Vitesse	0.24	0.24	0.13	1.94	0.25	0.19	1.39	0.68	0.12	0.07	0.39	1.72	0.07	0.07	1.63	1.39	0.07	0.1	2.07	3.68	0.09	90.0	1.91	1.75	90.0	0.11	3.17	1.42	0.09	0.09	1.44	2.5	0.08	0.1	3.2
Q10	Débit	1545	1545	804.9	804.9	804.9	625.9	622.9	622.9	6229	356.4	356.4	356.4	356.4	356.3	356.3	356.3	356.3	485.6	485.6	485.6	485.6	295.6	295.6	295.6	295.6	500.6	500.6	500.6	500.6	509.9	509.9	6.609	509.9	631.6	631.6
	Niveau	1.39	1.39	1.39	3.06	3.26		3.16	5.07		5.1		-	6.05	_	5.98	99.9		6.75	6.54	6.42	7.11		6.93		7.64			9.37	9.47	9.47	6.36	98.6	10.18	\rightarrow	9.76
	Vitesse	0.14	0.14	0.08	1.73	0.18	0.14	1.29	0.59	0.09	90.0	0.4	1.87	90.0	0.07	1.9	1.43	0.07	0.11	3.55	3.92	0.1	0.08	2.96	2.04	0.08	0.1	2.53	1.56	0.1	0.07	1.15	2.1	0.07	0.09	2.74
Q5	Débit	917.9	917.9	516.4	516.4	516.4	418.5	418.5	418.5	418.5	290.1	290.1	290.1	290.1	318.1	318.1	318.1	318.1	481.2	481.2	481.2	481.2	408.3	408.3	408.3	408.3	521.2	521.2	521.2	521.2	393.5	393.5	393.5	393.5	499	499
	Niveau	1.39	1.39	1.39	2.76	2.91	2.91	2.83	4.57	4.59	4.59	4.58	5.53	5.7	5.7	5.61	6.47	6.57	6.57	5.94	6.22	7	7	95.9	7.77	7.98	7.98	7.82	9.21	9.34	9.34	9.28	19.6	9.84	9.84	9.53
	Point	OCEA	OCEI	OCE2	Ρlv	M	[1]	P1	P2v	M2	12	P2	P2bv	M2b	L2b	P2b	P3v	W3	F3	P3	P3bv	W3b	L3b	P3b	P4v	M4	L 4	P4	P5v	W5	15	P5	V501	M501	L501	P501

Résultats aux points du lit mineur (suite)

	Vitesse	3.66	0.12	0.08	2.09	1.76	60.0	0.13	2.79	2.35	2.81	2.33	0.16	0.19	2.85	2.73	0.2	0.29	4.39	3.58	0.28	0.32	4.15	2.47	0.29	0.45	4.36	2.87	2.24	0.56	0.24	2.77	4.1	0.24	0.24	0.3
0100	Déhit	1066.2	1066.2	681.8	681.8	681.8	681.8	1042.8	1042.8	1042.8	1042.8	1042.8	1042.8	1256.6	1256.6	1256.6	1256.6	1815.9	1815.9	1815.9	1815.9	2079.5	2079.5(2079.5	2079.5	3303	3303	3303	3303	3303	1422.3	1422.3	1422.3	1422.3	1422.3	1767.7
	Nive		12.67	12.67	12.49	12.7	12.86	12.86	12.54	13.17	13.08	13.25	13.52	13.52	13.2	14.96	15.34	15.34	14.56	15.89	16.54	16.54	15.85	16.99	17.29	17.29	16.53	17.93	19.7	19.95	19.95	19.64	19.84	21.88	21.88	21.88
	Vitesse	3.56	0.12	0.08	2.09	1.77	0.08	0.12	2.65	2.26	2.79	2.25	0.15	0.19	2.83	2.66	0.19	0.27	4.18	3.46	0.26	0.3	3.94	2.38	0.27	0.42	4.02	2.75	2.2	0.51	0.23	2.79	4	0.23	0.23	0.29
0010	Débit	978.7	978.7	641.5	641.5	641.5	641.5	933.7	933.7	933.7	933.7	933.7	933.7	1153.8	1153.8	1153.8	1153.8	1647.5	1647.5	1647.5	1647.5	1868.3	1868.3	1868.3	1868.3	2891	2891	2891	2891	2891	1306	1306	1306	1306	1306	1615.8
	Nivegu	11.75	12.39	12.39	12.21	12.43	12.59	12.59	12.31	12.9	12.8	12.98	13.23	13.23	12.91	14.74	15.1	15.1	14.39	15.64	16.25	16.25	15.62	16.68	16.96	16.96	16.31	17.54	19.39	19.62	19.62	19.31	19.57	21.6	21.6	21.6
	Vitesse		0.11	0.07	2.11	1.79	0.08	0.11	2.52	2.19	2.83	2.16	0.14	0.18	2.82	2.57	0.18	0.25	3.84	3.29	0.25	0.27	3.65	2.26	0.25	0.37	3.61	2.58	2.13	0.46	0.22	2.83	3.85	0.22	0.22	0.27
050	Débit	876.4	876.4	599.4	599.4	599.4	599.4	822.3	822.3	822.3	822.3	822.3	822.3	1046.6	1046.6	1046.6	1046.6	1449.9	1449.9	1449.9	1449.9	1614.2	1614.2	614.2	614.2	2407	2407	2407	2407	2407	164.9	164.9	1164.9	1164.9	1164.9	1427.3
:	Niveau	11.45	12.05	12.05	11.87	12.11	12.27	12.27	12.01	12.58	45	12.66	12.9	12.9	12.58	14.51	14.84	14.84	14.24	15.34	15.88	15.88	15.34	16.29	16.55	16.55	16.02	17.06	16	19.23	19.23	18.9		.25	.25	21.25
	Vitesse		0.1	0.07	2.18	1.85	0.08	0.11	2.42	2.13	2.88	2.1	0.13	0.17	2.76	2.49	0.17	0.23	3.6	3.14	0.23	0.25	3.43	2.16	0.23	_	3.3	2.44	2.07	0.42	0.21	2.86	3.7	0.21	-	0.26
030	Γ	800.2	800.2	578.5	578.5	578.5	578.5	744.6	744.6	744.6	744.6	744.6	744.6	954.6	954.6	954.6	954.6	1293.8	1293.8	1293.8	1293.8	1421.8	421.8	1421.8	421.8	2052	2052	2052	2052	2052	1052.3	1052.3	1052.3	1052.3	1052.3	1277
	Niveau	11.22	11.79	11.79	11.6	11.86	12.03	12.03	Н	_	12.2		_		12.35	14.29	14.61		_	15.08	.58	<u></u>	=	15.97	16.21	16.21	15.77	16.68	18.71	18.93	18.93	18.6				20.96
	Vitesse	3.25	0.1	0.08	2.32	1.95	0.08	0.1	2.34	2.08	2.93		0.13	-	2.71	_	0.16		3.37	3.01	0.22	0.24	3.23	2.08	-	-	-	2.32	\dashv	\dashv	-	2.89		\dashv	+	0.24
020	\Box	5	734.5	575.1	575.1	575.1	575.1	684.9	684.9	684.9	684.9	684.9	684.9	882	882	882	882	1164	1164	1164	1164	1263	1263	1263	1263	1767	1767	1767	1767	1767	096	096	096	096	096	1150
	Niveau	11.02			_				_					12.46	12.17	14.12	14.41	14.41	13.95	14.87	15.32	15.32	14.9	\dashv	15.91	_	15.54	16.35	18.47	18.67	18.67	8.34	18.82	20.72	20.72	20.72
	Vitesse	3.12	0.09	0.07	2.39	2	-	-	-	1.96	-	_	0.11		_	-	0.15		2.95	2.72	0.19		2.84	1.9		-			1.91	0.3	-	2.97	3.2	-	$\overline{}$	0.21
010			631.6	527.5	527.5	527.5	527.5	565.4	565.4	565.4	565.4	565.4	565.4			_	735	917.2	917.2	917.2	917.2	972.3	972.3	972.3	972.3	1267	1267	1267	1267	1267	783.8	783.8	783.8	783.8	783.8	905
	Niveau	10.68	-	-	10.94	11.29	11.5	. 		-	_	_	_	12.08	11.81	13.73	14	14	13.64				_			15.33	15.06	15.71	18.02		_	17.85	$\overline{}$		-	20.23
	Vitesse		0.07	90.0	2.21	1.87	0.07	0.07	1.79	1.78	-		_	-	2.33	2.1	0.12	0.15	2.64	2.41	0.16	┪	-		0.16	┉┪			1.8	0.21		-	2.55	-	\dashv	0.17
Q5	Débit	499	499	417.8	417.8	417.8	417.8	408.5	408.5	408.5	408.5	408.5	408.5	531.8	531.8	531.8	531.8	649.4	649.4	649.4	649.4	733.5	733.5	733.1	733.1	752	752	752	752	752	564	564	564	564	564	610.8
	Niveau	10.27	10.68	10.68	10.49	10.8	10.98		_				11.49		11.27	13.11	13.34			13.81	14.11		-	14.52	\rightarrow	14.69		14.96	17.5	17.66	17.66	17.3	18.16	19.57	19.57	
	Point	V502	M502	L502	P502	P5av	M5a	L5a	P5a	P5b	Cath	P6v	W6	T-6	P6	P67v	M67	T97	P67	P7v	W2	L7	P7	PZav	M7α	L7a	P7a	P7b	P8v	W8	F8	P8	S8v		ے	L8m

