

Suivi environnemental Rapport Annuel 2013 Eaux Souterraines

SOMMAIRE

SOMMAIRE		2
LISTE DES T	ABLEAUX	3
LISTE DES FI	GURES	3
	NNEXES	
		3412
SIGLES ET A	BREVIATIONS	344
INTRODUCTI	ON	
1. PRES	SENTATION DES PLANS DE SUIVI ET DES PROTOCOLES DE MESURE	2
1.1. Lo	calisation	2
1.1.1	Suivi des impacts des activités du port sur les eaux souterraines	2
1.1.2	Suivi de l'impact des activités du parc à résidus sur les eaux souterraines	
1.1.3	Suivi de l'impact des activités de l'unité de préparation du minerai (UPM)	
1.1.4	Suivi de l'impact des activités de l'usine	
	otocoles de mesure	
1.2.1	Campagnes de mesures physico-chimiques	9
1.2.2 1.2.3	Mesures des paramètres physico-chimiques in situ	
1.2.3	Analyse des paramètres physico-chimiques en solution	
1.2.5	Analyse des métaux	
2. PRES	SENTATION DES RESULTATS	12
2.1. Ra	ppel des valeurs réglementaires	12
2.1.1	Suivi de l'impact des activités du port sur les eaux souterraines	
2.1.2	Suivi de l'impact des activités du parc à résidus sur les eaux souterraines	
2.1.3	Suivi de l'impact des activités de l'unité de préparation du minerai (UPM) sur les e	
	aines	13
2.1.4	Suivi de l'impact des activités de l'usine sur les eaux souterraines	
2.2. Bila	an des campagnes de mesure	
2.2.1	Données disponibles pour le Port	
2.2.2	Données disponibles pour le parc à résidus de la Kué Ouest	
2.2.3 2.2.4	Données disponibles pour l'Unité de Préparation du Minerai	
	·	
	sultats	
2.3.1 2.3.2	Suivi de l'impact des activités du Port sur les eaux souterraines	
2.3.2 Ouest	Suivi de l'impact des activités du parc à résidus sur les eaux souterraines de la K	we
2.3.3	Suivi de l'impact des activités de l'Usine sur les eaux souterraines	36
2.3.4	Suivi de l'impact des activités de l'UPM sur les eaux souterraines	
3. ANA	LYSE DES RESULTATS ET INTERPRETATION	57
	ivi de l'impact des activités du port sur les eaux souterraines	
3.2. Su	ivi de l'impact des activités du parc à résidus sur les eaux souterraines	57

3.3.	Suivi de l'impact des activités de l'usine sur les eaux souterraines	57
3.4.	Suivi de l'impact des activités de l'UPM sur les eaux souterraines	58
4. E	BILAN DES NON-CONFORMITES	59
0010111		
CONCLU	SION	60
	LISTE DES TABLEAUX	
Tableau 1	: Localisation et description des points de suivi du port	2
	2 : Localisation et description des points de suivi du parc à résidus	
	B : Localisation et description des points de suivi de l'UPM	
	: Localisation et description des points de suivi de l'usine	
	5 : Méthode d'analyse pour les paramètres physico-chimiques	
Tableau 6	6 : Méthodes d'analyse pour les métaux	12
Tableau /	7: Valeurs réglementaires suivant l'arrêté n°891-2007/PS	12
	3 : Valeurs réglementaires suivant l'arrêté n°1466-2008/PS	
	9 : Données disponibles pour le suivi des eaux souterraines pour le Port	
	0 : Données disponibles sur les piézomètres de la Kué Ouest à fréquence de suivi sem 11 : Données disponibles sur les trois piézomètres de la Kué Ouest à fréquence	
	e de la reguerice disponibles sur les trois plezonnetres de la rue Odest à frequence	
	2 : Données disponibles pour le suivi des eaux souterraines de l'UPM	
	3 : Données disponibles pour le suivi des eaux souterraines de l'Usine	
	5 : Comparaison des mesures de conductivité manuelles et in situ	
	LICTE DEC FIGURES	
	LISTE DES FIGURES	
	Carte de localisation des piézomètres du port	
	Carte de localisation des piézomètres du parc à résidus	
	Carte de localisation des piézomètres de l'Unité de Préparation du Minerai	
	Carte de localisation des piézomètres de l'usine	
	Résultats du suivi du Port par graphiques – pH	
	Résultats du suivi du Port par graphiques – DCO	
	Résultats du suivi du Port par graphiques – Conductivité	
	Résultats du suivi de la Kura Quest (granne A)	
•	Résultats du suivi de la Kwe Ouest (groupe A) – pH, conductivite, nitrates, sulfates, c	-
	nèse : Résultats du suivi de la Kwe Ouest (groupe B) – pH, conductivite, sulfates et mangan	
	: Résultats du suivi de la Kwe Ouest (groupe B) – pH, conductivite, suilates et manganèse	
	: Résultats du suivi de la Rwe Odest (groupe O) – pri, conductivite, et manganese 2 : Résultats du suivi de la Kwe Ouest (groupe D) – pH, conductivite, chlorure, s	
	Se	
	B : Résultats du suivi piézométrique mensuel de la Kwe Ouest – conductivité	
magnésiu	m, calcium et manganèse	, canato, 31
	,	

LISTE DES ANNEXES

	NNEXE I : Résultats du suivi des eaux souterraines de la Kwé Ouest : Tableaux d'exploitation tatistique des analyses66				
ANNEXE II : Suivi de la qu A, B, C et D				•	
ANNEXE III : Résultats statistique des analyses	du suivi des	eaux souterraines	de l'Usine : Tableaux	d'exploitation 77	
ANNEXE IV : Résultats statistique des analyses	du suivi des	eaux souterraines	de l'UPM : Tableaux	d'exploitation	

SIGLES ET ABREVIATIONS

Lieux

Anc M Bassin Versant de l'ancienne mine

BPE Baie de Prony Est CBN Creek Baie Nord dol XW Doline Xéré Wapo

KB Kuébini
KJ Kadji
KO Kwé Ouest
KP Kwé Principale
SrK Source Kwé
TB Trou Bleu

UPM Unité de Préparation du Minerai

Organismes

CDE Calédonienne des Eaux

Paramètres

Ag Argent ΑĬ Aluminium Arsenic As В Bore Ва Baryum Béryllium Be Bi **Bismuth** Calcium Ca

CaCO3 Carbonates de Calcium

Cd Cadmium
Cl Chlore
Co Cobalt

COT Carbone Organique Total

Cr Chrome CrVI Chrome VI

Cu Cuivre

DBO5 Demande Biologique en oxygène DCO Demande Chimique en Oxygène

F Fluor
Fe Fer
Fell Fer II

HT Hydrocarbures Totaux

K Potassium Li Lithium

MES Matières en suspension

Mg Magnésium Manganèse Mn Molybdène Мо Na Sodium NΒ Nota Bene NH3 Ammonium Nickel Ni NO₂ **Nitrites** NO3 **Nitrates** NT Azote Total Ρ Phosphore Pb Plomb

pH Potentiel Hydrogène

PO4 Phosphates
S Soufre
Sb Antimoine
Se Sélénium
Si Silice

SiO2 Oxyde de Silicium

Sn Etain
SO4 Sulfates
Sr Strontium
T° Température
TA Titre alcalimétrique

TAC Titre alcalimétrique complet

Tellure Te Th Thorium Τi Titane ΤI Thallium U Uranium V Vanadium WJ Wadjana Zn Zinc

Autre

IBNC Indice Biotique de Nouvelle-Calédonie

IIB Indice d'Intégrité Biotique

N° Numéro

INTRODUCTION

Implanté dans le Sud de la Nouvelle-Calédonie, aux lieux-dits « Goro » et « Prony-Est » sur les communes de Yaté et du Mont-Dore, le complexe industriel (usine, mine, port) détenu par Vale Nouvelle-Calédonie, a pour objectif d'extraire du minerai latéritique et de le traiter par un procédé hydrométallurgique, visant à produire 60 000 t/an de nickel et 4 500 t/an de cobalt.

Les activités liées au projet Vale Nouvelle-Calédonie se répartissent sur plusieurs bassins versants : la Baie de Prony, le creek de la Baie Nord et trois des bras amont de la Kwé (Kwé Ouest, Nord et Est).

Afin de mesurer les impacts potentiels des activités liées au projet, des campagnes de suivi sont mises en place. Ces campagnes seront effectuées notamment conformément aux arrêtés N° 891-2007/PS du 13 juillet 2007, N°1467-2008/PS du 9 octobre 2008, et N° 1466-2008/PS du 9 octobre 2008 correspondant respectivement aux prescriptions des ICPE du port, de l'usine et de l'unité de préparation du minerai et d'un centre de maintenance de la mine, et du parc à résidus.

Les programmes de suivi des ICPE sont repris et complétés dans les recommandations de la convention N°C.238-09 fixant les modalités techniques et financières de mise en œuvre de la démarche pour la conservation de la biodiversité.

1. PRESENTATION DES PLANS DE SUIVI ET DES PROTOCOLES DE MESURE

1.1. Localisation

La localisation des piézomètres dédiés au suivi des impacts des différentes installations du projet Vale Nouvelle-Calédonie est décrite dans les paragraphes suivants.

1.1.1 Suivi des impacts des activités du port sur les eaux souterraines

L'arrêté N° 891-2007/PS du 13 juillet 2007, qui autorise notamment l'exploitation du port, prévoit qu'au total 3 piézomètres sont installés pour le suivi des eaux souterraines.

Ces trois piézomètres sont décrits dans le tableau 1 et présentés sur la figure 1. Ils se situent à proximité des installations de stockage de fioul lourd et de gasoil.

Tableau 1 : Localisation et description des points de suivi du port

Nom	Bassin Versant	Type de suivi	Raison d'être	RGN91 Est	RGN91 Nord
7-1	BPE	Souterrain	Arrêté n°891-2007/PS	491884,5	205436,3
7-2	BPE	Souterrain	Arrêté n°891-2007/PS	491828,35	205442,3
7-3	BPE	Souterrain	Arrêté n°891-2007/PS	491847,2	205522,5

Le piézomètre nommé 7-1 a été placé à proximité de la rétention de fioul lourd et en aval hydraulique du piézomètre 7-2.

Le piézomètre 7-2 est en amont immédiat des rétentions de fioul lourd et de gasoil, sa fonction principale est de donner une indication de l'état de référence du milieu.

Le piézomètre 7-3 a été placé en aval de la rétention de gasoil.

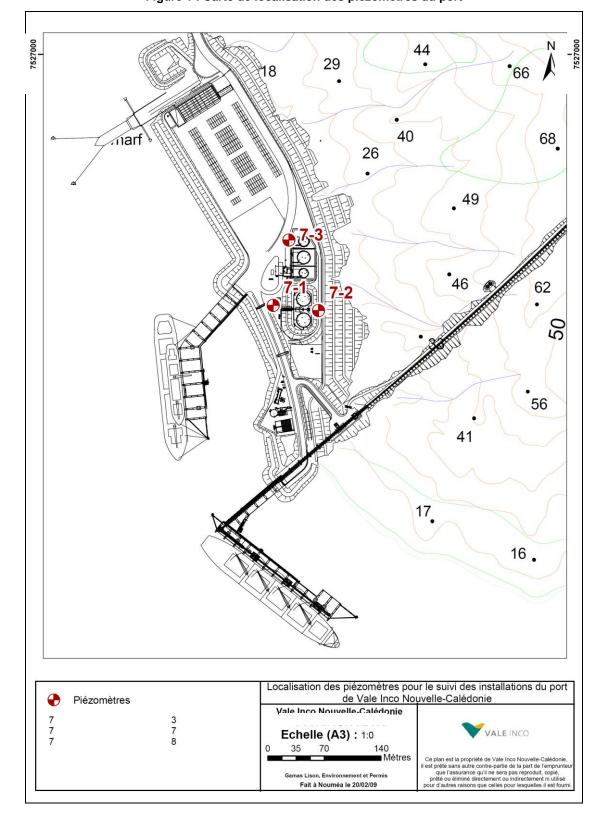


Figure 1 : Carte de localisation des piézomètres du port

1.1.2 Suivi de l'impact des activités du parc à résidus sur les eaux souterraines

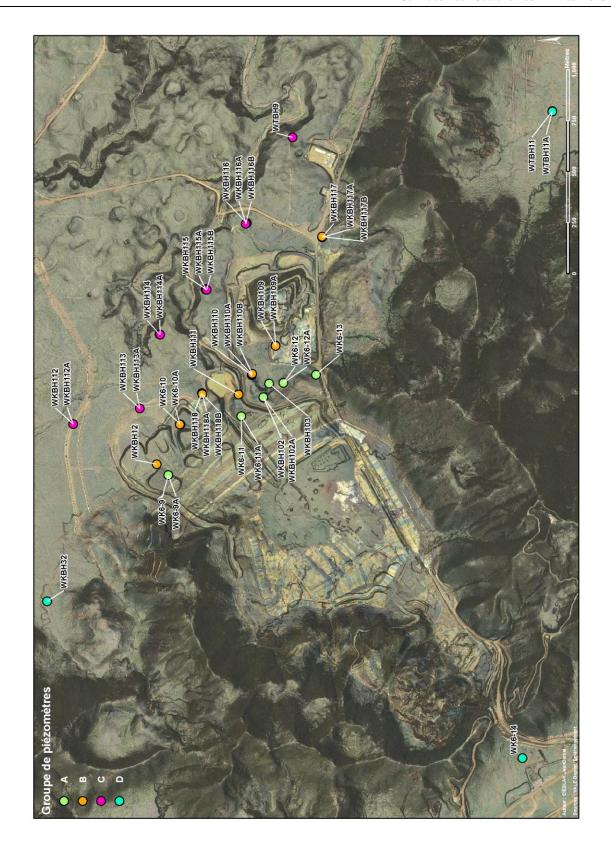

Le suivi des eaux souterraines du bassin versant de la Kwé Ouest est effectué sur 41 piézomètres. Ils sont décrits dans le tableau 2 et localisés dans la figure 2. Le piézomètre WKBH12 a été détruit lors des travaux de terrassement en 2008.

Tableau 2 : Localisation et description des points de suivi du parc à résidus

Nom	Bassin versant	Type de suivi	Raison d'être	RGN91 Est	RGN91 Nord
WK 6-9	КО		Arrêté n°1466-2008/PS	495191,4	211087,3
WK 6-9a	КО		Arrêté n°1466-2008/PS	495190,4	211086,3
WK 6-11	Trou Bleu		Arrêté n°1466-2008/PS	495478,8	210727,3
WK 6-11a	Trou Bleu		Arrêté n°1466-2008/PS	495478,8	210728,3
WK 6-12	КО	Groupe A	Arrêté n°1466-2008/PS	495643,2	210520,4
WK 6-12a	КО	Piézomètres d'alerte au pied de la berme	Arrêté n°1466-2008/PS	495642,2	210520,4
WK 6-13	КО	aa pioa ao ia boiiiio	Arrêté n°1466-2008/PS	495682,3	210360,7
WKBH 102	КО		Arrêté n°1466-2008/PS	495571,6	210620,0
WKBH 102a	КО		Arrêté n°1466-2008/PS	495572,6	210619,0
WKBH 103	КО		Arrêté n°1466-2008/PS	495638,8	210590,4
WKBH12	КО		Arrêté n°1466-2008/PS	495243,9	211142,6
WK 6-10	КО		Arrêté n°1466-2008/PS	495439,8	211029,0
WK 6-10a	КО		Arrêté n°1466-2008/PS	495439,8	211026,0
WKBH 109	КО		Arrêté n°1466-2008/PS	495827,0	210559,7
WKBH 109a	KO	Groupe B Suivi de la qualité de l'eau souterraine dans la zone tampon	Arrêté n°1466-2008/PS	495824,0	210558,7
WKBH 110	KO		Arrêté n°1466-2008/PS	495681,2	210676,7
WKBH 110a	KO		Arrêté n°1466-2008/PS	495684,2	210675,7
WKBH 110b	KO		Arrêté n°1466-2008/PS	495687,2	210674,7
WKBH 111	KO		Arrêté n°1466-2008/PS	495585,7	210742,0
WKBH 117	KO		Arrêté n°1466-2008/PS	496356,5	210330,3
WKBH 117a	KO		Arrêté n°1466-2008/PS	496357,5	210330,3
WKBH 117b	КО		Arrêté n°1466-2008/PS	496360,5	210331,4
WKBH 118	КО		Arrêté n°1466-2008/PS	495593,5	210921,1
WKBH 118a	КО		Arrêté n°1466-2008/PS	495590,5	210920,1
WKBH 118b	КО		Arrêté n°1466-2008/PS	495588,5	210919,0
WKBH 112	КО		Arrêté n°1466-2008/PS	496699,6	210601,6
WKBH 112a	КО		Arrêté n°1466-2008/PS	496704,6	210596,6
WKBH 113	КО		Arrêté n°1466-2008/PS	495539,3	211227,6
WKBH 113a	КО		Arrêté n°1466-2008/PS	495540,4	211219,7
WKBH 114	КО	Groupe C	Arrêté n°1466-2008/PS	495881,0	211130,0
WKBH 114a	КО	Suivi de la qualité de	Arrêté n°1466-2008/PS	495879,1	211127,0
WKBH 115	КО	l'eau souterraine près de la rivière Kwé	Arrêté n°1466-2008/PS	496102,6	210903,6
WKBH 115a	КО	Ouest	Arrêté n°1466-2008/PS	496100,6	210900,5
WKBH 115b	КО		Arrêté n°1466-2008/PS	496099,6	210898,5
WKBH 116	KO		Arrêté n°1466-2008/PS	496427,0	210701,8
WKBH 116a	КО		Arrêté n°1466-2008/PS	496424,9	210704,8
WKBH 116b	KO		Arrêté n°1466-2008/PS	496423,9	210706,8
WTBH 9	КО		Arrêté n°1466-2008/PS	496847,6	210476,6
WTBH 11	KO	Groupe D	Arrêté n°1466-2008/PS	496974,2	209199,7
WTBH 11a	KO	Suivi de la qualité de	Arrêté n°1466-2008/PS	496976,2	209199,7
WKBH 32	KO	l'eau souterraine dans	Arrêté n°1466-2008/PS	496571,5	211681,9
WK 6-14	Rivière Kadji	les vallées adjacentes	Arrêté n°1466-2008/PS	493803,5	209346,8

Figure 2 : Carte de localisation des piézomètres du parc à résidus

1.1.3 Suivi de l'impact des activités de l'unité de préparation du minerai (UPM)

Au total, 4 piézomètres ont été installés pour le suivi des eaux souterraines de l'UPM, ils sont présentés dans le tableau 3 et la figure 3.

Tableau 3 : Localisation et description des points de suivi de l'UPM

Nom	Bassin Versant	Type de suivi	Raison d'être	RGN 91 Est	RGN 91 Nord
4-z1	Kwé Nord	Souterrain	Arrêté n°1467- 2008/PS	498045,1	211694
4-z2	Kwé Ouest	Souterrain	Arrêté n°1467- 2008/PS	498003,3	211658,5
4-z4	Kwé Ouest	Souterrain	Arrêté n°1467- 2008/PS	497790,4	211651,0
4-z5	Kwé Ouest	Souterrain	Arrêté n°1467- 2008/PS	497758,5	211493,8

Le piézomètre 4-z1 a été installé pour suivre l'installation de dépôt d'hydrocarbure côté Kwé Nord.

Le piézomètre 4-z2 a été installé pour suivre l'installation de dépôt d'hydrocarbure côté Kwé Ouest.

Le piézomètre 4-z4 a été installé pour contrôler les eaux souterraines à proximité de l'aire de lavage des véhicules lourds.

Le piézomètre 4-z5 a été installé pour contrôler les eaux souterraines en aval de l'aire de l'atelier de maintenance.

0 25 50 100 150 20 Here

Figure 3 : Carte de localisation des piézomètres de l'Unité de Préparation du Minerai

1.1.4 Suivi de l'impact des activités de l'usine

Au total, 16 piézomètres ont été installés pour le suivi des impacts des activités de l'usine sur les eaux souterraines ; ils sont présentés dans le tableau 4 et la figure 4.

Tableau 4 : Localisation et description des points de suivi de l'usine

Nom	Bassin Versant	Type de suivi	Raison d'être	RGN 91 Est	RGN 91 Nord
6-1	CBN	Aval des aires de stockage	Arrêté n°1467- 2008/PS	493460	207246
6-1a	CBN	Aval des aires de stockage	Arrêté n°1467- 2008/PS	493460	207246
6-2	CBN	Aval du site	Arrêté n°1467- 2008/PS	493126	207428
6-2a	CBN	Aval du site	Arrêté n°1467- 2008/PS	493126	207428
6-3	CBN	Aval de la station distribution du carburant	Arrêté n°1467- 2008/PS	493753	206736
6-3a	CBN	Aval de la station distribution du carburant	Arrêté n°1467- 2008/PS	493751	206733
6-4	CBN	Aval de la station de transit déchets et des cuves d'hydrocarbures	Arrêté n°1467- 2008/PS	493827	206864
6-5	CBN	Aval du stockage d'acide sulfurique	Arrêté n°1467- 2008/PS	494252	207902
6-6	CBN	Aval du stockage de gazole	Arrêté n°1467- 2008/PS	494162	207810
6-7	CBN	Amont site industriel	Arrêté n°1467-	494404	206981

			2008/PS		
6-7a	CBN	Amont site industriel	Arrêté n°1467- 2008/PS	494404	206981
6-8	CBN	Aval du bassin de contrôle Nord	Arrêté n°1467- 2008/PS	493553	207645
6-8a	CBN	Aval du bassin de contrôle Nord	Arrêté n°1467- 2008/PS	493553	207645
6-13	CBN	Aval bassin eau de procédé	Arrêté n°1467- 2008/PS	494456	207581
6-14	CBN	Aval stockage acide chlorhydrique	Arrêté n°1467- 2008/PS	494014	207355
6-14a	CBN	Aval stockage acide chlorhydrique	Arrêté n°1467- 2008/PS	494014	207355

Figure 4 : Carte de localisation des piézomètres de l'usine

1.2. Protocoles de mesure

1.2.1 Campagnes de mesures physico-chimiques

Des prélèvements sont effectués dans les piézomètres réalisés spécifiquement pour le suivi des eaux souterraines.

Le protocole d'échantillonnage des eaux souterraines est basé sur les recommandations des parties 3 et 11 de la norme ISO 5667 relatives à la conservation et la manipulation des échantillons d'eau (partie 3) et à l'échantillonnage des eaux souterraines (partie 11).

Il respecte en particulier les recommandations permettant d'assurer la représentativité de l'échantillonnage telle qu'elle est décrite dans la norme ISO 5667 partie 11 :

- la purge d'un volume d'eau égale à trois fois le volume compris dans le piézomètre (comprenant l'eau libre dans le tube ouvert et l'eau interstitielle du massif filtrant,
- la mesure de la conductivité et du pH de l'eau tout au long de la vidange.

Une exception est faite pour le prélèvement des échantillons destinés à la recherche de traces d'hydrocarbures qui est effectuée avant la purge et en surface par écrémage conformément à la norme ISO 5667.

Les analyses sont réalisées par notre laboratoire interne accrédité COFRAC depuis le 2 octobre 2008. Cette accréditation porte sur les analyses des matières en suspension, des métaux dissous (méthode ICP/AES) et du chrome VI.

1.2.2 Mesures des paramètres physico-chimiques in situ

Les mesures *in situ* sont réalisées à l'aide du multi-paramètre portable *HachQ40d* Cet appareil est composé d'une sonde de pH, d'une sonde pour la température et d'une sonde pour mesurer la conductivité.

Le pH est mesuré *in situ* selon la norme NF T90 008 et selon les recommandations précisées dans le mode d'emploi de l'appareil de mesure utilisé.

La conductivité est également mesurée *in situ* selon la procédure décrite dans le mode d'emploi de l'appareil de mesure utilisé.

1.2.3 Analyse des hydrocarbures

Les hydrocarbures sont mesurés par le laboratoire Vale Nouvelle-Calédonie selon la norme NF T 90 114. La méthode est nommée SPE02. La limite de détection est de 0.5 mg/kg. La méthode de détermination des hydrocarbures totaux par calcul, nommée SPE02CALC, est aussi appliquée en fonction du résultat de la Demande Chimique en Oxygène (SPE03). La limite de détection de cette méthode est de 10 mg/kg.

1.2.4 Analyse des paramètres physico-chimiques en solution

Les méthodes d'analyse pour les paramètres physico-chimiques réalisés sont décrites dans le tableau 5 cidessous.

Tableau 5 : Méthode d'analyse pour les paramètres physico-chimiques

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	MES	mg/L	5	GRV02	Dosage des matières en suspension (MES)	NF EN 872 Juin 2005
Interne	pН		-	PH01	Mesure du pH	NF T90-008
Interne	Conductivité	μS/cm	5	CDT01	Mesure de la conductivité	
Interne	CI	mg/L	0.1	ICS01		
Interne	NO3	mg/L	0.2	ICS01	Analyse de 4 ou 6 anions par	
Interne	SO4	mg/L	0.2	ICS01	chromatographie ionique	NF EN ISO
Interne	PO4	mg/L	0.2	ICS01	(chlorure, nitrate, phosphates, sulfate, fluorure et nitrate en	10304-1
Interne	F	mg/L	0.1	ICS01	plus si demandé)	
Interne	NO2	mg/L	0.1	ICS01		
Interne	CI	g/l	0.01	TIT10	Titration de l'ion chlorure par potentiométrie	
Interne	DCO	mg/L	10	SPE03	Analyse de la DCO	Méthode HACH 8000
Interne	TAC as CaCO3	mg/L	2	TIT11	Titration de l'alcalinité (TA et	
Interne	TA as CaCO3	mg/L	2	TIT11	TAC)	
Interne	CrVI	mg/L	0.01	SPE01	Analyse du chrome VI dissous dans les eaux naturelles et usées	NF T 90-043 Octobre 1988
Interne	Turbidité	NTU	0.1	TUR01	Mesure de la turbidité	
Interne	NH3	mg/L	0.5	SPE05	Dosage de l'ammonium dans les eaux	Méthode HACH 10205
Interne	СОТ	mg/L	0.3	SPE09	Dosage du Carbone Organique Total (COT) dans les eaux	Méthode HACH 10129
Interne	SiO2	mg/L	1 de Si	CAL02	Calcul de SiO2 à partir de Si mesuré par ICP02	
Interne	NT	mg/L	0.5	SPE08	Dosage de l'azote total dans les eaux	Méthode HACH 10071

1.2.5 Analyse des métaux

Les méthodes d'analyse des métaux dans les eaux douces sont indiquées dans le tableau 6.

