

PROVINCE SUD

PROVINCE SUD

ETUDE DES ZONES INONDABLES SUR BOURAIL

NOUVELLE

CALÉDONIE

-Secteurs Douencheur, Pouéo, Ari, Boghen, Téné, Néra -

Rapport complet définitif **Juillet 2013**

Le système qualité de GINGER SOPRONER est certifié ISO 9001-2008 par

• NOUMEA - BP 3583 - 98846 Nouméa

Tél (687) 28 34 80 - Fax (687) 28 83 44 - Email: soproner.noumea@soproner.nc

• KONE - BP 801 - 98860 Koné

Tél (687) 47 25 23 - Fax (687) 47 25 23 - Email : soproner.kone@soproner.nc

• SIÈGE SOCIAL : 1 bis rue Berthelot - Doniambo - BP3583 - 98846 Nouméa - Nouvelle Calédonie - Site internet : www.soproner.nc SAS au capital de 37 000 000 FCFP - RCS Nouméa 02 B 668731 - Ridet 668731.001 - Banque BNC Nº 14889 00081 82817301015 22

ÉVOLUTION DU DOCUMENT

Ind.	Date	Chef de projet	Ingénieur d'études	Description des mises à jour
1.1	Février 2012	MONNET Jean-Baptiste	GOURDON Florence	Rapport d'avancement fin de phase 1
2.1	Août 2012	MONNET Jean-Baptiste	GOURDON Florence	Prise en compte des remarques du rapport de phase 1 Rapport d'avancement fin de phase 2
2.2	Novembre 2012	MONNET Jean-Baptiste	GOURDON Florence	Corrections et prise en compte des remarques sur le rapport de phase 2
2.3	Décembre 2012	MONNET Jean-Baptiste	GOURDON Florence	Assemblage des Etudes de zones inondables sur la commune de Bourail (A001.09035 et A001.11023)
3.1	Janvier 2013	MONNET Jean-Baptiste	GOURDON Florence	Phase 3 : Cartographie des zones inondables et aléas
3.2	Mars 2013	MONNET Jean-Baptiste	GOURDON Florence	Phase 3: Prise en compte des remarques et corrections
3.3	Juillet 2013	MONNET Jean-Baptiste	GOURDON Florence	Compilation Phase 1,2 et 3, corrections et finalisation

SOMMAIRE

	lution du document	
Som	maire	3
<u>I. A</u> \	<u>VANT-PROPOS</u>	<u>10</u>
II. PF	RESENTATION DU SECTEUR D'ETUDE	<u>12</u>
II.1.	Douencheur	15
II.1.1.	Description du bassin versant	15
II.1.2.	Description du cours d'eau	17
II.2.	Pouéo	21
II.2.1.	Description du bassin versant	21
II.2.2.	Description du cours d'eau	23
II.3.	Ari	26
II.3.1.	Description du bassin versant	26
II.3.2.	Description du cours d'eau	28
II.4.	Téné	30
II.4.1.	Description du bassin versant	30
II.4.2.	Description du cours d'eau	32
II.5.	Boghen	34
II.5.1.	Description du bassin versant	34
II.5.1.	Description du cours d'eau	36
II.6.	Néra	39
II.6.1.	Description du bassin versant	39
II.6.2.	Description du cours d'eau	40
III. AI	NALYSE PLUVIOMETRIQUE ET HYDROMETRIQUE	<u>42</u>
III.1.	Pluviométrie	42
III.1.1.	. Contexte pluviométrique	42
III.1.2.	. Données pluviométriques disponibles	42
III.1.3.	. Analyse statistique	43
III.2.	Estimation des débits théoriques	44
III.2.1.	. Méthodologie	44
III.2.2.	. Résultats	49
III.2.3.	. Analyse des résultats	57

III.2.4.	Concomitances de crue	58
III.3.	Détermination des débits de crues historiques	60
III.3.1.	Cyclone Béti	61
III.3.2.	Episode pluvieux de 1990	63
III.3.3.	Cyclone Franck	65
III.3.4.	Cyclone Erica	66
IV. PI	ROGRAMME DE LEVES TOPOGRAPHIQUES	<u>68</u>
V. MI	ETHODOLOGIE GENERALE ET HYPOTHESES DE MODELISATION	70
1		
V.1.	Préambule	
V.2.	Géométrie du modèle hydraulique	
V.3.	Fonctionnements hydrauliques particuliers sur la Néra, la Boghen et la Ari	
V.4.	Fonctionnements hydrauliques particuliers sur la Pouéo	
V.5.	Fonctionnements hydrauliques particuliers sur la Douencheur	72
VI.C	ALAGE DU MODELE – AJUSTEMENT DES COEFFICIENTS DE STRICKLER	73
VI.1.	Grande inondation de 1990	73
VI.1.1.	. Hypothèses	73
VI.1.2.	. Comparaison des niveaux	74
VI.2.	Cyclone Béti	78
VI.2.1.	. Hypothèses	78
VI.2.2.	. Comparaison	80
VI.3.	Franck (Douencheur)	83
VI.3.1.	. Hypothèses	83
VI.3.2.	. Comparaison des niveaux	83
VI.4.	Erica	87
VI.4.1.	. Hypothèses	87
VI.4.2.	. Comparaison des niveaux	87
VI.5.	Paramètres retenus à l'issu du calage	90
\/II	DEFINITION DES CONDITIONS ALLY LIMITES	02
<u>V II.</u>	DEFINITION DES CONDITIONS AUX LIMITES	<u>92</u>
VII.1.	Débits de crue	92
VII.2.	Conditions limites aval	95
VIII.	MODELISATION DES CRUES DE REFERENCE	<u>97</u>
VIII.1.	. Pouéo	97
	. Douencheur	

VIII.3	. Ari	102
VIII.4	. Téné	103
VIII.5	. Boghen	104
VIII.6	Néra	106
IX.C	OMPARAISON DES RESULTATS DES DIFFERENTES ETUDES	<u>108</u>
IX.1.	Comparaison des résultats de modélisation	108
IX.2.	Modélisation en conservant les hypothèses hydrologiques de l'étude Hydrex	114
IX.2.1	. Préambule	114
IX.2.2	2. Hypothèses	114
IX.2.3	s. Hypothèse 1 – Qnera = 6500 m3/s - Résultats	117
IX.2.4	. Hypothèse 2 – QNera = 8450 m3/s - Résultats	123
<u>X.</u> <u>Al</u>	NALYSE DE SENSIBILITE	<u>129</u>
X.1.	Sensibilité aux variations de débit	129
X.2.	Sensibilité aux variations de la rugosité	130
X.3.	Sensibilité aux variations de condition limite aval de la Néra	130
X.4.	Comportement du modèle et caractérisation du fonctionnement hydraulique	132
X.4.1.	Définitions des scénarios de crue	132
X.4.2.	Résultats de simulations des différents scénarios	136
X.4.3.	Analyse des résultats	138
XI.C	ARTOGRAPHIE DE LA ZONE INONDABLE ET DES ALEAS	<u>139</u>
XI.1.	Méthodologie	139
XI.2.	Carte des iso-cotes, iso-hauteurs, iso-vitesses	139
XI.3.	Carte des aléas	140
XII.	ANNEXES	<u>141</u>

LISTE DES PLANCHES

Planche 1 : Présentation du secteur d'étude	. 13
Planche 2 : Localisation des bassins versants	. 14
Planche 3 : Bassin versant de la Douencheur	. 16
Planche 4 : Présentation de la Douencheur	. 20
Planche 5 : Bassin versant de la Pouéo	. 22
Planche 6 : Présentation de la Pouéo	
Planche 7 : Bassin versant de la Ari	. 27
Planche 8 : Présentation de la Ari	. 29
Planche 9 : Bassin versant de la Téné	. 31
Planche 10 : Présentation de la Téné	. 33
Planche 11 : Bassin versant de la Boghen	. 35
Planche 12 : Présentation de la Boghen	. 38
Planche 13 : Présentation de la Néra	. 41
Planche 14 : Comparaison des résultats entre l'étude Hydrex (1991) et l'étude SOPRONER	113
Planche 15 : Comparaison des résultats entre l'étude Hydrex (1991) et l'étude SOPRONER en conservant hypothèses hydrologiques retenues dans l'étude Hydrex pour Q100 _{NERA} = 6500 m3/s	
Planche 16 : Comparaison des résultats entre l'étude Hydrex (1991) et l'étude SOPRONER en conservant hypothèses hydrologiques retenues dans l'étude Hydrex pour Q100 _{NERA} = 8450 m3/s	

LISTE DES FIGURES

Figure 1 : Précipitations moyennes annuelles (1991-2000 en mm) reconstituées par la méthode Aurhély (source France)	
Figure 2 : Intensités centennales de précipitations en fonction de la durée de l'épisode pluvieux sur différentes stat	ions43
Figure 3 : Synthèse des ajustements de Gumbel pour la crue centennale sur l'ensemble des 22 stations hydromé de la Nouvelle Calédonie, source DAVAR	
Figure 4 : Rapport Q100/QT défini à partir des ajustements Gumbel sur l'ensemble des 22 stations hydrométrique Nouvelle Calédonie, source DAVAR	
Figure 5 : Débits calculés sur la Douencheur	50
Figure 6 : Débits calculés sur la Pouéo	51
Figure 7 : Débits calculés sur la Ari	52
Figure 8 : Débits calculés sur la Téné	53
Figure 9 : Débits calculés sur la Boghen Amont	54
Figure 10 : Débits calculés sur la Boghen Aval	55
Figure 11 : Débits calculés sur la Néra	56
Figure 12 : Ligne d'eau modélisée pour la Grande Inondation de 1990 sur la Boghen et la Néra	76
Figure 13 : Ligne d'eau modélisée pour la Grande Inondation de 1990 sur la Ari et la Douencheur	77
Figure 14 : Hypothèses de modélisation – Béti Scénario 1	78
Figure 15 : Hypothèses de modélisation – Béti Scénario 2	79
Figure 16 : Ligne d'eau modélisée pour le cyclone Béti sur la Boghen et la Néra	81
Figure 17 : Ligne d'eau modélisée pour le cyclone Béti sur la Ari et la Douencheur	82

Figure 18 : Ligne d'eau modélisée pour le cyclone Franck sur la Douencheur	85
Figure 19 : Ligne d'eau modélisée pour le cyclone Franck sur la Nandaï	86
Figure 20 : Ligne d'eau modélisée pour le cyclone Erica sur la Pouéo	89
Figure 21 : Lignes d'eau simulées sur la Pouéo (Crues 5, 10, 100 ans)	98
Figure 22 : Lignes d'eau simulées sur la Douencheur (Crues 5, 10, 100 ans)	100
Figure 23 : Lignes d'eau simulées sur la Nandaï (Crues 5, 10, 100 ans)	101
Figure 24 : Lignes d'eau simulées sur la Ari (Crues 5, 10, 100 ans)	102
Figure 25 : Lignes d'eau simulées sur la Téné (Crues 5, 10, 100 ans)	103
Figure 26 : Lignes d'eau simulées sur la Boghen (Crues 5, 10, 100 ans)	105
Figure 27 : Lignes d'eau simulées sur la Néra (Crues 5, 10, 100 ans)	107
Figure 28 : Comparaison entre l'étude SOPRONER et l'étude Hydrex pour les biefs Néra et Boghen	110
Figure 29 : Comparaison entre l'étude SOPRONER et l'étude Hydrex pour les biefs Ari et Douencheur	111
Figure 30 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour le bief Pouéo	112
Figure 31 : Extrait du rapport de l'étude Hydrex (1991) – Délimitation de la zone inondable de la rivière Néra §IV.1	115
Figure 32 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour les biefs Néra et Boghen – Hypothè. Q _{NERA} = 6500 m3/s	
Figure 33 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour les biefs Ari et Douencheur - Hypothè. Q _{NERA} = 6500 m3/s	
Figure 34 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour le bief Pouéo - Hypothèse 1 : Q _N 6500 m3/s	
Figure 35 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour les biefs Néra et Boghen - Hypothès Q _{NERA} = 8450 m3/s	
Figure 36 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour les biefs Ari et Douencheur - Hypothè. Q _{NERA} = 8450 m3/s	se 2 : 126
Figure 37 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour le bief Pouéo - Hypothèse 2 : Q _N 8450 m3/s	
Figure 38 : Profil en travers P1 en état de référence (marron) et en cas de rupture du cordon littoral (rouge)	131
Figure 39 : Hypothèses de modélisation - Scénario 1	133
Figure 40 : Hypothèses de modélisation - Scénario 2	133
Figure 41 : Hypothèses de modélisation - Scénario 3	134
Figure 42 : Hypothèses de modélisation - Scénario 4	134
Figure 43 : Hypothèses de modélisation - Scénario 5	135
Figure 44 : Lignes d'eau calculées sur la Ari et la Douencheur pour les différents scénarios	136
Figure 45 : Lignes d'eau calculées sur la Néra et la Boghen pour les différents scénarios	137

LISTE DES TABLEAUX

Tableau 1 : Description du bassin versant de la Nera	39
Tableau 2 : Stations de mesures pluviométriques	43
Tableau 3 : Coefficients de ruissellement utilisés	45
Tableau 4 : Temps de concentration calculés par différentes méthodes	46
Tableau 5 : Temps de concentration retenus	46
Tableau 6 : Caractéristiques des stations hydrométriques	47
Tableau 7 : Débits de crue théoriques des stations hydrométriques	47
Tableau 8 : Rappel des caractéristiques du bassin versant de la Douencheur	50
Tableau 9 : Débits calculés sur la Douencheur	50
Tableau 10 : Rappel des caractéristiques du bassin versant de la Pouéo	51
Tableau 11 : Débits calculés sur la Pouéo	51
Tableau 12 : Rappel des caractéristiques du bassin versant de la Ari	52
Tableau 13 : Débits calculés sur la Ari	52
Tableau 14 : Rappel des caractéristiques du bassin versant de la Téné	53
Tableau 15 : Débits calculés sur la Téné	53
Tableau 16 : Rappel des caractéristiques du bassin versant de la Boghen Amont	54
Tableau 17 : Débits calculés sur la Boghen Amont	54
Tableau 18 : Rappel des caractéristiques du bassin versant de la Boghen Aval	55
Tableau 19 : Débits calculés sur la Boghen Aval	55
Tableau 20 : Rappel des caractéristiques du bassin versant de la Néra	56
Tableau 21 : Débits calculés sur la Néra	56
Tableau 22 : Débits théoriques retenus	57
Tableau 23 : Hypothèses de débit de l'étude Hydrex	59
Tableau 24 : Débits observés sur les stations hydrométriques lors de Béti	61
Tableau 25 : Période de retour des intensités mesurées sur les stations pluviométriques lors de Béti	61
Tableau 26 : Débits de pointe retenus pour le cyclone Béti	62
Tableau 27 : Période de retour des intensités mesurées sur les stations pluviométriques lors de l'épisode de 1990	63
Tableau 28 : Débits de pointe retenus pour la Grande Inondation de 1990	64
Tableau 29 : Débits de pointe retenus pour le cyclone Franck	66
Tableau 30 : Débits de pointe retenus pour le cyclone Erica	67
Tableau 31 : Récapitulatif des levés topographiques	69
Tableau 32 : Rappel des débits de pointe calculés pour la Grande Inondation de 1990	73
Tableau 33 : Comparaison des niveaux pour la Grande Inondation de 1990	74
Tableau 34 : Rappel des débits de pointe calculés pour le cyclone Béti	78
Tableau 35 : Comparaison des niveaux pour le cyclone Béti	80
Tableau 36 : Rappel des débits de pointe calculés pour Franck	83
Tableau 37 : Comparaison des niveaux pour le cyclone Franck	83
Tableau 38 : Rappel des débits de pointe calculés pour Erica	87
Tableau 39 : Comparaison des niveaux pour le cyclone Erica	87
Tableau 40 : Conditions de débits appliquées dans le modèle hydraulique HEC RAS	94

Litude des zones inormanies sur la commune de bourair	
Tableau 41 : Conditions limites aval de la Néra	
Tableau 42: Comparaison des résultats entre l'étude Hydrex (1991) et l'étude SOPRONER pour la crue centennale	109
Tableau 43 - Hypothèses de débit de l'étude Hydrex pour la crue de période de retour T=100 ans	114
Tableau 44 : Débits appliqués à différentes sections de la Douencheur pour la crue centennale	116
Tableau 45 : Débits retenus dans l'étude Hydrex pour la crue centennale	117
Tableau 46 : Conditions limite aval pour la Ari et la Téné dans le cadre de l'hypothèse 1	117
Tableau 47 : Confrontation des résultats entre l'étude Hydrex (1991) et Soproner pour la crue centennale avec d'Hydrex conservés	
Tableau 48 : Débits retenus par Hydrex avec Q100-Néra = 8450 m ³ /s	123
Tableau 49 : Conditions limites aval pour la Ari et la Téné dans le cadre de l'hypothèse 2	123
Tableau 50 : Confrontation des résultats entre l'étude Hydrex (1991) et Soproner pour la crue centennale avec d'Hydrex conservés et pour un débit dans la Néra de 8450 m³/s	débits 124
Tableau 51 : Débits simulés pour l'estimation de l'incertitude	129
Annexe 1 : Reportages photographiques	142
Annexe 1 : Reportages photographiques	
Annexe 3 : Calcul des temps de concentration	
Annexe 4 : Caractéristiques des stations hydrométriques de La Foa et Boghen	
Annexe 5 : Hyétogrammes des pluies réelles	
Annexe 6 : Plans des profils à lever	
Annexe 7 : Débits injectés au droit des différents profils	
Annexe 8 : Résultats des simulations de référence	
Annexe 9 : Résultats de l'analyse de sensibilité	
Annexe 10 – Dossier des plans	
•	
LISTE DES PLANS	
Plan 1 -: Plan des profils modélisés	151
Plan 2 - Synoptique hydraulique	151
Plan 3 - Cartes des iso-hauteurs, iso-vitesses et isocotes	151

I. AVANT-PROPOS

En 2009, la Province Sud a lancé une étude des zones inondables sur plusieurs secteurs des bassins versants amont de Bourail (Pouéo, Douencheur, Boghen).

Le marché d'étude prévoyait initialement de réutiliser les résultats de l'étude Hydrex pour la définition des conditions limites aval sur les biefs amont des cours d'eau suivants : Boghen, Douencheur, Pouéo et Ari.

Les résultats de la modélisation réalisée dans le cadre de cette étude a permis de mettre en évidence un décalage incohérence avec les résultats issus de l'étude HYDREX datant 1991 et portant sur la délimitation des zones inondables de la Néra et de ses principaux affluents sur leur partie aval (Boghen, Douencheur, Pouéo, Ari).

Au vu des écarts constatés, il a été décidé d'actualiser l'étude de zone inondable sur les secteurs de Bourail (Néra, Boghen aval, Pouéa aval, Douencheur aval et Ari) avec pour objectif de réévaluer les valeurs de conditions limite aval pour la modélisation des biefs amont et GINGER SOPRONER a ainsi été mandaté pour cette mission.

Le présent document présente donc les résultats des études hydrauliques de zones inondables sur les cours d'eau suivants :

- Douencheur amont et aval;
- Pouéo amont et aval ;
- Ari;
- Téné ;
- Boghen amont et aval;
- Néra;

L'objet de l'étude est la délimitation des zones inondables et l'établissement des cartes d'aléas sur chacun des secteurs concernés. Les études à réaliser sont du type « hydraulique simplifiée», dont la mise en œuvre se distingue des études hydrauliques classiques par :

- Une information hydrologique et topographique réduite ;
- Des sections d'écoulement en nombre restreint.

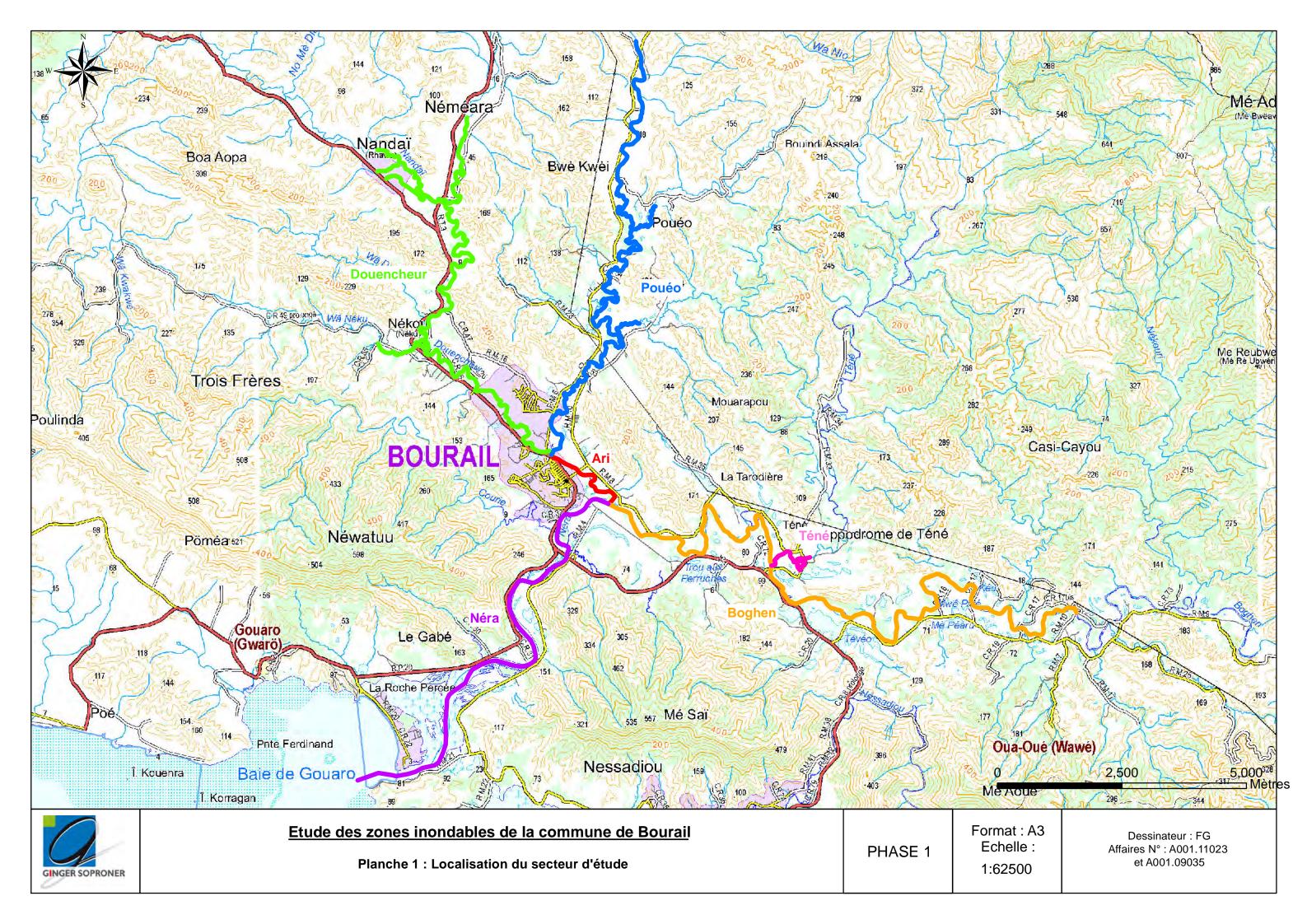
L'étude est décomposée en trois phases :

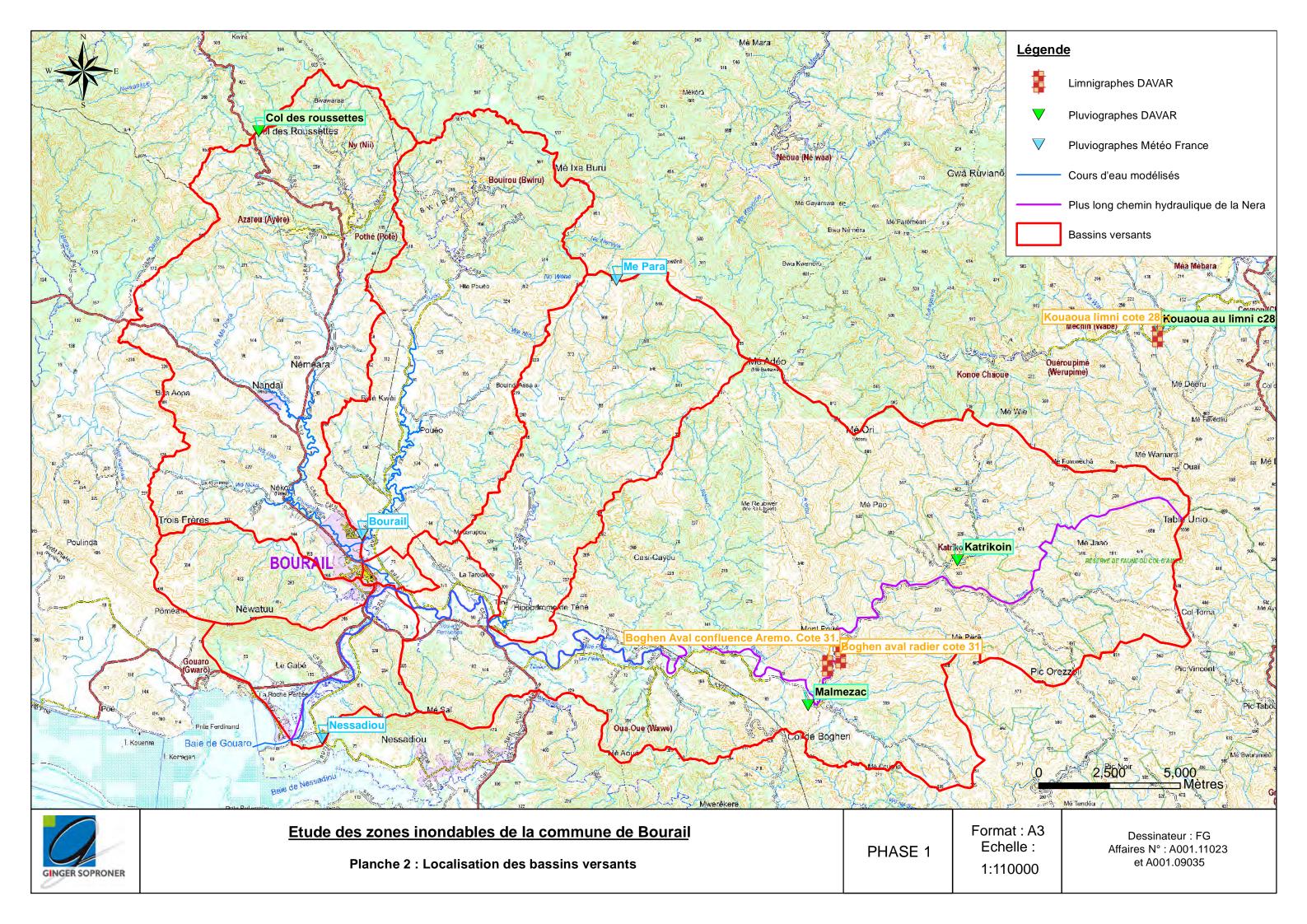
- la phase 1 comprend la collecte des données existantes, les reconnaissances de terrain, l'établissement du programme de levés topographiques à réaliser, l'étude hydrologique devant permettre de déterminer les débits de période de retour 5, 10 et 100 ans;
- la phase 2 consiste en la réalisation des prestations topographiques, la construction et le calage du modèle, puis la modélisation des débits de pointe de période de retour 5, 10 et 100 ans ;
- la phase 3 consiste à produire les cartographies des zones inondables avec en particulier la réalisation de la carte des aléas d'inondation.

Rappelons que la commune de Bourail a déjà fait l'objet de différentes études hydrauliques qui concernent le présent secteur d'étude :

o Délimitation de la zone inondable de la rivière Néra (HYDREX – 1992). Cette étude

- a permis la délimitation des zones inondables de la Néra et de ses principaux affluents sur leur partie aval (Boghen, Douencheur, Pouéo, Ari) par modélisation hydraulique ;
- Diagnostic hydraulique Aval Pouéo-Douencheur-Ari (APICAN, Août 2008). Cette étude évalue la capacité des lits mineurs (par modélisation hydraulique) à évacuer les crues fréquentes sur les terrains agricoles riverains.


II. PRESENTATION DU SECTEUR D'ETUDE


Le secteur d'étude, présenté en Planche 1 et Planche 2, concerne les cours d'eau suivants :

- La Douencheur, du lieu-dit Néméara jusqu'à la confluence avec la Ari, ainsi que ces principaux affluents à savoir, la Nandaï et la Nékou
- La Pouéo, depuis le radier de la RM6 jusqu'à la confluence avec la Ari, ainsi que deux de ses affluents,
- La Ari, qui longe le village de Bourail,
- La Téné, de l'hippodrome jusqu'à la confluence avec la Boghen,
- La Boghen, de l'ouvrage de franchissement de la RM19 jusqu'à la confluence avec la Néra,
- La Néra, jusqu'à son embouchure en mer.

Le linéaire total de cours d'eau à étudier représente environ 66 km.

II.1. DOUENCHEUR

Le secteur d'étude concerne :

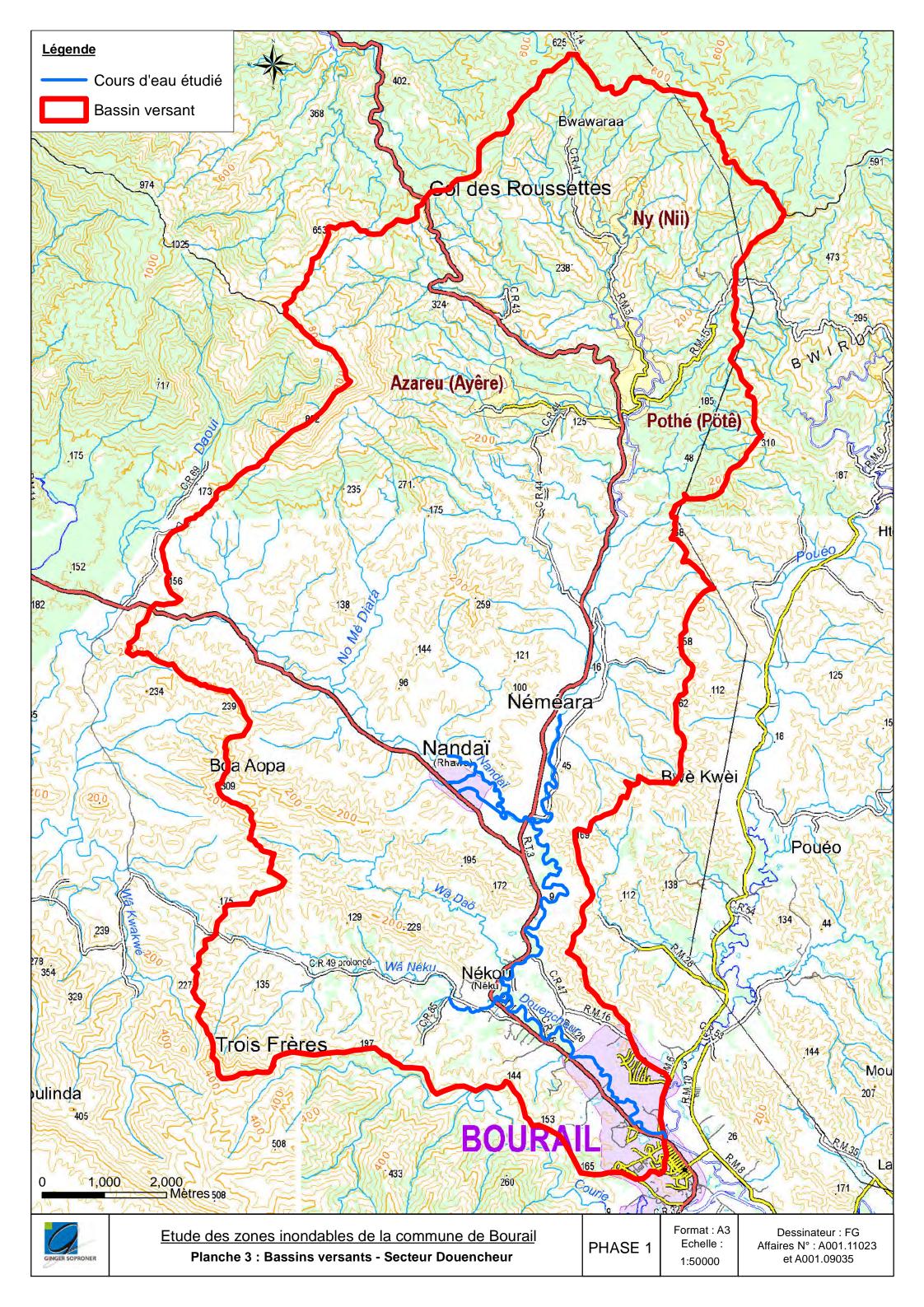
- la Douencheur du lit-dit Néméara jusqu'à la confluence avec la Ari,
- La Nandaï, du camp militaire jusqu'à sa confluence avec la Douencheur ainsi que deux affluents de la Nandaï en rive droite et qui traversent ce camp,
- Le creek Nékou, affluent rive droite de la Douencheur, sur environ 1 km en amont de sa confluence.

Le linéaire total de cours d'eau à étudier représente environ 17.5 km (dont environ 13 km pour la Douencheur et 3 km pour la Nandaï).

II.1.1. Description du bassin versant

Le bassin versant de la Douencheur est présenté en Planche 3.

Les caractéristiques du bassin versant de la Douencheur, à la confluence avec la Pouéo, sont les suivantes :


Surface drainée (km²)	108
Plus long chemin hydraulique (km)	28.3
Dénivelé maximal (m)	840
Pente pondérée du plus long chemin hydraulique (%)	0.5 %

Le bassin versant drainé présente une pente très forte en tête de bassin (comprise entre 20 et 50%), une pente de l'ordre de 7% en amont du tronçon étudié, et relativement faible sur l'aval (environ 2%).

Il est pour moitié constitué de zones montagneuses fortement végétalisées (pente supérieure à 15%), la moitié restante (de pente inférieure à 15%) présentant une végétation rase de type prairies ou cultures.

Les bassins versants de la Douencheur et de la Nandaï sont peu urbanisés hormis le secteur du camp militaire.

II.1.2. Description du cours d'eau

La Planche 4 représente les cours d'eau étudiés.

Un reportage photographique au format numérique (.kmz), réalisé lors des visites de terrain sur l'aval du secteur d'étude, est joint au présent rapport.

Le reportage photographique réalisé lors des visites terrain de l'amont du secteur d'étude est présenté en Annexe 1.

Douencheur

Sur l'amont de la Douencheur, la végétation observée en lit majeur est principalement constituée de prairies et cultures.

La végétation étant rase, les conditions d'écoulement sur ces zones seront satisfaisantes.

A noter la présence de quelques zones plus végétalisées, notamment en rive droite, cependant ces secteurs restent assez rares et peu étendus.

Lit Majeur en amont du secteur d'étude

Lit majeur

Sur l'aval de la Douencheur (en aval du lieu-dit Nekou) jusqu'à la confluence avec la Pouéo, le lit majeur alterne entre des zones de pâturages non entretenues constituées d'herbes hautes et des zones de cultures assez rases.

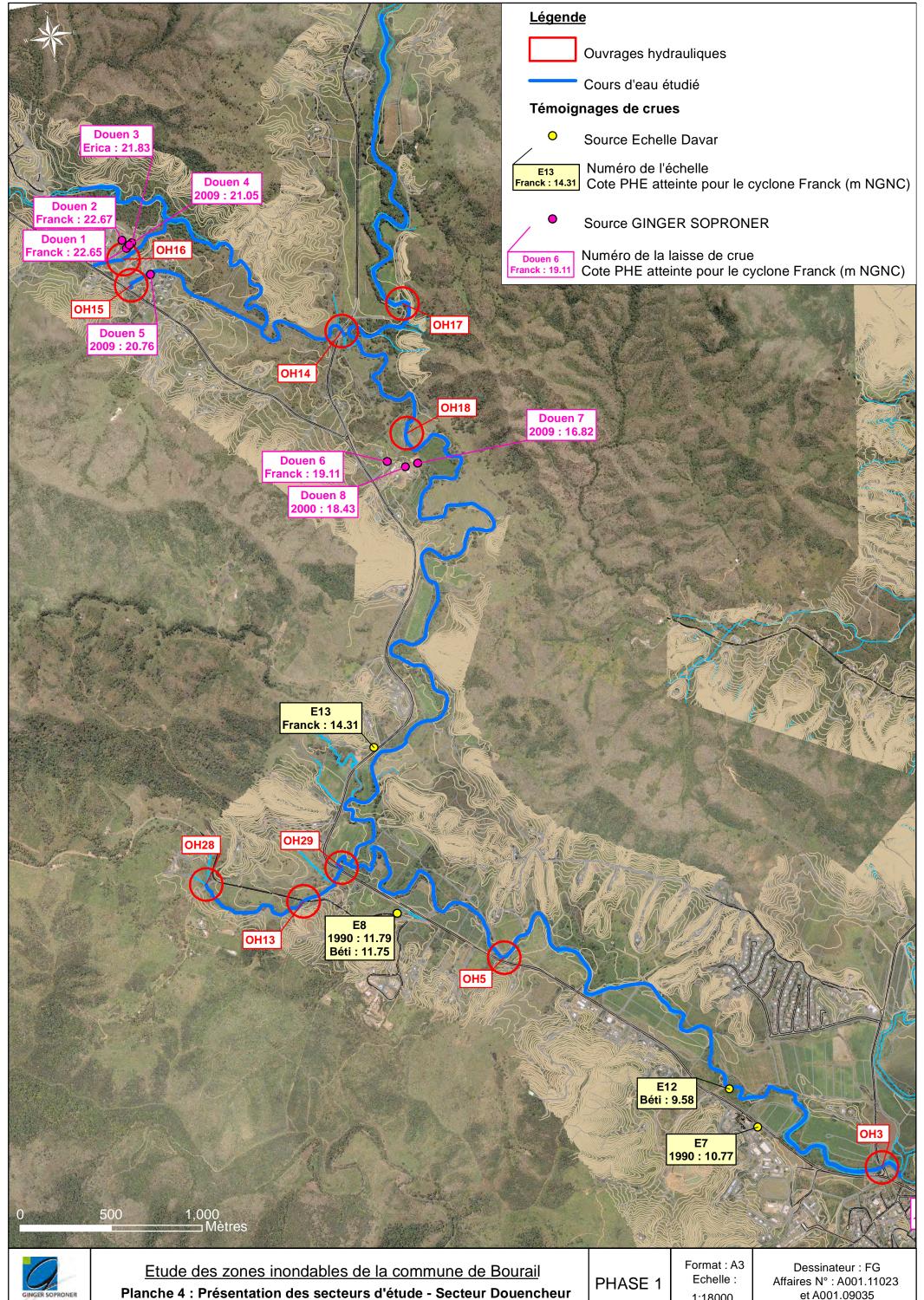
D'une manière générale, sur ce tronçon les conditions d'écoulement seront satisfaisantes.

Lit Majeur en aval du secteur d'étude

Ripisylve

En amont du cours d'eau, la ripisylve est très dense. La végétation observée est caractérisée par des bambous hauts et denses. Ces bambous constituent un risque d'embâcle important.

La ripisylve est dense sur la quasi-totalité du tronçon aval, et est composée en grande partie de bambous parfois instables.



Lit mineur	Sur l'amont de la Douencheur, le lit mineur est propre, bien dégagé et marqué. Sur le linéaire aval, le lit mineur est globalement bien marqué et propre, hormis en quelques points où il est encombré par des bambous.	
Ouvrages	 Ce cours d'eau est franchi par plusieurs ouvrages : Un radier béton (OH17) traversé par 3 buses Ø500 un passage à gué (OH18) Un radier béton (OH5) traversé par 11 buses Ø600 permet l'accès aux cultures situées en rive droite de la Douencheur Un pont sur la RM6 (OH3) d'une portée d'environ 20 m avec un pilier central 	
Enjeux	Sur ce secteur d'étude, l'enjeu est principalement agric les parties les plus basses. Le secteur compte peu d'h implantées en contre haut. Les quelques enjeux affectés pour les plus grosses cre notamment au niveau de la scierie (cf. Annexe 2).	abitations et celles-ci sont principalement

Nandaï et affluents 1 et 2		
Lit majeur	En amont, la rive droite du lit majeur de la Nandaï est urbanisée. En effet, le cours d'eau coule à proximité du camp militaire de Nandaï. Les constructions sont de type habitations, hangars, terrains de sport. A l'approche de la confluence avec la Douencheur, les prairies constituent le lit majeur de la Nandaï.	
	Deux affluents étudiés traversent le camp militaire. Leur lit majeur est urbanisé dans la traversée du camp et devient marécageux et bien encombré a proximité de leur confluence avec la Nandaï.	
Lit mineur	Le lit mineur de la Nandaï est encombré, l'écoulement est perturbé par la présence d'embâcles. Les berges de la Nandaï sont très fortement végétalisées. La végétation observée est haute et dense. En ce qui concerne les deux affluents, leur lit s'apparente à un fossé entretenu dans la traversée du camp. A proximité de leur confluence, le lit devient peu marqué, sinueux et encombré.	
Ouvrages	Sur le linéaire étudié, 3 ouvrages et une passerelle (OH4) franchissent le cours d'eau : OH16 : radier béton traversé par 2 buses Ø1000 OH15 : radier béton traversé par une buse Ø1000 OH14a : tablier béton soutenu par 2 piliers OH14b : ponceau en voûte (1.5 m x 2.5 m)	
Enjeux	Le camp militaire de Nandaï représente le seul enjeu du secteur. Les habitations, hangars, entrepôts de matériels sont vulnérables face au risque d'inondation. De nombreuses laisses de crues ont été recensées dans le camp (cf. Annexe 2).	
Nékou		
Lit majeur	La végétation observée sur le lit majeur est de type prairies.	
Lit mineur	Le lit mineur de cet affluent est bien encombré jusqu'à la confluence avec la Douencheur.	
Ouvrages	 Sur le linéaire étudié, 3 ouvrages franchissent le cours d'eau : OH28 : radier béton traversé par 2 buses Ø800 OH13 : radier béton traversé par 3 buses Ø1000. En amont, des cadres 80x130 cm créent un entonnement. A noter que cet ouvrage est fortement encombré. OH29 : Ouvrage de franchissement par la RT1 constitué d'un cadre 2.10 x 2.10 m 	
Enjeux	Cette zone ne présente pas d'enjeu particulier, les habitations présentes sur la zone étant implantées bien en contre haut du cours d'eau.	

II.2. POUEO

Le secteur d'étude concerne la Pouéo depuis le radier sur RM6 (OH12) jusqu'à la confluence avec la Douencheur, ainsi que deux affluents rive gauche de ce cours d'eau sur leur partie aval (cf. Planche 6).

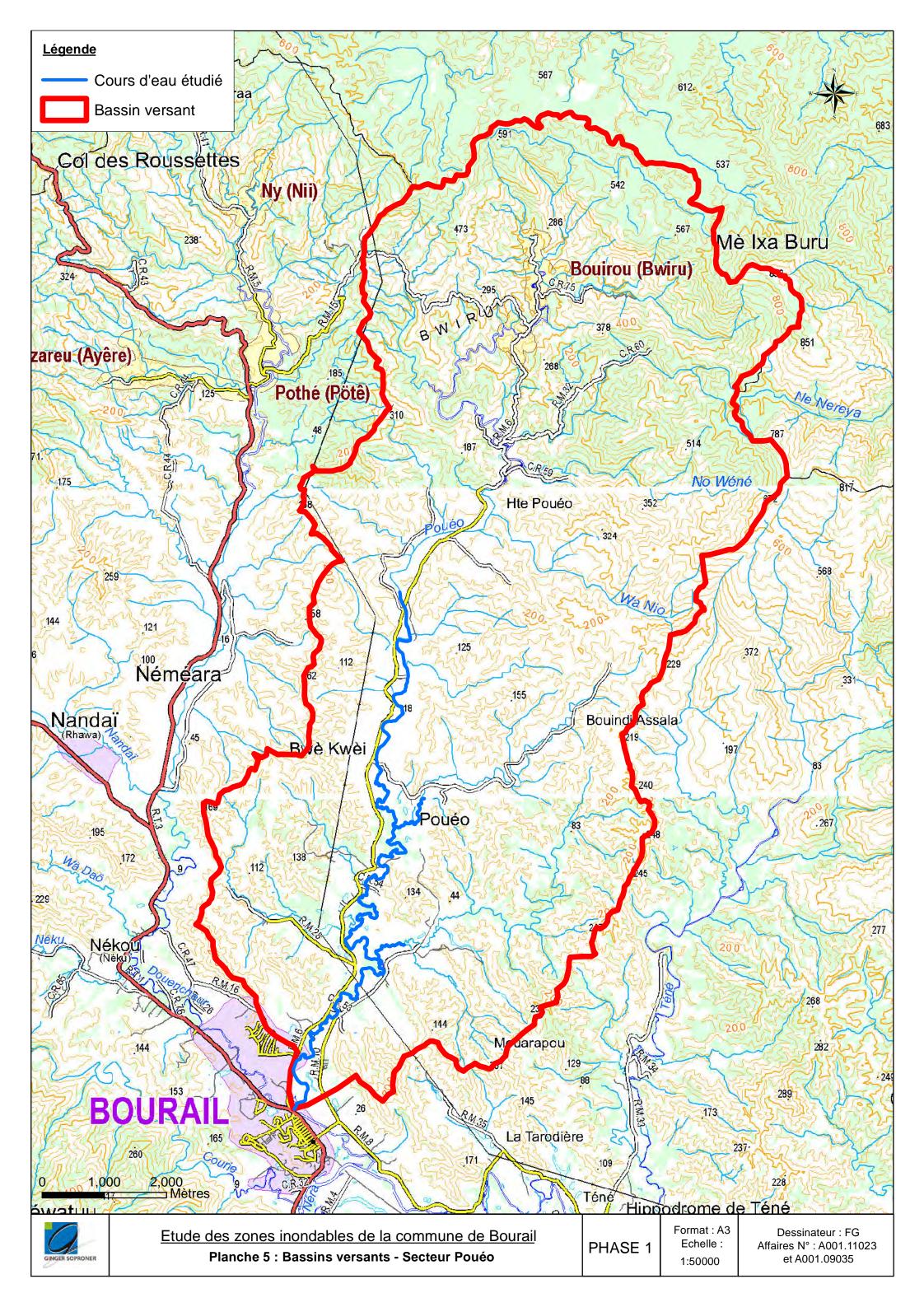
Un linéaire d'environ 700 m de cours d'eau a été ajouté au marché initial pour modéliser l'aval de l'affluent 2.

Le linéaire total de cours d'eau à étudier représente environ 17 km.

II.2.1. Description du bassin versant

Le bassin versant de la Pouéo est présenté en Planche 5.

Les caractéristiques du bassin versant de la Pouéo, à la confluence avec la Douencheur, sont les suivantes :


Surface drainée (km²)	89
Plus long chemin hydraulique (km)	31.2
Dénivelé maximal (m)	895
Pente pondérée du plus long chemin hydraulique (%)	0.4%

Le bassin versant drainé présente une très forte pente en tête de bassin (comprise entre 30 et 60%), une pente de l'ordre de 5% en amont du tronçon étudié, et relativement faible sur l'aval (environ 0.5%).

Il est pour moitié constitué de zones montagneuses (pente supérieure à 15%) fortement végétalisées, la moitié restante (de pente inférieure à 15%) présentant une végétation rase de type prairies ou cultures.

Le bassin versant de la Pouéo est très peu urbanisé.

II.2.2. Description du cours d'eau

La Planche 6 représente les cours d'eau étudiés.

Un reportage photographique au format numérique (.kmz), réalisé lors des visites de terrain sur l'aval du secteur d'étude, est joint au présent rapport.

Le reportage photographique réalisé lors des visites terrain de l'amont du secteur d'étude est présenté en Annexe 1 de ce document.

Pouéo

En limite amont du secteur d'étude, la végétation observée au niveau du lit majeur est de type « savane à niaoulis », caractérisée par des herbes hautes et des niaoulis épars.

Lit majeur amont

Lit majeur

Sur l'aval de la Pouéo, jusqu'à la confluence avec la Douencheur, le lit majeur est principalement constitué de grandes prairies en partie cultivées. La végétation y est rase.

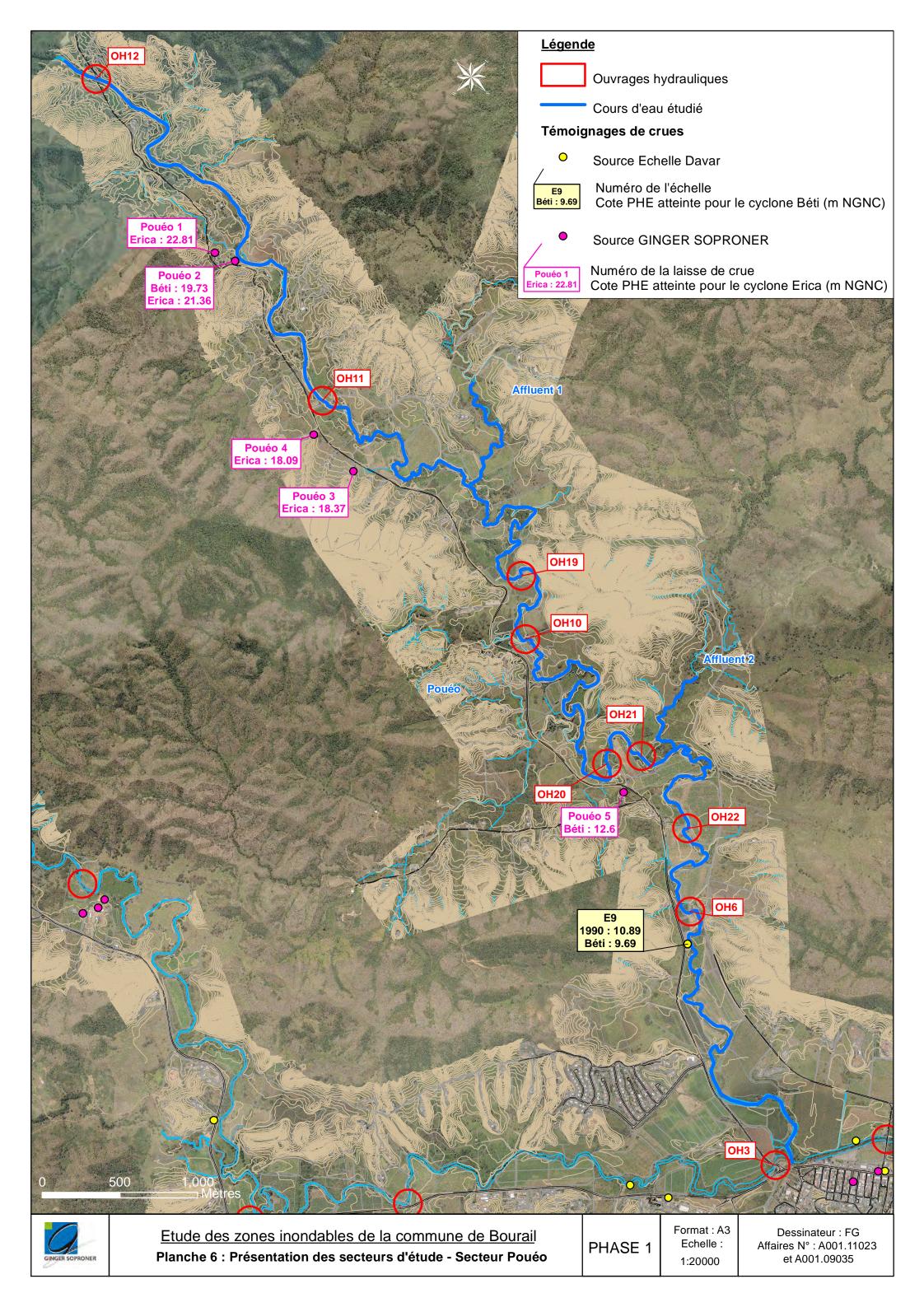
Les conditions d'écoulement sur ces zones en temps de crues sont donc favorables.

Lit majeur aval

Lit mineur

Sur le linéaire de la Pouéo étudié, le lit mineur est propre, bien dégagé et marqué.

D'une manière générale, la ripisylve est très peu dense. A noter cependant quelques zones ponctuelles de ripisylve dense, composée principalement de bambous hauts.



	Ouvrages	 Sur le linéaire étudié, 4 ouvrages, une passerelle (OH 19) et 3 passages à gué (OH20, OH21 et OH22) franchissent le cours d'eau. Leurs caractéristiques sont les suivantes : OH12 : Tablier béton d'ouverture 2.10 m maintenu par deux piliers OH11 : Radier béton traversé par 4 buses Ø1000 et 10 buses Ø600 OH10 : Radier béton traversé par 5 buses Ø600 et 10 cadres d'environ 1m x 1.2m OH6 : Radier béton traversé par 6 cadres de 50 x 110 cm 	OH11
Sur ce secteur d'étude, l'enjeu est principalement agricole. Les cul les parties les plus basses. Le secteur compte peu d'habitations e implantées en contre haut. Quelques habitations les plus basses sont cependant affecté importantes (Erica et Béti) (cf. Annexe 2).		les parties les plus basses. Le secteur compte peu d'habita implantées en contre haut. Quelques habitations les plus basses sont cependant	ations et celles-ci sont principalement

Affluent	Affluent 1		
Lit majeur	En amont de cet affluent, le lit majeur en rive gauche est fortement végétalisé. En revanche en rive droite, le lit constitué de champs, est bien dégagé.		
Lit mineur	L'affluent étudié situé en rive gauche de la Pouéo présente un lit mineur très encombré jusqu'à la confluence avec la Pouéo. A noter la présence d'embâcles sur ce secteur.		
Enjeux	Ce secteur ne présente pas d'enjeu particulier hormis les enjeux agricoles constitués par des cultures bien présentes en lit majeur. Les habitations, implantées en contre haut, n'ont jamais été inondées.		

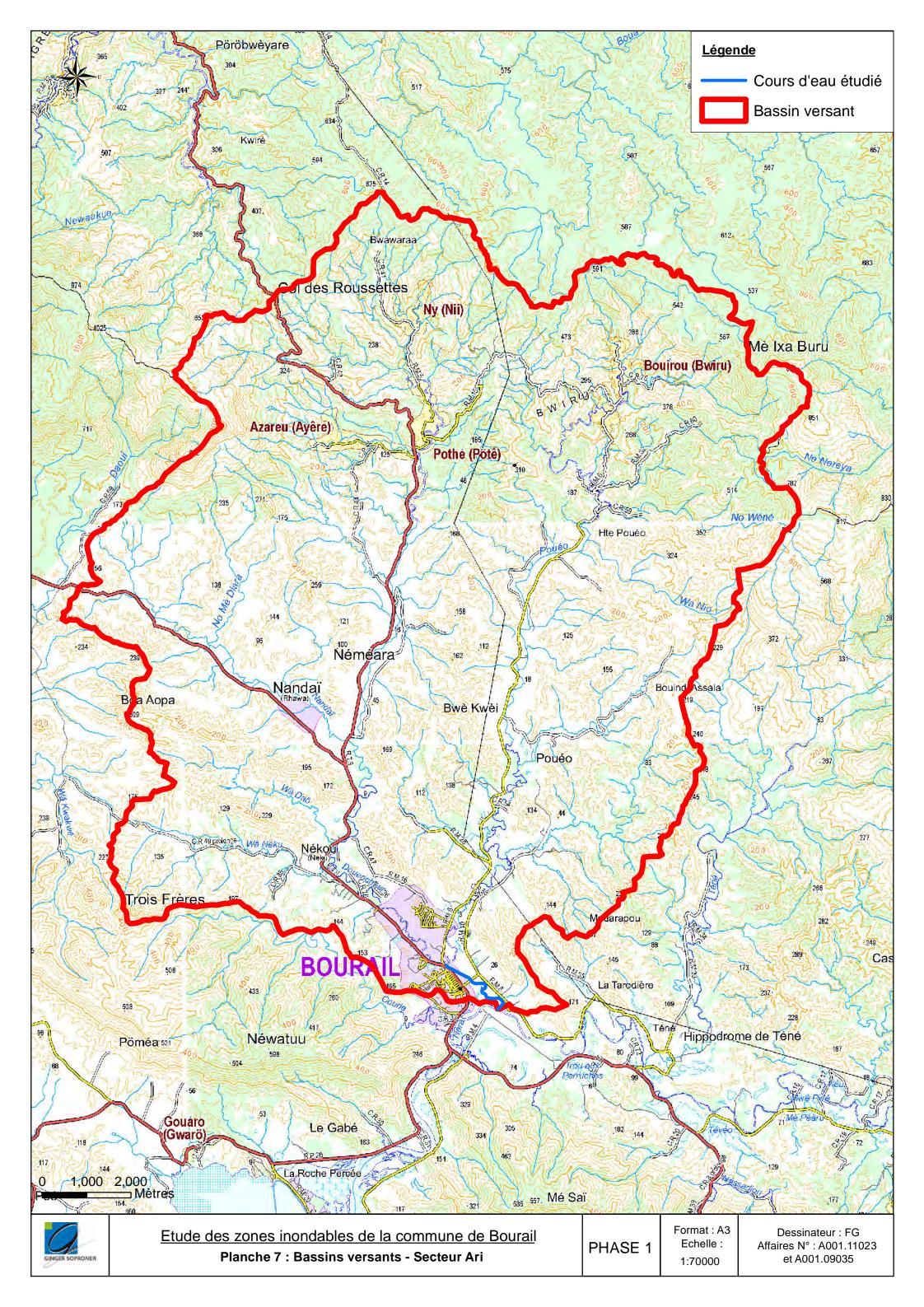
II.3. ARI

Le secteur d'étude concerne la Ari depuis la confluence entre la Douencheur et la Pouéo jusqu'à la confluence avec la Boghen.

Le linéaire total de cours d'eau à étudier représente environ 3 km.

II.3.1. Description du bassin versant

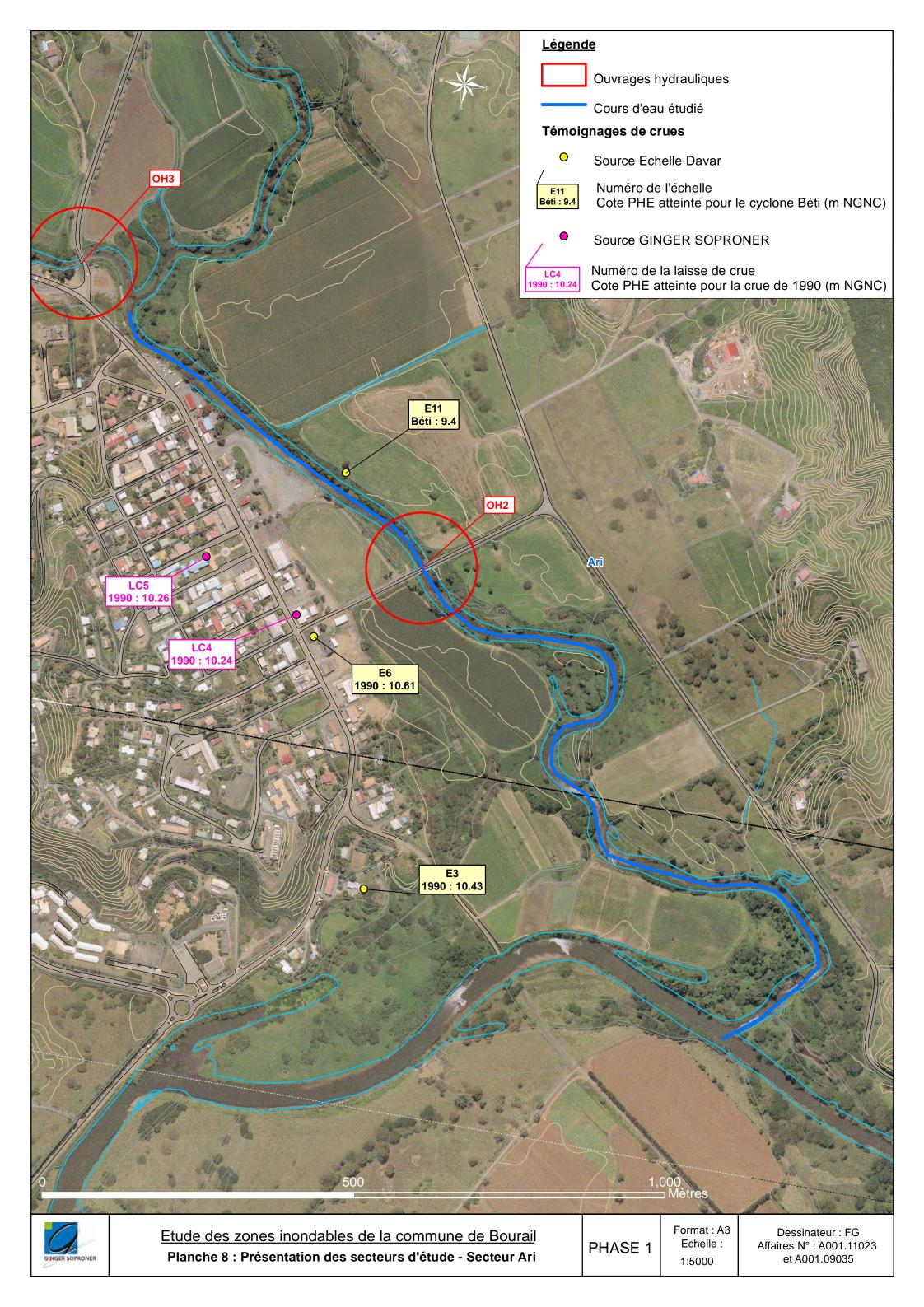
Le bassin versant de la Ari est présenté en Planche 7.


Les caractéristiques de ce bassin versant sont les suivantes :

Surface drainée (km²)	199
Plus long chemin hydraulique (km)	33.2
Dénivelé maximal (m)	895
Pente pondérée du plus long chemin hydraulique (%)	0.5%

Le bassin versant de la Ari regroupe les bassins versants de la Pouéo et de la Douencheur. Le bassin versant drainé en aval de la confluence entre ces deux cours d'eau est très restreint (environ 2 km²).

Le village de Bourail, secteur le plus urbanisé de la commune est situé sur ce sous bassin versant. Les enjeux sont donc bien présents le long de ce cours d'eau.


II.3.2. Description du cours d'eau

La Planche 8 représente le cours d'eau étudié.

Un reportage photographique au format numérique (.kmz), réalisé lors des visites de terrain, est joint au présent rapport.

	Ari	
Lit Majeur	En rive gauche de la Ari, le lit majeur est constitué de prairies cultivées ou non. Les conditions d'écoulement seront assez favorables malgré de nombreuses clôtures. En rive droite, en amont du pont sur la RM8, le village de Bourail occupe le lit majeur rendant les conditions d'écoulement peu satisfaisantes en raison de la présence de constructions, murs, clôtures qui forment des obstacles conséquents. En aval de la RM8, les conditions d'écoulement en rive droite s'améliorent, la végétation étant principalement constitué de vastes prairies.	
Lit mineur	Le lit mineur est bien propre et marqué sur la totalité du linéaire. La ripisylve est quasi inexistante sur le secteur urbanisé, mais est relativement dense sur le reste du linéaire.	
Ouvrages	Un pont (OH2) d'une portée d'environ 30 m soutenu par un pilier central permet le franchissement de la rivière par la RM8.	
Enjeux	En rive gauche, les enjeux sont essentiellement ag En rive droite les enjeux sont nombreux, le village cours d'eau. Une grande partie des constructions e	e de Bourail étant implanté à proximité du

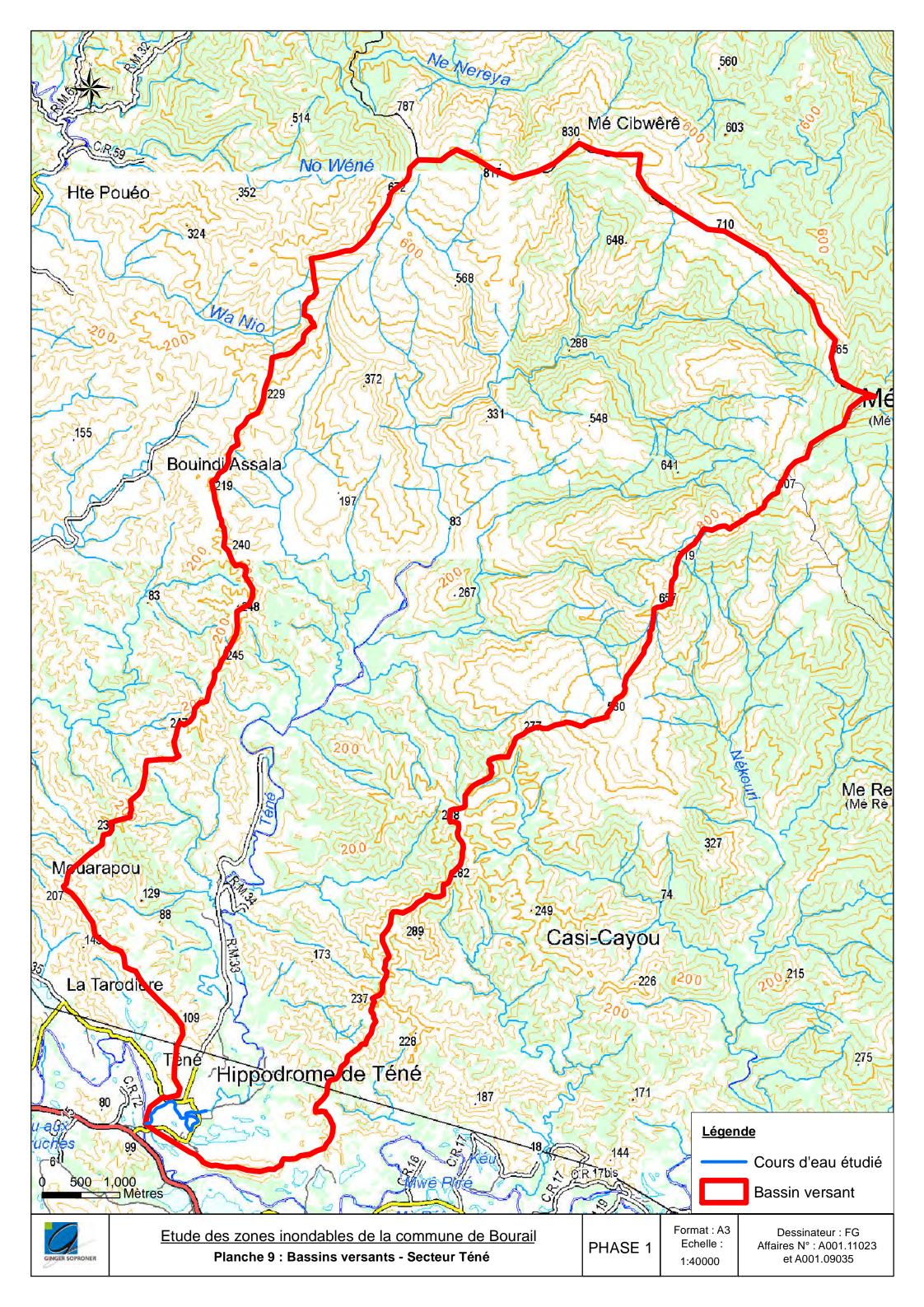
II.4. TENE

Le secteur d'étude concerne la Téné depuis l'hippodrome jusqu'à la confluence avec la Boghen. Le linéaire total de cours d'eau à étudier représente environ 1,5 km.