Résultats aux points du lit mineur (fin)

_		-	À-	,	_		_				ځم	_			\				
	Vitesse	5.59	3.42	0.24	0.43	3.74	2.46	0.47	0.42	2.18	5.21	0.36	0.4	5.53	5.01	0.37	0.37	4.11	4.08
Q100 max	Débit	1767.7	1767.7	1767.7	3097	3097	3097	3097	2796.2	2796.2	2796.2	2796.2	3068.4	3068.4	3068.4	3068.4	3097	3097	3097
	Vitesse Niveau	20.61	23.67	24.26	24.26	23.7	25.34	25.64	25.64	25.41	25.31	26.68	26.68	25.45	27.06	28.33	28.33	27.91	29.15
	Vitesse	5.29	3.34	0.24	0.39	3.61	2.43	0.43	0.42	2.32	5.31	0.35	0.37	4.91	4.76	0.34	0.34	3.91	3.95
Q 100	Débit	1615.8	1615.8	1615.8	2710	2710	2710	2710	2616.1	2616.1	2616.1	2616.1	2710	2710	2710	2710	2710	2710	2710
	Niveau	20.46	23.3	23.87	23.87	23.35	24.98	25.27	25.27	25.01	24.97	26.4	26.4	25.42	26.78	27.93	27.93	27.55	28.79
	Vitesse Niveau	4.89	3.25	0.22	0.35	3.44	2.41	0.39	0.39	2.41	5.09	0.33	0.33	4.41	4.48	0.31	0.31	3.71	3.81
Q50	Débit	1427.3	1427.3	1427.3	2257	2257	2257	2257	2257	2257	2257	2257	2257	2257	2257	2257	2257	2257	2257
	Niveau	20.28	22.83	23.37	23.37	22.89	24.53	24.82	24.82	24.53	24.58	25.9	25.9	25.11	26.36	27.38	27.38	27.03	28.3
	Vitesse	4.57	3.16	0.21	0.32	3.32	2.42	0.35	0.35	2.41	4.73	0.3	0.3	4.16	4.29	0.28	0.28	3.55	3.69
030	Débit	1277	1277	1277	1924	1924	1924	1924	1924	1924	1924	1924	1924	1924	1924	1924	1924	1924	1924
	Niveau	20.12	22.46	22.97	22.97	22.52	24.18	24.47	24.47	24.18	24.29	25.43	25.43	24.73	25.99	26.93	26.93	26.61	27.9
	Vitesse	4.27	3.08	0.2	0.29	3.22	2.44	0.32	0.32	2.44	4.41	0.27	0.27	3.93	4.13	0.25	0.25	3.41	3.58
020	Débit	1150	1150	1150	1657	1657	1657	1657	1657	1657	1657	1657	1657	1657	1657	1657	1657	1657	1657
	Niveau	19.98	22.13	22.62	22.62	22.2	23.87	24.17	24.17	23.88	24.05	25.04	25.04	24.41	25.67	26.54	26.54	26.25	27.57
	Vitesse	3.66	2.89	0.18	0.24	3.07	2.57	0.26	0.26	2.56	3.79	0.23	0.23	3.45	3.82	0.2	0.2	3.1	3.39
010	Débit	905	905	905	1188	1188	1188	1188	1188	1188	1188	1188	1188	1188	1188	1188	1188	1188	1188
	Niveau	19.69	21.5	21.92	21.92	21.54	23.27	23.61	23.61	23.28	23.55	24.28	24.28	23.79	25.06	25.8	25.8	25.56	26.92
	Vitesse	2.86	2.57	0.15	0.18	2.95	2.68	0.18	0.18	2.67	3.05	0.16	0.16	2.83	3.44	0.14	0.14	2.73	3.32
ဗြ	Débit	610.8	610.8	610.8	705.	705	705	705	705	705	705	705	705	705	705	705	705	705	705
	Niveau	19.24	20.69	21.03	21.03	20.67	22.49	22.86	22.86	22.5	22.87	23.34	23.34	23.02	24.28	24.89	24.89	24.7	26.09
	Point	P8m	V8bb	W8bb	L8bb	P8bb	P8bv	W8b	1.8b	P8b	Р9ѵ	6W	F)	P9	V109	M109	L109	P109	P10

