

Surveillance des fourmis envahissantes sur les zones à risques du site industriel de VALE Nouvelle-Calédonie à Prony

Suivi N° 10 (Octobre 2013)

RAPPORT D'EXPERTISE

Réalisé pour Vale Nouvelle-Calédonie

Drs. Fabien Ravary et Julien Le Breton

Cabinet BIODICAL

Octobre 2013

Surveillance des fourmis envahissantes sur les zones à risques du site industriel de Vale Nouvelle-Calédonie à Prony

Drs. Fabien Ravary & Julien Le Breton

Introduction	1 -
Zones concernées par la campagne d'échantillonnage	2 -
Protocole utilisé	3 -
Résultats	6 -
Discussion et recommandations	10 -
Bibliographie	11 -
Annexes	12 -

Surveillance des fourmis envahissantes sur les zones à

risques du site industriel de Vale Nouvelle-Calédonie à Prony

Neuvième campagne d'échantillonnage ; Suivi N°10

Drs. Fabien Ravary & Julien Le Breton

Octobre 2013

Introduction

Le développement des activités humaines représente actuellement la principale

menace pesant sur la biodiversité. Outre l'altération des écosystèmes par la

destruction des habitats, cause majeure de la disparition des espèces, les activités

humaines sont aujourd'hui le principal vecteur du transfert de nombreuses espèces

hors de leurs aires d'origine. L'introduction d'espèces exotiques, intentionnelle ou

non, est à l'origine d'innombrables invasions biologiques qui se produisent le plus

souvent au détriment des espèces locales (Lockwood et al. 2007).

Dans le cadre d'un programme de prévention des introductions d'espèces de

fourmis envahissantes en Nouvelle-Calédonie, des campagnes d'échantillonnages

réguliers sont imposés sur tous les sites sensibles du territoire (ports et aéroports

internationaux). Dans le cadre de sa construction et de son exploitation, le site

industriel de Vale Nouvelle-Calédonie reçoit depuis plusieurs années de grandes

quantités de matériels et de matériaux directement de l'étranger. En ce sens,

certaines zones du site industriel sont considérées comme étant à risque car des

fourmis envahissantes peuvent y être accidentellement introduites. C'est ainsi que

depuis octobre 2008, des campagnes de surveillance sont réalisées par le cabinet

d'expertise BIODICAL. Les récents épisodes d'introductions accidentelles (Crapaud

buffle, Fourmi de Singapour, Mangouste Indienne, etc.) survenus sur le sol

calédonien lors de ces dernières années illustrent la réalité de ces risques. La plus

grande vigilance doit donc être de mise.

- 1 -

Zones concernées par la campagne d'échantillonnage

Cinq zones à risque ont été identifiées par le personnel du service Environnement de Vale Nouvelle-Calédonie (Tableau 1). Le critère principal pour l'identification a été la présence sur ces zones de marchandises, de containers ou de vracs (calcaire, charbon et souffre) importés de l'étranger pour les besoins de l'industriel lors des phases de construction et de démarrage de son usine. L'identification de ces zones a été réalisée au fur et à mesure de la construction et de la mise en service du complexe industriel et de ce fait, toutes n'ont pas bénéficié du même nombre de campagnes de surveillance comme stipulé dans le tableau 1.

Tableau 1 : Liste des différentes zones à risques pour l'introduction d'espèces de fourmis exogènes sur le site industriel de Vale Nouvelle-Calédonie à Prony.

Noms des zones	Nombre de campagnes réalisées *	Critères d'identification pour le classement en zone à risque	
MAGASIN	10	Docks et aire extérieure de stockage de nombreuses marchandises	
VRAC	10	Zones de stockage des vracs (calcaire, charbon, soufre)	
STEP	8	Cette zone englobe 3 sous-zones: la station d'épuration, l'ancienne cimenterie Wagner et l'aire d'entreposage de containers et de marchandises	
PORT	11 **	Zone du port, Zone de stockage de containers et de matériel	
MINE_FPP	2	Zone de stockage de matériel située dans le périmètre d'exploitation	

^(*) celle d'octobre 2013 incluse. (**) La première campagne a eu lieu sur le port en septembre 2008.

Des photographies aériennes de ces zones, qui nous ont été fournies par Vale Nouvelle-Calédonie, sont visibles en annexe (Annexe 1).

