

Suivi environnemental Rapport semestriel 2013 Eaux Souterraines

SOMMAIRE

SOMMAIRE		2
LISTE DES	TABLEAUX	3
LISTE DES	FIGURES	3
LISTE DES	ANNEXES	3
SIGLES ET	ABREVIATIONS	4
INTRODUC ⁻	TION	1
1. PR	ESENTATION DES PLANS DE SUIVI ET DES PROTOCOLES DE MESURE	2
1.1. L	ocalisation	2
1.1.1	Suivi des impacts des activités du port sur les eaux souterraines	
1.1.2	Suivi de l'impact des activités du parc à résidus sur les eaux souterraines	4
1.1.3	Suivi de l'impact des activités de l'unité de préparation du minerai (UPM)	6
1.1.4	Suivi de l'impact des activités de l'usine	
1.2. F	Protocoles de mesure	
1.2.1	Campagnes de mesures physico-chimiques	9
1.2.2	Mesures des paramètres physico-chimiques in situ	
1.2.3 1.2.4	Analyse des hydrocarbures	10
1.2.4	Analyse des métaux	
	ESENTATION DES RESULTATS	
	Rappel des valeurs réglementaires	
2.1.1	Suivi de l'impact des activités du port sur les eaux souterraines	
2.1.1	Suivi de l'impact des activités du port sui les éaux souterraines	
2.1.3	Suivi de l'impact des activités de l'unité de préparation du minerai (UPM) sur les e	
	rraines	13
2.1.4	Suivi de l'impact des activités de l'usine sur les eaux souterraines	
2.2. E	Bilan des campagnes de mesure	13
2.2.1	Données disponibles pour le Port	13
2.2.2	Données disponibles pour le parc à résidus de la Kué Ouest	
2.2.3	Données disponibles pour l'Unité de Préparation du Minerai	
2.2.4	Données disponibles pour l'Usine	
	Résultats	
2.3.1	Suivi de l'impact des activités du Port sur les eaux souterraines	
2.3.2	Suivi de l'impact des activités du parc à résidus sur les eaux souterraines de la K	νé
Ouest 2.3.3	t 18 Suivi de l'impact des activités de l'Usine sur les eaux souterraines	20
2.3.3	Suivi de l'impact des activités de l'UPM sur les eaux souterraines	
	ALYSE DES RESULTATS ET INTERPRETATION	
	Suivi de l'impact des activités du port sur les eaux souterraines	
3.2. S	Suivi de l'impact des activités du parc à résidus sur les eaux souterraines	23

3.3	Suivi de l'impact des activités de l'usine sur les eaux souterraines	23
3.4	Suivi de l'impact des activités de l'UPM sur les eaux souterraines	23
4.	BILAN DES NON-CONFORMITES	24
CONCL	USION	25
	LISTE DES TABLEAUX	
Tableau	1 : Localisation et description des points de suivi du port	2
Tableau	2 : Localisation et description des points de suivi du parc à résidus	4
	3 : Localisation et description des points de suivi de l'UPM	
	4 : Localisation et description des points de suivi de l'usine	
	5 : Méthode d'analyse pour les paramètres physico-chimiques	
	6 : Méthodes d'analyse pour les métaux	
	7 : Valeurs réglementaires suivant l'arrêté n°891-2007/PS	
	8 : Valeurs réglementaires suivant l'arrêté n°1466-2008/PS	
	10 : Données disponibles sur les piézomètres de la Kué Ouest à fréquence de suivi semestriel	
	11 : Données disponibles sur les trois piézomètres de la Kué Ouest à fréquence de su	
	lle	
	12 : Données disponibles pour le suivi des eaux souterraines de l'UPM	
	13 : Données disponibles pour le suivi des eaux souterraines de l'Usine	
	14 : Résultats du suivi des eaux souterraines du Port	
Tableau	15 : Comparaison des mesures de conductivité manuelles et in situ	20
	16 : Résultats du suivi des eaux souterraines de l'Usine	
Tableau	17 : Résultats du suivi des eaux souterraines de l'UPM	22
	LISTE DES FIGURES	
Figure 1	: Carte de localisation des piézomètres du port	3
Figure 2	: Carte de localisation des piézomètres du parc à résidus	. 4
Figure 3	: Carte de localisation des piézomètres de l'Unité de Préparation du Minerai	. 7
Figure 4	: Carte de localisation des piézomètres de l'usine	9
	LISTE DES ANNEXES	
ANNEX	E I : Résultats du suivi des eaux souterraines de la Kwé Ouest	26
	E II : Statistiques établies sur les résultats du suivi des eaux souterraines de la Kwé Piézomètres des groupes A, B, C et D	28

SIGLES ET ABREVIATIONS

Lieux

Anc M Bassin Versant de l'ancienne mine

BPE Baie de Prony Est CBN Creek Baie Nord dol XW Doline Xéré Wapo

KB Kuébini
KJ Kadji
KO Kwé Ouest
KP Kwé Principale
SrK Source Kwé
TB Trou Bleu

UPM Unité de Préparation du Minerai

Organismes

CDE Calédonienne des Eaux

Paramètres

Ag Argent ΑI Aluminium As Arsenic В Bore Ва Baryum Béryllium Be Bi Bismuth Calcium Ca

CaCO3 Carbonates de Calcium

Cd Cadmium
Cl Chlore
Co Cobalt

COT Carbone Organique Total

Cr Chrome CrVI Chrome VI Cu Cuivre

DBO5 Demande Biologique en oxygène DCO Demande Chimique en Oxygène

 F
 Fluor

 Fe
 Fer

 Fell
 Fer II

HT Hydrocarbures Totaux

K Potassium Li Lithium

MES Matières en suspension

Magnésium Mg Manganèse Mn Molybdène Мо Na Sodium NΒ Nota Bene NH3 Ammonium Nickel Ni NO2 **Nitrites** NO3 **Nitrates**

NT Azote Total P Phosphore Pb Plomb

pH Potentiel Hydrogène

PO4 Phosphates
S Soufre
Sb Antimoine
Se Sélénium
Si Silice

SiO2 Oxyde de Silicium

Sn Etain
SO4 Sulfates
Sr Strontium
T° Température
TA Titre alcalimétrique

TAC Titre alcalimétrique complet

Tellure Te Thorium Th Τi Titane ΤI Thallium U Uranium V Vanadium WJ Wadjana Zn Zinc

Autre

IBNC Indice Biotique de Nouvelle-Calédonie

IIB Indice d'Intégrité Biotique

N° Numéro

INTRODUCTION

Implanté dans le Sud de la Nouvelle-Calédonie, aux lieux-dits « Goro » et « Prony-Est » sur les communes de Yaté et du Mont-Dore, le complexe industriel (usine, mine, port) détenu par Vale Nouvelle-Calédonie, a pour objectif d'extraire du minerai latéritique et de le traiter par un procédé hydro métallurgique, visant à produire 60 000 t/an de nickel et 4 500 t/an de cobalt.

Les activités liées au projet Vale Nouvelle-Calédonie se répartissent sur plusieurs bassins versants : la Baie de Prony, le creek de la Baie Nord et trois des bras amont de la Kwé (Kwé Ouest, Nord et Est).

Afin de mesurer les impacts potentiels des activités liées au projet, des campagnes de suivi sont mises en place. Ces campagnes seront effectuées notamment conformément aux arrêtés N° 891-2007/PS du 13 juillet 2007, N°1467-2008/PS du 9 octobre 2008, et N° 1466-2008/PS du 9 octobre 2008 correspondant respectivement aux prescriptions des ICPE du port, de l'usine et de l'unité de préparation du minerai et d'un centre de maintenance de la mine, et du parc à résidus.

Les programmes de suivi des ICPE sont repris et complétés dans les recommandations de la convention N°C.238-09 fixant les modalités techniques et financières de mise en œuvre de la démarche pour la conservation de la biodiversité.

La mise en service de notre système d'information pour la gestion des données hydrologiques et hydrogéologiques a commencé en juillet 2013. Ce système permettra notamment de simplifier et systématiser les étapes de validation des données mais aussi d'accéder à l'automatisation des rapports. En revanche, l'intégration des données historiques n'étant pas encore finalisée, seules les données acquises au cours du premier semestre 2013 seront présentées dans ce bilan. Aucune tendance ne pourra être interpréter à l'issue de ce rapport.

1. PRESENTATION DES PLANS DE SUIVI ET DES PROTOCOLES DE MESURE

1.1. Localisation

La localisation des piézomètres dédiés au suivi des impacts des différentes installations du projet Vale Nouvelle-Calédonie est décrite dans les paragraphes suivants.

1.1.1 Suivi des impacts des activités du port sur les eaux souterraines

L'arrêté N° 891-2007/PS du 13 juillet 2007, qui autorise notamment l'exploitation du port, prévoit qu'au total 3 piézomètres sont installés pour le suivi des eaux souterraines.

Ces trois piézomètres sont décrits dans le tableau 1 et présentés sur la figure 1. Ils se situent à proximité des installations de stockage de fioul lourd et de gasoil.

Tableau 1 : Localisation et description des points de suivi du port

Nom	Bassin Versant	Type de suivi Raison d'être I		RGN91 Est	RGN91 Nord
7-1	BPE	Souterrain	Arrêté n°891-2007/PS	491884,5	205436,3
7-2	BPE	Souterrain	Arrêté n°891-2007/PS	491828,35	205442,3
7-3	BPE	Souterrain	Arrêté n°891-2007/PS	491847,2	205522,5

Le piézomètre nommé 7-1 a été placé à proximité de la rétention de fioul lourd et en aval hydraulique du piézomètre 7-2.

Le piézomètre 7-2 est en amont immédiat des rétentions de fioul lourd et de gasoil, sa fonction principale est de donner une indication de l'état de référence du milieu.

Le piézomètre 7-3 a été placé en aval de la rétention de gasoil.

