

RAPPORT D'ESSAI

Qualité de l'Air Mesure des concentrations de SO₂

Réalisé par

BUREAU VERITAS

685, Rue Georges Claude CS 60401 13591 AIX EN PROVENCE CEDEX 03 Pour

VALE NOUVELLE CALEDONIE

SITE DE GORO 98800 MONT DORE Nouvelle Calédonie

Rapport N°: 003984-259611/3/1/1 indice 0

A l'attention de Yann VESSILLER

Rapport N° 003984-2596131/3/1/1 Signataire du rapport : Bertrand SIMON

le: 17/06/2013

RAPPORT D'ESSAI

Qualité de l'Air Mesure des concentrations de SO₂

Période du : 27 Mars au 26 Avril 2013

Lieu d'intervention : Site de Goro et sa périphérie

Suivi documentaire:

Indice	Date	Emetteur	Commentaires
0	17/06/13	B.SIMON	Edition du document
1			
2			

Ce rapport comporte 30 pages.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale

N°rapport : 2596131/3/1/1 indice 0 date 17/06/13 Page 2 / 30

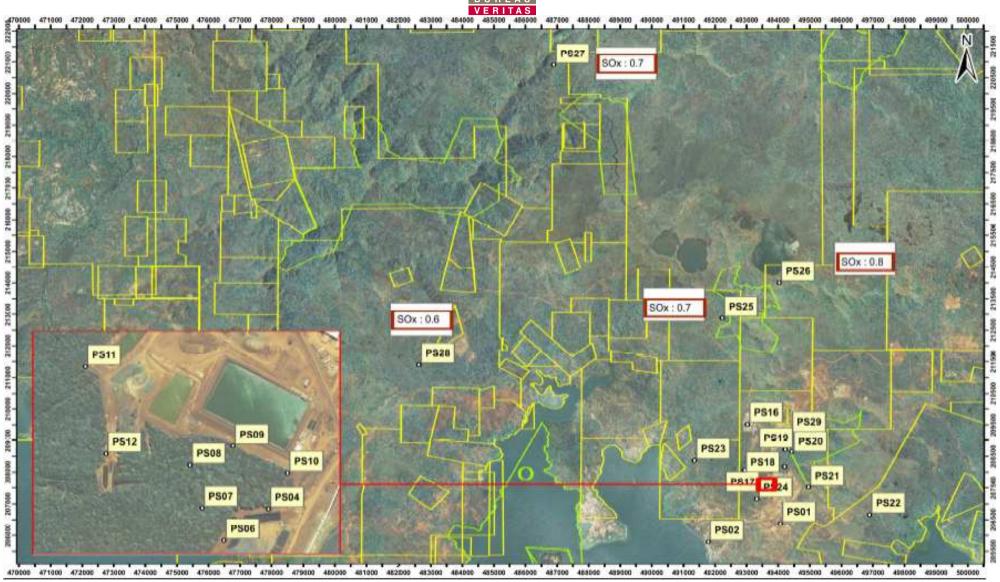
1.	SYNTHESE DES RESULTATS	4
	VALEURS DE REFERENCES ET COMMENTAIRES SUR LES RESUL	
3.	OBJET DE LA MISSION	9
4.	PLAN D'ECHANTILLONNAGE	9
<u>Ect</u>	hantillonnage spatial :	9
<u>Ec</u>	hantillonnage temporel :	11
5.	ACTIVITE DU SITE	12
6.	DONNEES METEOROLOGIQUES	12
7.	CONDITIONS DE MESURAGE ET VALIDITE DES ESSAIS	13
8.	METHODOLOGIE	15
9.	ANNEXESANNEXE 1 – FICHES TECHNIQUES ECHANTILLONNEURS	
	ANNEXE 1 – HOHES TECHNIQUES ECHANTILLONNEURS	
	ANNEXE 3 – DONNEES METEOROLOGIQUES	27
	ANNEXE 4 – RESULTATS LABORATOIRES	28

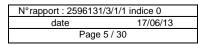
1. SYNTHESE DES RESULTATS

Synthèse des résultats des mesures réalisées sur la période du 27 Mars au 26 Avril 2013 :

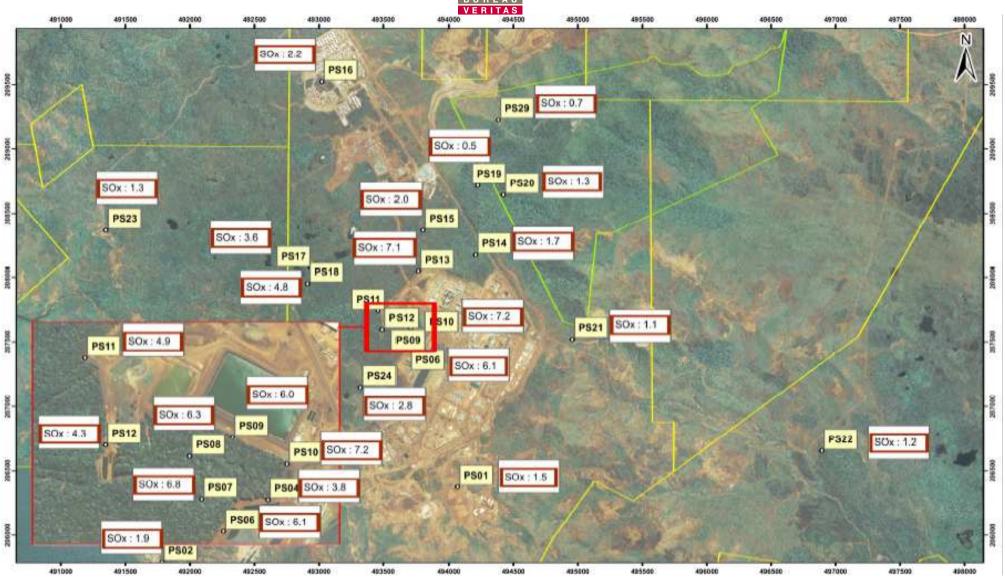
Les mesures par échantillonnage passif permettent de connaître les valeurs moyennes des concentrations en polluants correspondant à la période d'exposition.