II.4.1. Description du bassin versant

Le bassin versant de la Téné est présenté en Planche 9.

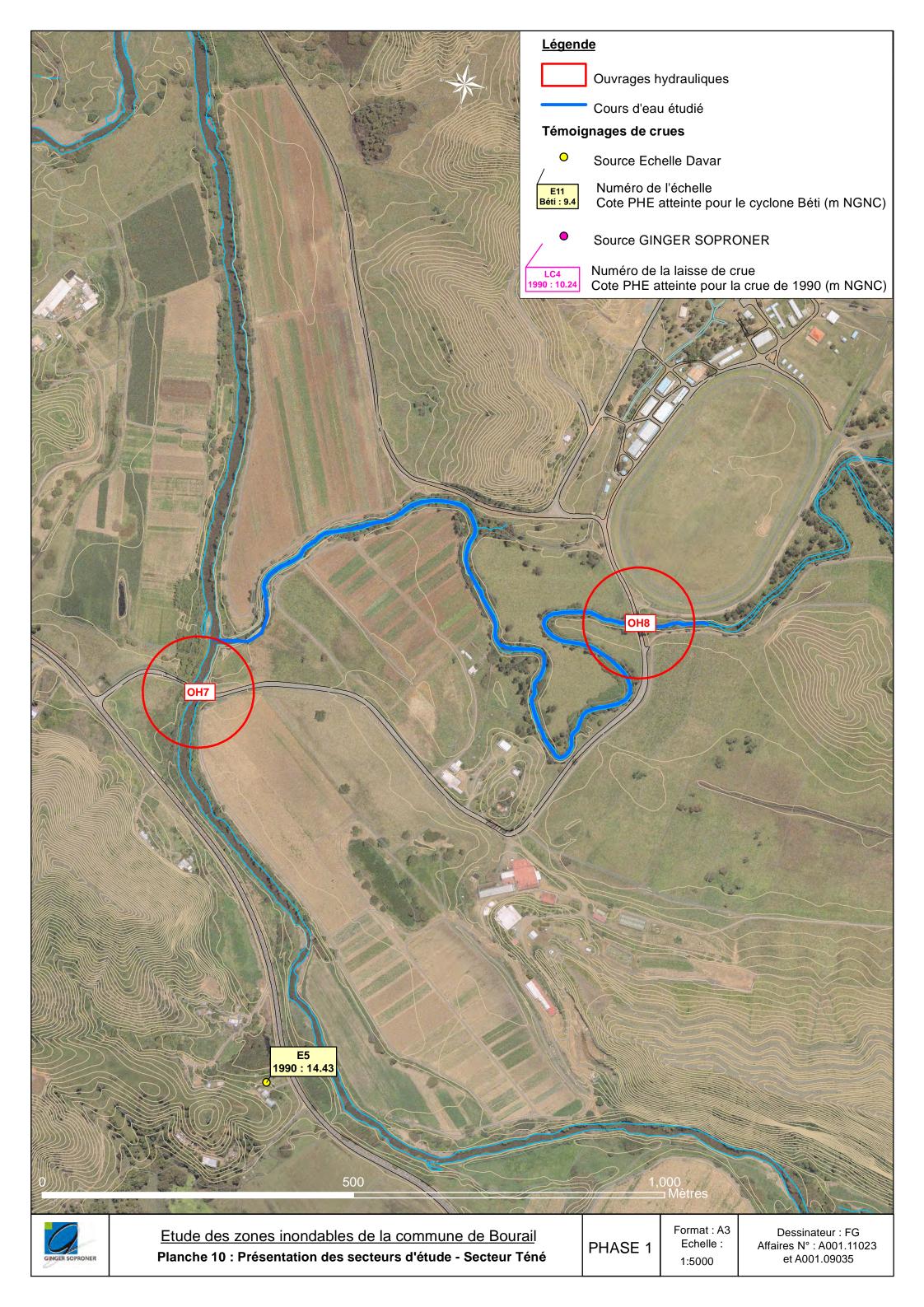
Les caractéristiques de ce bassin versant sont les suivantes :


Surface drainée (km²)	61
Plus long chemin hydraulique (km)	22
Dénivelé maximal (m)	1080
Pente pondérée du plus long chemin hydraulique (%)	1.1%

Le bassin versant drainé par la Téné est de forme plutôt allongée et présente lui aussi de très fortes pentes en tête de bassin (comprise entre 30 et 60%), et relativement faible sur l'aval (environ 0,5%).

Il est pour moitié constitué de zones montagneuses (pente supérieure à 15% sur les versants) fortement végétalisées, la moitié restante (de pente inférieure à 15%) présentant une végétation rase de type prairies ou cultures dans les plaines de fond de vallée.

Le bassin versant de la Téné est également très peu urbanisé. Peu d'enjeux sont recensés le long de ce cours d'eau.


II.4.2. Description du cours d'eau

La Planche 10 représente le cours d'eau étudié.

Un reportage photographique au format numérique (.kmz), réalisé lors des visites de terrain, est joint au présent rapport.

Téné		
Lit Majeur	Sur le linéaire étudié, le lit majeur de la Téné est constitué de prairies en grande partie cultivées. Globalement les conditions d'écoulement seront satisfaisantes.	
Lit mineur	Sur sa partie aval, la Téné présente un lit mineur bien marqué par endroit légèrement encombré par des branches basses. La ripisylve, de type arborée est globalement assez dense sur le secteur.	
Ouvrages	Un ouvrage (OH8) franchit la rivière au niveau de la RM8. Il est constitué d'un radier béton traversé par 3 cadres de 1.20 m (V) x 2.20 m (H) et 3 buses Ø800, une de celles-ci étant obstruée.	
Enjeux	Sur ce secteur les enjeux sont agricoles. A noter a impacté en temps de crue. Quelques constructions sont implantées en co affectées par les évènements exceptionnels.	

II.5. BOGHEN

Le secteur d'étude concerne la Boghen, de l'ouvrage de franchissement de la RM 19 jusqu'à la confluence avec la Ari.

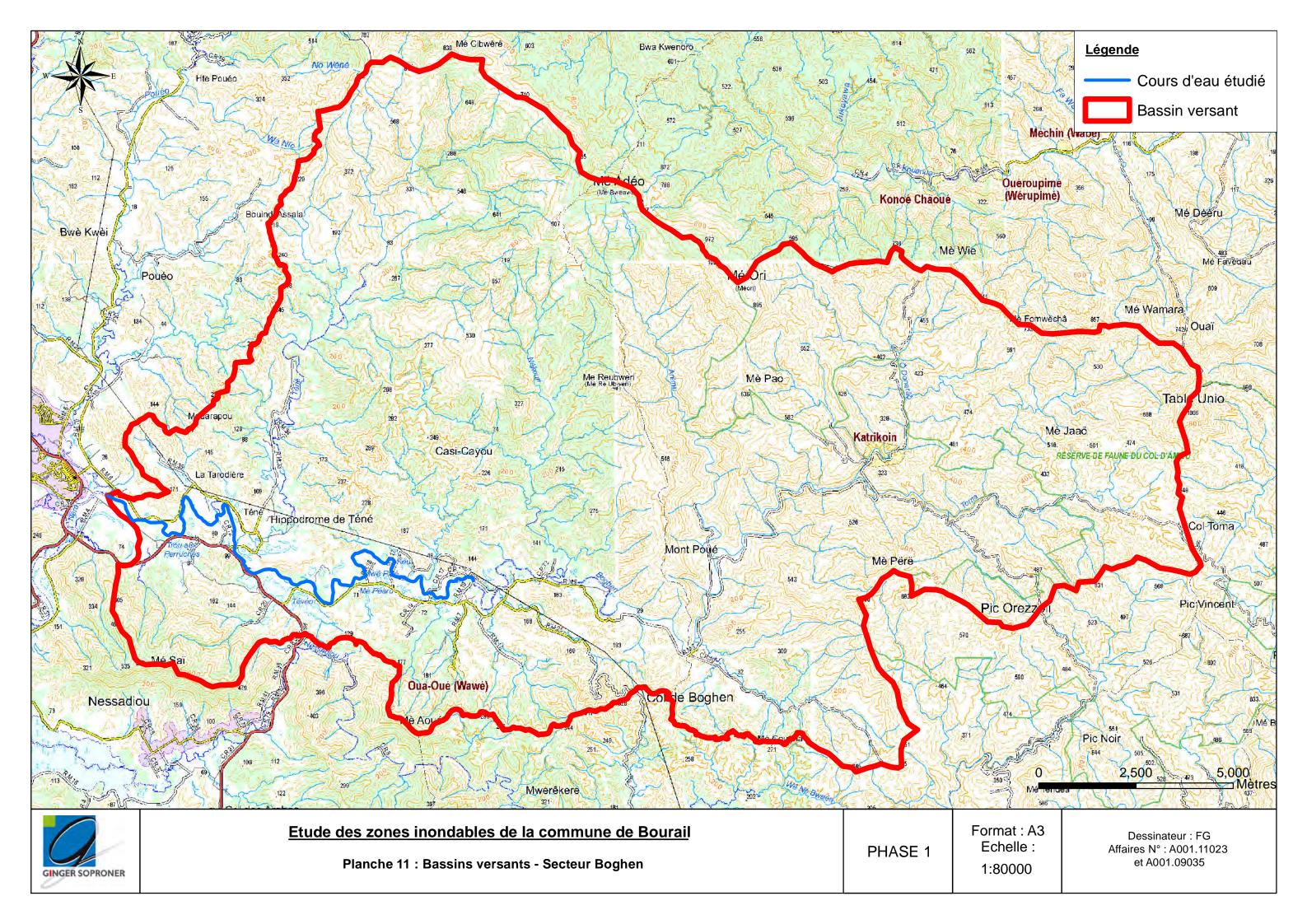
A noter que le secteur d'étude initialement prévu au marché, se limitait en amont au niveau du franchissement du CR17 (OH2), soit environ 1,5 km en aval de la limite amont retenue. Cette demande émane de la mairie de Bourail afin de prendre en compte le seul ouvrage de franchissement (les autres franchissements étant des passages à gué) de la Boghen sur ce secteur. Outre l'intérêt d'étudier cet ouvrage, les enjeux présents sur ce linéaire complémentaire justifient d'autant plus l'agrandissement de ce périmètre d'étude.

Le linéaire de cours d'eau à étudier représente environ 17 km.

II.5.1. Description du bassin versant

Le bassin versant de la rivière Boghen est présenté sur la Planche 11 :

Surface drainée (km²)	301
Plus long chemin hydraulique (km)	48.3
Dénivelé maximal (m)	1000
Pente pondérée du plus long chemin hydraulique (%)	0.5


Ce vaste bassin versant, très pentu (environ 83 % du bassin présente une pente de plus de 15 %) culmine à environ 1000 m et s'étend jusqu'en limite des communes de Farino et Moindou.

Les secteurs les plus plats sont surtout constitués par le vaste champ d'expansion des crues de ce cours d'eau.

Le cours d'eau reste globalement peu pentu (hormis sur ses 2 km tout en amont où la pente est supérieure à 30 %) voire très plat en aval (pente de 0.2 % sur les 16 km aval de cours d'eau).

En fonction des versants la végétation haute est plus ou moins dense mais reste relativement bien présente.

II.5.1. Description du cours d'eau

La Planche 10 représente le cours d'eau étudié.

Un reportage photographique au format numérique (.kmz), réalisé lors des visites de terrain sur l'aval du secteur d'étude, est joint au présent rapport.

Le reportage photographique réalisé lors des visites terrain de l'amont du secteur d'étude est présenté en Annexe 1 de ce document.

.

Boghen

Lit majeur

En amont de la confluence avec la Téné, le lit majeur de la Boghen, très large, est constitué de grands champs cultivés. La végétation y est rase. Cette occupation du sol dans le lit majeur engendre de très bonnes conditions d'écoulement en temps de crues.

A noter, au niveau du grand méandre de la Boghen (entre les OH24 et OH25), qu'en temps de crues, un écoulement préférentiel se forme en lit majeur qui « coupe » ce méandre. Un enrochement a été mis en place au droit de ce débordement préférentiel. Cet aménagement, bloquant a été effectué par l'atelier provincial en 2007/2008 suite à des travaux routiers initiés sans autorisation auprès des services compétents du DPF afin de contrôler une amorce de développement de bras de décharge et coupure de méandre.

Lit majeur en amont du secteur d'étude

En aval de la confluence avec la Téné, la végétation en lit majeur alterne entre des zones de cultures rases et des zones de savane caractérisées par des herbes hautes avec quelques arbres épars.

A noter que ces vastes prairies sont la plupart du temps clôturées. Malgré cela, les conditions d'écoulement resteront globalement assez satisfaisantes.

Lit majeur en aval du secteur d'étude

Ripisylve

En amont du secteur d'étude, la ripisylve est assez peu dense. Ponctuellement quelques bosquets de bambous sont à noter.

Au contraire, sur l'aval du secteur d'étude, la ripisylve, de type arborée, est par endroit très dense. A noter aussi la présence ponctuelle de bambous qui peuvent être source d'embâcles.

Lit mineur

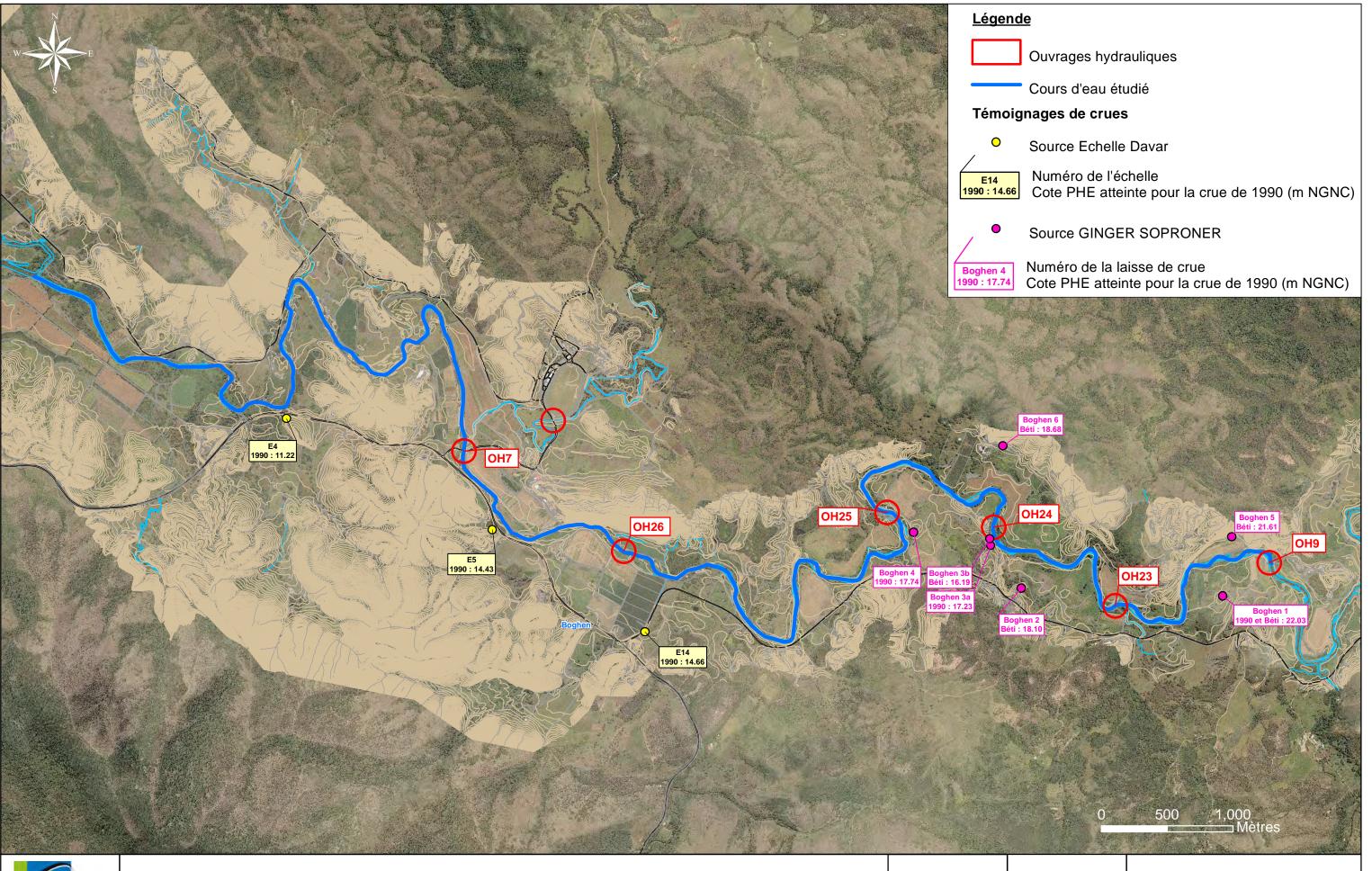
Sur le linéaire de la Boghen étudié, le lit mineur est propre, bien dégagé et marqué. Le fond du lit est composé de galets avec parfois quelques blocs décimétriques épars

A proximité de la confluence avec la Téné, le lit mineur est caractérisé par des berges hautes (3 à 4 m) et abruptes, souvent à nu.

Ouvrages

Sur le linéaire étudié, Différents types de franchissement sont à noter :

- 1 ouvrage (OH9) qui permet le franchissement de la rivière par la RM19, constitué de 10 cadres de 220x90 cm,
- Plusieurs passages à gué (OH23, OH24, OH25),
- Le franchissement de la Boghen par la RM8 est assuré par un tablier béton soutenu par 4 piliers (OH7). A noter qu'une des ouvertures ne participe pas à l'écoulement des eaux.



OH9

Enjeux

Sur ce secteur d'étude, l'enjeu est principalement agricole. Les cultures sont en effet situées sur les parties les plus basses et fortement inondables. Quelques habitations relativement rares et éloignées du lit mineur sont soumises au risque d'inondation en amont du secteur d'étude (cf. Annexe 2). En aval, les habitations étant implantées en contre-haut, elles ne sont pas affectées par les débordements de la Boghen.

La RM25, voirie de desserte de l'amont du secteur d'étude, est également fortement affectée en temps de crue, avec sur certains linéaires environ 2.5 m d'eau pour les plus fortes crues (crue de 1990)

Etude des zones inondables de la commune de Bourail

Planche 12 : Présentation des secteurs d'étude - Secteur Boghen

PHASE 1

Format: A3 Echelle: 1:25849

Dessinateur : FG Affaires N° : A001.11023 et A001.09035

II.6. NERA

II.6.1. Description du bassin versant

Le bassin versant de la Néra (cf.Planche 2), qui trouve son exutoire en mer au niveau de la plage de la Roche Percée présente les caractéristiques suivantes :

	Néra
Surface drainée (km²)	543
Plus long chemin hydraulique (km)	57
Altitude maximale (m)	1090
Altitude minimale (m)	0
Altitude moyenne du bassin versant (m)	176 m
Pente pondérée du plus long chemin hydraulique (%)	0.1%
Pente moyenne du bassin versant (%)	35%

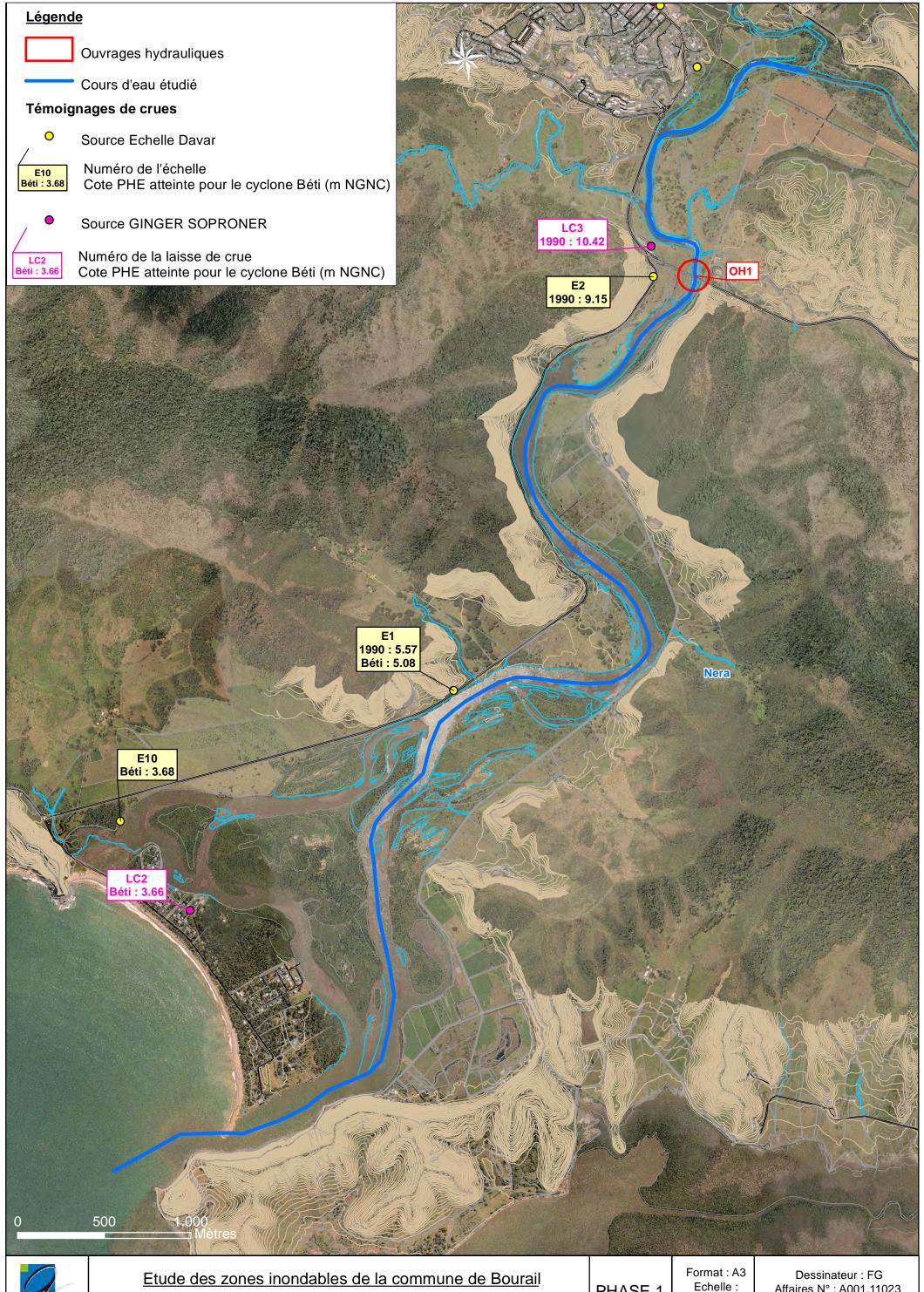
Tableau 1 : Description du bassin versant de la Néra

La surface drainée présente des versants très pentus (pente supérieure à 25% sur plus de la moitié du bassin versant). La pente moyenne du bassin versant (35 %) permet de donner une indication sur la morphologie du bassin versant et d'illustrer ce constat. Cette pente moyenne est calculée au moyen de la carte des pentes et du modèle numérique de terrain (moyenne des pentes des cellules pour une résolution de 10 m par 10 m -dimensions des cellules) sur le bassin versant, établi à partir des données de la BDTOPO 10000.

Les fonds de vallées et cours d'eau sont au contraire assez peu pentus (pente comprise entre 0 et 5 %). En aval, le cours d'eau est très plat : la pente de la Néra n'est que de 0.03% sur les 10 kilomètres les plus en aval.

Sur ce bassin versant, la végétation est principalement de type savane, avec quelques zones de prairies sur les secteurs plus plats.

D'une manière générale, l'urbanisation est assez peu développée. Hormis au niveau du village de Bourail implanté en bordure de la Ari, les constructions restent assez éparses sur ce bassin versant.


II.6.2. Description du cours d'eau

La Planche 13 représente les cours d'eau étudiés.

Un reportage photographique au format numérique (.kmz), réalisé lors des visites de terrain, est joint au présent rapport.

Joint au pres	Néra							
Lit Majeur	Le lit majeur de la Néra est principalement constitué de végétation de type savane caractérisée par des herbes hautes et quelques arbres épars. Quelques zones situées en aval sont cultivées.							
Lit mineur	Le lit mineur de la Néra est très large (de l'ordre de 100 m) et dégagé. En aval, le lit mineur se scinde en ramifications qui méandrent dans la mangrove. Le delta ainsi formé s'étend sur presque 2 km de large. D'une manière générale, les berges sont peu surélevées par rapport au niveau de temps sec. La ripisylve est peu dense.							
Ouvrages	Un pont d'une portée d'environ 315m permet le franchissement de la Néra par la RT1 (OH1). Cet ouvrage est soutenu par 8 piliers. Au delta de la Néra, une digue fusible a été réalisée en 1991 sur le bras nord au niveau du Bonhomme. Lors du cyclone Béti (1996), cet ouvrage a en partie résisté ce qui a été, d'après les témoignages, à l'origine d'une rehausse des lignes d'eau amont et de nombreuses saignées le long de la plage de la Roche Percée. En 2011, la Province Sud a évacué plus de 45000 m³ en amont de la route d'accès à l'îlot à des fins de rechargement et de protection de la plage de la Roche Percée.							
Enjeux	Les principaux enjeux du secteur sont situés sur effet été construites sur le cordon de plage de la R							

III. ANALYSE PLUVIOMETRIQUE ET HYDROMETRIQUE

III.1. PLUVIOMETRIE

III.1.1. Contexte pluviométrique

Comme illustré sur la carte ci-dessous, il existe un fort gradient pluviométrique entre le littoral et les zones montagneuses beaucoup plus humides. La pluviométrie annuelle sur le bassin versant étudié varie entre environ 500 mm en plaine et 2500 mm sur les sommets.

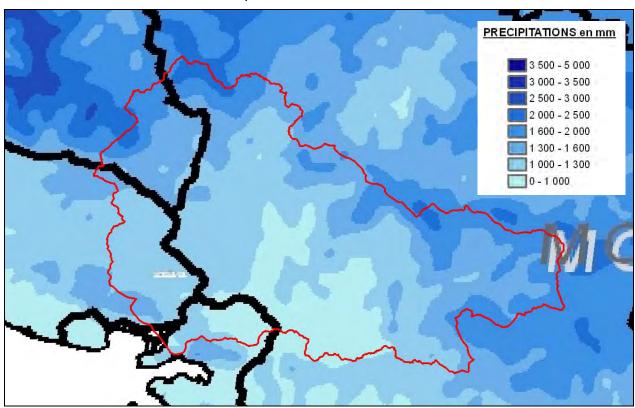


Figure 1 : Précipitations moyennes annuelles (1991-2000 en mm) reconstituées par la méthode Aurhély (source Météo France)

Comme sur la plupart des postes de Nouvelle-Calédonie, il existe une grande variabilité des précipitations entre la saison pluvieuse de janvier à mars (plus de 100 mm par mois) et la saison sèche de septembre à novembre (moins de 50 mm par mois).

III.1.2. Données pluviométriques disponibles

Les postes pluviométriques suivants (au pas de temps d'acquisition 6 min, pour ceux de Météo France et à chaque basculement d'auget pour ceux de la DAVAR) se situent a proximité des secteurs étudiés (cf. Planche 2). Les postes pluviométriques journaliers sur le secteur ne sont pas présentés, dans la mesure où le pas de temps journalier est trop important par rapport aux temps de réponse des bassins versants.

Les dates de début de mesures des précipitations 6 min sont récapitulées dans le tableau suivant :

Poste pluviométrique	Début de mesures des précipitations 6 min	Poste pluviométrique	Début de mesures des précipitations 6 min
Bourail	1997	Nessadiou	1993
Cap Maori	1998	Gouaro Deva	1994
Col des Roussettes	1999	Malmezac	1988
Me Para	1991	Katrikoin	1988

Tableau 2 : Stations de mesures pluviométriques

Sur les secteurs d'études, la plupart des postes présentent des échantillons de l'ordre de 10 à 15 ans hormis pour les stations DAVAR de Malmezac et Katrikoin où les durées d'observations sont de l'ordre de 20 ans.

III.1.3. Analyse statistique

Une comparaison des intensités pluviométrique centennales entre différentes stations du littoral ou de la plaine (Nessadiou, Bourail) et de la chaîne (Me Para, Katrikoin) est proposée ci-après. Les stations de référence de Nouméa et Koumac qui disposent de plus de 40 années de mesures ont également été reportées.

Les temps de concentration des bassins versants étudiés varient entre 3 et 7 h (cf. §III.2.1.1).

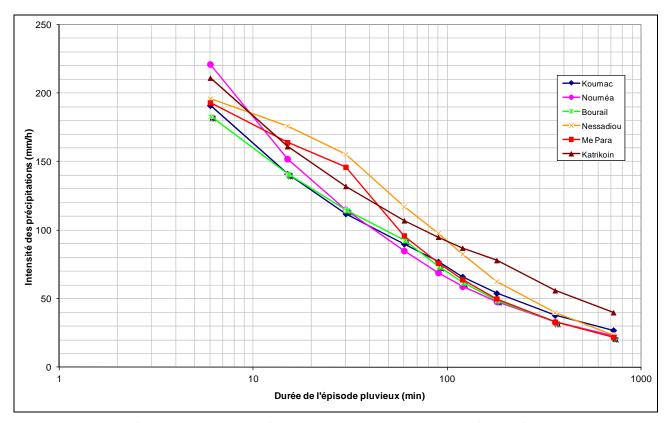


Figure 2 : Intensités centennales de précipitations en fonction de la durée de l'épisode pluvieux sur différentes stations

Ce graphe illustre:

- Pour des épisodes de durée inférieure à 1 heure, les intensités du poste de Nessadiou, sont sensiblement plus fortes que celles des autres stations, y compris celles se situant dans la chaîne.
- Pour les épisodes de quelques heures, logiquement, la station de Katrikoin présente les intensités les plus importantes, mais les intensités théoriques à la station d'altitude de Me Para, restent similaires à celles de Bourail. Il est important de noter que la station Météo France Me Para n'a pu enregistrer qu'un seul épisode cyclonique important (Erica) sur les 3 épisodes majeurs (Franck, Erica et Béti) qui se sont produits depuis son entrée en fonction. Les ajustements statistiques peuvent vraisemblablement être faussés par l'absence de ces épisodes. L'IDF de Me Para sera donc écartée par la suite. A contrario, la station de Katrikoin semble présenter un fonctionnement plus satisfaisant pour ce type d'épisode cyclonique.

L'amont des bassins versants étudiés étant situé dans la chaîne (800 à 1000 m) et l'aval dans la plaine de Bourail, il est proposé de retenir les valeurs de pluviométrie de la station de Katrikoin, qui se situe à une altitude d'environ 200 m et paraît représentative d'une pluviométrie moyenne des bassins versants.

De plus, les bassins versants étudiés ayant un temps de concentration supérieur à 3h, ce choix est sécuritaire pour l'étude des zones inondables.

III.2. ESTIMATION DES DEBITS THEORIQUES

III.2.1. Méthodologie

Trois approches seront utilisées pour l'estimation des débits de crue :

- La méthode rationnelle,
- L'utilisation de la loi d'ajustement des débits centennaux sur la Côte Ouest (source DAVAR),
- Une analyse régionale sur les stations hydrométriques voisines.

III.2.1.1. Méthode rationnelle

La méthode rationnelle est généralement adaptée aux petits bassins versants, même si certains auteurs suggèrent son utilisation pour des superficies de bassins versants allant jusqu'à 250 km².

Les bassins versants étudiés étant très étendus, l'application de cette méthode est réalisée à titre comparatif.

Cette méthode se fonde sur l'hypothèse que les débits maximaux de crue d'un bassin versant sont directement proportionnels aux intensités pluviométriques calculées sur son temps de concentration. Le coefficient de proportionnalité, ou coefficient de ruissellement (C), est rattaché à l'occupation du sol du bassin versant. Il varie également en fonction de sa superficie, de sa pente et de l'intensité des précipitations. Basée sur une connaissance de la pluviométrie locale et des caractéristiques du bassin versant, l'équation s'écrit comme suit :

$$Q = \frac{1}{3.6} \text{ C.i (tc).A}$$

Avec:

- C, le coefficient de ruissellement
- i (tc), l'intensité pluviométrique associée à la période de retour de l'événement pluvieux et au temps de concentration du bassin (mm/h) (cf. paragraphe précédent : intensité pluviométrique de la station de Katrikoin)
- A, la superficie du bassin versant (km²)
- Q, le débit de pointe (m³/s)

L'estimation des débits de crue nécessite de plus une évaluation du coefficient de ruissellement du bassin (C). Ce paramètre traduit l'aptitude du sol à ruisseler et représente la portion de pluie tombée qui rejoint effectivement l'exutoire du bassin versant par écoulement superficiel.

Le coefficient de ruissellement varie en fonction de l'intensité de la pluie, de la pente du bassin versant et de l'occupation des sols.

Les coefficients de ruissellement retenus par la suite sont les suivants :

Période de retour	Pente <15 %	Pente > 15 %
5 ans	0,5	0,7
10 ans	0,6	0,8
100 ans	0,8	1,0

Tableau 3 : Coefficients de ruissellement utilisés

⇒ Temps de concentration

Différentes approches empiriques de calcul de temps de concentration ont été appliquées et comparées afin de retenir, sur chaque cours d'eau étudié, la valeur qui paraît la plus pertinente.

Les formules utilisées ci-après sont précisées en Annexe 3 du présent document.

⇒ Formule de Kirpich

Cette formule a été calée sur des petits bassins versants du Tenessee. Elle est généralement utilisée pour des bassins versants de superficie inférieure à 1 km².

⇒ Formule de Ventura

Cette méthode est généralement utilisée pour des bassins versants de superficie supérieure à 40 km².

⇒ Formule de Passini

Cette méthode est généralement utilisée pour des bassins versants de superficie supérieure à 10 km².

⇒ Méthode des transferts

Cette méthode est issue d'une analyse réalisée par la DAVAR dans le cadre de la détermination des courbes enveloppes des débits spécifiques maximaux de crues pour le quart sud ouest de la Nouvelle-Calédonie.

Le temps de concentration est estimé en considérant une vitesse de transfert de l'ordre de 2m/s (4 m/s si la pente est supérieure à 15%) appliquée au drain hydraulique le plus long. Cette méthode semble donner des résultats cohérents, sur la base des observations menées en Nouvelle-Calédonie.

L'application de ces différentes formules empiriques conduit aux résultats suivants :

Dessin versent	Exutoire	Longueur	Ven	Ventura		Kirpich		Passini		Méthode des transferts	
Bassin versant	Extione	(m)	Tc (h)	Vitesse transfert (m/s)							
Téné	Amont secteur étude	22000	9.5	0.6	4.1	1.5	11.4	0.5	2.9	2.1	
Néra	Embouchure en mer	57000	93.7	0.2	21.3	0.7	107.2	0.1	7.8	2.0	
Néra	confluence ARI/Boghen	48300	89.9	0.1	18.8	0.7	98.7	0.1	6.6	2.0	
Boghen	confluence ARI/Boghen	48300	31.2	0.4	10.1	1.3	37.3	0.4	6.6	2.0	
Ari	confluence ARI/Boghen	33200	25.4	0.4	7.6	1.2	28.7	0.3	4.5	2.0	
Pouéo	confluence Poueo/Douencheur	31200	18.7	0.5	7.9	1.1	23.8	0.4	4.2	2.0	
Douencheur	confluence Poueo/Douencheur	28300	18.1	0.4	6.7	1.2	21.7	0.4	3.5	2.2	
Boghen	confluence Téné/Boghen	41700	27.0	0.4	9.0	1.3	32.2	0.4	5.7	2.0	

Tableau 4 : Temps de concentration calculés par différentes méthodes

Les valeurs obtenues par ces différentes approches diffèrent très sensiblement. La « méthode des transferts » présente l'avantage d'avoir été validée sur des conditions hydrologiques locales, tandis que les autres méthodes reposent sur des analyses de comportements de bassins versants en Europe ou aux Etats-Unis.

Cette « méthode des transferts » sera donc retenue par la suite et conduit aux valeurs suivantes de temps de concentration :

Bassin versant	Exutoire	Plus long chemin hydraulique en m	temps de concentration en heures
Néra	Embouchure	57000	8
Boghen	confluence ARI/Boghen	48300	7
Ari	confluence ARI/Boghen	33200	4.5
Pouéo	confluence Poueo/Douencheur	31200	4
Douencheur	confluence Poueo/Douencheur	28300	3.5
Boghen	confluence Téné/Boghen	41700	6
Téné	Amont secteur étude	22000	3

Tableau 5 : Temps de concentration retenus

III.2.1.2. Analyse régionale

Il s'agit d'une méthode qui utilise une simple transposition des données hydrométriques d'un bassin versant connu (de débit Q_2 et de surface S_2) à un bassin versant inconnu (de débit Q_1 et de surface S_1):

$$Q_1 = \left(\frac{S_1}{S_2}\right)^n \cdot Q_2$$

Le coefficient de transposition « n », généralement compris entre les valeurs 0,6 et 0,8, est pris égal à 0,75. Cette valeur a été calée en Nouvelle Calédonie à l'aide des ajustements de Gumbel effectués pour les débits centennaux utilisant les 22 stations hydrométriques de la Nouvelle Calédonie.

Les deux bassins versants de référence (superficie, localisation géographique et pluviométrie proches) où des données hydrométriques sont disponibles sont ceux de :

- La Boghen aval confluence Aremo
- La Foa amont Pierrat

Les caractéristiques de ces stations sont les suivantes (cf. Annexe 4) :

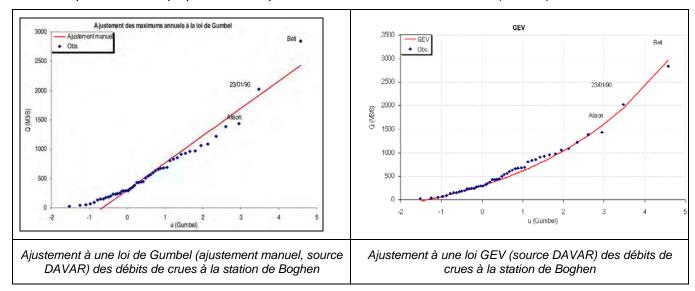
Station hydrométrique	Superficie drainée (km²)	Altitude moyenne du bassin versant	Durée d'observations	Débit max jaugé
La Boghen aval confluence Aremo	113	419 m	49 ans	700 m3/s
La Foa amont Pierrat	116	430 m	28 ans	268 m3/s

Tableau 6 : Caractéristiques des stations hydrométriques

Les débits de crues théoriques calculés à ces stations sont les suivants :

Station hydrométrique	Crue 5ans (m3/s)	Crue 10 ans (m3/s)	Crue 100 ans (m3/s)
La Boghen aval confluence Aremo (méthode de Gumbel)	997	1346	2439
La Boghen aval confluence Aremo (Loi GEV)	811	1168	2978
La Foa amont Pierrat	770	980	1638

Tableau 7 : Débits de crue théoriques des stations hydrométriques


Les différentes méthodologies utilisées dans l'analyse statistique des débits « observés » aux stations hydrométriques pouvant conduire à des valeurs théoriques sensiblement différentes, il nous a semblé pertinent de présenter les deux ajustements statistiques réalisés sur les débits issus de la station hydrométrique de Boghen. Cette station présente en effet un comportement un peu particulier. L'ajustement à la loi de Gumbel des débits de la Foa paraît satisfaisant et n'a donc pas fait l'objet de cette comparaison.

L'ajustement à une loi de Gumbel des évènements observés (droite dans un graphique de Gumbel) n'est pas entièrement satisfaisant, car il ne peut représenter la « cassure » dans l'alignement des débits observés qui est à noter dès la période de retour décennale (variable de Gumbel « u » = 2.25). Les évènements exceptionnels (Béti, Jan. 1990) semblent suivre un

Phases 1, 2 et 3 - Rapport final

comportement différent. L'ajustement manuel proposé par la DAVAR permet toutefois de redonner de l'importance à ces évènements exceptionnels, pour éviter que ces deux évènements (Jan. 1990 et Béti) présentent une période de retour centennale pour celui de janvier 1990 et supérieure à 200 ans pour Béti, ce qui paraîtrait surprenant, vu la taille de l'échantillon (49 ans).

L'ajustement à une loi GEV (Valeurs Extrêmes Généralisées), permet une meilleure représentation des évènements fréquents et exceptionnels, mais elle conduit à une estimation du débit centennal qui s'apparenterait plus aux débits de la cote Est. Les débits des périodes de retour faibles (inférieures à 10 ans) sont proches des valeurs classiques de la Cote Ouest.

Les débits théoriques de La Foa et Boghen, avec pourtant des bassins versants de caractéristiques morphologiques et géographiques relativement similaires, présentent des divergences sensibles (principalement pour les périodes de retour exceptionnelles, si l'on s'appuie sur l'ajustement par une loi GEV). Les pluviométries exceptionnelles sont donc plus importantes sur Bourail que sur La Foa, ce qui peut s'expliquer d'une part par le fait que le Col des Roussettes apparaît comme un lieu de passage préférentiel des cyclones, et d'autre part car la majorité des cyclones passe d'abord par Bourail puis par la Foa, avec donc une perte d'intensité sur cette commune.

III.2.1.3. Loi d'ajustement des débits centennaux sur la cote ouest (source DAVAR)

La méthode proposée ci-après repose sur une analyse plus globale, à l'échelle de la Nouvelle-(Source : Courbes enveloppes des débits spécifiques Calédonie réalisée par la DAVAR maximums de crues pour le quart sud-ouest de la Nouvelle Calédonie La Foa La Coulée -DAVAR – février 2006)

La DAVAR a établi un certain nombre de fiches techniques relatives aux caractéristiques de stations hydrométriques dont elle a la gestion. Par le biais des mesures réalisées sur ces stations hydrométriques, des ajustements statistiques ont permis la détermination des débits théoriques de crues. La synthèse des ajustements de Gumbel pour la crue centennale sur l'ensemble des 22 stations hydrométriques de la Nouvelle Calédonie est présentée ci-après. Il ressort de ces corrélations que les débits de crue centennale des cours d'eau de la côte Ouest peuvent être estimés par la loi suivante :

$Q100=55.S^{0.75}$

Où Q_T/S^{0.75} sera nommé par la suite coefficient régional de la période de retour T.

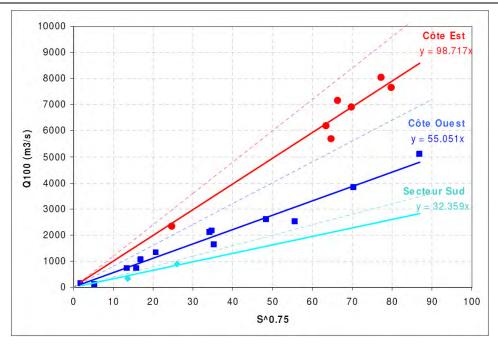


Figure 3 : Synthèse des ajustements de Gumbel pour la crue centennale sur l'ensemble des 22 stations hydrométriques de la Nouvelle Calédonie, source DAVAR

Les débits caractéristiques de crues pour différentes périodes de retour peuvent se déduire facilement via des coefficients de proportionnalité relativement stables à l'échelle de la Nouvelle-Calédonie (Ajustements réalisés par la DAVAR, cf. graphique suivant).

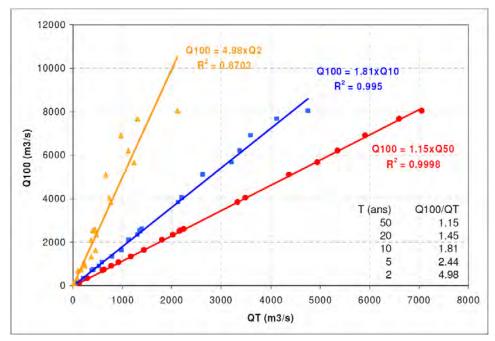


Figure 4 : Rapport Q100/QT défini à partir des ajustements Gumbel sur l'ensemble des 22 stations hydrométriques de la Nouvelle Calédonie, source DAVAR

III.2.2. Résultats

Les débits caractéristiques de crue ont été estimés pour chacun des affluents de la Néra. Les résultats sont présentés ci-dessous.

□ Douencheur

Pour rappel, les caractéristiques du bassin versant sont les suivantes :

Bassin versant	Surface (km²)	Temps de concentration (h)	Période de retour	Intensité pluviométrique sur tc (mm/h)	Coefficient de ruissellement
DOUENCHEUR			5 ans	39.5	0.64
- Confluence	108	3.5	10 ans	47.3	0.74
POUEO/DOUENCHEUR			100 ans	72.8	0.94

Tableau 8 : Rappel des caractéristiques du bassin versant de la Douencheur

Les résultats obtenus par les différentes méthodes utilisées sont présentées dans le tableau et le graphe ci-dessous :

	Débit (m³/s)						
Période de retour	Méthode rationnelle	Méthode d'analyse de la DAVAR	Analyse régionale - depuis BOGHEN (Gumbel)	Analyse régionale - depuis BOGHEN (GEV)	Analyse régionale - depuis LA FOA		
5 ans	760	756	964	784	730		
10 ans	1052	1019	1301	1129	929		
100 ans	2054	1844	2358	2879	1553		

Tableau 9 : Débits calculés sur la Douencheur

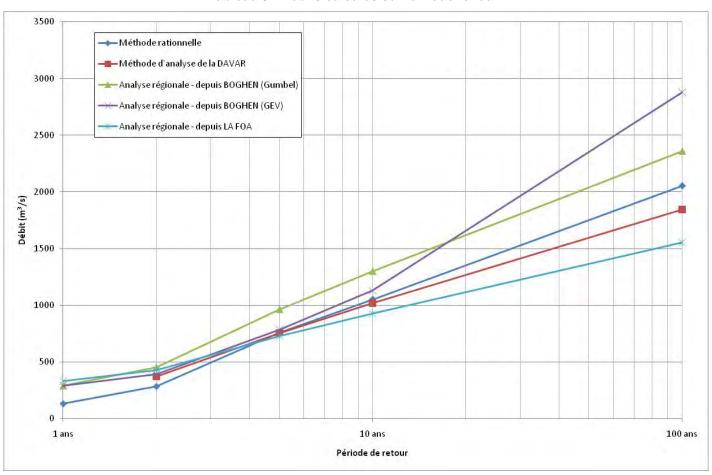


Figure 5 : Débits calculés sur la Douencheur

Pour rappel, les caractéristiques du bassin versant sont les suivantes :

Bassin versant	Surface (km²)	Temps de concentration (h)	Période de retour	Intensité pluviométrique sur tc (mm/h)	Coefficient de ruissellement
POUEO			5 ans	36.7	0.65
- Confluence	89	4	10 ans	44.1	0.75
POUEO/DOUENCHEUR			100 ans	68.2	0.95

Tableau 10 : Rappel des caractéristiques du bassin versant de la Pouéo

Les résultats obtenus par les différentes méthodes utilisées sont présentées dans le tableau et le graphe ci-dessous :

	Débit (m³/s)					
Période de retour	Méthode rationnelle	l d'analyse de la l		Analyse régionale - depuis BOGHEN (GEV)	Analyse régionale - depuis LA FOA	
5 ans	593	654	834	678	631	
10 ans	821	881	1125	977	803	
100 ans	1607	1595	2039	2490	1343	

Tableau 11 : Débits calculés sur la Pouéo

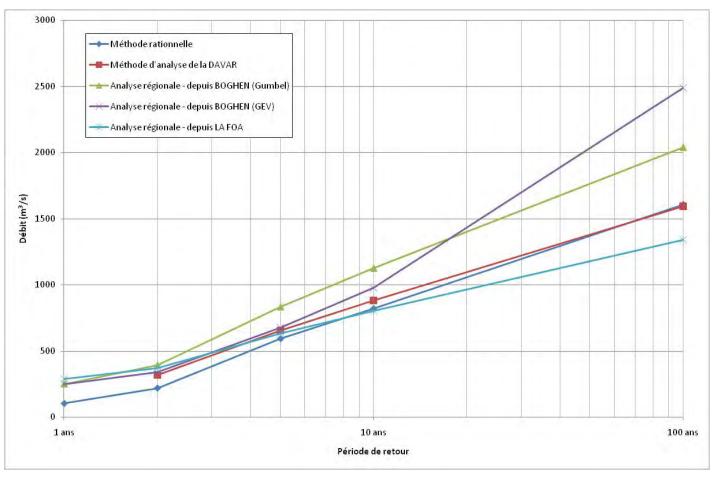


Figure 6 : Débits calculés sur la Pouéo

⇒ <u>Ari</u>

Pour rappel, les caractéristiques du bassin versant sont les suivantes :

Bassin versant	Surface (km²)	Temps de concentration (h)	Période de retour	Intensité pluviométrique sur tc (mm/h)	Coefficient de ruissellement
ARI			5 ans	34.4	0.65
- Confluence	199	4.5	10 ans	41.5	0.75
ARI/BOGHEN			100 ans	64.5	0.95

Tableau 12 : Rappel des caractéristiques du bassin versant de la Ari

Les résultats obtenus par les différentes méthodes utilisées sont présentées dans le tableau et le graphe ci-dessous :

	Débit (m³/s)								
Période de retour	Méthode rationnelle	Méthode d'analyse de la DAVAR	Analyse régionale - depuis BOGHEN (Gumbel)	Analyse régionale - depuis BOGHEN (GEV)	Analyse régionale - depuis LA FOA				
5 ans	1229	1195	1524	1240	1154				
10 ans	1710	1611	2058	1786	1469				
100 ans	3369	2917	3729	4553	2455				

Tableau 13 : Débits calculés sur la Ari

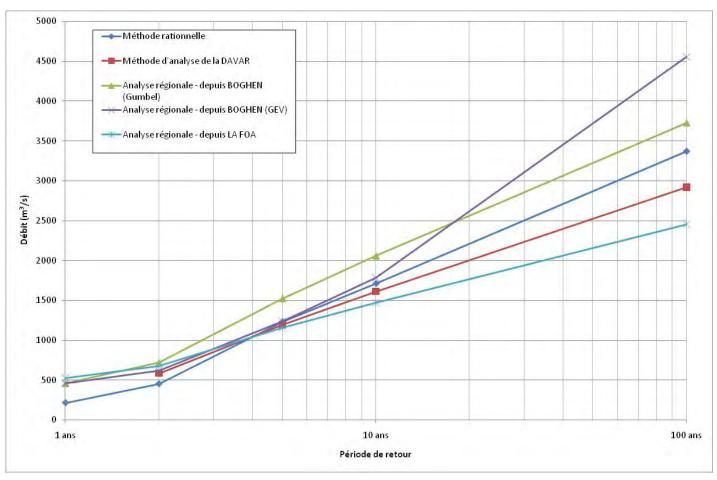


Figure 7 : Débits calculés sur la Ari

Pour rappel, les caractéristiques du bassin versant sont les suivantes :

Bassin versant	Surface (km²)	Temps de concentration (h)	Période de retour	Intensité pluviométrique sur tc (mm/h)	Coefficient de ruissellement
TENE			5 ans	43.0	0.66
- Confluence	62	3	10 ans	51.3	0.76
TENE/BOGHEN			100 ans	78.4	0.96

Tableau 14 : Rappel des caractéristiques du bassin versant de la Téné

Les résultats obtenus par les différentes méthodes utilisées sont présentées dans le tableau et le graphe ci-dessous:

		Débit (m³/s)								
Période de retour	Méthode rationnelle	Méthode d'analyse de la DAVAR	Analyse régionale - depuis BOGHEN (Gumbel)	Analyse régionale - depuis BOGHEN (GEV)	Analyse régionale - depuis LA FOA					
5 ans	490	499	636	517	481					
10 ans	673	672	858	745	613					
100 ans	1298	1216	1555	1898	1024					

Tableau 15 : Débits calculés sur la Téné

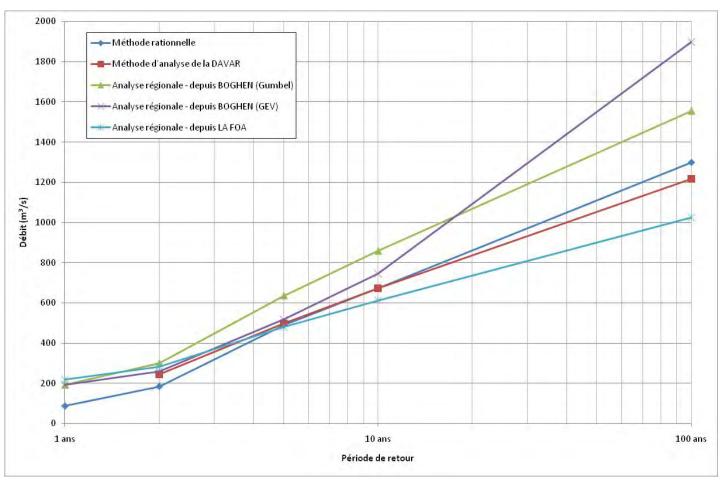


Figure 8 : Débits calculés sur la Téné

Pour rappel, les caractéristiques du bassin versant sont les suivantes :

Bassin versant	Surface (km²)	Temps de concentration (h)	Période de retour	Intensité pluviométrique sur tc (mm/h)	Coefficient de ruissellement
BOGHEN			5 ans	29.4	0.65
- Confluence	225	6	10 ans	35.7	0.75
TENE/BOGHEN			100 ans	56.1	0.95

Tableau 16 : Rappel des caractéristiques du bassin versant de la Boghen Amont

Les résultats obtenus par les différentes méthodes utilisées sont présentées dans le tableau et le graphe ci-dessous :

	Débit (m³/s)							
Période de retour	Méthode rationnelle	Méthode d'analyse de la DAVAR	Analyse régionale - depuis BOGHEN (Gumbel)	Analyse régionale - depuis BOGHEN (GEV)	Analyse régionale - depuis LA FOA			
5 ans	1194	1311	1671	1359	1266			
10 ans	1673	1767	2256	1958	1611			
100 ans	3330	3198	4088	4992	2692			

Tableau 17 : Débits calculés sur la Boghen Amont

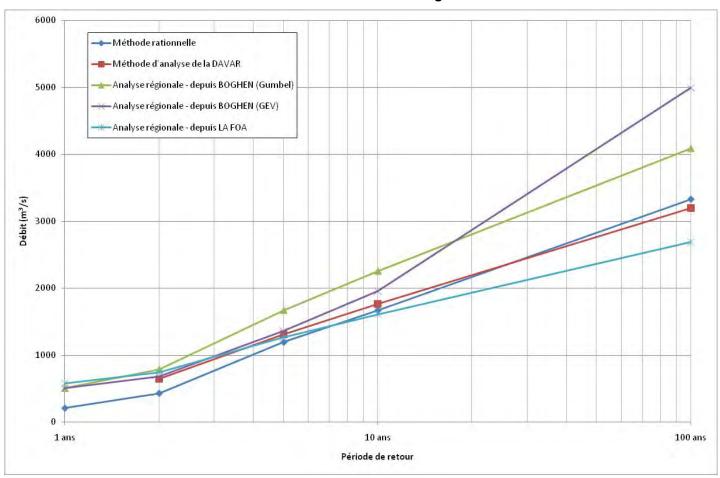


Figure 9 : Débits calculés sur la Boghen Amont

Pour rappel, les caractéristiques du bassin versant sont les suivantes :

Bassin versant	Surface (km²)	Temps de concentration (h)	Période de retour	Intensité pluviométrique sur tc (mm/h)	Coefficient de ruissellement
BOGHEN			5 ans	27.0	0.65
- Confluence	301	7	10 ans	32.9	0.75
ARI/BOGHEN			100 ans	52.1	0.95

Tableau 18 : Rappel des caractéristiques du bassin versant de la Boghen Aval

Les résultats obtenus par les différentes méthodes utilisées sont présentées dans le tableau et le graphe ci-dessous:

		Débit (m³/s)							
Période de retour	Méthode rationnelle	Méthode d'analyse de la DAVAR	Analyse régionale - depuis BOGHEN (Gumbel)	Analyse régionale - depuis BOGHEN (GEV)	Analyse régionale - depuis LA FOA				
5 ans	1468	1630	2079	1691	1574				
10 ans	2064	2198	2806	2435	2004				
100 ans	4136	3978	5085	6209	3349				

Tableau 19 : Débits calculés sur la Boghen Aval



Figure 10 : Débits calculés sur la Boghen Aval

Pour rappel, les caractéristiques du bassin versant sont les suivantes :

Bassin versant	Surface (km²)	Temps de concentration (h)	Période de retour	Intensité pluviométrique sur tc (mm/h)	Coefficient de ruissellement
NERA			5 ans	27.0	0.6
- Confluence	500	7	10 ans	32.9	0.7
ARI/BOGHEN			100 ans	38.7	0.9

Tableau 20 : Rappel des caractéristiques du bassin versant de la Néra

Les résultats obtenus par les différentes méthodes utilisées sont présentées dans le tableau et le graphe ci-dessous :

		Débit (m³/s)								
Période de retour	Méthode rationnelle	Méthode d'analyse de la DAVAR	Analyse régionale - depuis BOGHEN (Gumbel)	Analyse régionale - depuis BOGHEN (GEV)	Analyse régionale - depuis LA FOA					
5 ans	2424	2386	3042	2474	2303					
10 ans	3410	3216	4106	3563	2932					
100 ans	6841	5821	7441	9085	4900					

Tableau 21 : Débits calculés sur la Néra

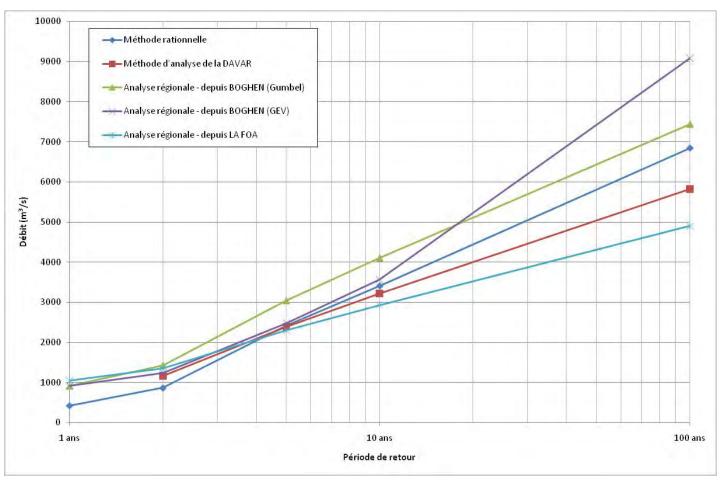


Figure 11 : Débits calculés sur la Néra

III.2.3. Analyse des résultats

L'analyse des différentes méthodologies utilisées conduit aux constats suivants :

- Même si la méthode rationnelle semble peu adaptée à ces bassins versants très étendus, les valeurs obtenues se situent globalement dans le fuseau des valeurs des méthodes régionales.
- Les autres méthodes, issues d'une analyse régionale à l'échelle de la cote ouest ou à partir des stations hydrométriques voisines, forment un fuseau avec des valeurs qui varient du simple au double pour la crue centennale.

Afin de ne pas trop surestimer les débits de référence, les valeurs suivantes ont été retenues :

- Pour les périodes de retour quinquennale et décennale, les valeurs calculées par l'analyse régionale depuis la Boghen avec les ajustements GEV ont été retenues,
- Pour la période de retour centennale, les valeurs calculées par la loi d'ajustement sur la cote ouest (DAVAR) ont été retenues. Un intervalle de confiance a été défini de la manière suivante : pour la borne inférieure, les valeurs obtenues par application de la méthode régionale depuis la station de La Foa, et pour la borne supérieure celles calculées depuis la station de Boghen avec les ajustements de Gumbel.

Ces valeurs, qui sont quasiment les médianes des valeurs obtenues sans toutefois être trop défavorables, semblent les plus cohérentes, notamment au vu du calage du modèle réalisé (cf. paragraphe suivant).

Les débits théoriques des bassins versants sont donc les suivants :

Bessin versent	Exutoire		Débit (m³/s)			Débit spécifique (m³/s/km²)		
Bassin versant	Exutoire	T=5 ans	T=10 ans	T=100 ans	T=5 ans	T=10 ans	T=100 ans	
DOUENCHEUR	Confluence Pouéo/Douencheur	784	1129	1844	7.3	10.5	17.1	
POUEO	Confluence Pouéo/Douencheur	678	977	1595	7.6	11	17.9	
ARI	Confluence Ari/Boghen	1240	1786	2917	6.2	9.0	14.7	
TENE	Confluence Téné/Boghen	517	745	1216	8.3	12.0	19.6	
BOGHEN Amont	Confluence Téné/Boghen	1359	1958	3198	6.0	8.7	14.2	
BOGHEN Aval	Confluence Ari/Boghen	1691	2435	3978	5.6	8.1	13.2	
NERA	Confluence Ari/Boghen	2474	3563	5821	4.9	7.1	11.6	

Tableau 22 : Débits théoriques retenus

III.2.4. Concomitances de crue

Les valeurs présentées dans le tableau ci-avant correspondent aux estimations des quantiles des variables « débits de crue » sur chacun des tronçons de cours d'eau (affluents et cours d'eau principaux), considérées comme aléatoires et indépendantes. Cette multiplicité des variables est liée à l'étendue du bassin versant de la Néra et à sa configuration géographique et topographique. Pour autant, d'un point de vue physique, l'hypothèse de l'indépendance de ces différents évènements ne peut pas être considérée comme une hypothèse tout à fait valide.

- Ceci d'une part en raison des relations qui existent entre ces différents tronçons de cours d'eau;
- D'autre part, bien que l'hétérogénéité spatiale des précipitations soit importante sur le territoire, la superficie du bassin versant n'est pas telle que l'on puisse considérer une complète indépendance des variables « précipitations » sur les sous-bassins versants.

De ce fait, il est nécessaire de préciser la notion d'évènement « crue centennale » à considérer pour la modélisation et in fine la cartographie des zones inondables.

Deux orientations « extrêmes » sont a priori envisageables :

- Soit l'on considère chacun des tronçons de cours d'eau de manière indépendante. Dans ce cas, l'évènement pris en compte est le débit de crue centennale sur le tronçon étudié. La condition limite amont pour la modélisation est donc le débit de crue centennale du tronçon.
 - Se pose alors le problème de la condition limite aval et le débit de crue à retenir sur le tronçon situé en aval pour calculer le niveau d'eau à la confluence. En supposant que l'on retienne également le débit de crue centennale sur le tronçon en aval, d'un point de vue statistique, l'évènement considéré correspond à la concomitance de deux évènements de période de retour 100 ans, ce qui implique que la période de retour de cet évènement est théoriquement supérieure à 100 ans.
 - A priori, cette méthode serait donc plus restrictive et sécuritaire pour la cartographie des zones inondables de la crue centennale sur chacun des tronçons de cours d'eau (maximisation des emprises de zones inondables).
- Soit l'on considère un évènement global sur l'ensemble du bassin versant. Dans ce cas l'évènement pris en compte correspond au débit de crue centennale à l'exutoire du bassin versant global. Les conditions limite amont doivent donc être modulées et adaptées de manière à satisfaire cette condition sur le débit à l'exutoire.
 - Se pose donc le problème de la répartition de ce débit de crue suivant chacun des affluents et des sous-bassins versants (la somme des débits de crue centennale calculés sur chacun des tronçons et sous-bassin versants étant logiquement supérieure au débit de crue centennal calculé sur le bassin versant global). Ce scénario implique la construction d'un modèle hydraulique global et permet donc de s'affranchir des conditions aux limites pour chacun des tronçons de cours d'eau mais a plutôt tendance à minimiser les débits de crue sur chacun des tronçons.

A priori, cette méthode serait donc moins impactante pour la cartographie des zones inondables pour la crue centennale (minimisation des emprises de zones inondables).

Les difficultés soulevées dans ce paragraphe montrent que l'on atteint les limites de la méthode de modélisation en régime permanent.

Afin de résoudre ce problème de concomitance de crue, en 1992, l'étude Hydrex intitulée « Délimitation de la zone inondable de la rivière Néra et ses affluents», envisageait initialement de s'appuyer sur la seconde méthode exposée ci-avant : le principe est de considérer que le débit de période de retour T est généré sur la Néra en fixant des hypothèses sur la contribution en termes de débit de chacun des affluents.