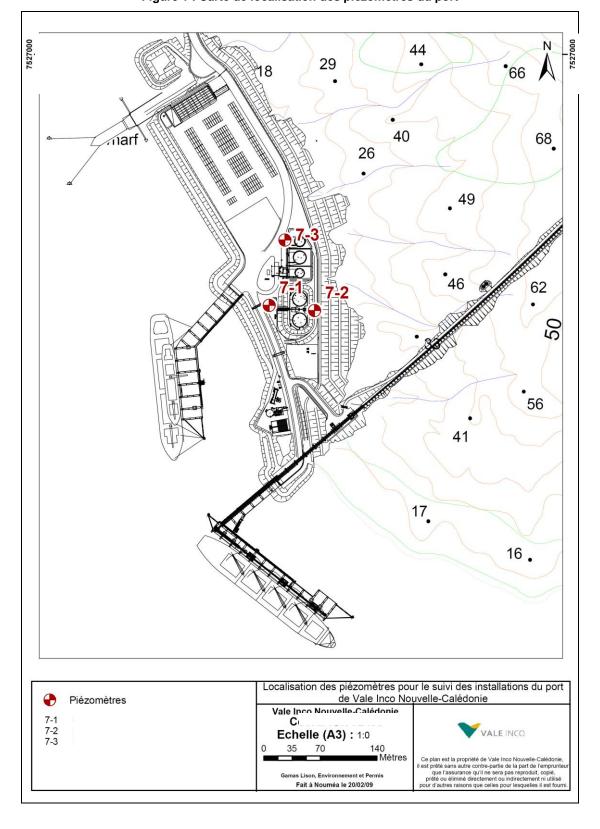


Figure 1 : Carte de localisation des piézomètres du port

1.1.2 Suivi de l'impact des activités du parc à résidus sur les eaux souterraines

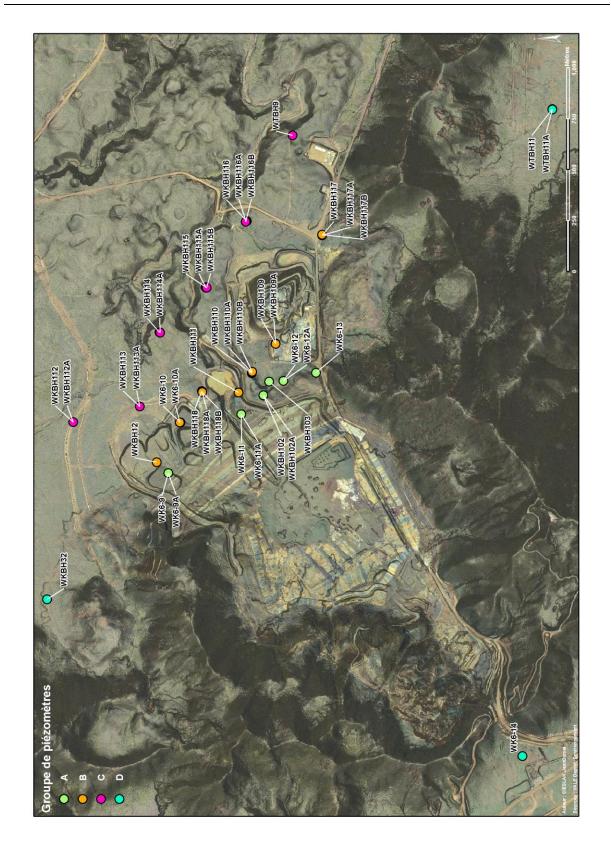

Le suivi des eaux souterraines du bassin versant de la Kwé Ouest est effectué sur 41 piézomètres. Ils sont décrits dans le tableau 2 et localisés dans la figure 2. Le piézomètre WKBH12 a été détruit lors des travaux de terrassement en 2008.

Tableau 2 : Localisation et description des points de suivi du parc à résidus

Nom	Bassin versant	Type de suivi	Raison d'être	RGN91 Est	RGN91 Nord
WK 6-9	КО		Arrêté n°1466-2008/PS	495191,4	211087,3
WK 6-9a	КО]	Arrêté n°1466-2008/PS	495190,4	211086,3
WK 6-11	Trou Bleu	1	Arrêté n°1466-2008/PS	495478,8	210727,3
WK 6-11a	Trou Bleu]	Arrêté n°1466-2008/PS	495478,8	210728,3
WK 6-12	КО	Groupe A	Arrêté n°1466-2008/PS	495643,2	210520,4
WK 6-12a	KO		Arrêté n°1466-2008/PS	495642,2	210520,4
WK 6-13	KO	Piézomètres d'alerte au pied de la berme	Arrêté n°1466-2008/PS	495682,3	210360,7
WKBH 102	КО		Arrêté n°1466-2008/PS	495571,6	210620,0
WKBH 102a	КО]	Arrêté n°1466-2008/PS	495572,6	210619,0
WKBH 103	КО]	Arrêté n°1466-2008/PS	495638,8	210590,4
WKBH12	КО		Arrêté n°1466-2008/PS	495243,9	211142,6
WK 6-10	КО		Arrêté n°1466-2008/PS	495439,8	211029,0
WK 6-10a	КО		Arrêté n°1466-2008/PS	495439,8	211026,0
WKBH 109	КО		Arrêté n°1466-2008/PS	495827,0	210559,7
WKBH 109a	КО		Arrêté n°1466-2008/PS	495824,0	210558,7
WKBH 110	КО		Arrêté n°1466-2008/PS	495681,2	210676,7
WKBH 110a	КО	Groupe B	Arrêté n°1466-2008/PS	495684,2	210675,7
WKBH 110b	KO	Suivi de la qualité de l'eau souterraine dans la zone tampon	Arrêté n°1466-2008/PS	495687,2	210674,7
WKBH 111	KO		Arrêté n°1466-2008/PS	495585,7	210742,0
WKBH 117	КО		Arrêté n°1466-2008/PS	496356,5	210330,3
WKBH 117a	KO		Arrêté n°1466-2008/PS	496357,5	210330,3
WKBH 117b	КО		Arrêté n°1466-2008/PS	496360,5	210331,4
WKBH 118	КО		Arrêté n°1466-2008/PS	495593,5	210921,1
WKBH 118a	КО		Arrêté n°1466-2008/PS	495590,5	210920,1
WKBH 118b	КО		Arrêté n°1466-2008/PS	495588,5	210919,0
WKBH 112	КО		Arrêté n°1466-2008/PS	496699,6	210601,6
WKBH 112a	КО		Arrêté n°1466-2008/PS	496704,6	210596,6
WKBH 113	KO		Arrêté n°1466-2008/PS	495539,3	211227,6
WKBH 113a	KO		Arrêté n°1466-2008/PS	495540,4	211219,7
WKBH 114	KO	Groupe C	Arrêté n°1466-2008/PS	495881,0	211130,0
WKBH 114a	КО	Suivi de la qualité de	Arrêté n°1466-2008/PS	495879,1	211127,0
WKBH 115	КО	l'eau souterraine près	Arrêté n°1466-2008/PS	496102,6	210903,6
WKBH 115a	КО	de la rivière Kwé Ouest	Arrêté n°1466-2008/PS	496100,6	210900,5
WKBH 115b	КО		Arrêté n°1466-2008/PS	496099,6	210898,5
WKBH 116	КО		Arrêté n°1466-2008/PS	496427,0	210701,8
WKBH 116a	КО		Arrêté n°1466-2008/PS	496424,9	210704,8
WKBH 116b	КО		Arrêté n°1466-2008/PS	496423,9	210706,8
WTBH 9	КО		Arrêté n°1466-2008/PS	496847,6	210476,6
WTBH 11	КО	Groupe D	Arrêté n°1466-2008/PS	496974,2	209199,7
WTBH 11a	КО	Suivi de la qualité de	Arrêté n°1466-2008/PS	496976,2	209199,7
WKBH 32	КО	l'eau souterraine dans	Arrêté n°1466-2008/PS	496571,5	211681,9
WK 6-14	Rivière Kadji	les vallées adjacentes	Arrêté n°1466-2008/PS	493803,5	209346,8

Figure 2 : Carte de localisation des piézomètres du parc à résidus

1.1.3 Suivi de l'impact des activités de l'unité de préparation du minerai (UPM)

Au total, 4 piézomètres ont été installés pour le suivi des eaux souterraines de l'UPM, ils sont présentés dans le tableau 3 et la figure 3.

Tableau 3: Localisation et description des points de suivi de l'UPM

Nom	Bassin Versant	Type de suivi	Raison d'être	RGN 91 Est	RGN 91 Nord
4-z1	Kwé Nord	Souterrain	Arrêté n°1467- 2008/PS	498045,1	211694
4-z2	Kwé Ouest	Souterrain	Arrêté n°1467- 2008/PS	498003,3	211658,5
4-z4	Kwé Ouest	Souterrain	Arrêté n°1467- 2008/PS	497790,4	211651,0
4-z5	Kwé Ouest	Souterrain	Arrêté n°1467- 2008/PS	497758,5	211493,8

Le piézomètre 4-z1 a été installé pour suivre l'installation de dépôt d'hydrocarbure côté Kwé Nord.

Le piézomètre 4-z2 a été installé pour suivre l'installation de dépôt d'hydrocarbure côté Kwé Ouest.

Le piézomètre 4-z4 a été installé pour contrôler les eaux souterraines à proximité de l'aire de lavage des véhicules lourds.

Le piézomètre 4-z5 a été installé pour contrôler les eaux souterraines en aval de l'aire de l'atelier de maintenance.

Figure 3 : Carte de localisation des piézomètres de l'Unité de Préparation du Minerai

1.1.4 Suivi de l'impact des activités de l'usine

Au total, 16 piézomètres ont été installés pour le suivi des impacts des activités de l'usine sur les eaux souterraines ; ils sont présentés dans le tableau 4 et la figure 4.

Tableau 4 : Localisation et description des points de suivi de l'usine

Nom	Bassin Versant	Type de suivi	Raison d'être	RGN 91 Est	RGN 91 Nord
6-1	CBN	Aval des aires de stockage	Arrêté n°1467- 2008/PS	493460	207246
6-1a	CBN	Aval des aires de stockage	Arrêté n°1467- 2008/PS	493460	207246
6-2	CBN	Aval du site	Arrêté n°1467- 2008/PS	493126	207428
6-2a	CBN	Aval du site	Arrêté n°1467- 2008/PS	493126	207428
6-3	CBN	Aval de la station distribution du carburant	Arrêté n°1467- 2008/PS	493753	206736
6-3a	CBN	Aval de la station distribution du carburant	Arrêté n°1467- 2008/PS	493751	206733
6-4	CBN	Aval de la station de transit déchets et des cuves d'hydrocarbures	Arrêté n°1467- 2008/PS	493827	206864
6-5	CBN	Aval du stockage d'acide sulfurique	Arrêté n°1467- 2008/PS	494252	207902
6-6	CBN	Aval du stockage de gazole	Arrêté n°1467- 2008/PS	494162	207810
6-7	CBN	Amont site industriel	Arrêté n°1467-	494404	206981

			2008/PS		
6-7a	CBN	Amont site industriel	Arrêté n°1467- 2008/PS	494404	206981
6-8	CBN	Aval du bassin de contrôle Nord	Arrêté n°1467- 2008/PS	493553	207645
6-8a	CBN	Aval du bassin de contrôle Nord	Arrêté n°1467- 2008/PS	493553	207645
6-13	CBN	Aval bassin eau de procédé	Arrêté n°1467- 2008/PS	494456	207581
6-14	CBN	Aval stockage acide chlorhydrique	Arrêté n°1467- 2008/PS	494014	207355
6-14a	CBN	Aval stockage acide chlorhydrique	Arrêté n°1467- 2008/PS	494014	207355

Figure 4 : Carte de localisation des piézomètres de l'usine

1.2. Protocoles de mesure

1.2.1 Campagnes de mesures physico-chimiques

Des prélèvements sont effectués dans les piézomètres réalisés spécifiquement pour le suivi des eaux souterraines.

Le protocole d'échantillonnage des eaux souterraines est basé sur les recommandations des parties 3 et 11 de la norme ISO 5667 relatives à la conservation et la manipulation des échantillons d'eau (partie 3) et à l'échantillonnage des eaux souterraines (partie 11).