Les résultats suivants sont issus des concentrations moyennes par polluant et par site de mesure fournis par le laboratoire d'analyse. Il s'agit des données brutes.


Identification point de	SO2		
mesure	Concentration (en µg/m3)		
PS 1	1.5		
PS 2	1.9		
PS 3	6.2		
PS 4	3.8		
PS 5	4.7		
PS 6	6.1		
PS 7	6.8		
PS 8	6.3		
PS 9	6.0		
PS 10	7.2		
PS 11	4.9		
PS 12	4.3		
PS 13	7.1		
PS 14	1.7		
PS 15	2.0		
PS 16	2.2		
PS 17	3.6		
PS 18	4.8		
PS 19	0.5		
PS 20	1.3		
PS 21	1.1		
PS 22	1.2		
PS 23	1.3		
PS 24	2.8		
PS 25	0.7		
PS 26	0.8		
PS 27	0.7		
PS 28	0.6		
PS 29	0.7		
Blanc	<0.3		


Représentations spatiales des résultats des mesures réalisées sur la période du 27 Mars au 26 Avril 2013 :

Les différents résultats présentés sur les cartes sont exprimés en µg/m3.


ĺ	N°rapport : 2596131/	3/1/1 indice 0			
	date	17/06/13			
	Page 4 / 30				

N°rapport : 2596131/3	3/1/1 indice 0			
date	17/06/13			
Page 6 / 30				

2. VALEURS DE REFERENCES ET COMMENTAIRES SUR LES RESULTATS DES ESSAIS

Valeurs de références :

Votre activité de production de Nickel est concernée par l'arrêté d'autorisation sur les installations classées pour la protection de l'environnement n°1467-2008/P S du 9 Octobre 2008.

Cet arrêté impose une surveillance de la qualité de l'air par le biais d'un réseau de stations de mesures en continues, et il définit les valeurs de références qui lui sont applicables.

Ces valeurs de références sont indiquées dans le tableau ci-dessous :

	Dioxyde de soufre (SO2)
Objectif de qualité	Moyenne annuelle : 50 μg/m3
Seuil de recommandation et d'information	Moyenne horaire : 300 μg/m3
Seuil d'alerte	Moyenne horaire : 500 μg/m3 (3 heures consécutives)
Valeurs limites pour la protection de la santé humaine	- Centile 99,7 : 350 μg/m3 moyenne horaire. - Centile 99,2 : 125 μg/m3 moyenne journalière.
Valeurs limites pour la protection de la végétation /des écosystèmes	-Centile 99,9 : 570 μg/m3 moyenne horaire. - Moyenne horaire : 230 μg/m3. - Moyenne annuelle : 20 μg/m3.

N°rapport : 2596131/3/1/1 indice 0 date 17/06/13 Page 7 / 30

Commentaires sur les résultats des essais :

L'échantillonnage passif ne permet pas de comparer les niveaux mesurés aux seuils et valeurs de référence du fait de méthodes de calculs et d'unités d'expression de résultats différentes. Néanmoins, les résultats des mesures qui font l'objet de ce rapport sont comparés à titre indicatif aux valeurs de références issues de l'arrêté.

Polluants	Identification du ou des points d'échantillonnages	Commentaire
Dioxyde de soufre (SO2)	Réseau d'échantillonneurs passifs	Aucun dépassement des valeurs de références n'a été constaté.

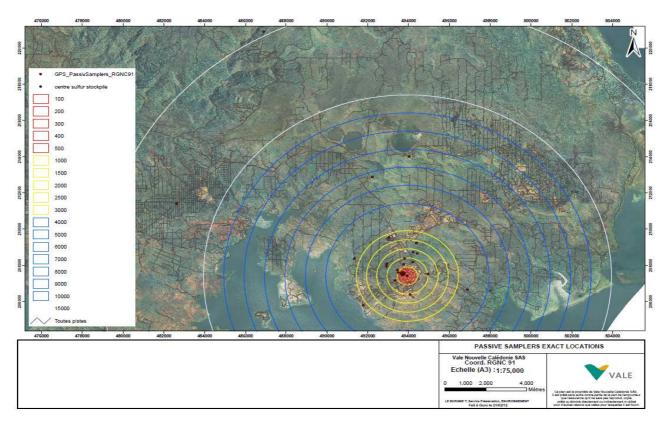
N°rapport : 2596131/3/1/1 indice 0 date 17/06/13 Page 8 / 30

3. OBJET DE LA MISSION

A la demande de VALE NOUVELLE CALEDONIE, Bertrand SIMON de Bureau Veritas a procédé à une campagne de prélèvement et d'analyse d'air ambiant.

En complément de son réseau de stations de surveillance en continue de la qualité de l'air, VALE a souhaité densifier son maillage de suivi en installant des systèmes d'échantillonnages passifs.

Des tubes à diffusion ont été positionnés en différents endroits sur le site et dans sa périphérie afin de permettre la quantification du SO_2 présent dans l'air.


Cette mission a pour but de vérifier l'impact des retombées atmosphériques des installations sur l'environnement.

4. PLAN D'ECHANTILLONNAGE

Echantillonnage spatial:

Nous avons disposé 29 systèmes d'échantillonnage sur le site et dans sa périphérie. Les points d'implantation ont été définis en concertation avec les intervenants de la société VALE.