Deux hypothèses concernant les apports de débits ont été envisagées :

- Une 1^{ère} hypothèse où la Boghen participe de manière prépondérante à la genèse de la crue de période T de la Néra,
- Une seconde hypothèse, où la Pouéo et la Douencheur participent de manière prépondérante à la genèse de la crue de période T de la Néra.

	Hypothèse 1		Hypot	hèse 2	Débits Modélisation		
	Répartition Débit (m³/s)		Répartition	Débit (m³/s)	Répartition	Débit (m³/s)	
Pouéo	15%	980	30%	1960	30%	1960	
Douencheur	20%	1300	35%	2270	35%	2270	
Boghen	65%	4220	35%	2270	65%	4220	
Somme des affluents	100%	6500	100%	6500	130%	8450	

Tableau 23 : Hypothèses de débit de l'étude Hydrex

En définitive, lors de cette étude, les débits qui ont été retenus sont les débits les plus défavorables parmi les deux hypothèses (cf. tableau ci-dessus). Cette méthode conduit à un débit total sur le tronçon aval (Néra) supérieur au débit de crue centennale (8450 m³/s pour Q100=6500 m³/s).

Cette démarche, si elle parait cohérente pour pouvoir parler de crue globale sur le secteur, est discutable :

- Les hypothèses de répartitions retenues sont arbitraires,
- L'évènement global considéré sur la Néra a une période de retour supérieure à 100 ans (130% de Q100),
- La période de retour des débits retenus sur chacun des tronçons n'est pas déterminée.

Nous proposons d'adopter une solution dérivée de la première orientation présentée, qui présente l'avantage de poser des hypothèses plus claires et plus rigoureuses (celles-ci étant a priori moins sujettes à discussion). Le principe étant de définir un « évènement » de période de retour proche de 100 ans pour chacun des biefs de cours d'eau :

- Chacun des biefs étudiés sera considéré de manière « isolée »,
- Il s'agira ensuite de définir l'« évènement » qui sera retenu pour la cartographie des zones inondables sur chacun des biefs en définissant :
 - o Une condition limite amont, soit le débit de crue à considérer dans le bief,
 - \circ Une condition limite aval, soit un niveau d'eau au point de confluence correspondant au débit de crue dans le bief situé en aval de période de retour T_{av} à définir.

Il est proposé de différer le choix de ces conditions limites (période de retour pour les différentes débits à fixer) - et donc la définition précise de ces évènements - à l'issue de l'analyse d'une sensibilité (série de simulations tests) conduite dans le cadre de l'étape de construction et de calage du modèle. L'objectif est de pouvoir apprécier la portée et l'influence du choix de ces hypothèses sur les résultats issus de la méthode de modélisation.

La cartographie réalisée en phase 3 représentera alors les niveaux d'eau calculés pour cet « évènement » sur chacun des affluents pris séparément ainsi que sur la Néra.

III.3. DETERMINATION DES DEBITS DE CRUES HISTORIQUES

L'objectif de cette partie est de fournir une évaluation de la période de retour de différents évènements réels (et donc leur débit) pour lesquels des témoignages sont disponibles. Ces évènements seront modélisés en vue d'effectuer le calage du modèle hydraulique.

Sur le secteur d'étude, de nombreuses laisses de crue ont été répertoriées, elles correspondent aux évènements suivants :

- Évènement pluvieux de 1990,
- Béti (1996),
- Franck (1999),
- Erica (2003).

La démarche proposée ci après repose sur deux approches différentes :

- L'analyse de la période de retour de l'évènement considéré aux deux stations hydrométriques de référence (La Foa et Boghen).
- L'analyse de la période de retour des évènements pluvieux correspondant sur les stations disposant d'enregistrements, pour des durées encadrant les temps de concentration des bassins versants considérés.

Quelle que soit la méthodologie utilisée, celles-ci présentent quelques limitations qu'il est important de noter :

• La première approche (« basée sur l'hydrométrie ») présente l'inconvénient de ne pas prendre en compte les hétérogénéités pluviométriques éventuelles entre les bassins versants de référence et ceux étudiés. D'autre part, cette approche paraît pertinente pour des bassins versants de taille comparable à ceux des bassins versants de référence.

L'approche basée sur la pluviométrie se heurte au manque de données pour les évènements étudiés. Lors des évènements intenses, il arrive parfois que certains postes pluviométriques ne fonctionnent que partiellement et la densité du réseau reste sur certains secteurs également insuffisante pour caractériser des hétérogénéités pluviométriques localisées. D'autre part, la période de retour d'un évènement pluvieux n'implique par forcément une période de retour similaire de la crue générée, d'autres paramètres, notamment l'état de saturation du bassin versant, interviennent également. Les hyétogrammes (en cumul horaire) de ces évènements aux stations retenues sont présentés en Annexe 5 de ce document.

III.3.1. Cyclone Béti

Le cyclone Béti a touché la cote Est de la Grande Terre entre Hienghène et Touho le 27 mars 1996 à 11h. Il a traversé la chaine et est ressorti en mer sur la cote ouest au niveau de la baie de Gouaro vers 17h le même jour. Béti a ensuite longé la cote ouest selon la direction est sud-est avant de bifurquer vers le sud à hauteur de l'ile Ouen.

Les dégâts, principalement matériels et agricoles, occasionnés par ce cyclone sont dus à la force des vents (vents moyens à 170 km/h avec des rafales à 230 km/h le 27 mars) et aux importantes précipitations (maximum journalier enregistré à La Foa avec 296 mm le 27 mars).

Analyse hydrométrique

L'analyse des données enregistrées sur la station hydrométrique de la Boghen ajustées par la loi GEV permettent d'estimer le temps de retour de cette crue à 100 ans au niveau de cette station. Pour rappel, l'ajustement par une loi de Gumbel, entrainerait une période de retour de 200 ans pour cet évènement (rappel : près de 50 ans de données disponibles sur la station de Boghen) :

Station	Débit observé (m³/s)	Période de retour
La Foa	1561	90 ans
Boghen	2841	100 - 200 ans

Tableau 24 : Débits observés sur les stations hydrométriques lors de Béti

Analyse pluviométrique

Les seules données disponibles sont celles des stations Katrikoin et Gouaro Deva.

Période de retour* sur la durée :	1 à 2 h	3 à 5 h	5 h à 10 h
Katrikoin	50 ans	20-50 ans	10-20 ans
Gouaro	< 2 ans	2-5 ans	5-10 ans

^{*}Période de retour estimée pour Katrikoin sur la courbe IDF (Intensité Durée Fréquence) de cette station et pour Gouaro sur l'IDF de Nessadiou

Tableau 25 : Période de retour des intensités mesurées sur les stations pluviométriques lors de Béti

Synthèse

Les périodes de retour obtenues par l'analyse pluviométrique sont nettement inférieures aux périodes de retour des crues aux stations de référence. Il est fort probable que les pluviométries aient été nettement supérieures notamment sur les reliefs.

Les débits finalement retenus ont été ajustés lors du calage du modèle pour cet épisode (cf. VI Calage du modèle – Ajustement des coefficients de Strickler en p73).

Au vu des laisses de crues, notamment celles situées sur la Ari, il apparaît peu probable que la crue générée par le cyclone Béti ait pu atteindre un débit de pointe centennal sur la Néra. En effet, si le débit de pointe avait été très fort sur ce bief aval, son influence aurait été telle que le village

de Bourail aurait été fortement inondé (comme cela a pu être le cas en 1990), fait qui ne se retrouve pas dans les témoignages de crue.

Sur les différents biefs qui influent sur les inondations dans le village, à savoir Néra, Ari, Douencheur et Pouéo, les débits de pointe ont donc été estimés à une période retour de 20 ans, valeur qui permet un ajustement des lignes d'eau calculées aux témoignages de crue.

De plus, les crues générées sur la Ari et la Boghen n'ont visiblement pas été concomitantes, le bassin versant de la Boghen ayant réagi plus tardivement au vu de la trajectoire du cyclone, et du temps de concentration plus important.

Sur la Boghen, les grandes plaines inondables qui s'étendent en amont du secteur d'étude et jusqu'à la confluence avec la Ari, ont vraisemblablement participé au stockage temporaire des volumes de crue, phénomène qui permet un écrêtage du débit de pointe. Sur l'aval du secteur d'étude le débit de pointe a donc vraisemblablement été amorti et présente donc une fréquence plus importante que celle du débit observé sur la station hydrométrique. Le débit de pointe retenu pour la Boghen sur le secteur d'étude a donc une période de retour d'environ 100 ans en amont du secteur d'étude et 50 ans au droit de la confluence avec la Ari. Ces débits permettent un calage satisfaisant du modèle hydraulique avec les témoignages de crue.

Les débits de pointe ont été estimés aux valeurs suivantes :

Bassin versant	Exutoire	Débit de pointe (m³/s)	Période de retour du débit de pointe par tronçon
DOUENCHEUR	Confluence Pouéo/Douencheur	1350	20 ans
POUEO	Confluence Pouéo/Douencheur	1180	20 ans
ARI	Confluence Ari/Boghen	2100	20 ans
TENE	Confluence Téné/Boghen	640	7 ans
BOGHEN Amont	Confluence Téné/Boghen	3200	100 ans
BOGHEN Aval	Confluence Ari/Boghen	3500	50 ans
NERA	Confluence Ari/Boghen	4200	20 ans

Tableau 26 : Débits de pointe retenus pour le cyclone Béti

III.3.2. Episode pluvieux de 1990

L'épisode pluvieux de fin janvier 1990 (du 22 au 24 janvier) correspond à un amas nuageux ayant produit de très fortes précipitations localisées principalement sur la région de Bourail. Cet évènement a effectivement généré des quantités de précipitations exceptionnelles sur une durée comprise entre 24 et 48 h : 1186 mm à Malmezac, 945 mm à Katrikoin, 797 mm à Col des Roussettes et environ 750 mm à Bourail et Nessadiou.

La particularité de cet évènement (cf. hyétogrammes en Annexe 5) réside dans sa durée, les pluies étant soutenues durant 1.5 à 2 jours, ce qui rend très probable la concomitance des débits de pointe des différents cours d'eau.

Analyse hydrométrique

L'analyse des données enregistrées sur la station hydrométrique de la Boghen permettent d'estimer le temps de retour du débit de pointe de cette crue à environ 40 ans sur la Boghen.

L'analyse en considérant la station de la Foa n'a pas été réalisée du fait que cet évènement est resté localisé.

Analyse Pluviométrique

Les seules données pluviométriques disponibles (au pas de temps inférieur à la journée) sont celles des stations de Katrikoin et Malmezac. Pour rappel les temps de concentration des différents affluents sont compris dans un intervalle allant de 3 à 7 h. Les période de retour d'évènement pluvieux, selon les durées considérées sont les suivantes :

Péiriode de retour* sur la durée :	1 à 2 h	3 à 5 h	6 à 7 h
Katrikoin	10-20 ans	30-50 ans	30 ans
Malmezac	5-10 ans	20-50 ans	100 ans

^{*}Période de retour estimée sur l'IDF de Katrikoin.

Tableau 27 : Période de retour des intensités mesurées sur les stations pluviométriques lors de l'épisode de 1990

A titre indicatif les précipitations journalières sur Malmezac, Nessadiou et Bourail avec des cumuls supérieurs à 550 mm seraient au moins centennales.

Pour les durées de pluie supérieures à 6 heures, cet épisode a été sensiblement plus intense sur la station de Malmezac (représentatif de l'aval des bassins versants) que sur Katrikoin (station représentative de la pluviométrie sur la chaine montagneuse).

Synthèse

Les périodes de retour obtenues sur la station hydrométrique de Boghen et sur la station pluviométrique de Katrikoin sont cohérentes et nous confortent dans l'évaluation de la période de retour de cet épisode de l'ordre de 30-50 ans à la station hydrométrique.

Cette station que l'on considère comme la plus représentative à l'échelle du bassin versant global est cependant située assez en amont du secteur d'étude. Aussi il apparait comme pertinent de prendre en compte une correction en considérant également les données pluviométriques de la station de Malmezac, qui est plus représentative de la partie aval des bassins versants.

L'intensité pluviométrique moyennée entre les stations de Katrikoin et Malmezac sur le temps de concentration de la Boghen nous conduit à une période de retour pour l'évènement pluvieux moyenné de l'ordre de 60 à 75 ans.

Sur la Boghen, une période de retour de 60 ans sera donc retenue.

Au vu des intensités et des durées de pluies, cet épisode a généré une crue exceptionnelle sur la Néra. Les crues de la Ari et de la Boghen ont vraisemblablement été concomitantes, générant ainsi un débit de pointe de la Néra de période de retour importante. Les simulations effectuées lors du calage du modèle (cf. §VI.1) ont permis d'évaluer la période de retour du débit de pointe sur ce bief aval à 80 ans. Pour ce débit, les témoignages de crue observés se calent de façon satisfaisante à la ligne d'eau calculée.

L'épisode pluvieux ayant été relativement long (de 1 à 2 jours), l'hypothèse de concomitance des débits de pointe a été retenue. Les débits sur la Ari ont été déterminés sur la base de cette hypothèse. Les débits obtenus correspondent alors à une période de retour d'environ 10 à 20 ans sur la Ari, et de l'ordre d'environ 10 ans sur la Pouéo et la Douencheur.

Les valeurs retenues sont alors les suivantes :

Bassin versant	Exutoire	Débit de pointe retenu (m³/s)	Période de retour du débit de pointe
DOUENCHEUR	Confluence Pouéo/Douencheur	1100	10 ans
POUEO	Confluence Pouéo/Douencheur	900	5-10 ans
ARI	Confluence Ari/Boghen	2000	10-20 ans
TENE	Confluence Téné/Boghen	1100	40 ans
BOGHEN Amont	Confluence Téné/Boghen	2900	60 ans
BOGHEN Aval	Confluence Ari/Boghen	3600	60 ans
NERA	Confluence Ari/Boghen	5600	80 ans

Tableau 28 : Débits de pointe retenus pour la Grande Inondation de 1990

III.3.3. Cyclone Franck

La dépression tropicale Frank passe au stade de cyclone alors qu'elle se situe à 30 km au nord de Ouégoa le 20 février 1999. Il longe la cote Est avant de toucher terre entre Touho et Hienghène. Il traverse ensuite la chaine et atteint la cote ouest à hauteur de La Foa avant de prendre la direction sud et ainsi de s'éloigner en mer.

Le cyclone Frank a occasionné de nombreux dégâts matériels sur 2/3 du territoire : habitations endommagées, dommages agricoles, coupures d'eau, d'électricité....

Les laisses de crues recensées pour cet évènement concernent la Douencheur (plus particulièrement la Nandaï) sur sa partie amont. Il semble donc que cet évènement ait plus fait réagir des bassins versants de faible temps de concentration (de l'ordre de 1 h) localisés sur le secteur géographique Deva-Nandaï.

Analyse hydrométrique

Le cyclone Frank n'a pas généré des débits très importants au niveau des stations de mesure de la Foa et de la Boghen. Le temps de retour de la crue associée est inférieur à 10 ans sur ces deux cours d'eau.

Analyse pluviométrique

Les données des stations pluviométriques Cap Maori et Nessadiou sont disponibles pour ce cyclone. Les données de la station DAVAR Malmezac sont également disponibles, mais cette station étant relativement éloignée du bassin versant de la Douencheur, elle n'a pas été retenue dans l'analyse.

Période de retour* sur la durée :	0.5 à 1.5 h	2 h à 4 h
Nessadiou	15-20 ans	Env. 50 ans
Cap Maori	15-20 ans	Env. 50 ans

^{*}Période de retour estimée pour Nessadiou sur l'IDF de cette station et pour Cap Maori sur l'IDF de Bourail.

Synthèse

Sur la Douencheur, les laisses de crues issues des enquêtes terrain sont en cohérence avec la cote aux échelles de crues (situées au droit du lieu-dit Nékou), qui indiquent que le cyclone Frank a généré la hauteur d'eau la plus importante observée sur ce cours d'eau (hauteur d'eau 40 à 50 cm supérieure à celle générée lors de Béti, deuxième évènement le plus fort observé).

Vu le temps de concentration du bassin versant de la Douencheur (de l'ordre de 3 à 4h), la période de retour de cet épisode est vraisemblablement de l'ordre de 30 à 50 ans sur ce cours d'eau.

En revanche les bassins versants de la Boghen et de la Néra, ayant un temps de réponse beaucoup plus long n'ont pas générés des débits très importants pour ce cyclone. Cet épisode est considéré comme quinquennal sur ces cours d'eau.

Les valeurs retenues sont alors les suivantes :

Bassin versant	Exutoire	Débit de pointe retenu (m³/s)	Période de retour du débit de pointe
DOUENCHEUR	Confluence Pouéo/Douencheur	1650	50 ans
POUEO	Confluence Pouéo/Douencheur	1400	50 ans
ARI	Confluence Ari/Boghen	2300	30 ans
TENE	Confluence Téné/Boghen	520	5 ans
BOGHEN Amont	Confluence Téné/Boghen	1400	5 ans
BOGHEN Aval	Confluence Ari/Boghen	1700	5 ans
NERA	Confluence Ari/Boghen	2500	5 ans

Tableau 29 : Débits de pointe retenus pour le cyclone Franck

III.3.4. Cyclone Erica

Le cyclone Erica atteint son intensité maximale avec des vents moyens estimés à 215 km/h, alors qu'il ne se situe qu'à 160 km au nord-ouest de Koumac. Sa vitesse de progression n'est alors que de 15 km/h. Sa trajectoire s'incurve ensuite vers l'est, le cyclone se dirige plus rapidement vers la cote Ouest. Il touche Koné le 13 mars 2003 et longe ensuite toute la cote ouest avec une vitesse assez rapide (30 à 50 km/h). Il atteint Nouméa à 12h le 13 mars avant de quitter la Grande Terre et de toucher l'Ile des Pins.

Ce cyclone est principalement caractérisé par la force des vents observés, mais aussi par l'étendue des zones affectées. Les pluies observées ont aussi été très importantes mais le cyclone se déplaçant rapidement, elles ont été de courte durée.

Les dégâts, considérables sur la Grande Terre et l'Île des Pins, ont concerné aussi bien l'agriculture, les routes et bâtiments que les réseaux électriques et télécommunications.

Les laisses de crue recensées pour cet évènement ne concernent que la Pouéo.

Analyse hydrométrique

Les débits observés aux stations de référence présentent les périodes de retour suivantes :

Station	Débit observé (m³/s)	Période de retour
La Foa	925	9 ans
Boghen	680	4 ans

Analyse Pluviométrique

Les données disponibles sont celles des stations de Col des Roussettes et partiellement sur Me Para. Les données des stations DAVAR Nepou et Katricoin sont également disponibles, mais ces stations étant relativement éloignées du bassin versant de la Pouéo, elles n'ont pas été retenues dans l'analyse. Pour rappel le temps de concentration de la Pouéo est estimé à environ 4 h à l'exutoire du secteur d'étude.

Période de retour* sur la durée :	1 h	3 h à 6 h
Col des Roussettes	< 2 ans	2 ans
Me Para	5 ans	Données manquantes

^{*}Période de retour estimée Col des Roussettes et Me Para sur l'IDF de Me Para

Les données sur la station de Me Para permettent d'appréhender uniquement le début de l'épisode pluvieux, la station ayant dysfonctionné ensuite, peut être au plus fort de l'épisode.

Synthèse

Les laisses de crues collectées sur l'amont du bassin versant de la Pouéo ne relatent que cet évènement qui a première vue ne paraît pas le plus important. Deux explications peuvent vraisemblablement expliquer ce constat :

- Le cyclone Erica est l'épisode le plus récent, ce qui peut justifier que la mémoire collective retienne cet évènement et non d'autres plus anciens et plus forts,
- Il est regrettable que les stations de Bourail et de Me Para aient dysfonctionné au début de l'épisode intense, elles auraient peut être révélées des intensités ponctuelles de période de retour supérieure.

Au vu des analyses effectuées précédemment, la période de retour de cet évènement est vraisemblablement comprise entre 5 et 10 ans.

Les valeurs retenues sont alors les suivantes :

Bassin versant	Exutoire	Débit de pointe retenu (m³/s)	Période de retour du débit de pointe
DOUENCHEUR	Confluence Pouéo/Douencheur	1350	20 ans
POUEO	Confluence Pouéo/Douencheur	1315	25 ans
ARI	Confluence Ari/Boghen	2100	20 ans
TENE	Confluence Téné/Boghen	520	5 ans
BOGHEN Amont	Confluence Téné/Boghen	1400	5 ans
BOGHEN Aval	Confluence Ari/Boghen	1700	5 ans
NERA	Confluence Ari/Boghen	2500	5 ans

Tableau 30 : Débits de pointe retenus pour le cyclone Erica

Dossiers n°A001.11023 et A001.09035 Juin 2013 ISO9001: FDT1_V1/10-10

IV. PROGRAMME DE LEVES TOPOGRAPHIQUES

Les profils en travers sont des levés topographiques réalisés perpendiculairement à l'écoulement de la rivière. Ils doivent décrire la géométrie du lit mineur et du lit majeur. Implantés à intervalles plus ou moins réguliers, cette série de profils à lever, représentatifs du cours d'eau, doit également permettre de préciser les singularités hydrauliques (ruptures de pente, variations de sections..).

Une fois toutes les données pouvant influer sur le positionnement des profils prises en compte (urbanisations actuelle et future, profils existants), les profils ont été implantés lors de visites de terrain et observation de la cartographie 3D en fonction des singularités hydrauliques constatées sur place.

Les plans des levés topographiques sont fournis en Annexe 6 de ce document.

Les données topographiques au 1/2000^{ème} étant disponibles sur l'intégralité de la zone étudiée, les profils en travers en lit majeur ont été générés sur la base de ces données (BDTOPO 1/2000).

Le lit mineur et moyen ont fait, l'objet de levés topographiques. Les profils relevés présentent une longueur moyenne d'environ 200 m et un espacement moyen de l'ordre de 300 à 500 m. Cet espacement est fonction des enjeux présents et de la configuration topographique et géomorphologique du cours d'eau.

Ces levés topographiques ont réalisés en deux campagnes distinctes :

• La 1^{ère} qui concernait l'amont des secteurs d'étude (Pouéo, Douencheur et Boghen amont) a été réalisée en 2009.

Lors de cette campagne ont été levés :

	Pouéo	Douencheur	Boghen
Linéaire modélisé (km)	15	14	9
Géomètre	GEOMATIC	GEOMATIC	De Condinguy
Linéaire de profils à lever (km)	8.2	7.9	5.2
Nombre de profils à lever	46	44	22

Les précisions suivantes sont portées à cette campagne de levés :

o Pouéo

Les ouvrages OH12, 11 et 10 seront levés, l'OH6 ayant été levé par le cabinet de géomètres Bourail Topo et les autres ouvrages sont des passages à gué ou une passerelle (OH19) n'ayant aucune incidence hydraulique.

o Douencheur

Les ouvrages OH16, 15, 14a, 14b, 13 et 29 seront levés, les autres ouvrages étant des passages à qué ou une passerelle (OH27). L'OH17 sur la Douencheur est un radier peu important, dont l'incidence hydraulique sera nulle pour les crues étudiées, il n'a donc pas été jugé utile de le faire lever.

L'OH28 est hors du linéaire à modéliser.

Le profil de la RT3 (P234) sera constitué sur la base des données du fond 1/2000ème très denses sur ce secteur qui correspondent vraisemblablement à un levé au 1/500 ème.

Quelques profils présentent un linéaire un peu plus important (P227 à P231), pour combler l'absence du 1/2000 en rive gauche.

o Boghen

Le seul ouvrage de franchissement du secteur d'étude (OH9) sera levé.

La 2ème campagne de levés topographiques a été réalisée en 2012 par la société **BOURAII TOPO.**

Lors de cette campagne ont été levés :

Bief	Nombre de profils	Linéaire total de profils relevés (m)	Nombre d'ouvrages
DOUENCHEUR	2	160	/
POUEO	/	/	/
ARI	2	280	/
TENE	3	190	1
BOGHEN	23	2470	1
NERA	35	9500	1

Tableau 31 : Récapitulatif des levés topographiques

Sur la Douencheur, la Pouéo et la Ari, le lit mineur a fait l'objet de levés topographique dans le cadre de l'étude « Diagnostic hydraulique Aval Pouéo-Douencheur-Ari » (APICAN, Août 2008). Ces levés sont réutilisés et densifiés lorsque cela a été jugé nécessaire (notamment au droit du village de Bourail qui présente des enjeux forts).

V. METHODOLOGIE GENERALE ET HYPOTHESES DE MODELISATION

V.1. PREAMBULE

Les cours d'eau étudiés ont fait l'objet d'un modèle hydraulique réalisé sous le logiciel filaire et unidimensionnel HEC RAS 4.1 en régime permanent.

Ce modèle hydraulique s'appuie sur les données suivantes :

- Les profils en travers et ouvrages levés lors des deux campagnes de relevés topographiques,
- Les profils en travers levés sont étendus au lit majeur par projection sur les fonds de plan 3D existants sur le secteur (BDTOPO 1/2000ème, source Province Sud),
- Les profils en travers et ouvrages levés dans le cadre de l'étude « Diagnostic hydraulique Aval Pouéo-Douencheur-Ari » (APICAN, Août 2008) sur la Douencheur, la Pouéo, et la Ari,

Les débits des crues historiques et de référence présentés ci-avant. Ces débits ont été injectés dans le modèle hydraulique, soit directement au nœud qui représente physiquement l'exutoire du sous bassin quand cela est possible, soit au profil correspondant au centre du sous bassin versant. Les tableaux fournis en Annexe 7 présentent le détail des surfaces drainées au droit des profils et des débits associés.

V.2. GEOMETRIE DU MODELE HYDRAULIQUE

Les profils en travers sont localisés sur le **Plan 2** joint au présent rapport, qui présente également les laisses et échelles de crues pour les différents épisodes permettant le calage du modèle.

Le linéaire étudié porte sur (cf. Plan 2) :

- La Douencheur, du lieu-dit Néméara jusqu'à la confluence avec la Ari, ainsi que ces principaux affluents à savoir, la Nandaï et la Nékou
- La Pouéo, depuis le radier de la RM6 jusqu'à la confluence avec la Ari, ainsi que deux de ses affluents,
- La Ari, qui longe le village de Bourail, soit un linéaire d'environ 2km
- La Boghen, de l'ouvrage de franchissement de la RM19 jusqu'à la confluence avec la Néra,
- La Téné, de l'hippodrome jusqu'à la confluence avec la Boghen,
- La Néra, jusqu'à son embouchure en mer.

Le linéaire de cours d'eau modélisé total est d'environ 66 km.

Les fonctionnements hydrauliques particuliers de ces cours d'eau, qui sont représentés sur le synoptique hydraulique du **Plan 3** joint au dossier, sont précisés ci après.

V.3. FONCTIONNEMENTS HYDRAULIQUES PARTICULIERS SUR LA NERA, LA BOGHEN ET LA ARI

La Ari ainsi que la Téné ont fait l'objet de modèles distincts de celui de la Néra. Au droit de certaines confluences, dans des situations où les lits majeurs de l'affluent et du cours d'eau principal se recoupent sensiblement, l'affluent et son lit majeur sont totalement contrôlés par la ligne d'eau du cours d'eau principal. Il apparaît plus pertinent d'appliquer la cote d'inondation du cours d'eau principal comme condition limite aval de l'affluent plutôt que d'utiliser une jonction.

Sur certaines sections de profils des zones d'écoulement nul (« Ineffective flow area », sous le logiciel HEC RAS) ont été insérées. En effet, ces zones qui font partie du champ d'expansion des crues des cours d'eau étudiés auront des vitesses nulles (ou quasi-nulles) en raison de leur topographie.

V.4. FONCTIONNEMENTS HYDRAULIQUES PARTICULIERS SUR LA POUEO

Plusieurs particularités ont été identifiées et modélisées au droit de certains profils :

• Un phénomène de « digue » créé naturellement par le relief est très présent sur le secteur (cf. schéma ci-après). Cette configuration de « lit en toit », fréquente en Nouvelle Calédonie, s'explique ici le plus souvent par la morphologie des plaines alluviales de la Pouéo et de ses nombreux affluents. Le modèle doit donc intégrer ces secteurs qui ne participent aux écoulements que si la ligne d'eau est supérieure à une certaine cote. Cette particularité a été modélisée à l'aide de la fonction « Levee » du logiciel.

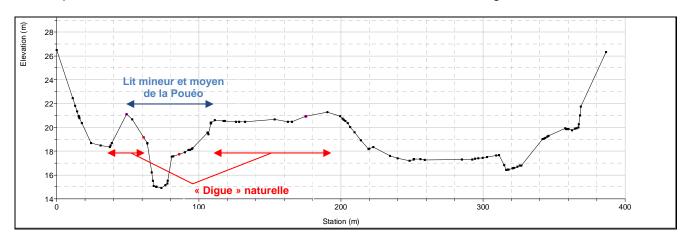


Illustration du phénomène de « diques » naturelles Profil P338

• Dans certains secteurs, qui font partie du champ d'expansion des crues des cours d'eau étudiés, les vitesses seront nulles en raison de leur topographie (cuvettes, zones confinées par les versants alentours, ...). Afin de modéliser ce phénomène et ne pas surestimer ainsi les vitesses en lit majeur (ce qui aurait pour effet de sous-estimer les hauteurs d'eau), sur certaines sections de profils des zones d'écoulement nul (« ineffective flow area », sous le logiciel HEC-RAS) ont été insérées.

V.5. FONCTIONNEMENTS HYDRAULIQUES PARTICULIERS SUR LA DOUENCHEUR

Le linéaire modélisé concerne :

- La Douencheur du lieu-dit Néméara jusqu'au lieu dit Nékou,
- Le creek Nékou, affluent rive droite de la Douencheur, sur environ 1 km en amont de sa confluence.
- La Nandaï, du camp militaire jusqu'à sa confluence avec la Douencheur ainsi que deux affluents de la Nandaï en rive droite et qui traversent ce camp,

La Nandaï, ainsi que ses deux affluents, ont fait l'objet de modèles hydrauliques distincts. Au droit de certaines confluences, dans des situations où les lits majeurs de l'affluent et du cours d'eau principal se recoupent sensiblement, l'affluent et son lit majeur sont totalement contrôlés par la ligne d'eau du cours d'eau principal. Il apparaît plus pertinent d'appliquer la cote d'inondation du cours d'eau principal comme condition limite aval de l'affluent plutôt que d'utiliser une jonction.

Sur certaines sections de profils des zones d'écoulement nul (« ineffective flow area », sous le logiciel HEC-RAS) ont été insérées. En effet, ces zones qui font partie du champ d'expansion des crues des cours d'eau étudiés auront des vitesses nulles (ou quasi-nulles) en raison de leur topographie.

VI. CALAGE DU MODELE – AJUSTEMENT DES COEFFICIENTS DE STRICKLER

Le calage du modèle a été effectué sur les différentes crues connues qui semblent avoir été les plus importantes sur le secteur, à savoir :

- Béti en 1996,
- La grande inondation de 1990,
- Franck en 1999,
- Erica en 2003.

VI.1. GRANDE INONDATION DE 1990

VI.1.1. Hypothèses

Pour rappel, les débits de pointe des différents cours d'eau lors de cette crue ont été estimés aux valeurs suivantes :

Cours d'eau	Débit de pointe (m³/s)	Période de retour du débit de pointe
Douencheur -Confluence Pouéo/Douencheur	1100	10 ans
Pouéo -Confluence Pouéo/Douencheur	900	5-10 ans
Boghen -Confluence Téné/Boghen	2900	60 ans
Téné -Confluence Téné/Boghen	1100	40 ans
Boghen -Confluence Ari/Boghen	3600	60 ans
Ari -Confluence Ari/Boghen	2000	10-20 ans
Néra -Confluence Ari/Boghen	5600	80 ans

Tableau 32 : Rappel des débits de pointe calculés pour la Grande Inondation de 1990

La condition limite aval de la Néra est, comme pour la crue centennale de référence, fixée à la cote 1.40 m NGNC (cf. §V4.1).

Sur la base de ces hypothèses, des simulations itératives en faisant évoluer les coefficients de Strickler ont été réalisées pour permettre l'ajustement du modèle aux cotes observées.

VI.1.2. Comparaison des niveaux

Les profils des lignes d'eau ci après présentent les résultats de ce calage. Le tableau ci après présente la comparaison entre les lignes d'eau et les cotes observées lors de la crue de 1990 :

Cours d'eau	Nom de la laisse de crue	Cote observée (m NGNC)	Cote calculée (m NGNC)	Différence : Cote calculée – cote observée (m)
	Laisse 2 – Hôtel El Kantara	3.66	4.24	+0.58
	Echelle 1	5.57	5.31	-0.26
Néra	Echelle 2	9.15	9.09	-0.06
	Laisse 3 – Hôtel La Néra	10.42	10.32	-0.1
	Echelle 3	10.43	10.45	+0.02
	Boghen 1	22.03	22.25	+0.22
	Boghen 4	17.74	17.74	0
Boghen	Echelle 14	14.66	15.09	+0.43
	Echelle 5	14.43	13.91	-0.52
	Echelle 4	11.22	11.12	-0.1
	Echelle 6	10.61	10.55	-0.06
Ari	Laisse 4 – Mairie de Bourail	10.24	10.57	+0.33
	Laisse 5 – Eglise de Bourail	10.26	10.60	+0.34
Douencheur	Echelle 7	10.77	10.71	-0.06
Douencheuf	Echelle 8	11.79	11.75	-0.04
Pouéo	Echelle 9	10.89	11.76	-0.07

Tableau 33 : Comparaison des niveaux pour la Grande Inondation de 1990

Globalement ce calage apparaît satisfaisant : sur la Néra les cotes calculées restent relativement proches des cotes observées. Quelques remarques sont toutefois à préciser :

• Sur l'aval (laisse 2), la présence de la digue a une forte influence : les différences entre la modélisation et les observations peuvent s'expliquer par le changement de configuration entre 1990 et les levés effectués dans la présente étude, la digue actuelle ayant été réalisée en 1991.

- Sur la Ari, les différences peuvent sembler importantes (de l'ordre de 30 cm), néanmoins ce calage semble satisfaisant dans la mesure où les résultats restent sécuritaires pour cet épisode et sont correctement ajustés pour le cyclone Béti (cf. paragraphe suivant).
- Sur la Boghen, La laisse de crue Boghen 3 (17.23 m NGNC) étant incohérente avec celles en amont et en aval (valeur plus faible que Boghen 4 située en aval), elle a été écartée de l'analyse. En effet, les témoignages étaient très qualitatifs avec une incertitude d'au moins 1 m (cf. Fiches de laisses de crues et Plan 1 -: Plan des profils modélisés en annexe de ce document).
- On peut observer une forte pente de ligne d'eau entre le profil P144 et P145 sur la Boghen qui est lié à la configuration topographique de la vallée (étranglement sur le profil P144).

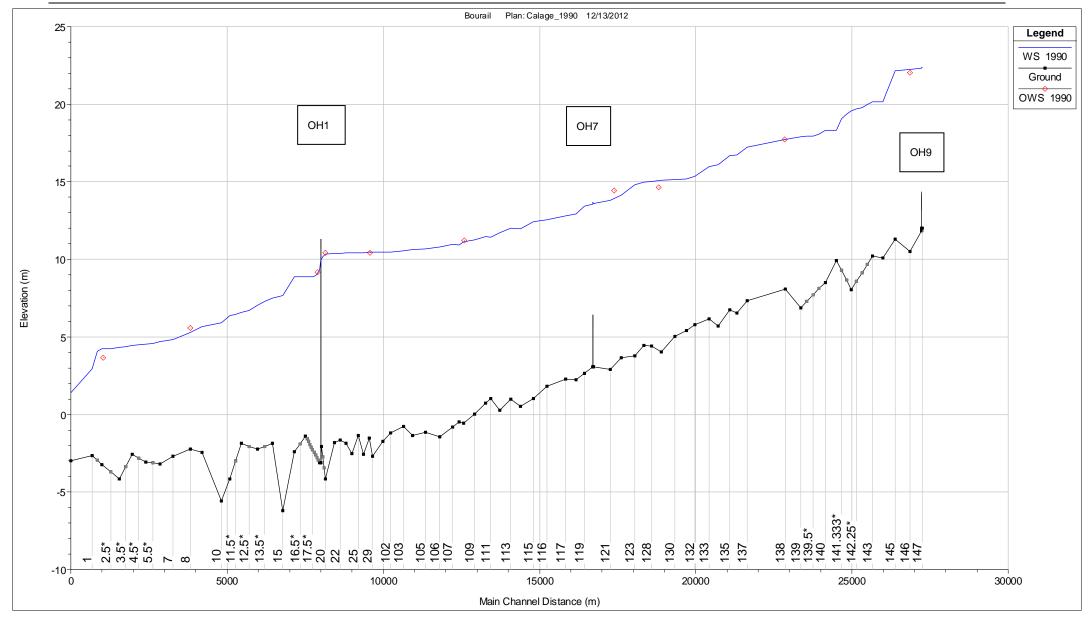


Figure 12 : Ligne d'eau modélisée pour la Grande Inondation de 1990 sur la Boghen et la Néra

Dossiers n°A001.11023 et A001.09035 Juin 2013 Page 76 sur 151

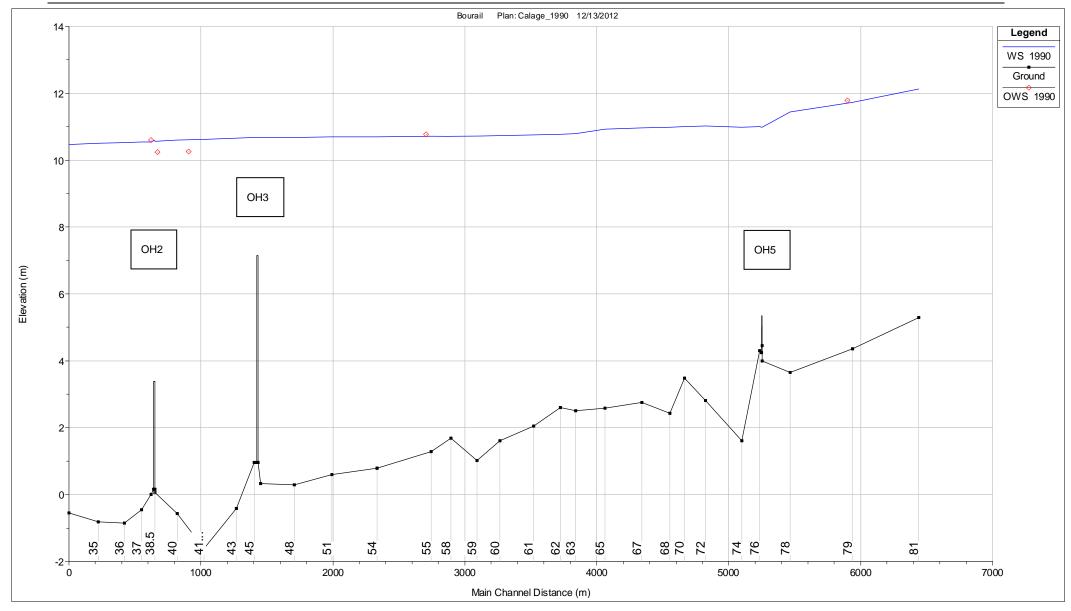


Figure 13 : Ligne d'eau modélisée pour la Grande Inondation de 1990 sur la Ari et la Douencheur

Dossiers n°A001.11023 et A001.09035 Juin 2013 Page 77 sur 151

VI.2. CYCLONE BETI

VI.2.1. Hypothèses

Pour rappel, les débits de pointe des différents cours d'eau lors de cette crue ont été estimés aux valeurs suivantes :

Cours d'eau	Débit maximal (m³/s)	Période de retour
Douencheur -Confluence Pouéo/Douencheur	1350	20 ans
Pouéo -Confluence Pouéo/Douencheur	1180	20 ans
Boghen -Confluence Téné/Boghen	3200	100 ans
Téné -Confluence Téné/Boghen	600	7 ans
Boghen -Confluence Ari/Boghen	3500	50 ans
Ari -Confluence Ari/Boghen	2100	20 ans
Néra -Embouchure	4400	25 ans

Tableau 34 : Rappel des débits de pointe calculés pour le cyclone Béti

Cependant l'épisode intense pluvieux enregistré lors de ce cyclone ayant été relativement court, l'hypothèse de non concomitance a été retenue. Deux scénarios ont donc été simulés :

 Scénario 1 : Simulation du débit de pointe de période de retour 25 ans sur la Néra, la Boghen draine son débit de pointe de période de retour 50 ans alors que la Ari a déjà commencé sa décrue (temps de concentration plus faible). Les hypothèses pour ce scénario sont synthétisées sur le schéma suivant :

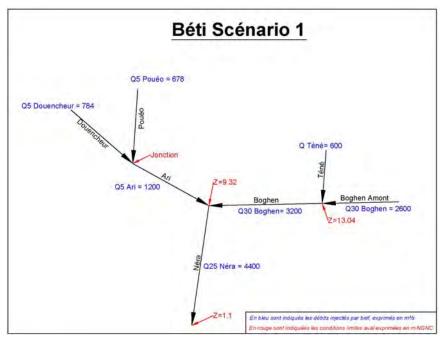


Figure 14: Hypothèses de modélisation – Béti Scénario 1

PROVINCE SUD

 Scénario 2 : Simulation du débit de pointe de période de retour 20 ans de la Ari. Les hypothèses pour ce scénario sont synthétisées sur le schéma suivant :

Figure 15 : Hypothèses de modélisation - Béti Scénario 2

Pour chacun de ces scénarios, la condition limite aval est, comme pour la crue décennale de référence, fixée à la cote 1.10 m NGNC.

Ces deux simulations, qui correspondent à deux instants différents d'un même épisode de crue, ont été comparées afin de déterminer sur chaque bief quelles sont les conditions qui induisent les niveaux d'eau maximum.

L'analyse des résultats conduit aux considérations suivantes :

- Sur la Ari, le scénario 1 conduit aux cotes d'inondation les plus élevées. Les niveaux les plus élevés correspondent donc au pic de crue de la Néra et non au débit de pointe de la Ari.
- Sur la Douencheur, en aval du profil P63, le scénario 1 fournit les cotes d'inondation les plus élevées. En amont de ce profil, la condition limite aval ayant moins d'influence, le scénario 2 fournit des niveaux d'eau plus élevés.
- Sur la Pouéo, tout comme sur la Douencheur, en aval du profil P304, les cotes d'inondation sont les plus élevées pour le scénario 1. Au contraire en amont de ce profil, les niveaux calculés avec le scénario 2 sont les plus élevés.
- Sur la Néra et la Boghen, les cotes d'inondation calculées sont les plus élevées pour le scénario 1.

Sur la base de ces hypothèses, des simulations itératives en faisant évoluer les coefficients de Strickler ont été réalisées afin d'ajuster les résultats de modélisation au plus proche des niveaux de laisses de crues observés et mesurés. Ces simulations ont été conduites alternativement sur la base du scénario 1 et du scénario 2 selon la localisation de la laisse de crue (et donc des niveaux maximums atteints).

VI.2.2. Comparaison

Les profils des lignes d'eau ci après présentent les résultats de ce calage. Le tableau ci après présente la comparaison entre les lignes d'eau et les cotes observées lors du cyclone Béti :

Cours d'eau	Nom de la laisse de crue	Cote observée (m NGNC)	Cote calculée (m NGNC)	Différence : Cote calculée – cote observée (m)
Néra	Echelle 10	3.68	3.72	+ 0.04
inera	Echelle 1	5.08	4.76	- 0.32
	Boghen 1	22.03	22.56	+0.53
Boghan	Boghen 5	22.61	22.56	-0.05
Boghen	Boghen 2	18.10	18.76	+0.66
	Boghen 6	18.68	18.20	-0.48
A:	Echelle 11	9.40	9.40	0
Ari	Echelle 12	9.58	9.49	- 0.09
Douencheur	Echelle 8	11.75	11.99	+ 0.24
Pouéo	Echelle 9	9.69	9.57	- 0.12

Tableau 35 : Comparaison des niveaux pour le cyclone Béti

D'une manière générale, le calage apparaît satisfaisant, y compris sur la Boghen où les différences sont les plus importantes entre les observations et les résultats de modélisation. En effet, sur cette zone, les témoignages, très approximatifs sont relativement différents les uns des autres (avec une variation moyenne de l'ordre de 0.5 à 1m). La ligne d'eau calculée est située entre les différentes valeurs et parait donc être une ligne d'eau « moyenne », ce qui conforte les choix retenus sur ce secteur.

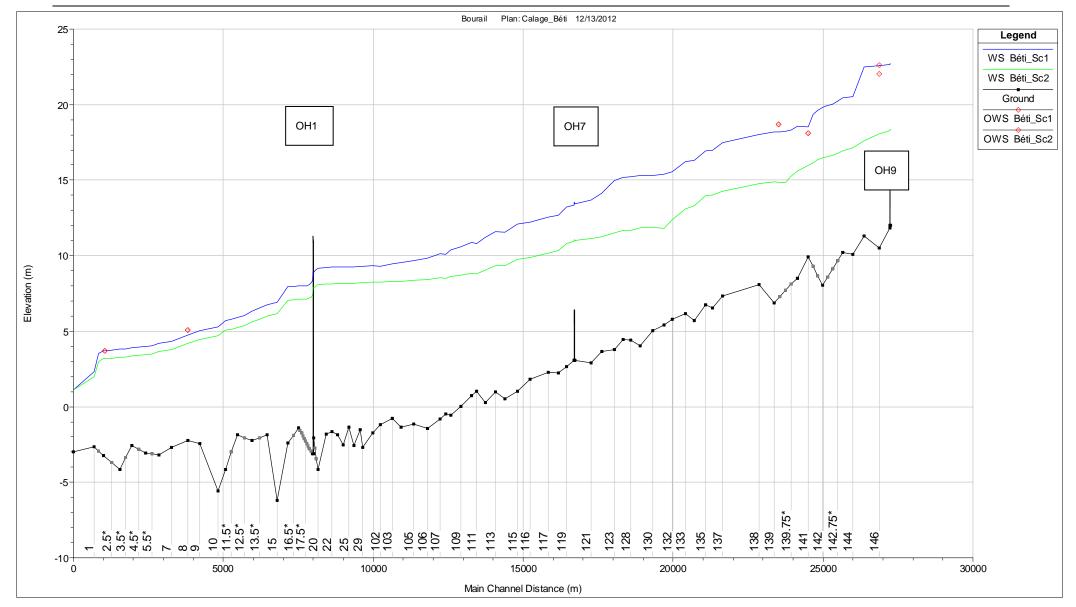


Figure 16 : Ligne d'eau modélisée pour le cyclone Béti sur la Boghen et la Néra

* Le scénario 1 est représenté en bleu et le scénario 2 en vert, les laisses de crue sont indiquées par un point rouge

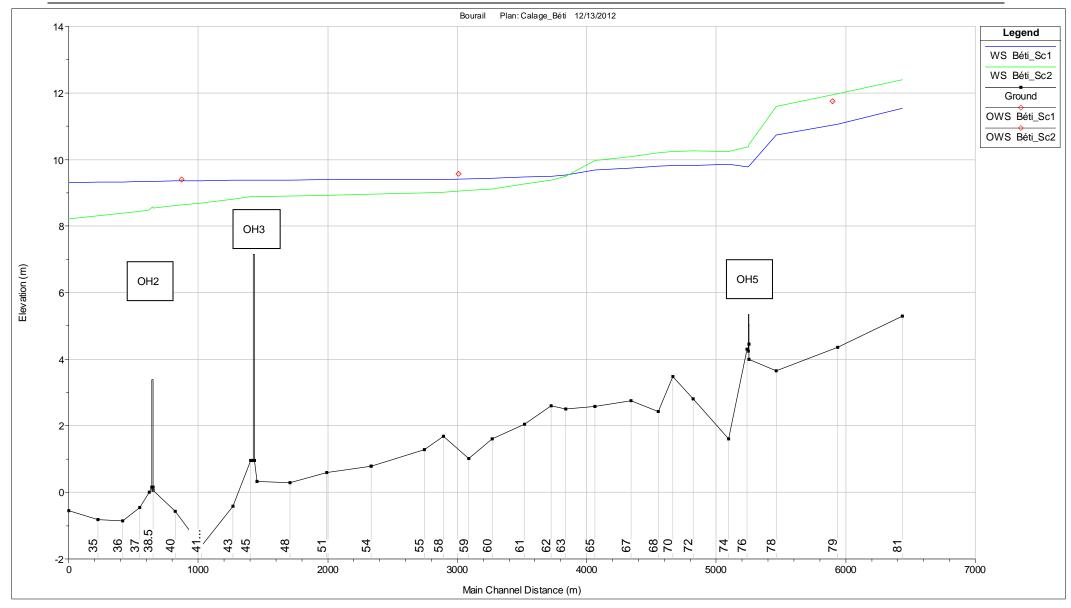


Figure 17 : Ligne d'eau modélisée pour le cyclone Béti sur la Ari et la Douencheur

* Le scénario 1 est représenté en bleu et le scénario 2 en vert, les laisses de crue sont indiquées par un point rouge

VI.3. FRANCK (DOUENCHEUR)

VI.3.1. Hypothèses

Pour rappel, les débits de pointe des différents cours d'eau lors de cette crue ont été estimés aux valeurs suivantes :

Cours d'eau	Débit de pointe (m³/s)	Période de retour du débit de pointe
Douencheur -Confluence Pouéo/Douencheur	1650	50 ans
Pouéo -Confluence Pouéo/Douencheur	1400	50 ans
Boghen -Confluence Téné/Boghen	1400	5 ans
Téné -Confluence Téné/Boghen	517	5 ans
Boghen -Confluence Ari/Boghen	1700	5 ans
Ari -Confluence Ari/Boghen	2300	30 ans
Néra -Confluence Ari/Boghen	2500	5 ans

Tableau 36 : Rappel des débits de pointe calculés pour Franck

La condition limite aval de la Néra est, comme pour la crue quinquennale de référence, fixée à la cote 1.10 m NGNC (cf. §V4.1).

Sur la base de ces hypothèses, des simulations itératives en faisant évoluer les coefficients de Strickler ont été réalisées pour permettre l'ajustement du modèle aux cotes observées.

VI.3.2. Comparaison des niveaux

Les profils des lignes d'eau ci après présentent les résultats de ce calage. Le tableau ci après présente la comparaison entre les lignes d'eau et les cotes observées lors du cyclone Franck :

Cours d'eau	Nom de la laisse de crue	Cote observée (m NGNC)	Cote calculée (m NGNC)	Différence : Cote calculée – cote observée (m)
	Douen 2	22.67	22.56	-0.11
Dauanahaur	Douen 1	22.65	22.60	-0.05
Douencheur	Douen 6	19.11	19.04	-0.07
	Echelle 13	14.31	14.29	-0.02

Tableau 37 : Comparaison des niveaux pour le cyclone Franck

Etude des zones inondables sur la Commune de Bourail

Globalement ce calage apparaît satisfaisant. Quelques remarques sont toutefois à préciser :

- Les cotes calculées ne diffèrent que de quelques centimètres des laisses de crue très fiables dans l'ensemble.
- Les laisses de crue Douen 1 et 2 situées dans le camp de Nandaï au niveau du profil 245 (Affluent 1) sont comparés au profil 248 de la Nandaï Principal (et non affluent 1). En effet, la cote au droit du profil 245 est complètement influencée par la Nandaï (cf. localisation des laisses et profils sur le Plan 2).

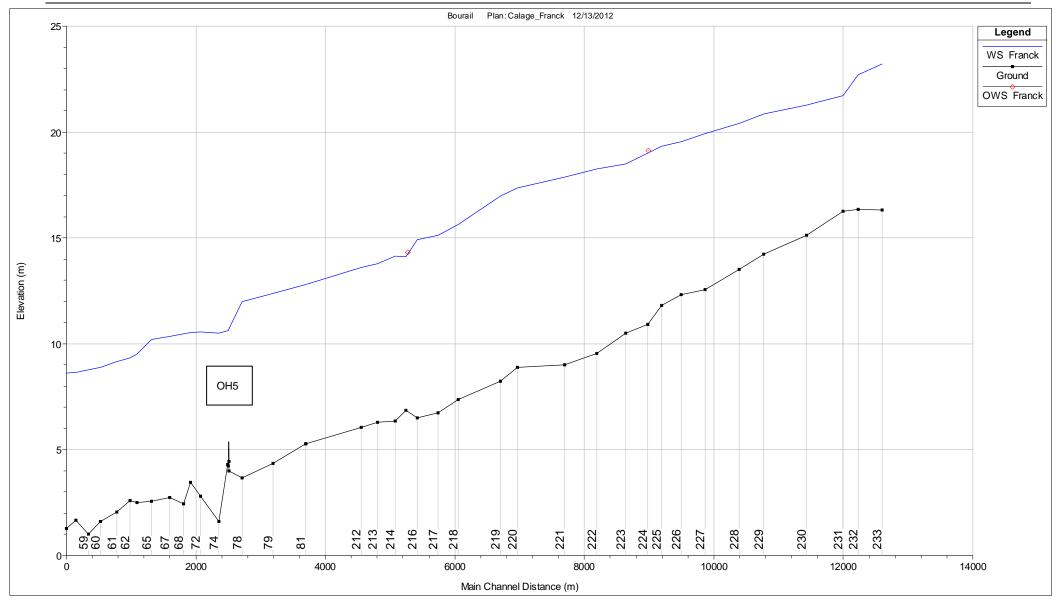


Figure 18 : Ligne d'eau modélisée pour le cyclone Franck sur la Douencheur

* les laisses de crue sont indiquées par un point rouge

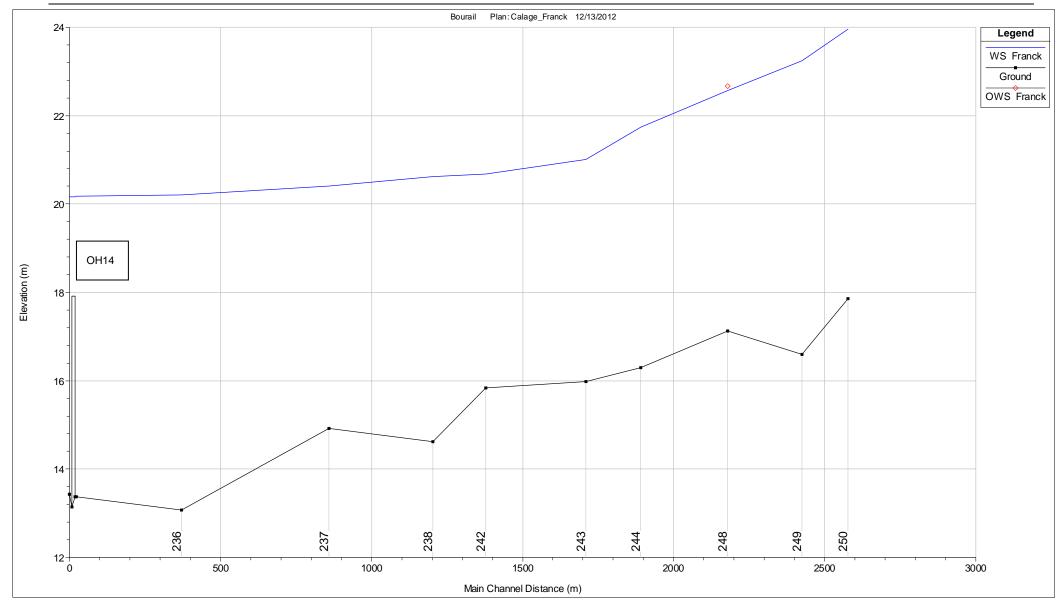


Figure 19 : Ligne d'eau modélisée pour le cyclone Franck sur la Nandaï

* les laisses de crue sont indiquées par un point rouge

VI.4. ERICA

VI.4.1. Hypothèses

Pour rappel, les débits de pointe des différents cours d'eau lors de cette crue ont été estimés aux valeurs suivantes :

Cours d'eau	Débit de pointe (m³/s)	Période de retour du débit de pointe
Douencheur -Confluence Pouéo/Douencheur	1350	20 ans
Pouéo -Confluence Pouéo/Douencheur	1315	25 ans
Boghen -Confluence Téné/Boghen	1400	5 ans
Téné -Confluence Téné/Boghen	517	5 ans
Boghen -Confluence Ari/Boghen	1700	5 ans
Ari -Confluence Ari/Boghen	2100	20 ans
Néra -Confluence Ari/Boghen	2500	5 ans

Tableau 38 : Rappel des débits de pointe calculés pour Erica

La condition limite aval de la Néra est, comme pour la crue quinquennale de référence, fixée à la cote 1.10 m NGNC (cf. §V4.1).

Sur la base de ces hypothèses, des simulations itératives en faisant évoluer les coefficients de Strickler ont été réalisées pour permettre l'ajustement du modèle aux cotes observées.

VI.4.2. Comparaison des niveaux

Les profils des lignes d'eau ci après présentent les résultats de ce calage. Le tableau ci après présente la comparaison entre les lignes d'eau et les cotes observées lors du cyclone Erica :

Cours d'eau	Nom de la laisse de crue	Cote observée (m NGNC)	Cote calculée (m NGNC)	Différence : Cote calculée – cote observée (m)
	Pouéo 1	22.81	22.19	-0.62
Pouéo	Pouéo 2	21.36	21.79	0.43
Poueo	Pouéo 4	18.09	18.24	0.15
	Pouéo 3	18.37	17.89	-0.48

Tableau 39 : Comparaison des niveaux pour le cyclone Erica

D'une manière générale, peu de laisses ou témoignages de crues ont pu être recensés dans la mesure où les enjeux sont quasi inexistants sur le secteur étudié. La comparaison des laisses entre elles montre des incohérences illustre l'imprécision de ces témoignages.

L'enquête Pouéo 1 est approximative, un témoignage d'un riverain voisin ayant indiqué environ 1 m d'eau dans cette habitation sans que cela n'ait pu être vérifié. Une incertitude de l'ordre de 50 cm est donc à prendre en compte.

Les témoignages Pouéo 3 et 4 sont également approximatifs mais donnent un ordre d'idée de la cote de la ligne d'eau pour cette crue.

La simulation réalisée laisse apparaître une ligne d'eau calculée qui semble cohérente avec les témoignages recueillis. Il reste cependant délicat d'affirmer que le modèle soit réellement calé sur cet épisode étant donné les incertitudes sur les débits de cette crue et sur les niveaux de crues atteints. Il sera opportun de vérifier le calage de ce secteur amont sur les épisodes à venir. Néanmoins les paramètres retenus sont en cohérence avec ceux des autres tronçons étudiés.

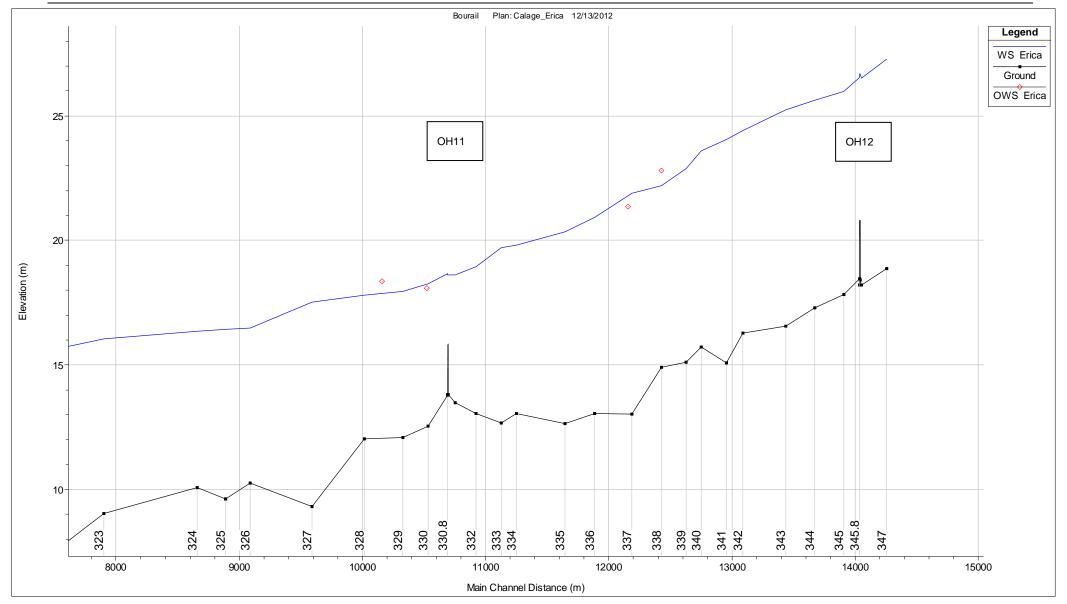


Figure 20 : Ligne d'eau modélisée pour le cyclone Erica sur la Pouéo

* les laisses de crue sont indiquées par un point rouge

VI.5. PARAMETRES RETENUS A L'ISSU DU CALAGE

Les coefficients de Strickler retenus, traduisant la rugosité des lits mineurs et majeurs des thalwegs et cours d'eau sont les suivants :

Strickler en lit majeur :

- 12 sur la quasi-totalité des lits majeurs de la Douencheur, de la Nékou ainsi que sur l'aval de la Nandaï.
- o **15** en aval du profil 214 de la Douencheur, où le lit majeur, constitué de zones de cultures rases, est plus dégagé.
- 7 en amont du profil 242 de la Nandaï où le lit majeur est constitué de végétation dense.
- o **5** en lit majeur des affluents de la Nandaï. Ces lits sont encombrés par les habitations, hangars présents dans le camp militaire.

Strickler en lit mineur :

- o **22** sur la Douencheur en amont du profil 81, où le lit est relativement marqué et propre.
- o **30** à partir du profil 79, le lit mineur étant plus marqué et propre,
- o 20 en aval du profil 42 de la Nandaï.
- 15 sur l'amont de la Nandaï, ainsi qu'en lit mineur de ses deux affluents et de la Nékou. Ces différents affluents présentent en effet des lits mineurs encombrés et peu marqués.

⇒ Pouéo :

Strickler en lit majeur :

- 12 sur la quasi-totalité des lits majeurs en amont du profil 304, qui sont relativement dégagés, cette valeur est cohérente avec celle des autres cours d'eau étudiés dans la zone.
- 15 à partir du profil 96, où comme sur la Douencheur la végétation constituée de grandes prairies est rase.
- o 10 ponctuellement, en rive gauche de l'affluent 1 et de la Pouéo amont, où la végétation est plus dense et haute.
- 5 ponctuellement, aux extrémités de certains profils et notamment derrière certaines
 « digues » où l'écoulement est limité.

Strickler en lit mineur :

- 20 sur la Pouéo en amont du profil 304, où le lit mineur est dégagé et propre.
- o 25 à partir du profil 96, le lit mineur étant plus marqué et propre,
- o 15 sur les affluents qui sont plus encombré et moins marqués.

⇒ <u>Ari:</u>

Strickler en lit majeur :

- o 15 en amont sur le lit majeur situé dans la continuité de la Pouéo,
- o 5 à 7 en rive droite sur les secteurs urbanisés,
- 10 en rive gauche de la Ari, secteur légèrement encombré par de nombreuses clôtures.

<u>Strickler en lit mineur</u>: 25 à 30, dans la continuité des lits mineurs de la Pouéo et la Douencheur. Sur le linéaire bien marqué et propre traversant le village de Bourail, le coefficient de Strickler a été fixé à 30.

Strickler en lit majeur : 12 sur les zones de prairies constituant le lit majeur.

Strickler en lit mineur : 20 pour un lit mineur marqué mais légèrement encombré.

Boghen:

Strickler en lit majeur :

- 12 sur la quasi-totalité des lits majeurs qui sont relativement dégagés, cette valeur est cohérente avec celle des autres cours d'eau.
- 4 ponctuellement, aux extrémités de certains profils et notamment en rive gauche des profils 147 à 144. Sur ces zones, l'écoulement est restreint du fait de l'encombrement plus important du lit majeur et de la topographie (zones encaissées où les vitesses d'écoulement sont vraisemblablement quasi nulles).
- 22 sur les lits majeurs des profils 129 à 123, situés en aval du cours d'eau et qui correspondent à de vastes zones de cultures rases et dégagées.

Strickler en lit mineur: 30 sur la Boghen, où le lit mineur est dégagé, propre et bien marqué.

Strickler en lit majeur :

- o 30 entre la confluence entre la Ari et la Boghen et le pont de la RT1, zone présentant des conditions d'écoulement très favorables avec une végétation rase. Ce coefficient qui peut paraître élevé pour caractériser un lit majeur a été calé sur la base de témoignages et échelles de crues (cf. §V.3),
- o 15 en aval du pont sur la Néra et sur un linéaire d'environ 1.2 km (P18 à P15).
- 12 sur les zones de savanes présentes sur l'aval du secteur d'étude (P14 à P1).
- 8 sur une zone de végétation dense localisée lors de la visite de terrain en rive gauche de la Néra entre les profils P14 et P11.
- o 5 sur les zones de mangrove dense.

Strickler en lit mineur : 40 à 42, celui-ci étant très large et dégagé.

VII. DEFINITION DES CONDITIONS AUX LIMITES

VII.1. DEBITS DE CRUE

Le choix des débits de crue à retenir pour les différentes conditions aux limites a été arrêté à l'issue de l'analyse de sensibilité réalisée dans le cadre de la construction du modèle hydraulique. Cette analyse est présentée dans le paragraphe X.4 (cf. page 132). Une analyse de différents scénarios de modélisation a été réalisée dans le cadre de cette analyse de sensibilité. Elle a permis de mettre en évidence les facteurs qui induisent les hauteurs de submersion les plus importantes suivant le bief considéré et donc les risques les plus importants en terme d'inondation.