Protocole utilisé

Le protocole de surveillance que nous avons utilisé est inspiré des méthodes préconisées par les services de veille sanitaire du Ministère de l'Agriculture et de la Forêt du Gouvernement Néo-Zélandais (MAF, Service de la Biosécurité) et décrites dans leur manuel d'application (Mattson, 2006).

Toutefois, après avoir mené une première campagne de surveillance à grande échelle sur le port de Vale Nouvelle-Calédonie à Prony en septembre 2008 (Le Breton, 2008), il nous est apparu que le protocole proposé était trop lourd à mettre en œuvre et que la sensibilité de détection n'était pas optimale. Ainsi, dans un souci de simplification de la logistique et afin d'optimiser les seuils de détection des différentes espèces de fourmis potentiellement présentes sur le site, nous avons apporté quelques modifications au protocole Néo-Zélandais. Les modifications portent sur la nature de l'appât alimentaire utilisé et sur le fait que nous disposons l'appât directement sur le substrat et non plus dans des pots de collecte. Notre expérience montre que cette technique double la fréquence d'occupation de nos appâts par rapport à la méthode Néo-Zélandaise.

La détection des espèces de fourmis a été réalisée de deux manières : une surveillance par piégeage avec des appâts alimentaires couplée avec une recherche active à vue.

Le piégeage avec des appâts alimentaires.

Il consiste à disposer des appâts alimentaires hautement attractifs pour les principales fourmis envahissantes. Cet appât est constitué d'un mélange de miel, de miettes de thon à l'huile et de biscuits écrasés (Human et Gordon 1999). Les appâts sont placés au niveau du sol sur toutes les zones à risque. Ce mélange contenant à la fois des sucres, des lipides et des protéines se révèle très appétant pour un large spectre d'espèces de fourmis et convient parfaitement à ce genre de campagne de détection. L'utilisation d'un appât unique attirant un large spectre d'espèces de fourmis permet de diviser par deux les temps de pose et de collecte, sans toutefois nuire à la qualité de la détection.

Depuis près de dix ans, nous utilisons cette méthode lors de nos campagnes d'inventaire myrmécologique dans de nombreux milieux en Nouvelle-Calédonie (voir

dans la bibliographie les références de Le Breton). Forts de cette expérience, nous proposons donc d'utiliser cet appât unique lors de nos campagnes de détection. Pour chaque station d'échantillonnage, l'équivalent d'une cuillère à café de ce mélange est placé en divers endroits au sol et/ou en hauteur, sur un maillage de 15 mètres sauf dans les zones ou le sol est tellement compact qu'il empêche toute installation potentielle de colonies. Chaque appât est géo-référencé à l'aide d'un récepteur GPS, ce qui nous permet une localisation précise en cas de détection de fourmis envahissantes.

Une heure après la pose, les appâts sont relevés et les fourmis présentes sont collectées.

La recherche active à vue.

Cette recherche se fait de manière active sur tous les sites potentiels de nidification (planches de bois, plantes, crevasses, *etc.*).

Collecte et identification des spécimens récoltés

Les ouvrières présentes sur les appâts ont été collectées et placées dans des tubes contenant de l'alcool à 95% pour leur préservation, afin de permettre une identification dans de bonnes conditions en laboratoire sous une loupe binoculaire. Nous utilisons une clé d'identification des fourmis envahissantes dans les îles du Pacifique (http://keys.lucidcentral.org/keys/v3/PIAkey/) afin de pouvoir identifier avec le plus d'exactitude possible les espèces collectées. En cas de doute ou de détection d'une nouvelle espèce introduite, une double identification par un autre expert en la matière doit être réalisée avant de déclencher les mesures de contrôles adéquates.

REMARQUE:

Des techniques de biologie moléculaire permettant l'analyse des séquences hypervariables du génome sont actuellement utilisées de façon routinière par un grand nombre de laboratoires. Afin de confirmer l'identification visuelle des espèces envahissantes ciblées, il est envisageable de développer une méthode de diagnostic robuste basée sur l'amplification de parties spécifiques de leur génome (méthode de

la *Polymerase Chain Reaction* ou PCR). Très rapide, un tel test autoriserait l'analyse simultanée d'un grand nombre d'échantillons. Ainsi, dès qu'un test se révèle positif (*i.e.* révélant la présence d'au moins un échantillon contenant l'espèce-cible), la zone de récolte correspondant peut être immédiatement identifiée et une campagne d'échantillonnage plus fine peut alors être mise en place en vue d'un traitement chimique ultérieur.