La carte ci-dessous présente l'ensemble des points de mesures et donne une vue d'ensemble du maillage réalisé.

Les cartes précisant les emplacements des différents points sont jointes en annexe.

N	l°rapport : 259613	1/3/1/1 indice 0			
	date	17/06/13			
	Page 9 / 30				

Récapitulatif des coordonnées GPS des différents points ainsi qu'un descriptif succin des conditions d'implantations :

Identification point de	COORDONNEES GPS X Y		Conditions d'Implantation	
mesure				
PS 1	-22.343130	166.913160	dégagé sur poteau à 1.8m	
PS 2	-22.348510	166.891020	dégagé sur arbre à 1.8m	
PS 3	-22.332680	166.910390	lisière forêt sur poteau à 1.8m	
PS 4	-22.332940	166.910170	dégagé sur arbre à 1.8m	
PS 5	-22.333100	166.909610	dégagé sur poteau à 1.8m	
PS 6	-22.333420	166.909450	dégagé sur poteau à 1.8m	
PS 7	-22.332930	166.909090	Cîme arbre (poulie)	
PS 8	-22.332280	166.908890	Cîme arbre (poulie)	
PS 9	-22.331990	166.909590	lisière forêt sur arbre à 1.8m	
PS 10	-22.332390	166.910480	lisière forêt sur arbre à 1.8m	
PS 11	-22.330800	166.907180	lisière forêt sur arbre à 1.8m	
PS 12	-22.332120	166.907520	lisière forêt sur arbre à 1.8m	
PS 13	-22.328020	166.910130	lisière forêt sur arbre à 1.8m	
PS 14	-22.326830	166.914430	Cîme arbre (poulie)	
PS 15	-22.325130	166.910460	lisière forêt sur arbre à 1.8m	
PS 16	-22.314740	166.902860	lisière forêt sur arbre à 1.8m	
PS 17	-22.327810	166.902070	lisière forêt sur arbre à 1.8m	
PS 18	-22.328940	166.901890	lisière forêt sur arbre à 1.8m	
PS 19	-22.321970	166.914570	Cîme arbre (poulie)	
PS 20	-22.322610	166.916490	Cîme arbre (poulie)	
PS 21	-22.332720	166.921740	lisière forêt sur arbre à 1.8m	
PS 22	-22.340440	166.940580	lisière forêt sur arbre à 1.8m	
PS 23	-22.325250	166.886670	lisière forêt sur arbre à 1.8m	
PS 24	-22.336180	166.905900	lisière forêt sur arbre à 1.8m	
PS 25	-22.284480	166.894940	lisière forêt sur arbre à 1.8m	
PS 26	-22.274290	166.912380	lisière forêt sur arbre à 1.8m	
PS 27	-22.212300	166.842800	lisière forêt sur arbre à 1.8m	
PS 28	-22.298330	166.801880	lisière forêt sur arbre à 1.8m	
PS 29	-22.317360	166.916080	lisière forêt sur arbre à 1.8m	

N°rapport : 2596131/3/1/1 indice 0			
date 17/06/13			
Page 10 / 30			

Echantillonnage temporel:

Les durées d'exposition des supports de prélèvements sont indiquées dans le tableau suivant :

Identification point de mesure	Date et heure de début		Date et heure de fin		Durée d'exposition (en minutes)
PS 1	27/03/2013	09:25	26/04/2013	09:07	43182
PS 2	27/03/2013	09:35	26/04/2013	09:16	43181
PS 3	27/03/2013	10:17	26/04/2013	09:41	43164
PS 4	27/03/2013	10:28	26/04/2013	09:50	43162
PS 5	27/03/2013	10:33	26/04/2013	09:53	43160
PS 6	27/03/2013	10:36	26/04/2013	09:56	43160
PS 7	27/03/2013	10:39	26/04/2013	09:59	43160
PS 8	27/03/2013	10:43	26/04/2013	10:08	43165
PS 9	27/03/2013	10:50	26/04/2013	10:13	43163
PS 10	27/03/2013	10:55	26/04/2013	10:16	43161
PS 11	27/03/2013	11:05	26/04/2013	10:30	43165
PS 12	27/03/2013	11:10	26/04/2013	10:25	43155
PS 13	27/03/2013	11:22	26/04/2013	10:40	43158
PS 14	27/03/2013	11:27	26/04/2013	10:48	43161
PS 15	27/03/2013	11:40	26/04/2013	10:56	43156
PS 16	27/03/2013	12:20	26/04/2013	11:30	43150
PS 17	27/03/2013	11:50	26/04/2013	11:04	43154
PS 18	27/03/2013	11:53	26/04/2013	11:06	43153
PS 19	27/03/2013	12:40	26/04/2013	11:41	43141
PS 20	27/03/2013	12:50	26/04/2013	11:49	43139
PS 21	27/03/2013	08:22	26/04/2013	08:19	43197
PS 22	27/03/2013	08:30	26/04/2013	08:25	43195
PS 23	27/03/2013	08:12	26/04/2013	08:11	43199
PS 24	27/03/2013	09:50	26/04/2013	09:28	43178
PS 25	27/03/2013	15:28	26/04/2013	12:40	43032
PS 26	27/03/2013	15:45	26/04/2013	12:57	43032
PS 27	27/03/2013	16:15	26/04/2013	13:23	43028
PS 28	27/03/2013	07:50	26/04/2013	07:50	43200
PS 29	27/03/2013	08:52	26/04/2013	08:55	43203
Blanc	-	-	-	-	0

N°rapport : 2596131/3/1/1 indice 0			
date 17/06/13			
Page 11 / 30			

5. ACTIVITE DU SITE

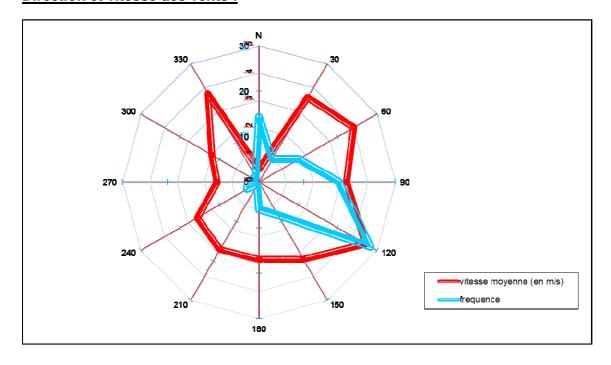
Conditions de marche durant les essais :

Les conditions de fonctionnement des installations pendant la période d'exposition des capteurs ne nous ont pas été communiquées.