		Resoliuls dux lidisolis ellire		OTIS CITIES	points	politis casiers et points casiers-points III mineur	politis (1001CD.		5022			
	Q5	. 1	Q10	Q20	0.	0ED	0	Ö	Q50	Ø	Q100	Q100 max	max
	Vitesse	Débit	Vitesse	Débit	Vitesse	Débit	Vitesse	Débit	Vitesse	Débit	Vitesse	Débit	Vitesse
-29.6	-0.08	-61.4	-0.11	-93	-0.13	LLL-	-0.15	-133.5	-0.16	-164.3	-0.18	-189.6	-0.19
89.6	0.26	186.7	0.37	285.6	0.46	342.6	0.51	414.4	0.56	513.4	0.63	596.4	0.68
-51.7	-0.37	-118.8	-0.51	-188.4	-0.61	-228.5	-0.66	-280.3	-0.71	-352.3	-0.78	-411.9	-0.83
-67.5	-0.16	-129.3	-0.21	-190.2	-0.25	-225.1	-0.27	-267.6	-0.29	-325.4	-0.31	-374.1	-0.33
98.8	0.2	193.1	0.26	298.5	0.32	358.5	0.35	436.4	0.38	547.1	0.43	646.5	0.46
-69.2	-0.22	-149.6	-0.28	-237.4	-0.33	-287.5	-0.36	-353.8	-0.39	-449.6	-0.43	-538.3	-0.46
	0	17.9	0.07	31.9	0.08	40	0.09	50.9	0.1	66.7	0.12	81.3	0.13
13	0.46	25	0.45	37.8	0.48	46.1	0.5	56.5	0.52	72.6	0.55	87.2	0.58
13	0.11	42.9	0.2	69.7	0.26	86.2	0.28	107.4	0.32	139.3	0.36	168.5	0.4
98.8	1.02	193.1	1.99	298.5	3.03	358.5	3.61	436.4	4.26	547.1	5.05	646.5	5.55
13	0.7	42.9	0.98	2.69	1.16	86.2	1.24	107.4	1.37	139.3	1.54	168.5	1.67
401.6	0.09	740.1	0.17	1078.7	0.25	1272.7	0.29	1517.5	0.35	1858.9	0.42	2153.5	0.49
-200.1	-0.45	-317.4	-0.57	-424.8	-0.67	-485.4	-0.72	-559.2	-0.78	-659	-0.85	-742.1	-0.9
-365.6	-0.38	-625.6	-0.47	-867.1	-0.54	-1002.9	-0.58	-1169.4	-0.62	-1394.1	-0.67	-1581.1	-0.71
67.6	0.13	179	0.19	252.1	0.23	292.3	0.25	342.6	0.28	409.7	0.31	464.9	0.33
-1	-0.04	-5	-0.06	-10.8	-0.08	-14.1	-0.09	-19.5	-0.11	-27.6	-0.13	-36.2	-0.15
-70.2	-0.24	-154.7	-0.34	-248.2	-0.43	-301.7	-0.47	-373.3	-0.52	-473.2	-0.58	-556.6	-0.62
0	0	0	0	0	0	0	0	0	0	4-	-0.06	-17.9	-0.1
-46.2	-0.27	-86.7	-0.3	-127.8	-0.34	-148	-0.35	-176.6	-0.37	-218	-0.39	-257.7	-0.42
-5.4	-0.01	-32.1	-0.05	-60.7	-0.07	-80.4	-0.08	-103.7	-0.1	-138.3	-0.11	-172.2	-0.13
-86.9	-0.35	-189.7	-0.44	-291.6	-0.5	-343.6	-0.53	-414.6	-0.57	-513	-0.61	-597.2	-0.65
-239.8	-0.5	-495.3	-0.68	-676.6	-0.76	-784.7	-0.81	-911.6	-0.86	-1085.7	-0.92	-1234	-0.97
-44.3	-0.06	27.2	0.03	40.4	0.03	44.9	0.03	53	0.04	66.2	0.04	78	0.05
-116.5	-0.54	-241.4	-0.72	-376	-0.87	-449.7	-0.94	-549.9	-1.03	-691.2	-1.13	-814.2	-1.22
40.6	2.97	73.6	0.39	121.5	0.35	139.4	0.33	171	0.33	215	0.34	252.8	0.35
-46.3	-0.16	-116.1	-0.25	-170	-0.3	-204.2	-0.32	-243.6	-0.35	-297.9	-0.38	-344.4	-0.4
-51.5	-0.46	-144.8	-0.65	-276	-0.84	-346.2	-0.92	-434.1	-1.01	-558.6	-1.12	-667.2	-1.21
-105.5	-0.37	-170.1	-0.45	-221.5	-0.5	-242.9	-0.53	-286.8	-0.56	-347.6	-0.61	-399.8	-0.65
-285.4	-0.52	-681.8	-0.76	-953.1	-0.88	-1116.8	-0.94	-1309	-1	-1574.5	-1.09	-1802.7	-1.15
-0.7	0	70.5	0.25	106.4	0.3	127.9	0.32	153.8	0.35	190.9	0.38	224.2	0.41
-172.7	-0.29	-242.3	-0.32	-328.1	-0.35	-379.8	-0.37	-440.4	-0.39	-521.4	-0.42	-588.1	-0.44
28.1	0.1	0	0	-25.5	-0.06	-40.4	-0.08	-58.3	-0.1	-83.1	-0.13	-104.8	-0.15
-145.3	-0.47	-171.9	-0.46	-247.2	-0.51	-292.3	-0.54	-344.9	-0.56	-413.5	-0.59	-468.7	-0.61
267.7	1.45	724.4	1.34	1026.3	1.29	1210	1.29	1426.8	1.3	1728.3	1.33	1988.9	1.37
-17.7	-0.13	42.6	0.19	73.3	0.26	93.2	0.3	117.8	0.33	153.8	0.38	186.2	0.43
-372.7	-0.46	-894.8	-0.7	-1246.9	-0.8	-1450.5	-0.85	-1708.5	-0.91	-2065.8	-0.98	-2373.7	-1.04
-0.5	-0.06	0.2	0.02	-0.9	-0.03	-2.4	-0.06	-5.1	-0.1	-10	-0.15	-14.9	-0.19
-36.5	-0.65	-115.5	-	-172.8	-1.15	-206.9	-1.23	-249.6	-1.32	-309	-1.43	-360.6	-1.51
0	0	-4.3	-0.1	-69.2	-0.26	-99.3	-0.3	-137.5	-0.34	-192.7	-0.38	-241.7	-0.42

Ţ.