Dans le cadre de cette surveillance biosécuritaire, les campagnes d'échantillonnage visent la détection particulière de la fourmi de feu (« Red Imported Fire Ant », RIFA), *Solenopsis invicta*, dont l'impact social, économique et écologique dans les zones d'introduction est considérable. Ainsi, à titre d'exemple, on estime qu'aux Etats-Unis où elle est présente depuis plusieurs décennies, cette seule espèce entraîne un coût annuel de 6 milliards US\$ (soit 450 milliards FCFP). A Brisbane, le programme de lutte mis en place contre cette espèce s'élève à \$250 millions (22.5 milliards FCFP).

D'autres fourmis exogènes à caractère envahissant ayant des impacts négatifs sur l'économie, l'environnement et la santé des pays envahis, telles que la fourmi d'Argentine *Linepithema humile* sont également recherchées.

Solenopsis invicta

Linepithema humile

© Antweb

Résultats

Les résultats bruts des échantillonnages par appâts sont donnés sur un support électronique sous la forme d'un fichier excel: Bdd_fourmis_exo_octobre2013.xls

La présente campagne de surveillance a débuté le 1er octobre 2013 et s'est achevée le 07 octobre 2013. Sur les 5 zones prospectées, **2 875 appâts** ont été déposés (Tableau 2).

Afin de mettre en évidence les résultats les plus pertinents de notre étude dans le contexte biosécuritaire, nous avons décidé de présenter les taux d'occupations (pourcentages d'occurrence) d'une manière originale sous la forme d'une fiche Synthétique (ANNEXE 1).

Nous avons détaillé les taux d'occupations pour les principales espèces envahissantes détectées sur le site : *Anoplolepis gracilipes*, *Solenopsis geminata*, *Wasmannia auropunctata* et *Pheidole megacephala*. [Cette dernière, appelée communément la fourmi noire à grosse tête y est aussi indiquée car une population fût détectée en bordure de la zone de magasin au cours d'une campagne précédente. La population détectée a depuis été éradiquée avec succès]. L'évolution des populations de ces espèces est également indiquée en détail sous forme graphique.

Par soucis de clarté, les résultats concernant les autres espèces exogènes qui ne sont pas considérées comme des espèces envahissantes majeures, ont été groupés. Nous avons également groupé les résultats concernant les espèces locales.

Cette présentation nous permettra au cours des campagnes ultérieures de mieux appréhender la situation des populations des fourmis envahissantes, l'évolution de leur dominance et les impacts éventuels sur les espèces locales.

Occupation générale des appâts

A l'instar des campagnes précédentes, les taux d'occupation observés diffèrent d'une zone à l'autre. Le facteur principal expliquant ces différences est la nature de l'habitat, notamment la présence ou l'absence de végétation (milieux herbacés, maquis, milieux forestiers et paraforestiers, etc.). Les végétaux fournissent des abris, et plusieurs formes de nourriture comme des nectars, des graines riches en huile et surtout les fourmis y élèvent des insectes (pucerons, cochenille, etc.) producteurs de miellat, un liquide sucré riche en acides aminés. Dans les zones d'habitation, de travail, de détente ou de restauration, les fourmis profitent de notre nourriture et de nos déchets mais également des nombreux insectes et autres invertébrés qui sont attirés dans nos locaux.

Tableau 2 : Fréquences d'occupation des appâts

ZONES	Nombre d'appâts déposés	Taux d'occupation		Nombre d'espèces détectées
		N	%	
MAGASIN	412	28	6,8	7
VRAC	356	89	25	11
STEP	1048	525	50,1	19
PORT	701	428	61,1	15
MINE_FPP	358	147	41,1	14
TOTAL	2875	1217	42,3	22

Diversité et occurrence des espèces détectées

Au total 22 espèces de fourmis ont été détectées sur les 5 zones (Tableau 3) Elles appartiennent à 4 sous-familles réparties en 16 genres. Neuf sont des espèces locales et 14 sont des espèces introduites assez communes dans les milieux anthropisés de Nouvelle-Calédonie.