Labo Analyse Unité LD Méthode Intitulé de la méthode Norme ICP02 Interne ΑI mg/L 0.1 Interne As mg/L 0.1 ICP02 Interne Ca mg/L 1 ICP02 Cd 0.01 ICP02 Interne mg/L Interne Co mg/L 0.01 ICP02 Interne Cr mg/L 0.01 ICP02 0.01 ICP02 Interne Cu mg/L Analyse d'une Interne Fe mg/L 0.1 ICP02 cinquantaine d'éléments Interne Κ mg/L 0.1 ICP02 dissous ou totaux (si ISO 11885 Interne mg/L 0.1 ICP02 demandé) dans les Mg Août 2007 solutions aqueuses Interne Mn mg/L 0.01 ICP02 faiblement concentrées Interne Na mg/L 1 ICP02 par ICP-AES Interne Ni mg/L 0.01 ICP02 Interne Р mg/L 0.1 ICP02 Interne Pb mg/L 0.01 ICP02 Interne S mg/L 1 ICP02 Interne Si mg/L 1 ICP02 Interne Sn mg/L 0.01 ICP02 ICP02 Interne Zn mg/L 0.1

Tableau 6 : Méthodes d'analyse pour les métaux

2. PRESENTATION DES RESULTATS

2.1. Rappel des valeurs réglementaires

2.1.1 Suivi de l'impact des activités du port sur les eaux souterraines

L'arrêté n°891-2007/PS du 13 juillet 2007 relatif aux installations portuaires impose le respect des seuils indiqués dans le tableau 7 pour la composition des eaux souterraines.

Tableau 7 : Valeurs réglementaires suivant l'arrêté n°891-2007/PS

Paramètre	Valeurs seuil		
pН	5,5 < x < 9,5		
Conductivité	-		
DCO	100 mg/L		
НТ	10 mg/L		

Les autres paramètres dont le suivi est imposé ne sont soumis à aucun seuil réglementaire de qualité des eaux souterraines.

2.1.2 Suivi de l'impact des activités du parc à résidus sur les eaux souterraines

L'arrêté n°1466-2008/PS du 9 octobre 2008 relatif à l'exploitation du parc à résidus de la Kwé Ouest impose le respect des seuils indiqués dans le tableau 8 pour la composition des eaux souterraines, ainsi que des

valeurs guides A3 inspiré de l'arrêté métropolitain relatif aux eaux brutes et aux eaux destinées à la consommation humaine du 11 janvier 2007.

Tableau 8 : Valeurs réglementaires suivant l'arrêté n°1466-2008/PS

Paramètre	Valeurs seuil		
Conductivité	1000 μS/cm		
Sulfates	150 mg/L		
Manganèse	1 mg/L		

Ces valeurs doivent être respectées en tout temps et a minima pour les piézomètres faisant partie du groupe B.

2.1.3 Suivi de l'impact des activités de l'unité de préparation du minerai (UPM) sur les eaux souterraines

Aucun seuil règlementaire de qualité des eaux souterraines n'est imposé dans l'arrêté N°1467-2008/PS du 9 octobre 2008 pour le suivi des impacts de l'activité de l'Unité de Préparation du Minerai.

2.1.4 Suivi de l'impact des activités de l'usine sur les eaux souterraines

Aucun seuil règlementaire de qualité des eaux souterraines n'est applicable pour le suivi des impacts de l'activité de l'usine.

2.2. Bilan des campagnes de mesure

Au mois de mai 2013, une panne survenue sur notre matériel de pompage n'a pas permis la réalisation de la deuxième et troisième campagne trimestrielle d'échantillonnage des eaux du port, de l'usine et de l'usine de Préparation du Minerai.

2.2.1 Données disponibles pour le Port

Le taux de données disponibles est présenté dans le tableau 9.

Tableau 9 : Données disponibles pour le suivi des eaux souterraines pour le Port

7-1, 7	-2, 7-3	Année 2013				Bilan	2013
Fréquence	Analyses	Février	Mai	Août	Novembre	Nombre d'analyses attendues	Nombre d'analyses réalisées
Trimestrielle	рН	3	0	0	3	12	6
Trimestrielle	Conductivité	3	0	0	3	12	6
Trimestrielle	DCO	3	0	0	3	12	6
Trimestrielle	HT	3	0	0	3	12	6
				Nombre	total d'analyse	es réalisées	24
		%	analyses réal	isées	50		

2.2.2 Données disponibles pour le parc à résidus de la Kué Ouest

Le suivi des piézomètres de la Kwé Ouest est effectué en majorité à fréquence semestrielle. La première campagne de suivi semestriel des eaux souterraines est réalisée au mois d'avril et la seconde campagne au mois de novembre.

Lors de ces deux campagnes, les piézomètres suivants n'ont pu être échantillonnés :

- WK6-11A, WK6-13(groupe A): le piézomètre WK6-11A est détérioré et le WK6-13 n'est pas accessible.
- **WKBH110A**, **WK6-10**, **WKBH109** (groupe B) : ces piézomètres ont été détériorés ou comblés par des sédiments.
- WKBH112A, WKBH115 (groupe C) : piézomètres comblés par des sédiments.
- WKBH115A (groupe C): piézomètre obstrué par un tube Waterra.

Certains paramètres ne sont pas mesurés ou sont calculés :

- **MES** : étant donné que la méthode de pompage génère la mise en suspension des sédiments, l'analyse des MES n'est pas réalisée pour les prélèvements d'eau souterraines car non représentative.
- Le **HCO3-** est obtenu par calcul à partir des mesures de TA et TAC.

Les taux de données disponibles sont présentés dans le tableau 10.

Tableau 10 : Données disponibles sur les piézomètres de la Kué Ouest à fréquence de suivi semestriel

Pour trois piézomètres définis (WKBH102, WKBH110 et WKBH113), un suivi est réalisé à fréquence mensuelle pour quelques paramètres et la conductivité est mesurée en continu. Le suivi de juin n'a pu être réalisé en raison de la panne survenue sur notre équipement de pompage.

	G	roupe A	
	Attendu	Réalisé	%
рН	20	16	80
cond	20	16	80
Al	20	16	80
As	20	16	80
Ca	20	16	80
CI	20	16	80
Co	20	16	80
Cr	20	16	80
Cu	20	16	80
Fe	20	16	80
НСО3-	20	16	80
К	20	16	80
Mg	20	16	80
Na	20	16	80
Ni	20	16	80
NO2	20	16	80
NO3	20	16	80
Pb	20	16	80
PO4	20	16	80
SiO2	20	16	80
SO4	20	16	80
Zn	20	16	80
Mn	20	16	80
F	20	16	80
MES	20	0	0
% d'ana	80		

Groupe B								
Attendu	Réalisé	%						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	22	78						
28	0	0						
réalisée	% d'analyses réalisées (hors 78 MES)							

Groupe C								
Attendu	Réalisé	%						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
26	22	85						
% d'an réalisée ME		85						

Groupe D							
Attendu	Réalisé	%					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	8	100					
8	0	0					
réalisée	% d'analyses réalisées (hors 100 MES)						

Tableau 11 : Données disponibles sur les trois piézomètres de la Kué Ouest à fréquence de suivi mensuelle

	WKBH102, 8H110		Année 2013						Bilan 2013						
Fréquence	Analyses	Janv	Fév	Mars	Avril	Mai	Juin	Juillet	Août	Sept	Oct	Nov	Déc	Nombre analyses attendues	Nombre analyses réalisées
Continu	Conductivité		Total semestre						26280	24733					
Mensuelle	Sulfates	3	3	3	3	3	0	0	3	3	3	3	3	36	30
Mensuelle	Magnésium	3	3	3	3	3	0	0	3	3	3	3	3	36	30
Mensuelle	Calcium	3	3	3	3	3	0	0	3	3	3	3	3	36	30
Mensuelle	Manganèse	3	3	3	0	3	0	0	3	3	3	3	3	36	30
											% de	mesu	ires co	ntinues de cond réalisées	94
												Nomb	re tota	d'analyses réalisées	120
													% ana	lvses réalisées	83

Les prélèvements de juin et juillet n'ont pu être réalisé en raison de la panne survenue sur le matériel de pompage.

Les périodes de lacunes dans les données continues sont à noter aux piézomètres :

- WKBH102 : du 31/01 au 03/03/2013
- WKBH110 : du 28/08 au 02/10/2014

Ces lacunes sont le résultat de dysfonctionnement des sondes de mesures.

2.2.3 Données disponibles pour l'Unité de Préparation du Minerai

Le suivi des eaux souterraines de l'UPM est réalisé à fréquence trimestrielle. Le taux de données disponibles est présenté dans le tableau 12.

Tableau 12 : Données disponibles pour le suivi des eaux souterraines de l'UPM

4-z1, 4-z2	, 4-z4, 4-z5		An	née 2013		Bilan premie	r semestre 2013
Fréquence	Analyses	Février	Mai	Aout	novembre	Nombre analyses attendues	Nombre analyses réalisés
Trimestrielle	рН	4	0	0	4	16	8
Trimestrielle	Conductivité	4	0	0	4	16	8
Trimestrielle	DCO	4	0	0	4	16	8
Trimestrielle	Sulfates	4	0	0	4	16	8
Trimestrielle	Chrome VI	4	0	0	4	16	8
Trimestrielle	Calcium	4	0	0	4	16	8
Trimestrielle	Potassium	4	0	0	4	16	8
Trimestrielle	Sodium	4	0	0	4	16	8
Trimestrielle	TA	4	0	0	4	16	8
Trimestrielle	TAC	4	0	0	4	16	8
Trimestrielle	Chlorures	4	0	0	4	16	8
Trimestrielle	HT	4	4	0	4	16	8
		•		Nombre	total d'analyses	réalisées	96
				%	analyses réalisé	es	50

2.2.4 Données disponibles pour l'Usine

Le suivi des eaux souterraines de l'Usine est réalisé à fréquence trimestrielle.

Le taux de données disponibles est présenté dans le tableau 13.

Tableau 13 : Données disponibles pour le suivi des eaux souterraines de l'Usine

6-1, 6-1a, 6-2, 6-2a, 6- 6-6, 6-7, 6-7a, 6-8, 6-8 14a		Année	Bilan 2013				
Fréquence	Analyses	ses Février Mai		Aout	Novembre	Nombre analyses attendues	Nombre analyses réalisées
Trimestrielle	рН	15	0	0	16	64	31
Trimestrielle	Conductivité	15	0	0	16	64	31
Trimestrielle	DCO	15	0	0	16	64	31
Trimestrielle	Sulfates	15	0	0	16	64	31
Trimestrielle	Chrome VI	15	0	0	16	64	31
Trimestrielle	Calcium	15	0	0	16	64	31
Trimestrielle	Potassium	15	0	0	16	64	31
Trimestrielle	Sodium	15	0	0	16	64	31
Trimestrielle	TA	15	0	0	16	64	31
Trimestrielle	TAC	15	0	0	16	64	31
Trimestrielle	Chlorures	15	0	0	16	64	31
Trimestrielle	HT	14	0	0	15	64	29
		Nombre total d'analyses réal					370
		% analyses réalisées					48

En février, les conditions particulières de sécurité dans la zone 245 (aval du bassin d'eau du procédé) n'ont pas permis l'échantillonnage au niveau du piézomètre 6-13.

L'échantillonnage au bailer pour l'analyse des HT n'a pu se faire au piézomètre 6-13A en 2013 à cause d'une déformation du tube PVC.

A cause d'une conductivité supérieure à 200 μ S/cm en 2013, la détermination des ions chlorures au piézomètre WK6-14A ne s'est pas faîte avec la méthode ICS01. Une titration par potentiométrie (TIT10) a dû être réalisée sur l'échantillon. Les limites de détection entre ces deux méthodes ne sont pas identiques : ICS01 (0,1 mg/l) et TIT10 (0,01 g/l).

2.3. Résultats

2.3.1 Suivi de l'impact des activités du Port sur les eaux souterraines

Les graphiques des figures 5 à 8 présentées ci-dessous indiquent les valeurs obtenues lors du suivi des eaux souterraines du port. Au cours de l'année 2013, aucune valeur de pH, conductivité, DCO, et hydrocarbures totaux ne dépassent les seuils réglementaires.

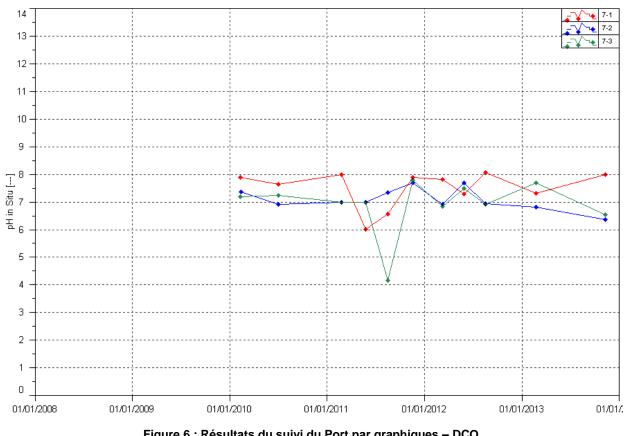
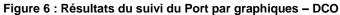



Figure 5 : Résultats du suivi du Port par graphiques - pH

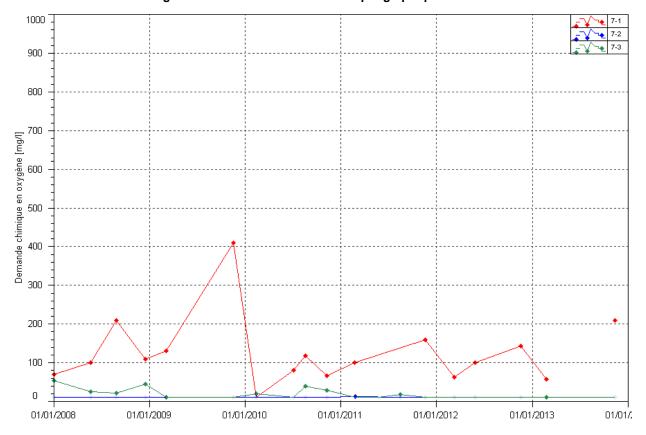


Figure 7 : Résultats du suivi du Port par graphiques - Conductivité

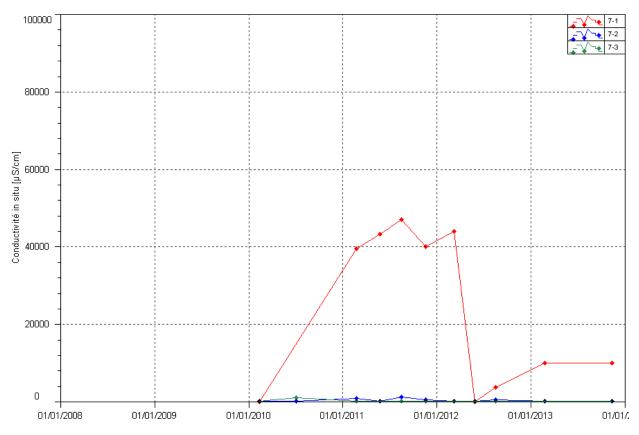
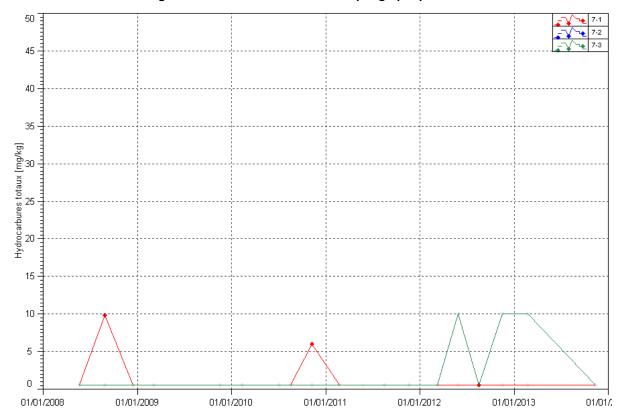
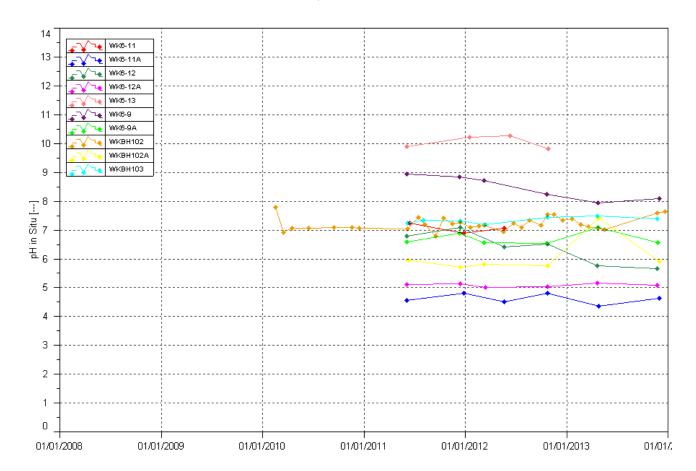
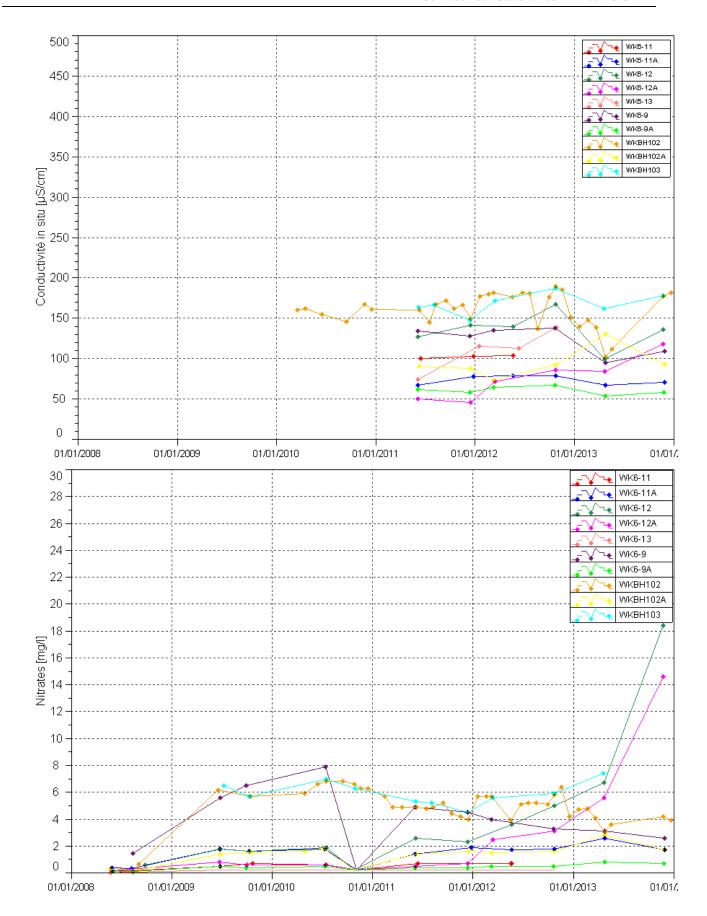



Figure 8 : Résultats du suivi du Port par graphiques - HT

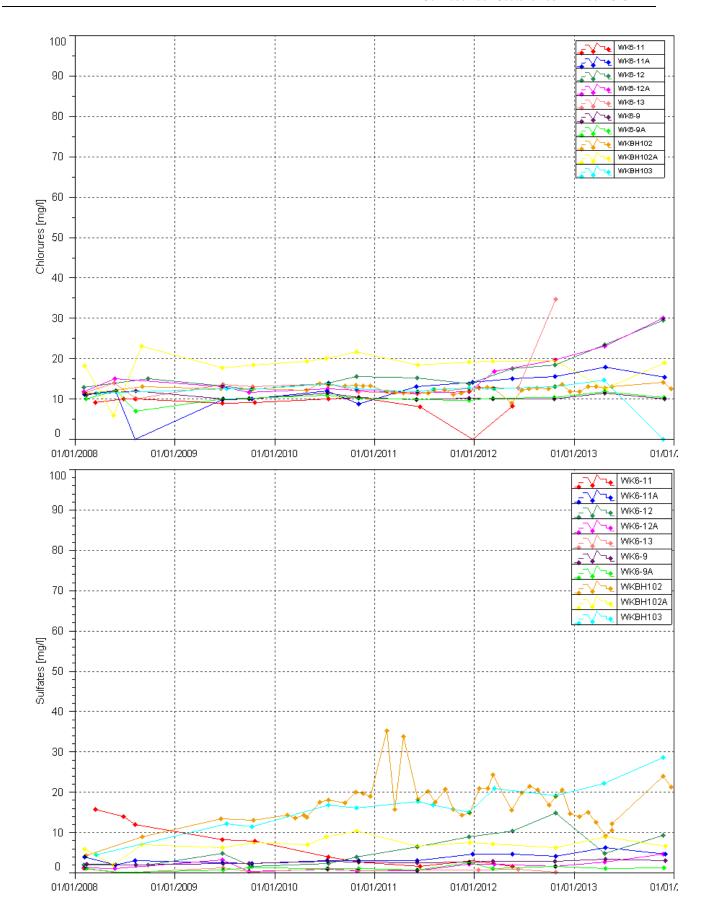
2.3.2 Suivi de l'impact des activités du parc à résidus sur les eaux souterraines de la Kwé Ouest

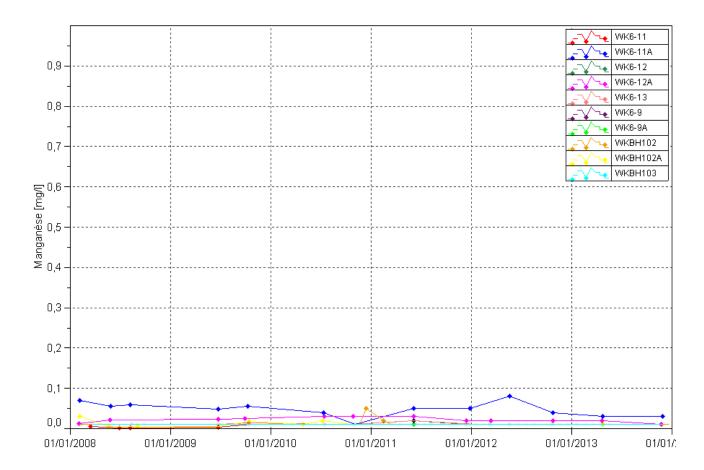

L'annexe I présente les statistiques effectuées sur les résultats de l'année 2013 en comparaison avec les années précédentes. L'annexe II présente les résultats sous forme graphique pour l'ensemble des paramètres exploitables, soit 80% des résultats supérieurs à limite de détection du laboratoire.

Les principales observations sont résumées ci-dessous ainsi que les figures correspondantes.


Groupe A:

- pH : compris en 4.3 et 8.1.
- conductivité : entre 53.7 et 326 μS/cm.
- **Nitrates** : le contrôle du mois de novembre montre des concentrations élevées en nitrates aux piézomètres WK6-12 et WK6-12A.
- **Sulfates** : la concentration maximale de 28.7 mg/L est mesurée au piézomètre WKBH103. Depuis 2008, on note légère tendance à l'augmentation au piézomètre WKBH103
- **Chlorures** : on constate une tendance légère à l'augmentation au niveau des piézomètres WK6-12 et WK6-12A
- Manganèse: seulement détecté au piézomètre WK6-11, WK6-12A, WKBH102 et WKBH102A. Les concentrations sont faibles.


Figure 9 : Résultats du suivi de la Kwe Ouest (groupe A) – pH, conductivité, nitrates, sulfates, chlorures, et manganèse



Groupe B:

- pH : compris entre 5.8 et 8.
- Conductivité : entre 65 et 215 μS/cm.
- **Sulfates**: Les résultats de 2013 révèlent une légère augmentation des concentrations au piézomètre WKBH109A. Les concentrations sont comprises entre 1.4 et 9.7 mg/L.
- Manganèse: En 2013, le manganèse est détecté ponctuellement et faiblement au piézomètre WKBH110.