Il respecte en particulier les recommandations permettant d'assurer la représentativité de l'échantillonnage telle qu'elle est décrite dans la norme ISO 5667 partie 11 :

- la purge d'un volume d'eau égale à trois fois le volume compris dans le piézomètre (comprenant l'eau libre dans le tube ouvert et l'eau interstitielle du massif filtrant,
- la mesure de la conductivité et du pH de l'eau tout au long de la vidange.

Une exception est faite pour le prélèvement des échantillons destinés à la recherche de traces d'hydrocarbures qui est effectuée avant la purge et en surface par écrémage conformément à la norme ISO 5667.

Les analyses sur les échantillons sont effectuées par le laboratoire interne de Vale Nouvelle-Calédonie accrédité ISO 17025 depuis le 2 octobre 2008.

1.2.2 Mesures des paramètres physico-chimiques in situ

Les mesures *in situ* sont réalisées à l'aide du multi-paramètre portable *HachQ40d* Cet appareil est composé d'une sonde de pH, d'une sonde pour la température et d'une sonde pour mesurer la conductivité.

Le pH est mesuré *in situ* selon la norme NF T90 008 et selon les recommandations précisées dans le mode d'emploi de l'appareil de mesure utilisé.

La conductivité est également mesurée *in situ* selon la procédure décrite dans le mode d'emploi de l'appareil de mesure utilisé.

1.2.3 Analyse des hydrocarbures

Les hydrocarbures sont mesurés par le laboratoire Vale Nouvelle-Calédonie selon la norme NF T 90 114.

1.2.4 Analyse des paramètres physico-chimiques en solution

Les méthodes d'analyse pour les paramètres physico-chimiques réalisés sont décrites dans le tableau 5 ci-dessous.

Tableau 5 : Méthode d'analyse pour les paramètres physico-chimiques

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	MES	mg/L	5	GRV02	Dosage des matières en suspension (MES)	NF EN 872 Juin 2005
Interne	рН		-	PH01	Mesure du pH	NF T90-008
Interne	Conductivité	μS/cm	5	CDT01	Mesure de la conductivité	
Interne	CI	mg/L	0.1	ICS01		
Interne	NO3	mg/L	0.2	ICS01	Analyse de 4 ou 6 anions par chromatographie ionique	
Interne	SO4	mg/L	0.2	ICS01	(chlorure, nitrate,	NF EN ISO
Interne	PO4	mg/L	0.2	ICS01	phosphates, sulfate, fluorure	10304-1
Interne	F	mg/L	0.1	ICS01	et nitrate en plus si demandé)	
Interne	NO2	mg/L	0.1	ICS01	,	
Interne	DCO	mg/L	10	SPE03	Analyse de la DCO	Méthode HACH 8000
Interne	TAC as CaCO3	mg/L	2	TIT11	Titration de l'alcalinité (TA et	
Interne	TA as CaCO3	mg/L	2	TIT11	TAC)	
Interne	CrVI	mg/L	0.01	SPE01	Analyse du chrome VI dissous dans les eaux naturelles et usées	NF T 90-043 Octobre 1988
Interne	Turbidité	NTU	0.1	TUR01	Mesure de la turbidité	
Interne	NH3	mg/L	0.5	SPE05	Dosage de l'ammonium dans les eaux	Méthode HACH 10205
Interne	СОТ	mg/L	0.3	SPE09	Dosage du Carbone Organique Total (COT) dans les eaux	Méthode HACH 10129
Interne	SiO2	mg/L	1 de Si	CAL02	Calcul de SiO2 à partir de Si mesuré par ICP02	
Interne	NT	mg/L	0.5	SPE08	Dosage de l'azote total dans les eaux	Méthode HACH 10071

1.2.5 Analyse des métaux

Les méthodes d'analyse des métaux dans les eaux douces sont indiquées dans le tableau 6.

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	Al	mg/L	0.1	ICP02		
Interne	As	mg/L	0.1	ICP02		
Interne	Ca	mg/L	1	ICP02		
Interne	Cd	mg/L	0.01	ICP02		
Interne	Co	mg/L	0.01	ICP02		
Interne	Cr	mg/L	0.01	ICP02		
Interne	Cu	mg/L	0.01	ICP02		
Interne	Fe	mg/L	0.1	ICP02	Analyse d'une	
Interne	K	mg/L	0.1	ICP02	cinquantaine d'éléments dissous ou totaux (si	
Interne	Mg	mg/L	0.1	ICP02	demandé) dans les	ISO 11885 Août 2007
Interne	Mn	mg/L	0.01	ICP02	solutions aqueuses faiblement concentrées	71001 2001
Interne	Na	mg/L	1	ICP02	par ICP-AES	
Interne	Ni	mg/L	0.01	ICP02		
Interne	Р	mg/L	0.1	ICP02		
Interne	Pb	mg/L	0.01	ICP02		
Interne	S	mg/L	1	ICP02		
Interne	Si	mg/L	1	ICP02		
Interne	Sn	mg/L	0.01	ICP02		
Interne	Zn	mg/L	0.1	ICP02		

Tableau 6 : Méthodes d'analyse pour les métaux

2. PRESENTATION DES RESULTATS

2.1. Rappel des valeurs réglementaires

2.1.1 Suivi de l'impact des activités du port sur les eaux souterraines

L'arrêté n°891-2007/PS du 13 juillet 2007 relatif aux installations portuaires impose le respect des seuils indiqués dans le tableau 7 pour la composition des eaux souterraines.

Tableau 7 : Valeurs réglementaires suivant l'arrêté n°891-2007/PS

Paramètre	Valeurs seuil
pН	5,5 < x < 9,5
Conductivité	-
DCO	100 mg/L
НТ	10 mg/L

Les autres paramètres dont le suivi est imposé ne sont soumis à aucun seuil réglementaire de qualité des eaux souterraines.

2.1.2 Suivi de l'impact des activités du parc à résidus sur les eaux souterraines

L'arrêté n°1466-2008/PS du 9 octobre 2008 relatif à l'exploitation du parc à résidus de la Kwé Ouest impose le respect des seuils indiqués dans le tableau 8 pour la composition des eaux souterraines,

ainsi que des valeurs guides A3 inspiré de l'arrêté métropolitain relatif aux eaux brutes et aux eaux destinées à la consommation humaine du 11 janvier 2007.

Tableau 8 : Valeurs réglementaires suivant l'arrêté n°1466-2008/PS

Paramètre	Valeurs seuil	
Conductivité	1000 μS/cm	
Sulfates	150 mg/L	
Manganèse	1 mg/L	

Ces valeurs doivent être respectées en tout temps et *a minima* pour les piézomètres faisant partie du groupe B.

2.1.3 Suivi de l'impact des activités de l'unité de préparation du minerai (UPM) sur les eaux souterraines

Aucun seuil règlementaire de qualité des eaux souterraines n'est imposé dans l'arrêté N°1467-2008/PS du 9 octobre 2008 pour le suivi des impacts de l'activité de l'Unité de Préparation du Minerai.

2.1.4 Suivi de l'impact des activités de l'usine sur les eaux souterraines

Aucun seuil règlementaire de qualité des eaux souterraines n'est applicable pour le suivi des impacts de l'activité de l'usine.

2.2. Bilan des campagnes de mesure

Au mois de mai 2013, une panne survenue sur notre matériel de pompage n'a pas permis la réalisation de la deuxième campagne trimestrielle d'échantillonnage des eaux du port, de l'usine et de l'usine de Préparation du Minerai.

2.2.1 Données disponibles pour le Port

Le taux de données disponibles est présenté dans le tableau 9.

Tableau 9 : Données disponibles pour le suivi des eaux souterraines pour le Port

7-1, 7-2, 7-3		Premier semestre 2013				Bilan 1er semestre 2013	
Fréquence	Analyses	Février	Mai	Aout	Novembre	Nombre d'analyses attendues	Nombre d'analyses réalisées
Trimestrielle	рН	3	0			6	3
Trimestrielle	Conductivité	3	0			6	3
Trimestrielle	DCO	3	0			6	3
Trimestrielle	HT	3	0			6	3
				Nombre total d'anal		nalyses réalisées	12
				% analyses		s réalisées	50

2.2.2 Données disponibles pour le parc à résidus de la Kué Ouest

Le suivi des piézomètres de la Kwé Ouest est effectué en majorité à fréquence semestrielle. La première campagne de suivi semestriel des eaux souterraines est réalisée au mois d'avril.

Lors de ces deux campagnes, les piézomètres suivant n'ont pu être échantillonnés :

- WK6-11A, WK6-13(groupe A) : ces piézomètre sont détériorés.
- WKBH110A, WK6-10, WKBH109 (groupe B): ces piézomètres ont été détériorés ou comblés par des sédiments.
- WKBH112A, WKBH115 (groupe C) : piézomètres comblés par des sédiments.
- WKBH115A (groupe C) : piézomètre obstrué par un tube Waterra.

Certains paramètres ne sont pas mesurés ou sont calculés :

- **MES** : étant donné que la méthode de pompage génère la mise en suspension des sédiments, l'analyse des MES n'est pas réalisée pour les prélèvements d'eau souterraines car non représentative.
- Le **HCO3-** est obtenu par calcul à partir des mesures de TA et TAC.

Les taux de données disponibles sont présentés dans le tableau 10.

Tableau 10 : Données disponibles sur les piézomètres de la Kué Ouest à fréquence de suivi semestriel

	Groupe A											
	Attendu	Réalisé	%									
рН	10	8	80									
cond	10	8	80									
Al	10	8	80									
As	10	8	80									
Ca	10	8	80									
CI	10	8	80									
Со	10	8	80									
Cr	10	8	80									
Cu	10	8	80									
Fe	10	8	80									
НСО3-	10	8	80									
K	10	8	80									
Mg	10	8	80									
Na	10	8	80									
Ni	10	8	80									
NO2	10	8	80									
NO3	10	8	80									
Pb	10	8	80									
PO4	10	8	80									
SiO2	10	8	80									
SO4	10	8	80									
Zn	10	8	80									
Mn	10	8	80									
F	10	8	80									
MES	10	0	0									
% d'ana	% d'analyses réalisées (hors MES)											

Attendu	Réalisé	%
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	10	77
13	0	0
% d'an réalisée ME	77	

Groupe C									
Attendu	Réalisé	%							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	10	77							
13	0	0							
% d'ar réalisée ME	77								

Groupe D												
Attendu	Réalisé	%										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	4	100										
4	0	0										
% d'ar réalisée ME	100											

Pour trois piézomètres définis (WKBH102, WKBH110 et WKBH113), un suivi est réalisé à fréquence mensuelle pour quelques paramètres et la conductivité est mesurée en continu.

Le suivi de juin n'a pu être réalisé en raison de la panne survenue sur notre équipement de pompage.