Evènements particuliers durant les essais :

Aucun évènement particulier n'est à signaler sur la période d'exposition des échantillonneurs.

6. DONNEES METEOROLOGIQUES


Les conditions météorologiques jouent un rôle important dans la dispersion spatiale et temporelle des polluants présents dans l'air.

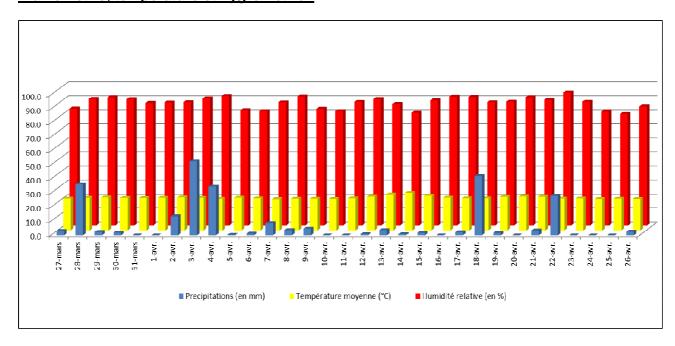
La pluviométrie, la vitesse et la direction du vent, sont les paramètres susceptibles d'être les plus influents pendant la période d'exposition des échantillonneurs.

Les données météorologiques ont été fournies par la société VALE.

Elles sont issues de la station météorologique installée au sein de l'usine.

Direction et vitesse des vents :

N°rapport: 2596131/3/1/1 indice 0
date 17/06/13
Page 12 / 30


Les vents sur la période ont été principalement de secteur Sud-Est.

73% des vents relevés ont été faibles avec des vitesses inférieures à 4,5 m/s (inférieurs à 9 nœuds).

La vitesse moyenne horaire maximale enregistrée sur la période était de 9.1m/s. La vitesse moyenne sur la période d'exposition des capteurs était de 3.2 m/s.

Les données de vitesses et directions des vents pour les journées des 8 au 11 Avril n'ont pas pu être exploitées car elles ont été invalidées.

Pluviométrie, température et hygrométrie :

Le cumul des précipitations sur la période est conforme aux normales de saison, il est de 251.3 mm. La température moyenne sur la période est de 23.3℃ et l'humidité relative moyenne est de 87.5 %.

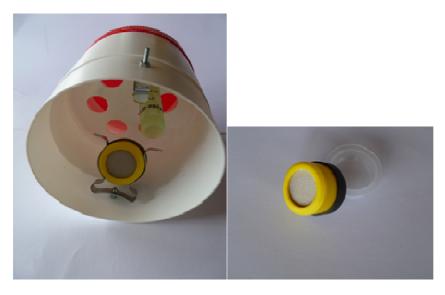
7. CONDITIONS DE MESURAGE ET VALIDITE DES ESSAIS

Spécifications techniques		résultats mesurages	Commentaires	
Support SO2	Gamme de mesure	1-150 μg/m3	de < à 0.3 à 41.6 μg/m3	Deux points d'échantillonnage présente une concentration inférieure à la limite de détection. Cette absence de détection est liée à la diminution de l'activité sur le site. Les autres échantillonneurs présentent des concentrations dans la gamme de détection des supports de prélèvements.
	Durée exposition	14 à 28 jours	31 jours	La durée d'exposition est légèrement supérieure à la recommandation du laboratoire.
	Vent	< 10 % si < à 4.5 m/s	Moyennes journalières comprises entre 0.8 et 6.5 m/s	Une étude technique réalisée par le fournisseur des supports montrent que l'influence de la vitesse du vent est < à 15 % pour les tubes SO2 jusqu'à 10m/s.
Influences	Température	aucune entre 10 et 30°c	Moyennes journalières comprises entre 22.2 et 26.6 °C	Les températures mesurées pendant la période d'exposition sont comprises dans la gamme d'utilisation préconisée par le laboratoire. La température n'a pas d'influence sur les résultats.
externes	Humidité	aucune entre 20 et 80 %	Moyennes journalières comprises entre 79.6 et 94.7 %	L'humidité moyenne sur la période est de 87 %. Le laboratoire Passam a réalisé une étude de l'influence de l'humidité sur des supports de prélèvements de NO2. Les tests ont été réalisés sur la gamme usuelle d'utilisation des supports : de 20 à 80% d'humidité. Les résultats ont montré que le taux d'humidité n'avait aucune influence sur les résultats. Par mesure de précaution, nous évaluons cette influence à moins de 10 %.

Les conditions de mesurage respectent les préconisations du fournisseur des supports de prélèvements.

N°rapport : 2596131/3/1/1 indice 0

date 17/06/13


Page 14 / 30

8. METHODOLOGIE

Les systèmes d'échantillonnages utilisés sont composés d'une enveloppe plastique et d'un tube d'absorption spécifique pour le piégeage du polluant recherché : SO2.

Ce montage permet la circulation de l'air et conserve les tubes de prélèvements à l'abri des intempéries.