WK6-10 WK6-10A 13 WKBH109 WKBH109A 12 WKBH110 WKBH110A WKBH110B WKBH111 10 WKBH117 WKBH117A 9 WKBH118A WKBH118B PH in Situ [--] 2 6 WKBH118 WKBH117B 5 3 2 0 01/01/. 01/01/2008 01/01/2009 01/01/2010 01/01/2011 01/01/2012 01/01/2013 500 WK6-10 WK6-10A WKBH109 450 WKBH109A WKBH110 WKBH110A 400 WKBH110B WKBH111 350 WKBH117 WKBH117A Conductivité in situ [µS/cm] WKBH118A 300 WKBH118B WKBH118 WKBH117B 200 150 100

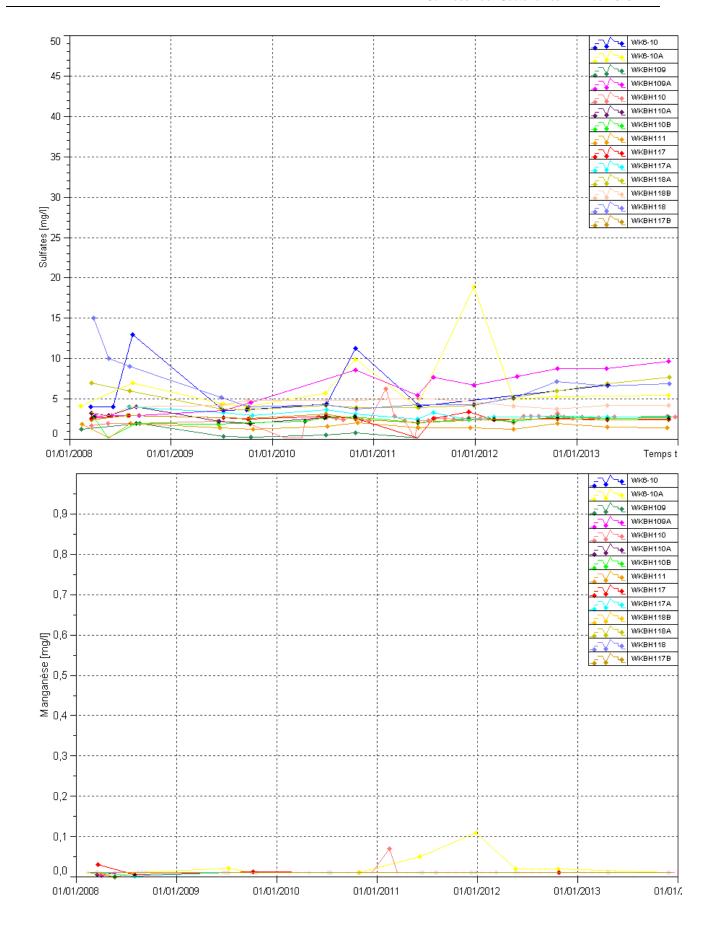
Figure 10 : Résultats du suivi de la Kwe Ouest (groupe B) – pH, conductivité, sulfates et manganèse

01/01/2

01/01/2013

01/01/2008

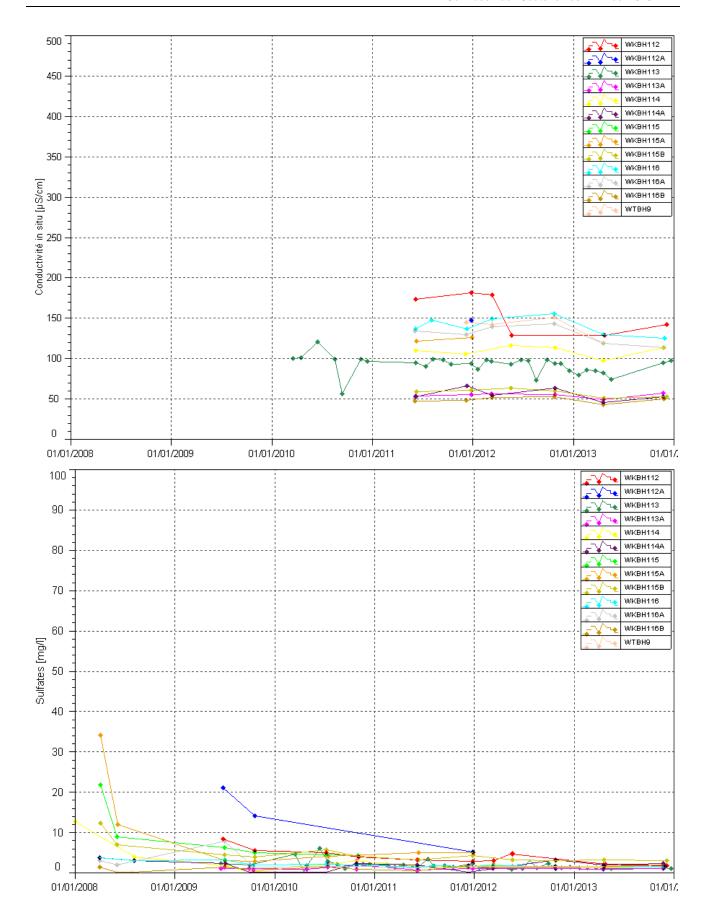
01/01/2009


01/01/2010

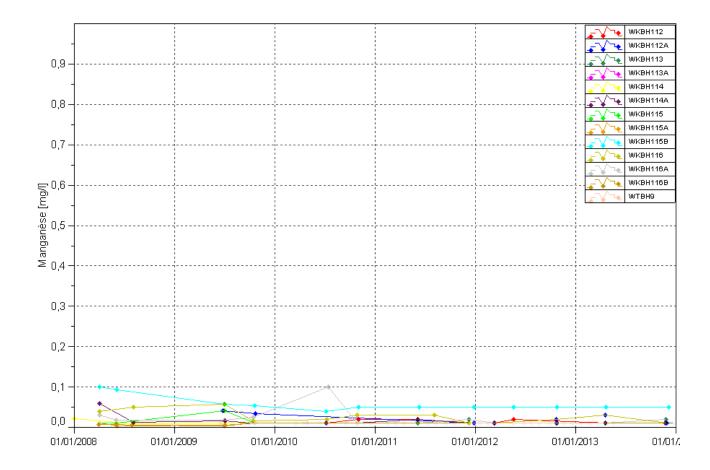
01/01/2011

01/01/2012

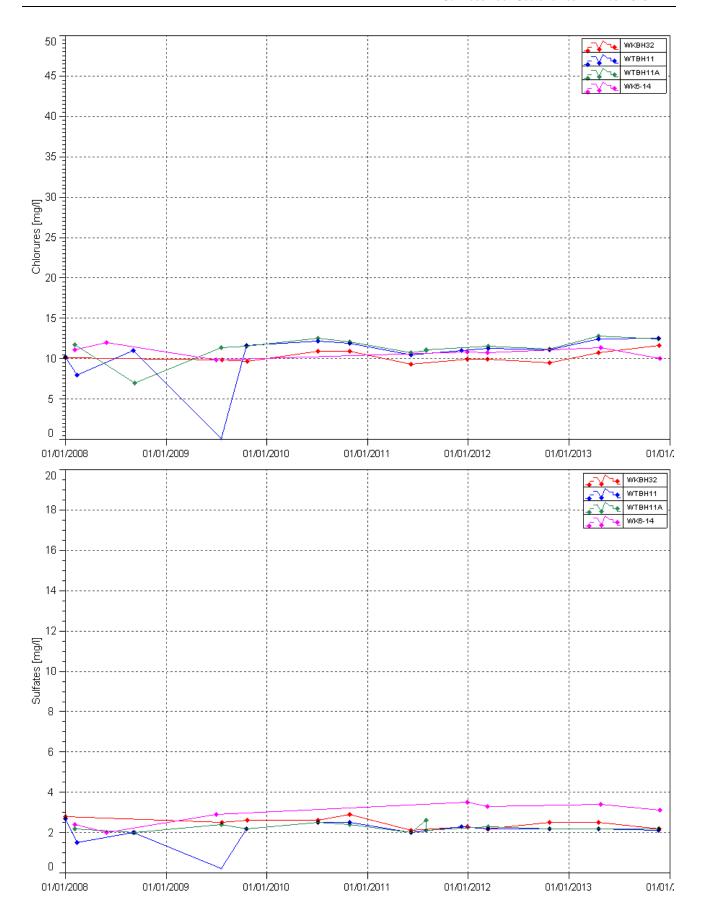
50


Groupe C:

- **pH**: compris entre 4.5 et 8.2.
- **Conductivité**: comprise entre 42.7 et 164 μS/cm.
- *Manganèse:* depuis 2011, le bruit de fond en manganèses est stable sur l'ensemble des stations. Les concentrations sont proches de 0,05 mg/L à la station WKBH115B..


Figure 11 : Résultats du suivi de la Kwe Ouest (groupe C) - pH, conductivité, sulfates et manganèse

Groupe D:


- **pH**: compris entre 6.9 et 9.8.
- **Conductivité**: comprise entre 103 et 160 μS/cm.
- **Chlorures**: les résultats de 2013 aux piézomètres WKBH32, WTBH11 et WTBH11A sont légèrement supérieures aux concentrations mesurées les années précédentes.
- **Sulfates**: les résultats démontrent une stabilité des concentrations pour l'ensemble des piézomètres.
- Manganèse : le manganèse n'est toujours pas détecté.

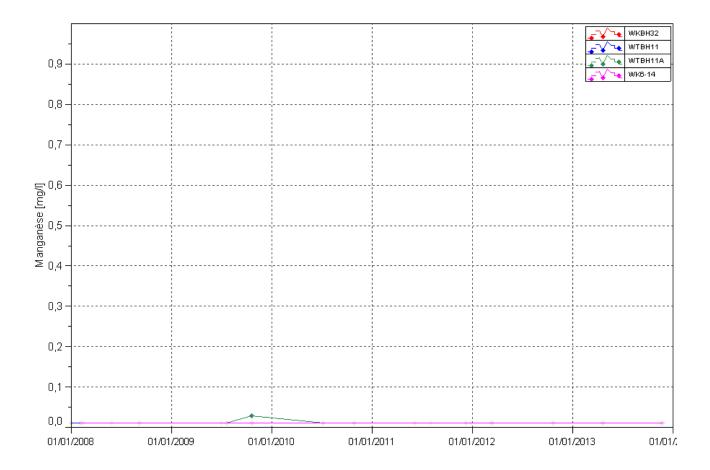
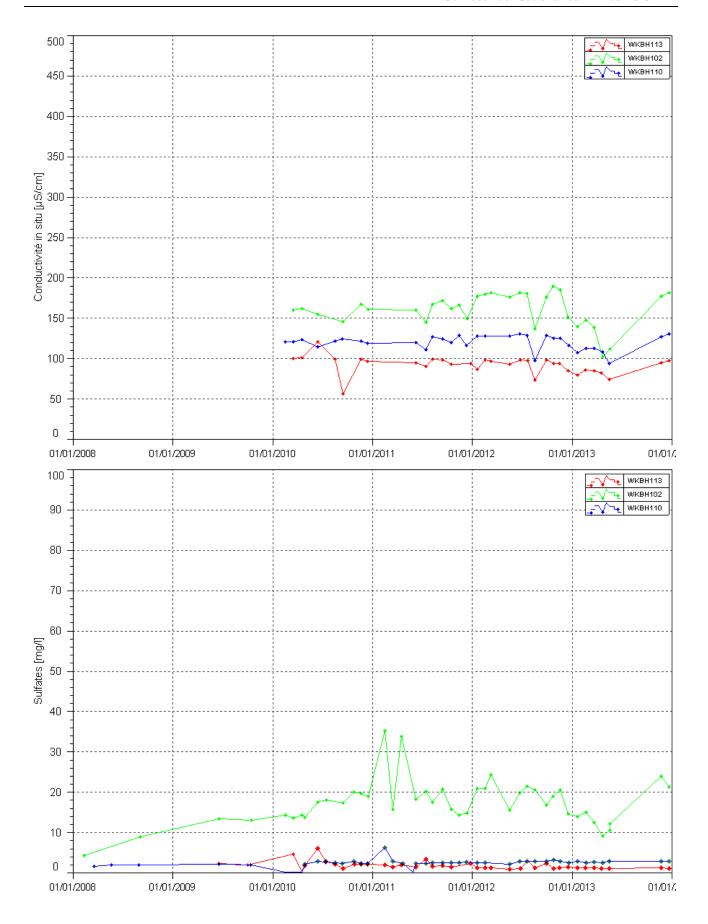

WTBH11 13 WTBH11A WK6-14 10 9 Hoh in Situ [--] bH in Situ 6 5 3 0 01/01/2009 01/01/2010 01/01/2013 01/01/2008 01/01/2011 01/01/2012 01/01/. 500 WKBH32 WTBH11 WTBH11A 450 WK6-14 400 350 Conductivité in situ [µS/cm] 300 250 200 150 100 50 0 01/01/2008 01/01/2009 01/01/2010 01/01/2011 01/01/2012 01/01/2013 01/01/.

Figure 12 : Résultats du suivi de la Kwe Ouest (groupe D) – pH, conductivite, chlorure, sulfate et manganèse

Mesures mensuelles: WKBH113, WKBH102, WKBH110


Conformément à l'arrêté ICPE, la qualité des eaux souterraines est suivie mensuellement et en continu pour la conductivité au niveau des forages suivant :

- WKBH102 qui se situe au pied de la berme, dans la zone d'influence prévisible du stockage des résidus (groupe A),
- WKBH110 qui se situe dans la zone tampon (groupe B), à proximité de la source WK20,
- WKBH113 qui se situe hors zone d'influence (groupe C), en bordure nord du bassin versant.

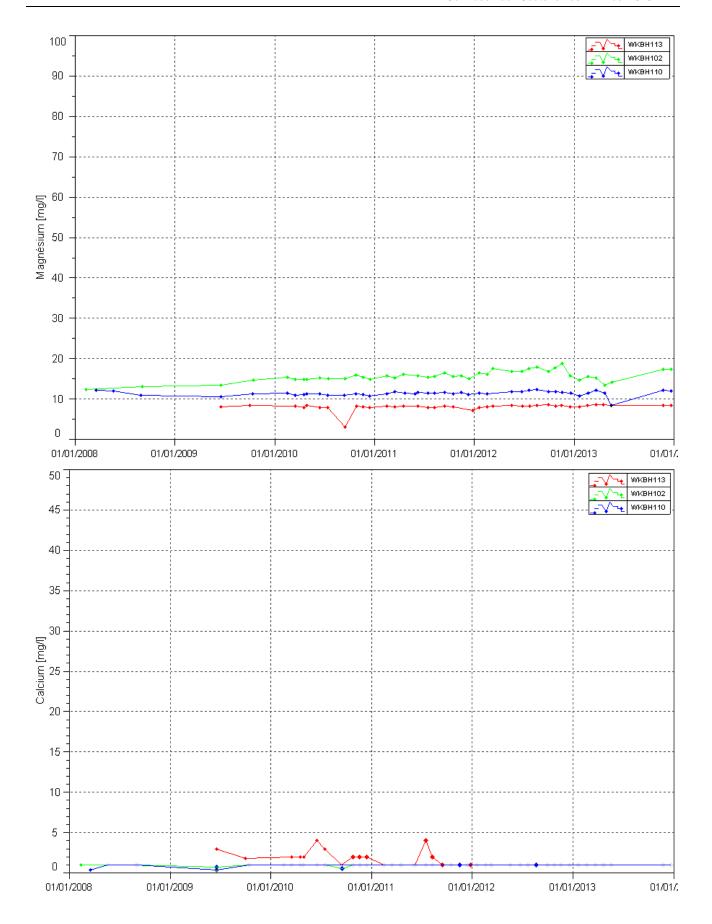

Les figures suivantes représentent les données acquises depuis 2008 pour les piézomètres WKBH102, WKBH110, WKBH113 pour les paramètres réglementaires.

Figure 13 : Résultats du suivi piézométrique mensuel de la Kwe Ouest - conductivité, sulfate, magnésium, calcium et manganèse



Comme mentionné précédemment, les prélèvements de juin et juillet n'ont pas été réalisé suite à la panne survenue sur notre matériel de pompage.

Dans l'attente de la mise à disposition du nouvel équipement en commande, les prélèvements d'août à octobre inclus ont été réalisés manuellement. Or les résultats d'analyse de ces prélèvements montrent des variations de concentrations qui ne sont pas représentatives de la qualité physico-chimique des eaux souterraines. En effet, la condition de purge de trois fois le volume d'eau présent dans le piézomètre avant le prélèvement de l'échantillon n'a pu être appliqué. L'échantillon est prélevé au bout de 25L d'eau purgé.

A partir de novembre, les résultats montrent des concentrations identiques aux années précédentes.

Mesures de conductivité en continu : WKBH113, WKBH102, WKBH110

Ces piézomètres sont équipés depuis le 17 juin 2009 de sondes de type Aqua Troll 200 qui enregistre les variations de conductivité et de température.

Deux périodes de lacunes sont observées dans les enregistrements :

- Au WKBH102 du 13/02 au 03/03/2013 : une erreur de programmation est à l'origine de cette lacune,
- Au WKBH110 du 28/08 au 02/10/2013 : à cause de disfonctionnements répétitifs, la sonde de mesure a dû être changée à deux reprises au niveau de ce piézomètre.

Comme représenté en figure 14, les enregistrements de conductivité des ouvrages WKBH102, WKBH110 et WKBH113 sont stables sur la période d'observation.

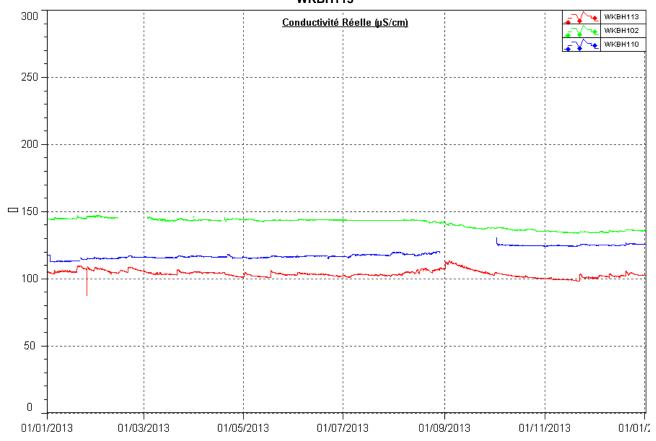


Figure 14 : Suivi des mesures en continu : WKBH102, WKBH110, WKBH113

D'après le tableau 15 ci-dessous, les résultats enregistrés aux piézomètres WKBH102 et WKBH110 sont comparables aux mesures réalisées en laboratoire. En revanche, les mesures au niveau du piézomètre WKBH113 présentent des écarts plus importants. Une dérive de la sonde est sûrement à l'origine de ce décalage. Une calibration de la sonde sera programmée prochainement afin de corriger cette dérive.

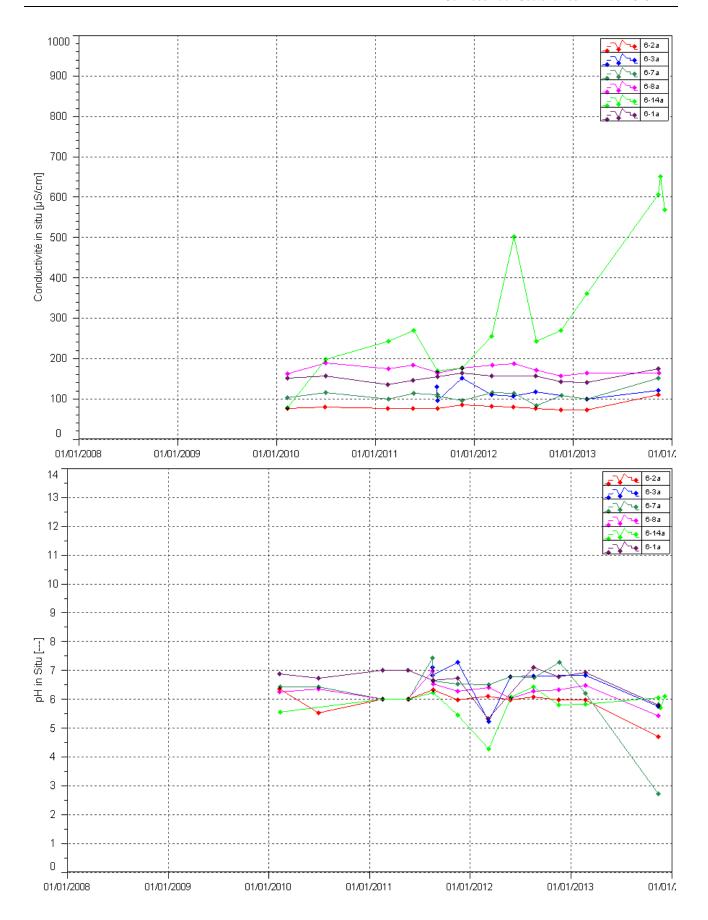
Tableau 15 : Comparaison des mesures de conductivité manuelles et in situ

Ouvrages	Moyenne des mesures réalisées en laboratoire pour la période (µS/cm)	Mesure moyenne de la sonde pour la période (μS/cm)
WKBH102	1428	140.8
WKBH110	113.2	118.4
WKBH113	85.5	103.5

2.3.3 Suivi de l'impact des activités de l'Usine sur les eaux souterraines

Les résultats du suivi des eaux souterraines sur le site de l'usine sont présentés graphiquement dans les figures ci-après suivant le type d'installation du piézomètre :

- Piézomètres courts : suivi de la nappe contenue dans la latérite,
- Piézomètres longs : suivi de la nappe contenue dans la saprolite.


En annexe III, l'exploitation statistique des résultats de 2013 est comparée aux années précédentes.

Piézomètres courts :

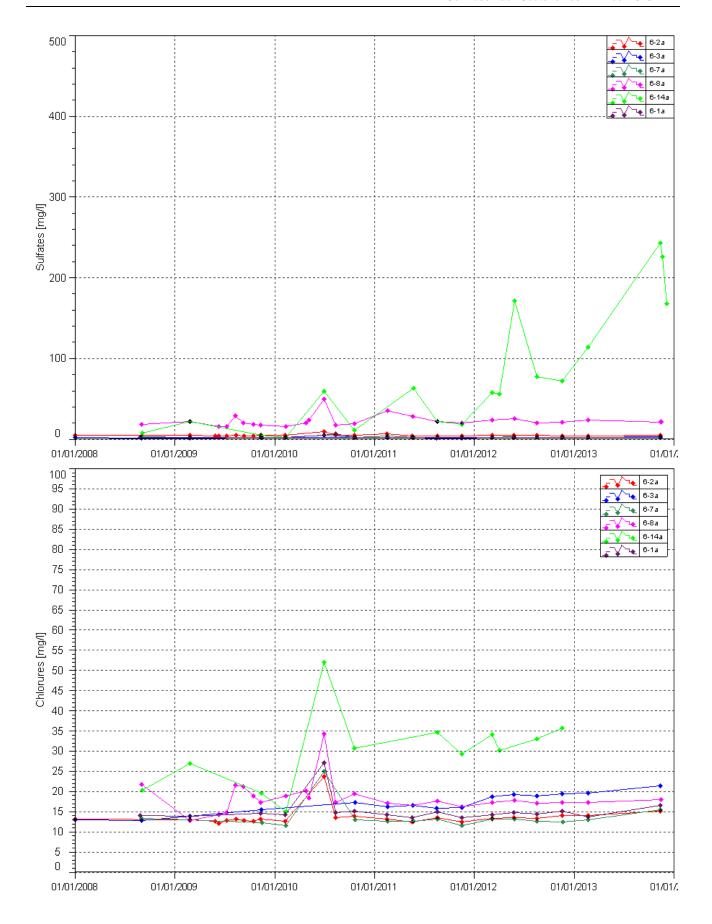
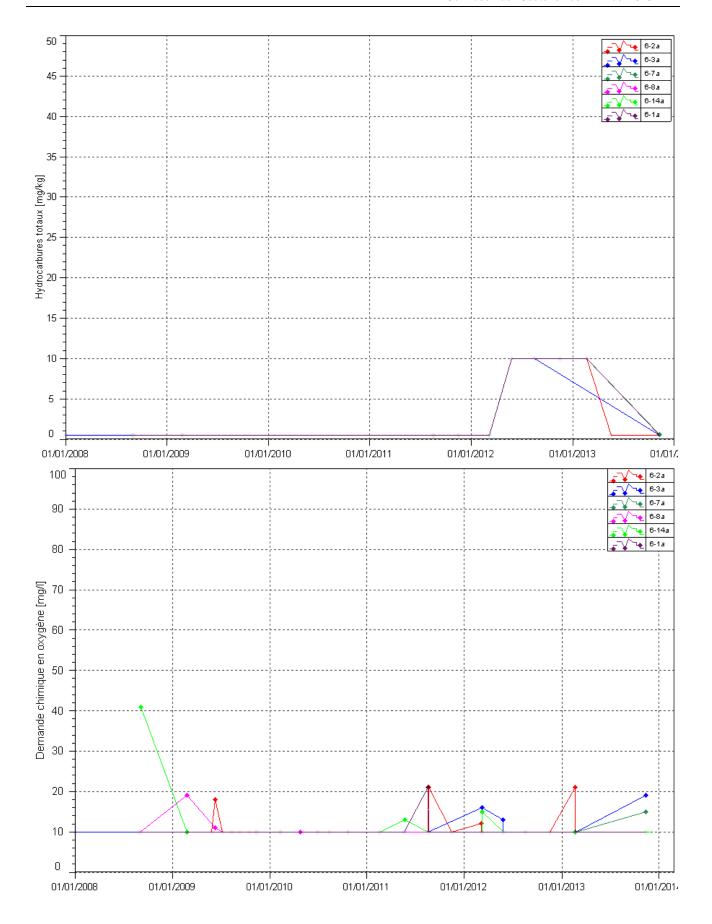
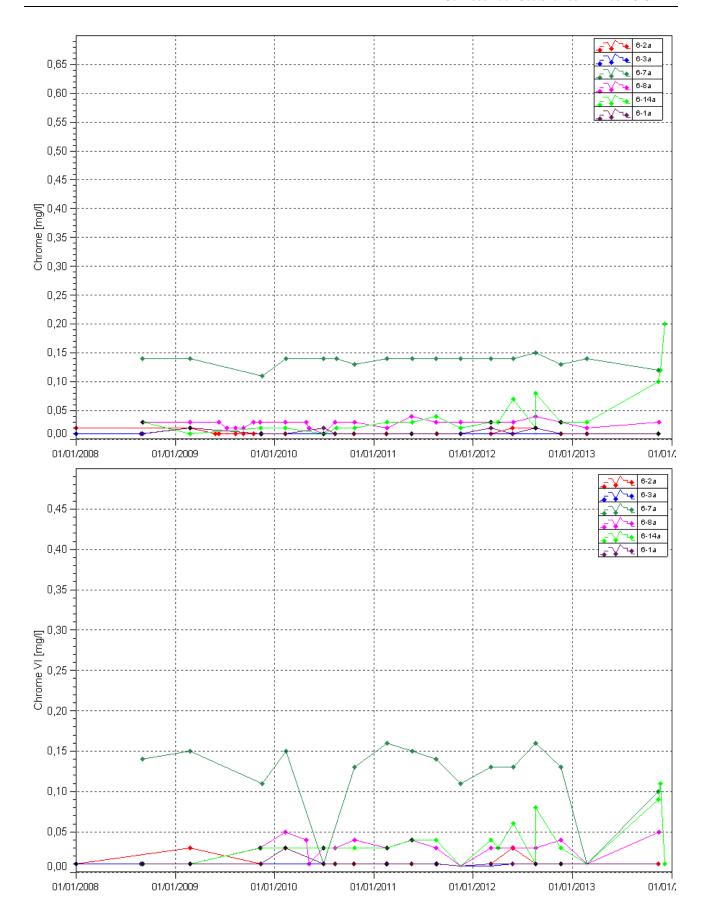
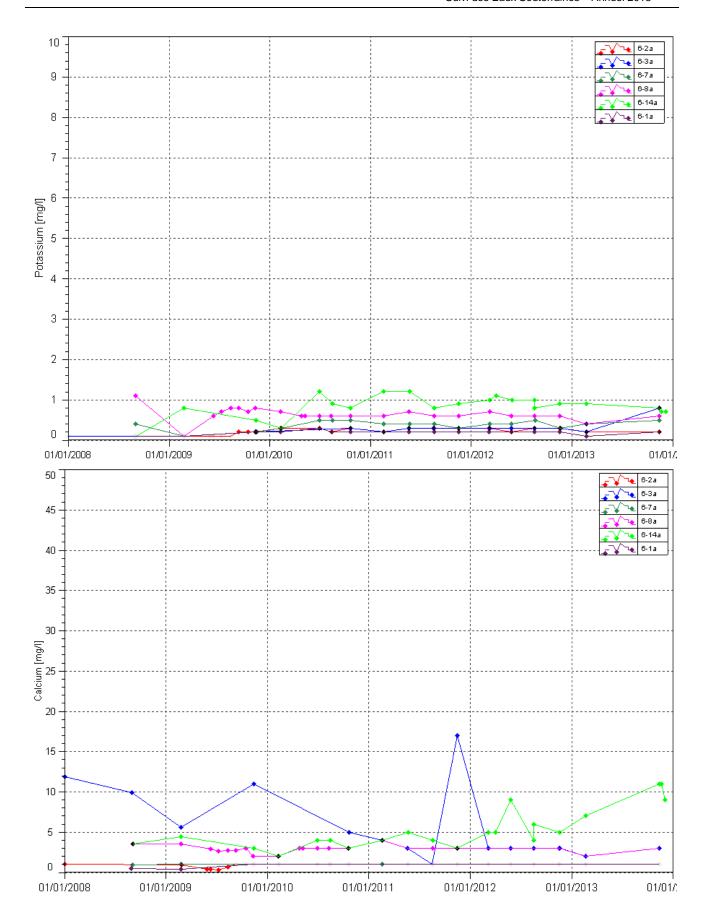
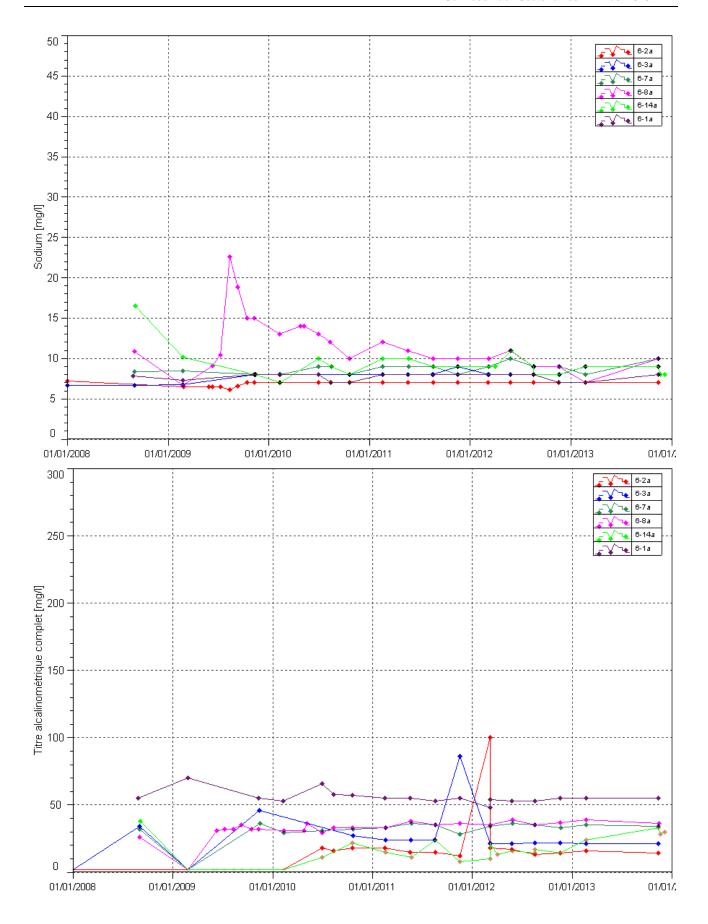

- **pH**: compris entre 2.7 et 6.9. Cette valeur minimale est mesurée au piézomètre 6-7A lors du contrôle de décembre. A cette station, les mesures de pH de 2013 révèlent une diminution du pH.
- Conductivité: compris entre 71.9 et 651 μS/cm. La valeur maximale est observée au piézomètre WK6-14A le 12 novembre et est supérieure au maximum relevé au cours des années précédentes. On note donc une tendance à l'augmentation de la conductivité en 2013. Les valeurs de conductivité relevées au niveau des autres stations montrent une stabilité dans les résultats.
- Chlorures et sulfates: pour rappel, la détermination des ions chlorures au piézomètre WK6-14A est réalisée par une méthode de titration par potentiométrie en 2013. Cette méthode n'a pas les mêmes ordres de grandeur de limite de détection que la méthode ICS01, couramment utilisée. En 2013, les concentrations en chlorures obtenues sont équivalentes à 0.04 g/l, donc comparables à 2012 pour ce piézomètre.
 - Un maximum de 243 mg/l en sulfates est mesuré à 6-14A le 12 novembre 2013. Après cette date, les concentrations en sulfates au niveau de cette station diminuent.
 - Les résultats du second semestre confirment une stabilisation des concentrations pour ces deux paramètres depuis janvier 2011 dans les eaux souterraines des horizons latéritiques au niveau des autres stations.
- DCO et hydrocarbures: les hydrocarbures sont détectés faiblement soit 0.6 mg/l le 10 novembre au piézomètre 6-7A. Cette station est située en amont du site industriel, en dehors de toute activité humaine et industrielle. Une contamination lors de l'échantillonnage au bailer est probablement à l'origine de cette mesure. Pour rappel, la détermination des hydrocarbures est réalisée suivant deux méthodes d'analyse en fonction du résultat de la demande chimique en oxygène. C'est deux méthode ont des limites de détection différentes.
- Chrome et chrome VI: les concentrations en chrome montrent une tendance à l'augmentation à la station 6-14A en 2013. La teneur maximale en chrome y est mesurée le 4 décembre 2013, soit 0.2 mg/l. On peut noter aussi des concentrations en chrome VI plus élevées que les années précédentes au piézomètre WK6-14A. Les teneurs pour ces deux paramètres sont comparables aux années précédentes dans les eaux souterraines des horizons latéritiques au niveau des autres stations.
- **Calcium**: le dernier contrôle de 2013 au piézomètre WK6-14A ne semble pas confirmer la tendance à l'augmentation observée au premier semestre.
- **Sodium, potassium et TAC**: Les résultats observés en 2013 montrent une stabilité des concentrations en sodium dans les horizons latéritiques.