P

ř.

P .

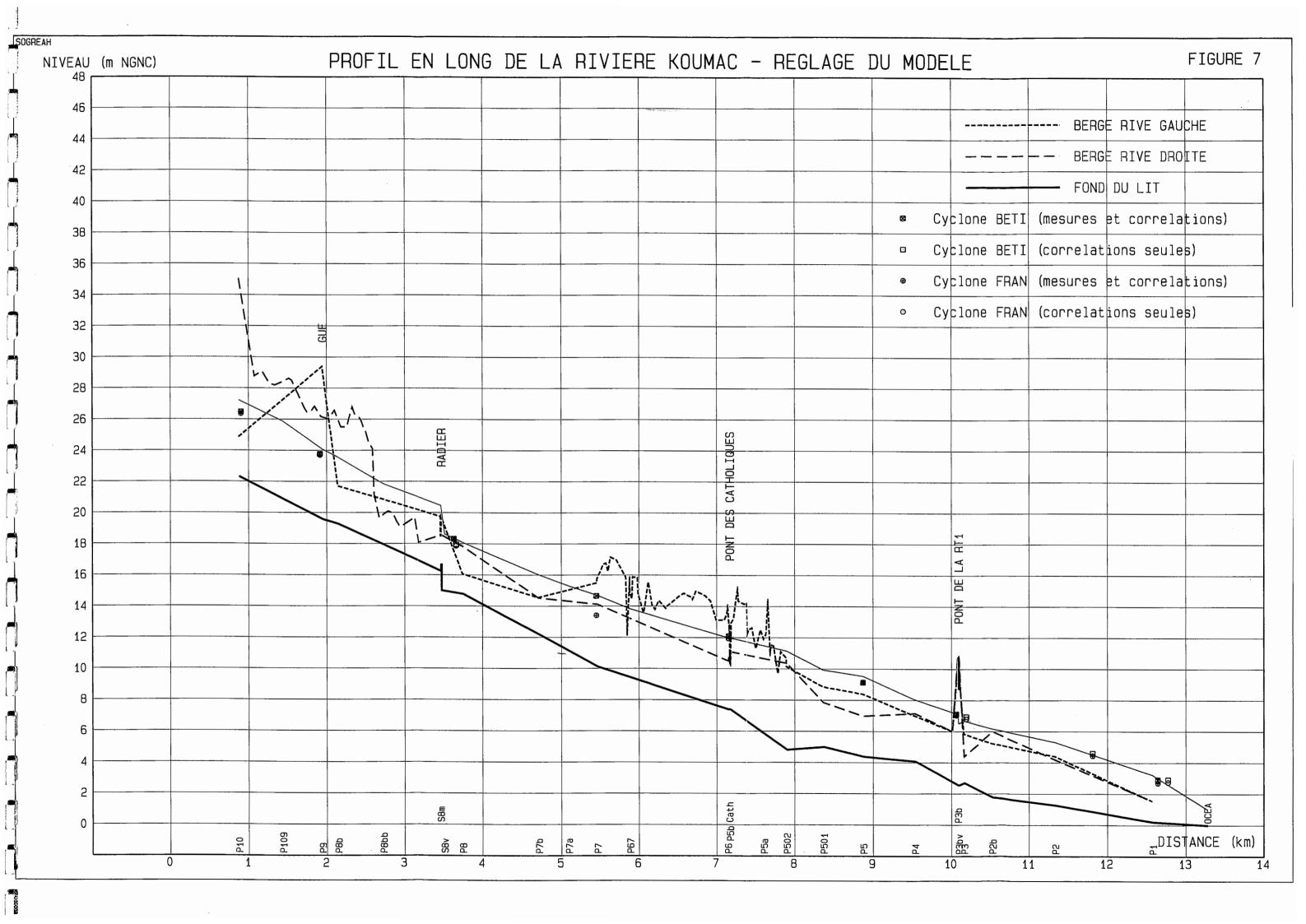
		Résu	ultats aux	Résultats aux liaisons	entre poin		ts casiers et points casiers-points lit mineur (suite)	ints casi	ers-poin	ts lit mir	Jeur (sui	[
)	Q5	Ø	Q10	Q20		Q30	0	Ö	Q50	O	0100	O100 max	XDU
Troncon	Débit	Vitesse	Débit	Vitesse	Débit	Vitesse	Débit	Vitesse	Débit	Vitesse	Débit	Vitesse	Débit	Vitesse
C5gC4g	304.2	0.41	834.9	0.62	1241.3	0.74	1464.5	0.8	1742.3	0.86	2119.1	0.94	2438.8	-
C4gG4	-68.5	-0.28	-64.2	-0.13	-74.7	-0.11	-85.2	-0.11	-103.7	-0.12	-139.4	-0.14	-176.7	-0.15
D3bC4d	-73.4	-0.15	-189.8	-0.34	-266.3	-0.38	-311.1	-0.39	-363.1	-0.41	-431.6	-0.42	-485.1	-0.43
D4C4d	44.4	0.27	140.8	0.32	197.3	0.34	231.1	0.35	270.1	0.36	318.6	0.37	356.1	0.37
C5gC51g	-247.3	-0.53	-618	-0.67	-1004.1	-0.79	-1216.7	-0.84	-1486.7	-0.89	-1858.3	-0.96	-2175.4	-1.01
C5gG5	-93.4	-0.37	-332.3	-0.43	-410.1	-0.41	-454.7	-0.4	-505.3	-0.4	-569.8	-0.39	-623.9	-0.38
C51gC5ag	-173.9	-0.65	-478.1	-0.98	-808.1	-1.23	-975.9	-1.33	-1190.1	-1.45	-1478.6	-1.59	-1716	-1.69
C51gG501	-73.4	-0.36	-139.9	-0.36	-196	-0.35	-240.8	-0.38	-296.6	-0.4	-379.7	-0.44	-459.4	-0.47
D5C51d	-221.1	-0.79	-323.1	-1.02	-412.9	-1.16	-469.1	-1.24	-537.6	-1.33	-630.8	-1.43	-711.7	-1.51
D501C51d	32	0.08	-18.3	-0.04	-68.5	-0.11	-104.8	-0.16	-151.9	-0.21	-221.8	-0.27	-288.1	-0.33
C51dC502	-144.1	-0.7	-265.3	-0.82	-375.4	-0.89	-450.9	-0.94	-545.4	-0.99	9.089-	-1.06	-802.8	-1.11
D502C502	-118.5	-0.36	-180.6	-0.38	-197.5	-0.34	-176.9	-0.27	-160.8	-0.22	-141.6	-0.17	-134.5	-0.15
C502C5ad	-262.6	-0.5	-445.9	-0.64	-572.8	-0.7	-627.8	-0.71	-706.2	-0.73	-822.2	-0.76	-937.3	-0.8
C5agC6g	-42.2	-0.57	-148.1	-0.83	-344	-1.13	-479.7	-1.29	-634.9	-1.44	-831	-1.6	-949.5	-1.66
C5agG502	-37.3	-0.27	-76.4	-0.27	-38	-0.09	44.8	0.1	116.3	0.21	195.7	0.31	249.8	0.35
C5agG5a	-94.3	-2.58	-253.5	-2.86	-426.1	-2.62	-541.1	-2.51	-671.5	-2.33	-843.3	-2.13	-1016.3	-2.1
D5aC5ad	-103.7	-0.22	-215.6	-0.31	-316.3	-0.37	-374.9	-0.4	-448.7	-0.43	-551	-0.46	-655.3	-0.5
C5adC6d	-366.2	-0.64	-661.5	-0.85	-889.1	-0.97	-1002.7	-1.02	-1154.8	-1.08	-1373.2	-1.16	-1592.7	-1.24
C6gC67g	-42.2	-0.38	-148.1	-0.49	-344	-0.64	-479.7	-0.72	-643.6	-0.81	-919.5	-0.96	-1123.6	-1.05
C6gG6	0	0	0	0	0	0	0	0	8.7	1.14	88.5	2.38	174.2	2.74
D6C6d	123.3	0.19	169.6	0.18	197.1	0.17	209.9	0.17	233.1	0.17	308.6	0.2	387.9	0.23
C6dC67d	-199.9	-0.45	-419.9	-0.6	-592.1	-0.68	-676.7	-0.72	-785.8	-0.76	-900.7	-0.79	-1017.7	-0.83
C67gG67	-42.2	-4.4	-148.1	-6.04	-344	-4.36	-479.7	-3.78	-643.6	-3.38	-919.5	-2.49	-1123.7	-2.06
D67C67d	75.4	0.12	34.1	0.03	-61.9	-0.04	-140.5	-0.07	-240.3	-0.11	-425.8	-0.18	-564.3	-0.22
C67dC7d	-124.5	-0.4	-385.8	-0.63	-654	9.0-	-817.2	-0.89	-1026.1	-0.99	-1326.5	-1.13	-1582.1	-1.22
D7C7d	84.1	0	55.1	0.1	98.9	0.13	128	0.14	164.2	0.16	220.8	0.19	263.6	0.21
D7aC7d	19	0.22	294.7	0.59	504	0.76	630.2	0.84	792.8	0.94	1022.7	1.06	1223.5	1.16
D88d	-149.7	-0.72	-363.3	-1.16	-600.1	-1.4	-740.2	-1.52	-921.4	-1.64	-1162.9	-1.77	-1369.1	-1.87
C8dC8md	-102.7	-0.61	-284.3	-0.81	-490.1	-0.97	-612.2	-1.05	-771.4	-1.13	-981.9	-1.23	-1163.1	-1.29
G8C8mg	-38.3	-0.79	-120	-1.17	-206.9	-1.35	-259.5	-1.43	-320.7	-1.48	-422.1	-1.56	-511.6	-1.62
C8mgG8m	-38.3	-0.6	-120	-1.02	-206.9	-1.33	-259.5	-1.48	-320.7	-1.64	-422.1	-1.85	-511.6	-2.01
D8mC8md	8.5	0.03	1.3	0	-16.9	-0.03	-34.8	-0.05	-58.3	-0.08	-112.3	-0.14	-166.2	-0.19
C8mdC8bb	-94.2	-0.82	-283	-1.3	-507	-1.68	-647	-1.86	-829.7	-2.07	-1094.2	-2.34	-1329.3	-2.54
D8ppC8pp	94.2	0.41	283	0.57	202	0.72	647	0.79	829.7	0.89	1094.2	1.01	1329.3	1.11
D8bC8b	0	-0.01	0	-0.01	0	-0.01	0	-0.01	0	-0.01	6.66-	-1.45	-300.8	-2.71
C8bC9	0	0	0	0	0	0	0	0	0	0	6.66-	-0.08	-300.8	-0.23
D9C9	Ó	0	0	0	0	0	0	0	0	0	63.6	0.95	272.3	1.38
C9C109	0	0	0	0	0	0	0	0	0	0	0	0	-28.6	-0.03
D109C109	0	0	0	0	0	0	0	0	0	0	0	0	28.6	0.42