Tableau 11 : Données disponibles sur les trois piézomètres de la Kué Ouest à fréquence de suivi mensuelle

	WKBH102, BH110	Premier semestre 2013										Bilan premier semest	re 2013		
Fréquence	Analyses	Janv Fév Mars Avril Mai Juin Juillet Août Sept Oct Nov Déc Attendues						Nombre analyses réalisées							
Continu	Conductivité						Total s	emestre						13140	10676
Mensuelle	Sulfates	3	3	3	3	3	0							18	15
Mensuelle	Magnésium	3	3	3	3	3	0							18	15
Mensuelle	Calcium	3	3	3	3	3	0							18	15
Mensuelle	Manganèse	3	3	3	0	3	0							18	15
											% de	e mesu	ires co	ntinues de cond réalisées	81
												60			
												83			

2.2.3 Données disponibles pour l'Unité de Préparation du Minerai

Le suivi des eaux souterraines de l'UPM est réalisé à fréquence trimestrielle. Le taux de données disponibles est présenté dans le tableau 12.

Tableau 12 : Données disponibles pour le suivi des eaux souterraines de l'UPM

4-z1, 4-z2	, 4-z4, 4-z5		Premier	semestre 20	Bilan premie	er semestre 2013							
Fréquence	Analyses	Février	Mai	Aout	novembre	Nombre analyses attendues	Nombre analyses réalisés						
Trimestrielle	рН	4	0			8	4						
Trimestrielle	Conductivité	4	0			8	4						
Trimestrielle	DCO	4	0			8	4						
Trimestrielle	Sulfates	4	0			8	4						
Trimestrielle	Chrome VI	4	0			8	4						
Trimestrielle	Calcium	4	0			8	4						
Trimestrielle	Potassium	4	0			8	4						
Trimestrielle	Sodium	4	0			8	4						
Trimestrielle	TA	4	0			8	4						
Trimestrielle	TAC	4	0			8	4						
Trimestrielle	Chlorures	4	0			8	4						
Trimestrielle	HT	4	4			8	4						
				Nombre	total d'analyses	réalisées	48						
				%	analyses réalisé	ées 50							

2.2.4 Données disponibles pour l'Usine

Le suivi des eaux souterraines de l'Usine est réalisé à fréquence trimestrielle. La campagne de mai n'a pu être réalisée en raison de la panne sur notre matériel de pompage au cours du mois de mai.

Le taux de données disponibles est présenté dans le tableau 13.

Tableau 13 : Données disponibles pour le suivi des eaux souterraines de l'Usine

6-1, 6-1a, 6-2, 6-2a, 6- 6-6, 6-7, 6-7a, 6-8, 6-8 14a			Premier ser	Bilan premier semestre 2013					
Fréquence	Analyses	Février Mai		Aout	Octobre	Nombre analyses attendues	Nombre analyses réalisées		
Trimestrielle	рН	15	0			32	15		
Trimestrielle	Conductivité	15	0			32	15		
Trimestrielle	DCO	15	0			32	15		
Trimestrielle	Sulfates	15	0			32	15		
Trimestrielle	Chrome VI	15	0			32	15		
Trimestrielle	Calcium	15	0			32	15		
Trimestrielle	Potassium	15	0			32	15		
Trimestrielle	Sodium	15	0			32	15		
Trimestrielle	TA	15	0			32	15		
Trimestrielle	TAC	15	0			32	15		
Trimestrielle	Chlorures	15	0		0			32	15
Trimestrielle	HT	14	0			32	14		
				Nombre to	s réalisées	180			
				% a	nalyses réali	sées	46.6		

Les conditions particulières de sécurité dans la zone 245 (aval du bassin d'eau du procédé) ne permettent pas l'échantillonnage au niveau du piézomètre 6-13. Des aménagements sont prévus pour sécuriser l'accès à ce piézomètre.

A cause d'une déformation du tube PVC, l'échantillonnage au bailer pour l'analyse des HT n'a pu se faire au piézomètre 6-13A.

A cause d'une conductivité supérieure à 300 μ S/cm (soit 361 μ s/cm), la détermination des ions chlorures au piézomètre WK6-14A ne s'est pas faîte avec la méthode ICS01. Une titration par potentiométrie (TIT10) a dû être réalisée sur l'échantillon. Les limites de détection entre ces deux méthodes ne sont pas identiques : ICS01 (0,1 mg/l) et TIT10 (0,01 g/l).

2.3. Résultats

2.3.1 Suivi de l'impact des activités du Port sur les eaux souterraines

Le tableau 14 présente les valeurs obtenues lors du suivi des eaux souterraines du port. Aucune valeur de pH, conductivité, DCO, et hydrocarbures totaux ne dépassent les seuils réglementaires au contrôle de février.

Tableau 14 : Résultats du suivi des eaux souterraines du Port

Station	Temps	pH-in-situ	Conductivité- in-situ	DCO	НТ
7-2	22/02/2013 10:28	6.82	134	<10	<10
7-1	22/02/2013 10:20	7.32	10000	57	<10
7-3	22/02/2013 10:13	7.7	261	<10	<10

2.3.2 Suivi de l'impact des activités du parc à résidus sur les eaux souterraines de la Kwé Ouest

L'annexe I présente les résultats du suivi des eaux souterraines de la Kwé Ouest pour le premier semestre 2013. Ces résultats seront comparés aux statistiques réalisées sur les résultats de 2012 présentées en annexe II.

Groupe A:

- **pH**: compris en 4.3 et 7.9.
- **conductivité** : entre 53.7 et 162 μS/cm.
- Chrome : la concentration maximale en chrome est de 0.1 mg/L au piézomètre WK6-9A.
- **Sulfates** : la concentration maximale de 22.2 mg/L est mesurée au piézomètre WKBH103. Ce maximum est inférieur à la valeur max de 2012.
- Chlorures : La concentration maximale de 23.4 mg/L est mesurée au piézomètre WK6-12
- Manganèse: seulement détecté au piézomètre WK6-11, WK6-12A et WKBH102A. Les concentrations sont faibles.

Groupe B:

- **pH**: compris entre 5.9 et 8. Ces valeurs extrêmes sont identiques à 2012.
- **Conductivité**: entre 65 et 143 μS/cm.
- Chrome: une concentration maximale de 0.07 mg/l est mesurée au piézomètre WKBH118.
- **Sulfates**: Les résultats du premier semestre 2013 sont comparables aux valeurs mesurées en 2012. Les concentrations sont comprises entre 1.5 et 8.8 mg/L.
- Manganèse: le manganèse n'est pas détecté dans les piézomètres de ce groupe.

Groupe C:

- pH: compris entre 4.6 et 7.7.
- **Conductivité**: comprise entre 42.7 et 130 μS/cm. En moyenne, sur l'ensemble des piézomètres de ce groupe, on note une diminution de la conductivité. La conductivité moyenne est de 85 μS/cm alors qu'en 2012, la conductivité moyenne était de 99.7 μS/cm.
- *Manganèse:* comme en 2012, le maximum de 0.05 mg/l est mesuré à la station WKBH115B.
- Chrome: la concentration maximale est de 0.05 mg/L.

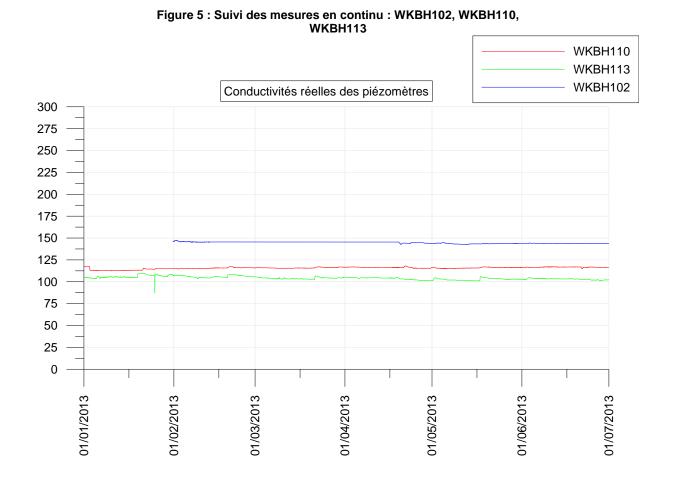
Groupe D:

- **pH**: compris entre 7.1 et 9.7.
- **Conductivité**: comprise entre 103 et 160 μS/cm.
- **Chlorures**, **sulfates**: les résultats démontrent une stabilité des concentrations pour l'ensemble des piézomètres.

- Chrome: les résultats en chrome sont comparables à 2012. Ils confirment la stabilité des concentrations en chrome dans les piézomètres de ce groupe.
- Manganèse : le manganèse n'est toujours pas détecté.

Mesures mensuelles: WKBH113, WKBH102, WKBH110

Conformément à l'arrêté ICPE, la qualité des eaux souterraines est suivie mensuellement et en continu pour la conductivité au niveau des forages suivant :


- WKBH102 qui se situe au pied de la berme, dans la zone d'influence prévisible du stockage des résidus (groupe A),
- WKBH110 qui se situe dans la zone tampon (groupe B), à proximité de la source WK20,
- WKBH113 qui se situe hors zone d'influence (groupe C), en bordure nord du bassin versant.

L'annexe I représentent les données acquises au cours du premier semestre 2013 pour les piézomètres WKBH102, WKBH110, WKBH113. Aucune évolution particulière n'est constatée en 2013 pour la majorité des paramètres.

Mesures de conductivité en continu : WKBH113, WKBH102, WKBH110

Ces piézomètres sont équipés depuis le 17 juin 2009 de sondes de type Aqua Troll 200 qui enregistre les variations de conductivité et de température.

Comme représenté en figure 5, les enregistrements de conductivité des ouvrages WKBH102, WKBH110 et WKBH113 sont stables sur la période d'observation

D'après le tableau 15 ci-dessous, les résultats enregistrés aux piézomètres WKBH110 sont comparables aux mesures réalisées en laboratoire. En revanche, les mesures au niveau des piézomètres WKBH102 et WKBH113 présentes des écarts plus importants. Les décalages sont probablement liés à des dérives des sondes de mesure. Une maintenance sur l'équipement et une calibration de la sonde devra être effectuée afin d'améliorer nos enregistrements.

Tableau 15 : Comparaison des mesures de conductivité manuelles et in situ

Ouvrages	Moyenne des mesures réalisées en laboratoire pour la période (µS/cm)	Mesure moyenne de la sonde pour la période (μS/cm)
WKBH102	128.2	144.02
WKBH110	107	115.2
WKBH113	81.2	104.2

De manière générale, les moyennes observées au premier semestre 2013 sont inférieures aux moyennes de 2012.

2.3.3 Suivi de l'impact des activités de l'Usine sur les eaux souterraines

Les résultats du suivi des eaux souterraines sur le site de l'usine sont présentés dans le tableau 16 suivant le type d'installation du piézomètre :

- Piézomètres courts : suivi de la nappe contenue dans la latérite,
- Piézomètres longs : suivi de la nappe contenue dans la saprolite.