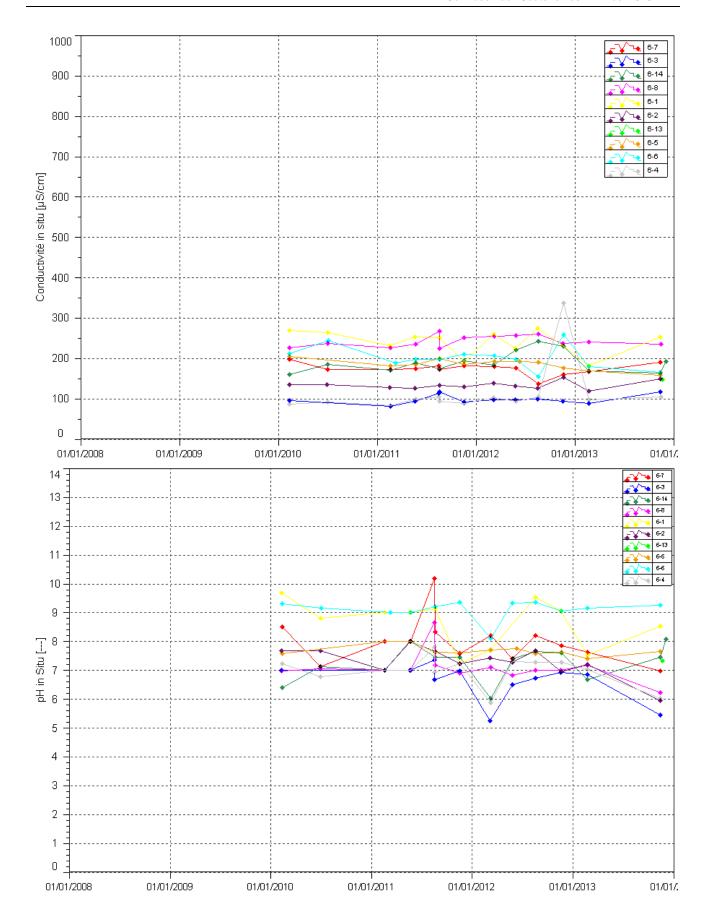
Figure 15 : Résultats du suivi piézométrique dans les horizons latéritiques sur le secteur de l'Usine- conductivité, pH, sulfate, chlorure, HT, DCO, chrome, chrome VI, calcium, sodium, potassium et TAC.











Piézomètres longs

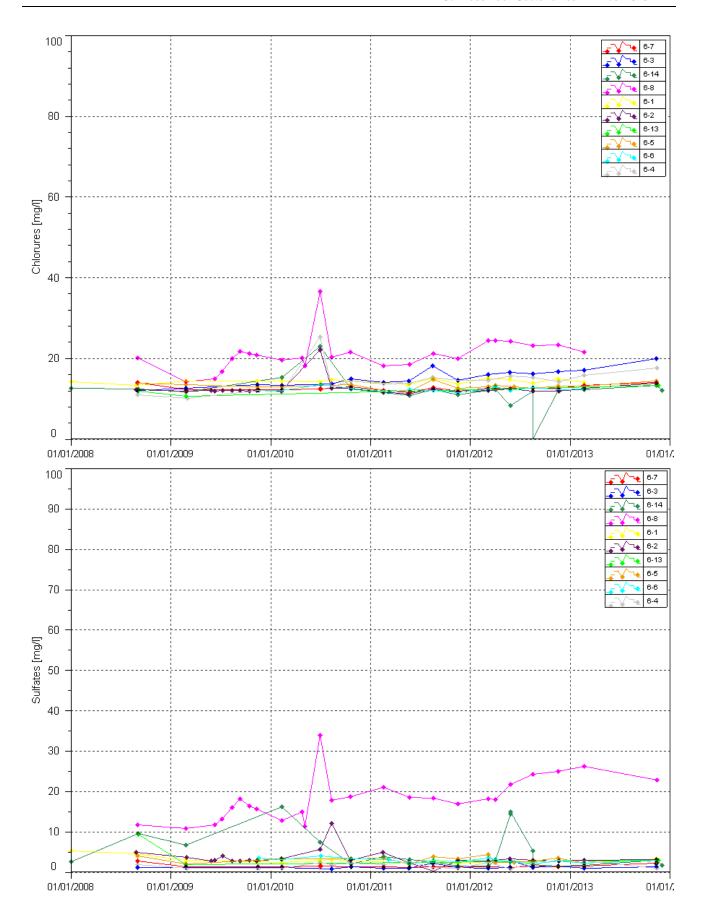
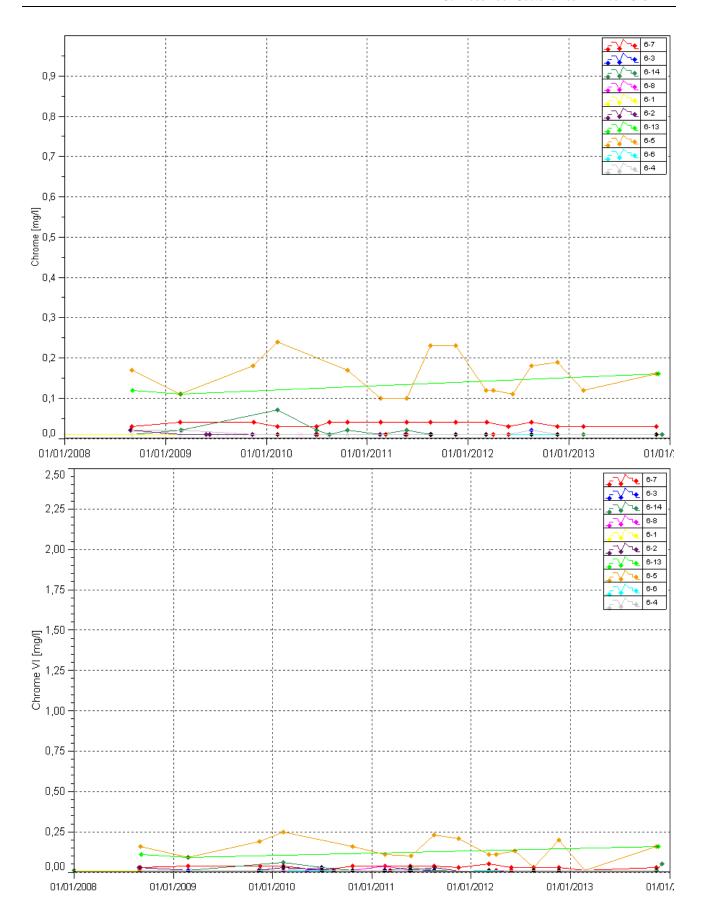
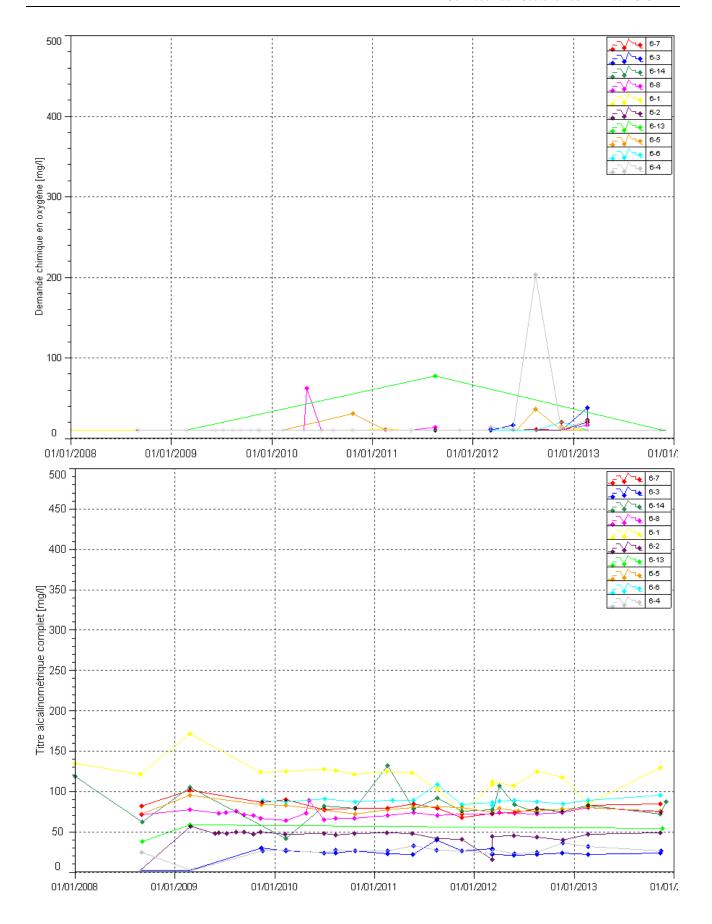
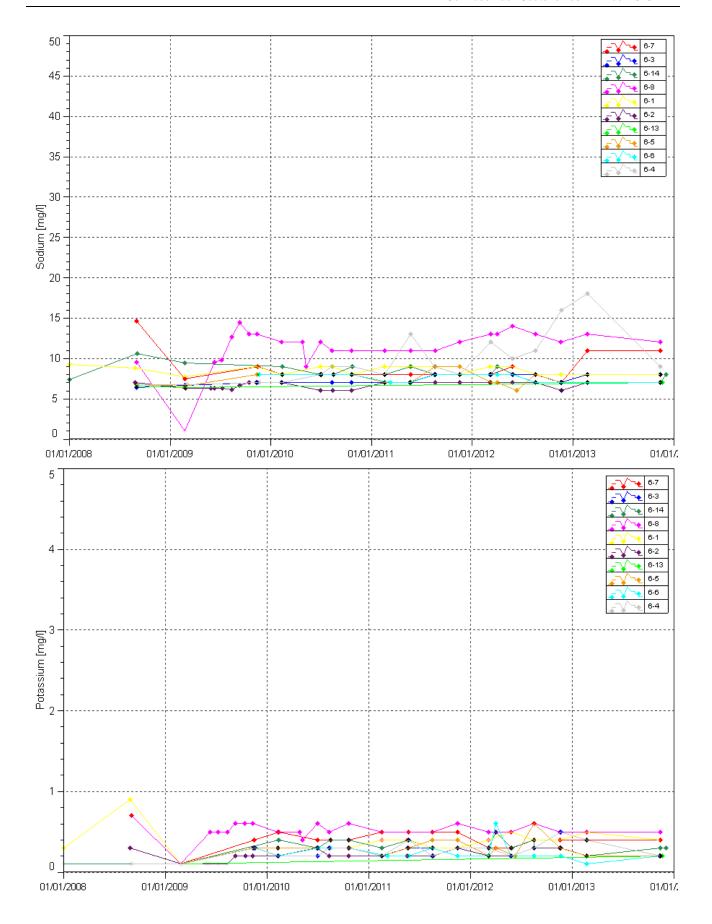
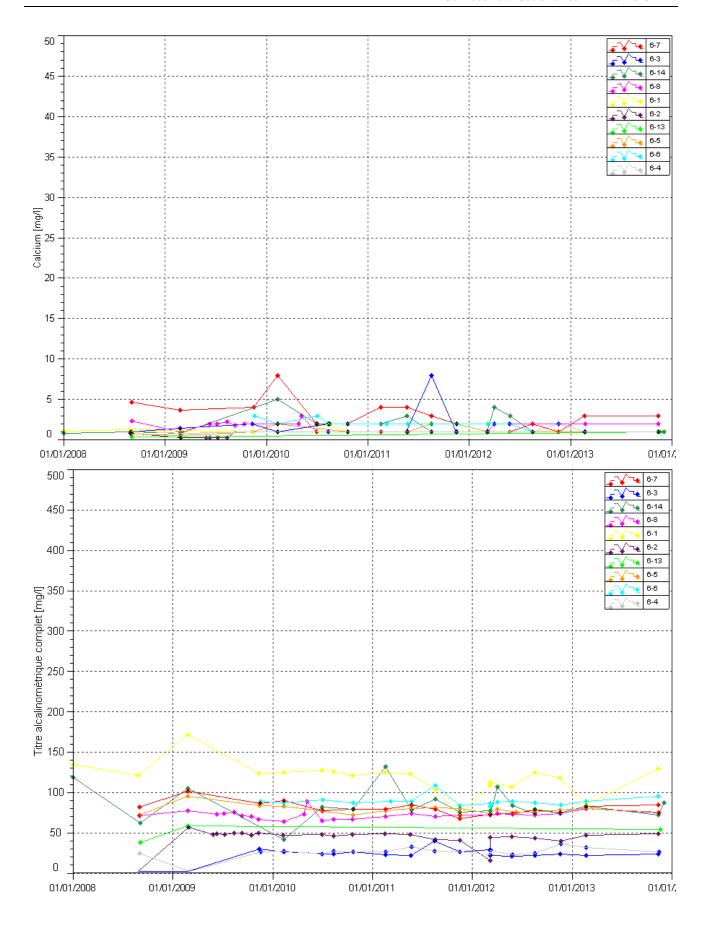

- **pH**: compris entre 5.4 et 9.2
- **Conductivité**: compris entre 88.9 et 254 μS/cm. La valeur élevée de conductivité est observée au piézomètre 6-1.
- Chlorures et sulfates: comme mentionné précédemment, la détermination des chlorures aux stations 6-1, 6-8 et 6-6 s'est effectuée par la méthode de titration par potentiométrie. Les concentrations obtenues au niveau de 3 stations restent du même ordre que les années précédentes. Les teneurs en sulfates les plus élevées sont toujours mesurées au piézomètre 6-8 mais les valeurs restent comparables aux années précédentes.
- **DCO et hydrocarbures**: les hydrocarbures sont détectés dans les eaux souterraines des horizons saprolitiques au niveau des piézomètres 6-4, 6-3 et 6-7. Comme notifié pour le piézomètre 6-7A, la détection des hydrocarbures au piézomètre 6-7 est probablement le résultat d'une contamination dans la chaîne d'échantillonnage car cette station est située hors zone d'activité anthropique.
- Chrome et chrome VI: depuis 2008, les teneurs en chrome au piézomètre 6-5 sont variables et les résultats de 2013 restent du même ordre que les années précédentes. Dans les eaux souterraines des horizons saprolitiques, les concentrations en chrome sont stables depuis 2008.
- **Sodium**: la tendance à l'augmentation amorcée en 2012 n'est pas poursuivie en 2013. En effet, le contrôle de décembre indique une concentration comparable aux années précédentes.
- Calcium, Potassium et TAC: les teneurs mesurées en 2013 pour ces trois éléments sont du même ordre que les années précédentes. Aucune évolution particulière n'est à constater.

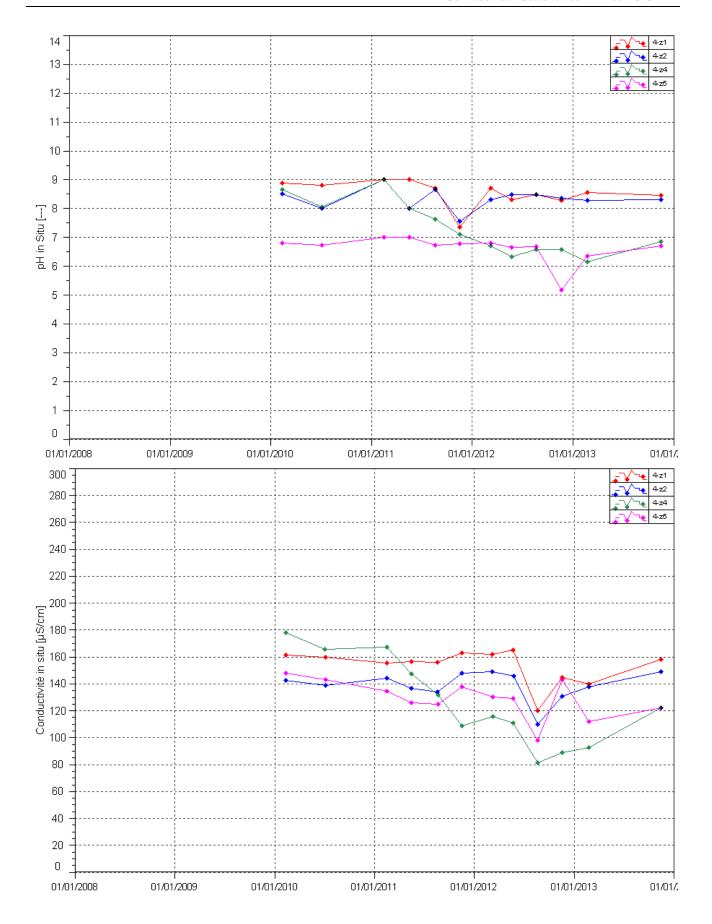
Figure 16 : Résultats du suivi piézométrique dans les horizons saprolitiques sur le secteur de l'Usine-conductivité, pH, sulfate, chlorure, HT, DCO, chrome, chrome VI, calcium, sodium, potassium et TAC.



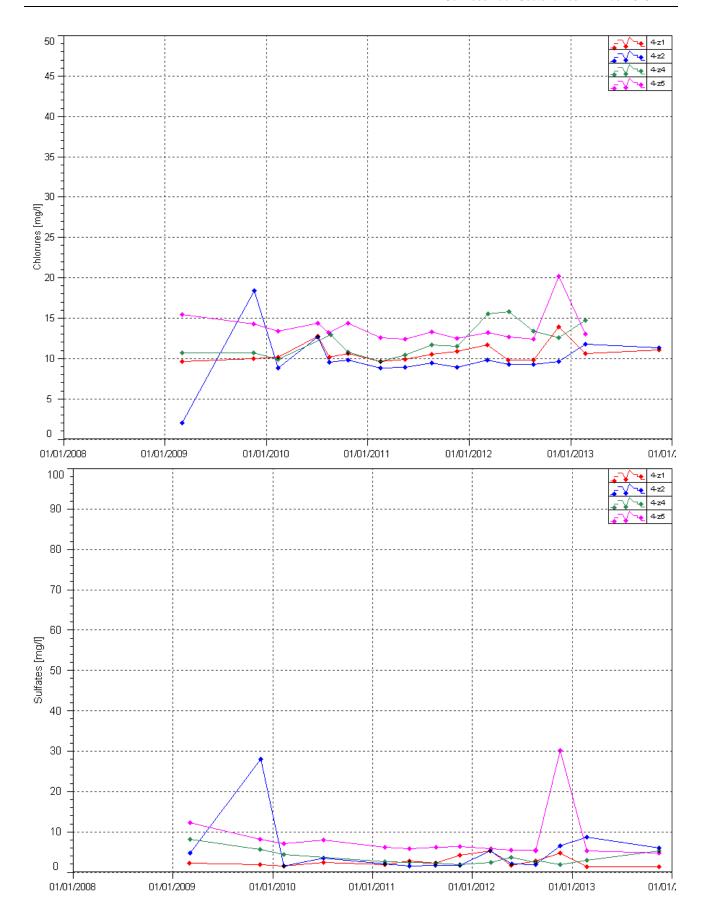




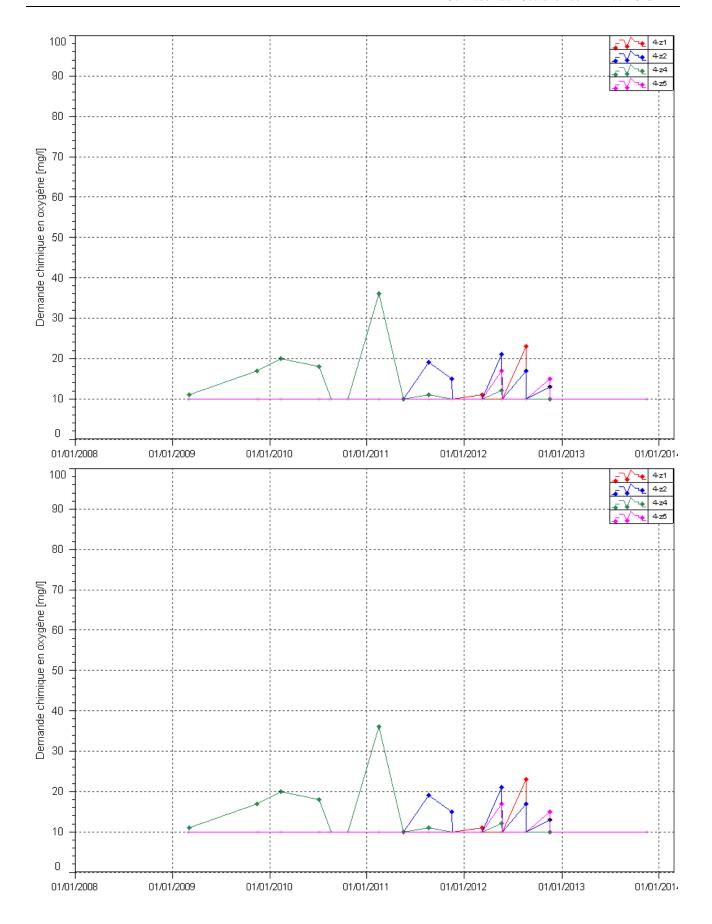


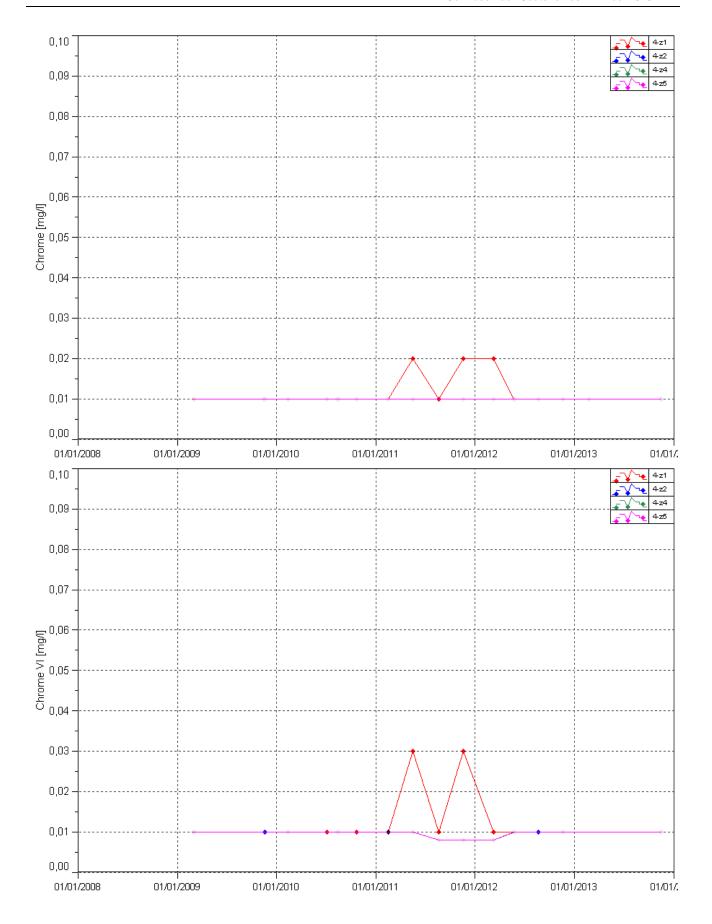


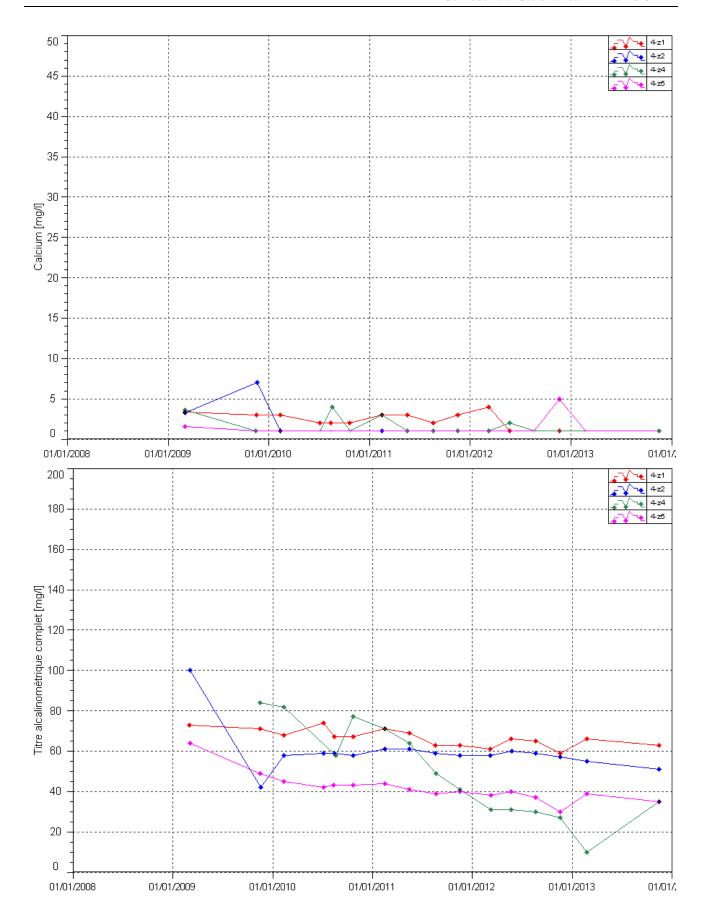
2.3.4 Suivi de l'impact des activités de l'UPM sur les eaux souterraines