En définitive, du point de vue physique, les conditions aux limites qui ont été retenues pour chacun des biefs considérés sont les suivantes :

- Condition limite amont : Débit de pointe du bief pour la période de retour considérée (5, 10 ou 100 ans);
- Condition limite aval : Niveau de la ligne d'eau dans le bief aval au droit de la confluence, calculé pour le débit de crue dans le bief aval pour la même période de retour que pour la condition limite amont. (5, 10 ou 100 ans) ;

Notons que cette condition limite aval est soit calculée directement par le modèle à partir de la condition de débit fixée en cas de jonction soit imposée manuellement lorsque le bief est disjoint.

Le raisonnement ayant conduit à retenir cette hypothèse s'appuie sur une série de tests de différents scénarios de modélisation. Le détail de ce raisonnement est présenté dans le paragraphe « X.4

Comportement du modèle et caractérisation du fonctionnement hydraulique » (cf. page 132).

Du point de vue de la modélisation, le principe physique décrit précédemment (modélisation des biefs de manière séparée) et les hypothèses retenues peuvent être mis en œuvre de manière relativement simple avec la construction d'un unique modèle global de référence. Cet artifice de modélisation (qui ne respecte pas le principe de conservation du débit) est possible sous le logiciel HEC RAS et ne fausse pas les résultats pour les raisons suivantes :

- Les simulations sont effectuées en régime permanent,
- Pour chaque bief, le débit imposé sur le profil situé le plus en amont est indépendant des débits dans les biefs amont rejoignant la confluence. Par exemple, le débit dans le bief de la Néra peut donc être fixé de manière complètement indépendante des débits provenant de la Ari et de la Boghen.
- La condition limite aval de la Ari et la Boghen est uniquement dépendante du débit sur la Néra, les écoulements s'établissant en régime fluvial.

Un unique fichier « steady flow data » a donc été créé pour les crues de référence. Ce fichier de condition limite intitulé « référence » sous HEC RAS reprend donc les valeurs indiquées dans le Tableau 40 : Conditions de débits appliquées dans le modèle hydraulique HEC RAS (cf. page suivante).

			Débit (m³/s)	
Bassin versant	Surface (km²)	T= 5 ans	T= 10 ans	T= 100 ans
Douencheur -Confluence Pouéo/Douencheur	108	784	1129	1844
Pouéo -Confluence Pouéo/Douencheur	89	678	977	1595
Boghen -Confluence Téné/Boghen	225	1359	1958	3198
Téné -Confluence Téné/Boghen	62	517	745	1216
Boghen -Confluence Ari/Boghen	301	1691	2435	3978
Ari -Confluence Ari/Boghen	199	1240	1786	2917
Néra -Embouchure	543	2632	3791	6192

Tableau 40 : Conditions de débits appliquées dans le modèle hydraulique HEC RAS

Les différents débits injectés dans le modèle sont indiqués sur le schéma synoptique du modèle hydraulique (cf. Plan 3 en annexe).

VII.2. CONDITIONS LIMITES AVAL

Condition limite aval à l'embouchure de la Néra

Conformément aux conditions limites habituellement appliquées au niveau des embouchures en mer, les cotes suivantes, qui correspondent aux niveaux de plus fortes marées majorées d'une surcote cyclonique, ont été appliquées sur modèle de la Néra :

Période de retour de la crue	Condition limite aval (en m NGNC)
5 ans	1.10
10 ans	1.10
100 ans	1.40

Tableau 41 : Conditions limites aval de la Néra

Notons que cette condition limite aval sur la Néra a une influence jusqu'à une distance évaluée à environ 6 km en remontant à partir de l'embouchure (cf. paragraphe X.3).

Conditions limites aval des autres biefs

Pour les biefs qui sont connectés au bief aval par une jonction (Douencheur, Pouéo) ou simplement par continuité du modèle (Boghen \rightarrow Néra), les niveaux des lignes d'eau sont calculées par le modèle hydraulique et correspondent au débit de crue fixé sur le bief aval pour la période de retour considérée (5, 10 ou 100 ans).

La Ari, la Téné ainsi que les Nandai et ses deux affluents ayant fait l'objet de modèles séparés (disjoints), leur condition limite aval a été fixée comme suit :

➡ <u>Ari</u>: la condition limite aval est appliquée sur le profil P34 et correspond au niveau de la ligne d'eau de la Néra dans la zone de confluence, pour le débit de crue de la période de retour considérée, soit la moyenne entre les cotes atteintes en P30 et P29 :

Période de retour	Cote appliquée sur P34 (m NGNC)
5 ans	7.05
10 ans	8.41
100 ans	10.67

➡ Téné: la condition limite aval est appliquée sur le profil P1191 et correspond au niveau de la ligne d'eau de la Boghen dans la zone de confluence, pour le débit de crue de la période de retour considérée, soit la moyenne entre les cotes atteintes en P120 et P119:

Période de retour	Cote appliquée sur P1191 (m NGNC)
5 ans	11.43
10 ans	12.31
100 ans	13.84

➡ Nandaï bras principal: la condition limite aval est appliquée sur le profil P234 et correspond à la cote d'inondation de la Douencheur dans la zone de confluence, soit la moyenne entre les cotes atteintes en P227 et P228:

Période de retour	Cote appliquée sur P234 (m NGNC)
5 ans	18.89
10 ans	19.43
100 ans	20.40

Affluent 1 de la Nandaï: la condition limite aval est appliquée sur le profil P145 et correspond à la cote d'inondation de la Nandaï dans la zone de confluence, soit la moyenne entre les cotes atteintes en P244 et P248 :

Période de retour	Cote appliquée sur P145 (m NGNC)
5 ans	21.18
10 ans	21.61
100 ans	22.33

Affluent 2 de la Nandaï: la condition limite aval est appliquée sur le profil P238.5 et correspond à la cote atteinte au profil P242 du bras principal de la Nandaï. Le lit majeur de la Nandaï au droit de ce profil (P242) englobe le lit de l'affluent 2. Les valeurs appliquées sont donc les suivantes :

Période de retour	Cote appliquée sur P238.5 (m NGNC)
5 ans	19.49
10 ans	20
100 ans	20.91

VIII. MODELISATION DES CRUES DE REFERENCE

Les différents scénarios correspondant aux évènements de période de retour T = 5 ans, 10 ans et 100 ans ont été simulés à l'aide du modèle hydraulique. Les graphes et les résultats détaillés des simulations réalisées sont disponibles en Annexe 8 de ce document.

VIII.1. POUEO

Les lignes d'eau calculées pour les périodes de retour 5, 10 et 100 ans sur la Pouéo sont présentées sur la *Figure 21*.

Les résultats obtenus permettent de dresser différents constats :

- En ce qui concerne les différents ouvrages modélisés (OH12 sur la RM 6, OH11, OH10 et OH6), ils sont très largement submergés pour les crues étudiées. Les capacités hydrauliques de ces ouvrages restent négligeables en comparaison des débits de référence.
- Les voiries situées de part et d'autre de la Pouéo, à savoir la RM6 et la RM10, sont submergées pour chacune des crues étudiées. Les hauteurs d'eau sur voiries qui sont déjà quasiment de 1m pour les crues de période de retour 5 ans atteignent plus de 4 m pour les crues centennales.
- Peu de particularités sont à noter, les hauteurs d'eau et vitesses sont plus importantes en amont du profil P335, le lit majeur étant encaissé et la pente du lit plus importante. En aval de ce profil, le lit majeur s'élargit sensiblement, de l'ordre de 500-700 m de large.
- Les écoulements, fortement contrôlés par les niveaux de la Ari et de la Néra, restent en régime fluvial, les pentes des lignes d'eau étant inférieures à 0.5 %.

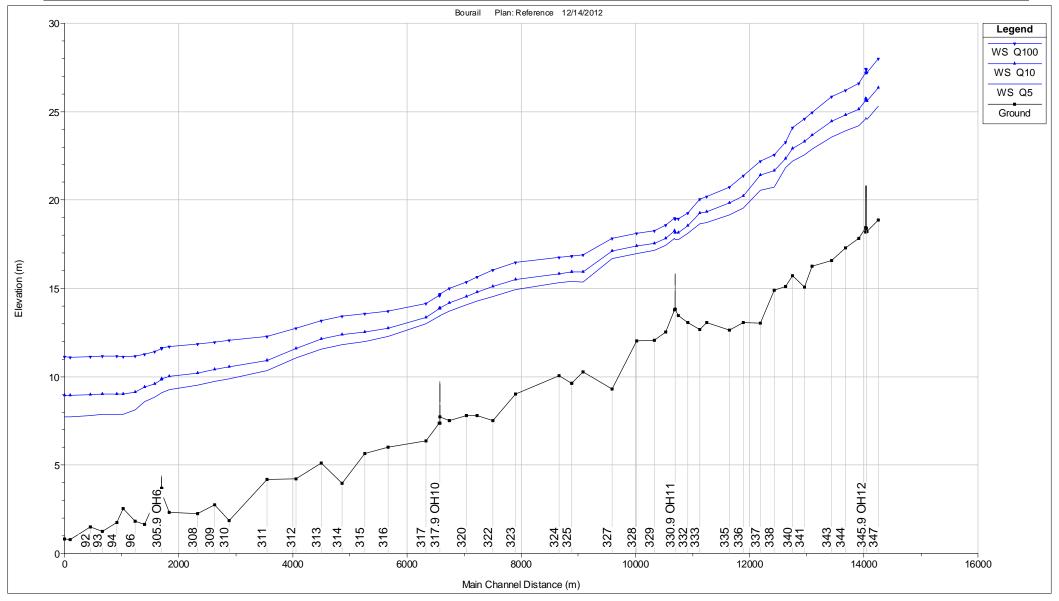


Figure 21 : Lignes d'eau simulées sur la Pouéo (Crues 5, 10, 100 ans)

Dossiers n°A001.11023 et A001.09035 Juin 2013 Page 98 sur 151

VIII.2. DOUENCHEUR

Les lignes d'eau calculées pour les périodes de retour 5, 10 et 100 ans sur la Douencheur sont présentées sur les Figure 22 et Figure 23.

Les résultats obtenus permettent de dresser différents constats :

- La RT3, qui longe la Douencheur sur sa partie amont, est submergée dès la crue quinquennale, notamment au droit du pont franchissant la Nandaï (OH14). Les hauteurs d'eau sur ce pont varient entre 60 cm pour une crue quinquennale et 2.40 m pour la crue centennale.
- La RT1 qui longe la Douencheur en rive droite est inondée en aval du profil P218 pour chacune des crues de référence. Les hauteurs d'eau sur cette route très circulée peuvent atteindre jusqu'à 1.5 m lors des crues quinquennale et quasiment 4 m lors des crues centennales.
- Tous les ouvrages modélisés sont largement sous dimensionnés face aux débits de référence. Ils sont tous submergés dès les crues de période de retour 5 ans.
- L'ouvrage de franchissement de la VU 57 (OH3) situé quelques mètres en amont de la confluence entre la Douencheur et la Pouéo est submergé pour chacune des périodes de retour considérées. Ce pont étant calé à une altimétrie plus élevée que les terrains alentours, la hauteur d'eau sur l'ouvrage est quasi nulle pour la crue quinquennale alors que les terrains voisins seront inondés. En revanche, en crue centennale, les hauteurs d'eau atteignent 3,40 m.
- Le lit majeur de la Douencheur présente une largeur de 200 à 800 m. Dans l'ensemble, les variations de section sont relativement progressives, à noter cependant la présence d'un étranglement au droit du profil P215 qui est à l'origine d'une rupture de pente sur les lignes d'eau.
- Un remous des lignes d'eau est observable entre les profils P78 et P76 : celui-ci est en fait lié à la présence d'un goulet d'étranglement qui entraine une réduction de la largeur d'écoulement en lit majeur d'environ 100 m entre ces 2 profils, l'ouvrage situé au P76 (OH5) ayant une influence négligeable.
- Tout comme sur la Pouéo, les écoulements, qui sont encore fortement contrôlés par les niveaux de la Ari et de la Néra, restent en régime fluvial. La pente moyenne de la ligne d'eau est égale à 0.1%.
- En ce qui concerne la Nandai, les lignes d'eau simulées sont contrôlées par les cotes de la Douencheur au droit de cette confluence et ce sur toute la partie aval (environ 1 500 m).

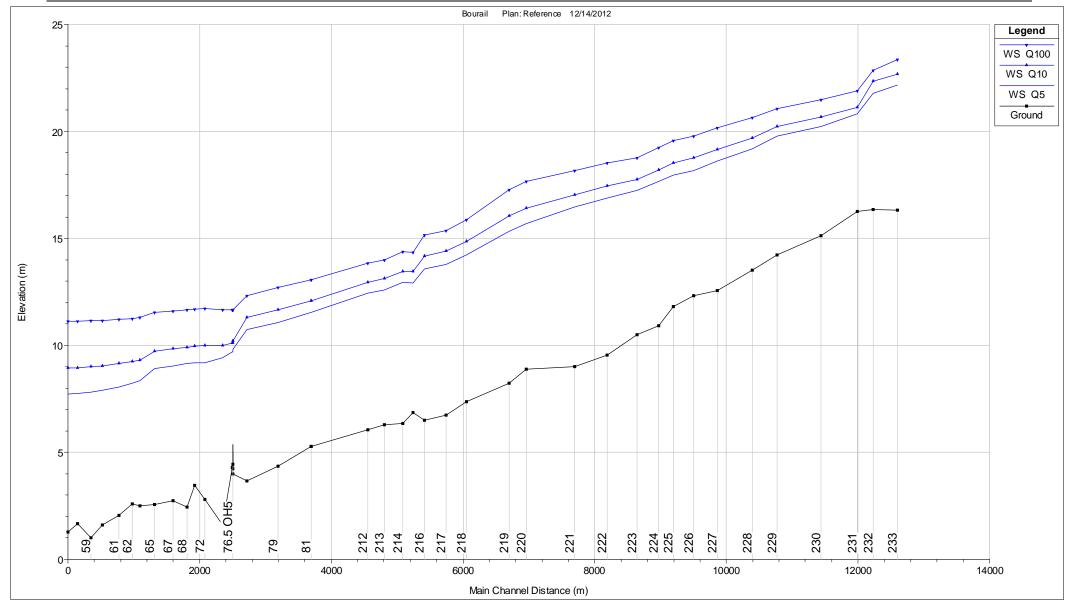


Figure 22 : Lignes d'eau simulées sur la Douencheur (Crues 5, 10, 100 ans)

Dossiers n°A001.11023 et A001.09035 Juin 2013 Page 100 sur 151

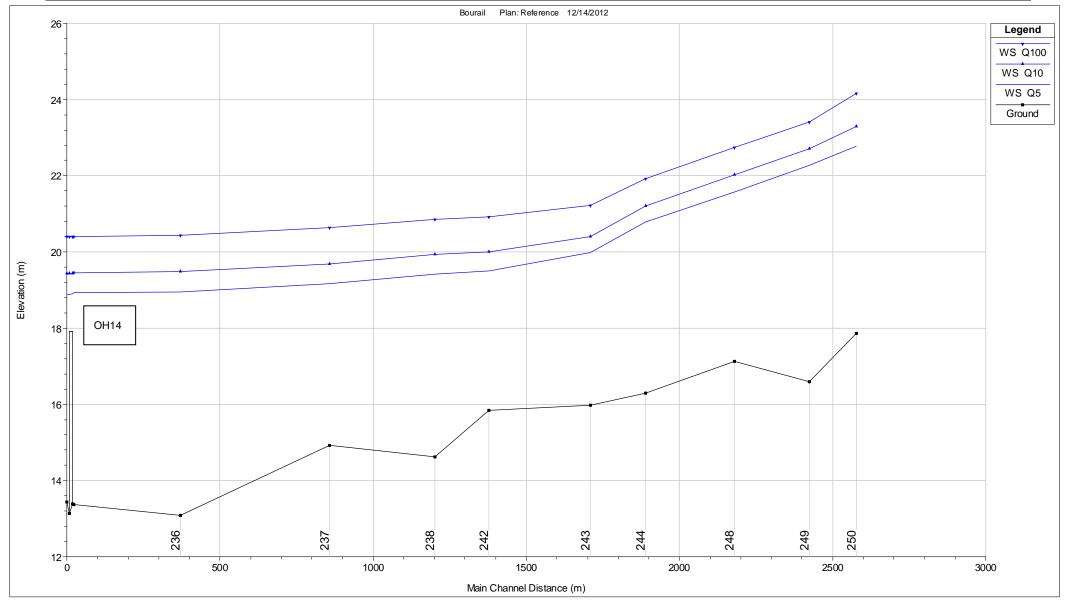


Figure 23 : Lignes d'eau simulées sur la Nandaï (Crues 5, 10, 100 ans)

Dossiers n°A001.11023 et A001.09035 Juin 2013 Page 101 sur 151

VIII.3. ARI

Les lignes d'eau calculées pour les périodes de retour 5, 10 et 100 ans sur la Ari sont présentées sur le graphe ci-dessous

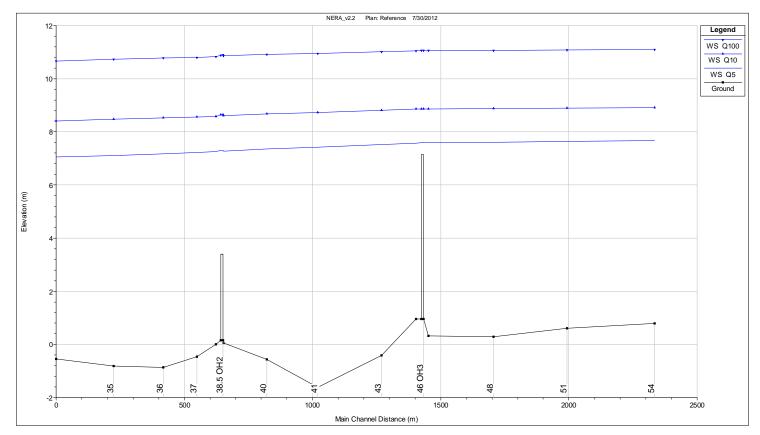


Figure 24 : Lignes d'eau simulées sur la Ari (Crues 5, 10, 100 ans)

Les résultats obtenus permettent de dresser différents constats :

- En rive gauche de la Ari, la RM10 puis la RM8 plus en aval sont totalement inondées pour chacune des périodes de retour considérées.
- L'ouvrage de franchissement de la RM 8 (OH2) situé en contre bas du village de Bourail est largement submergé pour chacune des périodes de retour simulées. En crue quinquennale, les hauteurs d'eau sur ouvrage sont déjà de 3.20 m et atteignent 6.75m en crue centennale.
- Le niveau de la Ari est très fortement conditionné par le niveau de la Néra à la confluence entre la Ari et la Boghen. L'hypothèse de concomitance des crues a une très forte influence sur ce bief.
- Les écoulements sur la Ari restent en régime fluvial.
- Les enjeux situés en contre bas du village sont impactés par les crues de période de retour centennale. Les commerces et logements situés entre la Ari et la RT1 sont mêmes susceptibles d'être inondés lors de crues de période de retour 5 ans ou plus.

VIII.4. TENE

Les lignes d'eau calculées pour les périodes de retour 5, 10 et 100 ans sur la Téné sont présentées sur le graphe ci-dessous.

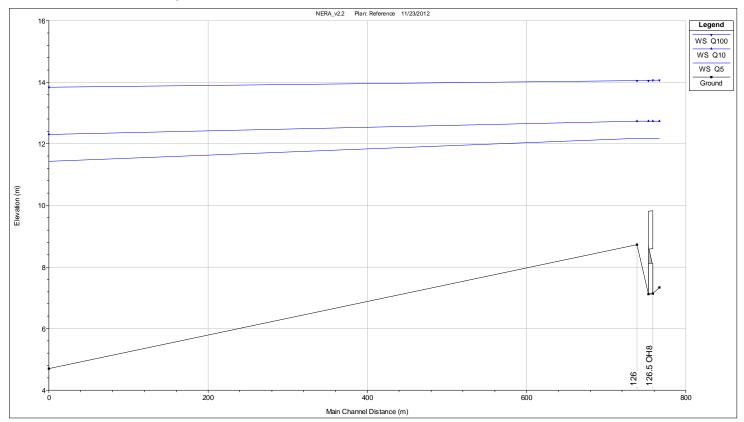


Figure 25 : Lignes d'eau simulées sur la Téné (Crues 5, 10, 100 ans)

Les résultats de cette simulation permettent de mettre en évidence que :

- l'ouvrage de franchissement de la RM8 (OH8) est complètement submergé pour toutes les crues de référence testées. Pour la crue centennale, les hauteurs d'eau atteignent 3.60m sur l'ouvrage.
- Les écoulements en crue sur ce tronçon de la Téné sont complètement contrôlés par l'aval et les niveaux dans la Boghen.

VIII.5. BOGHEN

Les lignes d'eau calculées pour les périodes de retour 5, 10 et 100 ans sur la Boghen sont présentées sur la Figure 26.

Les résultats obtenus permettent de formuler les observations suivantes :

- Les ouvrages de franchissement sont largement submergés :
 - L'ouvrage de franchissement de la RM19 modélisé (OH9) est très largement submergé dès la crue quinquennale. La capacité hydraulique de cet ouvrage (14 m³/s) reste négligeable en comparaison des débits de référence.
 - La capacité de l'ouvrage de franchissement de la RM8 (OH7) sur la Boghen est largement inférieure aux débits de référence simulés. En crue centennale, les hauteurs d'eau sur l'ouvrage atteignent jusqu'à 7m.
- La route RM25, qui longe la Boghen, est ponctuellement inondable (au droit des points bas) pour les crues de faible période de retour sur l'ensemble du secteur étudié. Entre les profils P147 et P143, cette route reste cependant hors d'eau jusqu'à la crue décennale incluse.
- Sur le secteur aval de la Boghen, la RT1 est partiellement inondable pour toutes les périodes de retour considérées (T=5, 10 et 100 ans). Les secteurs impactés sont ceux situés les plus proches de la Boghen, notamment à partir du lieu dit « Trou aux Perruches » et sur un linéaire d'environ 2 km en amont (profils P107 à P108 et Profils P119 à P128).
- A noter que la zone classée UB dans le PUD de la commune de Bourail et située au droit du lieu dit « Trou aux perruches », est partiellement soumise au risque d'inondation, notamment dans les parties les plus basses pour toutes les périodes de retour considérées (T=5, 10 et 100 ans). Les cotes d'inondation calculées sur cette zone sont de l'ordre d'environ 11 m NGNC pour la crue centennale.
- Le lit majeur de la Boghen présente une largeur de 600 à plus de 1000 m sur certain profils. La pente moyenne de la ligne d'eau est inférieure à 0.1% ce qui explique en partie que les écoulements restent toujours en régime fluvial. Des étranglements du lit majeur sont à noter tantôt en rive droite ou en rive gauche (qui se traduisent sur les lignes d'eau par des ruptures de pente, ces étranglements créant un contrôle hydraulique aval et un exhaussement de niveau). On peut souligner la configuration topographique particulière de la vallée au droit du profil P144 qui constitue un étranglement et engendre une rehausse particulièrement marquée des lignes d'eau en amont sur P145 et P146.

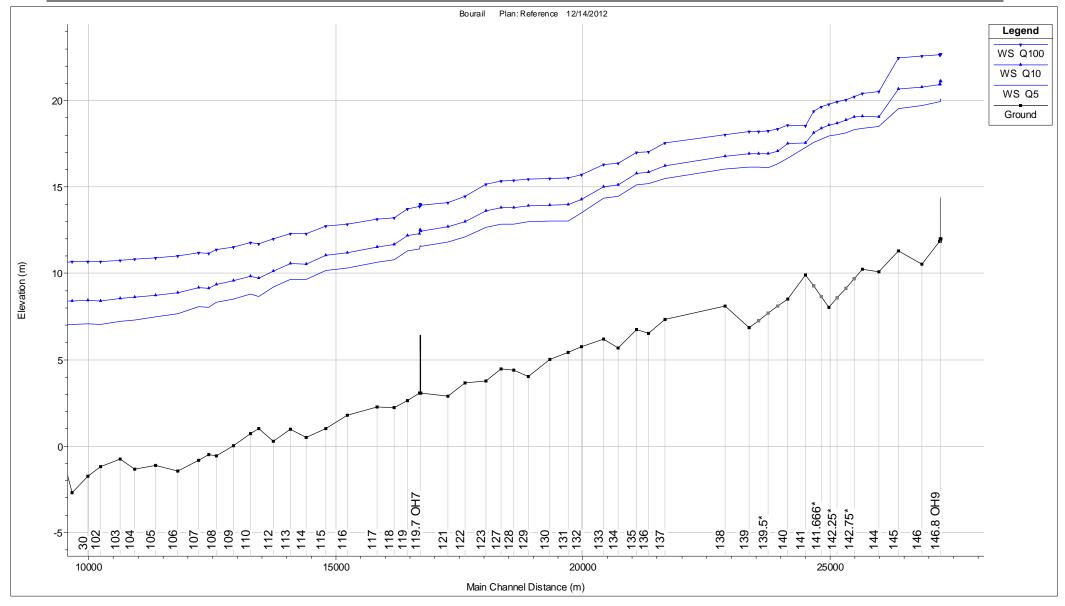


Figure 26 : Lignes d'eau simulées sur la Boghen (Crues 5, 10, 100 ans)

Dossiers n°A001.11023 et A001.09035 Juin 2013 Page 105 sur 151

VIII.6. NERA

Les lignes d'eau calculées pour les périodes de retour 5, 10 et 100 ans sur la Néra sont présentées sur le graphe de la page suivante.

Les résultats obtenus permettent de dresser les constats suivants concernant les voiries :

• La RM4 située en rive gauche de la Néra est en quasi-totalité submergée lors des crues de période de retour supérieure à 10 ans. Les hauteurs d'eau sur la voirie atteignent au maximum 4.5m en crue centennale.

Pour la crue quinquennale, cette route est déjà inondée sur une importante partie de son linéaire.

- La RP20, longeant la Néra en rive droite, est elle aussi en grande partie submergée pour chacune des périodes de retour étudiées, les hauteurs d'eau sur voirie atteignant 5 m par endroits en crue centennale.
- La RM20, route traversant le lotissement de la Roche Percée, n'est que partiellement inondable d'après les résultats de modélisation. Néanmoins, l'accès à ce lotissement (cordon littoral) est conçu pour s'ouvrir de façon précoce lors des crues, favorisant ainsi l'évacuation des forts débits mais isolant totalement les riverains du lotissement de la Roche Percée.

L'ouvrage de franchissement de la RT1 (OH1) reste hors d'eau pour chacune des périodes de retour étudiées. Néanmoins, la ligne d'eau centennale affleure le dessous du tablier, ce qui a d'ailleurs déjà été observé lors de la Grande Inondation de 1990.

On observe tout de même une rehausse marquée des lignes d'eau en amont de l'ouvrage qui atteint environ 1,50 m pour la crue centennale. Ce phénomène est cependant principalement lié à la configuration topographique du secteur (rétrécissement à l'« entonnement » de la vallée de la Néra), l'influence de l'ouvrage n'étant a priori pas significative du fait qu'il n'est pas submergé.

Un remous important (près de 1,5 m) est également à noter se ce tronçon entre les profils P15 et P16. Ce phénomène est probablement lié au léger rétrécissement de la vallée au droit du profil P15 (par rapport au P16) puis à l'élargissement notable en aval (sur P14 et P13).

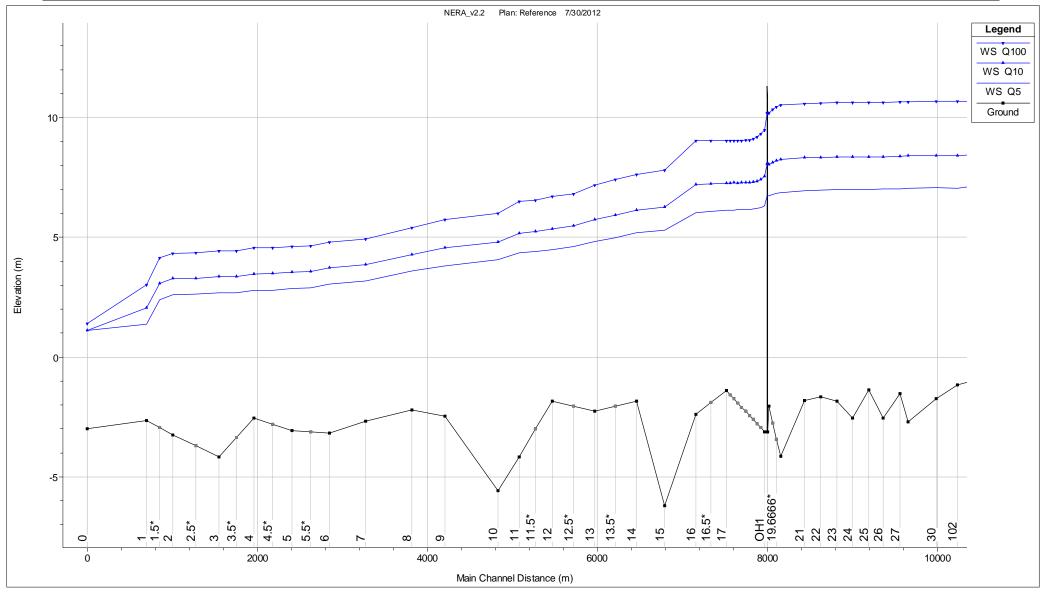


Figure 27 : Lignes d'eau simulées sur la Néra (Crues 5, 10, 100 ans)

Dossiers n°A001.11023 et A001.09035 Juin 2013 Page 107 sur 151

IX. COMPARAISON DES RESULTATS DES DIFFERENTES ETUDES

IX.1. COMPARAISON DES RESULTATS DE MODELISATION

A l'issue de l'étape de modélisation, les résultats obtenus dans le cadre de la présente étude ont été comparés aux résultats de l'étude des zones inondables antérieure réalisée par Hydrex en 1991. Cette confrontation des résultats est présentée dans le Tableau 42, ainsi que sur la Planche 14.

Un tracé des lignes d'eau pour les différents biefs obtenues à partir des études SOPRONER et Hydrex a également été effectué pour la crue centennale (cf. Figure 28, Figure 29 et la Figure 30). Sur ces tracés sont présentées pour les différents biefs les lignes d'eau obtenues à partir de l'étude Hydrex ainsi que celles obtenues à partir de l'étude SOPRONER avec les débits de référence de l'étude SOPRONER.

Cette confrontation fait apparaître un abaissement généralisé des niveaux de la ligne d'eau pour la crue centennale (valeurs situées entre -0,50 m à -2,30 m) par rapport aux résultats de l'étude Hydrex. Pour les crues de période de retour 5 et 10 ans, les différences entre les résultats des deux études sont un peu moins marquées.

Cette différence importante pour la crue centennale s'explique principalement par la modification du débit dans le bief Néra (limité au débit de période de retour centennal dans le cadre de la présente étude) qui conditionne le niveau des lignes d'eau au point de confluence Ari- Boghen-Néra et influe fortement sur les niveaux des lignes d'eau sur la Ari et la Boghen. Rappelons que le débit qui a -a priori- été utilisé par Hydrex sur le bief Néra est supérieur au débit de crue centennal de ce cours d'eau (8 450 m³/s > 6 500 m³/s.)

Dans une moindre mesure la réduction des débits de crues de l'ordre de 5 à 20% sur les autres biefs contribue également à cet écart.

Au-delà des conditions limites de débit, les autres paramètres (rugosité, caractéristiques des ouvrages...) n'ont pas pu être comparés de manière précise dans la mesure où ils ne sont pas présentés dans le rapport d'étude Hydrex.

Il semble néanmoins que les paramètres et les conditions d'écoulement retenus dans le cadre de la présente étude (et qui ont été ajustés lors d'une étape de calage du modèle hydraulique sur des évènements réels) soient plus favorables : ce constat est illustré par les résultats de l'analyse de sensibilité effectuée qui montrent qu'une variation de 20% sur les valeurs des débits de pointe induit une variation des niveaux d'eau plutôt de l'ordre de 1 m.

On peut aussi interpréter ce résultat de la façon suivante : dans l'hypothèse où les débits retenus dans l'étude Hydrex auraient été conservés dans le cadre de la présente étude et injectés dans le modèle hydraulique, les résultats sur les niveaux d'inondations que l'on obtiendrait seraient également très probablement encore en-deçà des résultats qui ont été obtenus dans l'étude Hydrex, d'où ce constat.

Bief	Profil hydrex	Profil SOPRONER	T=5 ans		T=10 ans		Cote d'inondation centennale (m NGNC)				
			Hydrex	Soproner	Δ	Hydrex	Soproner	Δ	Hydrex	Soproner	Δ
	H00	P8	4	3.59	-0.41	4.65	4.29	-0.36	6.6	5.4	-1.2
Néra	F01	P11	4.65	4.35	-0.3	5.4	5.18	-0.22	7.7	6.5	-1.2
ivera	E00	P15	5.9	5.29	-0.61	6.8	6.28	-0.52	9.7	7.82	-1.88
	Pont	P18	6.8	6.32	-0.48	7.85	7.54	-0.31	11.2	9.49	-1.71
	A00	P102	7.3	7.04	-0.26	8.3	8.4	0.1	12.7	10.67	-2.03
Boghen	S05	P107.5	8.3	8.05	-0.25	9.15	9.13	-0.02	13.15	11.16	-1.99
	S11	P123	12.05	12.65	0.6	12.8	13.61	0.81	15.7	15.17	-0.53
Ari	P02	P37	7.5	7.22	-0.28	8.55	8.55	0	12.9	10.8	-2.1
All	P03	P40	7.65	7.36	-0.29	8.65	8.68	0.03	12.95	10.91	-2.04
Douencheur	P09	P61	8.85	8.06	-0.79	9.75	9.15	-0.6	13.65	11.23	-2.42
Aval	P14	P80	11.65	11.4	-0.25	12.1	11.95	-0.15	14.55	12.95	-1.6
Pouéo Aval	T03	P92	8.25	7.8	-0.45	9.2	8.98	-0.22	13.4	11.13	-2.27

Tableau 42: Comparaison des résultats entre l'étude Hydrex (1991) et l'étude SOPRONER pour la crue centennale

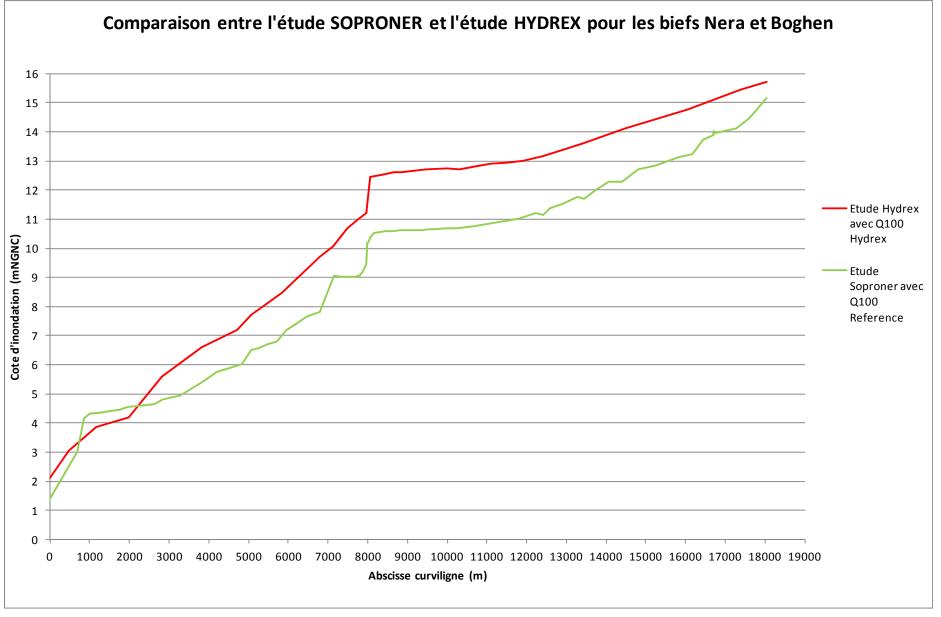


Figure 28 : Comparaison entre l'étude SOPRONER et l'étude Hydrex pour les biefs Néra et Boghen

Page 110 sur 151

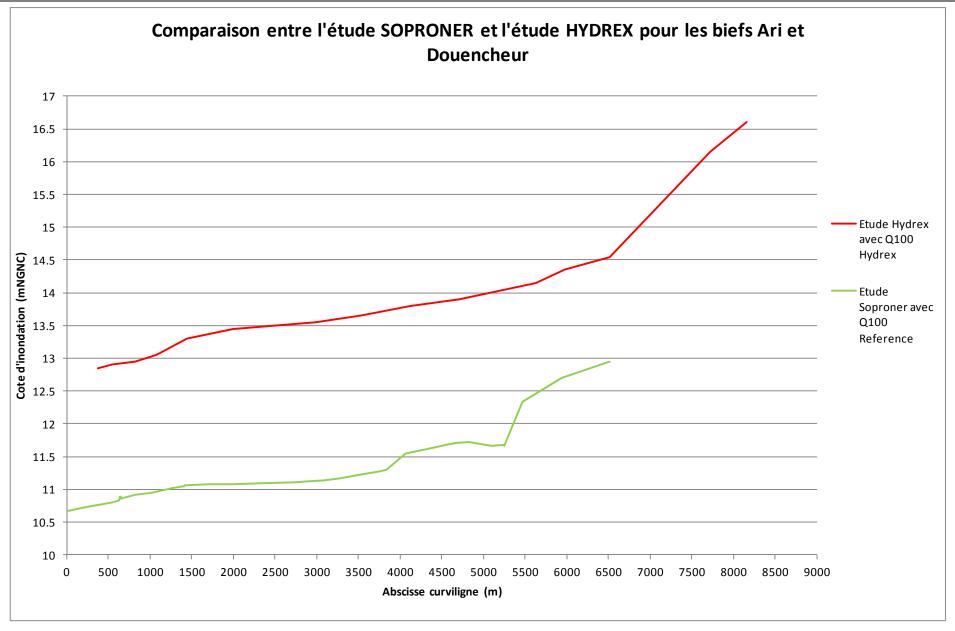


Figure 29 : Comparaison entre l'étude SOPRONER et l'étude Hydrex pour les biefs Ari et Douencheur

Dossiers n°A001.11023 et A001.09035 Juin 2013 Page 111 sur 151 ISO9001 : FDT1_V1/10-10

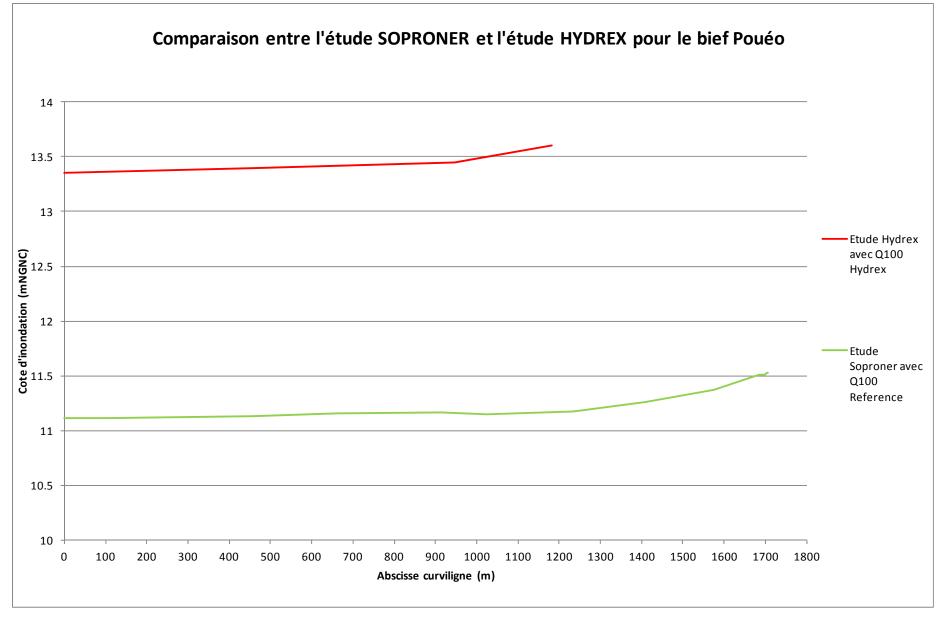
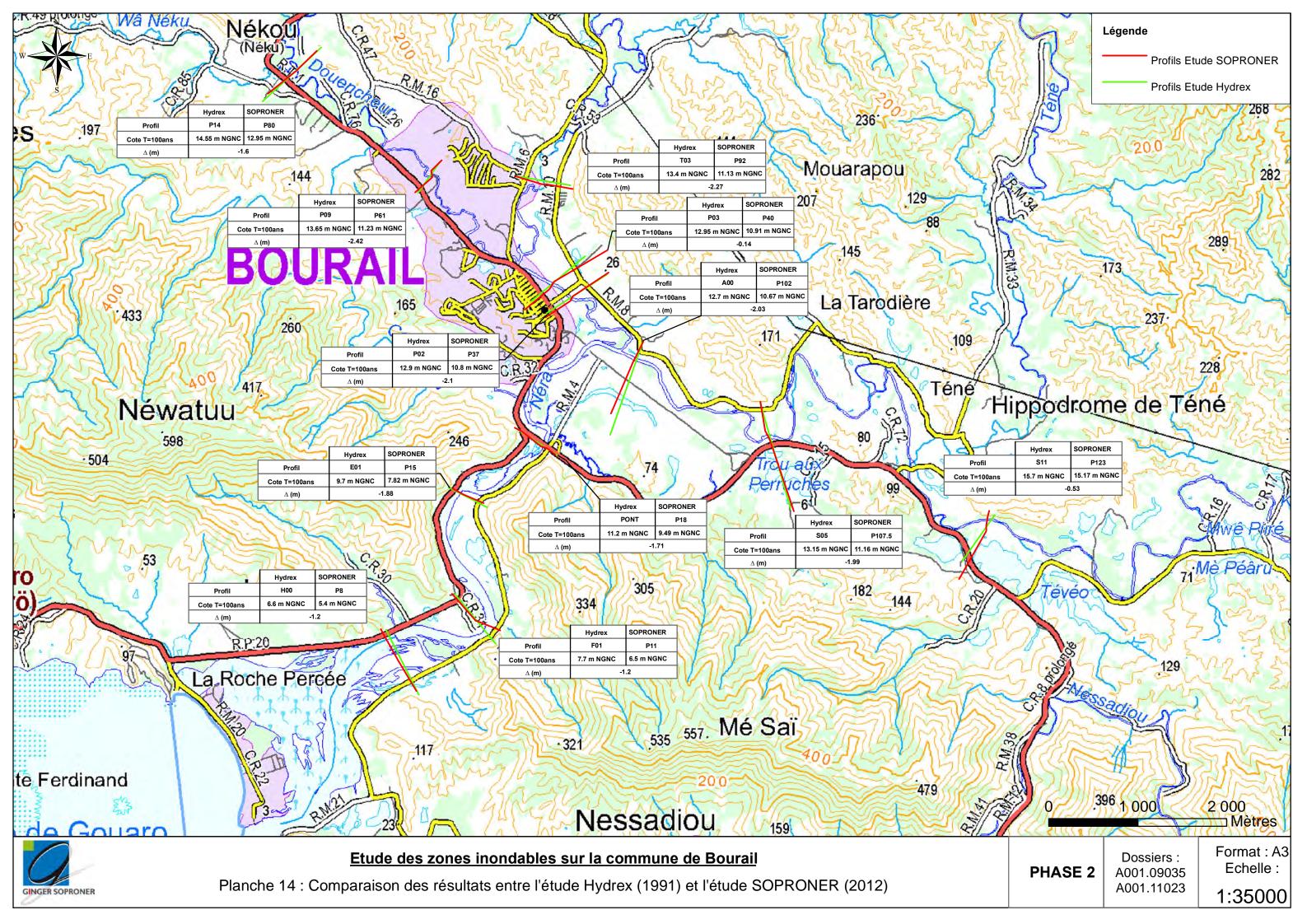



Figure 30 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour le bief Pouéo

Dossiers n°A001.11023 et A001.09035 Page 112 sur 151
Juin 2013 ISO9001 : FDT1_V1/10-10

IX.2. MODELISATION EN CONSERVANT LES HYPOTHESES HYDROLOGIQUES DE L'ETUDE HYDREX

IX.2.1. Préambule

Les hypothèses hydrologiques ayant été revues dans le cadre de la présente étude (évaluation des débits de crues et hypothèses de concomitance de crue sur les affluents), il a été demandé de procéder de nouvelles simulations sur le modèle hydraulique en conservant les hypothèses hydrologiques utilisées par Hydrex.

Cette partie a donc pour objet de présenter les résultats de ces simulations.

IX.2.2. Hypothèses

Afin de vérifier les suppositions émises précédemment, de nouvelles simulations ont été réalisées sur le modèle hydraulique en reprenant les hypothèses hydrologiques retenues dans l'étude Hydrex. L'analyse approfondie du rapport de synthèse de l'étude Hydrex montre des incohérences sur les valeurs de débit qui ont effectivement été retenue sur le bief Néra pour la modélisation.

Plusieurs hypothèses concernant les apports de débits ont été envisagées dans le cadre de cette étude :

- Une 1^{ère} hypothèse où la Boghen participe de manière prépondérante à la genèse de la crue de période T de la Néra,
- Une seconde hypothèse, où la Pouéo et la Douencheur participent de manière prépondérante à la genèse de la crue de période T de la Néra.
- Un troisième scénario a été défini en retenant les valeurs de débits les plus importantes parmi les deux premières hypothèses (cf. tableau ci-dessous). Cette méthode conduit à un débit total sur le tronçon aval (Néra) supérieur au débit de crue centennale (8450 m³/s pour Q100= 6500 m³/s).

	Hypothèse 1		Hypothèse 2		Débits Modélisation	
	Répartition	Débit (m³/s)	Répartition	Débit (m³/s)	Répartition	Débit (m³/s)
Pouéo	15%	980	30%	1960	30%	1960
Douencheur	20%	1300	35%	2270	35%	2270
Boghen	65%	4220	35%	2270	65%	4220
Somme des affluents	100%	6500	100%	6500	130%	8450

Tableau 43 - Hypothèses de débit de l'étude Hydrex pour la crue de période de retour T=100 ans

Il semble donc que ce soit le troisième scénario qui été retenu pour la modélisation malgré qu'il subsiste un doute à la lecture des tableaux de résultats de modélisation ou le débit indiqué pour le bief **Néra est de 6500 m³/s** (cf. Extrait du rapport Hydrex sur la Figure 31 en page suivante).

Figure 31 : Extrait du rapport de l'étude Hydrex (1991) – Délimitation de la zone inondable de la rivière Néra §IV.1

IV - ETUDE DE LA ZONE INONDABLE

Crue T=100 ans

	POINT	PK	DEDIM	COTE NGNC	VI MECCI	MOYENNE	(((())
1	POINT	(Km)	DEBIT (m3/s)	(m)	R.G.	mineur	R.D.
		(Kill)	(111373)	(1117)	K.G.	mineur	К.Б.
NERA	BAIE	18.000	6500.00	2.10		1.30	
	L4	17.620	6500.00	3.05	3.00	4.10	0.45
1	L3	17.095	6500.00	3.85	1.80	2.05	0.45
	L2	16.445	6500.00	4.20	1.45	2.50	0.80
	L1	15.795	6500.00	5.60	2.50	4.50	1.00
1	н і	15.020	6500.00	6.60	1.25	3.40	0.85
1	G	14.120	6500.00	7.20	0.80	2.95	1.15
	F1	13.745	6500.00	7.70	0.35	4.45	1.15
· ·	F	12.995	6500.00	8.45	0.70	3.70	1.05
	E	12.045	6500.00	9.70	1.55	5.20	0.55
ì	D1	11.670	6500.00	10.05	1.20	3.80	1.70
ĺ	D	11.270	6500.00	10.70	0.90	4.90	2.10
1	C	10.970	6500.00	11.00	0.45	4.65	1.85
1	PONT	10.750	6500.00	11.20	1.75	4.50	1.10
	B2	10.645	6500.00	12.45	1.15	3.10	1.30
1	B1	10.270	6500.00	12.55	0.85	2.00	0.65
1	B3	10.050	6500.00	12.60	0.75	1.80	0.70
1	В	9.870	6500.00	12.60	0.75	1.70	0.60
ì	RT1	9.240	6500.00	12.70	0.80	2.00	0.65
	P	8.720	6500.00	12.75	0.85	1.65	0.75
ARI (P1	8.060	4230.00	12.85	0.95	1.90	0.80
J	P2	7.605	4230.00	12.90	0.75	1.45	0.70
-	P3	7.335	4230.00	12.95	0.90	2.10 {	0.95
	P4	7.085	4230.00	13.05	0.70	2.15	0.90
ļ	P5	6.715	4230.00	13.30	1.15	3.05	2.25
DOUENCHEUR	P7	6.125	2270.00	13.45	0.85	1.30	0.90
DOOBNONDOR	P8	5.135	2270.00	13.55	0.80	0.90	0.75
ł	P9	4.595	2270.00	13.65	1.15	1.65	1.10
1	P10	4.005	2270.00	13.80	0.85	1.40	0.90
}	P11	3.425	2270.00	13.90	0.95	1.30	0.95
1	P12	2.525	2270.00	14.15	1.10	1.50	1.15
1	P13	2.185	2270.00	14.35	1.35	1.95	1.35
1	P14	1.645	2270.00	14.55	1.25	1.50	1.30
}	P15	0.445	2270.00	16.15	2.40	2.95	2.75
	P16	0.000	2270.00	16.60	1.25	2.40	1.40
1							
POUEO	T2	1.250	1960.00	13.35	0.40	0.95	0.40
1	T3	0.725	1960.00	13.40	0.50	1.10	0.50
1	T4	0.235	1960.00	13.45	0.75	1.45	0.65
. (T 5	0.000	1960.00	13.60	1.20	2.50	1.15
Dogum.		2 120	4000 00	10.70	0.70	1 50	~ 75
BOGHEN	A	2.120	4220.00	12.70	0.70	1.50	0.75
)	S1	1.720	4220.00	12.80	0.95	1.85	0.95
Į	S2 (1.335	4220.00	12.90	0.85	1.90	0.85
	53	0.910	4220.00	12.95	0.70	1.60	0.65
, J	S4	0.520	4220.00	13.00	0.85	1.85	0.85
J	S5	0.000	4220.00	13.15	1.20		1.05
l	86	-0.900	4220.00	13.60	1.10	2.95	1.60
, j	S7	-1.900	4220.00	14.10	0.75	2.90	1.40
1	S8	-3.350	4220.00	14.75	1.35	2.75	0.85
j	S10	-4.600	3380.00	15.45	0.85	3.20	1.95
/	S11	-5.200	3380.00	15.70	1.15	2.50	0.60
į.							

En définitive, afin de tenter de lever ce doute, nous avons réalisé deux séries de simulations selon deux hypothèses de débits pour le bief Néra :

Hypothèse 1 : Q Néra = 6500 m3/s

Hypothèse 2 : Q Néra = 8450 m3/s

Aucune donnée concernant le bief Téné n'est présentée dans le rapport d'étude Hydrex. Le débit de référence mentionné dans l'étude GINGER SOPRONER pour ce bief pour la crue centennale (1216 m³/s) est donc conservé.

A noter que le modèle hydraulique réalisé par GINGER SOPRONER permet de prendre en compte les apports progressifs du bassin versant sur le bief lors d'un épisode pluvieux, ainsi, différents débits sont appliqués sur les différentes sections d'un même bief (cf. exemple Tableau 44). D'après le rapport d'étude Hydrex, pour un bief donné, le même débit a été appliqué sur chaque section de ce dernier.

Bief	Section	Q100 Soproner (m³/s)	Q100 Hydrex (m³/s)
Douencheur	80	1754	2270
Douencheur	78	1773	2270
Douencheur	67	1794	2270
Douencheur	63	1800	2270
Douencheur	59	1844	2270

Tableau 44 : Débits appliqués à différentes sections de la Douencheur pour la crue centennale

Afin de respecter le principe de modélisation de l'étude Hydrex, le même débit a été appliqué sur les différentes sections d'un même bief.

IX.2.3. Hypothèse 1 – Qnera = 6500 m3/s - Résultats

Les valeurs de débits retenues dans le cadre de l'hypothèse 1 sont présentées dans le tableau suivant :

Bassin versant	Débits retenu par Hydrex (m³/s)
Douencheur	2270
Pouéo	1960
Ari	4230
Boghen amont	3380
Boghen	4420
Néra	6500

Tableau 45 : Débits retenus dans l'étude Hydrex pour la crue centennale

Ces valeurs sont issues du tableau de résultats de simulation pour la crue centennale (cf. Figure 31).

La modification des débits dans la Néra et la Boghen induit une modification des conditions limite aval des biefs Ari et Téné dans le modèle hydraulique. La condition limite aval pour la Ari est fixée par la cote de la ligne d'eau de la Néra au droit de sa confluence, correspondant à la période de retour considérée, soit la moyenne des cotes atteintes en P30 et P29. De même pour Téné, où la condition limite aval correspond au niveau de la ligne d'eau de la Boghen au droit de sa confluence, correspondant au débit de crue de la période de retour considérée, soit la moyenne entre les cotes atteintes en P120 et P119. Les conditions limites aval pour ces deux biefs dans le cadre de ces hypothèses de débits sont présentées dans le tableau suivant :

Bief	CL aval (mNGNC)	
Ari	11.1	
Téné	13.7	

Tableau 46 : Conditions limite aval pour la Ari et la Téné dans le cadre de l'hypothèse 1

La confrontation des résultats de l'étude Hydrex et des nouvelles simulations sur le modèle construit par GINGER SOPRONER est présentée dans le tableau suivant ainsi que sur la Planche 15. Un tracé des lignes d'eau obtenues à partir des deux études (Hydrex et GINGER SOPRONER) a également été effectué pour la crue centennale (cf. Figure 32, Figure 33 et Figure 34).

Les graphiques présentent les lignes d'eau obtenues à partir des différentes modélisations.

		Cote inond	lation centennale (r	mNGNC)
Profil Hydrex	Profil Soproner	Etude Hydrex avec débits retenus par Hydrex	Etude Soproner avec débits retenus par Hydrex	Δ (m)
H00	P8	6.6	5.54	-1.06
F01	P11	7.7	6.69	-1.01
E01	P15	9.7	8.05	-1.65
Pont	P18	11.2	9.82	-1.38
A00	P102	12.7	11.09	-1.61
S05	P107.5	13.15	11.54	-1.61
S11	P123	15.7	15.24	-0.46
P02	P37	12.9	11.34	-1.56
P03	P40	12.95	11.52	-1.43
P09	P61	13.65	11.96	-1.69
P14	P80	14.55	13.64	-0.91
T03	P92	13.4	11.86	-1.54

Tableau 47 : Confrontation des résultats entre l'étude Hydrex (1991) et Soproner pour la crue centennale avec débits Hydrex conservés

De cette confrontation, il apparaît que les niveaux de la ligne d'eau sont abaissés en moyenne de 1.30 m par rapport aux résultats de l'étude Hydrex.

On peut donc en conclure que la différence de débit centennal entre les deux études comparées (5820 m³/s pour SOPRONER et 6500 m³/s pour HYDREX sur la Néra) ne permet pas d'expliquer les écarts identifiés entre ces 2 études.

Ce résultat tend donc à confirmer que le débit injecté sur le bief Néra injecté dans le modèle de l'étude Hydrex soit effectivement de 8450 m³/s.

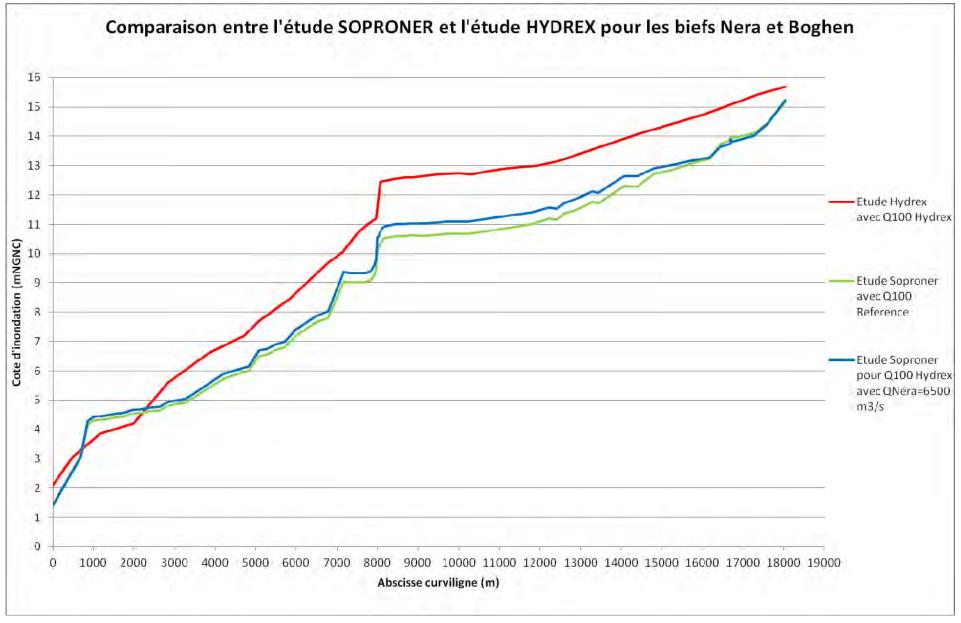


Figure 32 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour les biefs Néra et Boghen - Hypothèse 1 : Q_{NERA} = 6500 m3/s

Page 119 sur 151

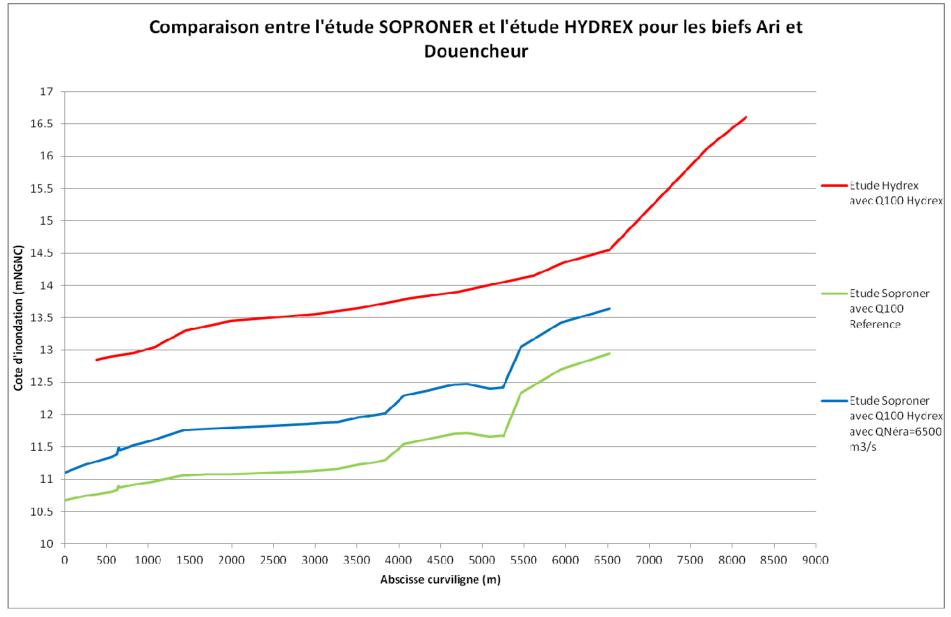
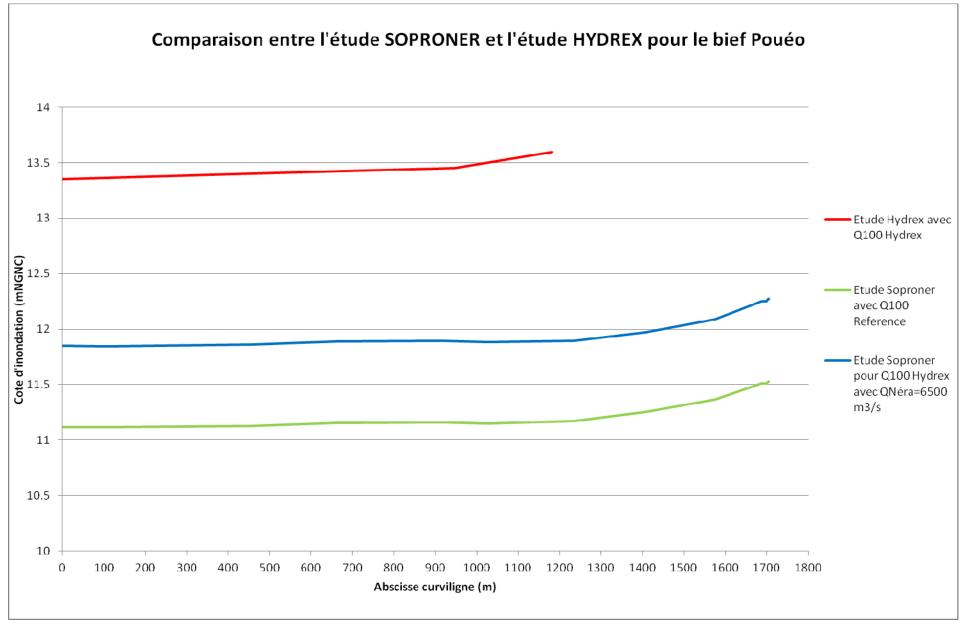
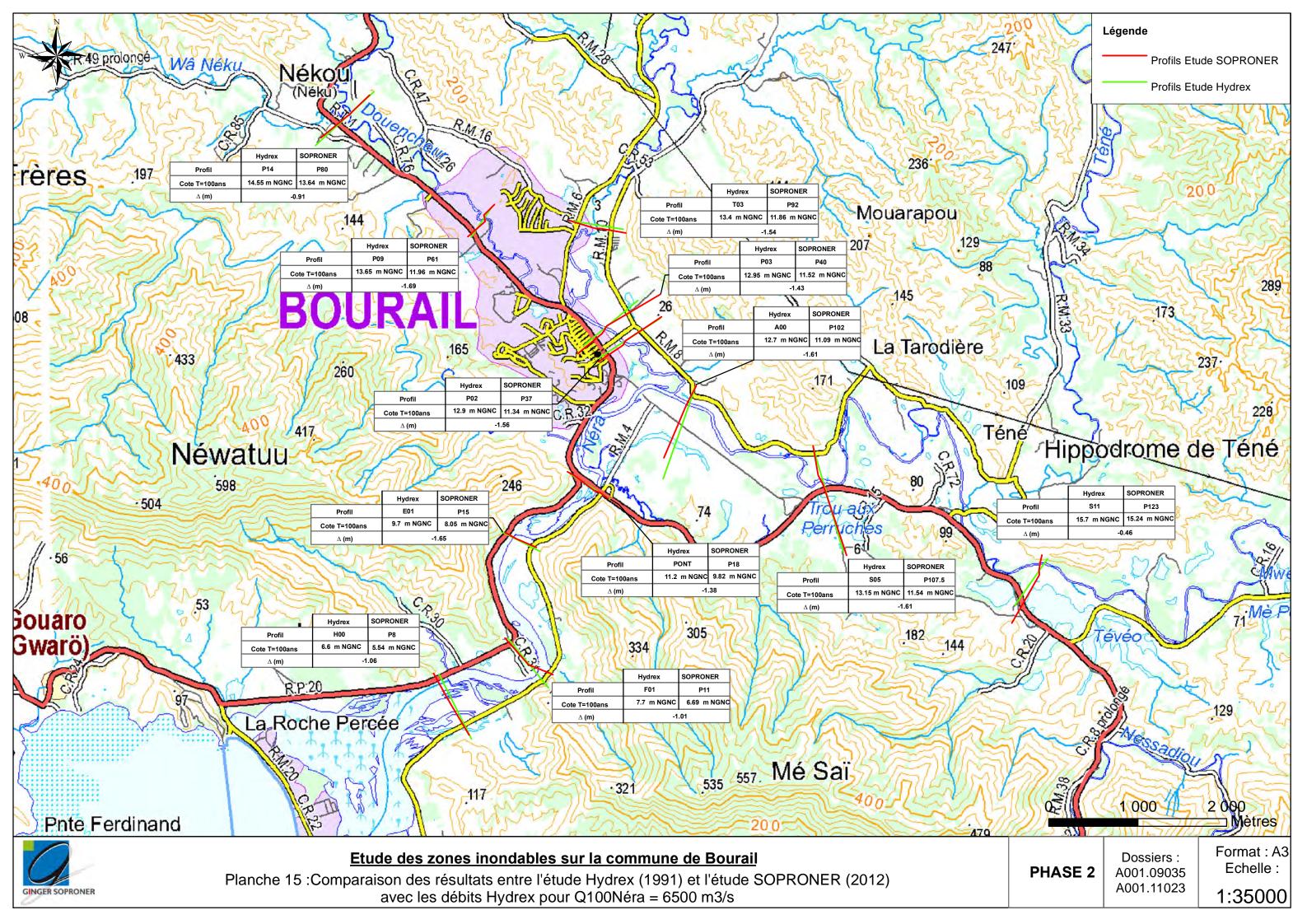



Figure 33 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour les biefs Ari et Douencheur - Hypothèse 1 : Q_{NERA} = 6500 m3/s


Page 120 sur 151

Page 121 sur 151 ISO9001 : FDT1_V1/10-10

IX.2.4. Hypothèse 2 – QNera = 8450 m3/s - Résultats

Les valeurs de débits retenues dans le cadre de l'hypothèse 2 sont présentées dans le tableau suivant :

Bassin versant	Débits retenu par Hydrex (m³/s)
Douencheur	2270
Pouéo	1960
Ari	4230
Boghen amont	3380
Boghen	4420
Néra	8450

Tableau 48 : Débits retenus par Hydrex avec Q100-Néra = 8450 m³/s

La modification des débits dans la Néra et la Boghen induit une modification des conditions limites aval des biefs Ari et Téné dans le modèle hydraulique. La condition limite aval pour la Ari est fixée par la cote de la ligne d'eau de la Néra au droit de sa confluence, correspondant à la période de retour considérée, soit la moyenne des cotes atteintes en P30 et P29. La condition limite aval de la Téné correspond au niveau de la ligne d'eau de la Boghen au droit de sa confluence, correspondant au débit de crue de la période de retour considérée, soit la moyenne entre les cotes atteintes en P120 et P119. Les conditions limites aval pour ces deux biefs dans le cadre de ces hypothèses de débits sont présentées dans le tableau suivant :

Bief	CL aval (mNGNC)	
Ari	12.66	
Téné	14.30	

Tableau 49 : Conditions limites aval pour la Ari et la Téné dans le cadre de l'hypothèse 2

Aucune donnée concernant le bief Téné n'est présentée dans le rapport d'étude Hydrex. Ainsi, de même que pour la comparaison précédente, le débit de référence mentionné dans l'étude GINGER SOPRONER pour ce bief pour la crue centennale (1216 m³/s) a été conservé.