La majeure partie des espèces locales ont été observées dans les zones forestières et para-forestières jouxtant les zones prospectées. Ceci explique pourquoi les zones MAGASIN et VRAC, situées dans le centre des sites industriels et d'exploitation, sont des zones plus pauvres en espèces locales et en fourmis d'une manière générale. La

diversité des espèces de fourmis locales observées dans ces zones forestières et para-forestières témoignent de l'intérêt écologique de ces milieux. Au cours de ces campagnes, nous portons également un effort particulier à prospecter les zones ouvertes contenant des graminées. Celles-ci sont davantage susceptibles de contenir les espèces envahissantes dont nous craignons l'introduction en NC (*i.e. Solenopsis invicta* et *Linepithema humile*). Au cours de cette campagne, le nombre d'espèces, locales ou introduites, détectées équivaut peu ou prou à celui de la campagne précédente, ce qui illustre un effort d'échantillonnage constant d'une campagne à l'autre. Cette constance nous permet de suivre la progression des populations de fourmis envahissantes, notamment de *Wasmannia auropunctata* (la fourmi électrique) et l'impact attendu sur les espèces de fourmis locales.

Parmi les espèces introduites détectées, deux comptent parmi les cinq espèces de fourmis envahissantes les plus néfastes dans le monde: *Anoplolepis* gracilipes et *Wasmannia auropunctata*. La dissémination de ces pestes majeures est à éviter absolument (Holway et al. 2002). Une fiche spécifique est consacrée à ces deux pestes, ainsi qu'à l'espèce *Solenopsis geminata* (ANNEXE 2). On retrouve communément ces espèces introduites dans les milieux perturbés de Nouvelle-Calédonie et elles ont un impact catastrophique sur la diversité des arthropodes dans les milieux naturels qu'elles colonisent.

Tableau 3: Liste des espèces de fourmis détectées sur le site industriel de Vale NC à Prony en avril 2013. Campagne de surveillance des fourmis exogènes : Suivi N°9

			Présence		Zones prospectées			
Sous-famille	Espèce	Statut (*)	connue en NC	MAGASIN	VRAC	STEP	PORT	MINE_FPP
Dolichoderinae								
	Iridomyrmex calvus	ELoc	Oui		X	X	Χ	
	Leptomyrmex nigriceps	ELoc	Oui		X			X
	Leptomyrmex pallens	ELoc	Oui		X	X	Χ	
	Ochetellus glaber	ELoc	Oui			Х	Х	X
	Tapinoma melanocephalum	EInt	Oui			Х	Х	
Formicinae								
	Anoplolepis gracilipes	EInt	Oui			X	X	
	Brachymyrmex obscurior	EInt	Oui	X	Х	Х	Х	X
	Paratrechina caledonica	ELoc	Oui					X
	Paratrechina longicornis	EInt	Oui	Х	Х	Х	Х	
	Paratrechina vaga	EInt	Oui		Х	Х	Х	X
	Plagiolepis alluaudi	EInt	Oui			Х		X
	Polyrhachys guerini	ELoc	Oui		Х	Х		X
Myrmicinae								
,	Cardiocondyla emeryi	EInt	Oui	х				
	Cardiocondyla obscurior	EInt	Oui			Х	Х	X
	Monomorium floricola	EInt	Oui		Х	Х	Х	X
	Monomorium VAL2	ELoc	Oui			Х		
	Pheidole oceanica	ELoc	Oui	х	Х	Х	Х	х
	Solenopsis geminata	EInt	Oui	X	Х	Х	Х	X
	Solenopsis papuana	ELoc	Oui			Х	Х	X
	Tetramorium simillimum	EInt	Oui	Х		X		
	Wasmannia auropunctata	EInt	Oui		X	X	Х	X
Ponerinae								
	Odontomachus simillimus	EInt	Oui	х		X	X	X
	Nombre d'espèces par zone			7	11	19	15	14

^{(*):} EInt: Espèce Introduite ; ELoc: Espèce Locale (indigène ou endémique).