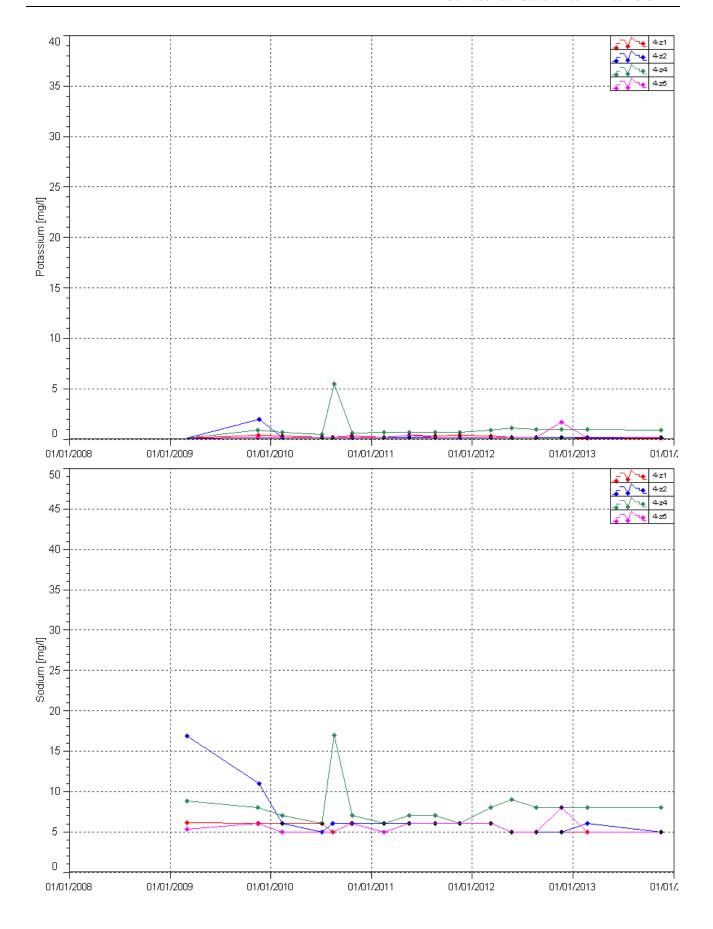

En annexe IV, l'exploitation statistique des résultats de 2013 est comparée aux années précédentes pour les eaux souterraines du secteur de l'Usine de Préparation du Minerai (UPM). Les figures suivantes présentent les résultats du suivi des eaux souterraines sur le site de l'UPM.

- **pH**: compris entre 6.1 et 8.5.
- conductivité : compris entre 92.4 et 158 μS/cm.
- **Chlorures et sulfates**: les concentrations en chlorures du mois de novembre aux piézomètres 4-z4 et 4-z5 sont obtenues à partir de la méthode de titration par potentiométrie (TIT10). Les teneurs mesurées sont équivalentes à 0.01 g/L, donc elles restent du même ordre que les années précédentes.
- DCO et Hydrocarbures : aucune trace d'hydrocarbures n'est détectée dans les eaux souterraines sur le site de l'UPM.
- Chrome et Chrome VI: le chrome VI n'est pas détecté dans les eaux souterraines de l'UPM.
- Calcium, TAC, Potassium et Sodium : Aucune évolution particulière n'est observée.









3. ANALYSE DES RESULTATS ET INTERPRETATION

3.1. Suivi de l'impact des activités du port sur les eaux souterraines

Les résultats du suivi de 2013 n'indiquent pas d'évolution particulière.

Comme les années précédentes, les valeurs élevées en DCO et conductivité au piézomètre 7-1 sont dus aux apports d'eau de mer et ne sont donc pas indicatrices d'une modification de la qualité des eaux induite par les activités du port.

Les résultats du suivi des eaux souterraines n'indiquent pas de contamination par les hydrocarbures.

Les activités portuaires et plus particulièrement les stockages de fioul lourd et de gasoil n'ont pas eu d'impact sur les eaux souterraines.

3.2. Suivi de l'impact des activités du parc à résidus sur les eaux souterraines

Les résultats des suivis réalisés aux piézomètres WKBH102, WKBH110 et WKBH113 en 2013 ne révèlent aucune évolution particulière. Les teneurs mesurées restent du même ordre que les années précédentes, à l'exception de la période d'août à octobre où le pompage s'est fait manuellement en raison d'une panne survenue sur le matériel de pompage.

La composition des eaux est en accord avec la nature des terrains traversés (massif de péridodite : silicate de magnésium et fer).

Les résultats de suivi des eaux souterraines au pied de la berme (groupe A) révèlent une tendance à l'augmentation des concentrations en nitrates et chlorures au niveau des piézomètres WK6-12 et WK6-12A et en sulfates au niveau du piézomètre WKBH103. A titre indicatif, ces concentrations relevées sont bien inférieures aux seuils mentionnés dans la norme de potabilité des eaux, soit 150 mg/L pour les sulfates, 200 mg/L pour les chlorures et 50 mg/L pour les nitrates. Ces tendances restent toutefois à surveiller lors du prochain bilan semestriel.

Les résultats du suivi de la qualité des eaux souterraines dans zone tampon, près de la rivière Kwé Ouest et dans les vallées adjacentes ne montrent aucune tendance particulière.

Comme les années précédentes, le **manganèse** est faiblement détecté dans les eaux souterraines de la zone d'alerte, de la zone tampon et près de la rivière Kue Ouest. Les concentrations sont largement inférieures au seuil réglementaire de 1 mg/L mentionné dans l'arrêté. Signalons tout de même que des concentrations de 0,05 mg/L, correspondant à la limite règlementaires pour les eaux de surface de la Kwé sont régulièrement mesurées depuis 2008.

Les concentrations en sulfates montrent encore une légère tendance à l'augmentation sur certains points de suivi. Les maximum enregistrés sont de 30 mg/L dans le groupe A et 10 mg/L dans le groupe B

L'ensemble des autres résultats sont conformes aux recommandations de l'arrêté N° 1466-2008/PS du 9 octobre 2008.

3.3. Suivi de l'impact des activités de l'usine sur les eaux souterraines

Comme reporté dans les précédents bilans, on relève des variations plus importantes dans les eaux souterraines des horizons latéritiques au niveau du piézomètre 6-14A. En effet, on mesure des valeurs maximales en novembre 2013 en conductivité et sulfates soit 651 µS/cm et 243 mg/l. Ce piézomètre est situé entre le secteur auxiliaire et la raffinerie (270).

Dans la nappe profonde, située dans les horizons saprolitiques, les résultats de 2013 montrent des concentrations comparables aux années précédentes.

Les résultats des paramètres analysés montrent une qualité satisfaisante des eaux souterraines au niveau de l'usine.

3.4. Suivi de l'impact des activités de l'UPM sur les eaux souterraines

Les analyses des piézomètres règlementaires ne présentent pas de valeur indicatrice de pollution.

Les activités, tel que le trafic et le lavage des engins lourd, la station de distribution de carburant et d'autres activités associées à des huiles et hydrocarbures n'ont pas eu d'impact sur les eaux souterraines.

4. BILAN DES NON-CONFORMITES

Description des non-conformités et analyse des causes :

- Suivi des activités du port sur les eaux souterraines : aucune non-conformité n'est à reporter.
- Suivi des activités du parc à résidus sur les eaux souterraines : aucune non-conformité n'est à reporter.
- Suivi des impacts des activités de l'usine sur les eaux souterraines : aucune non-conformité n'est à reporter.
- Mesures correctives immédiates : aucune mesure corrective immédiate n'a été engagée.
- Plan d'action des mesures correctives : aucun plan d'action des mesures correctives n'a été mis en place.
- Suivi des actions correctives : sans objet.

CONCLUSION

Le suivi des stations selon les paramètres et les fréquences règlementaire n'a pu être réalisé en quasi-totalité. Les suivis non effectués sont majoritairement dus à la dégradation des installations de suivi et à l'indisponibilité de nos équipements.

L'analyse des résultats du suivi des eaux souterraines n'a pas révélé de valeurs supérieures aux seuils réglementaires ayant pour origine les activités des installations de Vale Nouvelle-Calédonie. Aucune non-conformité n'est à reporter pour le suivi des eaux souterraines en 2013.

Toutefois, on note des tendances à l'augmentation en 2013 au niveau de plusieurs piézomètres. Ces tendances seront à surveiller lors du prochain bilan semestriel :

- Sur le secteur de l'usine : augmentation de la conductivité et des concentrations en sulfates dans les eaux souterraines des horizons latéritiques au niveau du piézomètre 6-14a. Cette station est située entre le secteur auxiliaire et la raffinerie (270).
- Sur le secteur de la Kwe Ouest : depuis 2012, on observe une augmentation des concentrations en nitrates et chlorures dans les eaux souterraines au pied de la berme, au niveau des piézomètres WK6-12 et WK6-12A. Les concentrations mesurées restent inférieures aux limites de potabilités des eaux.

ANNEXE I

Résultats du suivi des eaux souterraines de la Kwé Ouest

Tableau d'exploitation statistique des analyses

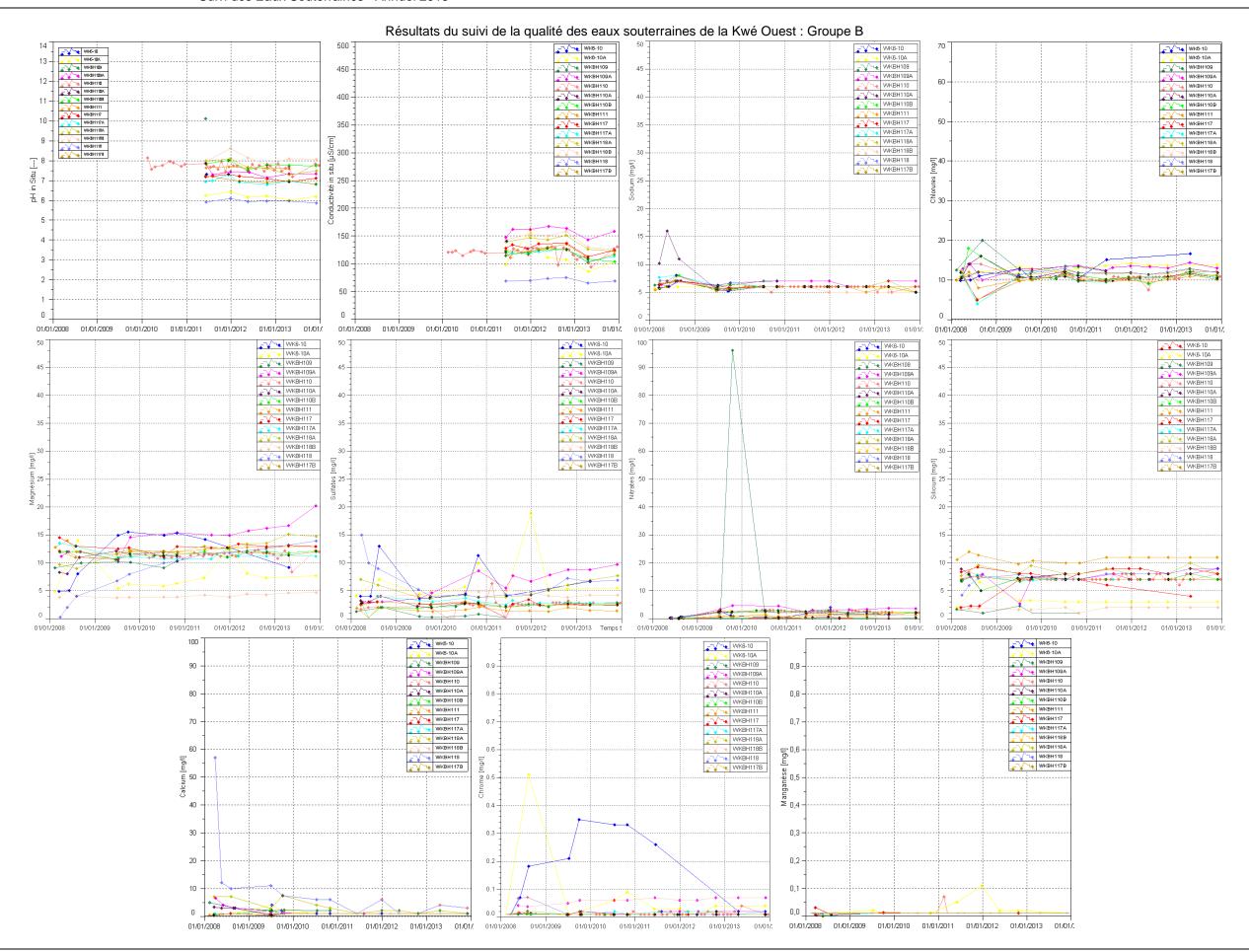
Gre	оире А					2010)							2011	l							2012								2013				
Paramètre	Unité	LD	Total Analys	Nb Analys < LD	% Valeurs Expoitabl	Моу	Min	Max	Ecart- type	Mediane	Total Analys	Nb Analys < LD	% Valeurs Expoitabl	Моу	Min	Max	Ecart- type	Mediane	Total Analys	Nb Analyses < LD	% Valeurs Expoitables	Моу	Min	Max	Ecart- type	Mediane	Total Analys	Nb Analyses < LD	% Valeurs Expoitables	Моу	Min	Max	Ecart- type	Mediane
pН	-	-	20	0	100	7.05	4.5	9.7	1.3	7.2	29	0	100	7.0	4.7	10.21	1.26	7	29	0	100	7.08	4.5	10.26	1.43	7.1	24	0	100	6.7	4.36	8.1	1.07	7.1
cond	μS/cm	-	9	0	100	119.2	49.8	174	47.2	106	29	0	100	124.8	45.3	173	41.55	141	29	0	100	135.32	64.8	190	44.05	139	24	0	100	128.0	53.7	326	56.62	124.5
Al	mg/l	0.1	22	20	9	0.018	<ld< th=""><th>0.2</th><th>0.06</th><th>0</th><th>28</th><th>27</th><th>4</th><th></th><th><ld< th=""><th>0.2</th><th></th><th></th><th>29</th><th>27</th><th>7</th><th>0.02</th><th><ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<></th></ld<>	0.2	0.06	0	28	27	4		<ld< th=""><th>0.2</th><th></th><th></th><th>29</th><th>27</th><th>7</th><th>0.02</th><th><ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.2			29	27	7	0.02	<ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.4	0.08	0	35	35	0					
As	mg/l	0.05	22	22	0						16	16	0						29	29	0						35	35	0					
Ca	mg/l	0.1	22	15	32	0.5	<ld< th=""><th>2</th><th>0.8</th><th>0</th><th>28</th><th>23</th><th>18</th><th>0.3</th><th><ld< th=""><th>3</th><th>0.71</th><th>0</th><th>29</th><th>19</th><th>34</th><th>0.52</th><th><ld< th=""><th>2</th><th>0.78</th><th>0</th><th>35</th><th>27</th><th>23</th><th>0.3</th><th><ld< th=""><th>2</th><th>0.51</th><th>0.0</th></ld<></th></ld<></th></ld<></th></ld<>	2	0.8	0	28	23	18	0.3	<ld< th=""><th>3</th><th>0.71</th><th>0</th><th>29</th><th>19</th><th>34</th><th>0.52</th><th><ld< th=""><th>2</th><th>0.78</th><th>0</th><th>35</th><th>27</th><th>23</th><th>0.3</th><th><ld< th=""><th>2</th><th>0.51</th><th>0.0</th></ld<></th></ld<></th></ld<>	3	0.71	0	29	19	34	0.52	<ld< th=""><th>2</th><th>0.78</th><th>0</th><th>35</th><th>27</th><th>23</th><th>0.3</th><th><ld< th=""><th>2</th><th>0.51</th><th>0.0</th></ld<></th></ld<>	2	0.78	0	35	27	23	0.3	<ld< th=""><th>2</th><th>0.51</th><th>0.0</th></ld<>	2	0.51	0.0
CI	mg/l	0.1	22	0	100	13.2	8.8	22	3	12.4	28	1	96	11.8	<ld< th=""><th>19.2</th><th>3.3</th><th>11.9</th><th>29</th><th>0</th><th>100</th><th>14.23</th><th>8.2</th><th>34.7</th><th>5.02</th><th>12.8</th><th>32</th><th>0</th><th>100</th><th>14.7</th><th>10.1</th><th>30.1</th><th>5.14</th><th>12.55</th></ld<>	19.2	3.3	11.9	29	0	100	14.23	8.2	34.7	5.02	12.8	32	0	100	14.7	10.1	30.1	5.14	12.55
Co	mg/l	0.01	22	22	0						28	28	0						29	29	0						35	35	0					
Cr	mg/l	0.01	22	7	68	0.029	<ld< th=""><th>0.14</th><th>0.05</th><th>0.01</th><th>28</th><th>6</th><th>79</th><th>0.02</th><th><ld< th=""><th>0.15</th><th>0.04</th><th>0</th><th>29</th><th>10</th><th>66</th><th>0.02</th><th><ld< th=""><th>0.15</th><th>0.04</th><th>0</th><th>35</th><th>6</th><th>83</th><th>0.015</th><th><ld< th=""><th>0.11</th><th>0.02</th><th>0.01</th></ld<></th></ld<></th></ld<></th></ld<>	0.14	0.05	0.01	28	6	79	0.02	<ld< th=""><th>0.15</th><th>0.04</th><th>0</th><th>29</th><th>10</th><th>66</th><th>0.02</th><th><ld< th=""><th>0.15</th><th>0.04</th><th>0</th><th>35</th><th>6</th><th>83</th><th>0.015</th><th><ld< th=""><th>0.11</th><th>0.02</th><th>0.01</th></ld<></th></ld<></th></ld<>	0.15	0.04	0	29	10	66	0.02	<ld< th=""><th>0.15</th><th>0.04</th><th>0</th><th>35</th><th>6</th><th>83</th><th>0.015</th><th><ld< th=""><th>0.11</th><th>0.02</th><th>0.01</th></ld<></th></ld<>	0.15	0.04	0	35	6	83	0.015	<ld< th=""><th>0.11</th><th>0.02</th><th>0.01</th></ld<>	0.11	0.02	0.01
Cu	mg/l	0.01	22	22	0						28	25	11	0.003	<ld< th=""><th>0.04</th><th>0.01</th><th>0</th><th>29</th><th>28</th><th>3</th><th></th><th><ld< th=""><th>0.01</th><th></th><th></th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.04	0.01	0	29	28	3		<ld< th=""><th>0.01</th><th></th><th></th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.01			35	35	0					
Fe	mg/l	0.1	22	19	14	0.03	<ld< th=""><th>0.5</th><th>0.11</th><th>0</th><th>28</th><th>26</th><th>7</th><th>0.03</th><th><ld< th=""><th>0.5</th><th>0.11</th><th>0</th><th>29</th><th>27</th><th>7</th><th>0.01</th><th><ld< th=""><th>0.2</th><th>0.04</th><th>0</th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<></th></ld<>	0.5	0.11	0	28	26	7	0.03	<ld< th=""><th>0.5</th><th>0.11</th><th>0</th><th>29</th><th>27</th><th>7</th><th>0.01</th><th><ld< th=""><th>0.2</th><th>0.04</th><th>0</th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.5	0.11	0	29	27	7	0.01	<ld< th=""><th>0.2</th><th>0.04</th><th>0</th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.2	0.04	0	35	35	0					
κ	mg/l	0.1	22	0	100	0.4	0.1	0.8	0.2	0.35	28	0	100	0.4	0.2	1.1	0.22	0.3	29	0	100	0.32	0.2	8.0	0.14	0.3	35	0	100	0.3	0.1	0.5	0.09	0.2
Mg	mg/l	0.1	22	0	100	8.3	1	15.9	5.5	8.9	28	0	100	10.07	0.6	16.4	5.89	11.4	29	0	100	10.96	0.5	18.8	6.59	12.8	35	0	100	13.2	3	23	5.22	14.6
Mn	mg/l	0.01	22	17	23	0.006	<ld< th=""><th>0.04</th><th>0.01</th><th>0</th><th>28</th><th>20</th><th>29</th><th>0.008</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>29</th><th>25</th><th>14</th><th>0.006</th><th><ld< th=""><th>0.08</th><th>0.02</th><th>0</th><th>35</th><th>29</th><th>17</th><th>0.0</th><th><ld< th=""><th>0.03</th><th>0.01</th><th>0.0</th></ld<></th></ld<></th></ld<></th></ld<>	0.04	0.01	0	28	20	29	0.008	<ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>29</th><th>25</th><th>14</th><th>0.006</th><th><ld< th=""><th>0.08</th><th>0.02</th><th>0</th><th>35</th><th>29</th><th>17</th><th>0.0</th><th><ld< th=""><th>0.03</th><th>0.01</th><th>0.0</th></ld<></th></ld<></th></ld<>	0.05	0.01	0	29	25	14	0.006	<ld< th=""><th>0.08</th><th>0.02</th><th>0</th><th>35</th><th>29</th><th>17</th><th>0.0</th><th><ld< th=""><th>0.03</th><th>0.01</th><th>0.0</th></ld<></th></ld<>	0.08	0.02	0	35	29	17	0.0	<ld< th=""><th>0.03</th><th>0.01</th><th>0.0</th></ld<>	0.03	0.01	0.0
Na	mg/l	0.5	22	0	100	6.6	5	13	2	6	28	0	100	6.6	4	15	2.41	6	29	0	100	6.72	4	18	2.96	6	35	0	100	6.1	5	8	0.80	6
Ni	mg/l	0.01	22	9	59	0.02	<ld< th=""><th>0.09</th><th>0.03</th><th>0.015</th><th>28</th><th>6</th><th>79</th><th>0.03</th><th><ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>29</th><th>9</th><th>69</th><th>0.02</th><th><ld< th=""><th>0.11</th><th>0.03</th><th>0</th><th>35</th><th>8</th><th>77</th><th>0.0</th><th><ld< th=""><th>0.12</th><th>0.03</th><th>0.02</th></ld<></th></ld<></th></ld<></th></ld<>	0.09	0.03	0.015	28	6	79	0.03	<ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>29</th><th>9</th><th>69</th><th>0.02</th><th><ld< th=""><th>0.11</th><th>0.03</th><th>0</th><th>35</th><th>8</th><th>77</th><th>0.0</th><th><ld< th=""><th>0.12</th><th>0.03</th><th>0.02</th></ld<></th></ld<></th></ld<>	0.1	0.03	0	29	9	69	0.02	<ld< th=""><th>0.11</th><th>0.03</th><th>0</th><th>35</th><th>8</th><th>77</th><th>0.0</th><th><ld< th=""><th>0.12</th><th>0.03</th><th>0.02</th></ld<></th></ld<>	0.11	0.03	0	35	8	77	0.0	<ld< th=""><th>0.12</th><th>0.03</th><th>0.02</th></ld<>	0.12	0.03	0.02
NO2	mg/l	0.01	10	10	0														12	12	0						6	6	0					
NO3	mg/l	0.1	22	9	59	2.241	<ld< th=""><th>7.9</th><th>2.9</th><th>0.6</th><th>27</th><th>1</th><th>96</th><th>3.19</th><th><ld< th=""><th>5.7</th><th>1.96</th><th>4.2</th><th>29</th><th>3</th><th>90</th><th>3.42</th><th><ld< th=""><th>6.4</th><th>2.15</th><th>3.9</th><th>32</th><th>0</th><th>100</th><th>4.175</th><th>0.7</th><th>18.4</th><th>3.59</th><th>3.15</th></ld<></th></ld<></th></ld<>	7.9	2.9	0.6	27	1	96	3.19	<ld< th=""><th>5.7</th><th>1.96</th><th>4.2</th><th>29</th><th>3</th><th>90</th><th>3.42</th><th><ld< th=""><th>6.4</th><th>2.15</th><th>3.9</th><th>32</th><th>0</th><th>100</th><th>4.175</th><th>0.7</th><th>18.4</th><th>3.59</th><th>3.15</th></ld<></th></ld<>	5.7	1.96	4.2	29	3	90	3.42	<ld< th=""><th>6.4</th><th>2.15</th><th>3.9</th><th>32</th><th>0</th><th>100</th><th>4.175</th><th>0.7</th><th>18.4</th><th>3.59</th><th>3.15</th></ld<>	6.4	2.15	3.9	32	0	100	4.175	0.7	18.4	3.59	3.15
Pb	mg/l	0.1	22	22	0						28	28	0						29	29	0						35	35	0					
PO4	mg/l	0.2	22	22	0						28	28	0						28	27	4		<ld< th=""><th>0.3</th><th></th><th></th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.3			35	35	0					
s	mg/l	1	22	11	50	32.6	<ld< th=""><th>682</th><th>145.1</th><th>0.5</th><th>28</th><th>9</th><th>68</th><th>2.9</th><th><ld< th=""><th>6</th><th>2.48</th><th>3</th><th>29</th><th>9</th><th>69</th><th>3.34</th><th><ld< th=""><th>8</th><th>2.81</th><th>3</th><th>35</th><th>3</th><th>91</th><th>3.8</th><th><ld< th=""><th>10</th><th>2.54</th><th>3</th></ld<></th></ld<></th></ld<></th></ld<>	682	145.1	0.5	28	9	68	2.9	<ld< th=""><th>6</th><th>2.48</th><th>3</th><th>29</th><th>9</th><th>69</th><th>3.34</th><th><ld< th=""><th>8</th><th>2.81</th><th>3</th><th>35</th><th>3</th><th>91</th><th>3.8</th><th><ld< th=""><th>10</th><th>2.54</th><th>3</th></ld<></th></ld<></th></ld<>	6	2.48	3	29	9	69	3.34	<ld< th=""><th>8</th><th>2.81</th><th>3</th><th>35</th><th>3</th><th>91</th><th>3.8</th><th><ld< th=""><th>10</th><th>2.54</th><th>3</th></ld<></th></ld<>	8	2.81	3	35	3	91	3.8	<ld< th=""><th>10</th><th>2.54</th><th>3</th></ld<>	10	2.54	3
Si	mg/l	0.4	22	6	73	4.7	<ld< th=""><th>10</th><th>3.4</th><th>7</th><th>28</th><th>6</th><th>79</th><th>5.2</th><th><ld< th=""><th>9</th><th>3.07</th><th>7</th><th>29</th><th>6</th><th>79</th><th>5.03</th><th><ld< th=""><th>8</th><th>2.92</th><th>7</th><th>35</th><th>6</th><th>83</th><th>6.3</th><th><ld< th=""><th>9</th><th>3.35</th><th>8</th></ld<></th></ld<></th></ld<></th></ld<>	10	3.4	7	28	6	79	5.2	<ld< th=""><th>9</th><th>3.07</th><th>7</th><th>29</th><th>6</th><th>79</th><th>5.03</th><th><ld< th=""><th>8</th><th>2.92</th><th>7</th><th>35</th><th>6</th><th>83</th><th>6.3</th><th><ld< th=""><th>9</th><th>3.35</th><th>8</th></ld<></th></ld<></th></ld<>	9	3.07	7	29	6	79	5.03	<ld< th=""><th>8</th><th>2.92</th><th>7</th><th>35</th><th>6</th><th>83</th><th>6.3</th><th><ld< th=""><th>9</th><th>3.35</th><th>8</th></ld<></th></ld<>	8	2.92	7	35	6	83	6.3	<ld< th=""><th>9</th><th>3.35</th><th>8</th></ld<>	9	3.35	8
SiO2	mg/l	1	16	3	81	11.3	<ld< th=""><th>20.4</th><th>6.8</th><th>14.5</th><th>24</th><th>6</th><th>75</th><th>10.3</th><th><ld< th=""><th>18.7</th><th>6.83</th><th>14.5</th><th>29</th><th>6</th><th>79</th><th>10.69</th><th><ld< th=""><th>16.6</th><th>6.28</th><th>14.5</th><th>35</th><th>6</th><th>83</th><th>13.5</th><th><ld< th=""><th>19.6</th><th>7.10</th><th>17.2</th></ld<></th></ld<></th></ld<></th></ld<>	20.4	6.8	14.5	24	6	75	10.3	<ld< th=""><th>18.7</th><th>6.83</th><th>14.5</th><th>29</th><th>6</th><th>79</th><th>10.69</th><th><ld< th=""><th>16.6</th><th>6.28</th><th>14.5</th><th>35</th><th>6</th><th>83</th><th>13.5</th><th><ld< th=""><th>19.6</th><th>7.10</th><th>17.2</th></ld<></th></ld<></th></ld<>	18.7	6.83	14.5	29	6	79	10.69	<ld< th=""><th>16.6</th><th>6.28</th><th>14.5</th><th>35</th><th>6</th><th>83</th><th>13.5</th><th><ld< th=""><th>19.6</th><th>7.10</th><th>17.2</th></ld<></th></ld<>	16.6	6.28	14.5	35	6	83	13.5	<ld< th=""><th>19.6</th><th>7.10</th><th>17.2</th></ld<>	19.6	7.10	17.2
SO4	mg/l	0.2	22	0	100	6.4	0.6	20.1	6.5	3.05	28	1	96	11.0	<ld< th=""><th>35.2</th><th>9.67</th><th>8.3</th><th>29</th><th>0</th><th>100</th><th>10.96</th><th>0.2</th><th>24.3</th><th>8.61</th><th>10.3</th><th>35</th><th>0</th><th>100</th><th>11.9</th><th>1.1</th><th>28.7</th><th>7.51</th><th>9.9</th></ld<>	35.2	9.67	8.3	29	0	100	10.96	0.2	24.3	8.61	10.3	35	0	100	11.9	1.1	28.7	7.51	9.9
TA as CaCO3	mg/l	25	22	20	9	0.8	<ld< th=""><th>11</th><th>2.6</th><th>0</th><th>25</th><th>21</th><th>16</th><th>1.2</th><th><ld< th=""><th>12</th><th>3.18</th><th>0</th><th>29</th><th>26</th><th>10</th><th>0.93</th><th><ld< th=""><th>13</th><th>3.23</th><th>0</th><th>35</th><th>34</th><th>3</th><th></th><th><ld< th=""><th>2</th><th></th><th></th></ld<></th></ld<></th></ld<></th></ld<>	11	2.6	0	25	21	16	1.2	<ld< th=""><th>12</th><th>3.18</th><th>0</th><th>29</th><th>26</th><th>10</th><th>0.93</th><th><ld< th=""><th>13</th><th>3.23</th><th>0</th><th>35</th><th>34</th><th>3</th><th></th><th><ld< th=""><th>2</th><th></th><th></th></ld<></th></ld<></th></ld<>	12	3.18	0	29	26	10	0.93	<ld< th=""><th>13</th><th>3.23</th><th>0</th><th>35</th><th>34</th><th>3</th><th></th><th><ld< th=""><th>2</th><th></th><th></th></ld<></th></ld<>	13	3.23	0	35	34	3		<ld< th=""><th>2</th><th></th><th></th></ld<>	2		
Zn	mg/l	0.1	22	22	0						28	27	4	0	<ld< th=""><th>0.1</th><th>0.02</th><th>0</th><th>29</th><th>29</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>35</th><th>35</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.1	0.02	0	29	29	0						35	35	0					
Azote total	mg/l																										33	4	88	0.9	<ld< th=""><th>3.2</th><th>0.66</th><th>0.8</th></ld<>	3.2	0.66	0.8
Eh	mV																										35	0	100	235.8	145.0	376.0	49.25	245
O² Dissous	mg/l																										21	0	100	7.4	5.8	8.9	1.00	7.4