La confrontation des résultats de l'étude Hydrex et des nouvelles simulations sur le modèle construit par GINGER SOPRONER est présentée dans le tableau suivant ainsi que sur la Planche 16. Un tracé des lignes d'eau obtenues à partir des deux études Hydrex et GINGER SOPRONER) a également été effectué pour la crue centennale (cf. Figure 35, Figure 36 et Figure 37).

Les graphiques présentent les lignes d'eau obtenues à partir des différentes modélisations.

		Cote inonc	lation centennale (ı	mNGNC)
Profil Hydrex	Profil Soproner	Etude Hydrex avec débits retenus par Hydrex	Etude Soproner avec débits retenus par Hydrex avec QNéra=8450 m3/s	Δ (m)
H00	P8	6.6	6.23	-0.37
F01	P11	7.7	7.54	-0.16
E01	P15	9.7	9.02	-0.68
Pont	P18	11.2	10.96	-0.24
A00	P102	12.7	12.68	-0.02
S05	P107.5	13.15	12.9	-0.25
S11	P123	15.7	15.47	-0.23
P02	P37	12.9	12.81	-0.09
P03	P40	12.95	12.92	-0.03
P09	P61	13.65	13.16	-0.49
P14	P80	14.55	14.15	-0.4
T03	P92	13.4	13.11	-0.29

Tableau 50 : Confrontation des résultats entre l'étude Hydrex (1991) et Soproner pour la crue centennale avec débits Hydrex conservés et pour un débit dans la Néra de 8450 m³/s

De cette confrontation, il apparaît que les niveaux de la ligne d'eau sont abaissés en moyenne de 30 cm par rapport aux résultats de l'étude Hydrex.

Les écarts entre les lignes d'eau sont de l'ordre de 30 cm sur la Néra, 6 cm sur la Ari, 45 cm sur la Douencheur et 30 cm sur la Pouéo.

L'analyse des ces résultats confirme a priori que l'hypothèse retenue dans le cadre de la modélisation Hydrex soit effectivement la valeur 8450 m³/s pour le débit sur le bief Néra.

La simulation de cette hypothèse de débit avec le modèle de GINGER SOPRONER fournit en effet des résultats beaucoup plus cohérents avec les résultats obtenus par Hydrex.

Il subsiste néanmoins encore quelques des écarts (plus modestes) qui pourraient être expliqués soit par des différences sur les paramètres et les conditions d'écoulement entre les deux modèles, soit par des évolutions de la géométrie sur le lit mineur des cours d'eau.

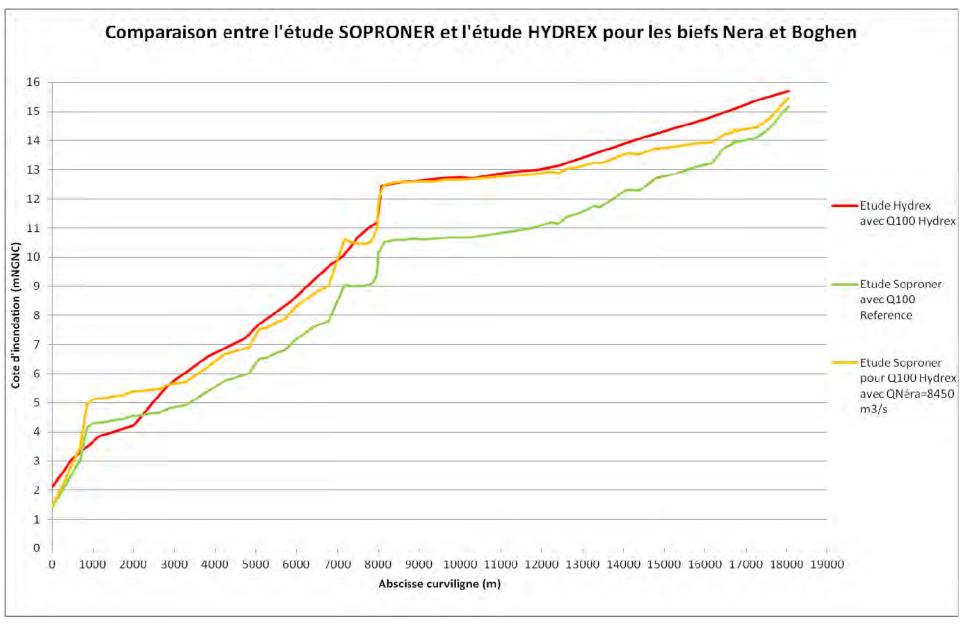


Figure 35 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour les biefs Néra et Boghen - Hypothèse 2 : Q_{NERA} = 8450 m3/s

Page 125 sur 151 ISO9001 : FDT1_V1/10-10

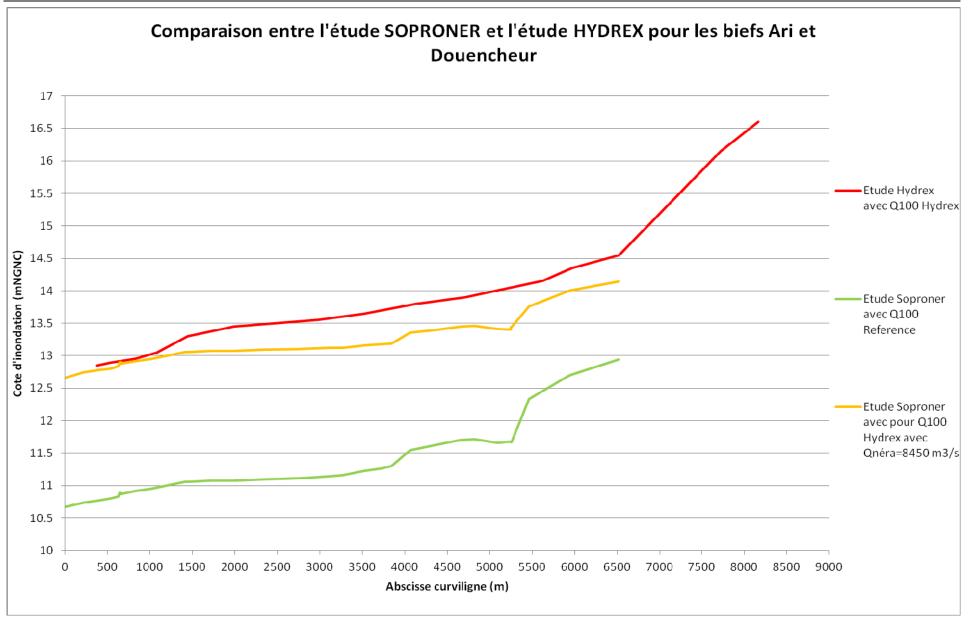


Figure 36 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour les biefs Ari et Douencheur - Hypothèse 2 : Q_{NERA} = 8450 m3/s

Page 126 sur 151

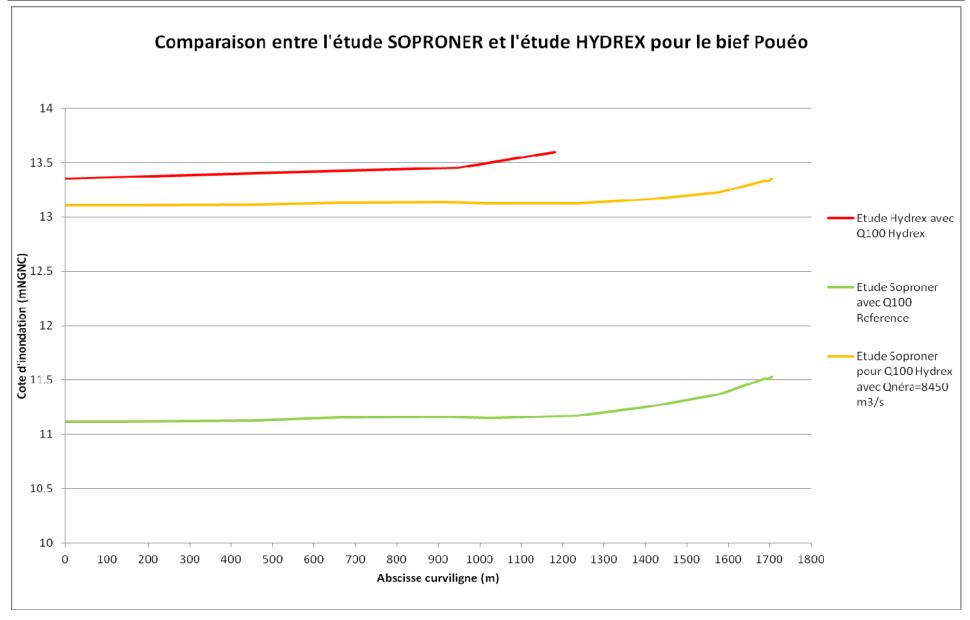
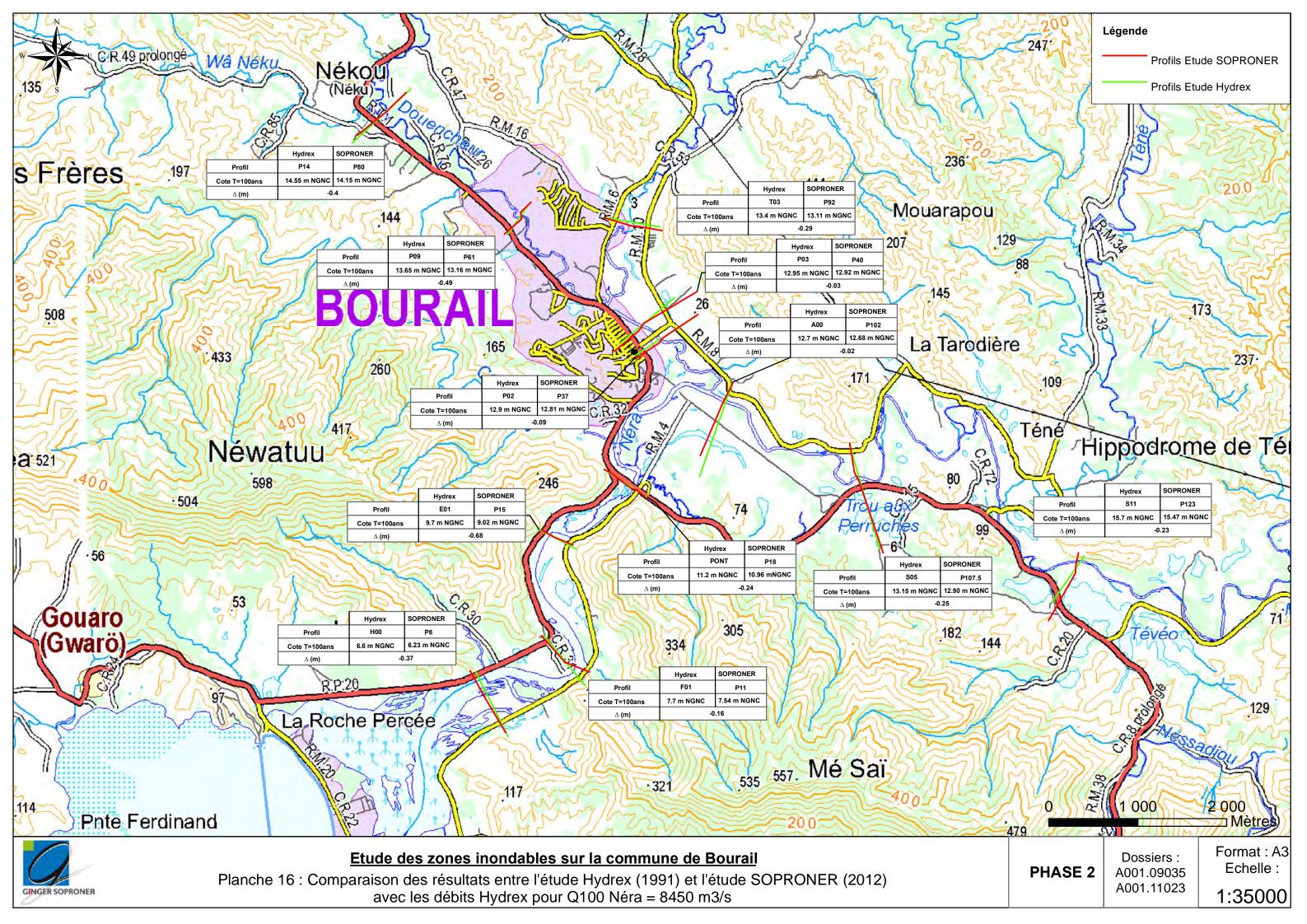



Figure 37 : Comparaison entre l'étude SOPRONER et l'étude HYDREX pour le bief Pouéo - Hypothèse 2 : Q_{NERA} = 8450 m3/s

Page 127 sur 151

X. ANALYSE DE SENSIBILITE

Une analyse de sensibilité du modèle hydraulique aux différentes hypothèses qui ont été considérées a été conduite dans le cadre de cette étude. Les graphes de comparaison des lignes d'eau issues des différentes modélisations réalisées sont disponibles en Annexe 9 du présent document. Cette analyse de sensibilité a pour objectifs :

- de fournir des éléments pour le choix et la définition des hypothèses de modélisation ;
- d'évaluer la précision de la méthode de modélisation et déterminer un intervalle de confiance pour les résultats obtenus.

X.1. SENSIBILITE AUX VARIATIONS DE DEBIT

Les limites basse et haute de l'intervalle de confiance du débit de crue centennale déterminées lors de l'analyse hydrologique (cf. paragraphe III.2.3 Analyse des résultats en page 57) ont été simulées :

	Débit centennal (m³/s)			
Bassin versant	Limite Inférieure	Référence	Limite Supérieure	
Douencheur -Confluence Pouéo/Douencheur	1553	1844	2358	
Pouéo -Confluence Pouéo/Douencheur	1343	1595	2039	
Boghen -Confluence Téné/Boghen	2692	3198	4088	
Téné -Confluence Téné/Boghen	1024	1216	1555	
Boghen -Confluence Ari/Boghen	3349	3978	5085	
Ari -Confluence Ari/Boghen	2455	2917	3729	
Néra -Embouchure	5213	6192	7916	

Tableau 51 : Débits simulés pour l'estimation de l'incertitude

Il ressort de cette analyse une variation moyenne des lignes d'eau de ±1m par rapport à la ligne d'eau centennale. Ces différences peuvent paraître importantes, elles sont à relativiser au regard

des hauteurs d'eau dans les lits mineur et majeur du cours d'eau : en terme de variation de hauteur d'eau cela représente environ ±10% en lit mineur (hauteurs d'eau moyenne aux environs de 10 m) et environ ±20% en lit majeur (hauteurs d'eau moyenne aux environs de 5 m)

Ces différences sont dues aux importantes variations de débit : la limite haute représente une augmentation de débit d'environ 30%.

X.2. SENSIBILITE AUX VARIATIONS DE LA RUGOSITE

Une variation de ±20% des coefficients de Strickler traduisant la rugosité et donc les pertes de charge linéaires par frottement a été testée. Il ressort de cette simulation une variation moyenne de la ligne d'eau de ±50 cm par rapport à celle obtenue pour la crue centennale. Cette sensibilité du modèle aux variations de rugosité est non négligeable mais est toutefois à relativiser au vu des hauteurs d'eau dans le cours d'eau : en terme de variation de hauteur d'eau cela représente environ ±5 % par rapport aux hauteurs d'eau en lit mineur ou lit majeur.

X.3. SENSIBILITE AUX VARIATIONS DE CONDITION LIMITE AVAL DE LA NERA

⇒ Rupture du cordon littoral

Selon les informations que nous avons a disposition, le cordon littoral qui relie le lotissement de la Roche Percée à la route RP20, a été conçu pour céder en cas de fortes crues. Néanmoins, comme cela a pu être le cas par le passé, le comportement réel de cet ouvrage est délicat à appréhender et ne peut pas être connu avec certitude.

De ce fait, l'hypothèse qui a été retenue pour les simulations des crues de référence, est sécuritaire puisque nous avons considéré que ce cordon littoral résiste et limite la capacité d'évacuation à l'embouchure.

Dans le cadre de la présente analyse de sensibilité, nous avons considéré et testé une autre hypothèse en supposant que le cordon cède lors de la pointe de crue et que le chenal qui se forme s'approfondi jusqu'à la même cote que le lit mineur principal (cf. Figure 38).

Etude des zones inondables sur la Commune de Bourail

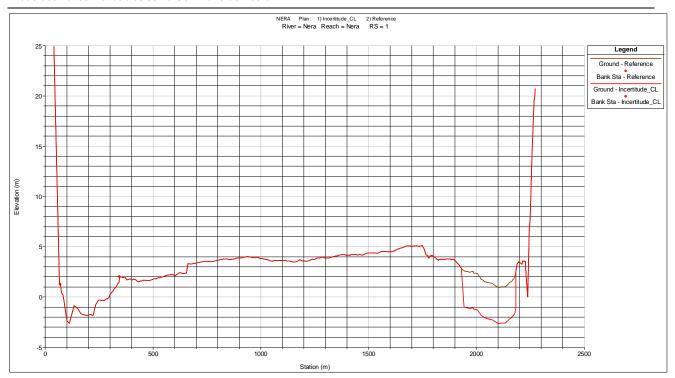


Figure 38 : Profil en travers P1 en état de référence (marron) et en cas de rupture du cordon littoral (rouge)

Cette hypothèse entraine un abaissement de la ligne d'eau centennale d'environ 1.60 m au niveau du lotissement de la Roche Percée, qui reste malgré tout en zone inondable.

L'influence de cette condition est perceptible jusqu'au profil P13, soit sur un linéaire d'environ 6 km en amont de l'embouchure (2 km en aval de l'ouvrage OH1).

Si ces impacts sont importants, l'incidence sur la cartographie devrait être limitée, les hauteurs d'eau restant élevées en plaine et les versants étant encaissés sur l'amont du secteur impacté.

⇒ Choix de la condition limite en niveau à l'embouchure

Dans le modèle de référence, la cote 1.40 m NGNC, correspondant au niveau de plus fortes marées astronomique majorée par une surcote cyclonique, est imposée comme condition limite aval sur le bief Néra.

Pour estimer l'influence de cette condition, des simulations ont été conduites en appliquant une variation de ±20% sur cette valeur.

Il apparait que cette variation ne modifie pas les cotes d'inondation sur le secteur d'étude, ce qui signifie que le niveau imposé à l'embouchure en mer n'influence pas les conditions d'écoulement sur la Néra pour la crue centennale. D'un point de vue physique, le cordon littoral (ou « digue » — profil P1) constitue une section de contrôle des écoulements en crue, et impose le niveau des lignes d'eau en amont (indépendamment de la condition limite aval fixée pour le niveau en mer).

X.4. COMPORTEMENT DU MODELE ET CARACTERISATION DU FONCTIONNEMENT HYDRAULIQUE

L'objectif de cette partie est de réaliser des tests sur le modèle hydraulique afin d'évaluer l'influence des différentes conditions limites (amont et aval) et de justifier ainsi le choix des hypothèses retenues. Il s'agit de définir l'« évènement » de période de retour centennale qui présente les conditions préjudiciables en termes de niveaux d'inondations sur chacun des biefs et des secteurs étudiés.

L'objectif est d'analyser et de comprendre de manière précise ce qui conditionne les niveaux d'inondation maximums sur un bief donné et s'il s'agit du niveau d'eau (et donc le débit) sur le bief situé en aval ou bien plutôt le débit de crue propre à ce bief.

X.4.1. Définitions des scénarios de crue

Afin d'estimer l'importance des différentes conditions limites sur chacun des biefs, plusieurs scénarios de crues hypothétiques ont été définis et testés.

⇒ Scénario 1

Le premier scénario étudié correspond au cas « extrême » le plus défavorable.

Pour cette simulation, les débits de pointe de chacun des deux affluents principaux de la Néra, à savoir la Boghen et la Ari, sont de période de retour 100 ans. Cette hypothèse suppose la concomitance des crues centennales, et la conservation du débit induit un débit de point sur la Néra supérieur au débit centennal. Ce scénario correspond a priori à un évènement de période de retour supérieure à 100 ans.

Les hypothèses retenues pour ce scénario sont représentées sur la figure cidessous :

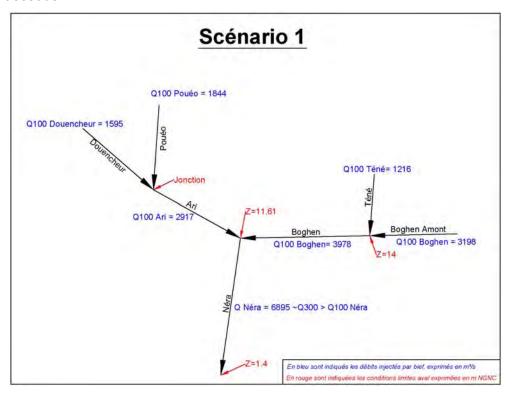


Figure 39 : Hypothèses de modélisation - Scénario 1

⇒ Scénario 2

Ce second scénario correspond au « niveau centennal maximal » sur la Ari.

Le débit simulé sur la Ari est défini comme centennal et la condition limite de ce bief est calculée pour un débit centennal de la Néra en aval. La conservation du débit au moment de la pointe de crue implique de fixer un débit dans la Boghen à 2900 m³/s, valeur correspondant au débit de pointe de période de retour évaluée à 20 ans de ce bief.

Les hypothèses retenues pour ce scénario sont représentées sur la figure cidessous :

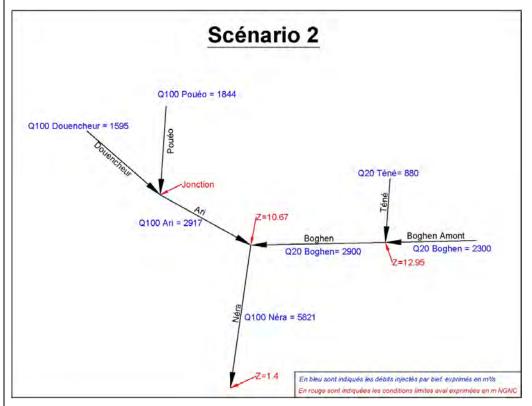


Figure 40 : Hypothèses de modélisation - Scénario 2

⇒ Scénario 3

Ce scénario correspond au niveau centennal minimal de la Ari. Ce scénario repose sur une hypothèse de non concomitance des crues.

Le débit centennal de la Ari est simulé. Il est considéré que la Boghen n'intervient pas, son débit est fixé de façon arbitraire à 1 m³/s. Le débit sur la Néra est alors égal au débit centennal de la Ari.

La condition limite aval de la Ari correspond à la cote calculée sur la Néra avec ces hypothèses de débits.

Les hypothèses retenues pour ce scénario sont représentées sur la figure cidessous :



Figure 41 : Hypothèses de modélisation - Scénario 3

⇒ Scénario 4

Ce scénario correspond au niveau centennal maximal sur la Boghen.

Le débit simulé sur la Boghen est défini comme centennal et la condition limite de ce bief est calculée pour un débit centennal de la Néra. La condition de conservation du débit au moment de la pointe de crue, implique de fixer un débit dans la Ari à 1840 m³/s, valeur correspondant environ au débit de pointe de période de retour évaluée à 10 ans de ce bief.

Les hypothèses retenues pour ce scénario sont représentées sur la figure cidessous :



Figure 42 : Hypothèses de modélisation - Scénario 4

⇒ Scénario 5

Ce scénario correspond au niveau centennal minimal de la Boghen. Ce scénario repose sur une hypothèse de non concomitance des crues.

Le débit centennal de la Boghen est simulé. Il est considéré que la Ari ne réagit pas, son débit est fixé de façon extrême à 1 m³/s. Le débit sur la Néra est alors égal au débit centennal de la Boghen.

Les hypothèses retenues pour ce scénario sont représentées sur la figure cidessous :

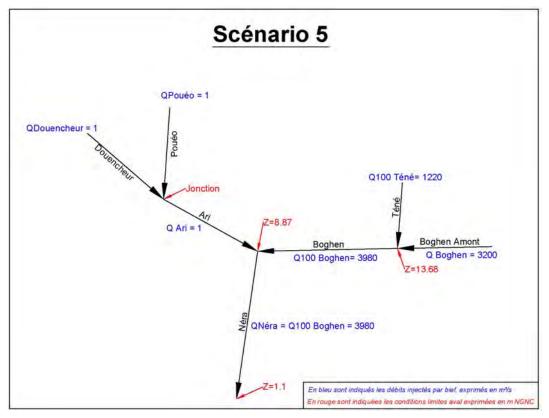


Figure 43 : Hypothèses de modélisation - Scénario 5

X.4.2. Résultats de simulations des différents scénarios

Les lignes d'eau calculées sur la Ari et la Douencheur pour les différents scénarios (hormis scénario 5) sont les suivantes :

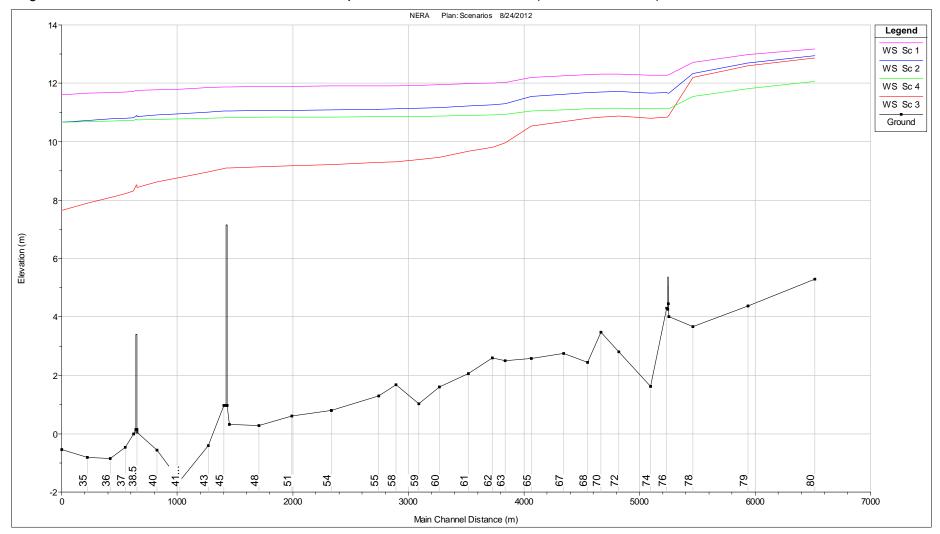


Figure 44 : Lignes d'eau calculées sur la Ari et la Douencheur pour les différents scénarios

Les lignes d'eau calculées sur la Néra et la Boghen pour les différents scénarios (hormis scénario 3) sont les suivantes :

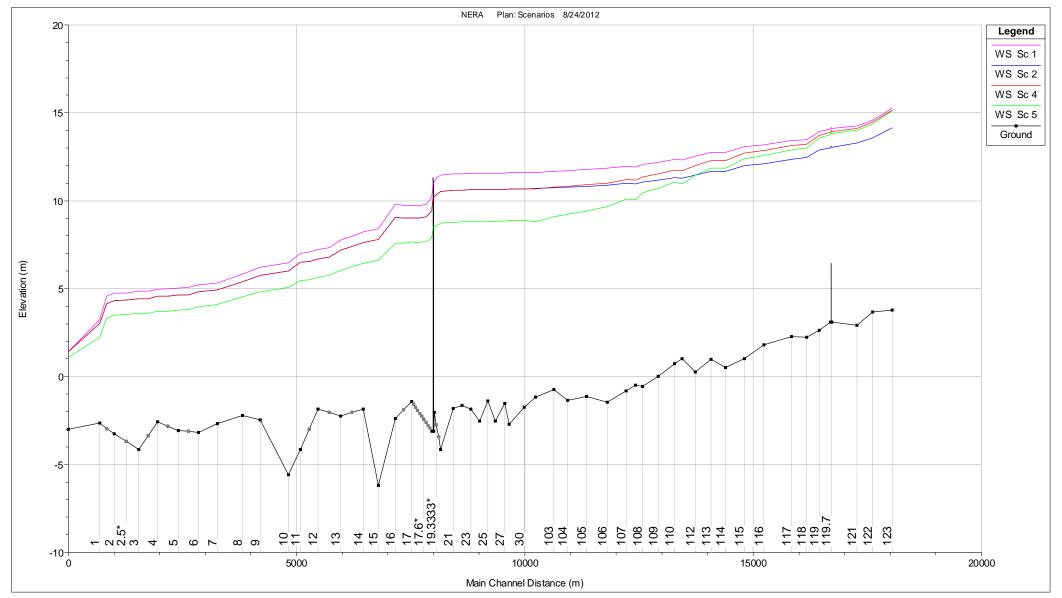


Figure 45 : Lignes d'eau calculées sur la Néra et la Boghen pour les différents scénarios

Dossiers n°A001.11023 et A001.09035 Juin 2013 Page 137 sur 151

X.4.3. Analyse des résultats

L'analyse de ces différents scénarios conduit aux constats suivants :

- Le 1^{er} scénario qui à une probabilité d'occurrence faible (période de retour théorique supérieure à 100 ans) fournit des résultats très défavorables sur chacun des biefs étudiés,
- Notons que la modélisation des scénarios de crues est réalisée en régime permanent. Le débit injecté dans un affluent en complément du débit centennal de l'autre affluent afin d'atteindre le débit centennal sur la Néra (scénarios 2 et 4), ne correspond pas nécessairement à un débit de pointe de crue sur cet affluent. La période de retour a simplement été évaluée à titre indicatif à partir des résultats de l'étude hydrologique.
 - Ces scénarios n'excluent pas une crue de période de retour plus importante (en débit de pointe). Ils permettent de prendre en compte une hypothèse de non concomitance des pointes de crues notamment pour les épisodes de courtes durées : la Ari qui présente un temps de concentration plus court peut par exemple se trouver en décrue (décroissance du débit, mais pas forcément des niveaux) lorsque l'onde de crue de la Boghen (pointe de débit) atteint le point de confluence avec la Ari et la Néra.
- Les scénarios « minimums » sur les biefs Ari (scénario 3) et Boghen (scénario 5), correspondent à des évènements hypothétiques dont la période de retour est délicate à évaluer est a priori plutôt importante : il est en effet plus probable que de fortes précipitations sur le bassin versant de la Ari touchent également celui de la Boghen même si cela pourrait être dans une moindre mesure. Ces scénarios permettent néanmoins de montrer l'influence des débits d'apports sur les niveaux d'inondations et d'apporter une meilleure compréhension du fonctionnement hydraulique du secteur.
- Les scénarios « maximums » (scénarios 2 et 4), qui visent à appliquer comme condition limite aval le niveau atteint pour un débit centennal de la Néra au point de confluence entre la Ari et la Boghen, montrent que l'influence de cette condition est primordiale : les cotes calculées varient au final assez peu en fonction du débit transitant sur ces affluents. Les niveaux d'inondations les plus préjudiciables en termes de niveaux atteints sur les secteurs aval de la Ari et de la Boghen sont donc plutôt conditionnés par un évènement de période de retour centennale sur le bief Néra et donc par le niveau au point de confluence plutôt que par leur débit d'apport propre. Ce constat s'inverse logiquement pour les secteurs amont de ces mêmes biefs.
- Les scénarios 2 et 4 présentent a priori une période de retour supérieure à 100 ans puisque lorsque l'on considère les biefs séparément, ils correspondent chacun à la concomitance de deux évènements de période de retour centennale (débit centennale dans la Néra + débit centennale dans la Ari ou dans la Boghen). Cependant la comparaison des résultats des scénarios 2 et 4 avec les scénarios sur les biefs Ari et Boghen montre que le choix du débit de crue sur le bief considéré (que ce soit Q100, Q20 ou Q10) n'a pas d'incidence importante sur les niveaux d'inondation dans la partie aval de ces biefs.
- En définitive c'est donc ces deux scénarios (n°2 et n°4) qui ont été retenus comme évènement de référence.

Le même type de raisonnement a été appliqué pour les autres biefs et les autres points de confluence situés plus en amont sur la Ari et la Boghen :

- Confluence Boghen amont, Téné et Boghen aval
- Confluence Douencheur, Pouéo, Ari

Ce principe général a également été décliné pour l'étude des crues de référence de période de retour 5 et 10 ans.

XI. CARTOGRAPHIE DE LA ZONE INONDABLE ET DES ALEAS

XI.1. METHODOLOGIE

Les cotes d'inondation pour chacune des crues étudiées au droit de chacun des profils modélisés, et issues des résultats de modélisation (HEC RAS) sont exportées vers la base de données SIG du projet sous forme de polylignes 3D. Notons que seules les données de cotes atteintes (en m NGNC) pour la crue centennale sont effectivement exploitées pour élaborer la cartographie des zones inondables.

Chaque profil est ainsi associé à une ligne iso-cote particulière. Ces données sont ensuite densifiées par interpolation des cotes calculées au droit des profils modélisés avec la création de lignes iso-cotes supplémentaires selon une incrémentation régulière (intervalle fixé à 1m, 0,5 m, ou plus fin si nécessaire, notamment dans les zones de méandres). Cette densification est réalisée en prenant en compte les différentes singularités identifiées lors de l'étude (méandres, ouvrages, déversement, axe d'écoulement prioritaire...).

A partir de ces iso-cotes (profils et iso-cotes supplémentaires), un modèle numérique de surface en 3D représentant le « plan d'eau » à son élévation maximum est générée à l'aide d'outils de traitements SIG (3D). Cette surface est alors convertie en « grille régulière » (ou maillage régulier – format « grid » ou « raster ») constituée d'un assemblage de cellules (de forme carrée) suivant une résolution à définir (dimensions des cellules), chacune affectée de la cote d'inondation centennale atteinte au droit de la cellule.

Ce maillage « plan d'eau » est alors comparée au maillage du modèle numérique de terrain qui est généré à l'aide des données topographiques disponibles sur le secteur d'étude, et qui représente donc l'altimétrie du terrain naturel sur chacune des cellules du secteur d'étude.

La comparaison de ces deux modèles numérique de surfaces permet de générer le maillage des hauteurs d'eau sur lequel chacune des cellules est affectée de la hauteur d'eau atteinte. Une analyse thématique (classe de hauteurs) permet alors de générer la carte des hauteurs d'eau sur le secteur d'étude pour la crue centennale. Les zones de classes de hauteurs sont enfin converties en polygones par numérisation/vectorisation des contours.

La précision des cartographies réalisées dépend donc principalement de deux paramètres :

- La qualité de la densification des iso-cotes permettant de générer le modèle numérique du « plan d'eau »,
- Le choix de la résolution du maillage (dimensions des cellules) pour chacun des deux modèles numériques de surface (terrain naturel et plan d'eau).

XI.2. CARTE DES ISO-COTES, ISO-HAUTEURS, ISO-VITESSES

Lors de la modélisation de la crue centennale, les vitesses et cotes ont été calculées par le logiciel HEC-RAS au droit des différents profils.

Les lignes « iso-hauteurs » (qui représentent les classes de hauteur d'eau par incrément de 0,5 m) et iso-vitesses (classes de vitesse > 1m/s ou < 1 m/s) ont été déterminées à partir des données issues de la modélisation et des relevés topographiques existants.

Etude des zones inondables sur la Commune de Bourail

Les lignes iso-cotes sont également reportées sur cette cartographie et représentent l'emplacement où la cote d'inondation indiquée (crue centennale) est à appliquer.

XI.3. CARTE DES ALEAS

Un aléa est la probabilité d'occurrence en un point donné d'un phénomène naturel de nature et d'intensités définies. Les inondations, glissements de terrains, tornades sont des exemples de phénomènes naturels.

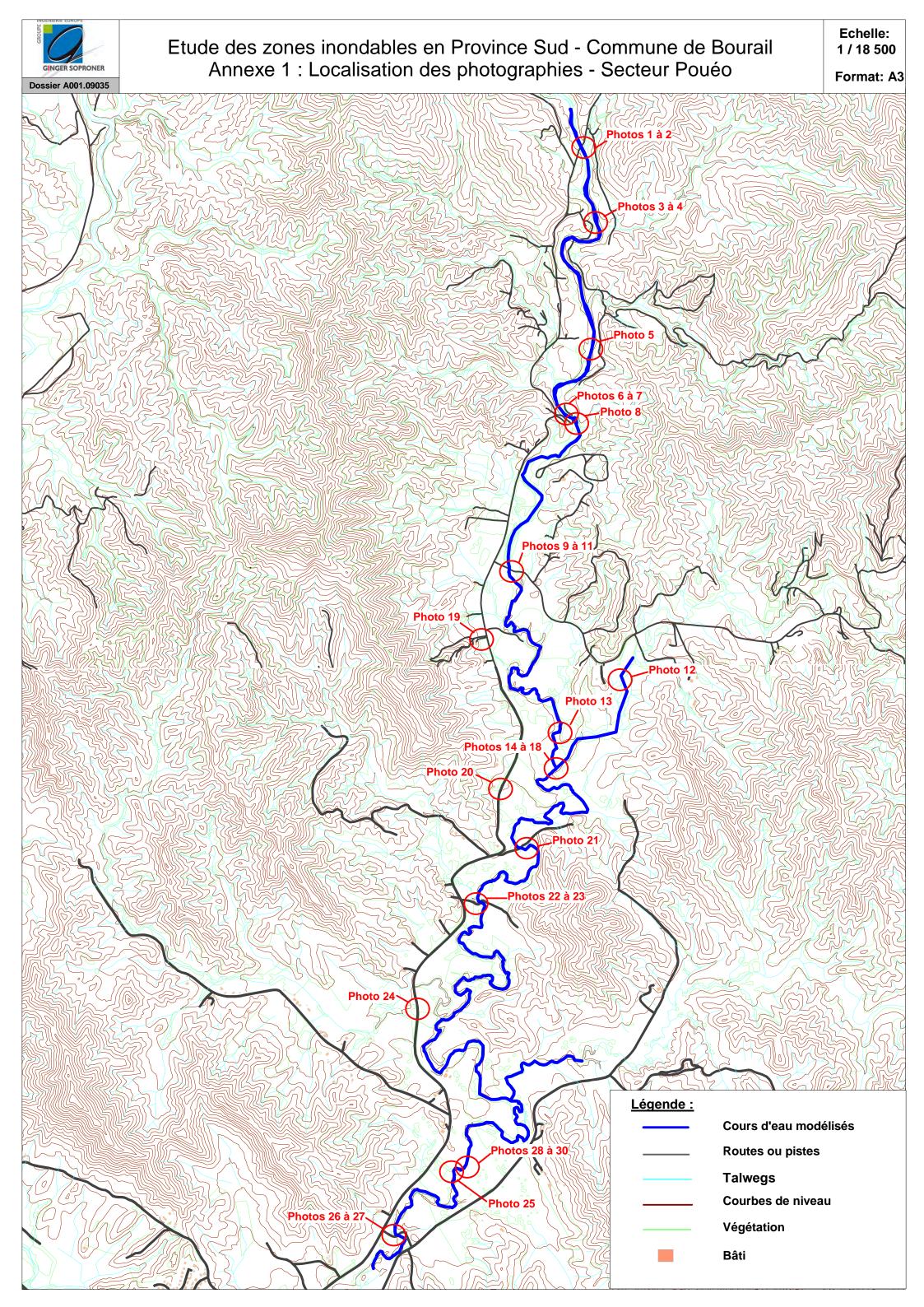
Sur une zone soumise à un aléa, l'ensemble des activités, des biens, des personnes représente l'enjeu. Celui-ci est entre autres caractérisé par sa vulnérabilité à l'aléa, c'est-à-dire l'ampleur des dommages que l'enjeu est susceptible de subir.

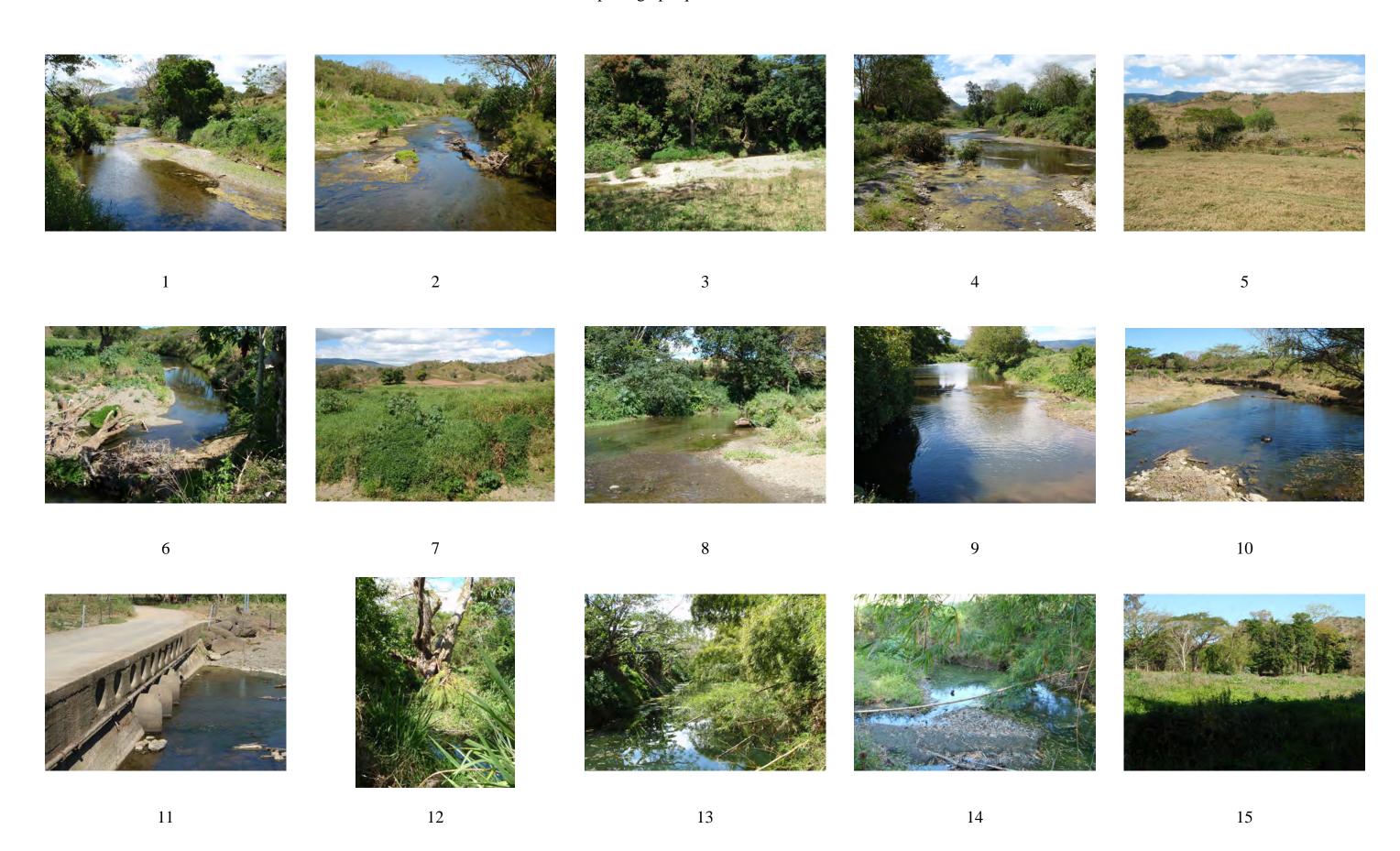
Un risque est la confrontation d'un aléa avec des enjeux.

La carte des aléas résulte ici du croisement entre la hauteur d'eau et la vitesse selon les critères suivants:

Vitesse Hauteur d'eau	Faible à modérée ≤ 1m/s	Forte à très forte > 1m/s
H≤1 m	Moyen	Fort
1 < H ≤ 1,5 m	Fort	Tuà o fout
H > 1,5 m	Très fort	Très fort

La zone de protection des thalwegs et cours d'eau est également portée sur la carte des aléas. Cette zone est définie par une bande de 6 m de part et d'autre des berges des thalwegs et cours d'eau.


XII. ANNEXES


Annexe 1 : Reportages photographiques	142
Annexe 2 : Fiches laisses de crue	143
Annexe 3 : Calcul des temps de concentration	144
Annexe 4 : Caractéristiques des stations hydrométriques de La Foa et Boghen	145
Annexe 5 : Hyétogrammes des pluies réelles	146
Annexe 6 : Plans des profils à lever	147
Annexe 7 : Débits injectés au droit des différents profils	148
Annexe 8 : Résultats des simulations de référence	149
Annexe 9 : Résultats de l'analyse de sensibilité	150
Anneye 10 – Dossier des plans	151

Annexe 1: Reportages photographiques

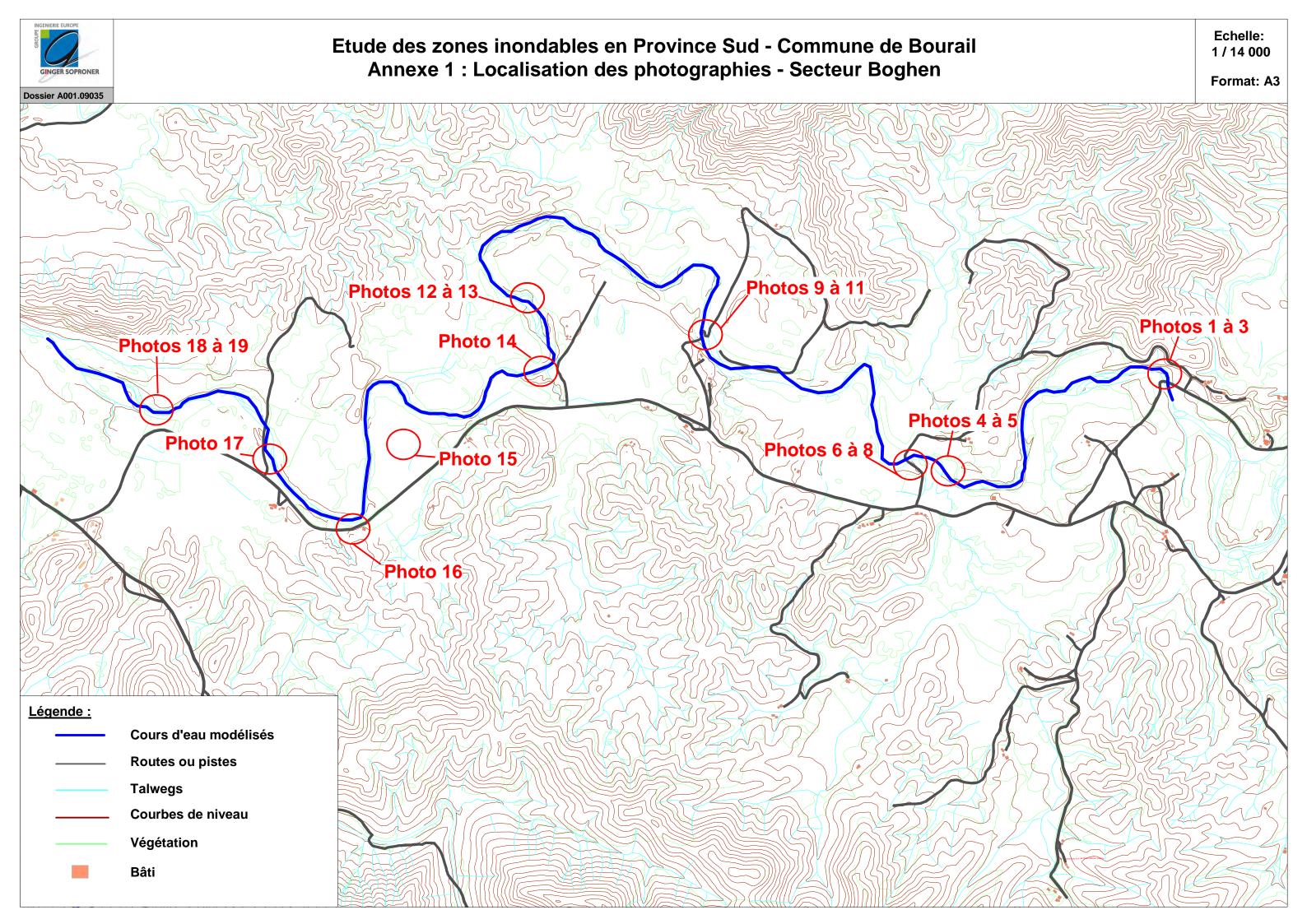
Echelle: Etude des zones inondables en Province Sud - Commune de Bourail 1 / 13 500 Annexe 1: Localisation des photographies - Secteur Douencheur Format: A3 Dossier A001.09035 Photo 2 Photo 1 Photo 3 Photo 26 Photo 27 Photo 25 Photo 24 Photos 19 à 20-Photos 16 à 18 Photos 21 à 22 Photos 8 à 10 Photos 4 à 7 Photos 14 à 15 Photos 11 à 13 Photos 30 à 31 Photos 28 à 29-Photo 32 Photo 33 Photo 34 Photo 35 Photos 36 à 38 Légende: Photos 42 à 45 Cours d'eau modélisés Photos 39 à 40 Routes ou pistes **Talwegs** Courbes de niveau

Photo 41

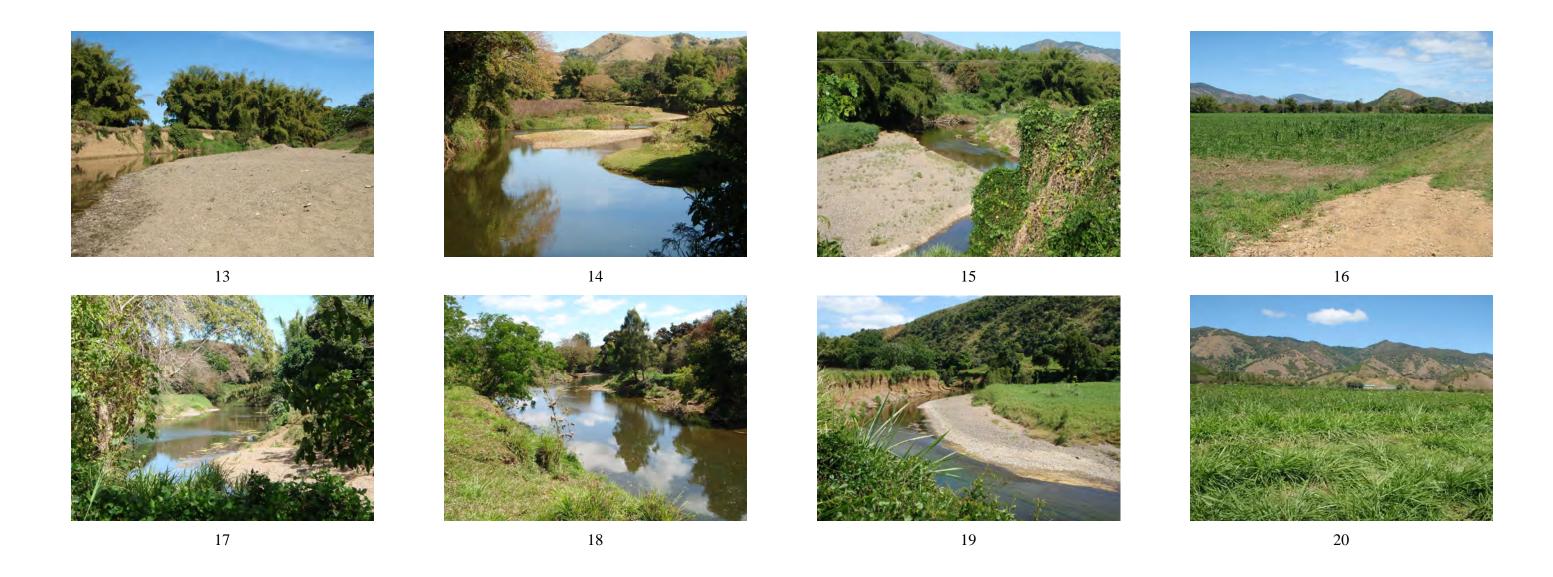
Végétation

Bâti

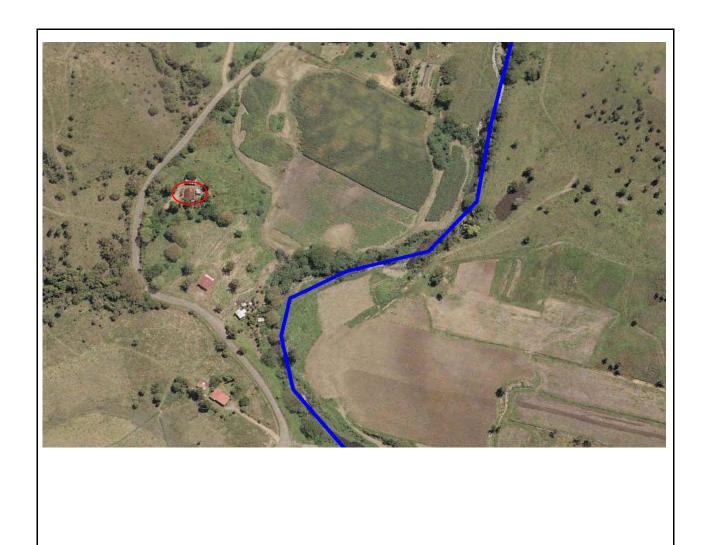
Annexe 1 : Planche photographique de la zone d'étude – Secteur Douencheur



Annexe 1 : Planche photographique de la zone d'étude – Secteur Douencheur



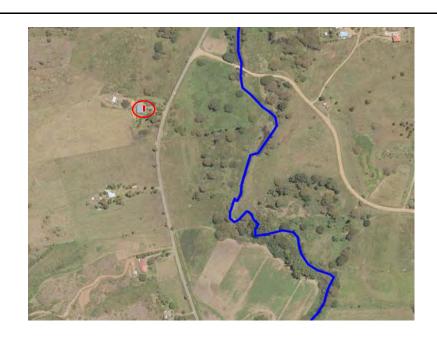
Annexe 1 : Planche photographique de la zone d'étude – Secteur Douencheur


Annexe 2 : Fiches laisses de crue

ISO9001 : FDT1_V1/10-10

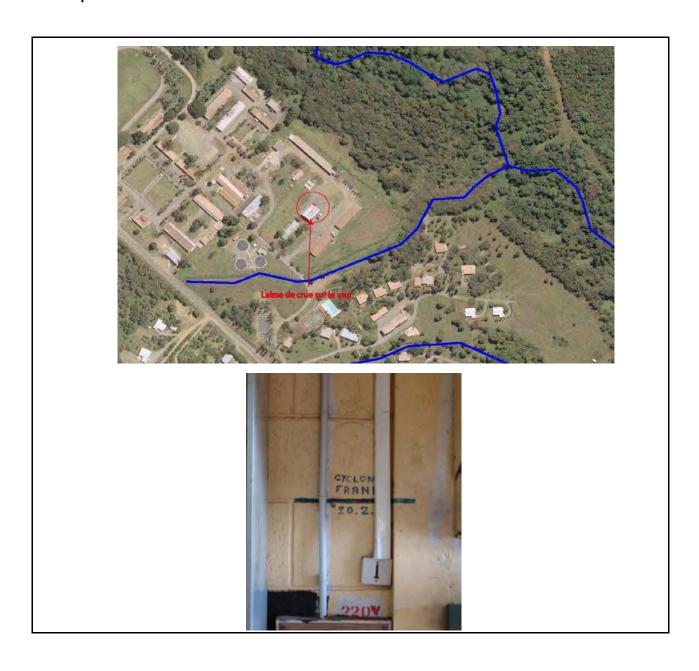
PHE N°: Pouéo 1	Cours d	'eau/bassin: Pouéo	Commune:	Bourail		
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode pluvieux:	Erica		Date:		14/03/2003	
Niveau de précision	du relevé:	Approximatif				
Hauteur : 1m	par rapport:	dalle de la maison				
Position Lambert	X: 349 154	Y: 299 596 Z PHE	22.8	1 Z Repère	: 21,81	

PHE N°: Po	uéo 2a et 2b	Cours	d'eau/bassin	: Pouéo	Commune:	Bourail
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episod	e pluvieux (2a):	Erica			Date:	14/03/2003
Episode	e pluvieux (2b):	2009			Date:	
Niveau de	précision du relevé:		Moyen			
Pouéo 2a	Hauteur : 73 cm		par rapport:	sol (façade	droite de la	maison)
Pouéo 2b	Hauteur : 30 cm		par rapport:	sol (façade	droite de la	maison)
Posi	tion Lambert	X: 349 20	Y : 299 464	Z PHE:	21.36	Z Repère: 20,63

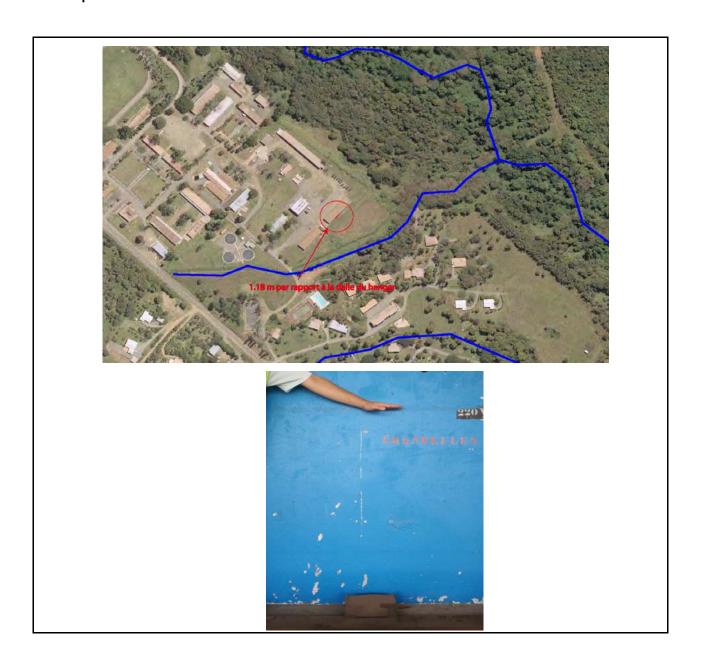

PHE N°: Pouéo 3	Cours d'eau/b	assin: Pouéo	Comm	nune:	Bourail	
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode pluvieux:	Erica		Date:		14/03/2003	
Niveau de précision o	du relevé:	Moyen				
Hauteur : 0 cm par rapport: pied du poteau electrique le plus proche de la maison						
Position Lambert	X: 348 785	Y: 297 970	Z PHE:	18.37	Z Repère: 18,37	

PHE N°:	Pouéo 4	Cours	d'eau/bassin: Pouéc)	Commune:	Bourail	
Relevé de	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode	pluvieux:	Erica			Date:	14/03/2003	
Niveau de	précision	du relevé:	Approximati	f			
Hauteur :	0 cm	par rapport:	seuil de la m	aison			
Position	Lambert	X: 348 781	Y: 298 316	Z PHE:	18.09	Z Repère: 18,09	

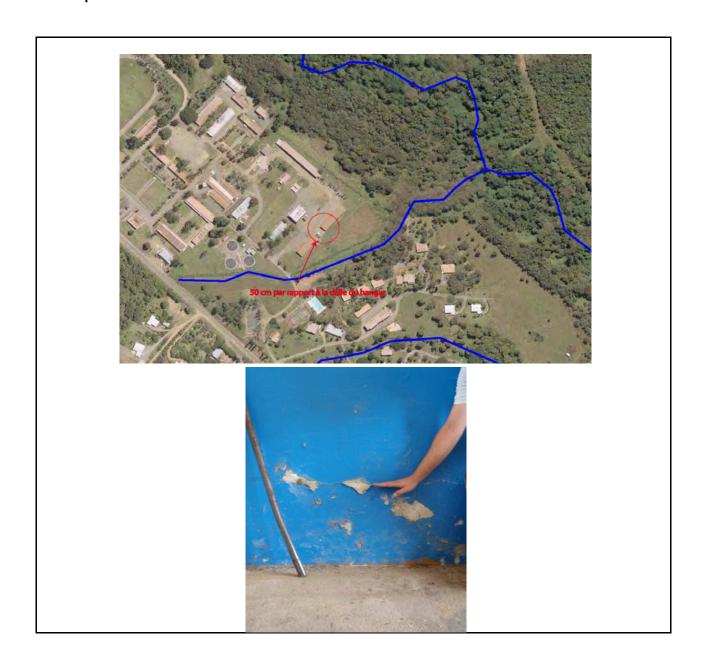
PHE N°:	Pouéo 5	Cours	d'eau/bassin: Poué	0	Commune:	Bourail
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode	pluvieux:	Béti			Date:	27/03/1996
Niveau de	précision	du relevé:	Approximat	if		
Hauteur :	0 cm	par rapport:	point bas de	la dalle d	levant la mai	son en ruines
Position	Lambert	X: 348 558	Y: 295 287	Z PHE:	12.6	Z Repère: 12,60



PHE N°: Do	ouen 1	Cours d'	eau/bassin: Douench	eur	Commune:	Bourail
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode pluv	/ieux:	FRANK			Date:	20/02/1999
Niveau de pré	cision o	du relevé:	Excellent			
Hauteur :		par rapport:				
Position Lar	mbert	X: 344 344	Y: 298 598	Z PHE:	22.65	Z Repère: 22,65



PHE N°:	Douen 2	Cours d'e	eau/bassin: Douencheur	Commune:	Bourail
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009					
Episode	pluvieux:	FRANK		Date:	20/02/1999
Niveau de	précision	du relevé:	Excellent		
Hauteur :		par rapport:			
Position	Lambert	X: 344 330	Y: 298 646 Z	PHE: 22.6	7 Z Repère: 22,67



PHE N°:	Douen 3	Cours d'eau/bas	sin: Douenche	eur (Commune:	Bourail
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode	pluvieux:	ERICA			Date:	14/03/2003
Niveau de	précision	du relevé:	Bon			
Hauteur :	1.18 m	par rapport: sol du ha	ngar			
Position	Lambert	X: 344 381	Y: 298 622	Z PHE:	21.83	Z Repère: 20,65



PHE N°: Douen 4	Cours d'eau/bas	sin: Douenche	ur	Commune:	Bourail
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009					
Episode pluvieux:	février 2009			Date:	02/2009
Niveau de précision	du relevé:	Bon			
Hauteur : 45 cm par rapport: sol du hangar					
Position Lambert	X: 344 363	Y: 298 613	Z PHE:	21.05	Z Repère: 20,60

PHE N°:	Douen 5	Cours d'eau/bas	sin: Douenche	ur	Commune:	Bourail
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode	pluvieux:	fevrier 2009			Date:	02/2009
Niveau de	précision	du relevé:	Moyen			
Hauteur :	0 cm	par rapport: dalle terr	asse			
Position	Lambert	X: 344 451	Y: 298 432	Z PHE:	20.76	Z Repère: 20,76

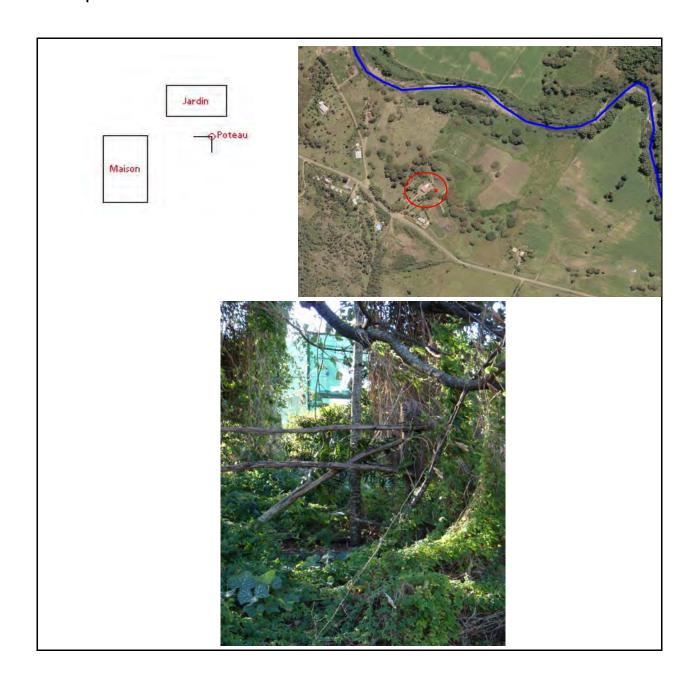
PHE N°: Douen 6	Cours d'eau/bas	sin: Douenche	ur (Commune:	Bourail	
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode pluvieux:	FRANK]	Date:	20/02/1999	
Niveau de précision	du relevé:	Moyen				
Hauteur :	par rapport:					
Position Lambert	X: 345 554	Y: 297 193	Z PHE:	19.11	Z Repère: 19,11	