Discussion et recommandations

Au terme de cette campagne de surveillance sur les installations portuaires de Vale Nouvelle-Calédonie à Prony, aucune nouvelle espèce de fourmi exogène envahissante n'a été détectée. La fourmi de feu importée *Solenopsis invicta* ainsi que la fourmi d'Argentine *Linepithema humile* sont donc toujours absentes du territoire.

En ce qui concerne l'évolution des populations de fourmis envahissantes déjà présentes sur le site, on observe une relative stabilité, voire même une certaine régression chez les trois espèces (la fourmi noire à grosse tête *P. megacephala* n'a pas été détectée).

La fourmi de feu tropicale *S. geminata* reste globalement assez présente sur l'ensemble du site, notamment au niveau de la station d'épuration (zone STEP) où les conditions d'humidité et l'abondance de graminées constituent d'importantes ressource. Elle est également très présente autour des ateliers et bureaux de la zone FPP. Le net recul observé lors de la session précédente pour la population présente sur le PORT est confirmé. Elle a été remplacée presque complètement par une autre espèce de fourmi exogène : *Paratrechina vaga*. On ne connait pas les effets écologiques ou économiques que cette espèce peut provoquer, mais elle ne figure pas parmi les pestes majeures. Il conviendra cependant de surveiller sa progression lors des prochaines campagnes.

La fourmi électrique, *Wasmannia auropunctata*, quant à elle, ne semble pas progresser outre mesure. Elle reste toutefois très présente dans les zones VRAC et FPP, ainsi que dans un patch paraforestier de la zone STEP. Cette espèce est capable de s'installer et de pulluler dans les zones forestières au sein desquelles elle affectera en profondeur et durablement la biodiversité locale des arthropodes. **Nous réitérons donc nos préconisations de mise en place de mesures de biosécurité afin que cette espèce ne se propage pas davantage dans les habitats naturels environnants.**

Fait à Robinson le 28 octobre 2013

Drs. Fabien Ravary & Julien Le Breton, Cabinet BIODICAL

Bibliographie

Holway, D., L. Lach, A. Suarez, N. D. Tsutsui & T. Case (2002). "The Causes and Consequences of Ant Invasions." Ann. Rev. Ecol. Syst. 33: 181-233.

Le Breton, J. (2003). Interactions entre la fourmi peste *Wasmannia auropunctata* et le reste de la myrmécofaune. Comparaison de la situation dans une zone envahie: la Nouvelle-Calédonie et dans sa zone d'origine: la Guyane. Thèse de Doctorat. Université Paul Sabatier, Toulouse, 233 p.

Lockwood, J.D., M.F. Hoopes & M.P. Marchetti (2007). Invasion Ecology. Blackwell Publishing.

Mattson, L. (2006). Training Manual for the Pacific Island Invasive Ant Surveillance Programme 2005/06. Version 6, 17 May 2006. Agriquality.

Ravary, F. (2013). Délimitation des populations de la fourmi envahissante *Wasmannia auropunctata* présentes en forêt rivulaire, sur le site minier de VALE-NC. Rapport d'expertise pour Vale-NC.

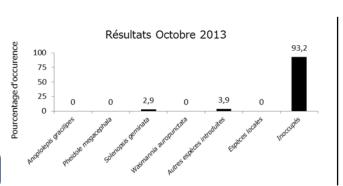
Service Environnement de Goro Nickel (2007). Protocole de surveillance des fourmis envahissantes Port - Usine - Mine. 26 pp.

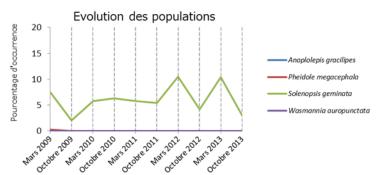
Annexes

- **Annexe 1**: Fiche synthétique regroupant les principaux résultats obtenus
- Annexe 2: Fiche de présentation des principales fourmis envahissantes détectées

Ces campagnes sont réalisées tous les 6 mois depuis septembre 2008. Elles consistent à inventorier la myrmécofaune des zones recevant des marchandises de l'étranger et ont pour objectif principal de prémunir la Nouvelle-Calédonie de l'introduction involontaire de nouvelles espèces de fourmis envahissantes nuisibles à son environnement, son économie et la santé de ses habitants. La détection des fourmis est réalisée grâce à l'utilisation d'appâts alimentaires très attractifs. Ces campagnes permettent également de suivre l'évolution des populations de quatre espèces majeures de fourmis envahissantes nuisibles déjà présentes en Nouvelle-Calédonie. Ces quatre espèces sont: la fourmi folle jaune (Anoplolepis gracilipes), la fourmi de feu tropicale (Solenopsis geminata), la fourmi noire à grosse tête (Pheidole megacephala) et la fourmi électrique (Wasmannia auropunctata). Enfin, la diversité et l'occurrence des espèces locales sont également évaluées.