Système d'échantillonnages

Tube passif SO2

Les systèmes ont été positionnés à une hauteur voisine de 2 m du sol sur des supports présents dans l'environnement : arbre ou poteau de clôture.

Seuls les échantillonneurs des points : PS7, PS8, PS14, PS19 et PS 20, ont été positionnés à la cime d'arbre. Leur mise en place est assurée par l'intermédiaire d'une corde et de poulies.

N° rapport : 2596131/3/1/1 indice 0
date 17/06/13
Page 15 / 30

La fourniture des tubes ainsi que leurs analyses ont été assurées par le laboratoire PASSAM AG qui se situe en Suisse.

Tableau récapitulatif présentant la méthodologie et les appareils mis en œuvre pour la réalisation des essais présentés :

PARAMETRES RECHERCHES	METHODES ET APPAREILLAGES	GAMME DE MESURE
SO ₂	Tube diffusion passive Temps d'exposition : 2 à 4 semaines Débit échantillonnage : 11,9 ml/min Voir fiche technique en annexe	0.5 – 240 μg/m3

N°rapport : 2596131/3/1/1 indice 0 date 17/06/13 Page 16 / 30

9. ANNEXES

Réf.: EV-RA-1Rap V9.11

ANNEXE 1 – FICHES TECHNIQUES ECHANTILLONNEURS

ANNEXE 2 – IMPLANTATION DES ECHANTILLONNEURS

Implantation: PLAN LARGE

Implantation : USINE

Identification: PLAN LARGE

Identification: USINE et FORET NORD

Identification: USINE

Identification: ZOOM BASSIN USINE

ANNEXE 3 - DONNEES METEOROLOGIQUES

ANNEXE 4 – RESULTATS LABORATOIRE

N°rapport : 2596131/3/1/1 indice 0 Page 17 / 30

Copyright Bureau Veritas -09/2011

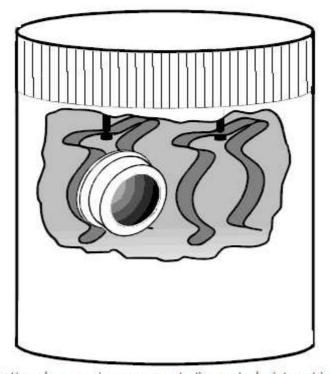
ANNEXE 1 – FICHES TECHNIQUES ECHANTILLONNEURS

Fiche Technique Tube SO2:

Débit de prélèvement [3]	11.9 ml/min à 20°C 1 – 150 μg/m³ 2 – 4 semaines 0.2 μg/m³ pour une exposition mensuelle		
zone de fonctionnement normal			
Durée d'échantillonnage			
Limite de détection			
Influences expternes : vitesse du vent température humidité	l'influence < 10% pour un ver 4.5 m/sec avec boîte à protect pas d'influence entre pas d'influence entre		
Stockage	avant l'utilisation: après l'utilisation:	24 mois 6 mois	
Interférendes	non connu		
Incertitude élargie *	22.1 %	au niveau de 20 µg/m³	
	50	DESTRUCTOR DE PUBLICADO	

* selon GUM; réserve de modifications

revisé 5,1,2012



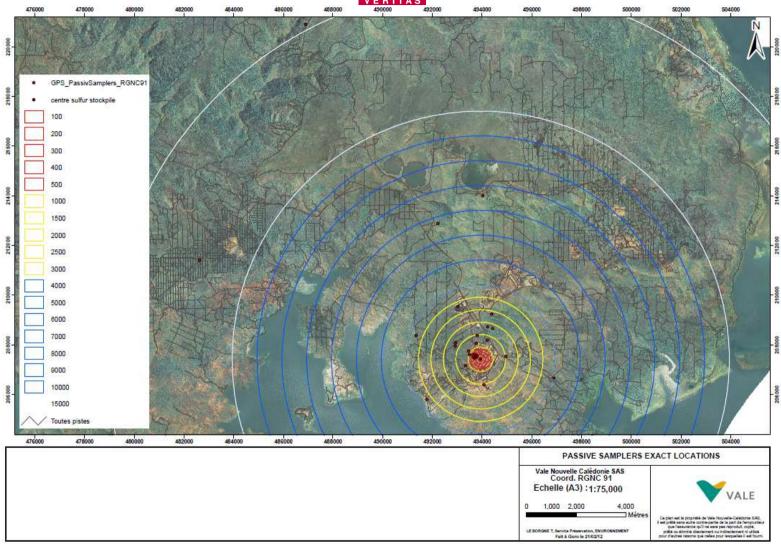
Echantillonneur à membrane en téflon pour la mesure du dioxyde de soufre