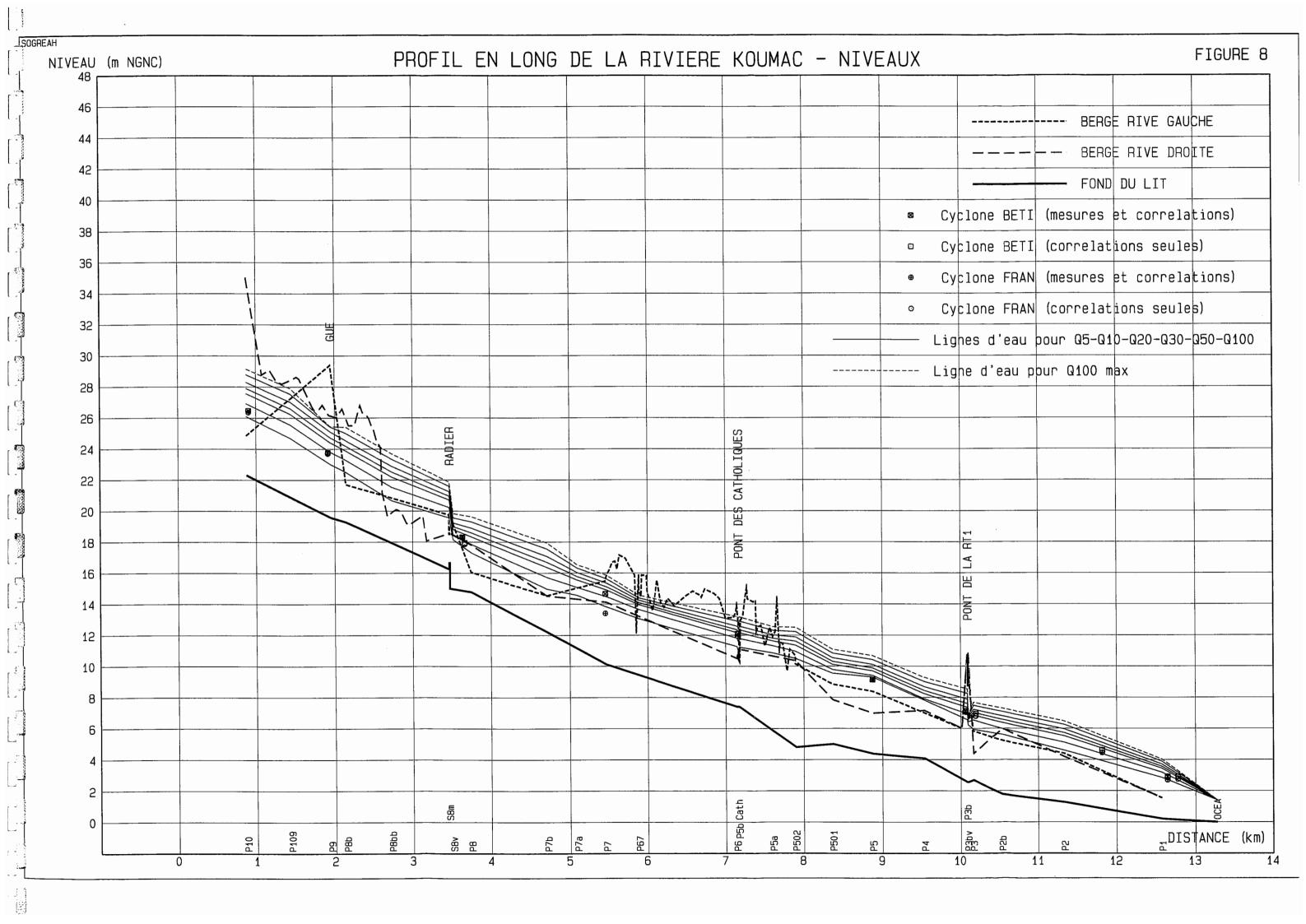
7.