Au cours de cette neuvième campagne, 2 875 appâts ont été disposés sur 5 zones et 1 217 d'entre eux (42,3%) ont été occupés par des fourmis. Vingt-deux espèces de fourmis ont été dénombrées, dont 13 sont des espèces exogènes. Aucune nouvelle espèce de fourmi envahissante n'a été détectée.



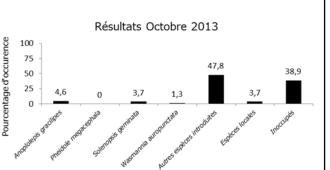

ANNEXE 1

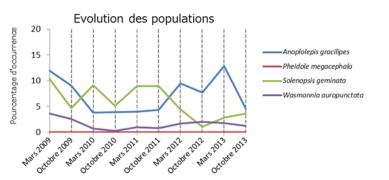
MAGASIN (N = 412)

Le grand nombre d'appâts inoccupés s'explique par l'inhospitalité du milieu échantillonné, en particulier l'absence de végétation. Ces conditions environnementales expliquent également la très faible représentation des espèces de fourmis locales. Aucune espèce locale n'a été détectée sur ce site.

Recommandations: Pas d'action particulière à mettre en œuvre.

La fourmi folle jaune, Anoplolepis gracilipes


La fourmi noire à grosse tête, Pheidole megacephala

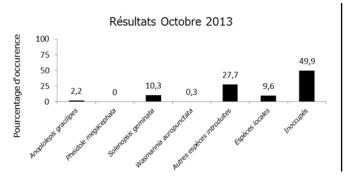


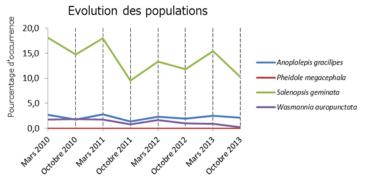
PORT (N = 701)

Près des 2/3 des appâts déposés dans cette zone ont été occupés par des fourmis. Ici les pentes des talus recouverts de géotextiles, qui voient le développement de plus en plus important de plantes herbacés, offrent des ressources exploitables aux fourmis, en particulier pour le cortège des espèces introduites que l'on retrouve sur une bonne partie du territoire. Trois pestes majeures sont présentes sur la zone (A. gracilipes, W. auropunctata et S. geminata). Malgré quelques fluctuations, les populations de ces 3 espèces semblent stables. S.geminata a été remplacée par une autre espèce exogène: Paratrechina vaga.

Recommandations: Traiter la population de fourmi électrique, W. auropunctata.

La fourmi de feu tropicale, Solenopsis geminata


La fourmi électrique,

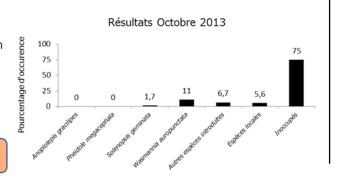


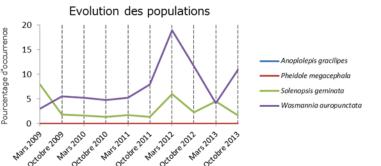
STEP (N = 1 048)

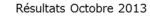
Trois espèces envahissantes majeures sont présentes sur la zone, en particulier *S. geminata* qui s'accommode très bien des zones déboisées recouvertes d'herbacées. La fourmi folle jaune et la fourmi électrique restent présentes. Même si elles ne semblent pas progresser pour le moment, la situation reste préoccupante pour le maintien de l'importante diversité d'espèces locales encore présentes dans les zones forestières entourant la zone.