N°rapport : 2596131/3/1/1 indice 0				
date 17/06/13				
Page 18 / 30				

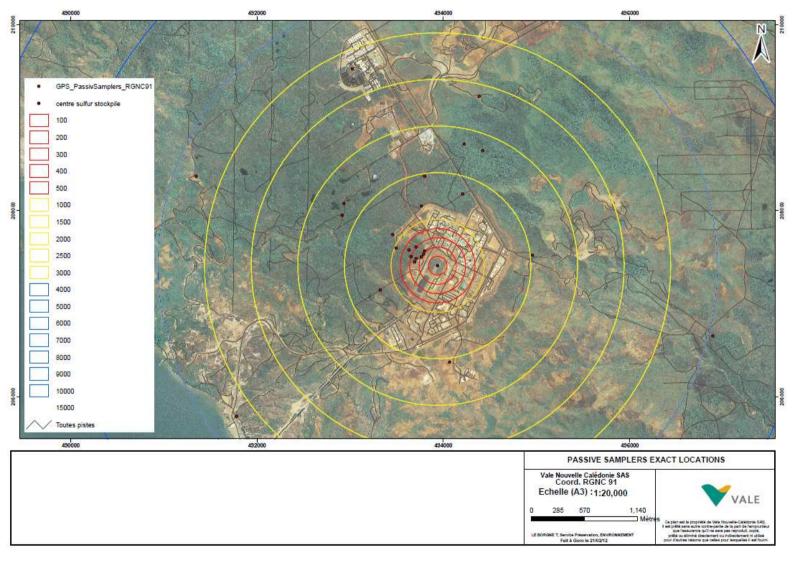
L'échantillonneur passif pour la mesure du dioxyde de soufre repose sur le principe de la diffusion passive des molécules de dioxyde de soufre sur un milieu absorbant, dans ce cas un mélange de carbonate de potassium et de glycérine [1]. Il consiste en un tube de polypropylène avec une ouverture de 20 mm de diamètre. Pour diminuer l'influence du vent on place une membrane que l'on soutient par un treillis en fil de fer. Un dispositif de suspension est conseillé pour la protection de l'échantillonneur contre les intempéries et pour réduire l'influence du vent.

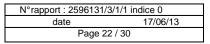
Système de suspension comme protection contre les intempéries

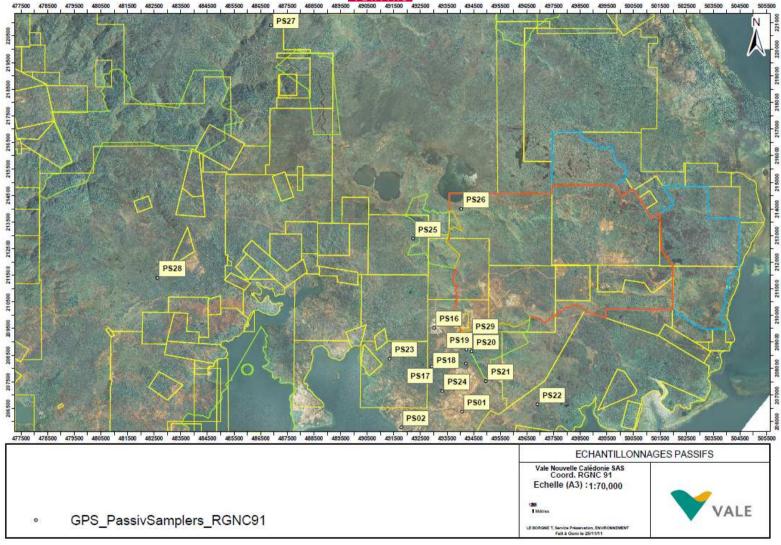
La quantité de dioxyde de soufre absorbée est proportionnelle à sa concentration dans l'environnement. Après un temps d'exposition d'une semaine à un mois, on extrait la quantité totale de dioxyde de soufre que l'on mesure par chromatographie ionique.

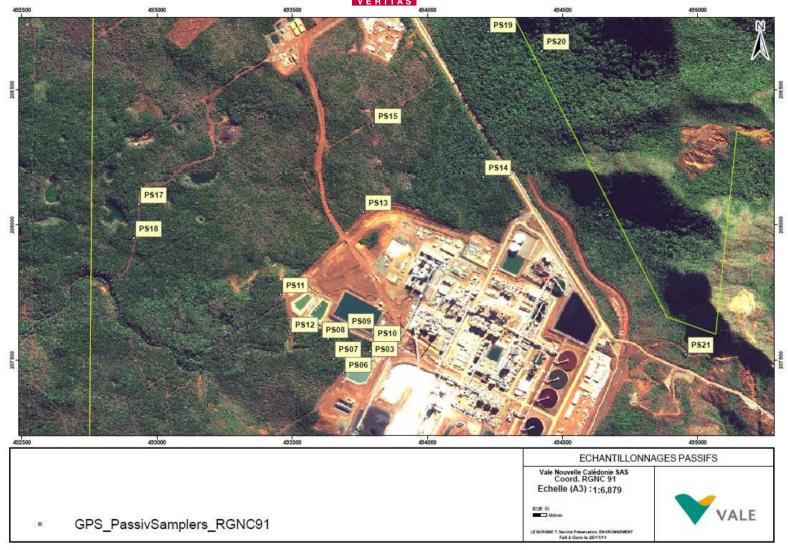

N°rapport : 2596131/3/1/1 indice 0 date 17/06/13 Page 19 / 30

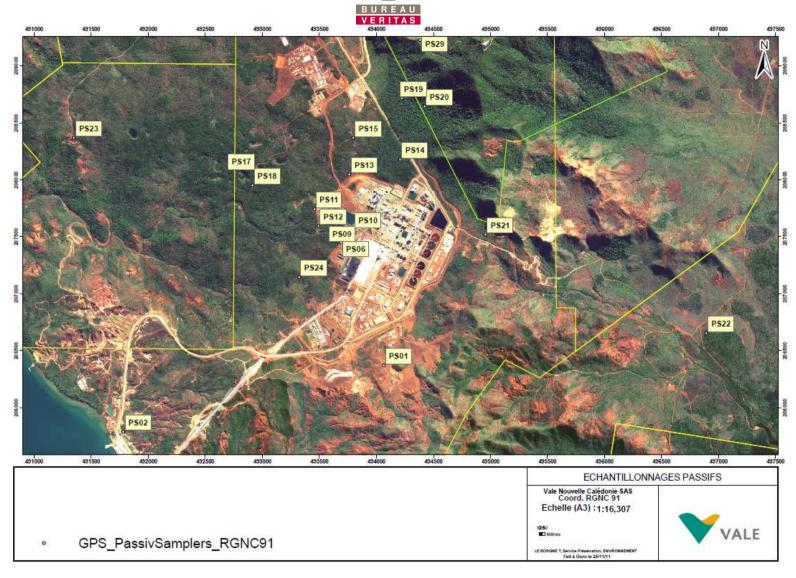
ANNEXE 2 – IMPLANTATION DES ECHANTILLONNEURS