Gre	oupe B					2010								2011								2012								2013				
Paramètre	Unité	LD	Total Analys	Nb Analy s < LD	% Valeurs Expoitabl	Моу	Min	Ma x	Ecart -type	Mediane	Total Analys	Nb Analy s < LD	% Valeurs Expoitabl	Моу	Min	Ma x	Ecart -type	Mediane	Total Analyse s	Nb Analyse s < LD	% Valeurs Expoitable s	Моу	Min	Ma x	Ecart -type	Mediane	Total Analyse s	Nb Analyse s < LD	% Valeurs Expoitable s	Моу	Min	Ma x	Ecart -type	Mediane
pН	-	-	28	0	100	7.53	5.9	9.7	0.88	7.6	36	0	100	7.43	6.08	9.3	0.73	7.6	31	0	100	7.32	5.94	8.14	0.59	7.6	32	0	100	7.3	5.85	8.09	0.60	7.34
cond	μS/cm	-	11	0	100	136.0 3	75.3	173	24.05	139	36	0	100	128.2 7	69.4	166	21.23	126.5	30	0	100	127.5 2	73.2	167	21.05	128	32	0	100	117. 9	65	215	29.23	113
AI	mg/l	0.1	30	30							30	30	0						30	30	0						43	43	0					
As	mg/l	0.05	30	30							18	18	0						30	30	0						43	43	0					
Ca	mg/l	0.1	30	21	30	0.87	<ld< th=""><th>6</th><th>1.72</th><th>0</th><th>30</th><th>26</th><th>13</th><th>0.33</th><th><ld< th=""><th>6</th><th>1.15</th><th>0</th><th>30</th><th>26</th><th>13</th><th>0.47</th><th><ld< th=""><th>6</th><th>1.43</th><th>0</th><th>43</th><th>39</th><th>9</th><th>0.2</th><th><ld< th=""><th>4</th><th>0.81</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	6	1.72	0	30	26	13	0.33	<ld< th=""><th>6</th><th>1.15</th><th>0</th><th>30</th><th>26</th><th>13</th><th>0.47</th><th><ld< th=""><th>6</th><th>1.43</th><th>0</th><th>43</th><th>39</th><th>9</th><th>0.2</th><th><ld< th=""><th>4</th><th>0.81</th><th>0</th></ld<></th></ld<></th></ld<>	6	1.15	0	30	26	13	0.47	<ld< th=""><th>6</th><th>1.43</th><th>0</th><th>43</th><th>39</th><th>9</th><th>0.2</th><th><ld< th=""><th>4</th><th>0.81</th><th>0</th></ld<></th></ld<>	6	1.43	0	43	39	9	0.2	<ld< th=""><th>4</th><th>0.81</th><th>0</th></ld<>	4	0.81	0
CI	mg/l	0.1	30	0	100	11.45	9.6	13.6	1.11	11.3	35	1	97	10.69	<ld< th=""><th>15.1</th><th>2.34</th><th>10.2</th><th>30</th><th>0</th><th>100</th><th>10.91</th><th>7.4</th><th>13.7</th><th>1.3</th><th>10.7</th><th>42</th><th>1</th><th>98</th><th>11.3</th><th><ld< th=""><th>16.6</th><th>2.18</th><th>11.35</th></ld<></th></ld<>	15.1	2.34	10.2	30	0	100	10.91	7.4	13.7	1.3	10.7	42	1	98	11.3	<ld< th=""><th>16.6</th><th>2.18</th><th>11.35</th></ld<>	16.6	2.18	11.35
Со	mg/l	0.01	30	30							30	29	3		<ld< th=""><th>0.01</th><th></th><th></th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>43</th><th>43</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.01			30	30	0						43	43	0					
Cr	mg/l	0.01	30	5	83	0.04	<ld< th=""><th>0.33</th><th>0.08</th><th>0.01</th><th>30</th><th>2</th><th>93</th><th>0.02</th><th><ld< th=""><th>0.26</th><th>0.05</th><th>0</th><th>30</th><th>1</th><th>97</th><th>0.02</th><th>0.01</th><th>0.07</th><th>0.01</th><th>0.01</th><th>43</th><th>1</th><th>98</th><th>0.0</th><th><ld< th=""><th>0.07</th><th>0.02</th><th>0.01</th></ld<></th></ld<></th></ld<>	0.33	0.08	0.01	30	2	93	0.02	<ld< th=""><th>0.26</th><th>0.05</th><th>0</th><th>30</th><th>1</th><th>97</th><th>0.02</th><th>0.01</th><th>0.07</th><th>0.01</th><th>0.01</th><th>43</th><th>1</th><th>98</th><th>0.0</th><th><ld< th=""><th>0.07</th><th>0.02</th><th>0.01</th></ld<></th></ld<>	0.26	0.05	0	30	1	97	0.02	0.01	0.07	0.01	0.01	43	1	98	0.0	<ld< th=""><th>0.07</th><th>0.02</th><th>0.01</th></ld<>	0.07	0.02	0.01
Cu	mg/l	0.01	30	30							30	30	0						30	30	0						43	43	0					
Fe	mg/l	0.1	30	28	7	0.01	<ld< th=""><th>0.1</th><th></th><th></th><th>30</th><th>27</th><th>10</th><th>0.02</th><th><ld< th=""><th>0.3</th><th>0.07</th><th>0</th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>43</th><th>42</th><th>2</th><th></th><th><ld< th=""><th>0.1</th><th></th><th></th></ld<></th></ld<></th></ld<>	0.1			30	27	10	0.02	<ld< th=""><th>0.3</th><th>0.07</th><th>0</th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>43</th><th>42</th><th>2</th><th></th><th><ld< th=""><th>0.1</th><th></th><th></th></ld<></th></ld<>	0.3	0.07	0	30	30	0						43	42	2		<ld< th=""><th>0.1</th><th></th><th></th></ld<>	0.1		
K	mg/l	0.1	30	1	97	0.26	<ld< th=""><th>0.6</th><th>0.12</th><th>0.2</th><th>30</th><th>0</th><th>100</th><th>0.33</th><th>0.2</th><th>1.2</th><th>0.23</th><th>0.2</th><th>30</th><th>0</th><th>100</th><th>0.33</th><th>0.2</th><th>1</th><th>0.21</th><th>0.2</th><th>43</th><th>0</th><th>100</th><th>0.3</th><th>0.1</th><th>1</th><th>0.17</th><th>0.2</th></ld<>	0.6	0.12	0.2	30	0	100	0.33	0.2	1.2	0.23	0.2	30	0	100	0.33	0.2	1	0.21	0.2	43	0	100	0.3	0.1	1	0.17	0.2
Mg	mg/l	0.1	30	0	100	10.81	3.9	15.4	2.74	11.3	30	0	100	11.46	3.9	15	2.44	11.7	30	0	100	11.58	4.4	16.2	2.57	12	43	0	100	12.2	4.6	20.2	2.75	12
Mn	mg/l	0.01	30	29	3		<ld< th=""><th>0.01</th><th></th><th></th><th>30</th><th>27</th><th>10</th><th>0.008</th><th><ld< th=""><th>0.11</th><th>0.02</th><th>0</th><th>30</th><th>27</th><th>10</th><th>0.002</th><th><ld< th=""><th>0.02</th><th>0.01</th><th>0</th><th>43</th><th>42</th><th>2</th><th></th><th><ld< th=""><th>0.02</th><th></th><th></th></ld<></th></ld<></th></ld<></th></ld<>	0.01			30	27	10	0.008	<ld< th=""><th>0.11</th><th>0.02</th><th>0</th><th>30</th><th>27</th><th>10</th><th>0.002</th><th><ld< th=""><th>0.02</th><th>0.01</th><th>0</th><th>43</th><th>42</th><th>2</th><th></th><th><ld< th=""><th>0.02</th><th></th><th></th></ld<></th></ld<></th></ld<>	0.11	0.02	0	30	27	10	0.002	<ld< th=""><th>0.02</th><th>0.01</th><th>0</th><th>43</th><th>42</th><th>2</th><th></th><th><ld< th=""><th>0.02</th><th></th><th></th></ld<></th></ld<>	0.02	0.01	0	43	42	2		<ld< th=""><th>0.02</th><th></th><th></th></ld<>	0.02		
Na	mg/l	0.5	30	0	100	6.1	6	7	0.31	6	30	0	100	6.03	5	7	0.32	6	30	0	100	5.9	5	6	0.31	6	43	0	100	5.8	5	8	0.65	6
Ni	mg/l	0.01	30	18	40	0.01	<ld< th=""><th>0.03</th><th></th><th></th><th>30</th><th>14</th><th>53</th><th>0.01</th><th><ld< th=""><th>0.08</th><th>0.02</th><th>0</th><th>30</th><th>9</th><th>70</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0.01</th><th>43</th><th>14</th><th>67</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0.01</th></ld<></th></ld<></th></ld<></th></ld<>	0.03			30	14	53	0.01	<ld< th=""><th>0.08</th><th>0.02</th><th>0</th><th>30</th><th>9</th><th>70</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0.01</th><th>43</th><th>14</th><th>67</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0.01</th></ld<></th></ld<></th></ld<>	0.08	0.02	0	30	9	70	0.01	<ld< th=""><th>0.05</th><th>0.01</th><th>0.01</th><th>43</th><th>14</th><th>67</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0.01</th></ld<></th></ld<>	0.05	0.01	0.01	43	14	67	0.01	<ld< th=""><th>0.05</th><th>0.01</th><th>0.01</th></ld<>	0.05	0.01	0.01
NO2	mg/l	0.01	12	12															16	16	0						13	13	0					
NO3	mg/l	0.1	30	5	83	1.6	<ld< th=""><th>4.5</th><th>1.34</th><th>1.45</th><th>35</th><th>4</th><th>89</th><th>1.85</th><th><ld< th=""><th>4</th><th>1.11</th><th>2.4</th><th>30</th><th>2</th><th>93</th><th>1.78</th><th><ld< th=""><th>3.3</th><th>1.01</th><th>2.1</th><th>42</th><th>3</th><th>93</th><th>1.8</th><th><ld< th=""><th>3.7</th><th>0.84</th><th>2</th></ld<></th></ld<></th></ld<></th></ld<>	4.5	1.34	1.45	35	4	89	1.85	<ld< th=""><th>4</th><th>1.11</th><th>2.4</th><th>30</th><th>2</th><th>93</th><th>1.78</th><th><ld< th=""><th>3.3</th><th>1.01</th><th>2.1</th><th>42</th><th>3</th><th>93</th><th>1.8</th><th><ld< th=""><th>3.7</th><th>0.84</th><th>2</th></ld<></th></ld<></th></ld<>	4	1.11	2.4	30	2	93	1.78	<ld< th=""><th>3.3</th><th>1.01</th><th>2.1</th><th>42</th><th>3</th><th>93</th><th>1.8</th><th><ld< th=""><th>3.7</th><th>0.84</th><th>2</th></ld<></th></ld<>	3.3	1.01	2.1	42	3	93	1.8	<ld< th=""><th>3.7</th><th>0.84</th><th>2</th></ld<>	3.7	0.84	2
Pb	mg/l	0.1	30	29	3		<ld< th=""><th>0.01</th><th></th><th></th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>43</th><th>43</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.01			30	30	0						30	30	0						43	43	0					
PO4	mg/l	0.2	30	30							35	34	3	0.07	<ld< th=""><th>2.4</th><th>0.41</th><th>0</th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>43</th><th>43</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	2.4	0.41	0	30	30	0						43	43	0					
s	mg/l	1	30	19	37	0.47	<ld< th=""><th>2</th><th>0.68</th><th>0</th><th>30</th><th>15</th><th>50</th><th>0.93</th><th><ld< th=""><th>6</th><th>1.31</th><th>0.5</th><th>30</th><th>15</th><th>50</th><th>0.83</th><th><ld< th=""><th>3</th><th>0.99</th><th>0.5</th><th>43</th><th>25</th><th>42</th><th>0.7</th><th><ld< th=""><th>4</th><th>1.05</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	2	0.68	0	30	15	50	0.93	<ld< th=""><th>6</th><th>1.31</th><th>0.5</th><th>30</th><th>15</th><th>50</th><th>0.83</th><th><ld< th=""><th>3</th><th>0.99</th><th>0.5</th><th>43</th><th>25</th><th>42</th><th>0.7</th><th><ld< th=""><th>4</th><th>1.05</th><th>0</th></ld<></th></ld<></th></ld<>	6	1.31	0.5	30	15	50	0.83	<ld< th=""><th>3</th><th>0.99</th><th>0.5</th><th>43</th><th>25</th><th>42</th><th>0.7</th><th><ld< th=""><th>4</th><th>1.05</th><th>0</th></ld<></th></ld<>	3	0.99	0.5	43	25	42	0.7	<ld< th=""><th>4</th><th>1.05</th><th>0</th></ld<>	4	1.05	0
Si	mg/l	0.4	30	2	93	6.3	<ld< th=""><th>10</th><th>2.64</th><th>7</th><th>30</th><th>0</th><th>100</th><th>7.07</th><th>2</th><th>11</th><th>2.15</th><th>7</th><th>30</th><th>0</th><th>100</th><th>7</th><th>2</th><th>11</th><th>2.08</th><th>7</th><th>43</th><th>0</th><th>100</th><th>7.4</th><th>2</th><th>11</th><th>1.88</th><th>7</th></ld<>	10	2.64	7	30	0	100	7.07	2	11	2.15	7	30	0	100	7	2	11	2.08	7	43	0	100	7.4	2	11	1.88	7
SiO2	mg/l	1	18	0	100	14.4	1.5	22.1	5.52	15.6	25	0	100	15.1	3.3	22.6	4.92	16	30	0	100	15.04	3.4	22.8	4.41	15.8	43	0	100	15.8	3.5	23.5	3.99	16
SO4	mg/l	0.2	30	0	100	3.75	0.5	11.3	2.41	2.9	35	3	91	3.6	<ld< th=""><th>18.9</th><th>3.19</th><th>2.6</th><th>30</th><th>0</th><th>100</th><th>3.66</th><th>1.3</th><th>8.8</th><th>1.84</th><th>2.9</th><th>43</th><th>1</th><th>98</th><th>3.5</th><th><ld< th=""><th>9.7</th><th>2.06</th><th>2.7</th></ld<></th></ld<>	18.9	3.19	2.6	30	0	100	3.66	1.3	8.8	1.84	2.9	43	1	98	3.5	<ld< th=""><th>9.7</th><th>2.06</th><th>2.7</th></ld<>	9.7	2.06	2.7
TA as CaCO3	mg/l	25	30	27	10	0.77	<ld< th=""><th>12</th><th>2.7</th><th>0</th><th>30</th><th>29</th><th>3</th><th></th><th><ld< th=""><th>12</th><th></th><th></th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>43</th><th>43</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	12	2.7	0	30	29	3		<ld< th=""><th>12</th><th></th><th></th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>43</th><th>43</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	12			30	30	0						43	43	0					
Zn	mg/l	0.1	30	29	3		<ld< th=""><th>0.2</th><th></th><th></th><th>30</th><th>28</th><th>7</th><th>0.01</th><th><ld< th=""><th>0.3</th><th>0.06</th><th>0</th><th>30</th><th>28</th><th>7</th><th>0.01</th><th><ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>43</th><th>43</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<></th></ld<>	0.2			30	28	7	0.01	<ld< th=""><th>0.3</th><th>0.06</th><th>0</th><th>30</th><th>28</th><th>7</th><th>0.01</th><th><ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>43</th><th>43</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.3	0.06	0	30	28	7	0.01	<ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>43</th><th>43</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.1	0.03	0	43	43	0					
Azote total	mg/l	0.5																									41	13	68	0.4	<ld< th=""><th>0.9</th><th>0.30</th><th>0.5</th></ld<>	0.9	0.30	0.5
Eh	mV																										43	0	100	230. 0	131	290	41.00	233
O² Dissous	mg/l																										30	0	100	7.1	3.08	8.78	1.49	7.72