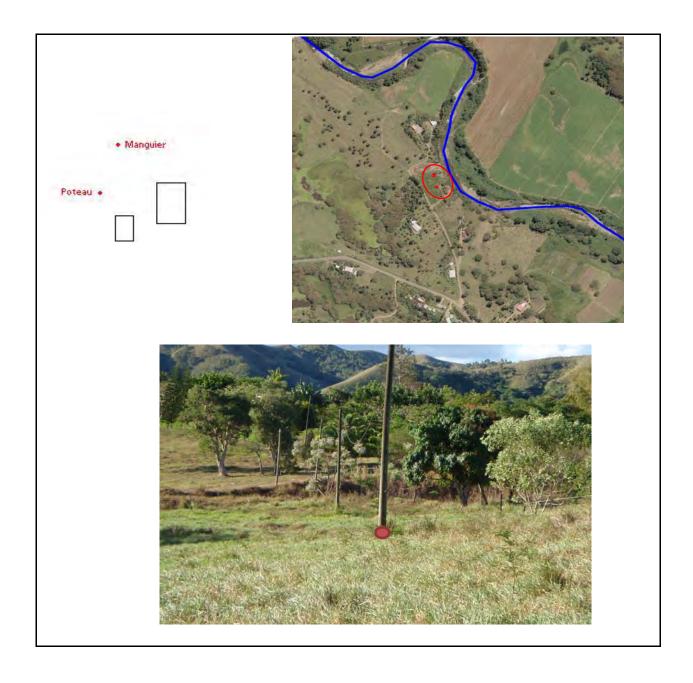
Remarques : location de voitures Cédric (44.15.38)

PHE N°: Douen 7	Cours d'eau/bas	sin: Douenche	ur (Commune:	Bourail	
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode pluvieux: 2009 Date:						
Niveau de précision d	du relevé:	Moyen				
Hauteur : 1.20m sous la plateforme de l'écorceuse						
Position Lambert	X: 345 717	Y: 297 156	Z PHE:	16.82	Z Repère: 18,02	

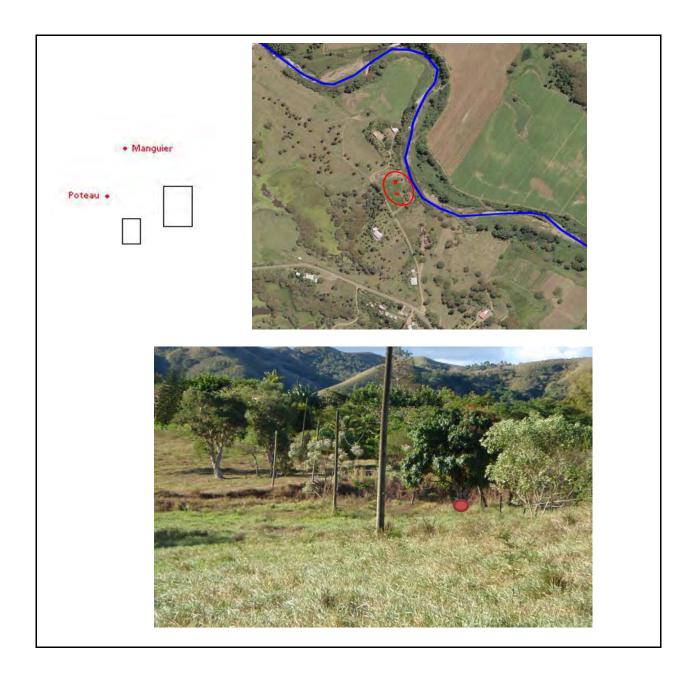
PHE N°: D	ouen 8	Cours d'e	au/bassin: Douencheu	ır Commune	: Bourail	
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode plu	ıvieux:		2000	Date:	11/01/2000	
Niveau de pr	écision d	du relevé:	Moyen			
Hauteur : niv	reau de la					
Position La	ambert	X: 345 647	Y: 297 149	Z PHE: 18.	43 Z Repère: 18,43	

PHE N°: Boghen	Cours d'eau/	bassin: Bogh	en	Commune:	Bourail		
Relevé des plus hau	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode pluvieux:	Béti			Date:	27/03/1996		
Episode pluvieux:	1990			Date:	24/01/1990		
Niveau de précision	du relevé:	Moyen					
Hauteur : 0	par rapport: seuil de l	a fenêtre					
Position Lambert	X: 357 817	Y: 289 429	Z PHE:	22.03	Z Repère:		


Remarques : Mr Sahl NASSER


PHE N°:	Boghen 2	Cours d'eau/l	oassin: Bogher	1	Commune:	Bourail		
Relevé des	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009							
Episode	pluvieux:	Béti			Date:	27/03/1996		
Niveau de	précision d	lu relevé : Approximati	f					
Hauteur : (Hauteur : 0 par rapport: pied du poteau							
Position	Lambert	X: 356 285	Y: 289 489	Z PHE:	18.1	Z Repère:		

PHE N°:	Boghen 3a	Cours d'eau/bassin: Boghen			Commune:	Bourail	
Relevé des	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode	pluvieux:	Grande Inondation de	1990		Date:	24/01/1990	
Niveau de	précision du	relevé:	Approximatif				
Hauteur : ()	par rapport: pied du p	oteau				
Positio	n Lambert	X: 356 055	Y: 289 812	Z PHE:	17.23	Z Repère:	


Remarques : Mr Joel JARDIN

PHE N°: Boghen 3	b Cours	d'eau/bassin: Boghen	Commune:	Bourail			
Relevé des plus haut	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode pluvieux:	Béti		Date:	27/03/1996			
Niveau de précision o	du relevé:	Approximatif					
Hauteur : 0	par rapport: pie	d du manguier					
Position Lambert	X: 356 047	Y: 289 848 Z PH	E: 16.19	Z Repère:			

Remarques : Mr Joel JARDIN

PHE N°:	Boghen 4	Cours d'eau/ba	assin: Boghen		Commune:	Bourail	
Relevé des	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009						
Episode	pluvieux:	Grande Inondation de	1990		Date:	24/01/1990	
Niveau de	précision du	ı relevé:	Moyen				
Hauteur : 9	92 cm	par rapport: la dalle d	e la maison				
Position	n Lambert	X: 355 469	Y: 289 911	Z PHE:	17.74	Z Repère:	

PHE N°:	Boghen 5	Cours d'eau/b	assin: Boghen		Commune:	Bourail		
Relevé des	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009							
Episode	pluvieux:	Béti			Date:	27/03/1996		
Niveau de	précision du	ı relevé:	Bon					
Hauteur : (0	par rapport: marche	de la maison					
Positio	n Lambert	X: 357 886	Y: 289 878	Z PHE:	22.61	Z Repère:		

PHE N°:	Boghen 6	Cours d	l'eau/bassin: Boghen	Comm	nune: Bourail		
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en octobre 2009							
Episode	pluvieux:	Béti		Date:	27/03/1996		
Niveau de	précision d	u relevé:	Moyen				
Hauteur :	1.20 / 1.30 m	1	par rapport: d	alle de la terra	sse		
Positio	n Lambert	X: 356 146	Y: 290 568	Z PHE:	17.38 Z Repère:		

PHE N°:	Mairie Bourail	Cour	s d'eau/bassiı	n: Nera	Commune:	Bourail		
Relevé des	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en mai 2012							
Episod	de pluvieux:	Episode pluv	/ieux de janvi	er 1990	Date:	21/01/1990		
Niveau de l	précision du relev	/é:	Bon					
Hauteur :	Hauteur : par rapport:							
Positi	ion Lambert	X: 347 994	Y: 292 408	Z PHE:	10.242	Z Repère:		

Remarques : Marque sur mur

PHE N°: Eglise Bourail	Cours d'eau/bassin: Nera	Commune:	Bourail					
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en mai 2012								
Episode pluvieux: Episode pluvieux de janvier 1990 Date: 21/01/1990								
Niveau de précision du rele	vé: Bon							
Hauteur : par rapport:								
Position Lambert X: 347 835 Y: 292 475 Z PHE: 10.26 Z Repère:								

Remarques : Dernière marche de l'église

PHE N°:	Marcel Drémon	Cour	s d'eau/bassii	n: Nera	Commune:	Bourail		
Relevé des p	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en mai 2012							
Episo	de pluvieux:	Episode plu	vieux de janvi	er 1990	Date:	21/01/1990		
Niveau de pi	récision du relevé:		Excellent					
Hauteur :		par rapport:						
Posit	ion Lambert	X: 344 863	Y: 286 728	Z PHE:	2.334	I Z Repère:		

PHE N°:	Marcel Drémon	Cours	d'eau/bassin	: Nera	Commune:	Bourail
Relevé des	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en mai 2012					
Episo	de pluvieux:	Beti			Date:	27/03/1996
Niveau de p	précision du relevé):	Excellent			
Hauteur :		par rapport:				
Posit	ion Lambert	X: 344 863	Y: 286 728	Z PHE:	10.326	Z Repère:

PHE N°: Marcel Drémon	Cours d'eau/bassin: Nera		Commune:	Bourail			
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en mai 2012							
Episode pluvieux:	Allison		Date:	01/02/1975			
Niveau de précision du relevé: Excellent							
Hauteur :	par rapport:						
Position Lambert	X: 344 863 Y: 2	86 728 Z PHE:	1.924	Z Repère:			

PHE N°:	Marcel Drémon	Cours d'eau/bassin: Nera			Commune: Bourail		
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en mai 2012							
Episo	ode pluvieux:	Gyan			Date:	24/12/1981	
Niveau de p	récision du relevé:		Excellent				
Hauteur :		par rapport:					
Posi	tion Lambert	X: 344 863	Y: 286 728	Z PHE:	1.704	Z Repère:	

PHE N°: Marcel Drémon	Cours d'eau/bassin: Nera			Commune:	Bourail			
Relevé des plus hautes eaux (PHE): enquête menée par Soproner en mai 2012								
Episode pluvieux:	Anne			Date:	24/01/1988			
Niveau de précision du relevé: Excellent								
Hauteur :	par rapport:							
Position Lambert	X: 344 863	Y: 286 728	Z PHE:	1.594	Z Repère:			

PHE N°:	Hotel la Néra	Cours	s d'eau/bassi	n: Nera	Commune:	Bourail
Relevé des	plus hautes eaux (l	PHE): enquête	menée par So	oproner en mai	2012	
Episo	ode pluvieux:	Episode pluv	/ieux de janvi	ier 1990	Date:	21/01/1990
Niveau de p	récision du relevé:		Bon			
Hauteur :		par rapport:				
Posi	tion Lambert	X: 347 686	Y: 291 067	Z PHE:	10.356	Z Repère:

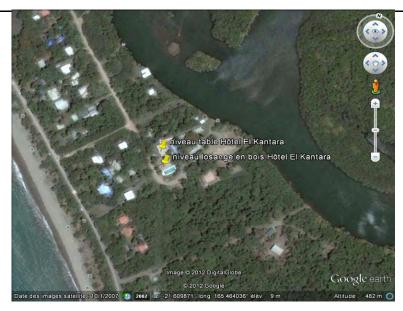
Remarques : Dessus regard

PHE N°:	Hotel la Néra	Cours d'eau/bassin: Nera			Commune:	Bourail
Relevé des	plus hautes eaux	(PHE): enquêt	e menée par S	Soproner en ma	ai 2012	
Episo	de pluvieux:	Episode pluv	vieux de janvi	er 1990	Date:	21/01/1990
Niveau de	précision du releve	é:	Bon			
Hauteur :		par rapport:				
Posit	tion Lambert	X: 347 672	Y: 291 092	Z PHE:	10.326	Z Repère:

Remarques : Poignée de porte

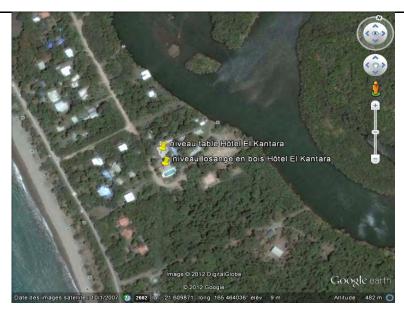
PHE N°: Hotel la Néra Cours d'eau/bassin: Nera				n: Nera	Commune:	Bourail
Relevé des	s plus hautes eau	x (PHE): enqu	ête menée par	Soproner en r	nai 2012	
Episo	de pluvieux:				Date:	21/01/1990
Niveau de	précision du rele	vé:	Bon			
Hauteur :		par rapport:				
Posit	ion Lambert	X: 347 729	Y: 291 020	Z PHE:	11.121	Z Repère:

Remarques : Dalle réception



PHE N°:	El Kantara	Cours	s d'eau/bassir	n: Nera	Commune:	Bourail	
Relevé des	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en mai 2012						
Episode	pluvieux:	Episode pluv	ieux de janvi	er 1990	Date:	21/01/1990	
Niveau de p	récision du rel	evé:	Bon				
Hauteur :		par rapport:					
Positio	n Lambert	X: 344 444	Y: 287 734	Z PHE:	3.649	Z Repère:	

Remarques :



PHE N°:	El Kantara	Cours	d'eau/bassin	Commune:	Bourail		
Relevé des	Relevé des plus hautes eaux (PHE): enquête menée par Soproner en mai 2012						
Episode	pluvieux:	Episode pluv	ieux de janvie	r 1990	Date:	21/01/1990	
Niveau de p	récision du rel	evé:	Bon				
Hauteur :		par rapport:					
Positio	n Lambert	X: 344 453	Y: 287 708	Z PHE:	3.661	Z Repère:	

Remarques :

Annexe 3 : Calcul des temps de concentration

ISO9001: FDT1_V1/10-10

Annexe 3 : Calcul des temps de concentration

Les trois formules de calcul des temps de concentration utilisées sont les suivantes :

• Formule de Ventura:

$$t_c = 0.1272 \cdot \sqrt{\frac{s}{I}}$$

Où tc est le temps de concentration en h , S est la surface du bassin en km et I la pente en m/m.

• Formule de Passini:

$$\varepsilon_c = \frac{0.108}{10} \times \frac{\left(S \times L\right)^{1/3}}{\sqrt{I}}$$

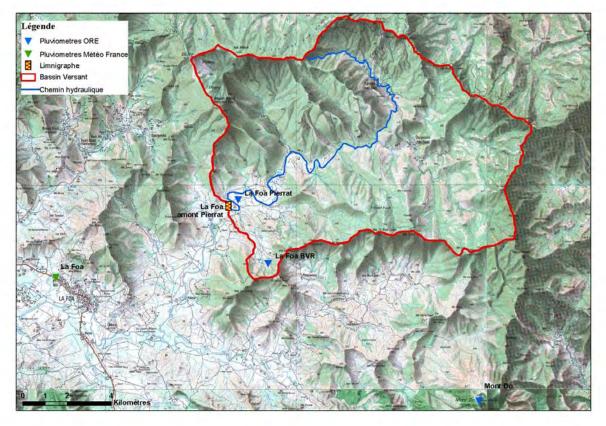
Où tc est le temps de concentration en h, S est la surface du bassin en km et I la pente en m/m et L le plus long chemin hydraulique en m.

• Formule de Kirpich:

$$t_{\rm c} = 0.000325 \times L^{0.77} \times I^{-0.386}$$

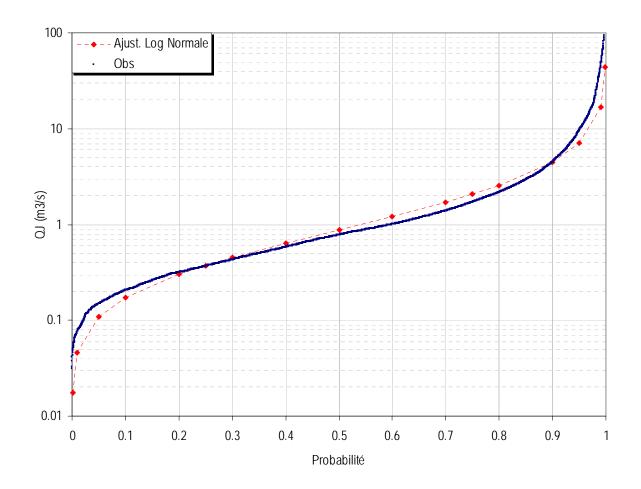
Où tc est le temps de concentration en h , L le plus long chemin hydraulique en m et I la pente en m/m.

Annexe 4 : Caractéristiques des stations hydrométriques de La Foa et Boghen

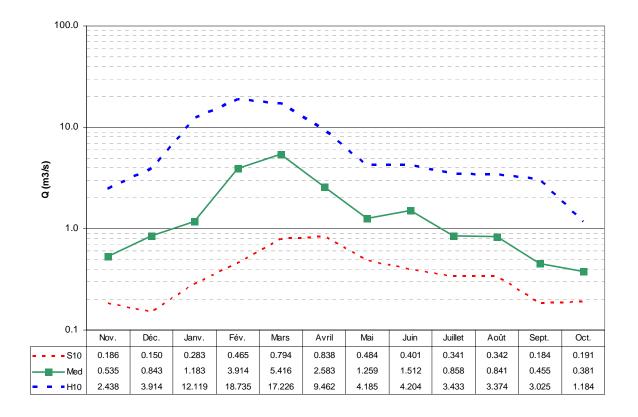

ISO9001 : FDT1_V1/10-10

10. La Foa

Localisation et durée des observations


CODE	STATION	LO Coordonnées X	CALISATION Lambert (m) Y	_	BV (km²)
5701600202	La_Foa Amont confluence pierrat. Cote 19	388 659	280 908	19	116

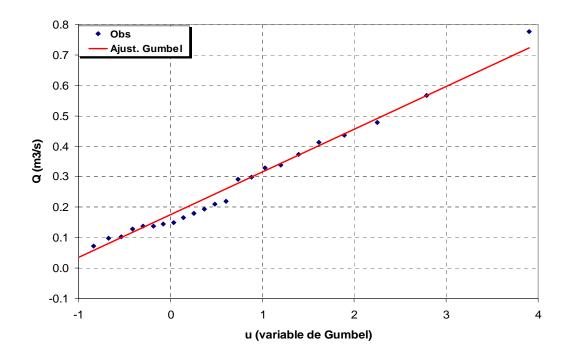
		C	BSERVATION	NS .		
		Durée	Qmin	(M3/S)	Qmax	(M3/S)
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué
09/10/1980	28/05/2009	28.0	0.054	0.031	268	1561

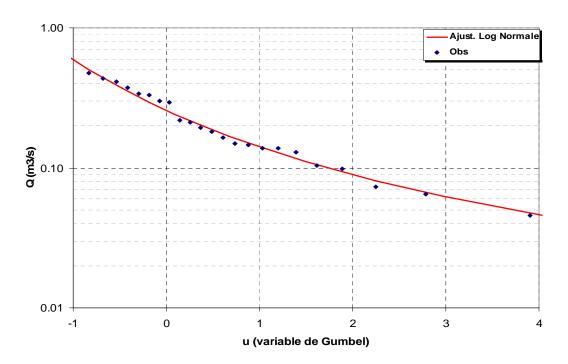

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.046	0.076
0.10	0.173	0.207
0.25	0.374	0.367
0.50	0.88	0.778
0.75	2.06	1.713
0.90	4.45	4.484
0.99	16.72	43.61

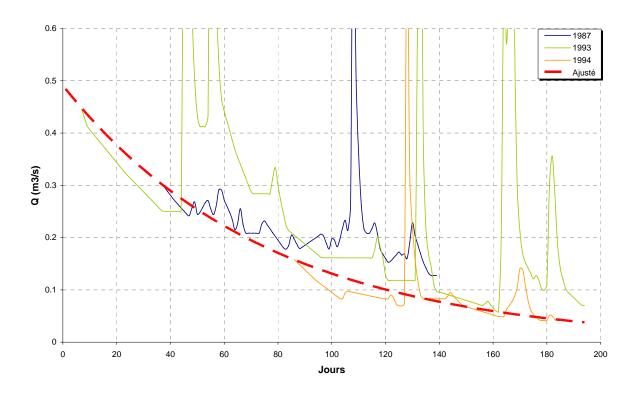
Débits moyens mensuels




Module annuel =
$$2.12 \text{ m}^3\text{/s}$$

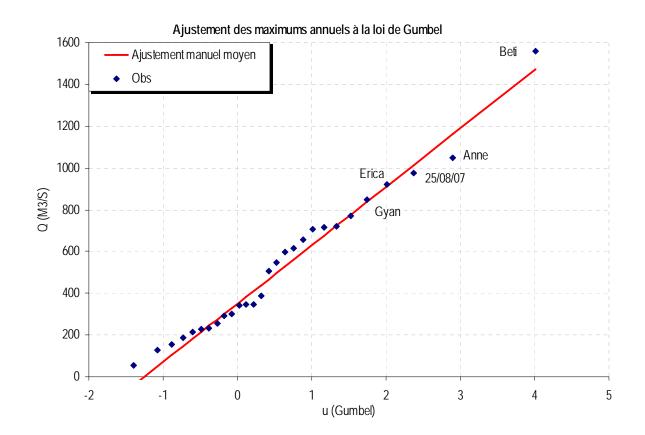
 $S10 = 1.31 \text{ m}^3\text{/s}$
 $H10 = 4.59 \text{ m}^3\text{/s}$
 $K3 = 3.5$

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10

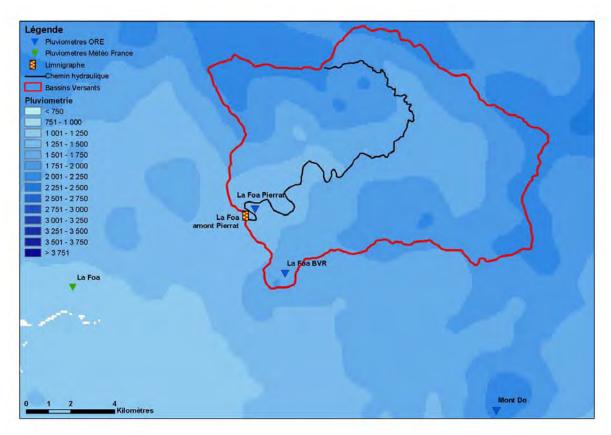

Débits caractéristiques d'étiages (DCE)

	Etiage Humide (T ans)				Médiane	Etiage Sec (T ans)		
	100	1	0	5	2	5	10	100
Q m³/s	0.821	0.4	.91	0.386	0.202	0.111	0.081	0.039
Q spé l/s/km²	7.1	4.	.2	3.3	1.7	1.0	0.7	0.3
Loi	Gumbel				Log Noi	rmale		
Paramètres	Gd =	0.140	PO =	0.175	$\upsilon = -1.59$	9	σ = 0.	712

Courbes de tarissement

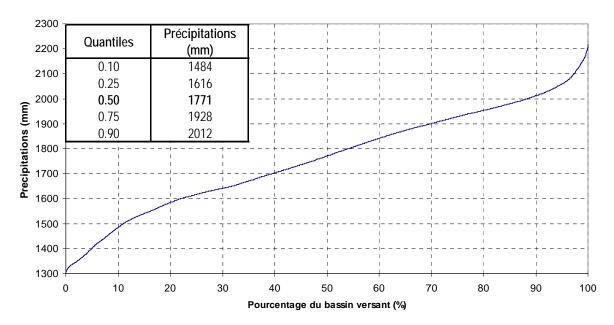

Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.49	0.0243	41

 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$

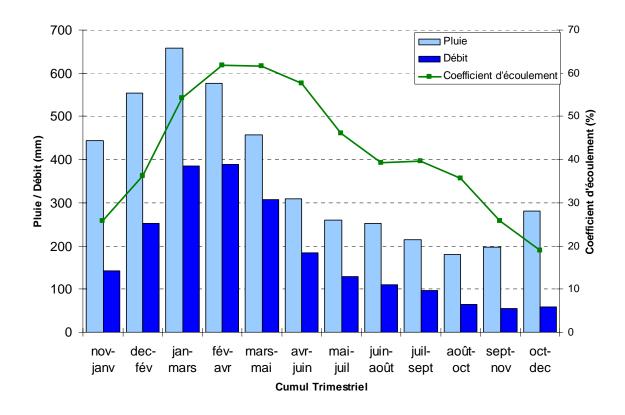

 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

Débits maximums de crues

		Période de Retour T (années)							
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	350	453	770	980	1182	1443	1638	280	350



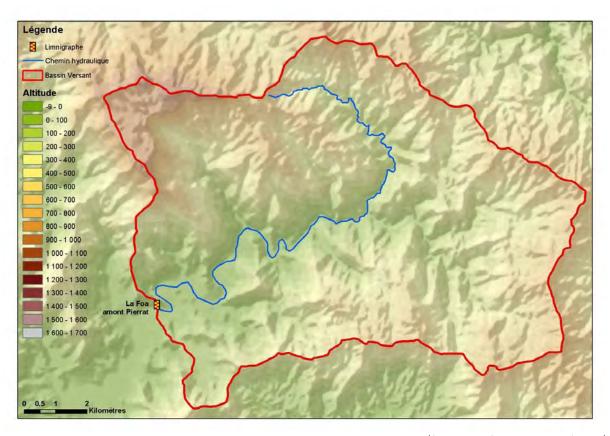
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Foa

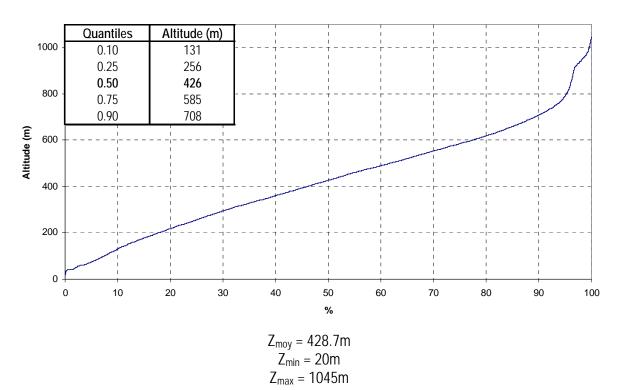
 $\begin{aligned} & \text{Pr\'ecipitation moyenne}: P_{moy} = 1762mm \\ & \text{Pr\'ecipitation minimum}: P_{min} = 1304mm \\ & \text{Pr\'ecipitation maximum}: P_{max} = 2217mm \end{aligned}$

Bilan d'écoulement trimestriel

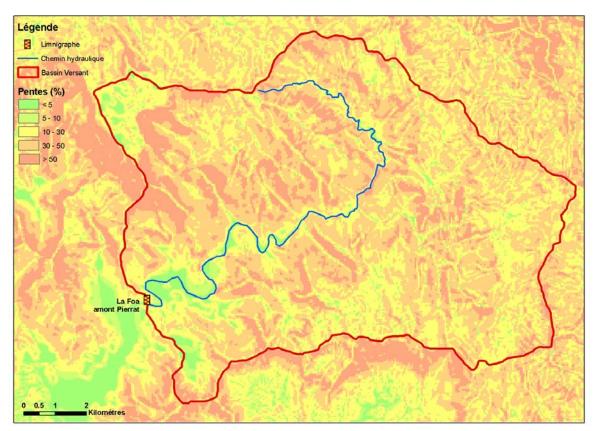


Coefficient d'écoulement moyen interannuel = 50% [33 ;66]

 $Lame \ \acute{e}coul\acute{e}e : L_e = 725 \ mm$ $D\acute{e}ficit \ d'\acute{e}coulement : \Delta_e = P - L_e = 737 \ mm$

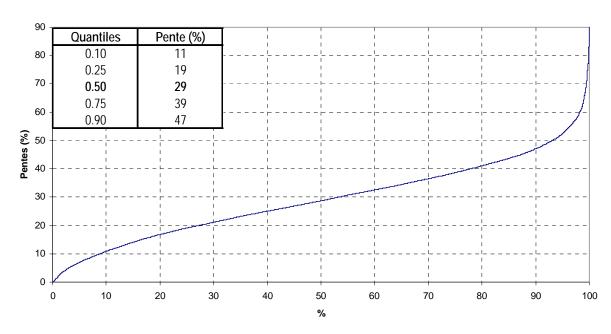

Caractéristiques Physiques

Altitudes



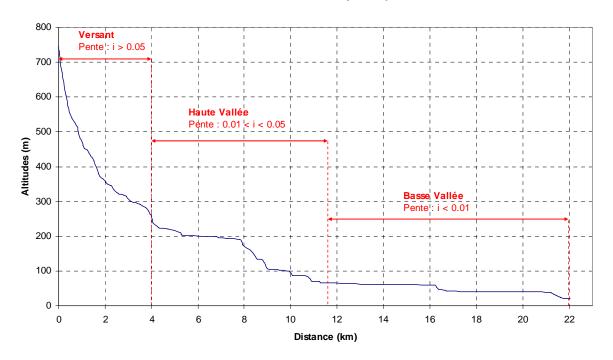
(Source : DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de la Foa



Pentes

(Source : d'après DTSI, MNT au pas de 50m)


Pentes du bassin de la Foa

 $\begin{array}{l} Pente\ moyenne: i_{moy} = 29.2\%\\ Pente\ minimum: i_{min} = 0.00\%\\ Pente\ maximum: i_{max} = 99.0\% \end{array}$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.03
0.25	0.06
0.50	0.37
0.75	3.2
0.90	9.5

Longueur du chemin hydraulique : L = 22.072 km

Pente moyenne : $i_{ch} = 3.3\%$ Pente à l'exutoire : $i_e = 1\%$

81% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 2.6 h [2.26 ; 2.90] Vitesse Moyenne de Transfert : $V = L / T_c = 2.4 \text{ m.s}^{-1}$

Géologie

(Source : DTSI, BRGM 1/1000000)

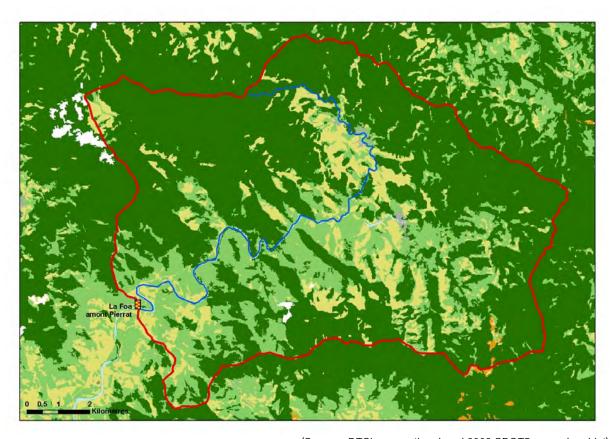
L<u>ég</u>ende

Bassin Versant

Géologie

Chevauchement, Observé
Faille principale, Observé

Faille principale, Supposé


Normal, Observé

Serpentinite et Silice 3.2%
Alluvions Colluvions Anciennes 1.4%

Complexe Silico Argileux 2.5%

Tuffs Mesozoique 92.8%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	12.0%
	Maquis Clairsemé	0.1%
	Maquis Dense	0.1%
	Broussailles	22.5%
	Végétation Dense	64.6%
	Eau	0.7%

11. Boghen

Localisation et durée des observations

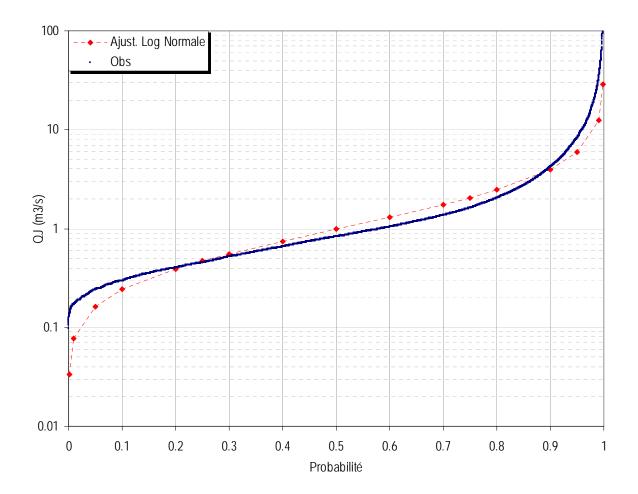
CODE	STATION	Coordo	BV		
		Χ	Υ	Z	(km²)
5702600101	Boghen Aval confluence Aremo. Cote 31.	364 525	289 667	31	113
5702600102	Boghen Malmezac. Cote 30.	363 673	287 810	30	134

OBSERVATIONS							
Durée Qmin (M3/S) Qmax (M3/S)							
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué	
21/01/55	19/05/08	49.0	0.128	0.093	700	2841	

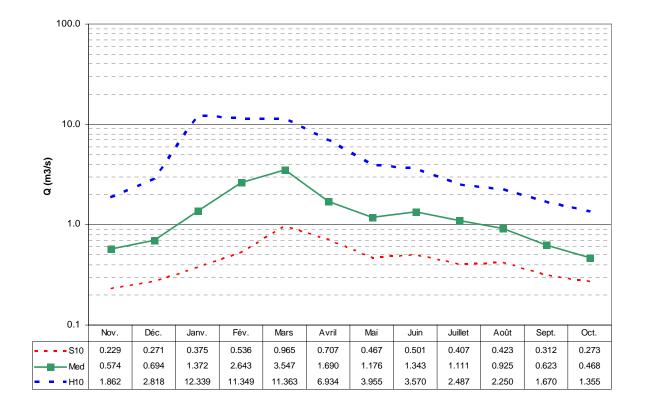
La station hydrométrique de la Boghen a été constituée successivement de 2 stations : Malmezac de 1955 à 1969 puis Aval Aremo à partir de 1969.

Un transfert de cotes de Malmezac à Aval Aremo a été utilisé pour les plus hautes eaux :

He Aremo (cm) =1.036* He Malmezac- 110


Pour les débits d'étiages et les débits journaliers, la chronique des débits de Malmezac a été transférée vers Aremo via la relation :

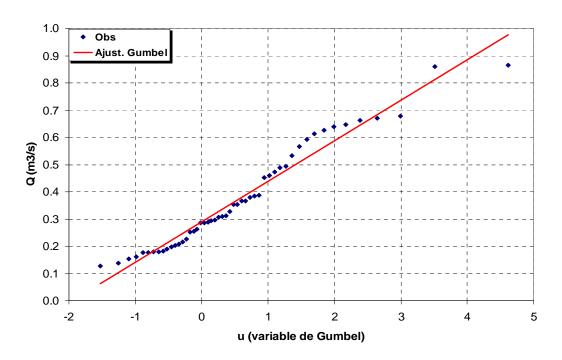
Q Aremo = 0.9622*Q Malmezac

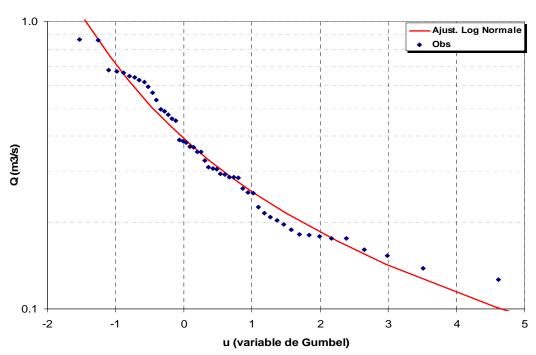

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.077	0.171
0.10	0.242	0.296
0.25	0.470	0.453
0.50	0.981	0.829
0.75	2.049	1.616
0.90	3.976	4.221
0.99	12.437	31.552

Débits moyens mensuels



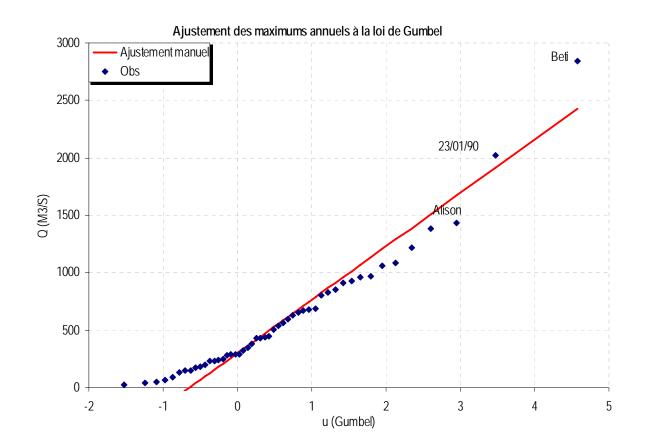

Module annuel = 1.744m³/s S10 = 0.867m³/s H10 = 3.207m³/s K3 = 3.7

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10

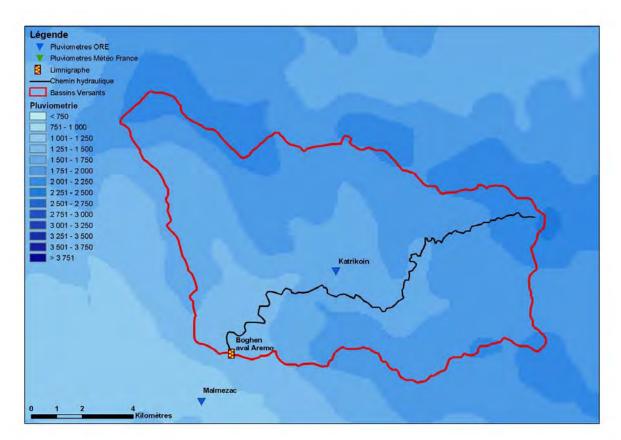

Débits caractéristiques d'étiages (DCE)

	Etiage Humide (T ans)			Média	ne	Etia	age Sec (T a	ns)	
	100	1	0	5	2		5	10	100
Q m³/s	0.974	0.6	24	0.513	0.330	C	0.215	0.172	0.101
Q spé l/s/km²	8.6	5.	.5	4.5	2.9		1.9	1.5	0.9
Loi	Gumbel			Log Normale					
Paramètres	Gd =	0.149	PO =	0.289	υ=	-1.109)	$\sigma = 0.5$	509

Courbes de tarissement

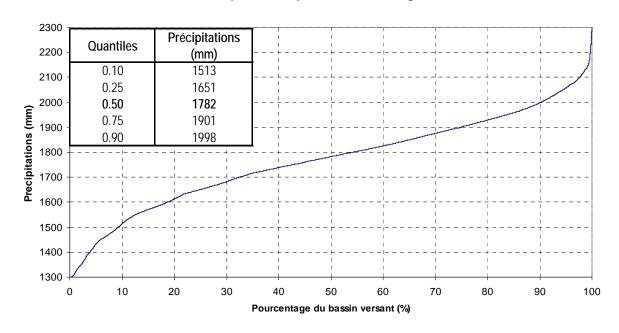

Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.531	0.0150	67

 Q_0 : débit initial de tarissement α : coefficient de tarissement

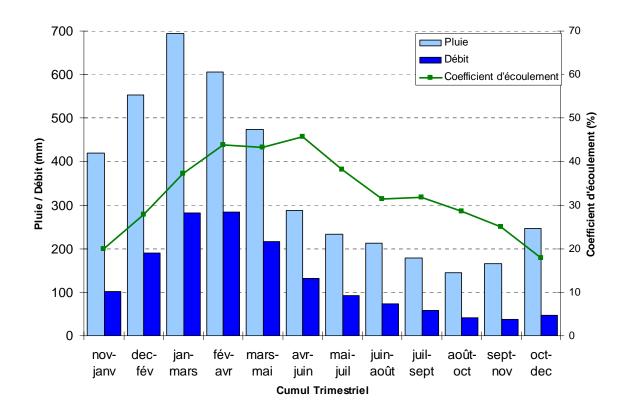

 $t_{\text{\tiny C}}$: temps caractéristique de tarissement

Débits maximums de crues

	Période de Retour T (années)							Parametre	e loi
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	300	470	997	1346	1681	2114	2439	465	300



Pluviométrie


(Source: MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Boghen

 $\begin{aligned} & \text{Précipitation moyenne} : P_{\text{moy}} = 1769 mm \\ & \text{Précipitation minimum} : P_{\text{min}} = 1294 mm \\ & \text{Précipitation maximum} : P_{\text{max}} = 2308 mm \end{aligned}$

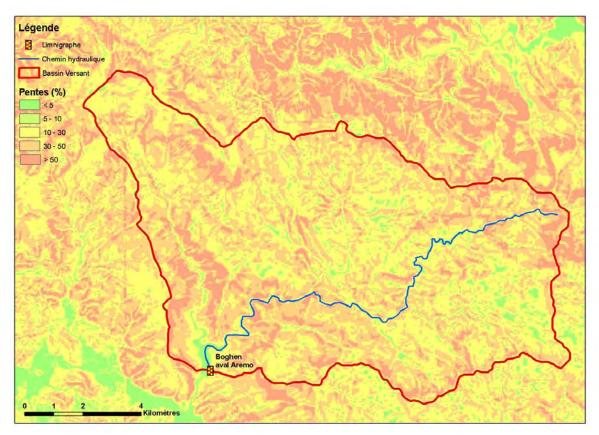
Bilan d'écoulement trimestriel

Coefficient d'écoulement moyen interannuel = 37% [16 ;53]

 $Lame \ \acute{e}coul\acute{e}e : L_e = 519 \ mm$ $D\acute{e}ficit \ d'\acute{e}coulement : \Delta_e = P - L_e = 885 \ mm$

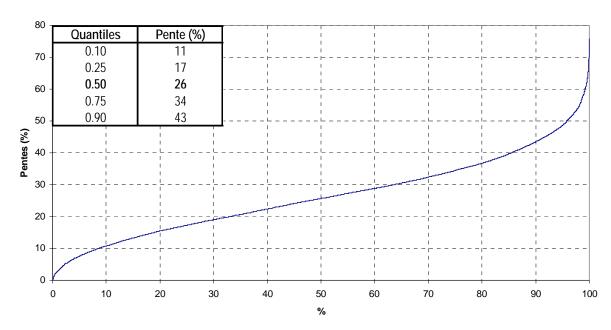

Caractéristiques Physiques

Altitudes



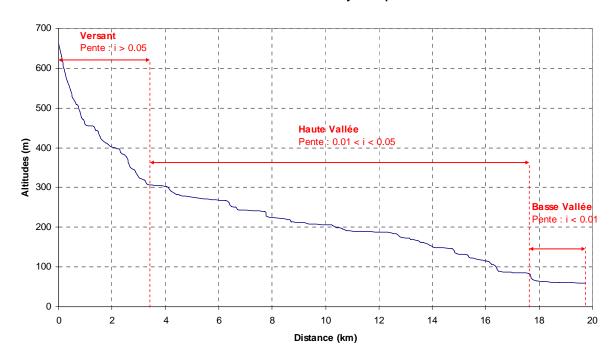
(Source : DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de la Boghen



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

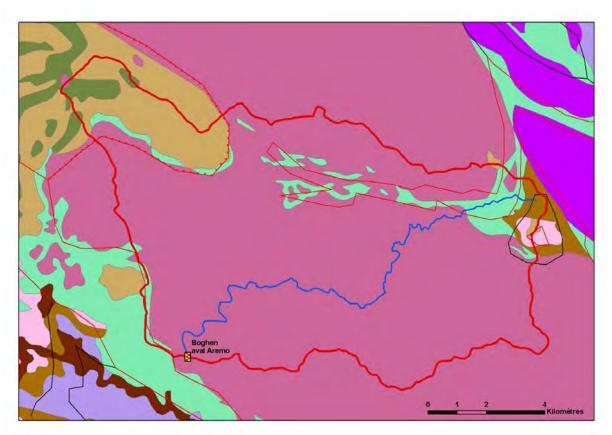

Pentes du bassin de la Boghen

Pente moyenne : i_{moy} = 26.5% Pente minimum : i_{min} = 0.18% Pente maximum : i_{max} = 75.7%

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.17
0.25	0.39
0.50	0.82
0.75	2.4
0.90	8.8


Longueur du chemin hydraulique : L = 19.871 km

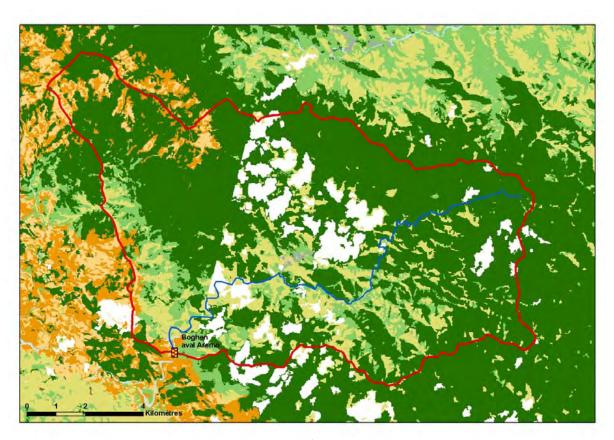
Pente moyenne : $i_{ch} = 3.0\%$ Pente à l'exutoire : $i_e = 0.10\%$

83% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 1.6 h [1.39 ; 1.91] Vitesse Moyenne de Transfert : V = L / T_c = 3.4 m.s⁻¹

Géologie

(Source : DTSI, BRGM 1/1000000)


Légende

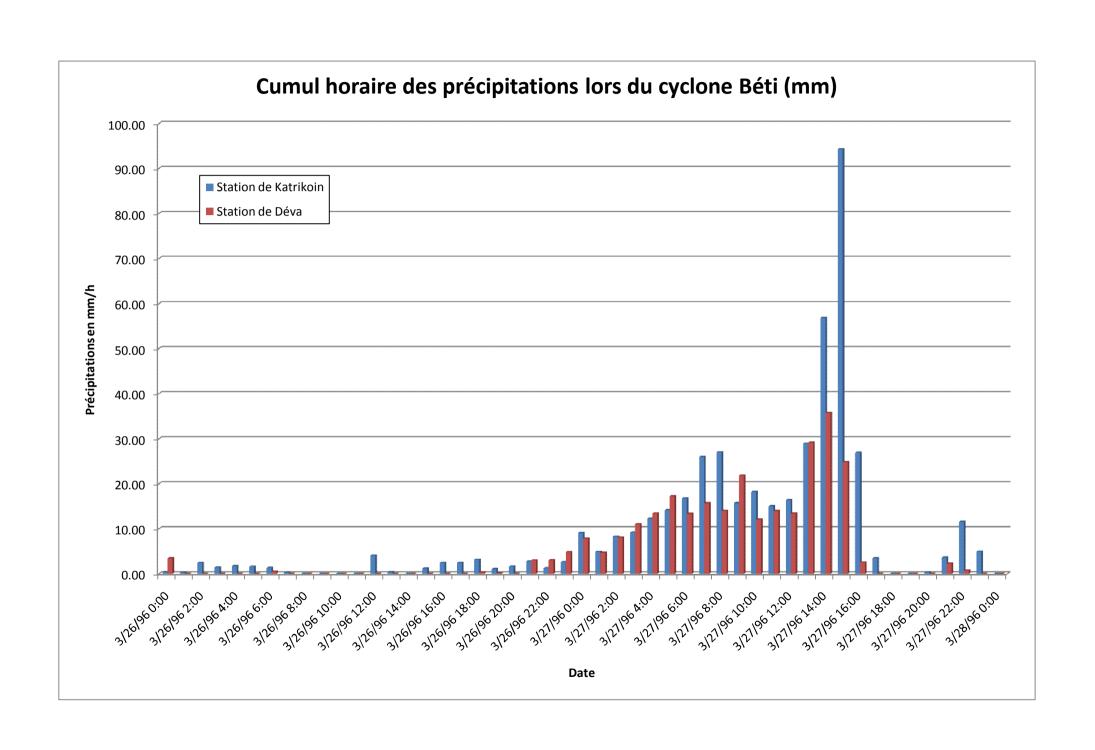
Leg	enu c	
	Limnigraphe	
	Chemin Hydraulique	
	Bassin Versant	
Géol	ogie	
	Chevauchement, Observé	
	Faille principale, Observé	
	Faille principale, Supposé	
	Normal, Observé	
	Série Boghen	83.6%
	Serpentinite et Silice	6.5%
	Roches basiques à ultra basiques	7.2%
	Terres et Alterites	1.2%
	Eocene Calcaire	0.3%

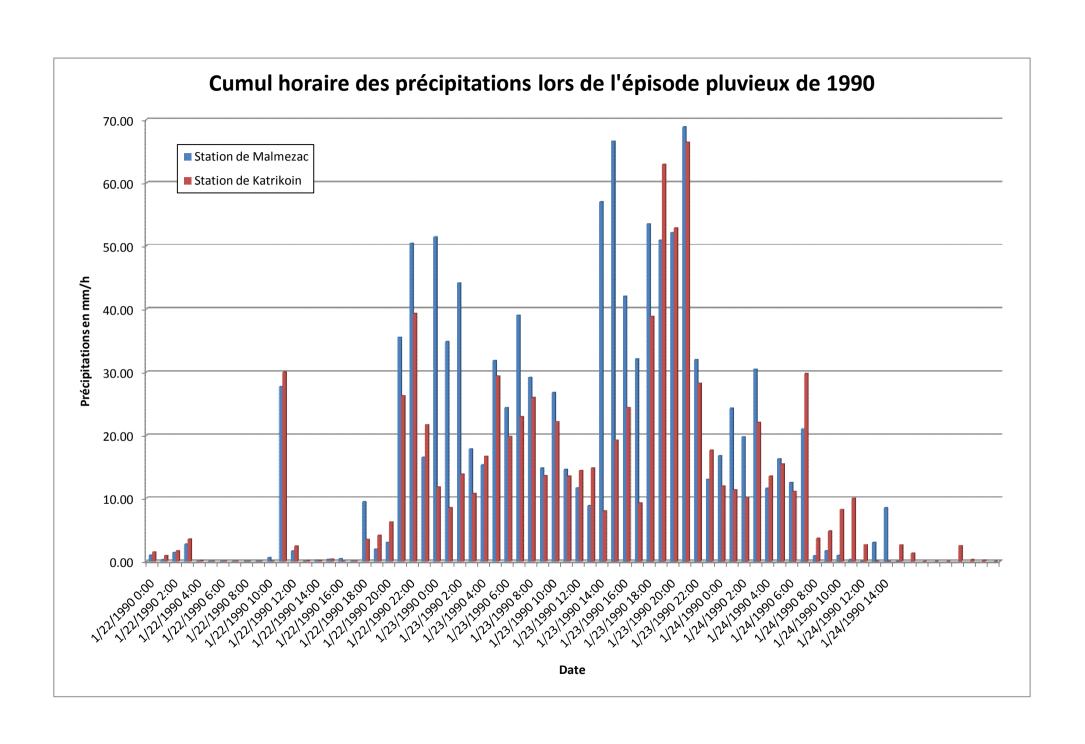
Complexe Silico Argileux

1.1%

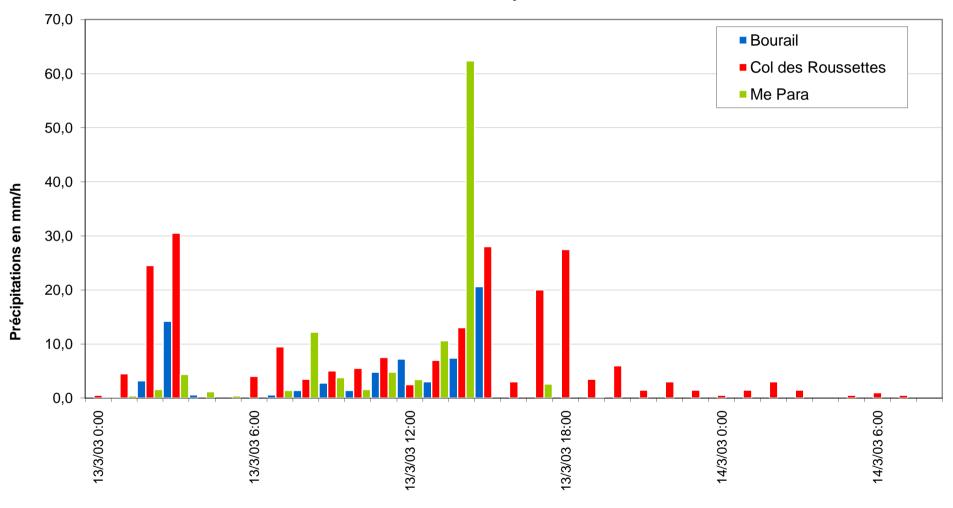
Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

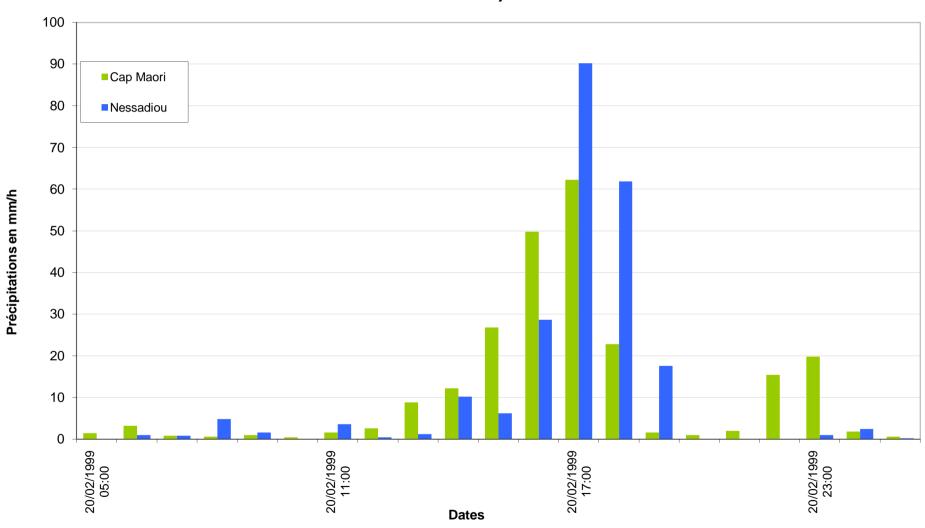

Légende


15.6%
2.1%
3.1%
10.2%
68.7%
0.3%

Annexe 5 : Hyétogrammes des pluies réelles



ISO9001 : FDT1_V1/10-10



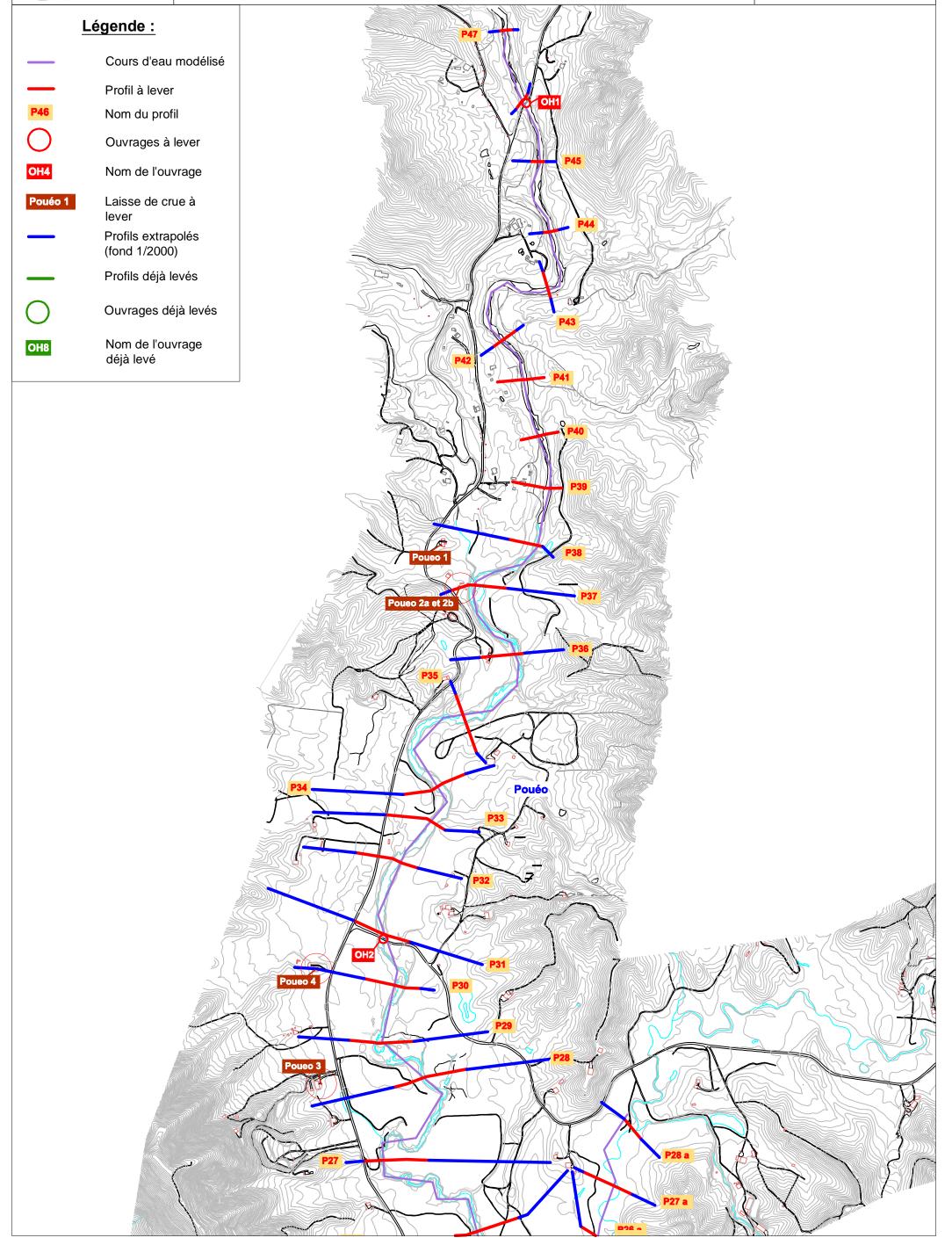
Cumul horaire des précipitations lors du cyclone Erica (13 et 14 Mars 2003)

Dates

Cumul horaire des précipitations lors du cylcone Franck (20-21 Février 1999)

Annexe 6 : Plans des profils à lever

ISO9001: FDT1_V1/10-10

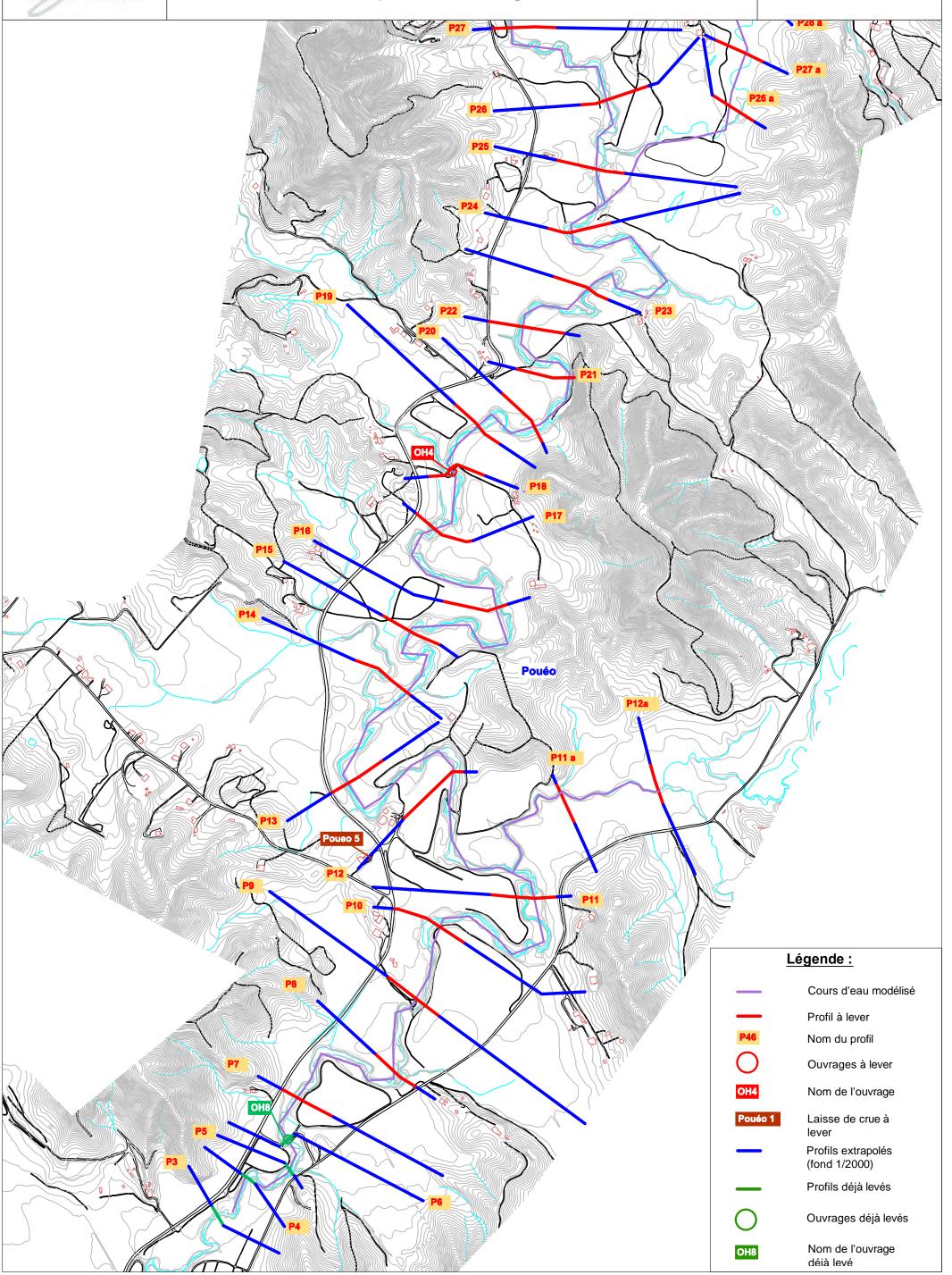


Etude des zones inondables en Province Sud -Commune de Bourail - Secteur Pouéo

Echelle : 1/10 000

Format : A3

Annexe 6 : Plan des profils et ouvrages à lever - Partie I

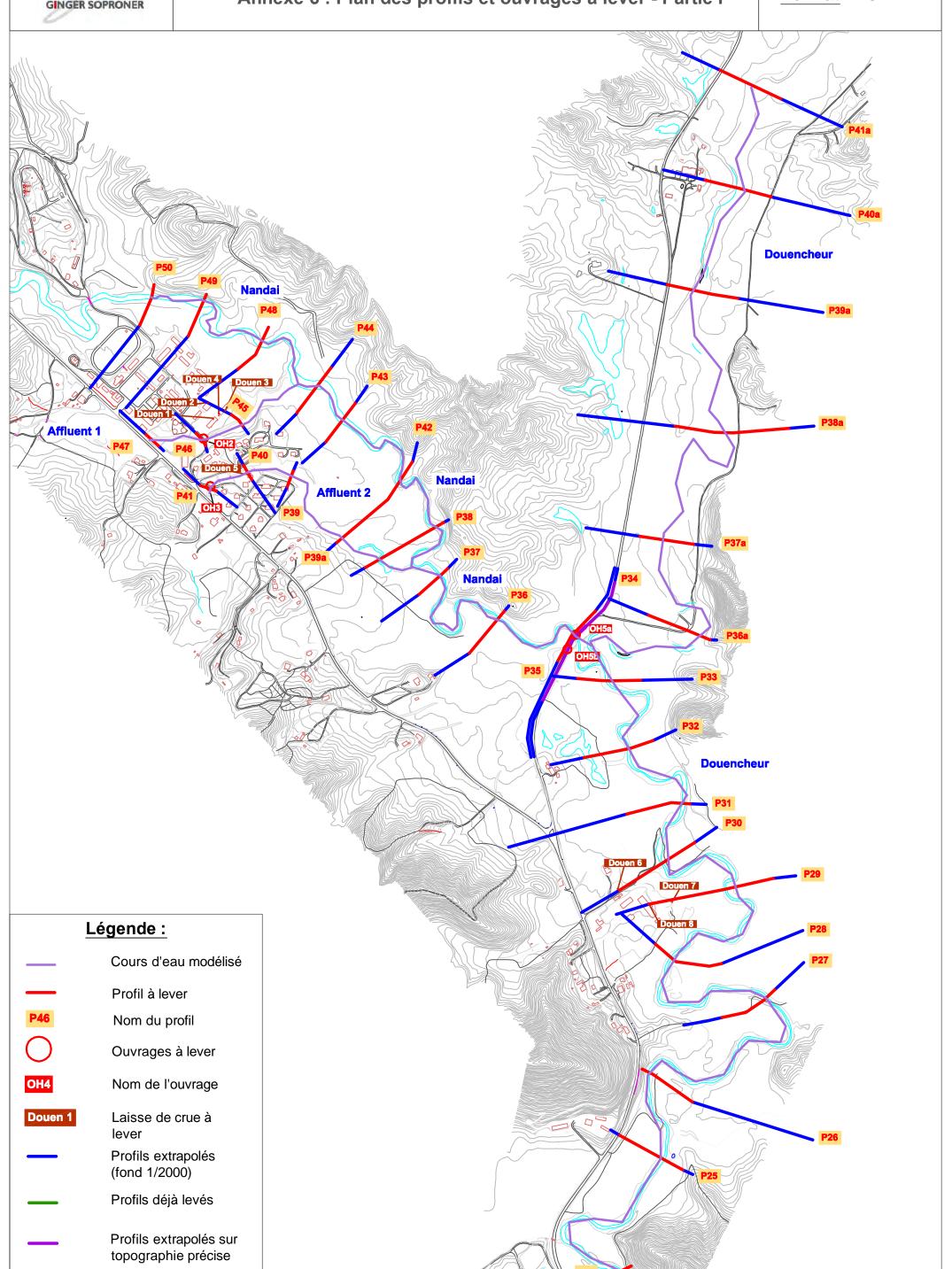


Etude des zones inondables en Province Sud -Commune de Bourail - Secteur Pouéo

Annexe 6 : Plan des profils et ouvrages à lever - Partie II

Echelle : 1/10 000

Format: A3

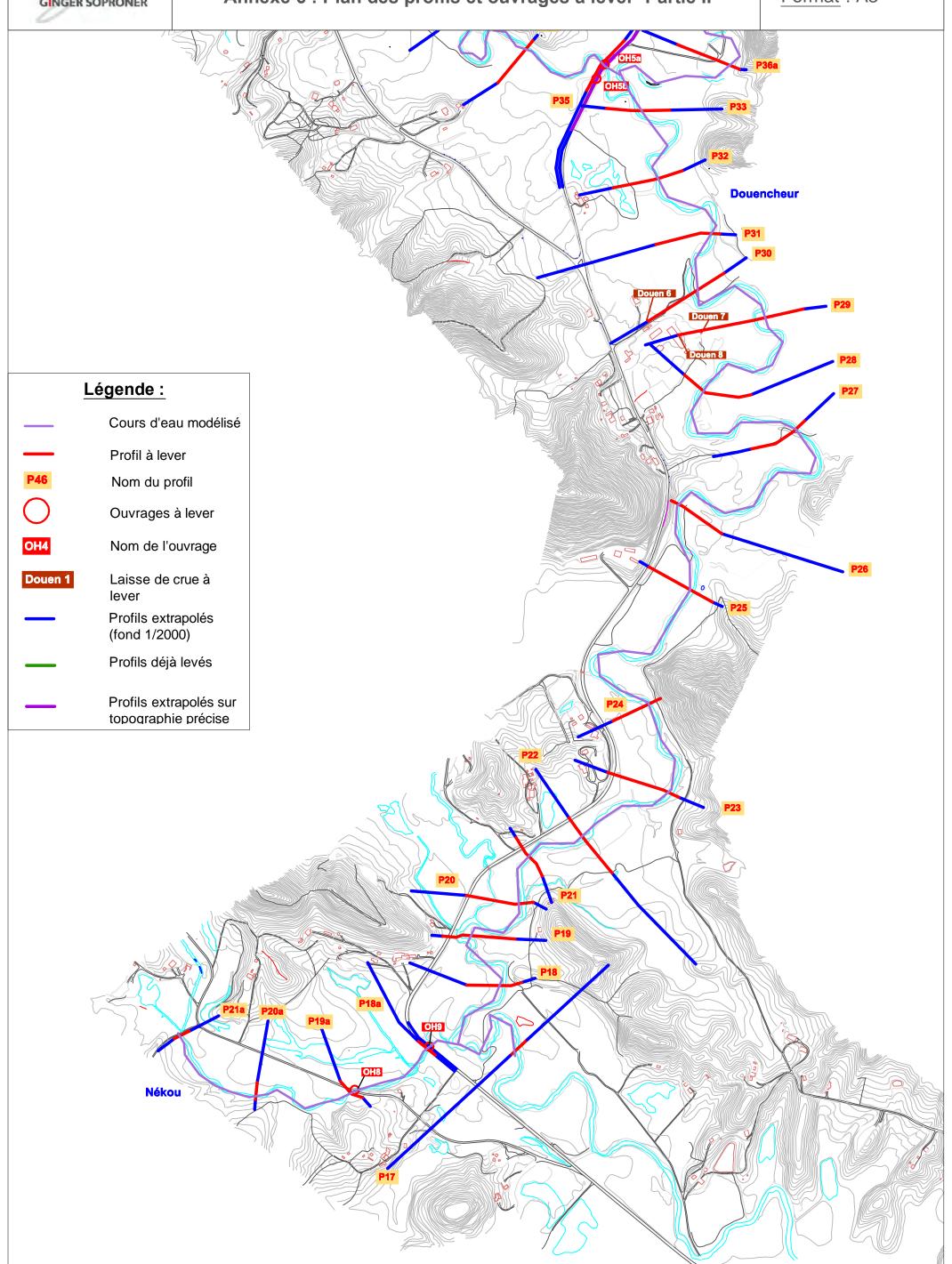


Etude des zones inondables en Province Sud Commune de Bourail - Secteur Douencheur