N°rapport : 2596131/3/1/1 indice 0 date 17/06/13 Page 20 / 30




N°rapport : 2596131/3/1/1 indice 0 date 17/06/13 Page 21 / 30




N°rapport : 2596131/3/1/1 indice 0			
date 17/06/13			
Page 23 / 30			

N°rapport : 2596131/3/1/1 indice 0			
date 17/06/13			
Page 24 / 30			

N°rapport : 2596131/3/1/1 indice 0			
date 17/06/13			
Page 25 / 30			

N°rapport : 2596131/3/1/1 indice 0			
date 17/06/13			
Page 26 / 30			

ANNEXE 3 – DONNEES METEOROLOGIQUES

DONNEES METEOROLOGIQUES - MOYENNES JOURNALIERES					
Date	Precipitations	Température	Humidité	Vitesse vent	Direction du
	(en mm)	moyenne (℃)	relative (en %)	(en m/s)	vent
27/03/2013	3.0	22.7	83.3	4.2	117.9
28/03/2013	36.4	23.2	90.2	4.1	116.7
29/03/2013	2.4	23.4	91.4	1.6	110.4
30/03/2013	2.0	23.2	90.0	1.4	79.2
31/03/2013	0.0	23.1	87.3	1.8	87.9
01/04/2013	0.0	23.2	87.6	3.1	62.9
02/04/2013	13.6	23.5	87.9	3.4	62.5
03/04/2013	52.7	23.1	90.6	0.8	32.1
04/04/2013	34.7	22.6	92.3	2.2	74.3
05/04/2013	0.4	23.3	82.2	4.5	130.0
06/04/2013	1.2	22.8	81.6	4.6	133.8
07/04/2013	8.6	22.2	87.8	5.8	117.9
08/04/2013	3.8	22.6	92.0		
09/04/2013	4.8	22.6	83.2		
10/04/2013	0.0	22.4	81.6		
11/04/2013	0.0	22.8	88.1		
12/04/2013	0.8	24.2	90.1	3.7	104.6
13/04/2013	3.8	25.6	86.5	5.3	52.5
14/04/2013	0.8	26.8	80.3	3.4	179.6
15/04/2013	1.8	24.8	89.2	2.3	255.8
16/04/2013	0.0	23.3	91.9	2.1	207.5
17/04/2013	2.2	22.9	91.5	3.4	92.9
18/04/2013	42.2	22.9	87.9	4.2	71.3
19/04/2013	1.8	24.0	88.2	1.5	142.1
20/04/2013	0.0	24.2	91.3	2.3	101.3
21/04/2013	3.4	24.1	89.7	1.9	128.8
22/04/2013	28.3	22.7	94.7	1.7	106.7
23/04/2013	0.0	22.8	88.1	2.4	120.4
24/04/2013	0.0	22.3	81.2	3.0	132.7
25/04/2013	0.0	22.6	79.6	5.3	121.3
26/04/2013	2.6	22.4	85.0	6.5	123.3

N°rapport : 2596131/3/1/1 indice 0			
date 17/06/13			
Page 27 / 30			

ANNEXE 4 – RESULTATS LABORATOIRES

Dioxyde de soufre mesure par échantillonneur passif

méthode d'échantillonnage: échantillonneur passif méthode d'analyse: chromatographie ionique SP10

Bureau Veritas Période 27/03/2013 jusqu'au 26/04/2013 F-98895 Noumea Date d'analyse: 22.05.2013 volume[ml] taux d'accumulation 11.9 ml/min 20°C Lieu début quantité SO, [ppm] b concentration moyen écart Code: FVTA valeur 2 code valeur 2 valeur 3 ug/m³ stand. 27/03/2013 07:50 26/04/2013 07:50 0.412 28 720.00 0.6 0.6 27/03/201 26/04/2013 08:11 719.98 0.541 08:12 1.3 1.3 21 27/03/201 08:22 26/04/2013 08:19 719 95 295 0.509 1.1 1.1 26/04/2013 08:25 719.92 296 22 27/03/2013 08:30 0.523 1.2 1.2 27/03/201 26/04/2013 316 0.440 0.7 0.7 27/03/201 09:25 26/04/2013 09:07 719.70 0.587 1.5 1.5 27/03/201 09:35 26/04/2013 09:16 719.68 307 0.668 1.9 1.9 27/03/201 3 27/03/2013 10.17 26/04/2013 09:41 719 40 308 1 486 6.2 6.2 26/04/2013 09:50 321 27/03/2013 10:28 719.37 3.8 1.028 3.8 27/03/2013 10:36 26/04/2013 09:56 719.33 299 1.468 6.1 6.1 27/03/2013 10:39 26/04/2013 09:59 719.33 319 1.603 6.8 6.8 27/03/201 10:43 26/04/2013 10:08 719.42 304 10:50 26/04/2013 10:13 719.38 322 1.452 6.0 7.2 6.0 1.680 10 11 27/03/2013 11:05 26/04/2013 10:30 719 42 326 1 238 4.9 4.9 27/03/2013 11:10 26/04/2013 10:25 719.25 320 1.126 4.3 4.3 27/03/2013 26/04/2013 10:40 317 14 27/03/2013 11:27 26/04/2013 10:48 719 35 330 0.632 1 7 17 27/03/201 15 11:40 26/04/2013 10:56 719.27 301 0.678 2.0 2.0 3.6 26/04/2013 11:04 26/04/2013 11:06 0.983 302 27/03/2013 11:53 719 22 1 222 4.8 26/04/2013 11:30 27/03/2013 12:20 0.718 16 19 27/03/2013 12:40 26/04/2013 11:41 719.02 311 0.391 0.5 0.5 20 27/03/2013 12:50 26/04/2013 11:49 718 98 313 0.544 1.3 1.3 0.7 27/03/201 26/04/2013 12:40 0.430 0.7 26 27/03/201 15:45 26/04/2013 12:57 717.20 329 0.458 0.8 0.8 327 0.7 27 27/03/201 16:15 26/04/2013 13:23 717.13 0.427 0.7 Bland 328 0.341

Limite de détection Les valeurs ne sont représentatives que pour le lieu de mesure immédiat. Conclusions pour des lieux plus éloignés sous réserve.