Tableau 16 : Résultats du suivi des eaux souterraines de l'Usine

Туре		Piezomètres longs										Piézomètres courts											
Station	,	6-1	6-2	6-3	6-4	6-5	6-6	6-7	6-8	6-14	6-14A	6-1A	6-2A	6-3A	6-7A	6-8A							
date		21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.	21-févr.							
Heure		10:02	09:49	11:22	11:02	12:42	13:19	12:00	13:47	15:20	15:15	09:53	09:30	10:45	14:14	14:05							
Conductivité-	μs/cm	182	119	88.9	97.7	170	180	168	240	170	361	141	71.9	98.6	99.1	164							
in-situ Température-	• •																						
in-situ	°C	25.5	23.9	24.7	23.5	22.8	22.8	24.1	23.4	26.6	24.2	24.6	24.1	23.7	23.8	24.3							
pH-in-situ	•	7.53	7.2	6.86	7.04	7.41	9.16	7.64	7.18	6.67	5.84	6.94	5.98	6.83	6.2	6.49							
Oxygène- dissous	mg/l	4.76	4.66	8.15	7.81	7.22	7.37	8.16	5.29	6.52	6.68	6.58	3.95	8.28	7.29	6.4							
DCO	mg/l	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10							
HT	mg/l	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10							
Al	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1							
As	mg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02							
Са	mg/l	<1	<1	<1	1	<1	1	3	2	1	7	<1	<1	2	<1	2							
Cd	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01							
CI	mg/l	14.1	12.7	17.1	15.8	13.2	12.5	13.4	21.6	12.3	<0.01 g/I	13.7	14	19.6	13	17.3							
Со	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01							
Cr	mg/l	<0.01	<0.01	<0.01	<0.01	0.12	<0.01	0.03	<0.01	0.01	0.03	0.01	0.01	<0.01	0.14	0.02							
CrVI	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01							
Cu	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01							
Fe	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1							
K	mg/l	0.5	0.2	0.2	0.4	0.2	0.1	0.4	0.5	0.2	0.9	0.1	0.2	0.2	0.4	0.4							
Mg	mg/l	20.8	12.7	6.2	5.2	19.6	19.5	19.3	25	18.2	36.4	13.6	4.2	5.7	7.4	11.2							
Mn	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01							
Na	mg/l	8	7	8	18	7	7	11	13	7	9	7	7	9	8	7							
Ni	mg/l	<0.01	<0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01							
NO3	mg/l	1.2	8.0	1.3	0.6	0.9	0.4	0.6	1.9	1.6		1.6	0.9	1.4	0.8	3.2							
P	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1							
Pb	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01							
PO4	mg/l	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2							
S	mg/l	1	<1	<1	1	<1	<1	<1	8	<1	38	<1	1	<1	<1	5							
Si	mg/l	6	11	6	8	15	<1	17	11	15	<1	8	1	4	5	3							
Sn	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01							
SO4	mg/l	2.2	2.9	0.9	2.7	2.2	2.2	1.6	26.2	1.7	114	1.9	4.3	2	1.9	23.7							
TA-as-CaCO3	mg/l	<2	<2	<2	<2	<2	10	<2	<2	<2	<2	<2	<2	<2	<2	<2							
TAC-as- CaCO3	mg/l	85	47	22	32	80	89	83	80	83	24	55	16	21	35	39							
Zn	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1 <0.		<0.1 <0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1							

Piézomètres courts

- pH : compris entre 5.8 et 6.9
- **Conductivité**: On note toujours une conductivité plus élevée au piézomètre WK6-14A même si la valeur maximale mesurée en février 2013 est inférieure à 2012.
- Chlorures et sulfates: On note toujours des concentrations plus élevées pour ces deux paramètres au piézomètre 6-14A que sur les autres stations. Un maximum de 114 mg/l en sulfates est mesuré à 6-14A. Cette concentration est inférieure à la concentration max mesurée en 2012. Les teneurs relevées aux piézomètres 6-8A sont du même ordre que les années précédentes.
- **DCO et hydrocarbures** : aucune trace d'hydrocarbures n'est relevée dans les eaux souterraines des horizons latéritiques.
- Chrome et chrome VI: comme les années précédentes, la concentration en chrome dans la nappe latéritique est plus élevée à la station 6-7A. Le chrome VI n'est pas détecté dans les eaux souterraines des horizons latéritiques.

Piézomètres longs

- **pH**: compris entre 6.6 et 9.1
- **Conductivité**: compris entre 88.9 et 240 μS/cm. La valeur élevée de conductivité est observée au piézomètre 6-8.
- **Chlorures et sulfates:** les concentrations les plus élevées sont toujours mesurées au piézomètre 6-8 mais les valeurs restent comparables aux années précédentes.
- DCO et hydrocarbures: aucune trace d'hydrocarbure n'est détectée dans la nappe des horizons saprolitiques.
- Chrome et chrome VI: comme en 2012, la teneur en chrome la plus élevée dans les eaux souterraines des horizons saprolitiques du secteur de l'usine est enregistrée au piézomètre 6-5.

2.3.4 Suivi de l'impact des activités de l'UPM sur les eaux souterraines

Le tableau 17 présente les résultats du suivi des eaux souterraines sur le site de l'UPM.

Tableau 17 : Résultats du suivi des eaux souterraines de l'UPM

Station	4-z1	4-z2	4-z4	4-z5
Temps	22/02/2013 08:43	22/02/2013 11:16	22/02/2013 11:14	22/02/2013 09:10
pH-in-situ	8.56	8.29	6.16	6.36
Température- in-situ	23.2	23.7	23.1	22.8
Conductivité- in-situ	140	138	92.4	112
Oxygène- dissous	1.89	2.25	3.29	2.87
DCO	<10	<10	<10	<10
HT	<10	<10	<10	<10
Al	<0.1	<0.1	<0.1	<0.1
As	<0.02	<0.02	<0.02	<0.02
Са	<1	<1	<1	<1
Cd	< 0.01	<0.01	<0.01	< 0.01
Cl	10.6	11.8	14.7	13
Со	< 0.01	<0.01	0.03	0.04
Cr	< 0.01	< 0.01	< 0.01	< 0.01
CrVI	<0.01	< 0.01	<0.01	<0.01
Cu	< 0.01	<0.01	<0.01	<0.01
Fe	<0.1	<0.1	<0.1	<0.1
K	0.1	0.2	1	0.1
Mg	16.2	15.1	6.1	11
Mn	0.03	0.02	0.38	0.68
Na	5	6	8	5
Ni	<0.01	<0.01	0.05	0.07
NO3	<0.2	0.2	0.4	<0.2
P	<0.1	<0.1	<0.1	<0.1
Pb	<0.01	<0.01	<0.01	<0.01
PO4	<0.2	<0.2	<0.2	<0.2
S	<1	3	<1	2
Si	13	8	3	5
Sn	<0.01	<0.01	<0.01	<0.01
SO4	1.4	8.6	3	5.2
TA-as-CaCO3	<2	<2	<2	<2
TAC-as-CaCO3	66	55	10	39
Zn	<0.1	<0.1	<0.1	<0.1

- **pH**: compris entre 6.1 et 8.5.
- **conductivité** : compris entre 92.4 et 140µS/cm.
- Hydrocarbures: aucune trace d'hydrocarbures n'est détectée dans les eaux souterraines sur le site de l'UPM.
- Chrome VI: le chrome VI n'est pas détecté dans les eaux souterraines de l'UPM.

3. ANALYSE DES RESULTATS ET INTERPRETATION

3.1. Suivi de l'impact des activités du port sur les eaux souterraines

Les valeurs élevées en DCO et conductivité au piézomètre 7-1 sont dus aux apports d'eau de mer et ne sont donc pas indicatrices d'une modification de la qualité des eaux induite par les activités du port.

Les résultats du suivi des eaux souterraines n'indiquent pas de contamination par les hydrocarbures. Les activités portuaires et plus particulièrement les stockages de fioul lourd et de gasoil n'ont pas eu d'impact sur les eaux souterraines.

3.2. Suivi de l'impact des activités du parc à résidus sur les eaux souterraines

Les résultats des suivis réalisés sur les trois piézomètres présentent une eau faiblement minéralisée et un pH neutre. La composition des eaux est en accord avec la nature des terrains traversés (massif de péridodite : silicate de magnésium et fer).

Les concentrations élevées en **chlorures** (23.4 mg/L) et **sulfates** (22.2 mg/L) sont mesurées dans la zone d'alerte au pied de la berme. Toutefois, ces valeurs restent largement inférieures aux seuils mentionnés dans la norme de potabilité des eaux, soit 150 mg/L pour les sulfates et 200 mg/L pour les chlorures.

Le **manganèse** est faiblement détecté dans les eaux souterraines de la zone d'alerte et près de la rivière Kue Ouest. Les concentrations sont largement inférieures au seuil réglementaire de 1 mg/L mentionné dans l'arrêté.

L'ensemble des autres résultats sont conformes aux recommandations de l'arrêté N° 1466-2008/PS du 9 octobre 2008.

3.3. Suivi de l'impact des activités de l'usine sur les eaux souterraines

Tel que reporté dans le bilan annuel de 2012, Les résultats du contrôle de février ont montré une conductivité et une concentration élevée en sulfates dans la nappe latéritique, au niveau du piézomètre 6-14A. Ce piézomètre est situé entre le secteur auxiliaire et la raffinerie (270).

Dans la nappe profonde, située dans les horizons saprolitiques, les résultats de **conductivité** et de **sulfates** montrent des valeurs hautes au niveau du piézomètre 6-8. Ce piézomètre est situé en aval du bassin de premier flot Nord. Les valeurs mesurées restent inférieures aux limites mentionnées dans la norme de potabilité des eaux.

Enfin le suivi des eaux souterraines ne révèle aucune contamination en **hydrocarbures** de la nappe latéritique et saprolitique.

Les résultats des paramètres analysés montrent une qualité satisfaisante des eaux souterraines au niveau de l'usine.

3.4. Suivi de l'impact des activités de l'UPM sur les eaux souterraines

Les analyses des piézomètres règlementaires ne présentent pas de valeur indicatrice de pollution.

Les activités, tel que le trafic et le lavage des engins lourd, la station de distribution de carburant et d'autres activités associées à des huiles et hydrocarbures n'ont pas eu d'impact sur les eaux souterraines.

4. BILAN DES NON-CONFORMITES

Description des non-conformités et analyse des causes :

- Suivi des activités du port sur les eaux souterraines : aucune non-conformité n'est à reporter.
- Suivi des activités du parc à résidus sur les eaux souterraines : aucune non-conformité n'est à reporter.
- Suivi des impacts des activités de l'usine sur les eaux souterraines : aucune nonconformité n'est à reporter.
- Mesures correctives immédiates : aucune mesure corrective immédiate n'a été engagée.
- Plan d'action des mesures correctives : aucun plan d'action des mesures correctives n'a été mis en place.
- Suivi des actions correctives : sans objet.

CONCLUSION

Le suivi des stations selon les paramètres et les fréquences règlementaire n'a pu être réalisé en quasi-totalité. Les suivis non effectués sont majoritairement dus à la dégradation des installations de suivi et à l'indisponibilité de nos équipements.

L'analyse des résultats du suivi des eaux souterraines n'a pas révélé de valeurs supérieures aux seuils réglementaires ayant pour origine les activités des installations de Vale Nouvelle-Calédonie. Aucune non-conformité n'est à reporter pour le suivi des eaux souterraines au cours de ce premier semestre 2013.