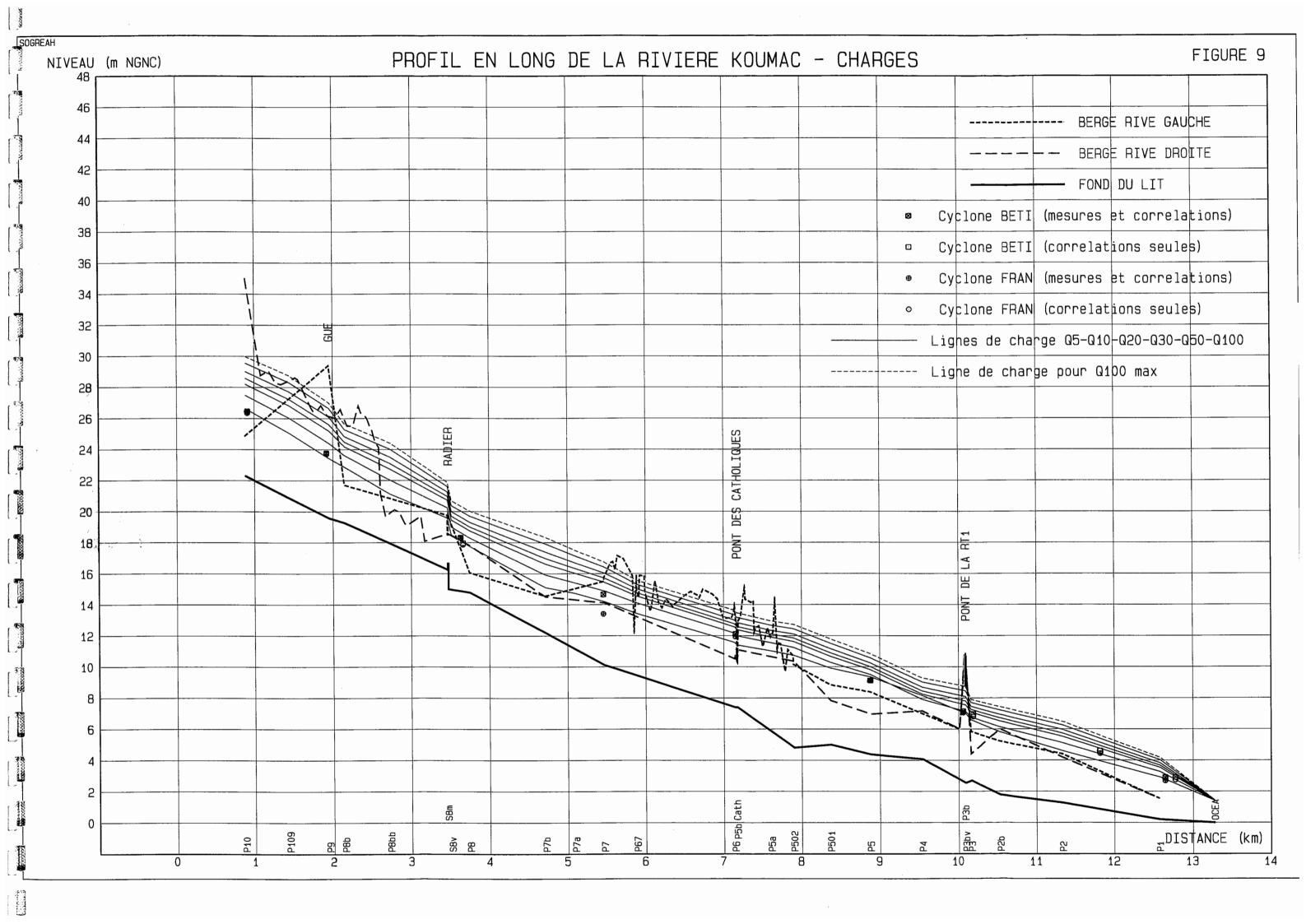
۲.