Ces données font partie d'une série de mesures à long-terme et ne peuvent pas être reproduites sans autorisation de la société de passamsa.

N°rapport : 2596131/3/1/1 indice 0
date 17/06/13
Page 28 / 30

Incertitude de mesure www.passam.ch/products.htm

MH.L

0.3 ug/m3 14 iours

BUREAU VERITAS SA Mr Bertrand SIMON Agence Produts Mediterranee 685 Rue Georges Claude CS 50401 13591 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-13-LK-032845-01 Dossier N° : 13E019430 Date de 2845-01 Version du : 29/05/2013 Date de réception : 15/05/2013

Reference Dossier : Nº d'ordre 13-023

Affaire N°2596131/3

Reference Commande : 1510 003 984

Nº Ech Matrice		Référence échantillon	Observations	
.001	Air ambiant	BV/11/BESIM/0173	5 CO. MATOLO 1	
002	Air ambiant	BW11/BESIM/0174		
003	Air ambiant	BV/11/8E8IM/0175		
004	Air amblant	BW11/BESIM0176		
005	Air amblant	BW11/BESIM/0177		

Les deutes années à agre « companiers du troise de questionies els de legionalistes à describé de la commune de l'économie que de l'économie d

Cons	ervation de vos échantillons		
Les écharitions verbit conservés vous constiture contribées pardant d'aemantes pour les sons et perdant 4 semaines pour les saux et l'air, à compte de la date de néception des echarititions au laborature. Sons avis contrains, les settent détrute agrés ceffe période sens auturne pommanostion de note part. Si vous déenne que les écharititions apient conservés plus languement réprés de plus languement de late d'assue.			
Conservation Supplementaire :	x 6 semaines supplémentaires (LSOPX)		
Nom: Signature:			

Eurofins Analyses pour filmvironnement - Site de Severne
E, sus d'Ottensader - Erroti Gérenne
Tré UII 86 911 51/1 - Sec UII 86 916 2017 - site sech : were supporter from:
SAS au capital de 1 UII 200 6 - APS 1/2005 - BCS SA/CERNE 402 868 277

N°rapport : 2596131/3/1/1 indice 0					
date	17/06/13				
Page 29	9 / 30				

Page 1/2

RAPPORT D'ANALYSE

N* de rapport d'analyse : AR-13-LK-032845-01 Version du : 29/05/2013 Page 2/2 Date de réception : 15/05/2013

Dossier N* : 13E019430 Reference Dossier : N* d'ordre 13-023 Affaire N*2595131/3 Reference Commande : 1510 003 984

	001	002	003	004	005	Limites
	19/05/2013	15/05/2013	15/05/2013	15/05/2013	15/05/2013	Quantification
	Préparation	on Physico	-Chimique			
	Mesure	es gravimé	triques			
CTU. Mesure gravimetrique des retombles atmosphériques Menuator premerges NF x 0 001				Product Religio (un los de la face		
mig	5.60	2.30	0.70	0.40	0.10	
web!	300	1010	90.0	900	55.11	
		Métaux				
ag Filte	-001	+60.0	400	-50.0	4500	V2007.3
	rig car	Préparation Mesur	Mesures gravimé retombles atmosphériques Tal. 100 100 100 100 100 100 100 100 100 10	Mesures gravimétriques Mesures gravimétriques Para Selo Selo Selo Selo Métaux	Préparation Physico-Chimique Mesures gravimétriques retoribles atmosphériques ret 5.50 5.70 6.00 Métaux	Préparation Physico-Chimique Mesures gravimétriques Par Sub

La seproduction de ce deciment most automais que seus as forme malgrain. Il composte 2 pages). La présent rapport productions que les abjets souvre à l'asse. L'accreditation du CORRAC pitteris de la competence du laboration pour les double seus courants par l'accreditation que sunt identifies par ".

Leberature agrice per le remotere chargé de l'environnement ; purble depumbre sur HSp. l'enver labeau autrigée gour III

Latioratoro agrici poer in rigilación des prilliversoris el des analyses sersons etito des analyses des paramitros de combile sembles de sues - parties situalise de l'appliment departable aut denante.

Laboratoria agridi par la minalira s/Augal des matablatora classion per ambito du 20 du 2001/2011. Martium son typos d'antalpare pour lasquais (agrament a stà-dillimi aur vive-aurafra il nu disponibili sur demanta.

Claire Bergeard

001 BV/T18EBIM0173 502 BVYT/BEBIMO174 003 BVITVEEBIMO175

Eurofins Analyses pour l'Environnement - Site de Sevense 1. des d'Cheraveller - Errod Gévense 7-20 (D. 86 911 911 - Ser (D. 86 916 251 - also each : went apartire franc SAS au capital de 1 (D. 800 6 - APS 11206 - BCS SAVERSES ASS 360 57)

004 BW11/SEBIM/0176 005 BW11/SEBIM/0177

N°rapport : 2596131/3/1/1 indice 0 date 17/06/13 Page 30 / 30