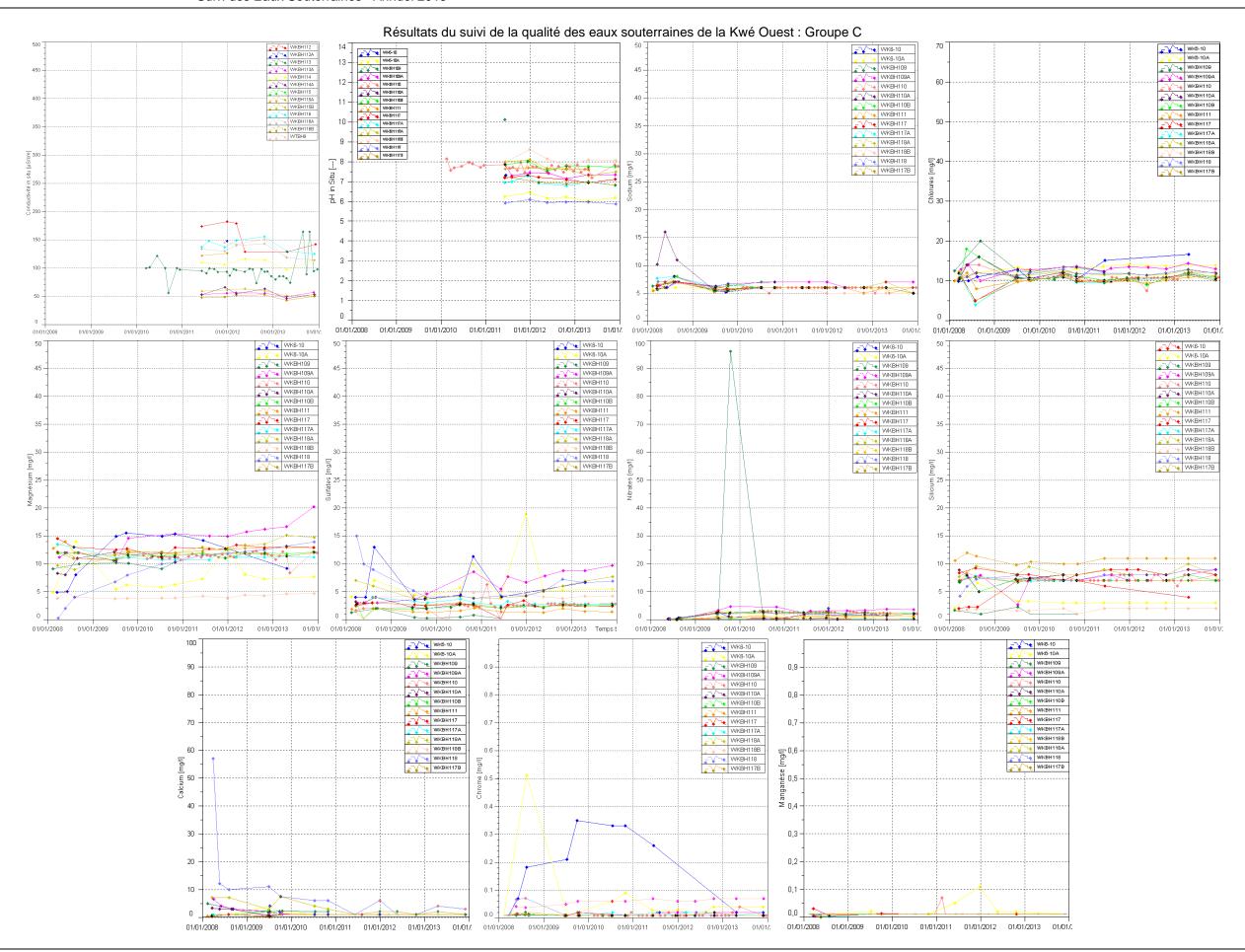
Gro	оире С					2010	0							201	1							2012								2013				
Paramètre	Unité	LD	Total Analys	Nb Analys < LD	% Valeurs Expoitabl	Моу	Min	Max	Ecart- type	Mediane	Total Analys	Nb Analys < LD	% Valeurs Expoitabl	Моу	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Моу	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Моу	Min	Max	Ecart- type	Mediane
pН	-	-	22	0	100	6.8	4.5	8.6	1.17	7.1	32	0	100	6.8	4.7	7.9	0.82	7	29	0	100	6.7	4.5	7.82	1	7.2	28	0	100	6.7	4.56	8.28	1.05	7.055
cond	μS/cm	-	11	0	100	110.3	50.3	183	48.68	116	32	0	100	109.0	48.5	184	38.94	99	29	0	100	99.7	51.8	179	36.32	96.6	28	0	100	94.3	42.7	164	36.28	92
AI	mg/l	0.1	24	23	4		<ld< th=""><th>0.3</th><th></th><th></th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>29</th><th>26</th><th>10</th><th>0.02</th><th><ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>39</th><th>38</th><th>3</th><th></th><th><ld< th=""><th>0.2</th><th></th><th></th></ld<></th></ld<></th></ld<>	0.3			30	30	0						29	26	10	0.02	<ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>39</th><th>38</th><th>3</th><th></th><th><ld< th=""><th>0.2</th><th></th><th></th></ld<></th></ld<>	0.4	0.08	0	39	38	3		<ld< th=""><th>0.2</th><th></th><th></th></ld<>	0.2		
As	mg/l	0.05	24	24							17	17	0						29	29	0						39	39	0					
Ca	mg/l	0.1	24	13	46	1.5	<ld< th=""><th>6</th><th>1.96</th><th>0</th><th>30</th><th>19</th><th>37</th><th>0.97</th><th><ld< th=""><th>9</th><th>1.87</th><th>0</th><th>29</th><th>22</th><th>24</th><th>0.5</th><th><ld< th=""><th>3</th><th>0.91</th><th>0</th><th>39</th><th>20</th><th>49</th><th>1.9</th><th><ld< th=""><th>10</th><th>2.81</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	6	1.96	0	30	19	37	0.97	<ld< th=""><th>9</th><th>1.87</th><th>0</th><th>29</th><th>22</th><th>24</th><th>0.5</th><th><ld< th=""><th>3</th><th>0.91</th><th>0</th><th>39</th><th>20</th><th>49</th><th>1.9</th><th><ld< th=""><th>10</th><th>2.81</th><th>0</th></ld<></th></ld<></th></ld<>	9	1.87	0	29	22	24	0.5	<ld< th=""><th>3</th><th>0.91</th><th>0</th><th>39</th><th>20</th><th>49</th><th>1.9</th><th><ld< th=""><th>10</th><th>2.81</th><th>0</th></ld<></th></ld<>	3	0.91	0	39	20	49	1.9	<ld< th=""><th>10</th><th>2.81</th><th>0</th></ld<>	10	2.81	0
CI	mg/l	0.1	24	2	92	9.9	<ld< th=""><th>14.6</th><th>3.24</th><th>10.6</th><th>30</th><th>0</th><th>100</th><th>9.7</th><th>8.4</th><th>12</th><th>0.96</th><th>9.5</th><th>28</th><th>0</th><th>100</th><th>9.8</th><th>6.4</th><th>11.6</th><th>1.05</th><th>9.9</th><th>39</th><th>1</th><th>97</th><th>10.8</th><th><ld< th=""><th>21.1</th><th>3.13</th><th>10.2</th></ld<></th></ld<>	14.6	3.24	10.6	30	0	100	9.7	8.4	12	0.96	9.5	28	0	100	9.8	6.4	11.6	1.05	9.9	39	1	97	10.8	<ld< th=""><th>21.1</th><th>3.13</th><th>10.2</th></ld<>	21.1	3.13	10.2
Со	mg/l	0.01	24	23	4		<ld< th=""><th>0.02</th><th></th><th></th><th>30</th><th>29</th><th>3</th><th></th><th><ld< th=""><th>0.01</th><th></th><th></th><th>29</th><th>28</th><th>3</th><th></th><th><ld< th=""><th>0.01</th><th></th><th></th><th>39</th><th>36</th><th>8</th><th>0.001</th><th><ld< th=""><th>0.02</th><th>0.00</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	0.02			30	29	3		<ld< th=""><th>0.01</th><th></th><th></th><th>29</th><th>28</th><th>3</th><th></th><th><ld< th=""><th>0.01</th><th></th><th></th><th>39</th><th>36</th><th>8</th><th>0.001</th><th><ld< th=""><th>0.02</th><th>0.00</th><th>0</th></ld<></th></ld<></th></ld<>	0.01			29	28	3		<ld< th=""><th>0.01</th><th></th><th></th><th>39</th><th>36</th><th>8</th><th>0.001</th><th><ld< th=""><th>0.02</th><th>0.00</th><th>0</th></ld<></th></ld<>	0.01			39	36	8	0.001	<ld< th=""><th>0.02</th><th>0.00</th><th>0</th></ld<>	0.02	0.00	0
Cr	mg/l	0.01	24	7	71	0.06	<ld< th=""><th>0.63</th><th>0.15</th><th>0.01</th><th>30</th><th>8</th><th>73</th><th>0.09</th><th><ld< th=""><th>0.5</th><th>0.12</th><th>0</th><th>29</th><th>8</th><th>72</th><th>0.03</th><th><ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>39</th><th>8</th><th>79</th><th>0.1</th><th><ld< th=""><th>0.16</th><th>0.05</th><th>0.04</th></ld<></th></ld<></th></ld<></th></ld<>	0.63	0.15	0.01	30	8	73	0.09	<ld< th=""><th>0.5</th><th>0.12</th><th>0</th><th>29</th><th>8</th><th>72</th><th>0.03</th><th><ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>39</th><th>8</th><th>79</th><th>0.1</th><th><ld< th=""><th>0.16</th><th>0.05</th><th>0.04</th></ld<></th></ld<></th></ld<>	0.5	0.12	0	29	8	72	0.03	<ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>39</th><th>8</th><th>79</th><th>0.1</th><th><ld< th=""><th>0.16</th><th>0.05</th><th>0.04</th></ld<></th></ld<>	0.1	0.03	0	39	8	79	0.1	<ld< th=""><th>0.16</th><th>0.05</th><th>0.04</th></ld<>	0.16	0.05	0.04
Cu	mg/l	0.01	24	24							30	29	3		<ld< th=""><th>0.04</th><th></th><th></th><th>29</th><th>28</th><th>3</th><th></th><th><ld< th=""><th>0.01</th><th></th><th></th><th>39</th><th>38</th><th>3</th><th></th><th><ld< th=""><th>0.03</th><th></th><th></th></ld<></th></ld<></th></ld<>	0.04			29	28	3		<ld< th=""><th>0.01</th><th></th><th></th><th>39</th><th>38</th><th>3</th><th></th><th><ld< th=""><th>0.03</th><th></th><th></th></ld<></th></ld<>	0.01			39	38	3		<ld< th=""><th>0.03</th><th></th><th></th></ld<>	0.03		
Fe	mg/l	0.1	24	16	33	0.06	<ld< th=""><th>0.5</th><th>0.11</th><th>0</th><th>30</th><th>25</th><th>17</th><th>0.05</th><th><ld< th=""><th>0.8</th><th>0.15</th><th>0</th><th>29</th><th>24</th><th>17</th><th>0.03</th><th><ld< th=""><th>0.5</th><th>0.1</th><th>0</th><th>39</th><th>37</th><th>5</th><th>0.01</th><th><ld< th=""><th>0.1</th><th>0.02</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	0.5	0.11	0	30	25	17	0.05	<ld< th=""><th>0.8</th><th>0.15</th><th>0</th><th>29</th><th>24</th><th>17</th><th>0.03</th><th><ld< th=""><th>0.5</th><th>0.1</th><th>0</th><th>39</th><th>37</th><th>5</th><th>0.01</th><th><ld< th=""><th>0.1</th><th>0.02</th><th>0</th></ld<></th></ld<></th></ld<>	0.8	0.15	0	29	24	17	0.03	<ld< th=""><th>0.5</th><th>0.1</th><th>0</th><th>39</th><th>37</th><th>5</th><th>0.01</th><th><ld< th=""><th>0.1</th><th>0.02</th><th>0</th></ld<></th></ld<>	0.5	0.1	0	39	37	5	0.01	<ld< th=""><th>0.1</th><th>0.02</th><th>0</th></ld<>	0.1	0.02	0
К	mg/l	0.1	24	0	100	0.3	0.1	1.1	0.21	0.2	30	0	100	0.2	0.1	0.5	0.1	0.2	29	0	100	0.2	0.1	0.4	0.08	0.2	39	1	97	0.2	<ld< th=""><th>0.6</th><th>0.09</th><th>0.2</th></ld<>	0.6	0.09	0.2
Mg	mg/l	0.1	24	0	100	11.3	0.8	68.2	13.46	9.6	30	0	100	8.4	0.7	18.7	4.96	8.3	29	0	100	8.5	0.9	19.2	5.04	8.3	39	0	100	8.6	1.1	19.8	4.87	8.4
Mn	mg/l	0.01	24	17	29		<ld< th=""><th>0.1</th><th></th><th></th><th>30</th><th>20</th><th>33</th><th>0.008</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>29</th><th>20</th><th>31</th><th>0.007</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>39</th><th>31</th><th>21</th><th>0.005</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	0.1			30	20	33	0.008	<ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>29</th><th>20</th><th>31</th><th>0.007</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>39</th><th>31</th><th>21</th><th>0.005</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th></ld<></th></ld<></th></ld<>	0.05	0.01	0	29	20	31	0.007	<ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>39</th><th>31</th><th>21</th><th>0.005</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th></ld<></th></ld<>	0.05	0.01	0	39	31	21	0.005	<ld< th=""><th>0.05</th><th>0.01</th><th>0</th></ld<>	0.05	0.01	0
Na	mg/l	0.5	24	0	100	6.46	4	29	4.85	5.5	30	0	100	5.6	5	7	0.62	6	29	0	100	5.2	4	7	0.68	5	39	0	100	5.2	4	7	0.60	5
Ni	mg/l	0.01	24	6	75	0.05	<ld< th=""><th>0.19</th><th>0.06</th><th>0.02</th><th>30</th><th>3</th><th>90</th><th>0.05</th><th><ld< th=""><th>0.2</th><th>0.06</th><th>0</th><th>29</th><th>3</th><th>90</th><th>0.04</th><th><ld< th=""><th>0.18</th><th>0.05</th><th>0</th><th>39</th><th>8</th><th>79</th><th>0.04</th><th><ld< th=""><th>0.19</th><th>0.05</th><th>0.02</th></ld<></th></ld<></th></ld<></th></ld<>	0.19	0.06	0.02	30	3	90	0.05	<ld< th=""><th>0.2</th><th>0.06</th><th>0</th><th>29</th><th>3</th><th>90</th><th>0.04</th><th><ld< th=""><th>0.18</th><th>0.05</th><th>0</th><th>39</th><th>8</th><th>79</th><th>0.04</th><th><ld< th=""><th>0.19</th><th>0.05</th><th>0.02</th></ld<></th></ld<></th></ld<>	0.2	0.06	0	29	3	90	0.04	<ld< th=""><th>0.18</th><th>0.05</th><th>0</th><th>39</th><th>8</th><th>79</th><th>0.04</th><th><ld< th=""><th>0.19</th><th>0.05</th><th>0.02</th></ld<></th></ld<>	0.18	0.05	0	39	8	79	0.04	<ld< th=""><th>0.19</th><th>0.05</th><th>0.02</th></ld<>	0.19	0.05	0.02
NO2	mg/l	0.01	10	10															17	17	0						12	12	0					
NO3	mg/l	0.1	24	12	50	0.5	<ld< th=""><th>2.2</th><th>0.72</th><th>0.1</th><th>30</th><th>6</th><th>80</th><th>0.76</th><th><ld< th=""><th>2.3</th><th>0.73</th><th>0.4</th><th>28</th><th>0</th><th>100</th><th>0.74</th><th>0.2</th><th>1.9</th><th>0.58</th><th>0.4</th><th>39</th><th>7</th><th>82</th><th>0.6</th><th><ld< th=""><th>3.6</th><th>0.74</th><th>0.3</th></ld<></th></ld<></th></ld<>	2.2	0.72	0.1	30	6	80	0.76	<ld< th=""><th>2.3</th><th>0.73</th><th>0.4</th><th>28</th><th>0</th><th>100</th><th>0.74</th><th>0.2</th><th>1.9</th><th>0.58</th><th>0.4</th><th>39</th><th>7</th><th>82</th><th>0.6</th><th><ld< th=""><th>3.6</th><th>0.74</th><th>0.3</th></ld<></th></ld<>	2.3	0.73	0.4	28	0	100	0.74	0.2	1.9	0.58	0.4	39	7	82	0.6	<ld< th=""><th>3.6</th><th>0.74</th><th>0.3</th></ld<>	3.6	0.74	0.3
Pb	mg/l	0.1	24	24							30	30	0						29	29	0						39	38	3		<ld< th=""><th>0.01</th><th></th><th></th></ld<>	0.01		
PO4	mg/l	0.2	24	24							31	31	0						29	29	0						39	39	0					
s	mg/l	1	24	16	33	0.5	<ld< th=""><th>3</th><th>0.78</th><th>0</th><th>30</th><th>23</th><th>23</th><th>0.3</th><th><ld< th=""><th>2</th><th>0.6</th><th>0</th><th>29</th><th>24</th><th>17</th><th>0.2</th><th><ld< th=""><th>2</th><th>0.58</th><th>0</th><th>39</th><th>36</th><th>8</th><th>0.1</th><th><ld< th=""><th>1</th><th>0.27</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	3	0.78	0	30	23	23	0.3	<ld< th=""><th>2</th><th>0.6</th><th>0</th><th>29</th><th>24</th><th>17</th><th>0.2</th><th><ld< th=""><th>2</th><th>0.58</th><th>0</th><th>39</th><th>36</th><th>8</th><th>0.1</th><th><ld< th=""><th>1</th><th>0.27</th><th>0</th></ld<></th></ld<></th></ld<>	2	0.6	0	29	24	17	0.2	<ld< th=""><th>2</th><th>0.58</th><th>0</th><th>39</th><th>36</th><th>8</th><th>0.1</th><th><ld< th=""><th>1</th><th>0.27</th><th>0</th></ld<></th></ld<>	2	0.58	0	39	36	8	0.1	<ld< th=""><th>1</th><th>0.27</th><th>0</th></ld<>	1	0.27	0
Si	mg/l	0.4	24	6	75	9.5	<ld< th=""><th>61</th><th>12.35</th><th>7.5</th><th>30</th><th>6</th><th>80</th><th>7.3</th><th><ld< th=""><th>18</th><th>5.02</th><th>7</th><th>29</th><th>6</th><th>79</th><th>6.9</th><th><ld< th=""><th>17</th><th>4.79</th><th>7</th><th>39</th><th>6</th><th>85</th><th>7.1</th><th><ld< th=""><th>18</th><th>4.80</th><th>7</th></ld<></th></ld<></th></ld<></th></ld<>	61	12.35	7.5	30	6	80	7.3	<ld< th=""><th>18</th><th>5.02</th><th>7</th><th>29</th><th>6</th><th>79</th><th>6.9</th><th><ld< th=""><th>17</th><th>4.79</th><th>7</th><th>39</th><th>6</th><th>85</th><th>7.1</th><th><ld< th=""><th>18</th><th>4.80</th><th>7</th></ld<></th></ld<></th></ld<>	18	5.02	7	29	6	79	6.9	<ld< th=""><th>17</th><th>4.79</th><th>7</th><th>39</th><th>6</th><th>85</th><th>7.1</th><th><ld< th=""><th>18</th><th>4.80</th><th>7</th></ld<></th></ld<>	17	4.79	7	39	6	85	7.1	<ld< th=""><th>18</th><th>4.80</th><th>7</th></ld<>	18	4.80	7
SiO2	mg/l	1	13	3	77	15.0	<ld< th=""><th>37.7</th><th>12.39</th><th>15.5</th><th>26</th><th>6</th><th>77</th><th>15.6</th><th><ld< th=""><th>37.5</th><th>11.45</th><th>15.8</th><th>29</th><th>4</th><th>86</th><th>14.8</th><th><ld< th=""><th>36.6</th><th>10.08</th><th>15.3</th><th>39</th><th>5</th><th>87</th><th>15.2</th><th><ld< th=""><th>38.3</th><th>10.15</th><th>14.8</th></ld<></th></ld<></th></ld<></th></ld<>	37.7	12.39	15.5	26	6	77	15.6	<ld< th=""><th>37.5</th><th>11.45</th><th>15.8</th><th>29</th><th>4</th><th>86</th><th>14.8</th><th><ld< th=""><th>36.6</th><th>10.08</th><th>15.3</th><th>39</th><th>5</th><th>87</th><th>15.2</th><th><ld< th=""><th>38.3</th><th>10.15</th><th>14.8</th></ld<></th></ld<></th></ld<>	37.5	11.45	15.8	29	4	86	14.8	<ld< th=""><th>36.6</th><th>10.08</th><th>15.3</th><th>39</th><th>5</th><th>87</th><th>15.2</th><th><ld< th=""><th>38.3</th><th>10.15</th><th>14.8</th></ld<></th></ld<>	36.6	10.08	15.3	39	5	87	15.2	<ld< th=""><th>38.3</th><th>10.15</th><th>14.8</th></ld<>	38.3	10.15	14.8
SO4	mg/l	0.2	24	1	96	2.6	<ld< th=""><th>5.7</th><th>1.44</th><th>2.1</th><th>31</th><th>1</th><th>97</th><th>2.14</th><th><ld< th=""><th>5.2</th><th>1.3</th><th>1.7</th><th>29</th><th>1</th><th>97</th><th>1.7</th><th><ld< th=""><th>4.9</th><th>0.96</th><th>1.5</th><th>39</th><th>0</th><th>100</th><th>1.7</th><th>0.9</th><th>5</th><th>0.72</th><th>1.6</th></ld<></th></ld<></th></ld<>	5.7	1.44	2.1	31	1	97	2.14	<ld< th=""><th>5.2</th><th>1.3</th><th>1.7</th><th>29</th><th>1</th><th>97</th><th>1.7</th><th><ld< th=""><th>4.9</th><th>0.96</th><th>1.5</th><th>39</th><th>0</th><th>100</th><th>1.7</th><th>0.9</th><th>5</th><th>0.72</th><th>1.6</th></ld<></th></ld<>	5.2	1.3	1.7	29	1	97	1.7	<ld< th=""><th>4.9</th><th>0.96</th><th>1.5</th><th>39</th><th>0</th><th>100</th><th>1.7</th><th>0.9</th><th>5</th><th>0.72</th><th>1.6</th></ld<>	4.9	0.96	1.5	39	0	100	1.7	0.9	5	0.72	1.6
TA as CaCO3	mg/l	25	24	24							27	27	0						29	29	0						37	37	0					
Zn	mg/l	0.1	24	24							30	29	3		<ld< th=""><th>0.2</th><th></th><th></th><th>29</th><th>27</th><th>7</th><th>0.02</th><th><ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>39</th><th>39</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.2			29	27	7	0.02	<ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>39</th><th>39</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.4	0.08	0	39	39	0					
Azote total	mg/l	0.5																									37	22	41	0.2	<ld< th=""><th>2.4</th><th>0.48</th><th>0</th></ld<>	2.4	0.48	0
Eh	mV																				_						39	0	100	222.8	60	294	52.59	228
O² Dissous	mg/l																										24	0	100	6.4	2.03	8.98	1.86	6.65

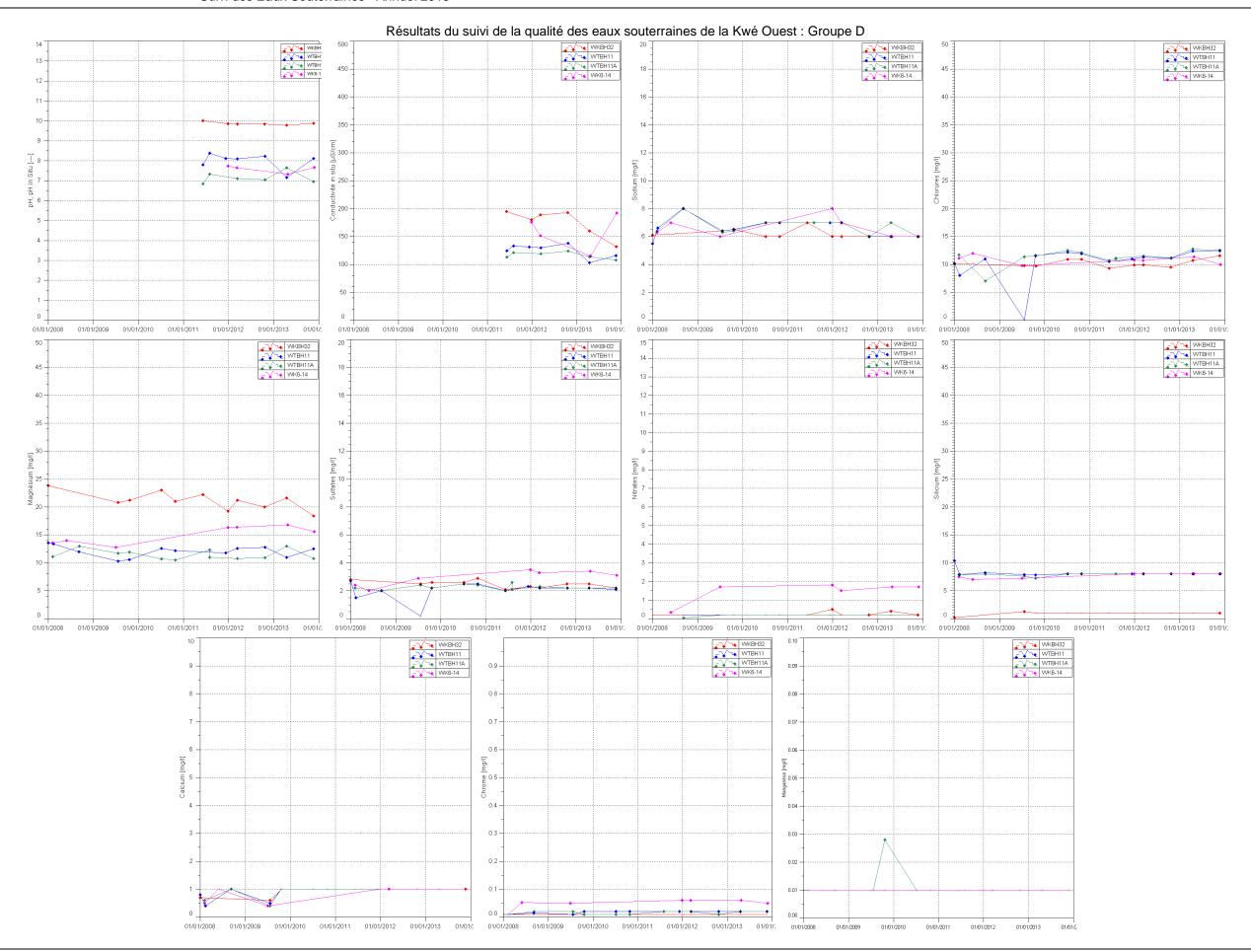
Gre	oupe D					2010								2011								2012								2013				
Paramètre	Unité	LD	Total Analys	Nb Analys < LD	% Valeurs Expoitabl	Моу	Min	Max	Ecart- type	Mediane	Total Analys	Nb Analys < LD	% Valeurs Expoitabl	Моу	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Моу	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Моу	Min	Max	Ecart- type	Mediane
рН	-	-	6	0	100	8.27	7	9.7	1.13	7.95	8	0	100	8.15	6.7	9.9	1.19	7.9	7	0	100	8.25	7.04	9.83	1.17	8.1	6	0	100	8.3	6.96	9.87	1.28	7.89
cond	μS/cm	-	3	0	100	155.33	124	206	44.29	136	8	0	100	150.38	121	206	32.16	133.5	7	0	100	149.14	119	193	30.41	138	6	0	100	122.2	103	160	20.98	115
AI	mg/l	0.1	6	6	0						6	6	0						7	7	0						6	6	0					
As	mg/l	0.05	6	6	0						5	5	0						7	7	0						6	6	0					
Ca	mg/l	0.1	6	6	0						6	6	0						7	6	14		<ld< th=""><th>1</th><th></th><th></th><th>6</th><th>5</th><th>17</th><th></th><th><ld< th=""><th>1</th><th></th><th></th></ld<></th></ld<>	1			6	5	17		<ld< th=""><th>1</th><th></th><th></th></ld<>	1		
CI	mg/l	0.1	6	0	100	11.75	10.9	12.5	0.69	12	8	0	100	10.54	9.3	11.1	0.63	10.8	7	0	100	10.74	9.5	11.5	0.76	11.1	6	0	100	12.1	10.7	12.8	0.78	12.4
Со	mg/l	0.01	6	6	0						6	6	0						6	6	0						6	6	0					
Cr	mg/l	0.01	6	2	67	0.01	<ld< th=""><th>0.02</th><th>0.01</th><th>0.01</th><th>6</th><th>2</th><th>67</th><th>0.02</th><th><ld< th=""><th>0.06</th><th>0.02</th><th>0</th><th>7</th><th>2</th><th>71</th><th>0.02</th><th><ld< th=""><th>0.06</th><th>0.02</th><th>0</th><th>6</th><th>2</th><th>67</th><th>0.013</th><th><ld< th=""><th>0.02</th><th>0.01</th><th>0.02</th></ld<></th></ld<></th></ld<></th></ld<>	0.02	0.01	0.01	6	2	67	0.02	<ld< th=""><th>0.06</th><th>0.02</th><th>0</th><th>7</th><th>2</th><th>71</th><th>0.02</th><th><ld< th=""><th>0.06</th><th>0.02</th><th>0</th><th>6</th><th>2</th><th>67</th><th>0.013</th><th><ld< th=""><th>0.02</th><th>0.01</th><th>0.02</th></ld<></th></ld<></th></ld<>	0.06	0.02	0	7	2	71	0.02	<ld< th=""><th>0.06</th><th>0.02</th><th>0</th><th>6</th><th>2</th><th>67</th><th>0.013</th><th><ld< th=""><th>0.02</th><th>0.01</th><th>0.02</th></ld<></th></ld<>	0.06	0.02	0	6	2	67	0.013	<ld< th=""><th>0.02</th><th>0.01</th><th>0.02</th></ld<>	0.02	0.01	0.02
Cu	mg/l	0.01	6	6	0						6	6	0						7	5	29	0.01	<ld< th=""><th>0.05</th><th>0.02</th><th>0</th><th>6</th><th>6</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.05	0.02	0	6	6	0					
Fe	mg/l	0.1	6	5	17		<ld< th=""><th>0.1</th><th></th><th></th><th>6</th><th>6</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>7</th><th>6</th><th>14</th><th></th><th><ld< th=""><th>0.3</th><th></th><th></th><th>6</th><th>6</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.1			6	6	0						7	6	14		<ld< th=""><th>0.3</th><th></th><th></th><th>6</th><th>6</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.3			6	6	0					
К	mg/l	0.1	6	0	100	0.27	0.2	0.5	0.12	0.2	6	0	100	0.43	0.2	1	0.31	0.3	7	0	100	0.31	0.2	0.5	0.15	0.2	6	0	100	0.5	0.2	1.3	0.45	0.2
Mg	mg/l	0.1	6	0	100	15	10.5	23	5.52	12.4	6	0	100	15.48	11	22.2	4.56	14.3	7	0	100	14.96	10.8	21.2	4.29	12.8	6	0	100	14.55	10.8	21.6	4.42	12.75
Mn	mg/l	0.01	6	6	0						6	6	0						7	7	0						6	6	0					
Na	mg/l	0.5	6	0	100	6.67	6	7	0.52	7	6	0	100	7	6	8	0.63	7	7	0	100	6.43	6	7	0.53	6	6	0	100	6.2	6	7	0.41	6
Ni	mg/l	0.01	6	5	17		<ld< th=""><th>0.01</th><th></th><th></th><th>6</th><th>4</th><th>33</th><th>0.01</th><th><ld< th=""><th>0.03</th><th>0.01</th><th>0</th><th>7</th><th>5</th><th>29</th><th>0.01</th><th><ld< th=""><th>0.03</th><th>0.01</th><th>0</th><th>6</th><th>4</th><th>33</th><th>0.003</th><th><ld< th=""><th>0.01</th><th>0.01</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	0.01			6	4	33	0.01	<ld< th=""><th>0.03</th><th>0.01</th><th>0</th><th>7</th><th>5</th><th>29</th><th>0.01</th><th><ld< th=""><th>0.03</th><th>0.01</th><th>0</th><th>6</th><th>4</th><th>33</th><th>0.003</th><th><ld< th=""><th>0.01</th><th>0.01</th><th>0</th></ld<></th></ld<></th></ld<>	0.03	0.01	0	7	5	29	0.01	<ld< th=""><th>0.03</th><th>0.01</th><th>0</th><th>6</th><th>4</th><th>33</th><th>0.003</th><th><ld< th=""><th>0.01</th><th>0.01</th><th>0</th></ld<></th></ld<>	0.03	0.01	0	6	4	33	0.003	<ld< th=""><th>0.01</th><th>0.01</th><th>0</th></ld<>	0.01	0.01	0
NO2	mg/l	0.01	3	3	0														6	6	0						4	4	0					
NO3	mg/l	0.1	6	6	0						8	6	25	0.29	<ld< th=""><th>1.8</th><th>0.64</th><th>0</th><th>7</th><th>5</th><th>29</th><th>0.24</th><th><ld< th=""><th>1.5</th><th>0.56</th><th>0</th><th>6</th><th>4</th><th>33</th><th>0.10</th><th><ld< th=""><th>0.4</th><th>0.17</th><th>0</th></ld<></th></ld<></th></ld<>	1.8	0.64	0	7	5	29	0.24	<ld< th=""><th>1.5</th><th>0.56</th><th>0</th><th>6</th><th>4</th><th>33</th><th>0.10</th><th><ld< th=""><th>0.4</th><th>0.17</th><th>0</th></ld<></th></ld<>	1.5	0.56	0	6	4	33	0.10	<ld< th=""><th>0.4</th><th>0.17</th><th>0</th></ld<>	0.4	0.17	0
Pb	mg/l	0.1	6	6	0						6	6	0						7	7	0						6	6	0					
PO4	mg/l	0.2	6	6	0						8	8	0						7	7	0						6	6	0					
s	mg/l	1	6	6	0						6	5	17	0.17	<ld< th=""><th>1</th><th>0.41</th><th>0</th><th>7</th><th>4</th><th>43</th><th>0.43</th><th><ld< th=""><th>1</th><th>0.53</th><th>0</th><th>6</th><th>6</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	1	0.41	0	7	4	43	0.43	<ld< th=""><th>1</th><th>0.53</th><th>0</th><th>6</th><th>6</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	1	0.53	0	6	6	0					
Si	mg/l	0.4	6	2	67	5.33	<ld< th=""><th>8</th><th>4.13</th><th>8</th><th>6</th><th>2</th><th>67</th><th>5.33</th><th><ld< th=""><th>8</th><th>4.13</th><th>8</th><th>7</th><th>2</th><th>71</th><th>5.71</th><th><ld< th=""><th>8</th><th>3.9</th><th>8</th><th>6</th><th>1</th><th>83</th><th>5.5</th><th><ld< th=""><th>8</th><th>3.89</th><th>8</th></ld<></th></ld<></th></ld<></th></ld<>	8	4.13	8	6	2	67	5.33	<ld< th=""><th>8</th><th>4.13</th><th>8</th><th>7</th><th>2</th><th>71</th><th>5.71</th><th><ld< th=""><th>8</th><th>3.9</th><th>8</th><th>6</th><th>1</th><th>83</th><th>5.5</th><th><ld< th=""><th>8</th><th>3.89</th><th>8</th></ld<></th></ld<></th></ld<>	8	4.13	8	7	2	71	5.71	<ld< th=""><th>8</th><th>3.9</th><th>8</th><th>6</th><th>1</th><th>83</th><th>5.5</th><th><ld< th=""><th>8</th><th>3.89</th><th>8</th></ld<></th></ld<>	8	3.9	8	6	1	83	5.5	<ld< th=""><th>8</th><th>3.89</th><th>8</th></ld<>	8	3.89	8
SiO2	mg/l	1	3	0	100	12.03	1.8	17.9	8.89	16.4	6	1	83	11.67	<ld< th=""><th>18</th><th>8.38</th><th>16.6</th><th>7</th><th>0</th><th>100</th><th>12.33</th><th>1.1</th><th>17</th><th>7.6</th><th>16.6</th><th>6</th><th>0</th><th>100</th><th>12</th><th>1.4</th><th>17.5</th><th>7.69</th><th>16.5</th></ld<>	18	8.38	16.6	7	0	100	12.33	1.1	17	7.6	16.6	6	0	100	12	1.4	17.5	7.69	16.5
SO4	mg/l	0.2	6	0	100	2.57	2.4	2.9	0.18	2.5	8	0	100	2.36	2	3.5	0.5	2.2	7	0	100	2.41	2.2	3.3	0.41	2.2	6	0	100	2.2	2.1	2.5	0.14	2.2
TA as CaCO3	mg/l	25	6	4	33	6.83	<ld< th=""><th>23</th><th>10.7</th><th>0</th><th>3</th><th>2</th><th>33</th><th>9</th><th><ld< th=""><th>27</th><th>15.59</th><th>0</th><th>7</th><th>6</th><th>14</th><th></th><th><ld< th=""><th>18</th><th></th><th></th><th>6</th><th>5</th><th>17</th><th></th><th><ld< th=""><th>24</th><th></th><th></th></ld<></th></ld<></th></ld<></th></ld<>	23	10.7	0	3	2	33	9	<ld< th=""><th>27</th><th>15.59</th><th>0</th><th>7</th><th>6</th><th>14</th><th></th><th><ld< th=""><th>18</th><th></th><th></th><th>6</th><th>5</th><th>17</th><th></th><th><ld< th=""><th>24</th><th></th><th></th></ld<></th></ld<></th></ld<>	27	15.59	0	7	6	14		<ld< th=""><th>18</th><th></th><th></th><th>6</th><th>5</th><th>17</th><th></th><th><ld< th=""><th>24</th><th></th><th></th></ld<></th></ld<>	18			6	5	17		<ld< th=""><th>24</th><th></th><th></th></ld<>	24		
Zn	mg/l	0.1	6	6	0						6	5	17	0.03	<ld< th=""><th>0.2</th><th>0.08</th><th>0</th><th>7</th><th>5</th><th>29</th><th>0.06</th><th><ld< th=""><th>0.3</th><th>0.11</th><th>0</th><th>6</th><th>6</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.2	0.08	0	7	5	29	0.06	<ld< th=""><th>0.3</th><th>0.11</th><th>0</th><th>6</th><th>6</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.3	0.11	0	6	6	0					
Azote total	mg/l	0.5																									6	4	33	0.07	<ld< th=""><th>0.3</th><th>0.12</th><th>0</th></ld<>	0.3	0.12	0
Eh	mV																										6	0	100	180.8	138	214	29.54	181.5
O² Dissous	mg/l																										6	0	100	7.7	4.1	9.39	1.91	8.33