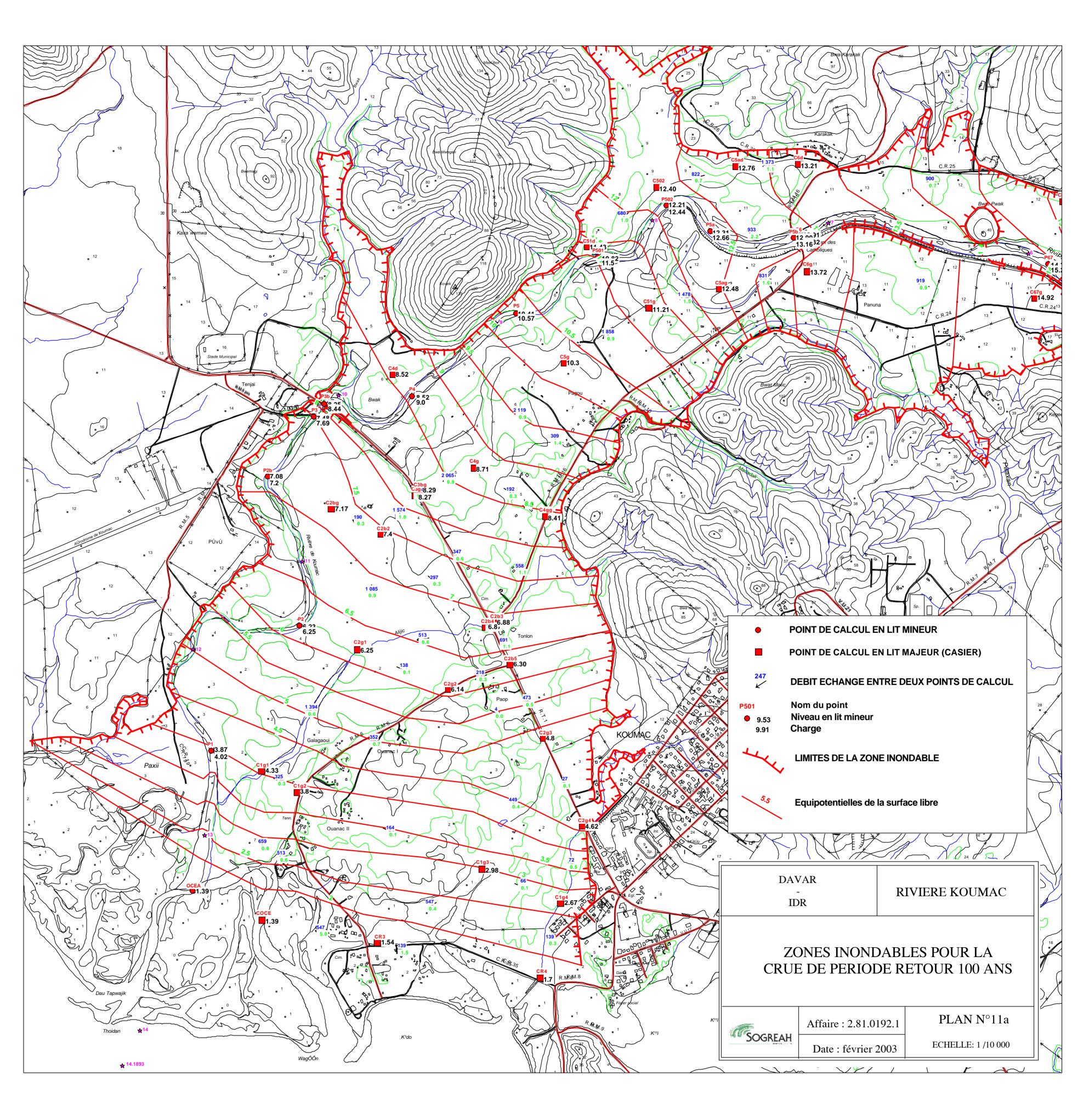
,

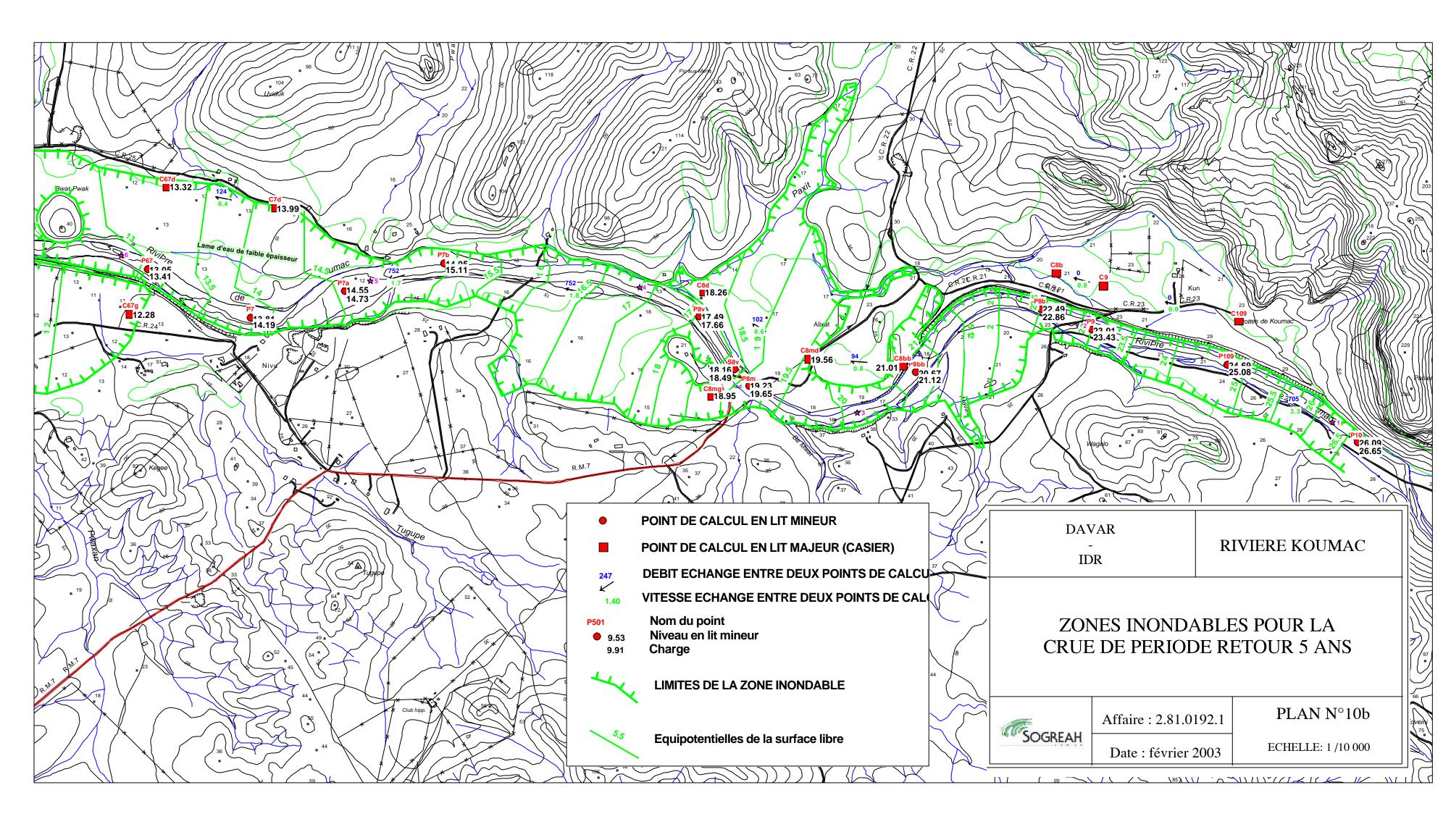
۴.