ANNEXE I

Résultats du suivi des eaux souterraines de la Kwé Ouest

Groupe	Station	Temps	pH-in-situ	Conductivité- in-situ	Oxygène- dissous	Température- in-situ	Al	As	Ca	Cd	CI	Со	сот	Cr	Cu	F	Fe	К	Mg	Mn	Na	NH3	Ni	NO2	NO3	NT	ORP	Р	Pb	PO4	S	Si	SiO2	Sn	SO4	TA-as- CaCO3	TAC-as- CaCO3	Zn
	WK6-9	23/04/2013 13:40	7.93	95.1	8.88	22.4	<0.1	<0.02	<1	<0.01	11.4	<0.01	2.9	0.01	<0.01	<0.1	<0.1	0.4	12.6	<0.01	6	0.2	<0.01	<0.1	3.1	0.7	214	<0.1	<0.01	<0.2	1	8	16.2	<0.01	3.4	<2	48	<0.1
	WK6-9A	23/04/2013 14:00	7.08	53.7	8.71	22.9	<0.1	<0.02	<1	<0.01	11.9		2.4	0.1	<0.01	<0.1		0.3	4.3	<0.01	5		<0.01		0.8	<0.5	176	<0.1	<0.01	<0.2	<1	4	8.5	<0.01	1.1	<2	14	<0.1
	WK6-11	24/04/2013 11:27	4.36	67.5		25.3	<0.1	<0.02	1	<0.01	17.9	< 0.01	5.2	0.02	<0.01	<0.1	<0.1	0.5	3.2	0.03	6	<0.1	<0.01	<0.1	2.6	0.7	256	<0.1	<0.01	<0.2	2	<1	<1	<0.01	6.2	<2	<2	<0.1
	WK6-12	21/04/2013 11:35	5.77	99.7	7.71	24.2	<0.1	<0.02	1	<0.01	23.4	< 0.01	1.3	<0.01	<0.01		<0.1	0.3	8.8	<0.01	5	0.3	0.12		6.7	1.5	248	<0.1	<0.01	<0.2	2	3	6.1	<0.01	4.9	<2	9	<0.1
Groupe A	WK6-12A	21/04/2013 11:07	5.17	84.1	7.8	24.3	<0.1	<0.02	<1	<0.01	23	< 0.01	1.5	<0.01	<0.01		<0.1	0.3	6.7	0.02	5	2	0.01		5.6	1.3	249	<0.1	<0.01	<0.2	<1	<1	<1	<0.01	2.7	<2	3	<0.1
piézomètres	WKBH102	19/01/2013 12:08	7.4	140	5.77	23.5	<0.1	<0.02	<1	<0.01	11.8	< 0.01	<0.3	0.01	<0.01		<0.1	0.2	14.6	<0.01	6	<0.1	0.02		4.7		274	<0.1	<0.01	<0.2	4	7	15.6	<0.01	13.9	<2	46	<0.1
d'alerte au pied	WKBH102	19/02/2013 15:43	7.2	148	6.82	22.9	<0.1	<0.02	<1	<0.01	13	< 0.01	<0.3	0.01	<0.01		<0.1	0.3	15.6	<0.01	6	<0.1	0.05		4.8		207	<0.1	<0.01	<0.5	4	8	17.1	<0.01	15	<2	46	<0.1
de la berme	WKBH102	21/03/2013 11:39	7.12	139	6.82	22.9	<0.1	<0.02	<1	<0.01	13	< 0.01	<0.3	0.02	<0.01		<0.1	0.2	15.3	<0.01	6	<0.1	0.02		4.1	<0.5	145	<0.1	<0.01	<0.2	4	9	19	<0.01	12.5	<2	45	<0.1
	WKBH102	23/04/2013 15:15	7.06	102	8.16	23	<0.1	<0.02	<1	<0.01	12.8	< 0.01	2.1	0.01	<0.01	<0.1	<0.1	0.2	13.5	<0.01	6		0.02	<0.1	3	0.6	174	<0.1	<0.01	<0.2	3	9	19	<0.01	9.1	<2	42	<0.1
	WKBH102	17/05/2013 14:49	7.01	112		23.2	<0.1	<0.02	<1	<0.01	13	<0.01	2.4	0.01	<0.01		<0.1	0.2	14.2	<0.01	6	<0.1	0.02		3.6	0.9	229	<0.1	<0.01	<0.2	4	9	18.8	<0.01	12.1	<2	44	<0.1
	WKBH102A	24/04/2013 09:54	7.41	131		24.8	<0.1	<0.02	1	<0.01	12.6	< 0.01	<0.3	<0.01	<0.01	<0.1	<0.1	0.4	4.7	0.01	8	<0.1	<0.01	<0.1	2.8	<0.5	234	<0.1	<0.01	<0.2	3	<1	<1	<0.01	9	<2	6	<0.1
	WKBH103	19/04/2013 14:32	7.48	162	6.73	22.8	<0.1	<0.02	<1	<0.01	14.6	<0.01	10.1	0.01	<0.01	<0.1	<0.1	0.3	18.6	<0.01	7	0.1	0.02	<0.1	7.4	1.3	208	<0.1	<0.01	<0.2	6	7	15.7	<0.01	22.2	<2	47	<0.1
	WK6-10A	23/04/2013 14:30	6.02	85.6	6.73	23	<0.1	<0.02	<1	<0.01	16.6	<0.01	3.2	0.02	<0.01	<0.1	<0.1	1	9.2	<0.01	6	0.2	0.02	<0.1	1.6	0.5	233	<0.1	<0.01	<0.2	2	4	7.8	<0.01	6.7	<2	26	<0.1
	WKBH109A	19/04/2013 10:41	7.35	143	5.54	23.4	<0.1	<0.02	<1	<0.01	14.3	< 0.01	<0.3	0.02	<0.01	<0.1	<0.1	0.3	16.7	<0.01	7	<0.1	0.02	<0.1	3.7	0.8	211	<0.1	<0.01	<0.2	3	8	16.9	<0.01	8.8	<2	52	<0.1
	WKBH110	21/01/2013 09:32	7.83	107	8	22.8	<0.1	<0.02	<1	<0.01	10.3	< 0.01	<0.3	0.01	<0.01		<0.1	0.2	10.8	<0.01	5	<0.1	<0.01		2.2		238	<0.1	<0.01	<0.2	<1	6	13.8	<0.01	2.8	<2	40	<0.1
	WKBH110	19/02/2013 14:43	7.47	113	8.19	22.8	<0.1	<0.02	<1	<0.01	11.3	<0.01	<0.3	0.01	<0.01		<0.1	0.3	11.4	<0.01	6	<0.1	0.03		2.3		191	<0.1	<0.01	<0.5	<1	7	15.4	<0.01	2.6	<2	44	<0.1
	WKBH110	21/03/2013 14:31	7.61	113	8.23	22.7	<0.1	<0.02	<1	<0.01	11.9	<0.01	<0.3	0.02	<0.01		<0.1	0.2	12.2	<0.01	6	<0.1	<0.01		2.4	0.9	154	<0.1	<0.01	<0.2	<1	8	16.6	<0.01	2.7	<2	44	<0.1
Groupe B Suivi de	WKBH110	21/04/2013 10:32	7.68	108	7.92	22.7	<0.1	<0.02	<1	<0.01	12	<0.01	<0.3	0.01	<0.01		<0.1	0.2	11.4	<0.01	6	0.2	0.01		2.2	<0.5	221	<0.1	<0.01	<0.2	<1	8	16.3	<0.01	2.5	<2	40	<0.1
la qualité de l'eau	WKBH110	17/05/2013 10:54	7.2	94		23.4	<0.1	<0.02	<1	<0.01	12.1	<0.01	1.8	0.04	<0.01		0.1	0.1	8.4	<0.01	5	<0.1	0.05		2.3	<0.5	262	<0.1	<0.01	<0.2	<1	7	15.8	<0.01	2.8	<2	43	<0.1
souterraine dans	WKBH110B	21/04/2013 09:46	7.77	108	7.7	24.9	<0.1	<0.02		<0.01	12.1	<0.01		0.01	<0.01		<0.1	0.3	11.8	<0.01	6	0.3	<0.01		2.2	0.5	222	<0.1	<0.01	<0.2	<1	8	16.3	<0.01	2.6	<2	41	<0.1
la zone tampon	WKBH111	20/04/2013 16:09	7.6	111	7.66	22.8	<0.1	<0.02		<0.01	10.8		16.4	0.01	<0.01	<0.1		0.2	12.9	<0.01	6	0.2	0.03	<0.1	1.3	<0.5	208	<0.1	<0.01	<0.2	<1	11	23.5	<0.01	1.5	<2	47	<0.1
	WKBH117	20/04/2013 11:09	6.94	113	7.74	23.3	<0.1	<0.02	<1	<0.01	11.7	<0.01		<0.01		<0.1		0.2	13.1	<0.01	6	0.2	0.03	<0.1	<0.2	<0.5	224	<0.1	<0.01	<0.2	<1	9	18.8	<0.01	2.4	<2	49	<0.1