ANNEXE II


Suivi de la qualité des eaux souterraines de la Kwé Ouest :

Piézomètres des groupes A, B, C et D





ANNEXE III

Résultats du suivi des eaux souterraines de l'Usine

Tableau d'exploitation statistique des analyses

Piezomètres court	ts: 6-1A, 6-2A, 6-3A,	6-7A, 6-8A, 6-14A				2011								2012								2013				
Analyte	Unité	LD	Total Analyse	Nb Analyse< LD	% Valeur Expoitable	Моу	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeur Expoitable	Моу	Min	Max	Ecart- type	Mediane	Total Analyse	Nb Analyses < LD	% Valeurs Expoitable	Моу	Min	Max	Ecart-type	Mediane
pН	-	-	24	0	100	6.5	5.5	7.3	0.42	6.5	22	0	100	6.2	4.28	7.29	0.68	6.31	14	0	100	5.8	2.72	6.94	1.04	5.91
cond	μS/cm	-	24	0	100	148.2	76.6	281.0	55.34	152.5	22	0	100	158.5	72.8	502	96.05	130	14	0	100	248.8	71.9	651	206.88	158
Ca	mg/l	0.1	24	12	50	2.3	<ld< td=""><td>17.0</td><td>3.63</td><td>0.5</td><td>25</td><td>12</td><td>52</td><td>2.1</td><td><ld< td=""><td>9</td><td>2.44</td><td>3</td><td>14</td><td>6</td><td>57</td><td>3.43</td><td><ld< td=""><td>11</td><td>4.24</td><td>2</td></ld<></td></ld<></td></ld<>	17.0	3.63	0.5	25	12	52	2.1	<ld< td=""><td>9</td><td>2.44</td><td>3</td><td>14</td><td>6</td><td>57</td><td>3.43</td><td><ld< td=""><td>11</td><td>4.24</td><td>2</td></ld<></td></ld<>	9	2.44	3	14	6	57	3.43	<ld< td=""><td>11</td><td>4.24</td><td>2</td></ld<>	11	4.24	2
CI	mg/l		22	0	100	16.1	11.5	34.7	5.49	14.6	23	0	100	17.95	12.4	35.7	6.86	15.2	10	0	100	16.4	13	21.4	2.70	16
Cr	mg/l	0.01	24	3	88	0.04	<ld< td=""><td>0.1</td><td>0.05</td><td>0</td><td>25</td><td>4</td><td>84</td><td>0.04</td><td><ld< td=""><td>0.15</td><td>0.05</td><td>0.02</td><td>14</td><td>1</td><td>93</td><td>0.06</td><td><ld< td=""><td>0.2</td><td>0.06</td><td>0.025</td></ld<></td></ld<></td></ld<>	0.1	0.05	0	25	4	84	0.04	<ld< td=""><td>0.15</td><td>0.05</td><td>0.02</td><td>14</td><td>1</td><td>93</td><td>0.06</td><td><ld< td=""><td>0.2</td><td>0.06</td><td>0.025</td></ld<></td></ld<>	0.15	0.05	0.02	14	1	93	0.06	<ld< td=""><td>0.2</td><td>0.06</td><td>0.025</td></ld<>	0.2	0.06	0.025
CrVI	mg/l	0.01	24	6	75	0.04	<ld< td=""><td>0.2</td><td>0.05</td><td>0</td><td>25</td><td>3</td><td>88</td><td>0.04</td><td><ld< td=""><td>0.16</td><td>0.05</td><td>0.03</td><td>14</td><td>8</td><td>43</td><td>0.03</td><td><ld< td=""><td>0.11</td><td>0.04</td><td>0</td></ld<></td></ld<></td></ld<>	0.2	0.05	0	25	3	88	0.04	<ld< td=""><td>0.16</td><td>0.05</td><td>0.03</td><td>14</td><td>8</td><td>43</td><td>0.03</td><td><ld< td=""><td>0.11</td><td>0.04</td><td>0</td></ld<></td></ld<>	0.16	0.05	0.03	14	8	43	0.03	<ld< td=""><td>0.11</td><td>0.04</td><td>0</td></ld<>	0.11	0.04	0
Cu	mg/l	0.03 et 0.01	24	24	0						25	25	0						14	14	0					
DCO	mg/l	10	23	21	9	1.5	<ld< td=""><td>21</td><td>5.04</td><td>0</td><td>29</td><td>26</td><td>10</td><td>1.41</td><td><ld< td=""><td>16</td><td>4.27</td><td>0</td><td>19</td><td>15</td><td>21</td><td>3.4</td><td><ld< td=""><td>21</td><td>7.09</td><td>0</td></ld<></td></ld<></td></ld<>	21	5.04	0	29	26	10	1.41	<ld< td=""><td>16</td><td>4.27</td><td>0</td><td>19</td><td>15</td><td>21</td><td>3.4</td><td><ld< td=""><td>21</td><td>7.09</td><td>0</td></ld<></td></ld<>	16	4.27	0	19	15	21	3.4	<ld< td=""><td>21</td><td>7.09</td><td>0</td></ld<>	21	7.09	0
нт	mg/kg	0.5	19	19	0						29	29	0						12	11	8		<ld< td=""><td>0.6</td><td></td><td></td></ld<>	0.6		
κ	mg/l	0.3	24	0	100	0.5	0.2	1.2	0.30	0.3	25	0	100	0.48	0.2	1	0.28	0.3	14	0	100	0.5	0.1	0.9	0.27	0.45
Na	mg/l	0.5	24	0	100	8.7	7	12	1.30	8.5	25	0	100	8.48	7	11	1.16	8	14	0	100	8.3	7	10	1.07	8
SO4	mg/l	0.2	23	0	100	11.1	1.2	62.9	15.24	3.8	24	0	100	21.43	1.8	171	39.03	3.35	14	0	100	58.5	1.9	243	89.70	4.4
TA as CaCO3	mg/l	25 et 2	24	24	0						23	12	48	11.25	<ld< td=""><td>24.8</td><td>12.02</td><td>0</td><td>14</td><td>14</td><td>0</td><td></td><td></td><td></td><td></td><td></td></ld<>	24.8	12.02	0	14	14	0					
TAC as CaCO3	mg/l	25 et 2	24	0	100	32	8	86	18.40	30.5	25	13	48	14.64	<ld< td=""><td>54</td><td>18.03</td><td>0</td><td>14</td><td>0</td><td>100</td><td>31.5</td><td>14</td><td>55</td><td>12.53</td><td>31.5</td></ld<>	54	18.03	0	14	0	100	31.5	14	55	12.53	31.5
Zn	mg/l	0.1	24	24	0						25	25	0						14	14	0					

Piézomètres long	gs: 6-1, 6-2, 6-3, 6-4, 6-13, 6-14	6-5, 6-6, 6-7, 6-8,				2011								2012								2013				
Analyte	Unité	LD	Total Analyse	Nb Analyse < LD	% Valeur Expoitable	Моу	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitable	Моу	Min	Max	Ecart- type	Mediane	Total Analyse	Nb Analyses < LD	% Valeurs Expoitable	Moyenne	Min	Max	Ecart-type	Mediane
рН	-	-	33	0	100	7.7	6.7	9.4	0.80	7.6	35	0	100	7.5	5.25	9.55	0.95	7.44	20	0	100	7.3	5.45	9.27	1.0	7.27
cond	μS/cm	-	33	0	100	177.1	88.5	268.0	54.61	188	36	0	100	185.5	93.7	337	62.92	186.5	20	0	100	164.8	88.9	254	45.4	166.5
Ca	mg/l	0.1	36	11	69	1.4	<ld< th=""><th>8.0</th><th>1.59</th><th>1</th><th>36</th><th>13</th><th>64</th><th>0.9</th><th><ld< th=""><th>3</th><th>0.84</th><th>1</th><th>20</th><th>8</th><th>60</th><th>0.9</th><th>0</th><th>3</th><th>1.0</th><th>1</th></ld<></th></ld<>	8.0	1.59	1	36	13	64	0.9	<ld< th=""><th>3</th><th>0.84</th><th>1</th><th>20</th><th>8</th><th>60</th><th>0.9</th><th>0</th><th>3</th><th>1.0</th><th>1</th></ld<>	3	0.84	1	20	8	60	0.9	0	3	1.0	1
CI	mg/l		35	0	100	13.7	10.9	21.2	2.63	12.6	36	1	97	14.2	<ld< th=""><th>24.4</th><th>4.42</th><th>12.95</th><th>17</th><th>0</th><th>100</th><th>14.8</th><th>12.1</th><th>21.6</th><th>2.8</th><th>13.8</th></ld<>	24.4	4.42	12.95	17	0	100	14.8	12.1	21.6	2.8	13.8
Cr	mg/l	0.01	36	17	53	0.03	<ld< th=""><th>0.2</th><th>0.06</th><th>0</th><th>36</th><th>19</th><th>47</th><th>0.02</th><th><ld< th=""><th>0.19</th><th>0.05</th><th>0</th><th>20</th><th>10</th><th>50</th><th>0.03</th><th><ld< th=""><th>0.16</th><th>0.1</th><th>0.005</th></ld<></th></ld<></th></ld<>	0.2	0.06	0	36	19	47	0.02	<ld< th=""><th>0.19</th><th>0.05</th><th>0</th><th>20</th><th>10</th><th>50</th><th>0.03</th><th><ld< th=""><th>0.16</th><th>0.1</th><th>0.005</th></ld<></th></ld<>	0.19	0.05	0	20	10	50	0.03	<ld< th=""><th>0.16</th><th>0.1</th><th>0.005</th></ld<>	0.16	0.1	0.005
CrVI	mg/l	0.01	36	13	64	0.03	<ld< th=""><th>0.2</th><th>0.05</th><th>0</th><th>34</th><th>17</th><th>50</th><th>0.02</th><th><ld< th=""><th>0.2</th><th>0.04</th><th>0.005</th><th>20</th><th>15</th><th>25</th><th>0.02</th><th><ld< th=""><th>0.16</th><th>0.0</th><th>0</th></ld<></th></ld<></th></ld<>	0.2	0.05	0	34	17	50	0.02	<ld< th=""><th>0.2</th><th>0.04</th><th>0.005</th><th>20</th><th>15</th><th>25</th><th>0.02</th><th><ld< th=""><th>0.16</th><th>0.0</th><th>0</th></ld<></th></ld<>	0.2	0.04	0.005	20	15	25	0.02	<ld< th=""><th>0.16</th><th>0.0</th><th>0</th></ld<>	0.16	0.0	0
Cu	mg/l	0.03 et 0.01	36	33	8	0.0	<ld< th=""><th>0.0</th><th>0.01</th><th>0</th><th>36</th><th>36</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>20</th><th>20</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.0	0.01	0	36	36	0						20	20	0					
DCO	mg/l	10	36	32	11	3.03	<ld< th=""><th>78.0</th><th>13.18</th><th>0</th><th>39</th><th>36</th><th>8</th><th>1.0</th><th><ld< th=""><th>17</th><th>3.53</th><th>0</th><th>29</th><th>24</th><th>17</th><th>4.2</th><th><ld< th=""><th>38</th><th>9.8</th><th>0</th></ld<></th></ld<></th></ld<>	78.0	13.18	0	39	36	8	1.0	<ld< th=""><th>17</th><th>3.53</th><th>0</th><th>29</th><th>24</th><th>17</th><th>4.2</th><th><ld< th=""><th>38</th><th>9.8</th><th>0</th></ld<></th></ld<>	17	3.53	0	29	24	17	4.2	<ld< th=""><th>38</th><th>9.8</th><th>0</th></ld<>	38	9.8	0
нт	mg/kg	0.5	36	36	0						43	41	5	0.4	<ld< th=""><th>15</th><th>2.29</th><th>0</th><th>20</th><th>17</th><th>15</th><th>0.3</th><th><ld< th=""><th>3.3</th><th>0.8</th><th>0</th></ld<></th></ld<>	15	2.29	0	20	17	15	0.3	<ld< th=""><th>3.3</th><th>0.8</th><th>0</th></ld<>	3.3	0.8	0
κ	mg/l	0.3	36	0	100	0.3	0.2	0.6	0.12	0.3	27	0	100	0.3	0.2	0.6	0.13	0.3	20	0	100	0.3	0.1	0.5	0.1	0.2
Na	mg/l	0.5	36	0	100	8.4	7	13	1.50	8	36	0	100	8.7	6	16	2.41	8	20	0	100	8.9	7	18	2.9	8
SO4	mg/l	0.2	35	1	97	4.1	<ld< th=""><th>21.1</th><th>5.45</th><th>2.5</th><th>36</th><th>0</th><th>100</th><th>4.9</th><th>0.8</th><th>24.9</th><th>6.7</th><th>2.6</th><th>20</th><th>0</th><th>100</th><th>4.4</th><th>0.9</th><th>26.2</th><th>6.9</th><th>2.2</th></ld<>	21.1	5.45	2.5	36	0	100	4.9	0.8	24.9	6.7	2.6	20	0	100	4.4	0.9	26.2	6.9	2.2
TA as CaCO3	mg/l	25 et 2	36	28	22	2.4	<ld< th=""><th>17</th><th>4.91</th><th>0</th><th>36</th><th>14</th><th>61</th><th>12.6</th><th><ld< th=""><th>29</th><th>11.59</th><th>14.7</th><th>20</th><th>18</th><th>10</th><th>1.2</th><th><ld< th=""><th>14</th><th>3.8</th><th>0</th></ld<></th></ld<></th></ld<>	17	4.91	0	36	14	61	12.6	<ld< th=""><th>29</th><th>11.59</th><th>14.7</th><th>20</th><th>18</th><th>10</th><th>1.2</th><th><ld< th=""><th>14</th><th>3.8</th><th>0</th></ld<></th></ld<>	29	11.59	14.7	20	18	10	1.2	<ld< th=""><th>14</th><th>3.8</th><th>0</th></ld<>	14	3.8	0
TAC as CaCO3	mg/l	25 et 2	36	0	100	69.2	22	132	30.02	75	36	14	61	34.0	<ld< th=""><th>112</th><th>37.44</th><th>21.5</th><th>20</th><th>0</th><th>100</th><th>68.7</th><th>22</th><th>129</th><th>27.9</th><th>78</th></ld<>	112	37.44	21.5	20	0	100	68.7	22	129	27.9	78
Zn	mg/l	0.1	36	35	3		<ld< th=""><th>0.3</th><th></th><th></th><th>36</th><th>35</th><th>3</th><th></th><th><ld< th=""><th>0.3</th><th></th><th></th><th>20</th><th>20</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.3			36	35	3		<ld< th=""><th>0.3</th><th></th><th></th><th>20</th><th>20</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.3			20	20	0					

ANNEXE IV

Résultats du suivi des eaux souterraines de l'UPM

Tableau d'exploitation statistique des analyses

Piézomètres: 42	Z-1, 4Z-2,	4Z-4, 4Z-5				2011								2012								2013				
Paramètres	Unité	LD	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Moy	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Моу	Min	Мах	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Moy	Min	Max	Ecart- type	Mediane
рН	-	-	16	0	100	7.8	6.5	8.7	0.8	7.9	12	0	100	7.4	5.17	8.7	1.1	7.54	8	0	100	7.5	6.16	8.56	1.0	7.6
cond	μS/cm	-	16	0	100	146.3	109	172	16.9	148	12	0	100	134.7	89.1	165	21.8	137	8	0	100	129.2	92.4	158	21.3	130
Ca	mg/l	0.1	16	7	56	1.1	<ld< td=""><td>3</td><td>1.3</td><td>1.0</td><td>12</td><td>6</td><td>50</td><td>1.2</td><td><ld< td=""><td>5</td><td>1.7</td><td>0.5</td><td>8</td><td>7</td><td>13</td><td></td><td><ld< td=""><td>1</td><td></td><td></td></ld<></td></ld<></td></ld<>	3	1.3	1.0	12	6	50	1.2	<ld< td=""><td>5</td><td>1.7</td><td>0.5</td><td>8</td><td>7</td><td>13</td><td></td><td><ld< td=""><td>1</td><td></td><td></td></ld<></td></ld<>	5	1.7	0.5	8	7	13		<ld< td=""><td>1</td><td></td><td></td></ld<>	1		
CI	mg/l		16	0	100	10.7	8.8	13.3	1.5	10.5	8	0	100	12.2	9.3	15.8	2.5	12.2	6	0	100	12.1	10.6	14.7	1.5	11.6
Cr	mg/l	0.01	16	13	19	0.003	<ld< td=""><td>0.02</td><td>0.01</td><td>0.0</td><td>12</td><td>11</td><td>8</td><td></td><td><ld< td=""><td>0.02</td><td></td><td></td><td>8</td><td>8</td><td>0</td><td></td><td></td><td></td><td></td><td></td></ld<></td></ld<>	0.02	0.01	0.0	12	11	8		<ld< td=""><td>0.02</td><td></td><td></td><td>8</td><td>8</td><td>0</td><td></td><td></td><td></td><td></td><td></td></ld<>	0.02			8	8	0					
CrVI	mg/l	0.01	16	11	31	0.006	<ld< td=""><td>0.03</td><td>0.01</td><td>0.0</td><td>12</td><td>11</td><td>8</td><td></td><td><ld< td=""><td>0.01</td><td></td><td></td><td>8</td><td>8</td><td>0</td><td></td><td></td><td></td><td></td><td></td></ld<></td></ld<>	0.03	0.01	0.0	12	11	8		<ld< td=""><td>0.01</td><td></td><td></td><td>8</td><td>8</td><td>0</td><td></td><td></td><td></td><td></td><td></td></ld<>	0.01			8	8	0					
DCO	mg/l	10	15	11	27	5.1	<ld< td=""><td>36.0</td><td>10.3</td><td>0.0</td><td>16</td><td>8</td><td>50</td><td>7</td><td><ld< td=""><td>21</td><td>7.6</td><td>5</td><td>16</td><td>13</td><td>19</td><td>2.4</td><td><ld< td=""><td>19</td><td>5.6</td><td>0</td></ld<></td></ld<></td></ld<>	36.0	10.3	0.0	16	8	50	7	<ld< td=""><td>21</td><td>7.6</td><td>5</td><td>16</td><td>13</td><td>19</td><td>2.4</td><td><ld< td=""><td>19</td><td>5.6</td><td>0</td></ld<></td></ld<>	21	7.6	5	16	13	19	2.4	<ld< td=""><td>19</td><td>5.6</td><td>0</td></ld<>	19	5.6	0
HT	mg/kg	0.5	13	13	0						11	11	0						14	13	7		<ld< td=""><td>0.5</td><td></td><td></td></ld<>	0.5		
κ	mg/l	0.3 et 0.1	16	0	100	0.4	0.2	0.7	0.2	0.3	12	0	100	0.5	0.2	1.7	0.5	0.2	8	0	100	0.4	0.1	1	0.4	0.2
Na	mg/l	0.5	16	0	100	6.1	5	7	0.4	6.0	12	0	100	6.3	5	9	1.5	6	8	0	100	5.9	5	8	1.4	5
S	mg/l	1	16	10	38	0.8	<ld< th=""><th>2</th><th>1</th><th>0.0</th><th>12</th><th>5</th><th>7</th><th>1.5</th><th><ld< th=""><th>9</th><th>2.5</th><th>1</th><th>8</th><th>3</th><th>63</th><th>1.4</th><th><ld< th=""><th>3</th><th>1.2</th><th>2</th></ld<></th></ld<></th></ld<>	2	1	0.0	12	5	7	1.5	<ld< th=""><th>9</th><th>2.5</th><th>1</th><th>8</th><th>3</th><th>63</th><th>1.4</th><th><ld< th=""><th>3</th><th>1.2</th><th>2</th></ld<></th></ld<>	9	2.5	1	8	3	63	1.4	<ld< th=""><th>3</th><th>1.2</th><th>2</th></ld<>	3	1.2	2
SO4	mg/l	0.2	16	0	100	3.3	1.50	6.4	1.9	2.4	12	0	100	6.3	1.7	30.1	7.7	5	8	0	100	4.4	1.3	8.6	2.5	4.95
TA as CaCO3	mg/l	25 et 2	16	13	19	0.5	<ld< th=""><th>3</th><th>1.1</th><th>0.0</th><th>12</th><th>11</th><th>1</th><th></th><th><ld< th=""><th>2</th><th></th><th></th><th>8</th><th>8</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	3	1.1	0.0	12	11	1		<ld< th=""><th>2</th><th></th><th></th><th>8</th><th>8</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	2			8	8	0					
TAC as CaCO3	mg/l	25 et 2	16	0	100	55.9	39	71	11.6	60	12	0	100	46.5	27	66	14.8	48.5	8	0	100	44.3	10	66	18.4	45