۴.


NIVEAUX CALCULES AUX POINTS DE CASIER


NOM	Q5	Q10	Q20	Q30	Q50	Q100	Q100 max
C1g2	2.56	2.97	3.27	3.42	3.59	3.8	3.96
C1g3	2.1	2.37	2.58	2.69	2.82	2.98	3.11
C1g4	1.77	2.12	2.31	2.41	2.52	2.67	2.79
CR3	1.4	1.41	1.44	1.46	1.49	1.54	1.59
CR4	1.5	1.59	1.63	1.65	1.68	1.7	1.73
COCE	1.39	1.39	1.39	1.39	1.39	1.39	1.39
C1g1	3.04	3.46	3.77	3.93	4.11	4.33	4.5
C2g4	3.5	3.89	4.15	4.29	4.43	4.62	4.77
C2g3	3.68	4.02	4.3	4.43	4.59	4.8	4.98
C2g2	4.54	5.06	5.45	5.64	5.86	6.14	6.34
C2g1	4.55	5.1	5.52	5.72	5.96	6.25	6.48
C2b5	4.83	5.27	5.64	5.81	6.03	6.3	6.51
C2b4	5.28	5.78	6.17	6.36	6.58	6.87	7.09
C2b3	5.36	5.81	6.19	6.37	6.59	6.88	7.1
C2b2	5.65	6.28	6.67	6.88	7.11	7.4	7.63
C2bg	5.65	6.05	6.44	6.65	6.88	7.17	7.39
C3g	6.34	7.08	7.5	7.72	7.96	8.27	8.52
C3bg	6.58	7.13	7.52	7.74	7.98	8.29	8.54
C4gg	6.53	7.09	7.6	7.82	8.08	8.41	8.67
C4g	6.85	7.52	7.93	8.14	8.39	8.71	8.96
C4d	7.02	7.2	7.63	7.87	8.15	8.52	8.8
C5g	7.85	8.83	9.36	9.63	9.93	10.3	10.6
C51g	9.29	9.91	10.37	10.6	10.87	11.21	11.48
C51d	9.82	10.18	10.57	10.8	11.08	11.43	11.73
C502	10.74	11.22	11.59	11.81	12.06	12.4	12.67
C5ag	10.19	10.97	11.55	11.81	12.11	12.48	12.77
C5ad	11.12	11.65	12.01	12.21	12.44	12.76	13.04
C6g	11.14	11.89	12.62	12.96	13.32	13.72	13.98
C6d	11.43	12.04	12.44	12.64	12.88	13.21	13.5
C67g C67d	12.28	12.96	13.67	14.04	14.42	14.92	15.24
C7d	13.32	13.99	14.42	14.61	14.84	15.11	15.35
C8d	14 18.26	14.79 18.9	15.32	15.58	15.88	16.24	16.54
C8mg	18.95	19.4	19.34	19.58	19.86	20.22	20.52
C8md	19.57	20.23	19.75 20.72	19.94 20.97	20.16 21.25	20.46	20.72
C8bb	21.02	21.91	22.61	22.96	23.36	21.6 23.86	21.88 24.25
C8b	25.8	25.8	25.8	25.8	25.8	26.19	26.5
C9	25.8	25.8	25.8	25.8	25.8	26.19	26.51
C109	25.8	25.8	25.8	25.8	25.8	26.19	26.51
GOCE	1.39	1.39	1.39	1.39	1.39	1.39	1.39
G1	2.91	3.26	3.52	3.66	3.82	4.02	4.17
G2v	4.59	5.1	5.51	5.72	5.95	6.24	6.47
G2	4.59	5.1	5.51	5.72	5.95	6.24	6.47
G2b	5.7	6.05	6.43	6.63	6.86	7.14	7.35
G3v	6.57	6.75	7.07	7.24	7.44	7.68	7.88
G3	6.57	6.75	7.07	7.24	7.44	7.68	7.88
G3b	7	7.11	7.54	7.79	8.07	8.44	8.73
D3b	7	7.11	7.54	7.79	8.07	8.44	8.73
G4	7.98	7.64	7.99	8.19	8.44	8.76	9.02
			,/	5.17	J.77	0.70	/.UZ


NIVEAUX CALCULES AUX POINTS DE CASIER (suite)


NOM	Q5	Q10	Q20	Q30	Q50	Q100	Q100 max
D4	7.98	7.64	7.99	8.19	8.44	8.76	9.02
G5	9.34	9.47	9.78	9.98	10.21	10.53	10.8
D5	9.34	9.47	9.78	9.98	10.21	10.53	10.8
G501	9.84	10.18	10.55	10.77	11.03	11.37	11.64
D501	9.84	10.18	10.55	10.77	11.03	11.37	11.64
G502	10.68	11.18	11.56	11.79	12.05	12.39	12.67
D502	10.68	11.18	11.56	11.79	12.05	12.39	12.67
G5a	10.98	11.5	11.84	12.03	12.27	12.59	12.86
D5a	10.98	11.5	11.84	12.03	12.27	12.59	12.86
G6	11.49	12.08	12.46.	12.66	12.9	13.23	13.52
D6	11.49	12.08	12.46	12.66	12.9	13.23	13.52
G67	13.34	14	14.41	14.61	14.84	15.1	15.34
D67	13.34	14	14.41	14.61	14.84	15.1	15.34
D7	14.11	14.79	15.32	15.58	15.88	16.25	16.54
D7a	14.69	15.33	15.91	16.21	16.55	16.96	17.29
G8	17.66	18.21	18.67	18.93	19.23	19.62	19.95
D8	17.66	18.21	18.67	18.93	19.23	19.62	19.95
G8m	19.57	20.23	20.72	20.96	21.25	21.6	21.88
D8m	19.57	20.23	20.72	20.96	21.25	21.6	21.88
D8bb	21.03	21.92	22.62	22.97	23.37	23.87	24.26
D8b	22.86	23.61	24.17	24.47	24.82	25.27	25.64
D9	23.34	24.28	25.04	25.43	25.9	26.4	26.68
D109	24.89	25.8	26.54	26.93	27.38	27.93	28.33