	WKBH117A	20/04/2013 11:19	6.96	104	7.86	23.6	<0.1	<0.02	<1	<0.01	11.6	<0.01	19.1	0.01	<0.01	<0.1	<0.1	0.2	11.4	<0.01	6	0.3	0.02	<0.1	<0.2	<0.5	222	<0.1	<0.01	<0.2	<1	7	15.2	<0.01	2.8	<2	46	<0.1
	WKBH117B	20/04/2013 10:29	6.98	102	7.55	23.5	<0.1	<0.02	<1	<0.01	11.4	1	17.5	0.01	<0.01	<0.1	<0.1	0.2	11.4	<0.01	6	0.3	0.03	<0.1	0.2	<0.5	231	<0.1	<0.01	<0.2	<1	7	15.3	<0.01	2.4	<2	42	<0.1
	WKBH118	20/04/2013 15:07	5.95	65	5.03	22.6	<0.1	<0.02	<1	<0.01	11.9	<0.01	18.3	0.07	<0.01	<0.1		0.4	4.6	<0.01	5	0.8	<0.01	<0.1	1.3	<0.5	207	<0.1	<0.01	<0.2	1	2	3.6	<0.01	4.2	<2	14	<0.1
-	WKBH118A	20/04/2013 14:33	7.28	126	5.53	22.8	<0.1	<0.02		<0.01			12.6	0.01	<0.01	<0.1		0.5	15.1	<0.01	7	0.2	0.01	<0.1	2.1	0.5	220	<0.1	<0.01	<0.2	2	10	20.4	<0.01	6.9	<2	47	<0.1
	WKBH118B	20/04/2013 14:51	8.09	130	4.53	23	<0.1	<0.02	4	<0.01	12.8	<0.01	9.8	0.01	<0.01	<0.1	<0.1	0.5	13.2	<0.01	6	0.7	<0.01	<0.1	2.2	<0.5	211	<0.1	<0.01	<0.2	2	9	18.3	<0.01	6.6	<2	52	<0.1
_	WKBH112	24/04/2013 15:42	6.93	129	7.50	23.4	0.2		1	<0.01	11.9	<0.01	<0.3	0.01	<0.01	<0.1		0.2	18.9	<0.01	6	<0.1	0.13	<0.1	1.7	<0.5	223	<0.1	<0.01	<0.2	<1	18	38.3	<0.01	2.2	<2	75	<0.1
-	WKBH113	19/01/2013 11:07	7.43	79.6	7.58	23.8	<0.1	<0.02	<1	<0.01	8.7	<0.01	<0.3	0.05	<0.01		<0.1	0.2	8.1	<0.01	5	<0.1	0.04		0.4		293	<0.1	<0.01	<0.2	<1		14.5	<0.01	1.3	<2	34	<0.1
-	WKBH113	19/02/2013 12:55	7.05	85.5	8.22	22.3	<0.1	<0.02	<1	<0.01	9.7	<0.01	<0.3	0.05	<0.01		0.1	0.3	8.4	<0.01	5	0.1	0.07		0.3	0.5	190	<0.1	<0.01	<0.5	<1		15.7	<0.01	1.2	<2	33	<0.1
-	WKBH113 WKBH113	21/03/2013 15:31 18/04/2013 10:15	7.25 7.26	85.3 82	7.68 7.26	22.3 22.3	<0.1	<0.02	<1	<0.01	10	<0.01	<0.3	0.05	<0.01	<0.1	<0.1	0.2	8.6 8.6	<0.01	5	<0.1	0.04	<0.1	0.3	<0.5 <0.5	162	<0.1	<0.01	<0.2	<1 <1	8	16 16.5	<0.01	1.2	<2	34 33	<0.1
Groupe C Suivi de	WKBH113 WKBH113	16/04/2013 10:15	7.26	74	7.26	22.6	<0.1	<0.02	<1 <1	<0.01	10.3	<0.01	<0.3	0.05	<0.01	<0.1	0.1	0.2	8.5	<0.01	5	<0.1	0.04	<0.1	0.3	<0.5	176 265	<0.1	<0.01	<0.2	<1	7	15.8	<0.01	1.1	<2	33	<0.1
la qualité de l'eau	WKBH113A	18/04/2013 10:05	6.21	49.1	4.34	23	<0.1	<0.02	_	<0.01	11.1	<0.01	<0.3	0.04	<0.01	<0.1		0.1	3.1	<0.01	6	<0.1	0.07	<0.1	0.3	0.6	182	<0.1	<0.01	<0.2	<1	2	5.2	<0.01	0.9	<2	10	<0.1
souterraine près	WKBH113A WKBH114	18/04/2013 11:26	7.09	97.2	4.54	23.6	<0.1	<0.02	<1	<0.01	10.1	<0.01	<0.3	0.01	<0.01	<0.1	<0.1	0.3	11.3	<0.01	5	<0.1	0.02	<0.1	0.3	<0.5	190	<0.1	<0.01	<0.2	<1	8	17.4	<0.01	1.5	<2	42	<0.1
de la rivière Kwé	WKBH114A	18/04/2013 10:57	4.62	46.1	6.57	23.9	<0.1	<0.02	<1	<0.01	9.1	<0.01	7.5	<0.01	<0.01	<0.1	<0.1	0.2	1.1	0.01	5	<0.1	0.01	<0.1	1.1	<0.5	235	<0.1	<0.01	<0.2	<1	<1	<1	<0.01	1.9		42	<0.1
Ouest	WKBH115B	20/04/2013 10:57	4.98	50.9	0.57	24.2	<0.1	<0.02	2	<0.01	12.2	0.01	16.8	0.02	<0.01	<0.1	<0.1	0.4	1.7	0.05	5	0.6	0.03	<0.1	1.9	<0.5	224	<0.1	<0.01	<0.2	1	<1	<1	<0.01	3.2	<2	3	<0.1
-	WKBH116	18/04/2013 15:50	7.77	130	2.03	22.9	<0.1	<0.02	2	<0.01	10.6	<0.01	<0.3	<0.01	<0.01	<0.1	<0.1	0.3	19.8	0.03	7	<0.1	0.02	<0.1	<0.2	<0.5	220	<0.1	<0.01	<0.2	<1	17	37.1	<0.01	1.6	<2	62	<0.1
-	WKBH116A	18/04/2013 14:44	7.66	119	3.43	23.3	<0.1	<0.02	<1	<0.01	11.3	<0.01	<0.3	<0.01	<0.01	<0.1	<0.1	0.3	14	0.01	6	<0.1	0.01	<0.1	0.6	<0.5	228	<0.1	<0.01	<0.2	<1	13	27.4	<0.01	1.2	<2	54	<0.1
-	WKBH116B	18/04/2013 14:17	5.51	42.7	6.53	23.6	<0.1			<0.01	11		2.6	<0.01	<0.01	<0.1		0.2	2.2	<0.01	5	<0.1	<0.01	<0.1	1	0.5	232		<0.01	<0.2	<1	<1	1.2	<0.01	1.6	<2	7	<0.1
-	WTBH9	19/04/2013 09:38	6.83	119	5.09	23.6	<0.1	-	_	<0.01		<0.01		+	<0.01	<0.1	_	0.2	4	<0.01		0.1	0.19	<0.1	4	0.8	218	<0.1	<0.01	<0.2	<1	13	27.4	<0.01	1.7	<2	52	<0.1
	WTBH11	17/04/2013 14:53	7.16	103	8.82	22.2	<0.1	<0.02	<1	<0.01	12.4	<0.01	<0.3	0.02	<0.01	<0.1	<0.1	0.2	11	<0.01	6	0.2	0.01	<0.1	<0.2	<0.5	177	<0.1	<0.01	<0.2	<1	8	17.5	0.01	2.2	<2	46	<0.1
Groupe D Suivi de la qualité de l'eau																			11		-											6						
souterraine dans	WTBH11A	17/04/2013 14:50	7.65	114	9.39	22.2	<0.1	<0.02		<0.01	12.8	<0.01	<0.3	0.02	<0.01	<0.1	<0.1	0.2	13	<0.01	/	<0.1	0.01	<0.1	<0.2	<0.5	159	<0.1	<0.01	<0.2	<1	8	17.3	<0.01	2.2	<2	59	<0.1
les vallées adjacentes	WKBH32	17/04/2013 16:45	9.78	160	4.1	23.1	<0.1	<0.02	<1	<0.01	10.7	<0.01	0.5	<0.01		<0.1	<0.1	0.7	21.6	<0.01	6	<0.1	<0.01		0.4	<0.5	138	<0.1	<0.01	<0.2	<1	<1	1.4	<0.01	2.5	24	99	<0.1
	WK6-14	24/04/2013 09:19	7.32	115		23.5	<0.1	<0.02	<1	<0.01	11.4	<0.01	<0.3	0.06	<0.01	<0.1	<0.1	0.3	16.8	<0.01	6	<0.1	0.03	<0.1	1.7	<0.5	233	<0.1	<0.01	<0.2	1	8	18.1	<0.01	3.4	<2	63	<0.1