Annexe 6 : Plan des profils et ouvrages à lever - Partie I

Echelle: 1/10 000

Format: A3

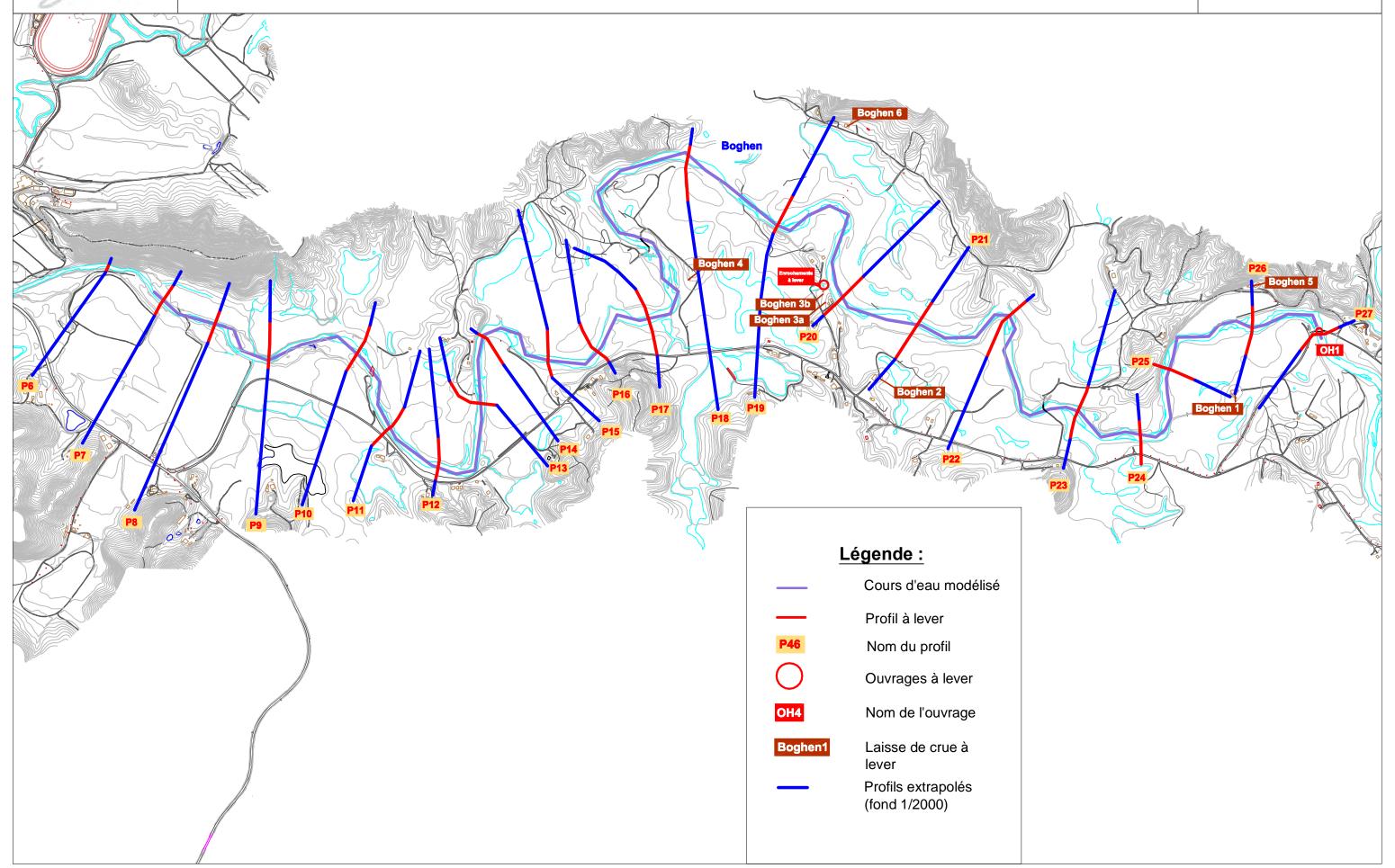


Etude des zones inondables en Province Sud -Commune de Bourail - Secteur Douencheur

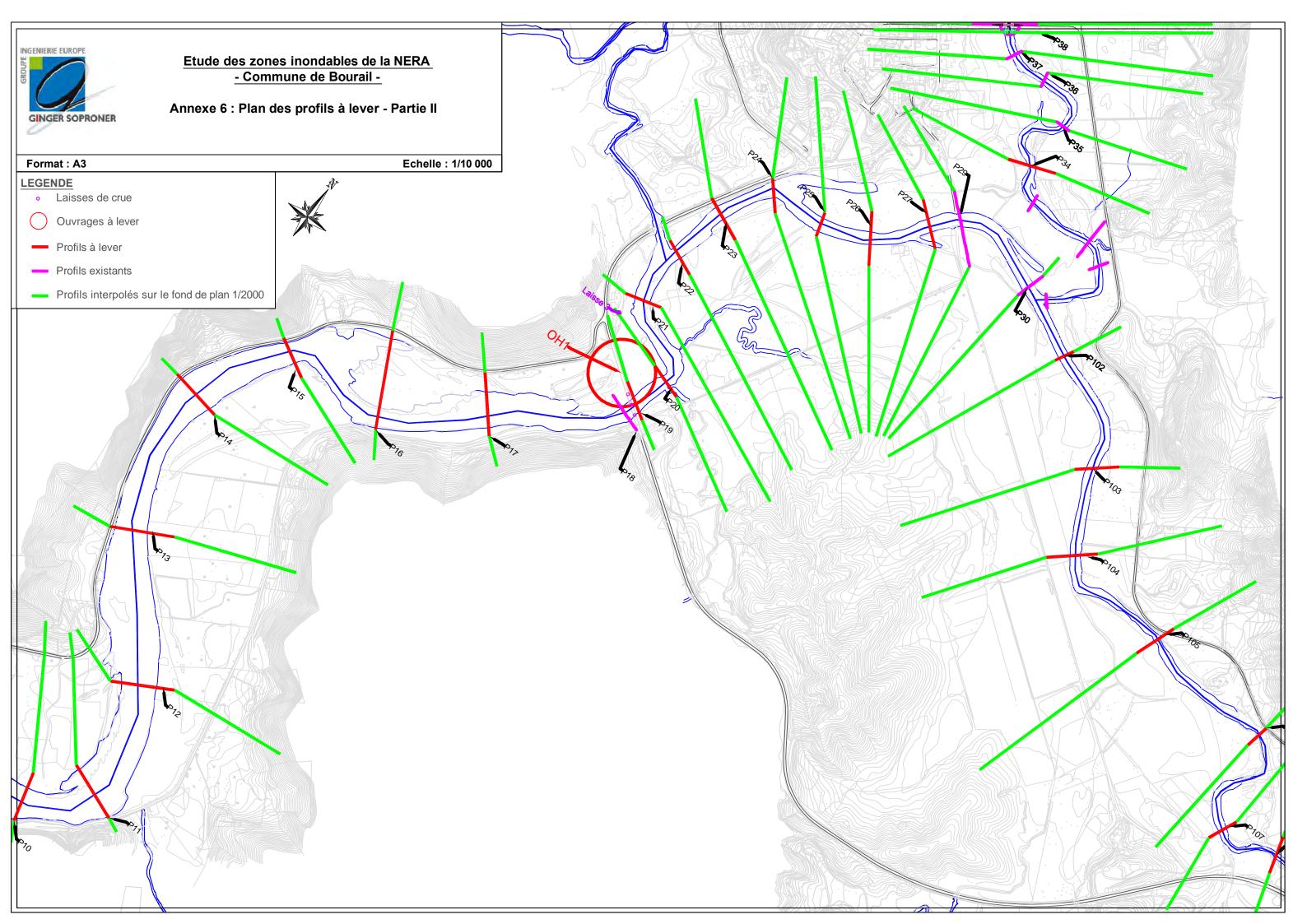
Annexe 6 : Plan des profils et ouvrages à lever- Partie II

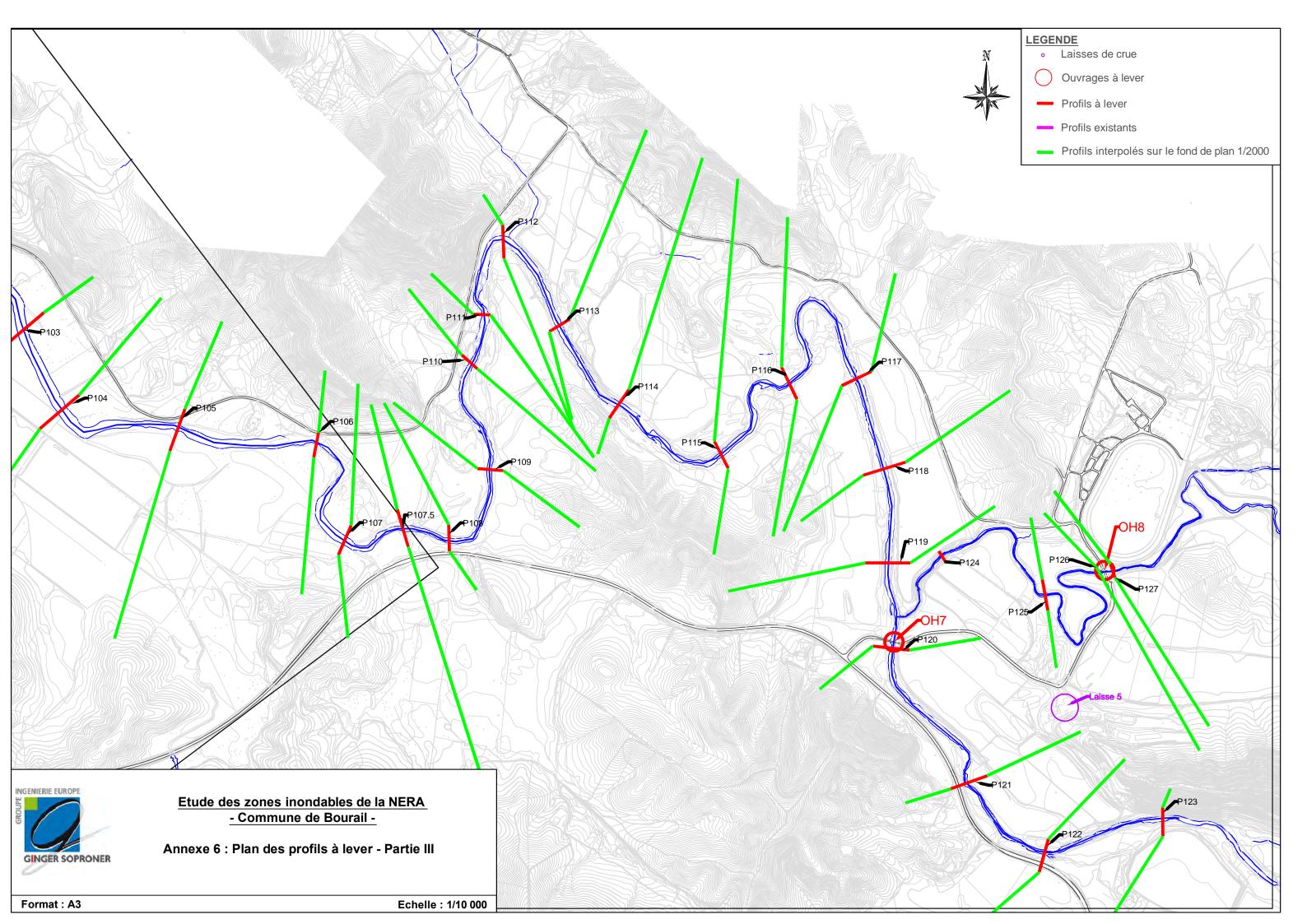
Echelle : 1/10 000

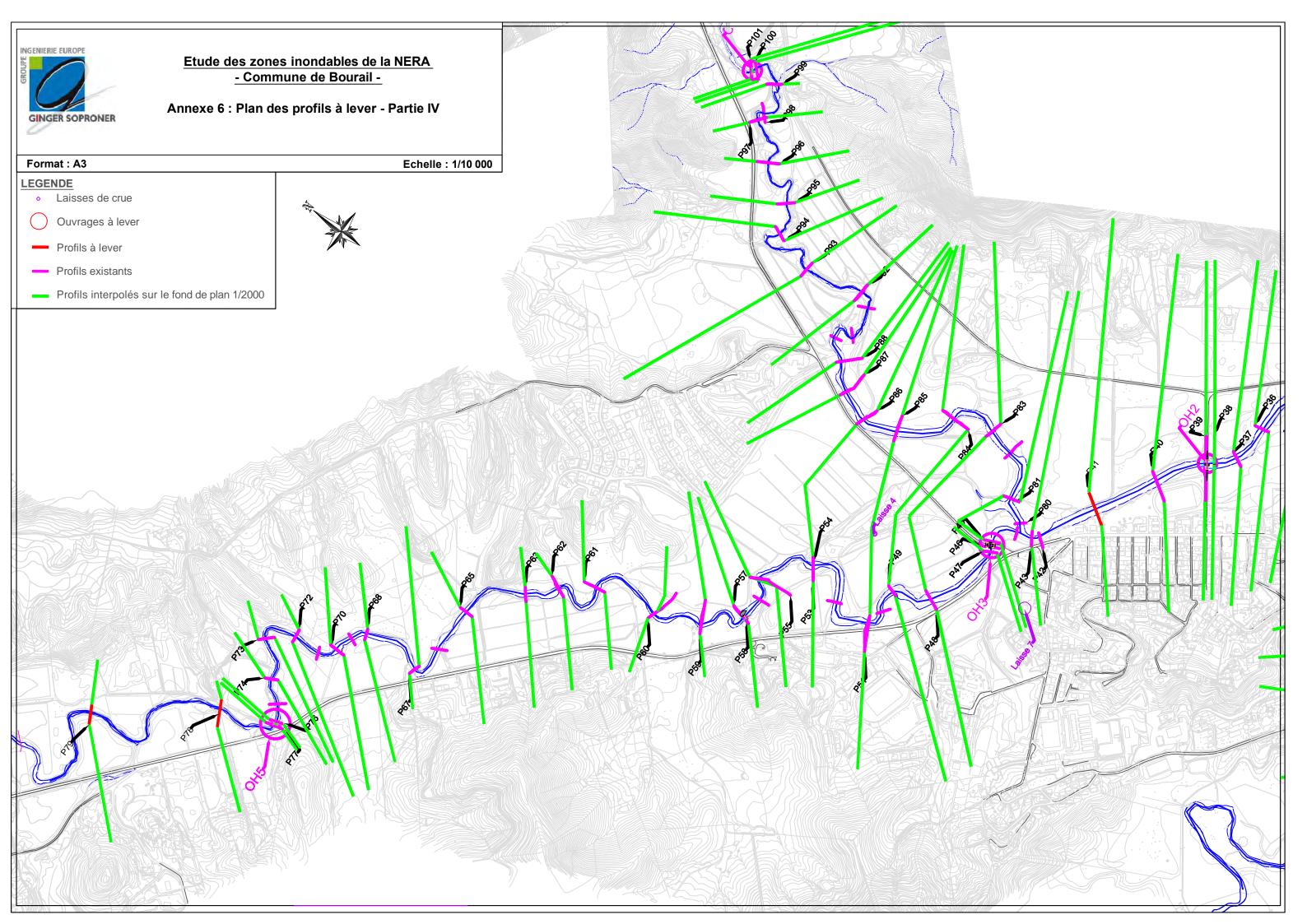
Format : A3




Etude des zones inondables en Province Sud - Commune de Bourail - Secteur Boghen -


<u>Echelle</u>: 1/10 000


Format: A3


Annexe 6 : Plan des profils et ouvrages à lever

Annexe 7 : Débits injectés au droit des différents profils

ISO9001 : FDT1_V1/10-10

March Marc	Bief	Profil	Surface drainée (km²)	Q5	Q10	Q100	Q100 Faible	Q100 Fort	Béti hyp 1	Béti hyp 2	1990	Erica	Franck	Sc 1	Sc 2	Sc 3	Sc 4	Sc 5
Property 1972 1972 1972 1972 1972 1973 1974 1975 197	Pouéo																	
## A PART		P328.1	7.1	102	147	239	202	306	102	177	135	197	210	239	239	239	147	0.2
March Marc		2012.2	44.0	450	246	252	207	454	450	254	400	204	240	252	252	252	246	0.0
Part	Affluent 2																	+
Mathematical Program Mathematical Program	Δri																	
Part	7.01						1											+
Page																		+
Page		P231	52.1	454	654	1067	899	1365	454		637	781	955	1067	1067	1067	654	1
Page		P229	53.9	466	670	1095	922	1400	466	802	653	802	980	1095	1095	1095	670	1
Pick												1092		1491	1491	1491		
Principle Prin																		+
Second Column Second Colum																		
Page 1975 7974 1986 1973 1493 2967 7974 1998 1973 1493 2967 7974 1998																		+
Part																		+
December Fig. Fig																		
December 19																		+
Marchard 1977	Douencheur																	
Name	Nandai																	
Property Post		P247	0.7	18	25	41	35	53	18	30	25	30	37	41	41	41	25	0.0
P30																		
PABE	Affluent 2	P241	1.1	25	35	58	49	74	25	42	35	42	52	58	58	58	35	0.0
PABE		D250	24.4	257	270	605	F00	772	357	442	264	442	F 4 1	605	COF	605	270	0.3
P-44																		
Principal Part Pa																		
Name																		
P311	Nandai																	
New Pigg	Principal	P235	27.5	281	404	660	556	844	281	483	394	483	591	660	660	660	404	0.4
Pi47		P211	9.1	123	176	288	243	368	123		172	211	258	288	288	288	176	0.2
Pi.15	Nekou																	
P43																		
Pi42																		
PAGE																		
F138																		+
P137																		
P132				1310		3084	2596			656		1310	1310	3084	2218	1	3084	
P130		P134	215.1	1314	1893	3092	2603	3952	3094	657	2804	1314	1314	3092	2224	1	3092	3092
P129 218.2 1328 1913 3125 2631 3995 3127 664 2834 1328 1328 3125 2248 1 3125 3125 1326 132		P132	215.7	1316	1897	3098	2608	3960	3100	659	2809	1316	1316	3098	2228	1	3098	3098
P127 218.5 1330 1916 3129 2534 4000 13131 665 2837 1330 1330 3129 2250 1 3129 3124 3134																1		
Beghen Amort 122 225.0 135.9 195.8 319.8 263.8 400.6 313.6 666 284.2 133.2 133.2 313.4 225.4 1 313.4																		+
Beghen Amont 122 225.0 1359 1358 3198 2592 4088 3200 680 2900 1359 1359 3198 2300 1 3198 319																		
Boghen Available 119 287 1632 2350 3838 3231 4907 3377 1254 3474 1632 1632 3838 2798 1 3838 3838 3838 112 293 1657 2386 3898 3282 4983 3430 1274 3528 1657 1657 3898 2842 1 3898	Roghon Amont																	
Boghen Aval 112 293 1657 2386 3898 3282 4983 3430 1274 3528 1657 1657 3898 2842 1 3898 3898 3898 3898 3282 4983 3430 1274 3528 1657 1657 3898 2842 1 3898 3898 3898 3898 3898 3898 300	BURNEH AMOUT																	+
107.5 301 1691 2435 3978 3349 5085 3500 1300 3600 1691 1691 1691 3978 2900 1 3978 3978 3978 3978 3978 30 500.0 2474 3563 5821 4900 7441 4400 3400 5600 2474 2474 6895 5821 2917 5821 3978	Boghen Aval																	
Néra 30 500.0 2474 3563 5821 4900 7441 4400 3400 5600 2474 2474 6895 5821 2917 5821 3978																		+
Néra 13 529.0 2581 3717 6072 5112 7762 4590 3547 5842 2581 2581 7193 6072 3043 6072 4150 9 534.0 2599 3743 6115 5148 7817 4623 3572 5883 2599 2599 7244 6115 3065 6115 4179 2 5432 5432 5432 5432 5432 5432 5432 54		30	500.0	2474	3563	5821	4900	7441	4400	3400	5600	2474	2474	6895	5821	2917	5821	3978
9 534.0 2599 3743 6115 5188 7817 4623 3572 5883 2599 2599 7244 6115 3065 6115 4179 2 543.0 2632 3790 6193 5213 7916 4681 3617 5957 2632 2632 7335 6193 3103 6193 4232 P347 45.3 409 589 961 809 1229 409 711 542 792 844 961 961 961 589 0.6 P343 47.3 422 608 993 836 1269 422 734 560 819 871 993 993 993 608 0.6 P340 50.0 440 634 1035 871 1323 440 766 584 853 908 1035 1035 1035 634 0.6 P337 52.6 457 659 1075 905 1374 457 795 607 886 944 1075 1075 1075 659 0.7 P332 54.2 467 674 1100 926 1406 467 813 620 907 965 1100 1100 1100 674 0.7 P329 55.1 473 682 1113 937 1423 473 823 628 918 977 1113 1113 1113 682 0.7 P326 55.8 478 688 1124 946 1436 478 831 634 926 986 1124 1124 1124 688 0.7 P338 66.3 544 784 1280 1077 1636 544 947 722 1055 1123 1280 1280 1280 784 0.8 P339 7 1.8 577 832 1358 1144 1736 577 1005 766 1120 1192 1358 1358 1358 832 0.9 P307 85.6 659 949 1550 1305 1981 659 1146 874 1278 1360 1550 1550 1550 949 1.0 P308 85.2 656 946 1544 1300 1974 656 1142 871 1273 1355 1544 1544 1544 946 1.0 P307 85.6 659 949 1550 1305 1981 659 1146 874 1278 1360 1550 1550 949 1.0 P308 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 1563 958 1.0 P308 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 1563 958 1.0 P308 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 1563 958 1.0																		+
Part	Néra																	
P347 45.3 409 589 961 809 1229 409 711 542 792 844 961 961 589 0.6 P343 47.3 422 608 993 836 1269 422 734 560 819 871 993 993 608 0.6 P340 50.0 440 634 1035 871 1323 440 766 584 853 908 1035 1035 634 0.6 P337 52.6 457 659 1075 905 1374 457 795 607 886 944 1075 1075 659 0.7 P332 54.2 467 674 1100 926 1406 467 813 620 907 965 1100 1100 1100 674 0.7 P329 55.1 473 682 1113 937 1423 473 823 628																		
P343																		
P340 50.0 440 634 1035 871 1323 440 766 584 853 908 1035 1035 634 0.6 P337 52.6 457 659 1075 905 1374 457 795 607 886 944 1075 1075 1075 659 0.7 P332 54.2 467 674 1100 926 1406 467 813 620 907 965 1100 1100 1100 674 0.7 P329 55.1 473 682 1113 937 1423 473 823 628 918 977 1113 1113 1113 682 0.7 P326 55.8 478 688 1124 946 1436 478 831 634 926 986 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113																		
Pouéo Pouéo P337 52.6 457 659 1075 905 1374 457 795 607 886 944 1075 1075 1075 659 0.7																		
Page 54.2 467 674 1100 926 1406 467 813 620 907 965 1100 1100 1100 674 0.7 Page 55.1 473 682 1113 937 1423 473 823 628 918 977 1113 1113 1113 682 0.7 Page 55.8 478 688 1124 946 1436 478 831 634 926 986 1124 1124 1124 688 0.7 Page 62.9 523 753 1230 1036 1572 523 910 694 1014 1080 1230 1230 1230 753 0.8 Page 63.3 544 784 1280 1077 1636 544 947 722 1055 1123 1280 1280 1280 784 0.8 Page 7313 71.8 577 832 1358 1144 1736 577 1005 766 1120 1192 1358 1358 1358 1358 1359 999 1350 1527 1286 1952 649 1130 862 1259 1340 1527 1527 1527 935 1.0 Page 7308 85.2 656 946 1544 1300 1974 656 1142 871 1273 1355 1544 1544 1544 946 1.0 Page 7306 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 1563 958 1.0 Page 89.0 678 977 1595 1343 2039 678 1180 900 1315 1400 1595 1595 1595 977 1.0																		
Pouéo P326 55.8 478 688 1124 946 1436 478 831 634 926 986 1124 1124 1124 688 0.7 P325 62.9 523 753 1230 1036 1572 523 910 694 1014 1080 1230 1230 1230 753 0.8 P318 66.3 544 784 1280 1077 1636 544 947 722 1055 1123 1280 1280 1280 784 0.8 P313 71.8 577 832 1358 1144 1736 577 1005 766 1120 1192 1358 1358 1358 1358 832 0.9 P311 84.0 649 935 1527 1286 1952 649 1130 862 1259 1340 1527 1527 1527 935 1.0 P308 85.2 656 946 1544 1300 1974 656 1142 871 1273 1355 1544 1544 1544 946 1.0 P307 85.6 659 949 1550 1305 1981 659 1146 874 1278 1360 1550 1550 1550 949 1.0 P308 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 1563 958 1.0 P308 85.9 89.0 678 977 1595 1343 2039 678 1180 900 1315 1400 1595 1595 1595 1595 977 1.0																		_
Pouéo P325 62.9 523 753 1230 1036 1572 523 910 694 1014 1080 1230 1230 1230 753 0.8 P318 66.3 544 784 1280 1077 1636 544 947 722 1055 1123 1280 1280 1280 784 0.8 P313 71.8 577 832 1358 1144 1736 577 1005 766 1120 1192 1358 1358 1358 832 0.9 P311 84.0 649 935 1527 1286 1952 649 1130 862 1259 1340 1527 1527 935 1.0 P308 85.2 656 946 1544 1300 1974 656 1142 871 1273 1355 1544 1544 946 1.0 P307 85.6 659 949 1550 130			55.1	473	682				473	823		918		1113	1113			
P318 66.3 544 784 1280 1077 1636 544 947 722 1055 1123 1280 1280 784 0.8 P313 71.8 577 832 1358 1144 1736 577 1005 766 1120 1192 1358 1358 1358 832 0.9 P311 84.0 649 935 1527 1286 1952 649 1130 862 1259 1340 1527 1527 1527 935 1.0 P308 85.2 656 946 1544 1300 1974 656 1142 871 1273 1355 1544 1544 946 1.0 P307 85.6 659 949 1550 1305 1981 659 1146 874 1278 1360 1550 1550 949 1.0 P306 86.7 665 958 1563 1316 1999 665																		
P313 71.8 577 832 1358 1144 1736 577 1005 766 1120 1192 1358 1358 1358 832 0.9 P311 84.0 649 935 1527 1286 1952 649 1130 862 1259 1340 1527 1527 935 1.0 P308 85.2 656 946 1544 1300 1974 656 1142 871 1273 1355 1544 1544 946 1.0 P307 85.6 659 949 1550 1305 1981 659 1146 874 1278 1360 1550 1550 949 1.0 P306 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 958 1.0 92 89.0 678 977 1595 1343 2039 678 1180<	Pouéo																	
P311 84.0 649 935 1527 1286 1952 649 1130 862 1259 1340 1527 1527 1527 935 1.0 P308 85.2 656 946 1544 1300 1974 656 1142 871 1273 1355 1544 1544 946 1.0 P307 85.6 659 949 1550 1305 1981 659 1146 874 1278 1360 1550 1550 949 1.0 P306 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 1563 958 1.0 92 89.0 678 977 1595 1343 2039 678 1180 900 1315 1400 1595 1595 1595 977 1.0							1											
P308 85.2 656 946 1544 1300 1974 656 1142 871 1273 1355 1544 1544 1544 946 1.0 P307 85.6 659 949 1550 1305 1981 659 1146 874 1278 1360 1550 1550 1550 949 1.0 P306 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 1563 958 1.0 92 89.0 678 977 1595 1343 2039 678 1180 900 1315 1400 1595 1595 1595 977 1.0																		+
P307 85.6 659 949 1550 1305 1981 659 1146 874 1278 1360 1550 1550 1550 949 1.0 P306 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 1563 958 1.0 92 89.0 678 977 1595 1343 2039 678 1180 900 1315 1400 1595 1595 1595 977 1.0																		
P306 86.7 665 958 1563 1316 1999 665 1157 882 1289 1372 1563 1563 1563 958 1.0 92 89.0 678 977 1595 1343 2039 678 1180 900 1315 1400 1595 1595 1595 977 1.0																		
92 89.0 678 977 1595 1343 2039 678 1180 900 1315 1400 1595 1595 1595 977 1.0																		
																		+
	Téné																	

Annexe 8 : Résultats des simulations de référence

ISO9001 : FDT1_V1/10-10

Rivière	Bief	River Sta	Profile	Q Total (m3/s)	W.S. Elev (m)	E.G. Elev (m)	Crit W.S.	Flow Area (m2)	Froude # XS	Vel Left (m/s)	Vel Chnl (m/s)	Vel Right (m/s)	Vel Tota (m/s)
		1194	Q5	517	12.18	10.04	(m) 12.19	1275.24	0.11	0.41	0.83	0.27	0.41
Tene	Tene	1192 1191	Q5 Q5	517 517	12.17 11.43	10.34 9.94	12.18 11.65	1166.39 399.31	0.12 0.61	0.45 0.57	0.85 2.78	0.37 0.89	0.44 1.29
		347	Q5	409	25.31	22.43	25.57	209.53	0.41	0.43	2.32	0.48	1.95
		346	Q5	409	24.56	23.17	25.07	172	0.6	1.1	3.46	0.94	2.38
		345.8 345	Q5 Q5	409 409	24.59 24.22	22 21.82	24.86	227.44 181.95	0.41	0.7	2.45 2.94	0.62 0.82	1.8 2.25
		344	Q5	409	23.93	20.88	24.15	206.75	0.34	0.27	2.11	0.57	1.98
		343 342	Q5 Q5	422 422	23.55 22.88	20.8 20.86	23.8	251.52 236.98	0.43	0.66 1.04	2.36 2.73	0.58 0.65	1.68 1.78
		341	Q5	422	22.55	20.59	22.86	239.26	0.49	0.58	2.78	0.88	1.76
		340 339	Q5 Q5	440 440	22.21 21.84	19.73 20.14	22.45	274.3 218.78	0.43 0.48	0.68	2.42 2.97	0.66 1.15	1.6 2.01
		338	Q5	440	20.71	19.69	21.36	169.53	0.95	0.76	3.75	0.7	2.6
	Amont	337 336	Q5 Q5	457 457	20.55 19.53	18.06 17.92	20.7	419.55 166.61	0.35 0.71	0.73	2.26 3.3	0.51 0.63	1.09 2.74
		335	Q5	457	19.16	16.86	19.37	341.31	0.43	0.25	2.2	0.48	1.34
		334	Q5	457	18.74	16.2	18.84	632.88	0.32	0.42	1.67	0.32	0.72
		333 332	Q5 Q5	457 467	18.64 18.11	15.93 16.33	18.74 18.43	568.26 281.22	0.33 0.71	0.28	1.63 2.6	0.37 0.18	0.8 1.66
		331	Q5	467	17.74	17.09	17.94	557.38	0.56	0.62	2.49	0.31	0.84
		330.8 330	Q5 Q5	467 467	17.83 17.43	16.85 16.55	17.93 17.56	710.95 402.91	0.36 0.43	0.66	1.98 2.74	0.3 1.01	0.66 1.16
		329	Q5	473	17.15	16.17	17.2	756.13	0.24	0.54	1.59	0.42	0.63
		328 327	Q5 Q5	473 473	16.97 16.69	15.75 15.57	17.01 16.73	796.7 743.86	0.2	0.49	1.39 1.56	0.5 0.51	0.59 0.64
		326	Q5	478	15.35	15.19	15.91	240.73	1.02	0.68	3.7	0.79	1.99
		325 324	Q5 Q5	523 523	15.4 15.32	14.19 13.67	15.44 15.34	861.33 1184.37	0.21	0.48	1.32 1.05	0.37 0.39	0.61 0.44
		323	Q5	523	14.94	14.07	15.01	726.16	0.13	0.7	1.86	0.48	0.72
		322 321	Q5 Q5	523 523	14.55 14.28	13.29 12.94	14.64 14.37	535.41 524.99	0.28 0.27	0.79 0.53	1.89 2.07	0.67 0.8	0.98 1
Pouéo		321 320	Q5 Q5	523 523	14.28 14.07	12.94 12.92	14.37	524.99 521.02	0.27	0.53	2.07	0.8	1
r oue0	Contro	319	Q5	523	13.71	13.11	13.84	556.11	0.38	0.72	2.48	0.72	0.94
	Centre	318 317.8	Q5 Q5	544 544	13.47 13.42	12.29 12.16	13.57 13.55	627.31 540.96	0.33	0.57 0.54	2.11 2.38	0.7 0.84	0.87 1.01
		317	Q5	544	13	11.58	13.17	511.55	0.46	0.73	2.63	0.75	1.06
		316 315	Q5 Q5	544 544	12.26 11.99	11.72 11.12	12.32 12.04	791 832.07	0.31	0.8	2.3 1.76	0.59 0.5	0.69 0.65
		314	Q5	544	11.82	9.79	11.85	1085.69	0.16	0.34	1.23	0.42	0.5
		313 312	Q5 Q5	577 577	11.56 11.05	10.15 8.98	11.63 11.2	780.2 563.37	0.26 0.42	0.53	1.78 2.05	0.63 0.52	0.74 1.02
		311	Q5	649	10.35	9.28	10.43	785.79	0.3	0.92	2.23	0.6	0.83
		310 309	Q5 Q5	649 649	9.87 9.74	6.87 8.48	9.99 9.78	859.9 1017.91	0.38	0.41	2.02 1.35	0.46 0.44	0.75 0.64
		308	Q5	656	9.51	8.38	9.58	863.2	0.24	0.57	1.86	0.63	0.76
		307 306	Q5 Q5	659 665	9.26 9.1	7.66 7.45	9.3 9.19	1073.66 713.51	0.18 0.31	0.52 0.78	1.56 2.09	0.55 0.68	0.61 0.93
		305.8	Q5	665	9.1	7.45	9.19	713.51	0.31	0.78	2.09	0.68	0.93
	Aval	305	Q5	665	8.84	7.71	9.02	520.13	0.39	0.6	2.51	0.88	1.28
		304 96	Q5 Q5	665 665	8.61 8.14	7.4 7.19	8.78 8.46	533.91 433.95	0.38 0.61	0.91	2.49 3.28	0.66 0.85	1.25 1.53
		95	Q5	665	7.87	6.91	8.07	515.13	0.51	0.46	2.69	0.99	1.29
		94 93	Q5 Q5	665 665	7.88 7.86	6.51 5.72	7.93 7.87	1033.4 2082.49	0.26 0.08	0.4	1.67 0.79	0.57 0.31	0.64
		92	Q5	678	7.8	5.86	7.84	1194.89	0.17	0.36	1.29	0.49	0.57
		88 87	Q5 Q5	678 678	7.72 7.72	5.9 5.27	7.76 7.74	1166.36 1890.63	0.21	0.48	1.48 0.91	0.38 0.35	0.58
	Affluent 2	312.2	Q5	150	10.87	9.64	10.88	429.73	0.11	0.34	0.72	0.29	0.35
	Amdent 2	311.2 328.1	Q5 Q5	150 102	10.81 16.96	8.83 16.4	10.82 16.99	536.18 174.74	0.07 0.22	0.25 0.49	0.49 0.95	0.28 0.55	0.28 0.58
	Affluent 1	327.1	Q5	102	15.83	15.64	15.9	87.38	0.53	0.45	1.75	1.28	1.17
		326.1	Q5	102	15.71	14.54	15.71	354.22	0.08	0.26	0.45	0.29	0.29
		147 146.5	Q5 Q5	1213 1213	20.07 19.94	18 17.96	20.49	784.19 750.71	0.65 0.73	0.47	3.27 3.75	0.69 0.94	1.55 1.62
		146	Q5	1213	19.72	16.86	20.08	1105.3	0.58	0.32	3.16	0.63	1.1
		145 144	Q5 Q5	1216 1216	19.53 18.51	16.99 16.41	19.74 19.32	1291.34 361.05	0.43 0.75	0.46 0.62	2.54 4.05	0.46	0.94 3.37
		143	Q5	1245	18.38	15.98	18.71	711.19	0.54	0.62	2.77	0.23	1.75
		142 141	Q5 Q5	1283 1283	17.94 17.29	14.57 15.83	18.17 17.75	1182.02 777.47	0.49 0.69	0.35 0.55	2.51 3.35	0.59 0.51	1.09 1.65
		140	Q5	1287	16.66	15.12	17.17	438.5	0.63		3.17	0.35	2.94
		139 138	Q5 Q5	1287 1301	16.17 16.03	13.63 12.98	16.2 16.09	3016.76 2838.18	0.17 0.22	0.34	1.51 1.5	0.29 0.23	0.43 0.46
		137	Q5	1301	15.47	13.27	15.72	1382.86	0.5	0.56	2.75	0.23	0.46
		136 135	Q5 Q5	1310 1310	15.19 15.13	13.96 13.53	15.47 15.28	1178.13 1929.61	0.46 0.32	0.75 0.51	3.08 2.46	0.6	1.11 0.68
		135 134	Q5 Q5	1310 1314	15.13 14.47	13.53	15.28 14.98	1929.61	0.32	0.51	2.46 4.1	0.41	1.25
		133	Q5	1314	14.34	13.66	14.64	1359.34	0.55	0.52	3.27	0.54	0.97
		132 131	Q5 Q5	1316 1316	13.5 13.03	13.26 12.83	14.11 13.6	901.83 897.18	0.85 0.87	0.8 0.65	4.26 4.02	0.62 0.6	1.46 1.47
		130	Q5	1320	13.01	10.91	13.16	1865.14	0.39	0.42	2.39	0.44	0.71
		129 128	Q5 Q5	1328 1328	12.99 12.86	10.93 11.05	13.03 12.95	2157.77 1469.6	0.16 0.28	0.54	1.3 2.08	0.46 0.83	0.62
		127	Q5	1330	12.83	10.77	12.87	1940.32	0.17	0.58	1.46	0.68	0.69
Boghen	Boghen	123 122	Q5 Q5	1332 1359	12.65 12.11	10.93 9.95	12.76 12.46	1665.03 980.14	0.27 0.49	0.59 0.63	2.38 3.27	0.38 0.68	0.8 1.39
		121	Q5	1359	11.82	9.64	12.46	1043.82	0.47	0.63	3.35	0.68	1.3
		120 119.5	Q5 Q5	1359 1359	11.55	9.82	11.71	1429.7	0.33	0.58 0.4	2.53 2.82	0.63 0.67	0.95 1.01
		119.5 119	Q5 Q5	1359 1632	11.43 11.31	9.61 9.28	11.65 11.46	1343 1914.29	0.41	0.4	2.82	0.67	1.01 0.85
		118	Q5	1632	10.8	9.98	11.21	1213.64	0.55	0.82	3.86	0.74	1.34
		117 116	Q5 Q5	1632 1632	10.63 10.31	9.53 8.97	10.83 10.51	1810.74 1720.43	0.39 0.37	0.6 0.65	3.01 2.9	0.62 0.62	0.9 0.95
		115	Q5	1632	10.15	8.5	10.26	2238.53	0.26	0.53	2.49	0.57	0.73
		114 113	Q5 Q5	1632 1632	9.64 9.66	8.55 7.45	9.97 9.72	1354.7 2567.53	0.49	0.92	3.67 1.88	0.75 0.54	1.2 0.64
		113	Q5	1657	9.21	8.35	9.54	1464.95	0.53	0.34	3.43	0.54	1.13
		111	Q5	1657 1657	8.65 8.70	8.06	9.25	1033.4	0.76	0.65	4.11	0.88	1.6
		110 109	Q5 Q5	1657 1657	8.79 8.52	7.42 7.03	8.98 8.73	1720.31 1448.81	0.35 0.36	0.66	2.97 3.03	0.71 0.85	0.96 1.14
		108	Q5	1657	8.31	5.99	8.51	1523.12	0.35	0.59	3.01	0.77	1.09
		107.5 107	Q5 Q5	1691 1691	8.05 8.08	6.78 5.77	8.38 8.19	1239.14 1918.07	0.48 0.25	0.88	3.25 2.4	0.68 0.73	1.36 0.88
		106	Q5	1691	7.66	6.75	7.98	1438.98	0.47	0.81	3.8	0.74	1.18
		105	Q5	1691	7.47	5.78	7.55	2401.94	0.24	0.51	2.11	0.57	0.7
		104 103	Q5 Q5	1691 1691	7.31 7.23	4.77 4.48	7.37 7.28	2771.72 2782.03	0.18 0.17	0.54 0.48	1.76 1.77	0.4 0.47	0.61 0.61
		103	Q3	1031	7.23							0.77	0.01

Rivière	Bief	River Sta	Profile	Q Total	W.S. Elev	E.G. Elev	Crit W.S.	Flow Area	Froude # XS	Vel Left	Vel Chnl	Vel Right	Vel Total
		30	Q5	(m3/s) 2474	(m) 7.07	(m) 3.78	(m) 7.09	(m2) 3943.42	0.11	(m/s) 0.55	(m/s) 1.16	(m/s) 0.62	(m/s) 0.63
		29 27	Q5 Q5	2474 2474	7.04 7.03	4.2 3.87	7.08 7.07	3492.64 3370.67	0.14 0.14	0.64 0.63	1.3 1.31	0.55 0.69	0.71 0.73
		26	Q5	2474	7.01	3.77	7.05	3054.8	0.15	0.68	1.43	0.82	0.81
		25 24	Q5 Q5	2474 2474	6.99 6.99	4.1 4.34	7.04 7.03	3079.39 3342.01	0.15 0.15	0.66 0.62	1.47 1.44	0.84 0.38	0.8 0.74
		23 22	Q5 Q5	2474 2552	6.99 6.97	3.85 3.52	7.02	3936.73 3434.07	0.11 0.13	0.57 0.66	1.14 1.33	0.38 0.76	0.63 0.74
		21	Q5	2552	6.95	3.76 3.89	6.99	3272.69	0.15 0.23	0.67	1.48	0.75 0.96	0.78
		19	Q5 Q5	2552 2552	6.88 6.72	3.99	6.97 6.94	2480.52 1457.55	0.29	0.62 1.15	1.98 2.68	1.45	1.03 1.75
		18 17	Q5 Q5	2552 2552	6.32 6.14	4.28 3.13	6.87 6.55	1327.13 1135.06	0.49	0.61 0.51	4.02 2.98	1.03 0.75	1.92 2.25
		16	Q5	2552	6.03	3.48 2.66	6.37	1761.22	0.38 0.75	0.57	3.34 4.11	0.86	1.45 2.82
Nera	Nera	15 14	Q5 Q5	2552 2552	5.29 5.18	3.06	6.09 5.76	904.71 1123.36	0.75	0.56 0.31	3.47	0.11 0.47	2.82
		13 12	Q5 Q5	2581 2581	4.82 4.49	3.01 2.65	5.38 4.97	1537.8 1552.89	0.6 0.59	0.38	3.56 3.31	0.11 0.38	1.68 1.66
		11 10	Q5	2581	4.35	1.34 1.02	4.73	1276.72	0.59 0.71	0.11	2.78	0.23	2.02
		9	Q5 Q5	2581 2599	4.07 3.81	2.51	4.59 4.13	1154.27 2045.91	0.71	0.59	3.27 3.05	0.29 0.56	2.24 1.27
		8 7	Q5 Q5	2599 2599	3.59 3.18	2.08 2.18	3.88 3.5	1993.55 2276.76	0.45 0.5	0.55 0.56	2.82 3.27	0.13 0.64	1.3 1.14
		6 5	Q5 Q5	2599 2599	3.05 2.87	1.62 1.19	3.18 2.98	2734.63 3510	0.34 0.33	0.46 0.4	2.3 2.07	0.74 0.49	0.95 0.74
		4	Q5	2599	2.78	0.5	2.84	4532.31	0.26	0.2	1.46	0.32	0.57
		3 2	Q5 Q5	2599 2632	2.68 2.59	-0.1 -0.12	2.74 2.64	4755.4 3118.74	0.23 0.25	0.15 0.09	1.2 1.19	0.23 0.65	0.55 0.84
		1 0	Q5 Q5	2632 2632	1.37 1.1	1.37 -2.46	2.35 1.1	615.34 8855.9	1.08 0.05	0.12	4.42 0.3	0.97	4.28 0.3
		211	Q5	123	13.92	13.6	13.99	123.78	0.03	0.88	1.69	0.7	0.99
Nekou	Nekou	210 209	Q5 Q5	123 134	12.32 12.13	12.07 10.4	12.37 12.14	146.62 435.56	0.4 0.08	0.74 0.3	1.61 0.45	0.75 0.18	0.84 0.31
		208	Q5	134	12.13	10.46	12.13	418.66	0.09	0.32	0.47	0.19	0.32
	Affluent 1	246	Q5 Q5	18	21.96 21.74	20.23	22.03 21.74	15.21 110.52	0.11	0.09	0.51	0.11	0.16
	uciit I	245.5 245	Q5 Q5	18 18	21.73 21.18	20.47 18.91	21.74 21.18	100.22 187.38	0.12 0.06	0.11 0.05	0.62 0.35	0.14 0.1	0.18 0.1
		241 240.5	Q5 Q5	25 25	23.99	23.63	24.05	49.62	0.44	0.26	1.44 1.55	0.27	0.5
	Affluent 2	240.5	Q5	25	23.98	23.71	22.81	42.37	0.5	0.36	1.55	0.25	0.49
		239 238.5	Q5 Q5	25 25	20.75 19.49	20.32 17.68	20.77 19.49	66.27 289.61	0.29 0.02	0.36 0.09	1.22 0.14	0.19 0.08	0.38
Nandai		250	Q5	257	22.77	21.06	22.88	299.23	0.32	0.62	2.07	0.56	0.86
		249 248	Q5 Q5	257 260	22.27 21.57	21.08 20.63	22.41 21.66	259.01 386.53	0.4 0.38	0.56 0.5	2.05 1.89	0.52 0.42	0.99 0.67
		244 243	Q5 Q5	265 265	20.79 19.98	19.77 19.46	20.87	355.9 291.88	0.33	0.48 0.87	1.69 2.7	0.43 0.6	0.74 0.91
	Principal	242	Q5	267	19.49	18.5	19.51	533.19	0.16	0.37	1.1	0.47	0.5
		238 237	Q5 Q5	267 275	19.41 19.16	17.84 18.09	19.43 19.21	560.11 383.68	0.13 0.25	0.41 0.63	1.07 1.54	0.45 0.54	0.48 0.72
		236 235	Q5 Q5	275 281	18.96 18.93	17.35 16.47	18.98 18.93	564.71 1520.67	0.13 0.05	0.41 0.14	1.06 0.41	0.43 0.19	0.49 0.18
		234	Q5	281	18.89	17.15	18.89	1200.63	0.07	0.18	0.57	0.22	0.23
		233 232	Q5 Q5	443 443	22.16 21.77	20.64 20.31	22.75 21.86	141.33 596.33	0.74 0.36	0.5 0.49	3.43 1.82	0.36	3.13 0.74
		231 230	Q5 Q5	454 454	20.81	20.31 18.95	21.3 20.27	235.73 853.11	0.97 0.24	0.79 0.32	3.48 1.45	0.17 0.44	1.93 0.53
		229 228	Q5 Q5	466 466	19.77 19.18	18.24 18.86	19.83 19.39	693.59 436.72	0.27 0.58	0.41 0.55	1.65 2.9	0.52 0.69	0.67 1.07
		227	Q5	634	18.6	17.73	18.7	728.48	0.31	0.66	2.29	0.72	0.87
		226 225	Q5 Q5	634 634	18.18 17.95	17.16 16.75	18.28 18.01	679.73 915.65	0.32 0.22	0.56 0.37	2.28 1.74	0.82 0.58	0.93 0.69
		224 223	Q5 Q5	644 644	17.65 17.24	16.69 16.42	17.78 17.38	662.67 616.71	0.35 0.37	0.67 0.77	2.46 2.64	0.81 0.83	0.97 1.04
	Amont	222	Q5	644	16.89	16.07	16.97	919.64	0.3	0.56	2.18	0.53	0.7
		221 220	Q5 Q5	644 644	16.46 15.7	15.64 14.91	16.57 15.79	746.99 809.36	0.33 0.32	0.62 0.61	2.36 2.15	0.68 0.37	0.86
		219 218	Q5 Q5	644 644	15.33 14.24	14.05 13.28	15.47 14.48	580.69 466.47	0.32 0.45	0.75 0.62	2.33 2.79	0.82 0.85	1.11 1.38
		217	Q5	654	13.79	12.68	13.97	552.73	0.4	0.61	2.72	0.87	1.18
		216 215	Q5 Q5	654 654	13.58 12.9	12.2 12.53	13.63 13.32	964.11 372.86	0.21 0.67	0.53 1.33	1.68 4.08	0.58 0.88	0.68 1.75
Douencheur		214 213	Q5 Q5	688 688	12.94 12.6	11.53 11.92	12.99 12.79	883.44 535.5	0.21 0.44	0.58 0.94	1.65 2.73	0.66 0.88	0.78 1.28
		212	Q5	688	12.43	11.36	12.51	728.25	0.29	0.62	2.08	0.82	0.94
		81 79	Q5 Q5	746 746	11.54 11.06	10.77 10.11	11.6 11.16	989.31 925.61	0.29 0.33	0.6 0.69	1.88 2.25	0.6 0.56	0.75 0.81
		78 77	Q5 Q5	754 754	10.73 9.8	9.56 9.8	10.83 10.5	818.92 390.58	0.29 0.94	0.59 1.04	2.14 4.67	0.71 0.9	0.92 1.93
		76	Q5	754	9.7	9.7	10.39	364.62	0.99	0.97	4.42	0.96	2.07
		74 72	Q5 Q5	754 754	9.42 9.2	9.01 8.95	9.84 9.4	522.67 764.69	0.69 0.59	0.73 0.72	3.69 3.18	0.8 0.71	1.44 0.99
		70 68	Q5 Q5	754 754	9.2 9.16	8.03 8.08	9.25 9.21	1367.74 1158.63	0.25 0.23	0.34 0.45	1.63 1.96	0.45 0.59	0.55 0.65
	Aval	67	Q5	763	9.05	7.95	9.11	1041.72	0.23	0.64	2.08	0.56	0.73
		65 63	Q5 Q5	763 765	8.92 8.36	7.54 7.92	8.98 8.71	970.41 503.85	0.24 0.61	0.72 1.02	1.97 3.77	0.57 1.02	0.79 1.52
		62 61	Q5 Q5	765 765	8.24 8.06	7.45 7.26	8.45 8.22	614.12 714.6	0.45 0.39	0.74 0.66	3.11 2.76	0.96 0.89	1.25 1.07
		60	Q5	765	7.89	6.6	7.98	821.66	0.27	0.81	2.27	0.7	0.93
		59 58	Q5 Q5	784 784	7.83 7.75	6.48 6.59	7.88 7.82	1147.56 1048.87	0.21 0.25	0.58 0.64	1.82 2.12	0.47 0.49	0.68 0.75
		55 54	Q5 Q5	784 1226	7.73 7.67	5.95 5.56	7.77 7.69	1410.42 3398.29	0.17 0.1	0.43 0.37	1.49 1.14	0.47 0.16	0.56 0.36
		51	Q5	1226	7.63	5.65	7.65	2858.82	0.12	0.41	1.17	0.13	0.43
		48 47	Q5 Q5	1226 1226	7.61 7.59	5.3 4.93	7.62 7.6	3522.83 3245.86	0.09 0.08	0.35 0.37	0.98 0.97	0.14 0.14	0.35 0.38
		45 43	Q5 Q5	1226 1226	7.58 7.52	4.12 5.08	7.59 7.56	3348.21 2719.53	0.08 0.17	0.36 0.39	0.9 1.79	0.11 0.14	0.37 0.45
Ari	Ari	41	Q5	1226	7.43	5.07	7.49	2332.56	0.19	0.37	1.69	0.08	0.53
		40 39	Q5 Q5	1226 1231	7.36 7.27	5.35 5.05	7.42 7.35	2357.11 2260.01	0.21 0.22	0.42 0.47	1.88 2.14	0.16 0.21	0.52 0.54
Ari		38 37	Q5 Q5	1231 1231	7.25 7.22	4.75 4.7	7.32 7.29	2293.42 2252.13	0.19 0.19	0.46 0.46	1.82 1.87	0.18 0.2	0.54 0.55
				. 1601	,	7./	1.23		U.13	٥.٠	1.07	U.Z	0.00
		36 35	Q5 Q5	1231 1231	7.17 7.11	4.74 4.89	7.25 7.17	2395.32 2697.35	0.2 0.19	0.47 0.46	1.97 2.04	0.22 0.25	0.51 0.46

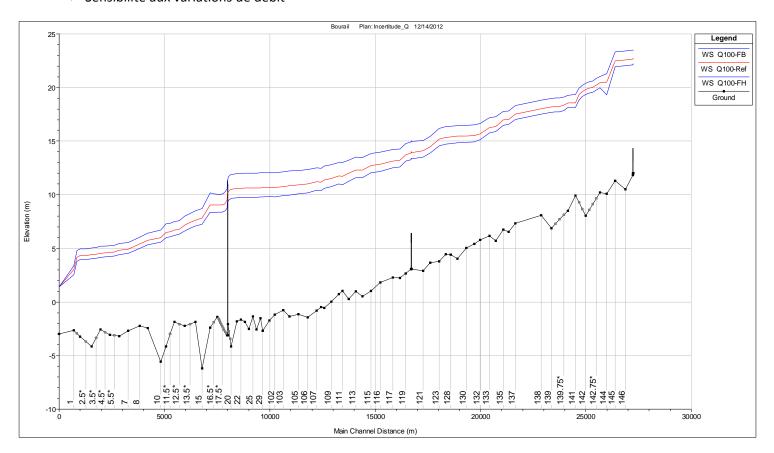
Rivière	Bief	River Sta	Profile	Q Total (m3/s)	W.S. Elev (m)	E.G. Elev (m)	Crit W.S.	Flow Area (m2)	Froude # XS	Vel Left (m/s)	Vel Chnl (m/s)	Vel Right (m/s)	Vel Tota (m/s)
		1194	Q10	745	12.74	10.27	12.75	1690.21	0.1	0.45	0.86	0.33	0.44
Tene	Tene	1192 1191	Q10 Q10	745 745	12.73 12.31	10.52 10.01	12.74 12.42	1569.24 699.15	0.11	0.48 0.69	0.88 2.23	0.41 0.88	0.47 1.07
		347	Q10	589	26.33	23.19	26.67	288.67	0.45	0.61	2.68	0.61	2.04
		346 345.8	Q10 Q10	589 589	25.59 25.62	24.04 22.82	26.16 25.95	241.17 303.31	0.58 0.41	1.18 0.79	3.81 2.8	1.21 0.86	2.44 1.94
		345 344	Q10	589 589	25.14 24.81	22.76	25.67	236.65	0.55 0.4	0.72 0.41	3.49 2.53	1.01 0.74	2.49 2.26
		343	Q10 Q10	608	24.61	21.71 21.74	25.13 24.74	260.88 339.82	0.43	0.41	2.55	0.74	1.79
		342 341	Q10 Q10	608 608	23.66 23.31	21.63 21.45	24.03 23.68	311.31 315.06	0.5 0.5	1.24 0.82	3.2 3.21	0.75 1.09	1.95 1.93
		340	Q10	634	22.9	20.49	23.22	349.52	0.46	0.88	2.87	0.86	1.81
		339 338	Q10 Q10	634 634	22.35 21.64	21.01 20.38	22.86	256.95 374.5	0.56 0.64	0.95 0.58	3.71 3.43	1.52 0.92	2.47 1.69
	Amont	337	Q10	659	21.4	19.4	21.56	589.12	0.34	0.84	2.46	0.55	1.12
		336 335	Q10 Q10	659 659	20.22 19.82	18.78 17.78	20.89	225.37 443.57	0.73 0.43	0.42	3.83 2.6	0.63	2.92 1.49
		334	Q10	659	19.35	17	19.47	859.85	0.34	0.51	1.92	0.38	0.77
		333 332	Q10 Q10	659 674	19.24 18.54	16.72 17.28	19.35 18.99	766.42 387.86	0.31 0.81	0.36 0.89	1.84 3.21	0.47 0.26	0.86 1.74
		331 330.8	Q10 Q10	674 674	18.15 18.25	17.6 17.21	18.36 18.36	751.33 916.29	0.54 0.34	0.73 0.78	2.82 2.22	0.4 0.39	0.9 0.74
		330.8	Q10	674	17.85	17.18	17.99	522.31	0.34	0.74	2.91	1.17	1.29
		329 328	Q10 Q10	682 682	17.55 17.39	16.47 16.15	17.6 17.42	948.37 1343.44	0.23 0.17	0.65 0.36	1.77 1.38	0.51 0.53	0.72 0.51
		327	Q10	682	17.12	15.98	17.16	929.07	0.21	0.66	1.71	0.57	0.73
		326 325	Q10 Q10	688 753	15.92 15.91	15.75 14.51	16.39 15.96	399.58 1107.49	0.84	0.94 0.57	3.78 1.44	0.85 0.47	1.72 0.68
		324	Q10	753	15.84	13.96	15.86	1523.2	0.13	0.45	1.11	0.45	0.49
		323 322	Q10 Q10	753 753	15.51 15.1	14.33 13.61	15.57 15.22	987.27 666.61	0.24 0.29	0.76 0.96	1.89 2.17	0.57 0.8	0.76 1.13
		321 320	Q10 Q10	753	14.79	13.27	14.91	632.67	0.29	0.65 0.59	2.43	0.99 0.82	1.19
Pouéo		320 319	Q10 Q10	753 753	14.55 14.18	13.31 13.37	14.7 14.31	646.61 708.68	0.36 0.34	0.59	2.36 2.67	0.82	1.16 1.06
	Centre	318 317.8	Q10 Q10	784 784	13.9 13.85	12.81 12.92	14.02 14.01	771.95 679.1	0.33 0.38	0.74 0.72	2.42 2.69	0.84 1.01	1.02 1.15
		317	Q10	784	13.36	12.22	13.57	630.3	0.46	0.92	3.04	0.93	1.24
		316 315	Q10 Q10	784 784	12.75 12.54	11.96 11.48	12.8 12.6	1102.15 1137.51	0.23 0.22	0.79 0.59	2.12 1.75	0.65 0.57	0.71 0.69
		314	Q10	784	12.38	10.33	12.41	1365.62	0.15	0.42	1.36	0.5	0.57
		313 312	Q10 Q10	832 832	12.12 11.61	10.8 10.32	12.19 11.77	1020.73 762.73	0.24	0.64 0.46	1.89 2.29	0.72 0.65	0.82 1.09
		311	Q10	935	10.93	9.76	11	1057.15	0.26	0.99	2.28	0.7	0.88
		310 309	Q10 Q10	935 935	10.54 10.42	7.86 8.73	10.64	1222.08 1354.39	0.3 0.17	0.51 0.58	2.04 1.4	0.55 0.52	0.77 0.69
		308	Q10	946	10.22	8.67	10.28	1149.31	0.21	0.63	1.92	0.72	0.82
		307 306	Q10 Q10	949 958	10.01 9.87	7.92 7.89	10.05 9.95	1438.15 1019.21	0.16 0.27	0.59 0.76	1.56 2.17	0.59 0.8	0.66 0.94
		305.8 305	Q10 Q10	958 958	9.85 9.61	7.78 8.2	9.94 9.8	1009.6 690.31	0.26 0.35	0.8 0.76	2.26 2.69	0.85 1.04	0.95 1.39
	Aval	304	Q10 Q10	958	9.61	7.89	9.58	710.63	0.34	1.07	2.66	0.84	1.35
		96 95	Q10 Q10	958 958	9.12 9.02	7.82 7.35	9.34 9.13	688.36 961.02	0.41	1.01 0.57	3 2.18	0.97 0.9	1.39
		94	Q10	958	9.03	6.91	9.06	1780.19	0.14	0.42	1.31	0.5	0.54
		93 92	Q10 Q10	958 977	9.02 8.98	5.9 6.22	9.03 9.01	3125 1804.15	0.06 0.12	0.24 0.41	0.69 1.18	0.31 0.48	0.31 0.54
		88	Q10	977	8.95	6.8	8.97	1941.09	0.12	0.45	1.17	0.38	0.5
	Affluent 2	87 312.2	Q10 Q10	977 216	8.95 11.42	5.75 9.8	8.96 11.43	2853.04 600.88	0.07 0.09	0.31 0.36	0.78 0.7	0.34 0.31	0.34 0.36
	Amuent 2	311.2 328.1	Q10 Q10	216 147	11.37 17.12	8.98 16.5	11.37 17.15	673.4 205.13	0.07 0.24	0.29 0.6	0.54 1.14	0.32 0.69	0.32 0.72
	Affluent 1	327.1	Q10	147	16.29	15.73	16.34	164.73	0.3	0.74	1.3	0.69	0.89
		326.1 147	Q10 Q10	147 1748	16.21 21.11	14.64 19.68	16.21 21.52	485.73 1268.7	0.07 0.58	0.27 0.56	0.46 3.46	0.31 0.78	0.3 1.38
		146.5	Q10	1748	20.93	19.71	21.5	1225.64	0.77	0.54	4.16	0.98	1.43
		146 145	Q10 Q10	1748 1752	20.79 20.68	18.55 18.69	21.12	2047.55 1949.34	0.62 0.42	0.29 0.55	3.31 2.47	0.76	0.85 0.9
		144	Q10	1752	19.04	17.89	20.38	437.46	0.96	0.78	5.24	0.68	4
		143 142	Q10 Q10	1794 1849	19.07 18.58	16.72 16.4	19.51 18.88	928.93 1627.1	0.55 0.52	0.81 0.45	3.27 2.97	0.45 0.69	1.93 1.14
		141	Q10	1849	17.56	16.77	18.32	886.15	0.84	0.78	4.39	0.72	2.09
		140 139	Q10 Q10	1854 1854	17.5 16.92	15.94 14.12	17.69 16.96	1624.92 3882.59	0.38 0.16	0.4	2.4 1.65	0.6 0.36	1.14 0.48
		138 137	Q10 Q10	1875 1888	16.77 16.23	13.6 14.66	16.84 16.46	3676.89 1931.31	0.22 0.43	0.31 0.67	1.7 2.96	0.29 0.52	0.51 0.98
		136	Q10	1888	15.85	14.62	16.19	1486.15	0.47	0.9	3.59	0.76	1.27
		135 134	Q10 Q10	1888 1893	15.79 15.13	14.17 14.63	15.96 15.64	2393.26 1421	0.32 0.63	0.62 0.81	2.85 4.47	0.52 0.9	0.79 1.33
		133	Q10	1893	15.01	14.17	15.31	1819.54	0.47	0.66	3.55	0.68	1.04
		132 131	Q10 Q10	1897 1897	14.27 13.98	13.8 13.32	14.81 14.37	1320.22 1475.37	0.67 0.57	0.92 0.76	4.41 3.78	0.8 0.75	1.44 1.29
		130	Q10	1901	13.95	11.44	14.06	2765.27	0.28	0.49	2.32	0.47	0.69
		129 128	Q10 Q10	1913 1913	13.92 13.82	11.43 11.77	13.95 13.89	2916.82 2114.82	0.13 0.22	0.6 0.74	1.3	0.52 0.89	0.66
		127	Q10	1916	13.79	11.08	13.82	2606.7	0.14	0.65	1.46	0.74	0.74
Boghen	Boghen	123 122	Q10 Q10	1919 1958	13.61 13.01	11.41 10.44	13.73 13.42	2182.31 1277.41	0.25 0.47	0.68 0.82	2.58 3.7	0.44 0.86	0.88 1.53
		121 120	Q10 Q10	1958 1958	12.71 12.43	10.55	13.1	1337.32	0.44 0.32	0.78 0.71	3.79 2.82	0.9	1.46 1.05
		120 119.5	Q10	1958 1958	12.43 12.29	10.32 10.32	12.61 12.53	1864.72 1791.85	0.38	0.71	3.15	0.73 0.78	1.09
		119 118	Q10 Q10	2350 2350	12.18 11.66	10.25 10.55	12.33 12.08	2503.59 1605.2	0.29 0.49	0.78 1	2.8 4.19	0.59 0.92	0.94 1.46
		117	Q10	2350	11.51	9.95	11.7	2473.23	0.34	0.68	3.16	0.73	0.95
		116 115	Q10 Q10	2350 2350	11.2 11.05	9.57 8.93	11.4 11.16	2282.17 2902.29	0.34	0.72 0.62	3.15 2.67	0.76 0.66	1.03 0.81
		114	Q10	2350	10.53	9.16	10.87	1809.18	0.46	1.05	4.02	0.89	1.3
		113 112	Q10 Q10	2350 2386	10.55 10.14	7.98 8.89	10.62 10.46	3309.47 2046.06	0.19 0.45	0.45 0.74	2.05 3.62	0.62 0.85	0.71 1.17
		111	Q10	2386	9.73	8.77	10.23	1586.21	0.57	0.81	4.13	0.96	1.5
		110	Q10 Q10	2386 2386	9.82 9.56	7.89 7.53	10.01 9.78	2292.7 1913.92	0.3 0.32	0.78 0.84	3.13 3.25	0.81 0.98	1.04 1.25
			Q.I.O				9.58	2002.07	0.31	0.73	3.23	0.9	1.19
		109 108	Q10	2386	9.37	6.27							
		109 108 107.5	Q10 Q10	2386 2435	9.13	7.4	9.46	1710.91	0.41	1.01	3.43	0.84	1.42
		109 108 107.5 107 106	Q10 Q10 Q10 Q10	2386 2435 2435 2435	9.13 9.16 8.87	7.4 6.35 7.28	9.46 9.28 9.12	1710.91 2504.08 2067.98	0.41 0.23 0.36	1.01 0.59 0.91	3.43 2.62 3.7	0.84 0.84 0.66	1.42 0.97 1.18
		109 108 107.5 107	Q10 Q10 Q10	2386 2435 2435	9.13 9.16	7.4 6.35	9.46 9.28	1710.91 2504.08	0.41 0.23	1.01 0.59	3.43 2.62	0.84 0.84	1.42 0.97

Rivière	Bief	River Sta	Profile	Q Total	W.S. Elev	E.G. Elev	Crit W.S.	Flow Area	Froude # XS	Vel Left	Vel Chnl	Vel Right	Vel Total
		30	Q10	(m3/s) 3563	(m) 8.42	(m) 4.14	(m) 8.45	(m2) 5236	0.1	(m/s) 0.61	(m/s) 1.2	(m/s) 0.68	(m/s) 0.68
		29 27	Q10 Q10	3563 3563	8.4 8.39	4.58 4.33	8.43 8.43	4892.25 4558.15	0.12 0.12	0.68 0.7	1.27 1.33	0.58 0.74	0.73 0.78
		26	Q10 Q10	3563	8.37	4.33	8.43	4069.09	0.12	0.7	1.33	0.74	0.78
		25 24	Q10 Q10	3563 3563	8.36 8.35	4.7 4.72	8.4 8.39	4189.17 4546.59	0.14 0.13	0.73 0.69	1.5 1.44	0.87 0.5	0.85 0.78
		23	Q10	3563	8.35	4.25	8.38	5223.15	0.1	0.63	1.2	0.48	0.68
		22 21	Q10 Q10	3675 3675	8.33 8.32	4.06 4.23	8.37 8.36	4508.58 4435.83	0.12 0.13	0.74 0.74	1.41 1.5	0.81 0.77	0.82 0.83
		20	Q10	3675	8.25	4.51	8.35	3400.26	0.19	0.76	2.01	1.04	1.08
		19 18	Q10 Q10	3675 3675	8.04 7.54	4.73 5.28	8.31 8.23	1844.33 1692.47	0.29 0.5	1.34 0.83	3.01 4.64	1.71 1.25	1.99 2.17
		17	Q10	3675	7.27	4.07	7.86	1386.42	0.44	0.71	3.6	0.94	2.65
Novo	Novo	16 15	Q10 Q10	3675 3675	7.2 6.28	4.42 4.73	7.62 7.31	2203.8 1229.19	0.38 0.75	0.75 0.86	3.87 4.83	1.05 0.42	1.67 2.99
Nera	Nera	14 13	Q10 Q10	3675 3717	6.13 5.73	4.12 4.05	6.93 6.49	1550.16 2009.64	0.69 0.64	0.4 0.51	4.15 4.24	0.46 0.22	2.37 1.85
		12	Q10 Q10	3717	5.34	3.57	6.49	2009.84	0.61	0.49	3.93	0.22	1.82
		11 10	Q10 Q10	3717 3717	5.18 4.81	2.22 2.18	5.71 5.54	1760.24 1573.84	0.6 0.72	0.21	3.37 3.96	0.4 0.49	2.11
		9	Q10	3743	4.55	3.08	4.97	2554.94	0.47	0.75	3.58	0.72	1.47
		8 7	Q10 Q10	3743 3743	4.29 3.87	2.7 2.76	4.68 4.25	2476.17 2909.69	0.47 0.5	0.7 0.71	3.35 3.74	0.28 0.78	1.51 1.29
		6	Q10	3743	3.73	1.99	3.91	3592.16	0.35	0.56	2.67	0.81	1.04
		5 4	Q10 Q10	3743 3743	3.55 3.47	1.51 0.99	3.69 3.55	4715.62 6421.08	0.32 0.27	0.47 0.27	2.36 1.64	0.54 0.34	0.79 0.58
		3	Q10	3743	3.37	0.38	3.44	6362.95	0.24	0.22	1.42	0.26	0.59
		2 1	Q10 Q10	3790 3790	3.27 2.06	0.3 2.06	3.33 3.06	4692.61 965.73	0.25 1.17	0.12 0.5	1.4 4.58	0.58 1.21	0.81 3.92
		0 211	Q10 Q10	3790 176	1.1 14.13	-2.32 13.72	1.11 14.22	8855.9 155.94	0.07 0.41	1.04	0.43 1.88	0.82	0.43 1.13
Nekou	Nekou	210	Q10	176	12.79	12.16	12.82	258.5	0.22	0.64	1.15	0.6	0.68
·········	. TCAOU	209 208	Q10 Q10	192 192	12.63 12.63	10.51 10.59	12.63 12.63	570.19 572.27	0.08	0.33 0.33	0.53 0.52	0.23 0.24	0.34 0.34
		247	Q10	25	22.3	21.07	22.39	23.79	0.55		1.33	0.1	1.05
	Affluent 1	246 245.5	Q10 Q10	25 25	22.1 22.1	20.48 20.65	22.11 22.11	148.88 136.97	0.1 0.11	0.1 0.12	0.54 0.64	0.13 0.15	0.17 0.18
		245	Q10	25	21.61	19.05	21.61	258.02	0.05	0.06	0.36	0.11	0.1
		241 240.5	Q10 Q10	35 35	24.09 24.12	23.76 23.84	24.19 24.19	59.62 66.5	0.58 0.47	0.35 0.41	1.83 1.71	0.28 0.32	0.59 0.53
	Affluent 2	240	Q10	35	22.94	22.46	23.01	58.32	0.53	0.1	1.49	0.29	0.6
		239 238.5	Q10 Q10	35 35	20.91	20.42 17.75	20.94	85 376.73	0.27 0.02	0.4	1.34 0.14	0.25 0.08	0.41
Nandai		250 249	Q10 Q10	370 370	23.3 22.71	21.56 21.71	23.44 22.89	377.73 323.59	0.34	0.74 0.69	2.44 2.39	0.67	0.98 1.14
		249	Q10 Q10	374	22.02	21.71	22.89	533.01	0.4 0.32	0.56	1.99	0.68 0.49	0.7
		244 243	Q10 Q10	381 381	21.2 20.4	20.06 19.64	21.3 20.49	455.72 399.58	0.33 0.35	0.58 0.95	1.93 2.77	0.53 0.69	0.84 0.95
	Principal	242	Q10	385	20	18.67	20.02	717.21	0.14	0.42	1.12	0.52	0.54
		238 237	Q10 Q10	385 397	19.93 19.69	18.35 18.33	19.95 19.75	721.35 512.88	0.12 0.24	0.47 0.7	1.12 1.66	0.51 0.62	0.53 0.77
		236	Q10	397	19.48	17.56	19.51	697.6	0.13	0.48	1.19	0.52	0.57
		235 234	Q10 Q10	404 404	19.45 19.43	16.71 17.32	19.45 19.44	1867.13 1544.31	0.05 0.07	0.17 0.22	0.47 0.6	0.22 0.25	0.22 0.26
		233	Q10	638	22.66	21.53	23.2	341.47	0.99	0.48	3.62	0.66	1.87
		232 231	Q10 Q10	638 654	22.34 21.11	21.06 20.91	22.42 21.84	858.91 331.71	0.28 1.29	0.56 0.83	1.81 4.4	0.46 0.43	0.74 1.97
		230 229	Q10 Q10	654 670	20.66 20.21	19.31 18.72	20.7 20.28	1136.1 881.29	0.21 0.26	0.4 0.52	1.5 1.83	0.51 0.62	0.58 0.76
		228	Q10	670	19.7	19.12	19.87	610.9	0.45	0.68	2.9	0.82	1.1
		227 226	Q10 Q10	913 913	19.16 18.75	18.03 17.47	19.26 18.85	932.73 885.64	0.28 0.29	0.79 0.72	2.45 2.45	0.85 0.94	0.98 1.03
		225	Q10	913	18.52	17	18.58	1147.02	0.21	0.43	1.92	0.69	0.8
		224 223	Q10 Q10	927 927	18.2 17.76	17.01 16.75	18.34 17.92	838.4 774.88	0.33 0.36	0.83 0.95	2.75 2.94	0.95 0.99	1.11
	Amont	222	Q10	927	17.45	16.31	17.52	1215.93	0.26	0.65	2.25	0.61	0.76
		221 220	Q10 Q10	927 927	17.04 16.42	15.9 15.18	17.15 16.49	969.89 1147.08	0.29 0.24	0.75 0.68	2.51 2.06	0.8 0.44	0.96 0.81
		219 218	Q10	927	16.04	14.46	16.2	739.26	0.31	0.9	2.59	0.98	1.25
		217	Q10 Q10	927 942	14.86 14.4	13.73 13.01	15.15 14.6	592.2 702.15	0.44 0.38	0.81 0.77	3.16 3.03	1.06 1.06	1.57 1.34
		216 215	Q10 Q10	942 942	14.18 13.45	12.47 12.96	14.23 13.89	1215.59 484.22	0.21 0.62	0.66 1.58	1.89 4.48	0.66 1.15	0.77 1.95
Douencheur		214	Q10	991	13.47	11.87	13.53	1081.09	0.21	0.7	1.86	0.8	0.92
		213 212	Q10 Q10	991 991	13.12 12.94	12.28 11.61	13.32 13.04	682.49 923.61	0.42 0.29	1.14 0.73	3.01 2.3	1.07 0.97	1.45 1.07
		81	Q10	1074	12.09	11.02	12.16	1328.79	0.24	0.69	1.9	0.69	0.81
		79 78	Q10 Q10	1074 1086	11.65 11.3	10.39 9.89	11.75 11.42	1249.64 1020.61	0.29 0.29	0.78 0.71	2.36 2.42	0.64 0.86	0.86 1.06
		77 76	Q10 Q10	1086 1086	10.19 10.11	10.19 10.11	11.04 10.93	488.99 475.39	0.94 0.96	1.36 1.27	5.45 5.05	1.15 1.2	2.22 2.28
		74	Q10	1086	10	9.48	10.43	698.12	0.62	0.94	4.05	1	1.56
		72 70	Q10 Q10	1086 1086	9.98 9.96	9.16 8.39	10.08 10	1303.71 1990.16	0.33 0.18	0.61 0.4	2.55 1.56	0.72 0.47	0.83 0.55
	Aval	68	Q10	1086	9.92	8.32	9.96	1604.81	0.18	0.52	1.89	0.63	0.68
		67 65	Q10 Q10	1098 1098	9.83 9.71	8.19 7.88	9.89 9.78	1411.48 1319.02	0.2 0.21	0.71 0.79	2.08	0.6 0.63	0.78 0.83
		63	Q10	1102	9.32	8.32	9.57	759.75	0.42	1.06	3.48	1.12	1.45
		62 61	Q10 Q10	1102 1102	9.24 9.15	7.9 7.61	9.4 9.25	909.79 1107.24	0.33 0.26	0.84 0.72	2.9 2.43	1.01 0.89	1.21
		60	Q10	1102	9.04	6.91	9.11	1212.12	0.21	0.84	2.15	0.71	0.91
		59 58	Q10 Q10	1129 1129	9 8.96	6.74 6.88	9.04 9.01	1713.04 1630.22	0.15 0.17	0.6 0.63	1.66 1.82	0.47 0.51	0.66 0.69
		55 54	Q10 Q10	1129 1766	8.95 8.92	6.36 5.85	8.98 8.93	2062.58 5066.69	0.13 0.07	0.47 0.37	1.39 1.01	0.48 0.16	0.55 0.35
		54	Q10 Q10	1766 1766	8.92 8.89	5.85 6.01	8.93 8.9	4411.61	0.07	0.37	1.01	0.16	0.35
		48 47	Q10 Q10	1766 1766	8.88 8.86	5.69 5.27	8.89 8.87	5247.62 4589.63	0.07 0.07	0.35 0.39	0.89 0.95	0.13 0.13	0.34 0.38
		45	Q10 Q10	1766 1766	8.85	4.52	8.87	4652.42	0.07	0.38	0.92	0.11	0.38
		43 41	Q10 Q10	1766 1766	8.81 8.73	5.92 5.48	8.84 8.79	3906.96 3309.98	0.13 0.16	0.42 0.41	1.72 1.73	0.15 0.12	0.45 0.53
Ari	Ari	40	Q10	1766	8.68	5.73	8.74	3398.61	0.17	0.45	1.87	0.19	0.52
		39 38	Q10 Q10	1773 1773	8.62 8.58	5.48 5.16	8.68 8.65	3295.77 3205.85	0.18 0.18	0.5 0.48	2.11 1.96	0.21 0.22	0.54 0.55
		37	Q10	1773	8.55	5.13	8.63	3131.35	0.18	0.52	2	0.18	0.57
		. 20	010	. 1772	. 0.53		. 0	3346.42	0.18	0.53	2.06	0.22	0.53
		36 35	Q10 Q10	1773 1773	8.52 8.47	5.25 5.27	8.59 8.53	3691.42	0.16	0.53	2.08	0.23 0.27	0.48

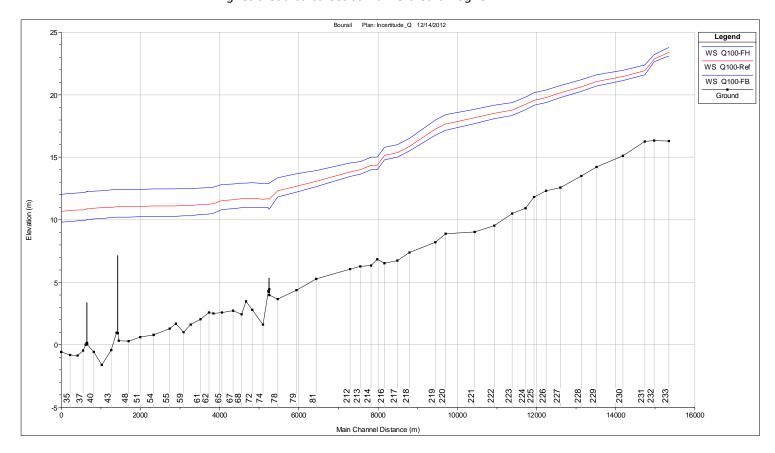
Tene		River Sta	Profile	Q Total (m3/s)	W.S. Elev (m)	E.G. Elev (m)	Crit W.S.	Flow Area (m2)	Froude # XS	Vel Left (m/s)	Vel Chnl (m/s)	Vel Right (m/s)	Vel Tota (m/s)
Tene	_	1194	Q100	1216	14.07	10.63	14.08	2705.81	0.08	0.46	0.83	0.37	0.45
	Tene	1192 1191	Q100 Q100	1216 1216	14.06 13.84	10.84 11.81	14.07 13.91	2557.52 1254.01	0.09 0.21	0.48 0.76	0.85 1.91	0.43 0.87	0.48
		347	Q100	961	28.01	24.71	28.43	443.23	0.44	0.82	3.15	0.95	2.17
		346 345.8	Q100 Q100	961 961	27.2 27.21	25.33 24.21	27.91 27.68	373.46 440.14	0.61 0.46	1.12 0.79	4.44 3.43	1.59 1.21	2.57
		345	Q100	961	26.6	24.29	27.35	343.18	0.6	0.92	4.3	1.36	2.8
		344 343	Q100 Q100	961 993	26.22 25.85	22.98 23.44	26.71 26.24	360.74 497.98	0.45 0.43	0.69 1.05	3.21 3.21	1.02 1.07	2.66 1.99
		342	Q100 Q100	993	24.95	22.76	25.44	461.04	0.43	1.39	3.86	1.14	2.15
		341	Q100	993	24.58	22.8	25.06	461.21	0.51	1.11	3.8	1.38	2.15
		340 339	Q100 Q100	1035 1035	24.1 23.27	22.15 22.1	24.54	496.77 355.48	0.48 0.75	1.18 1.32	3.49 4.84	1.14 1.82	2.08
		338	Q100	1035	22.56	21.77	23.05	536.94	0.58	0.78	3.97	1.33	1.93
	Amont	337 336	Q100 Q100	1075 1075	22.21 21.37	20.11	22.43 21.79	783.91 799.54	0.38 0.58	1.09 0.58	3.11 3.56	0.79 0.7	1.37
		335	Q100	1075	20.72	19.01	21.12	639.78	0.56	0.27	3.32	0.88	1.68
		334 333	Q100 Q100	1075 1075	20.17	18.57 18.23	20.32	1239.33 1053.91	0.34	0.65 0.34	2.31	0.5 0.62	0.87 1.02
		332	Q100	1100	19.25	18.6	19.75	821.48	0.78	0.67	3.73	0.39	1.34
		331 330.8	Q100 Q100	1100 1100	18.94 18.99	18.06 17.77	19.12 19.11	1165.92 1285.53	0.41	0.92 0.94	2.9 2.53	0.5 0.51	0.94
		330	Q100	1100	18.56	17.54	18.73	736.52	0.37	1.01	3.22	1.4	1.49
		329 328	Q100 Q100	1113 1113	18.27 18.11	16.78 16.47	18.33 18.15	1313.19 1821.11	0.22 0.16	0.8 0.45	1.99 1.57	0.64 0.66	0.85
		327	Q100 Q100	1113	17.82	16.28	17.87	1247.67	0.16	0.43	1.94	0.67	0.89
		326	Q100	1124	16.9	16.3	17.22	714.08	0.56	1.19	3.58	1.03	1.57
		325 324	Q100 Q100	1230 1230	16.81 16.75	14.89 14.2	16.87 16.77	1552.99 2129.15	0.18	0.69 0.54	1.62 1.21	0.6 0.53	0.79
		323	Q100	1230	16.46	14.71	16.52	1436.03	0.2	0.86	1.99	0.71	0.86
		322 321	Q100 Q100	1230 1230	16.03 15.66	14.03 13.81	16.18 15.83	898.84 822.68	0.29	1.21 0.84	2.59 2.95	1.03 1.29	1.37
Pouéo		320	Q100	1230	15.37	13.9	15.58	883.79	0.39	0.83	2.91	1.04	1.39
,	Centre	319 318	Q100 Q100	1230 1280	15 14.69	13.77 13.28	15.15 14.84	977.31 1045.72	0.31 0.31	1.09 0.97	2.94 2.8	1.1 1.06	1.26 1.22
	23	317.8	Q100	1280	14.62	13.45	14.81	925.11	0.36	1	3.12	1.26	1.38
		317 316	Q100 Q100	1280 1280	14.12 13.72	13.16 12.2	14.34 13.75	892.13 1729.15	0.42 0.17	1.16 0.77	3.39 1.91	1.15 0.7	1.43 0.74
	-	315	Q100 Q100	1280	13.72	11.76	13.75	1729.15	0.17	0.77	1.91	0.7	0.74
		314	Q100	1280	13.43	11.01	13.46	1908.48	0.14	0.51	1.48	0.62	0.67
		313 312	Q100 Q100	1358 1358	13.19 12.75	11.18 10.99	13.25 12.91	1497.98 1229.88	0.2	0.77 0.54	1.99 2.46	0.83 0.76	0.91
		311	Q100	1527	12.26	10.12	12.32	1761.01	0.19	0.95	2.11	0.76	0.87
		310 309	Q100 Q100	1527 1527	12.06 11.97	9.85 9.12	12.12 12	2070.32 2118.5	0.19	0.6 0.64	1.87 1.36	0.59 0.6	0.74
		308	Q100	1544	11.84	9.06	11.89	1838.33	0.16	0.67	1.79	0.79	0.84
		307 306	Q100 Q100	1550 1563	11.71 11.63	8.31 8.66	11.74 11.69	2325.69 1951.81	0.12 0.18	0.63 0.65	1.45 1.91	0.56 0.8	0.67
		305.8	Q100	1563	11.61	8.54	11.67	1926.06	0.19	0.63	2.08	0.88	0.81
	Aval	305 304	Q100 Q100	1563 1563	11.42 11.28	8.85 8.55	11.58 11.44	1104.56 1150.69	0.27 0.25	0.88 1.16	2.65 2.6	1.17 1	1.42 1.36
		96	Q100	1563	11.17	8.72	11.31	1253.05	0.25	1.03	2.55	1.01	1.25
		95 94	Q100 Q100	1563	11.15 11.16	8.16	11.21	1878.93 3268.88	0.17 0.09	0.62	1.74 1.06	0.8 0.45	0.83
		93	Q100 Q100	1563 1563	11.16	7.31 6.21	11.18 11.16	5102.23	0.05	0.42 0.26	0.63	0.45	0.48
		92	Q100	1595	11.13	6.91	11.15	2970.24	0.09	0.44	1.1	0.5	0.54
		88 87	Q100 Q100	1595 1595	11.11 11.12	7.19 6.25	11.13 11.12	3391.05 4628.28	0.08	0.45 0.33	0.99 0.73	0.38 0.33	0.47
	Affluent 2	312.2	Q100	353	12.62	10	12.63	1008.32	0.07	0.34	0.62	0.33	0.35
		311.2 328.1	Q100 Q100	353 239	12.58 17.58	9.21 16.68	12.59 17.62	988.87 296.65	0.06 0.23	0.34 0.67	0.57 1.23	0.35 0.8	0.36 0.81
	Affluent 1	327.1	Q100	239	17.15	15.9	17.18	322.04	0.19	0.63	1.09	0.82	0.74
		326.1 147	Q100 Q100	239 2855	17.1 22.71	14.76 20.6	17.1 23	728.3 3089.11	0.07 0.47	0.28 0.48	0.48 3.37	0.34 0.88	0.33
		146.5	Q100	2855	22.67	20.79	22.98	3104.82	0.48	0.53	3.74	0.9	0.92
		146 145	Q100 Q100	2855 2862	22.57 22.49	20.51 19.65	22.78 22.6	4268.47 3895.13	0.36 0.26	0.34 0.52	3.17 2.41	0.82	0.67
		144	Q100	2862	20.51	20.51	22.17	1240.6	1.47	0.28	6.2	1.14	2.31
		143 142	Q100 Q100	2931	20.43 19.8	18.69 17.86	20.68	3446.41 2638.28	0.33	0.83 0.66	2.97 3.4	0.35 0.58	0.85
		142 141	Q100 Q100	3020 3020	19.8 18.56	17.86 18.06	20.13 19.55	2638.28 1458.88	0.47 0.97	0.66 1.06	3.4 5.35	0.58	1.14 2.07
		140	Q100	3028	18.58	16.83	18.82	2300.79	0.36	0.14	2.81	0.79	1.32
		139 138	Q100 Q100	3028 3063	18.2 18.03	14.8 14.72	18.24 18.12	5398.27 5173.79	0.14	0.47 0.4	1.83 1.98	0.48 0.37	0.56 0.59
		137	Q100	3084	17.53	15.73	17.76	2905.46	0.35	0.81	3.22	0.7	1.06
		136 135	Q100 Q100	3084 3084	17.02 16.98	15.47 14.87	17.45 17.19	2123.09 3255.35	0.49 0.31	1.06 0.78	4.36 3.37	0.96 0.69	1.45 0.95
		134	Q100	3092	16.37	15.37	16.86	2114.37	0.52	1.04	4.89	1.02	1.46
		133 132	Q100 Q100	3092 3098	16.28 15.7	14.82 14.55	16.55 16.13	2714.11 2115.52	0.38 0.48	0.84 1.04	3.8 4.48	0.84 1.02	1.14 1.46
		131	Q100	3098	15.54	14.03	15.8	2603.59	0.38	0.83	3.56	0.88	1.19
		130 129	Q100 Q100	3106	15.49 15.46	12.91	15.58 15.5	4310.66	0.21	0.58 0.7	2.35 1.37	0.54	0.72 0.74
		129	Q100 Q100	3125 3125	15.46	11.92 12.43	15.5 15.45	4203.68 3368.35	0.12 0.18	0.7	1.37	0.64 0.99	0.74
		127	Q100	3129	15.35	11.81	15.39	3724.72	0.13	0.77	1.55	0.84	0.84
Boghen	Boghen	123 122	Q100 Q100	3134 3198	15.17 14.47	12.12 12.5	15.31 14.98	3042.74 1766.92	0.22	0.85 1.12	2.9 4.38	0.54 1.16	1.03 1.81
		121	Q100	3198	14.1	12.17	14.62	1804.6	0.45	1.1	4.63	1.19	1.77
		120 119.5	Q100 Q100	3198 3198	13.94 13.89	11.13 11.38	14.1 14.04	3149.55 3383.98	0.27 0.27	0.8 0.61	2.94 2.96	0.76 0.76	1.02 0.95
		119	Q100	3838	13.73	10.97	13.9	3611.19	0.26	0.93	3.11	0.75	1.06
		118 117	Q100 Q100	3838 3838	13.22 13.13	11.44 10.66	13.66 13.3	2336.18 3764.69	0.42 0.27	1.25 0.78	4.62 3.32	1.15 0.87	1.64 1.02
		117	Q100 Q100	3838 3838	13.13 12.85	10.66	13.3	3403.55	0.27	0.78	3.32	0.87	1.02
		115	Q100	3838	12.72	9.63	12.83	4197.78	0.2	0.76	2.88	0.79	0.91
		114 113	Q100 Q100	3838 3838	12.28 12.3	10.07 8.65	12.58 12.37	2841.4 4783.41	0.36 0.16	1.14 0.58	4.16 2.22	1.04 0.73	1.35 0.8
		112	Q100	3898	11.99	9.67	12.25	3248.04	0.32	0.9	3.64	0.8	1.2
		111 110	Q100 Q100	3898 3898	11.71 11.76	9.65 8.68	12.1 11.95	2697.44 3381.34	0.41 0.25	0.96 0.93	4.1 3.32	1.04 0.94	1.45 1.15
		100	Q100 Q100	3898 3898	11.76	8.68	11.76	2811.31	0.25	0.93	3.32	1.16	1.15
		108	Q100	3898	11.37	8.14	11.59	2909.73	0.26	0.95	3.5	1.08	1.34
		107.5 107	Q100 Q100	3978 3978	11.16 11.2	8.38 7.2	11.48 11.33	2602.87 3665.02	0.33	1.18 0.74	3.65 2.87	1.03 0.97	1.53
		106	Q100	3978	11.01	8.09	11.21	3253.49	0.27	1.04	3.65	0.68	1.22
									0.45				
		105 104	Q100 Q100	3978 3978	10.91 10.83	6.8 6.02	10.97 10.87	5333.3 6118.12	0.15 0.12	0.62 0.59	2.08 1.79	0.66 0.53	0.75 0.65

- · · ·		s		Q Total	W.S. Elev	E.G. Elev	Crit W.S.	Flow Area	Froude # XS	Vel Left	Vel Chnl	Vel Right	Vel Total
Rivière	Bief	River Sta	Profile	(m3/s)	(m)	(m)	(m)	(m2)		(m/s)	(m/s)	(m/s)	(m/s)
		30 29	Q100 Q100	5821 5821	10.68 10.66	4.94 5.38	10.71 10.7	7442.52 7301.84	0.1 0.11	0.73 0.76	1.3 1.32	0.78 0.67	0.78 0.8
		27	Q100	5821	10.65	5.22	10.7	6599.14	0.11	0.82	1.45	0.81	0.88
		26 25	Q100 Q100	5821 5821	10.63 10.62	5.08 5.36	10.69 10.67	5808.1 6117.5	0.13 0.12	0.91	1.64 1.59	1 0.97	1 0.95
		24	Q100	5821	10.62	5.31	10.67	6576.46	0.12	0.81	1.52	0.67	0.89
		23 22	Q100 Q100	5821 6003	10.62 10.6	4.74 4.78	10.66 10.65	7404.93 6437.06	0.1 0.12	0.74 0.86	1.31 1.58	0.62 0.96	0.79 0.93
		21	Q100	6003	10.58	4.81	10.64	6420.96	0.12	0.88	1.62	0.65	0.93
		20 19	Q100 Q100	6003 6003	10.52 10.2	5.5 5.82	10.62 10.57	4951.35 2556.72	0.17 0.32	0.96 1.78	2.15 3.71	1.2 1.98	1.21 2.35
		18	Q100	6003	9.49	6.84	10.47	2306.05	0.53	1.2	5.74	1.59	2.6
		17 16	Q100 Q100	6003 6003	9.03 9.05	5.73 5.82	10.01 9.68	1800.19 2917.42	0.52 0.42	0.86 1.05	4.7 4.87	1.27 1.36	3.33 2.06
Nera	Nera	15	Q100	6003	7.82	6.65	9.29	1748.7	0.76	1.3	6	0.82	3.43
Neru	Neru	14 13	Q100 Q100	6003 6072	7.64 7.18	5.94 5.44	8.84 8.31	2265.02 2833.42	0.72 0.69	0.61	5.22 5.35	0.62 0.46	2.65 2.14
		12	Q100 Q100	6072	6.7	5.06	7.67	2847.32	0.64	0.68	4.95	0.40	2.13
		11	Q100	6072	6.5	3.94	7.32	2539.17	0.62	0.37	4.31	0.66	2.39 2.7
		10 9	Q100 Q100	6072 6115	6 5.74	4.8	7.1 6.35	2250.01 3367.83	0.75 0.5	1.01	5.06 4.48	0.8 0.98	1.82
		8 7	Q100	6115	5.4	3.69	6.01	3244.65	0.51	0.96	4.26	0.52	1.88
		6	Q100 Q100	6115 6115	4.93 4.81	3.56 2.66	5.46 5.04	3911.32 5048	0.51 0.36	0.97	4.6 3.23	0.94	1.56 1.21
		5	Q100	6115	4.63	2.31	4.81	6809.21	0.33	0.62	2.86	0.61	0.9
		3	Q100 Q100	6115 6115	4.55 4.43	1.79 1.16	4.65 4.53	9627.25 9207.7	0.25 0.25	0.37	1.94 1.77	0.39 0.31	0.64 0.66
		2	Q100	6193	4.32	1.09	4.4	7373.93	0.23	0.17	1.74	0.6	0.84
		0	Q100 Q100	6193 6193	3.01 1.4	3.01 -2.05	4.15 1.42	1727.46 9514.28	1.07 0.1	0.73	5.09 0.65	1.3	3.59 0.65
		211	Q100	288	14.5	13.94	14.61	215.42	0.42	1.27	2.15	1.02	1.34
Nekou	Nekou	210 209	Q100 Q100	288 314	13.64 13.53	12.32 10.72	13.66 13.54	465.05 858.58	0.15 0.07	0.6	0.95 0.56	0.52 0.25	0.62 0.37
		208	Q100	314	13.52	10.79	13.53	884.03	0.07	0.36	0.52	0.27	0.36
	A 601	247 246	Q100 Q100	41 41	22.94 22.78	21.52	23.02 22.78	52.01 228.56	0.4 0.09	0.12	1.4 0.59	0.24 0.15	0.79 0.18
	Affluent 1	245.5	Q100	41	22.77	20.9	22.78	213.7	0.1	0.14	0.69	0.18	0.19
-		245 241	Q100 Q100	41 58	22.33 24.27	19.33 23.98	22.33 24.42	389.3 78.38	0.04 0.63	0.08	0.39 2.37	0.11 0.42	0.11 0.74
		240.5	Q100	58	24.33	24.06	24.41	89.9	0.45	0.54	2.06	0.44	0.65
	Affluent 2	240 239	Q100 Q100	58 58	23.22 21.3	22.71	23.3 21.33	112.97 133.58	0.5 0.22	0.21	1.7 1.4	0.3 0.31	0.51 0.43
-		238.5	Q100	58	20.91	17.87	20.91	537.3	0.02	0.11	0.16	0.09	0.11
Nandai		250 249	Q100 Q100	605 605	24.16 23.41	22.48	24.38 23.65	571.82 428.73	0.47 0.42	0.99 0.91	3.18 2.96	0.67 0.94	1.06 1.41
		248	Q100	610	22.74	21.54	22.82	790.49	0.27	0.64	2.13	0.61	0.77
		244 243	Q100 Q100	623 623	21.92 21.22	20.52	22.04 21.3	645.86 638.69	0.32 0.28	0.72 0.99	2.25 2.71	0.67 0.78	0.96 0.98
	Principal	242	Q100	628	20.91	18.89	20.94	1061.18	0.13	0.48	1.18	0.58	0.59
		238 237	Q100 Q100	628 648	20.85 20.64	18.62 18.71	20.87	1016.57 773.71	0.12 0.21	0.54 0.77	1.19 1.79	0.6 0.7	0.62 0.84
		236	Q100 Q100	648	20.44	17.88	20.47	949.79	0.13	0.77	1.79	0.63	0.68
	-	235 234	Q100 Q100	660 660	20.41	16.96 17.72	20.42 20.41	2511.05 2169.04	0.05 0.06	0.22	0.54 0.65	0.26 0.29	0.26
		233	Q100 Q100	1043	23.37	23.06	23.75	716.94	0.68	0.27	3.57	0.29	1.45
		232 231	Q100 Q100	1043 1067	22.84 21.9	21.6 21.73	22.95 22.35	1096.2 646.26	0.31 0.74	0.76 1.08	2.28 4.05	0.64 0.84	0.95 1.65
	- - -	230	Q100 Q100	1067	21.47	19.54	21.5	1670	0.74	0.5	1.56	0.59	0.64
		229	Q100 Q100	1095 1095	21.06 20.63	19.49 19.53	21.13 20.78	1312.24 931.58	0.24 0.33	0.66	2.04 2.91	0.7 0.99	0.83 1.18
		228 227	Q100 Q100	1491	20.63	18.46	20.78	1304.53	0.35	0.82	2.69	1.03	1.14
		226	Q100 Q100	1491	19.79	17.96	19.9	1273.87	0.26 0.19	0.92	2.66 2.13	1.08	1.17
		225 224	Q100 Q100	1491 1514	19.57 19.24	17.39 17.56	19.64 19.4	1586.32 1202.96	0.19	0.52 1.06	3.09	0.85 1.06	0.94 1.26
	Amont	223 222	Q100	1514	18.76	17.25	18.96	1186.56	0.41	1.27 0.77	3.52	0.92	1.28 0.84
		221	Q100 Q100	1514 1514	18.52 18.16	16.73 16.36	18.59 18.27	1805.74 1426	0.26	0.77	2.27	0.71 0.92	1.06
		220	Q100	1514	17.67	15.59	17.73	1762.55	0.19	0.76	2.04	0.5	0.86
		219 218	Q100 Q100	1514 1514	17.27 15.88	15.07 14.44	17.48 16.28	1025.26 805.53	0.31 0.47	1.15 1.13	3.06 3.9	1.2 1.35	1.48 1.88
		217	Q100	1539	15.38	13.86	15.63	949	0.37	1.03	3.56	1.37	1.62
		216 215	Q100 Q100	1539 1539	15.16 14.36	12.93 13.61	15.23 14.87	1646.09 680.46	0.2 0.58	0.83 1.97	2.15 5.08	0.83 1.54	0.93 2.26
Douencheur		214	Q100	1618	14.38	12.31	14.47	1424.77	0.22	0.88	2.18	1.03	1.14
		213 212	Q100 Q100	1618 1618	14 13.84	12.78 12.15	14.25 13.96	942.63 1303.21	0.39 0.28	1.45 0.86	3.4 2.58	1.34 1.18	1.72 1.24
		81 79	Q100 Q100	1754 1754	13.08 12.7	11.36 10.88	13.14 12.79	1944.94 1839.2	0.2 0.24	0.81 0.87	1.94 2.48	0.81 0.79	0.9 0.95
		79 78	Q100 Q100	1754	12.7	10.88	12.79	1839.2 1396.79	0.24	0.87	2.48	1.07	1.27
		77 76	Q100 Q100	1773 1773	11.66 11.68	10.9 10.76	12.2 12.15	876.58 915.65	0.58 0.55	1.55 1.4	4.9 4.32	1.23 1.22	2.02 1.94
		74	Q100	1773	11.66	10.12	11.93	1249.44	0.39	1.05	3.66	1.09	1.42
		72 70	Q100 Q100	1773 1773	11.72 11.7	9.51 8.76	11.76 11.73	2612.05 3474.49	0.16 0.11	0.59 0.43	1.85 1.34	0.62 0.46	0.68 0.51
	Aval	68	Q100	1773	11.7	8.72	11.73	2663.47	0.11	0.43	1.67	0.46	0.51
	Avdi	67 65	Q100	1794	11.62	8.59 8.27	11.66	2290.7	0.14	0.74	1.92	0.62	0.78
		65 63	Q100 Q100	1794 1800	11.55 11.3	8.27 8.93	11.6 11.48	2161.28 1304.52	0.15 0.28	0.8 1.06	1.9 3.13	0.69 1.17	0.83 1.38
		62 61	Q100	1800	11.26	8.47	11.39	1562.27	0.23	0.92	2.7 2.2	1 0.80	1.15
		61 60	Q100 Q100	1800 1800	11.23 11.16	8.11 7.41	11.3 11.22	1890.81 1995.16	0.18 0.16	0.76 0.86	2.2	0.89 0.74	0.95 0.9
		59	Q100	1844	11.14	7.19	11.18	2836.09	0.11	0.61	1.55	0.51	0.65
		58 55	Q100 Q100	1844 1844	11.12 11.11	7.32 6.74	11.16 11.14	2772.42 3363.9	0.12 0.1	0.63 0.46	1.69 1.38	0.52 0.52	0.67 0.55
		54	Q100	2884	11.1	6.31	11.1	8041.79	0.06	0.39	0.96	0.16	0.36
		51 48	Q100 Q100	2884 2884	11.08 11.07	6.39	11.09 11.08	7377.91 8378.81	0.07 0.06	0.4	0.99 0.86	0.14 0.13	0.39 0.34
		47	Q100	2884	11.06	5.74	11.07	7147.41	0.06	0.43	0.96	0.13	0.4
		45 43	Q100 Q100	2884 2884	11.05 11.02	5.09 6.44	11.07 11.05	7207.08 6328.91	0.06 0.1	0.42 0.46	0.97 1.73	0.12 0.15	0.4 0.46
Ari	Ari	41	Q100	2884	10.95	6.11	11.01	5077.89	0.13	0.47	1.82	0.15	0.57
		40 39	Q100 Q100	2884 2895	10.91 10.87	6.36 6.13	10.97 10.93	5257.32 5155.94	0.13 0.14	0.51 0.55	1.93 2.15	0.21 0.24	0.55 0.56
		38	Q100	2895	10.83	5.86	10.9	4969.38	0.15	0.53	2.09	0.26	0.58
			0400		400	F 0F	1000	1012 66	0.16	0.59	2.18	0.23	0.6
		37 36	Q100 Q100	2895 2895	10.8 10.78	5.85 5.92	10.88 10.85	4813.66 5091.14					
		37 36 35 34	Q100 Q100 Q100 Q100	2895 2895 2895	10.8 10.78 10.73	5.85 5.92 5.97 5.49	10.88 10.85 10.8	5091.14 5457.92 4783.93	0.16 0.14 0.15	0.59 0.6	2.24 2.26 2.17	0.23 0.27 0.3	0.57 0.53

Annexe 9 : Résultats de l'analyse de sensibilité

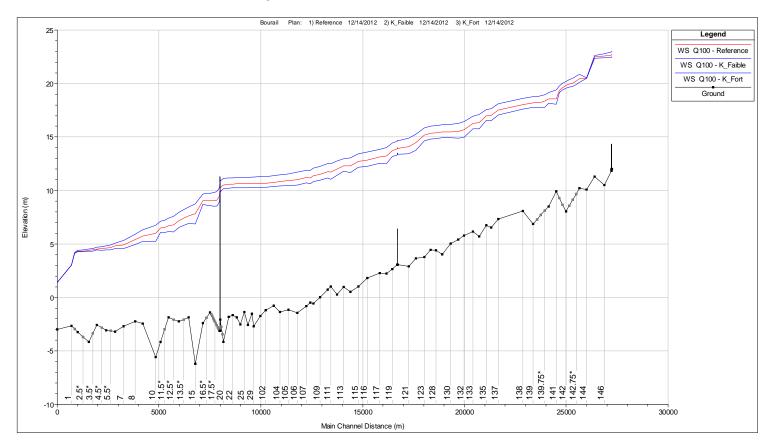


ISO9001: FDT1_V1/10-10

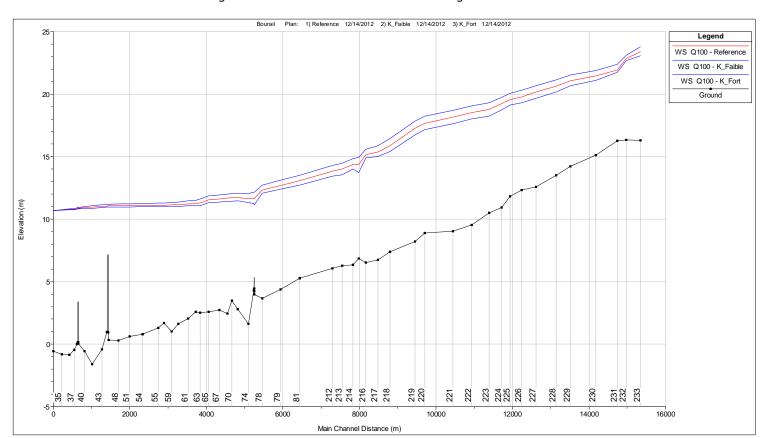

Annexe - Analyse de sensibilité

Sur chaque graphe, la ligne rouge représente la ligne d'eau centennale de référence.

⇒ Sensibilité aux variations de débit

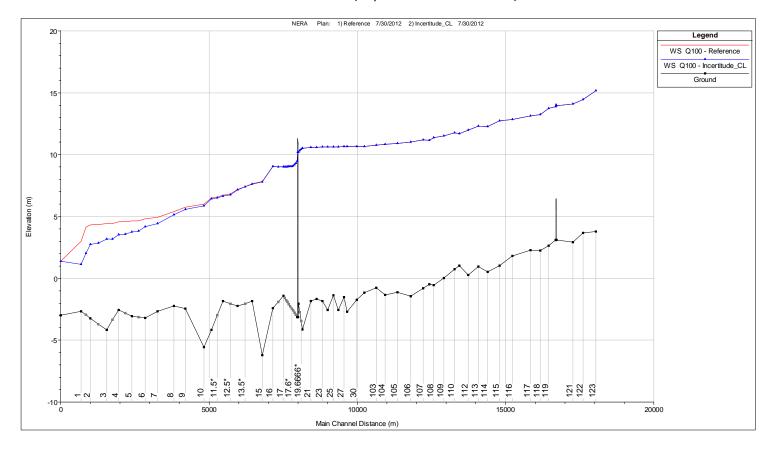


Lignes d'eau calculées sur la Néra et la Boghen

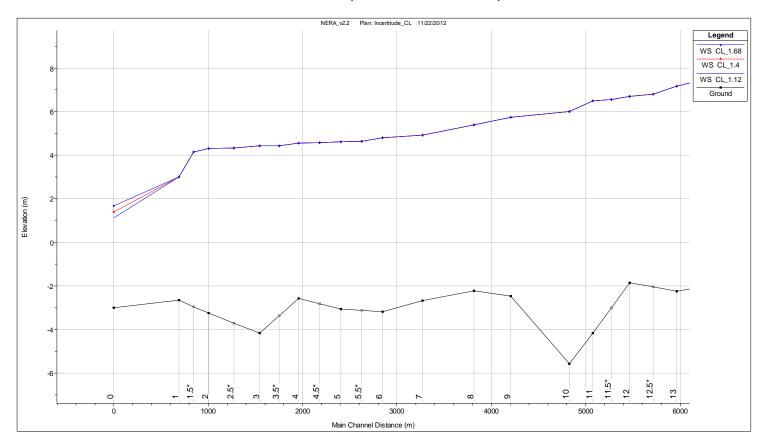


Lignes d'eau calculées sur la Ari et la Douencheur

\Rightarrow Sensibilité aux variations de rugosité



Lignes d'eau calculées sur la Néra et la Boghen


Lignes d'eau calculées sur la Ari et la Douencheur

➡ Sensibilité aux variations de condition limite (Rupture du cordon littoral)

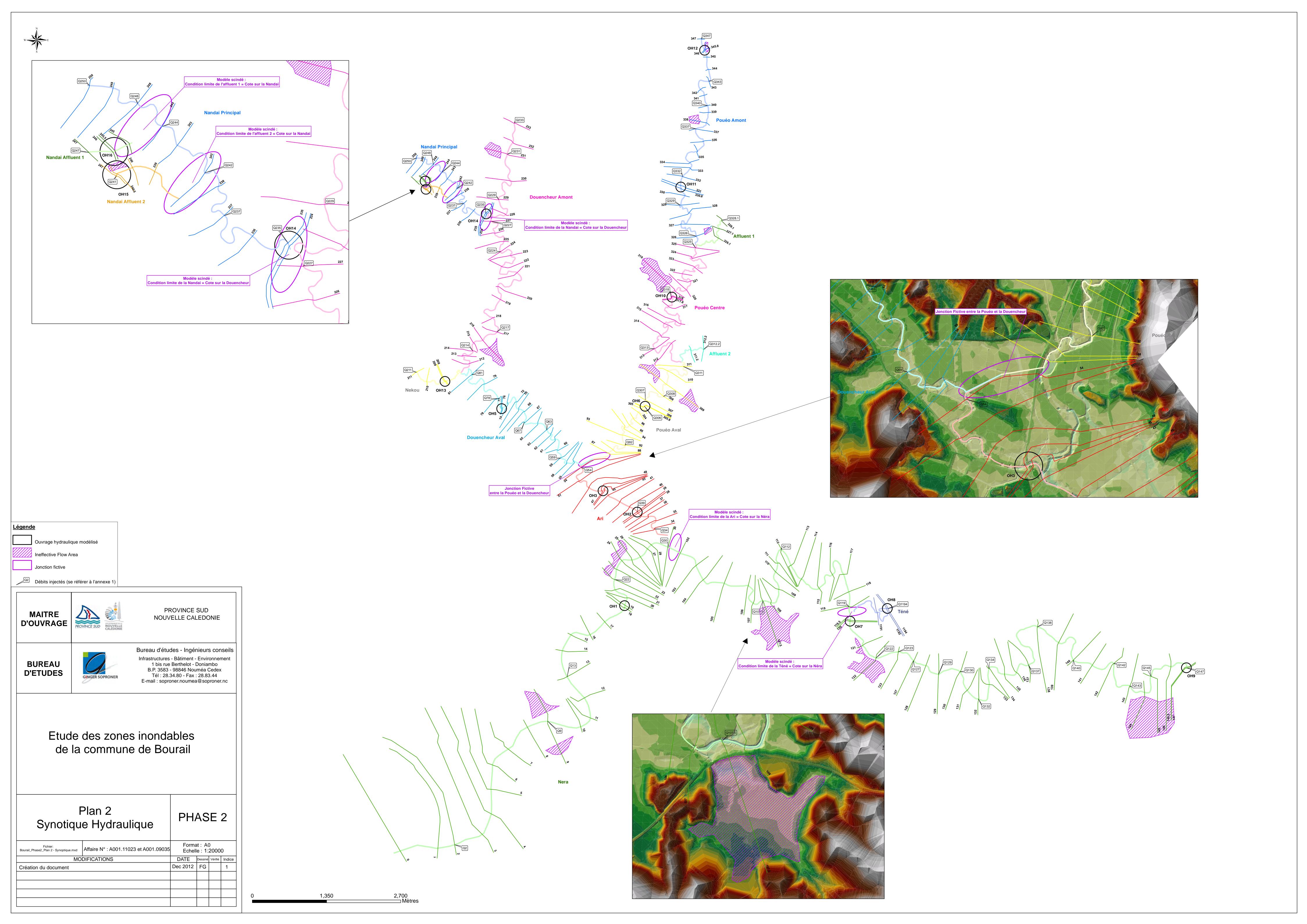
Lignes d'eau calculées sur la Néra et la Boghen

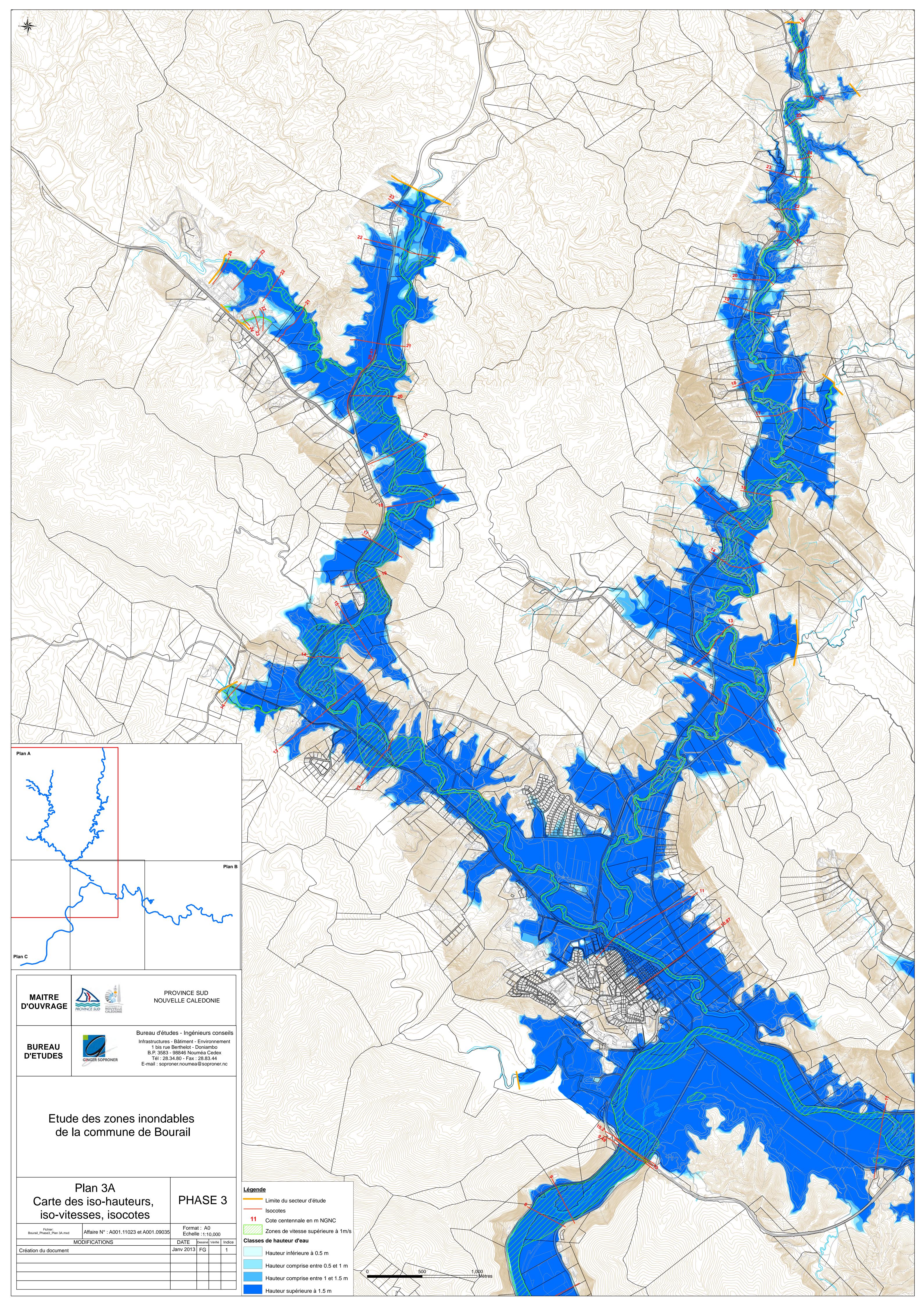
Sensibilité aux variations de condition limite (Variation de la cote aval)

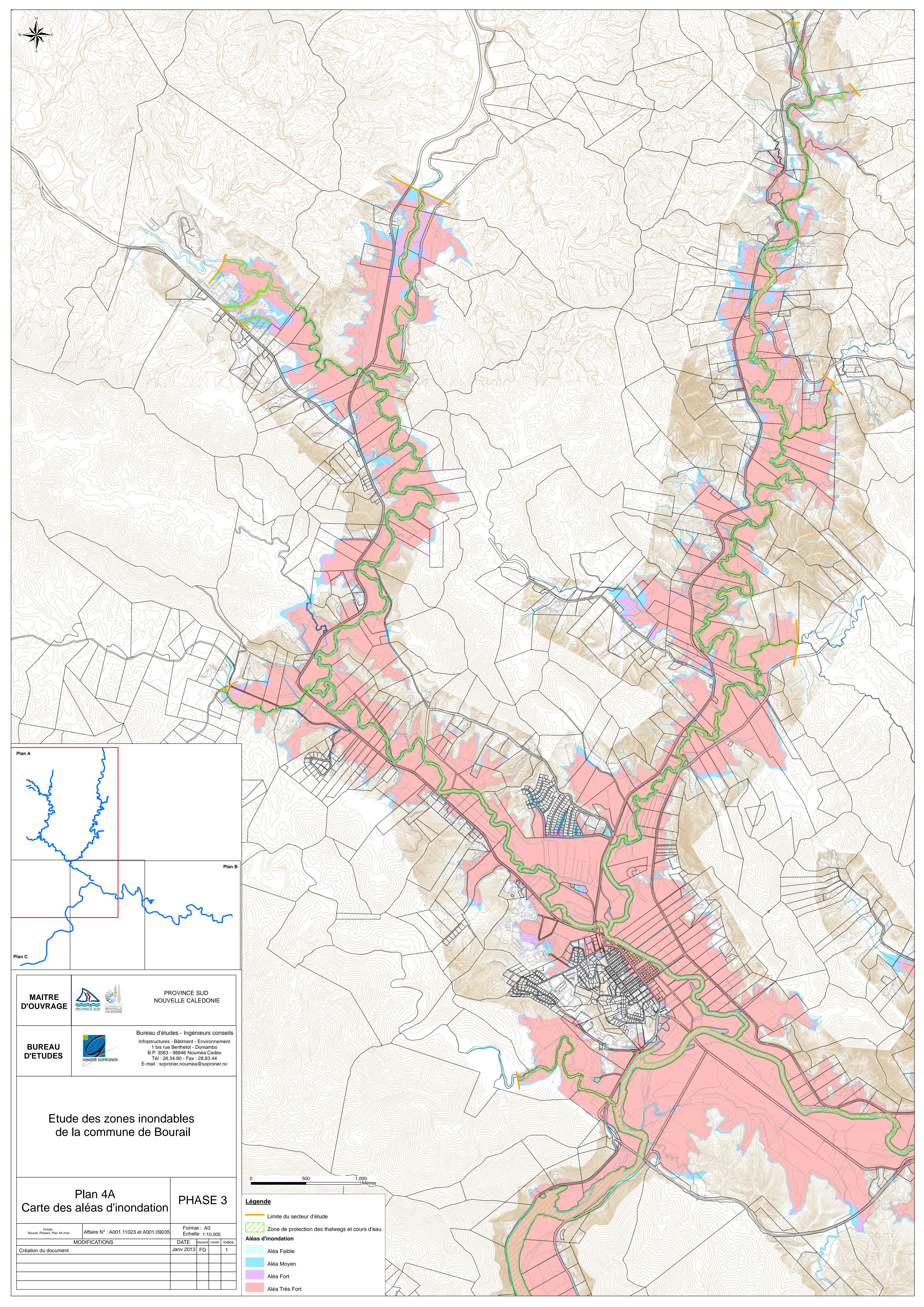
Lignes d'eau calculées sur la Néra

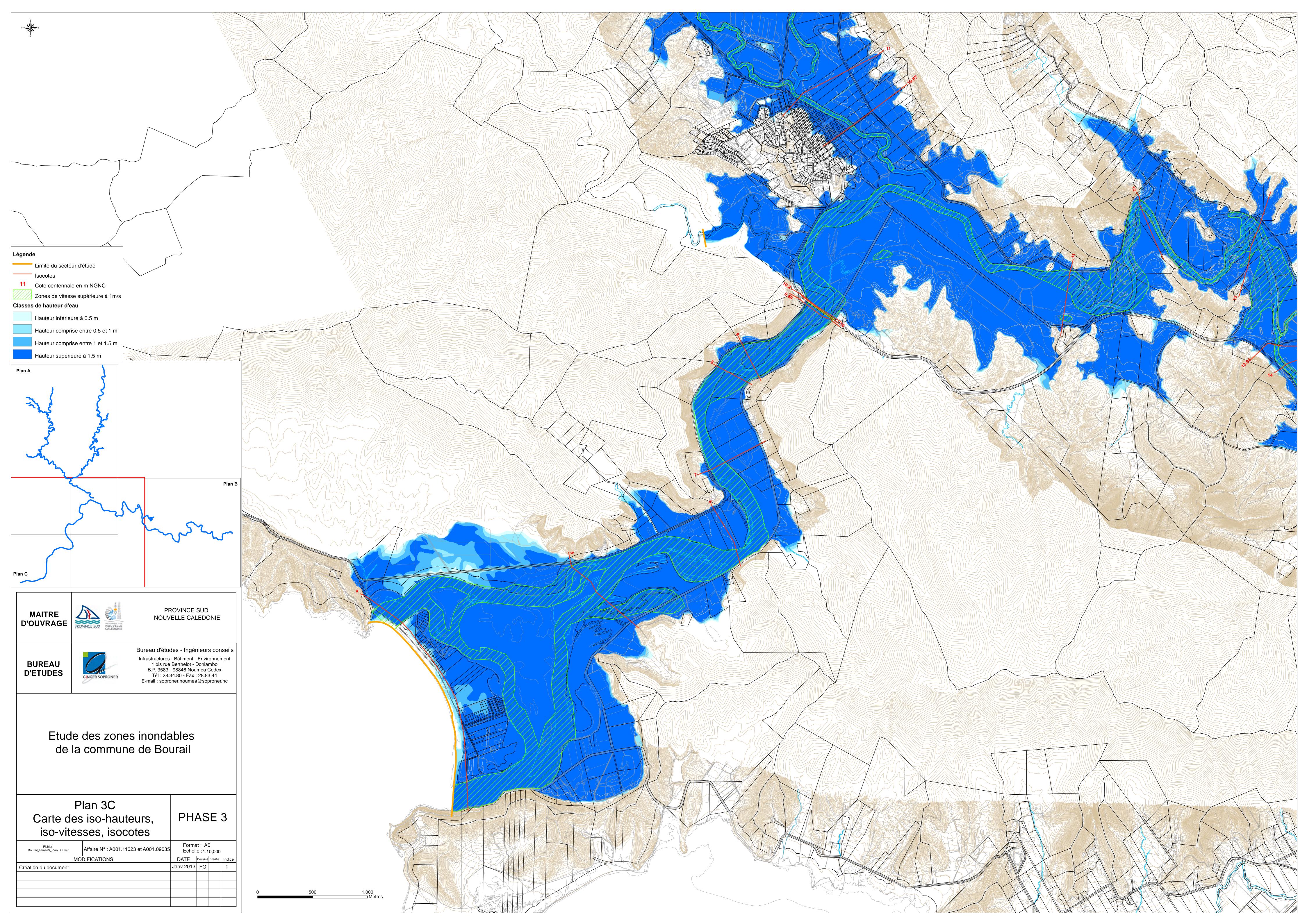
Annexe 10 - Dossier des plans

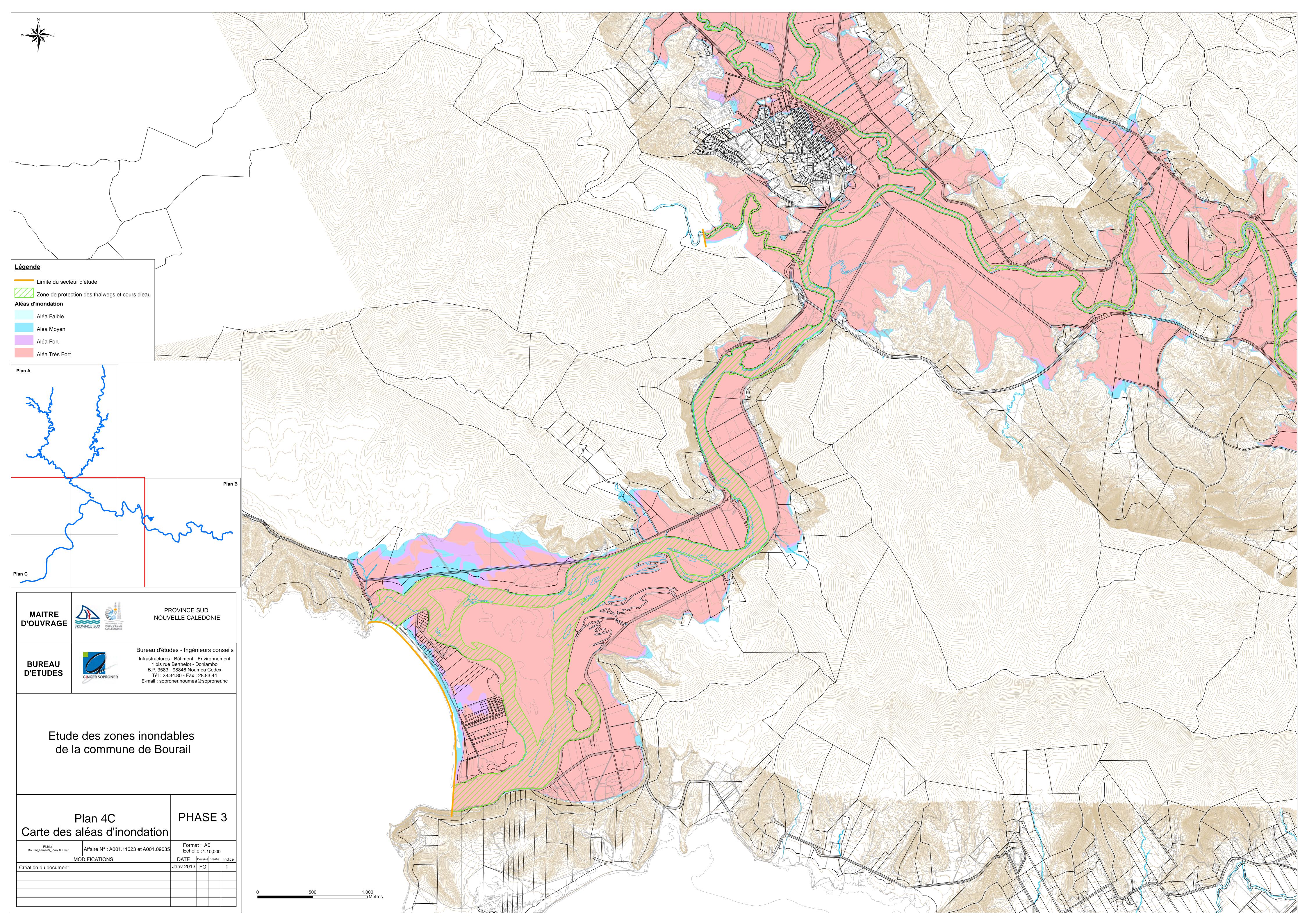
Plan 1 -: Plan des profils modélisés


Plan 2 - Synoptique hydraulique


Plan 3 - Cartes des iso-hauteurs, iso-vitesses et isocotes


Plan 4 - Cartes des aléas d'inondation




ISO9001: FDT1_V1/10-10