ANNEXE II

Statistiques établies sur les résultats du suivi des eaux souterraines de la Kwé Ouest en 2012:

Piézomètres des groupes A, B, C et D

Suivi des Eaux Souterraines –Annuel 2012

	2012					Groupe A					GroupeB								groupe C								groupe D							
Paramètres	Unité	LD	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Moyenne	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Moyenne	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Moyenne	Min	Max	Ecart- type	Mediane	Total Analyses	Nb Analyses < LD	% Valeurs Expoitables	Moyenne	Min	Max	Ecart- type	Mediane
рН	-	-	29	0	100	7.08	4.5	10.26	1.43	7.1	31	0	100	7.32	5.94	8.14	0.59	7.6	29	0	100	6.74	4.5	7.82	1	7.2	7	0	100	8.25	7.04	9.83	1.17	8.1
cond	μS/cm	-	29	0	100	135.32	64.8	190	44.05	139	30	0	100	127.52	73.2	167	21.05	128	29	0	100	99.73	51.8	179	36.32	96.6	7	0	100	149.14	119	193	30.41	138
AI	mg/l	0.1	29	27	7	0.02	<ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>29</th><th>26</th><th>10</th><th>0.02</th><th><ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>7</th><th>7</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.4	0.08	0	30	30	0						29	26	10	0.02	<ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>7</th><th>7</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.4	0.08	0	7	7	0					
As	mg/l	0.05	29	29	0						30	30	0						29	29	0						7	7	0					
Ca	mg/l	0.1	29	19	34	0.52	<ld< th=""><th>2</th><th>0.78</th><th>0</th><th>30</th><th>26</th><th>13</th><th>0.47</th><th><ld< th=""><th>6</th><th>1.43</th><th>0</th><th>29</th><th>22</th><th>24</th><th>0.48</th><th><ld< th=""><th>3</th><th>0.91</th><th>0</th><th>7</th><th>6</th><th>14</th><th></th><th><ld< th=""><th>1</th><th></th><th></th></ld<></th></ld<></th></ld<></th></ld<>	2	0.78	0	30	26	13	0.47	<ld< th=""><th>6</th><th>1.43</th><th>0</th><th>29</th><th>22</th><th>24</th><th>0.48</th><th><ld< th=""><th>3</th><th>0.91</th><th>0</th><th>7</th><th>6</th><th>14</th><th></th><th><ld< th=""><th>1</th><th></th><th></th></ld<></th></ld<></th></ld<>	6	1.43	0	29	22	24	0.48	<ld< th=""><th>3</th><th>0.91</th><th>0</th><th>7</th><th>6</th><th>14</th><th></th><th><ld< th=""><th>1</th><th></th><th></th></ld<></th></ld<>	3	0.91	0	7	6	14		<ld< th=""><th>1</th><th></th><th></th></ld<>	1		
CI	mg/l	0.1	29	0	100	14.23	8.2	34.7	5.02	12.8	30	0	100	10.91	7.4	13.7	1.3	10.7	28	0	100	9.75	6.4	11.6	1.05	9.9	7	0	100	10.74	9.5	11.5	0.76	11.1
Со	mg/l	0.03	29	29	0						30	30	0						29	28	3		<ld< th=""><th>0.01</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	0.01										
Cr	mg/l	0.01	29	10	66	0.02	<ld< th=""><th>0.15</th><th>0.04</th><th>0</th><th>30</th><th>1</th><th>97</th><th>0.02</th><th>0.01</th><th>0.07</th><th>0.01</th><th>0.01</th><th>29</th><th>8</th><th>72</th><th>0.03</th><th><ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>7</th><th>2</th><th>71</th><th>0.02</th><th><ld< th=""><th>0.06</th><th>0.02</th><th>0</th></ld<></th></ld<></th></ld<>	0.15	0.04	0	30	1	97	0.02	0.01	0.07	0.01	0.01	29	8	72	0.03	<ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>7</th><th>2</th><th>71</th><th>0.02</th><th><ld< th=""><th>0.06</th><th>0.02</th><th>0</th></ld<></th></ld<>	0.1	0.03	0	7	2	71	0.02	<ld< th=""><th>0.06</th><th>0.02</th><th>0</th></ld<>	0.06	0.02	0
Cu	mg/l	0.03	29	28	3		<ld< th=""><th>0.01</th><th></th><th></th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>29</th><th>28</th><th>3</th><th></th><th><ld< th=""><th>0.01</th><th></th><th></th><th>7</th><th>5</th><th>29</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.02</th><th>0</th></ld<></th></ld<></th></ld<>	0.01			30	30	0						29	28	3		<ld< th=""><th>0.01</th><th></th><th></th><th>7</th><th>5</th><th>29</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.02</th><th>0</th></ld<></th></ld<>	0.01			7	5	29	0.01	<ld< th=""><th>0.05</th><th>0.02</th><th>0</th></ld<>	0.05	0.02	0
Fe	mg/l	0.2	29	27	7	0.01	<ld< th=""><th>0.2</th><th>0.04</th><th>0</th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>29</th><th>24</th><th>17</th><th>0.03</th><th><ld< th=""><th>0.5</th><th>0.1</th><th>0</th><th>7</th><th>6</th><th>14</th><th></th><th><ld< th=""><th>0.3</th><th></th><th></th></ld<></th></ld<></th></ld<>	0.2	0.04	0	30	30	0						29	24	17	0.03	<ld< th=""><th>0.5</th><th>0.1</th><th>0</th><th>7</th><th>6</th><th>14</th><th></th><th><ld< th=""><th>0.3</th><th></th><th></th></ld<></th></ld<>	0.5	0.1	0	7	6	14		<ld< th=""><th>0.3</th><th></th><th></th></ld<>	0.3		
к	mg/l	0.3	29	0	100	0.32	0.2	0.8	0.14	0.3	30	0	100	0.33	0.2	1	0.21	0.2	29	0	100	0.21	0.1	0.4	0.08	0.2	7	0	100	0.31	0.2	0.5	0.15	0.2
Mg	mg/l	0.1	29	0	100	10.96	0.5	18.8	6.59	12.8	30	0	100	11.58	4.4	16.2	2.57	12	29	0	100	8.54	0.9	19.2	5.04	8.3	7	0	100	14.96	10.8	21.2	4.29	12.8
Mn	mg/l	0.01	29	25	14	0.006	<ld< th=""><th>0.08</th><th>0.02</th><th>0</th><th>30</th><th>27</th><th>10</th><th>0.002</th><th><ld< th=""><th>0.02</th><th>0.01</th><th>0</th><th>29</th><th>20</th><th>31</th><th>0.007</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>7</th><th>7</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<></th></ld<>	0.08	0.02	0	30	27	10	0.002	<ld< th=""><th>0.02</th><th>0.01</th><th>0</th><th>29</th><th>20</th><th>31</th><th>0.007</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>7</th><th>7</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	0.02	0.01	0	29	20	31	0.007	<ld< th=""><th>0.05</th><th>0.01</th><th>0</th><th>7</th><th>7</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.05	0.01	0	7	7	0					
Na	mg/l	0.5	29	0	100	6.72	4	18	2.96	6	30	0	100	5.9	5	6	0.31	6	29	0	100	5.21	4	7	0.68	5	7	0	100	6.43	6	7	0.53	6
Ni	mg/l	0.01	29	9	69	0.02	<ld< th=""><th>0.11</th><th>0.03</th><th>0</th><th>30</th><th>9</th><th>70</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0.01</th><th>29</th><th>3</th><th>90</th><th>0.04</th><th><ld< th=""><th>0.18</th><th>0.05</th><th>0</th><th>7</th><th>5</th><th>29</th><th>0.01</th><th><ld< th=""><th>0.03</th><th>0.01</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	0.11	0.03	0	30	9	70	0.01	<ld< th=""><th>0.05</th><th>0.01</th><th>0.01</th><th>29</th><th>3</th><th>90</th><th>0.04</th><th><ld< th=""><th>0.18</th><th>0.05</th><th>0</th><th>7</th><th>5</th><th>29</th><th>0.01</th><th><ld< th=""><th>0.03</th><th>0.01</th><th>0</th></ld<></th></ld<></th></ld<>	0.05	0.01	0.01	29	3	90	0.04	<ld< th=""><th>0.18</th><th>0.05</th><th>0</th><th>7</th><th>5</th><th>29</th><th>0.01</th><th><ld< th=""><th>0.03</th><th>0.01</th><th>0</th></ld<></th></ld<>	0.18	0.05	0	7	5	29	0.01	<ld< th=""><th>0.03</th><th>0.01</th><th>0</th></ld<>	0.03	0.01	0
NO2	mg/l	0.01	12	12	0						16	16	0						17	17	0						6	6	0					
NO3	mg/l	0.1	29	3	90	3.42	<ld< th=""><th>6.4</th><th>2.15</th><th>3.9</th><th>30</th><th>2</th><th>93</th><th>1.78</th><th><ld< th=""><th>3.3</th><th>1.01</th><th>2.1</th><th>28</th><th>0</th><th>100</th><th>0.74</th><th>0.2</th><th>1.9</th><th>0.58</th><th>0.4</th><th>7</th><th>5</th><th>29</th><th>0.24</th><th><ld< th=""><th>1.5</th><th>0.56</th><th>0</th></ld<></th></ld<></th></ld<>	6.4	2.15	3.9	30	2	93	1.78	<ld< th=""><th>3.3</th><th>1.01</th><th>2.1</th><th>28</th><th>0</th><th>100</th><th>0.74</th><th>0.2</th><th>1.9</th><th>0.58</th><th>0.4</th><th>7</th><th>5</th><th>29</th><th>0.24</th><th><ld< th=""><th>1.5</th><th>0.56</th><th>0</th></ld<></th></ld<>	3.3	1.01	2.1	28	0	100	0.74	0.2	1.9	0.58	0.4	7	5	29	0.24	<ld< th=""><th>1.5</th><th>0.56</th><th>0</th></ld<>	1.5	0.56	0
Pb	mg/l	0.1	29	29	0						30	30	0						29	29	0						7	7	0					
PO4	mg/l	0.2	28	27	4		<ld< th=""><th>0.3</th><th></th><th></th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>29</th><th>29</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>7</th><th>7</th><th>0</th><th></th><th></th><th></th><th></th><th></th></ld<>	0.3			30	30	0						29	29	0						7	7	0					
s	mg/l	1	29	9	69	3.34	<ld< th=""><th>8</th><th>2.81</th><th>3</th><th>30</th><th>15</th><th>50</th><th>0.83</th><th><ld< th=""><th>3</th><th>0.99</th><th>0.5</th><th>29</th><th>24</th><th>17</th><th>0.24</th><th><ld< th=""><th>2</th><th>0.58</th><th>0</th><th>7</th><th>4</th><th>43</th><th>0.43</th><th><ld< th=""><th>1</th><th>0.53</th><th>0</th></ld<></th></ld<></th></ld<></th></ld<>	8	2.81	3	30	15	50	0.83	<ld< th=""><th>3</th><th>0.99</th><th>0.5</th><th>29</th><th>24</th><th>17</th><th>0.24</th><th><ld< th=""><th>2</th><th>0.58</th><th>0</th><th>7</th><th>4</th><th>43</th><th>0.43</th><th><ld< th=""><th>1</th><th>0.53</th><th>0</th></ld<></th></ld<></th></ld<>	3	0.99	0.5	29	24	17	0.24	<ld< th=""><th>2</th><th>0.58</th><th>0</th><th>7</th><th>4</th><th>43</th><th>0.43</th><th><ld< th=""><th>1</th><th>0.53</th><th>0</th></ld<></th></ld<>	2	0.58	0	7	4	43	0.43	<ld< th=""><th>1</th><th>0.53</th><th>0</th></ld<>	1	0.53	0
Si	mg/l	0.4	29	6	79	5.03	<ld< th=""><th>8</th><th>2.92</th><th>7</th><th>30</th><th>0</th><th>100</th><th>7</th><th>2</th><th>11</th><th>2.08</th><th>7</th><th>29</th><th>6</th><th>79</th><th>6.86</th><th><ld< th=""><th>17</th><th>4.79</th><th>7</th><th>7</th><th>2</th><th>71</th><th>5.71</th><th><ld< th=""><th>8</th><th>3.9</th><th>8</th></ld<></th></ld<></th></ld<>	8	2.92	7	30	0	100	7	2	11	2.08	7	29	6	79	6.86	<ld< th=""><th>17</th><th>4.79</th><th>7</th><th>7</th><th>2</th><th>71</th><th>5.71</th><th><ld< th=""><th>8</th><th>3.9</th><th>8</th></ld<></th></ld<>	17	4.79	7	7	2	71	5.71	<ld< th=""><th>8</th><th>3.9</th><th>8</th></ld<>	8	3.9	8
SiO2	mg/l	1	29	6	79	10.69	<ld< th=""><th>16.6</th><th>6.28</th><th>14.5</th><th>30</th><th>0</th><th>100</th><th>15.04</th><th>3.4</th><th>22.8</th><th>4.41</th><th>15.8</th><th>29</th><th>4</th><th>86</th><th>14.76</th><th><ld< th=""><th>36.6</th><th>10.08</th><th>15.3</th><th>7</th><th>0</th><th>100</th><th>12.33</th><th>1.1</th><th>17</th><th>7.6</th><th>16.6</th></ld<></th></ld<>	16.6	6.28	14.5	30	0	100	15.04	3.4	22.8	4.41	15.8	29	4	86	14.76	<ld< th=""><th>36.6</th><th>10.08</th><th>15.3</th><th>7</th><th>0</th><th>100</th><th>12.33</th><th>1.1</th><th>17</th><th>7.6</th><th>16.6</th></ld<>	36.6	10.08	15.3	7	0	100	12.33	1.1	17	7.6	16.6
SO4	mg/l	0.2	29	0	100	10.96	0.2	24.3	8.61	10.3	30	0	100	3.66	1.3	8.8	1.84	2.9	29	1	97	1.74	<ld< th=""><th>4.9</th><th>0.96</th><th>1.5</th><th>7</th><th>0</th><th>100</th><th>2.41</th><th>2.2</th><th>3.3</th><th>0.41</th><th>2.2</th></ld<>	4.9	0.96	1.5	7	0	100	2.41	2.2	3.3	0.41	2.2
TA as CaCO3	mg/l	25	29	26	10	0.93	<ld< th=""><th>13</th><th>3.23</th><th>0</th><th>30</th><th>30</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>29</th><th>29</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>7</th><th>6</th><th>14</th><th></th><th><ld< th=""><th>18</th><th></th><th></th></ld<></th></ld<>	13	3.23	0	30	30	0						29	29	0						7	6	14		<ld< th=""><th>18</th><th></th><th></th></ld<>	18		
Zn	mg/l	0.1	29	29	0						30	28	7	0.01	<ld< th=""><th>0.1</th><th>0.03</th><th>0</th><th>29</th><th>27</th><th>7</th><th>0.02</th><th><ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>7</th><th>5</th><th>29</th><th>0.06</th><th><ld< th=""><th>0.3</th><th>0.11</th><th>0</th></ld<></th></ld<></th></ld<>	0.1	0.03	0	29	27	7	0.02	<ld< th=""><th>0.4</th><th>0.08</th><th>0</th><th>7</th><th>5</th><th>29</th><th>0.06</th><th><ld< th=""><th>0.3</th><th>0.11</th><th>0</th></ld<></th></ld<>	0.4	0.08	0	7	5	29	0.06	<ld< th=""><th>0.3</th><th>0.11</th><th>0</th></ld<>	0.3	0.11	0