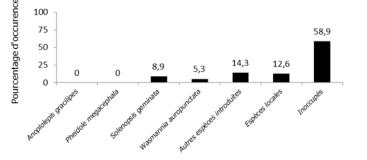
Recommandations: Traiter la population de fourmi électrique, W. auropunctata.

MINE_FPP (N = 358)


Cette zone d'étude a fait l'objet d'un premier inventaire lors de la campagne précédente. Deux espèces de fourmis envahissantes sont présentes sur la zone. La présence notamment de *W. auropunctata* à cet endroit illustre parfaitement le rôle des activités humaines dans la dissémination de cette espèce et souligne les précautions qu'il convient de prendre pour limiter ce phénomène.


Recommandations: Mettre en place des mesures de biosécurité pour éviter la propagation de *W. auropunctata*: ne pas déplacer de matériaux (déchêts verts, topsoil...) depuis cette zone vers d'autres sites encore indemnes de fourmis envahissantes.


VRAC (N = 356)


Cette zone offre peu de ressources aux fourmis, à l'exception de la frange paraforestière longeant la clôture, d'où un taux d'occupation des appâts relativement faible. Deux espèces de fourmis envahissantes majeures sont présentes sur la zone. La population de *S.geminata* semble stable depuis 2009. La population de *W.auropunctata* a fait l'objet d'une étude spécifique en vue de l'élaboration d'un plan de gestion éventuel (Ravary 2013).

Recommandations: Se référer à l'étude Ravary 2013 concernant la gestion de cette population de fourmis électriques.

Les fourmis envahissantes détectées sur le site industriel de Vale Nouvelle-Calédonie à Prony **ANNEXE 2**

La faune myrmécologique rencontrée sur la zone prospectée est composée à la fois d'espèces locales et d'espèces exogènes. Mises à part les zones para-forestières et forestières, habitées par des fourmis locales, les zones anthropisées et de maquis sont dominées par les fourmis exogènes. Parmi ces dernières, certaines sont considérées comme très envahissantes et néfastes pour l'environnement: il s'agit par ordre croissant de capacité de nuisance de la fourmi de feu tropicale (Solenopsis geminata), de la fourmi folle jaune (Anoplolepis gracilipes) et de la fourmi électrique (Wasmannia auropunctata).

Les impacts des fourmis envahissantes sur la biodiversité des milieux terrestres calédoniens sont malheureusement sous-estimés car ils ne sont pas visibles directement. Les études scientifiques ont toutefois montré que les milieux fortement envahis sont dépeuplés de la plupart des espèces d'invertébrés locales. Cela a des effets en cascade sur l'ensemble de la chaîne trophique et les populations de reptiles et d'oiseaux ne sont pas épargnées.

La fourmi de feu tropicale, Solenopsis geminata

Tout comme la fourmi électrique, S. geminata est originaire d'Amérique du Sud. Elles ont également en commun la capacité d'infliger une pigûre douloureuse à quiconque les dérange. La ressemblance s'arrête là car les ouvrières de la fourmi de feu sont bien plus grosses et ne se retrouvent qu'au niveau du sol. Dans les milieux tropicaux, les fourmis de feu sont reconnues pour se multiplier abondamment dans les zones riches en graminées dont elles raffolent de leurs graines riches en huile.

Sur le site industriel de Vale Inco, ses populations sont cantonées aux milieux ouverts et peuvent être parfois relativement abondantes.

La fourmi folle jaune, Anoplolepis gracilipes

Cette fourmi asiatique est très commune sur l'ensemble des zones de maquis du territoire où elle peut atteindre des densités de populations ahurissantes. Ces fourmis nichent au sol mais exploitent activement les ressources présentes sur

les végétaux. Ses ouvrières ne possèdent ni aiguillon, ni venin, elles utilisent de l'Acide Formique pour se défendre ou tuer leurs proies. Leur impact est remarquable sur les populations de reptiles et également sur les oiseaux.

La fourmi électrique, Wasmannia auropunctata

Reines et leurs oeufs entourés de nombreuses ouvrières à l'intérieur d'un nid de W. auropunc- avantage décisif.

C'est l'extraordinaire densité des fourmis électriques (près de 90 000 reines par hectares) qui rend cette espèce si compétitive. Les nids occupent toutes les strates, du sol à la canopée et leurs ouvrières entretiennent des relations amicales entre elles ce qui leur confèrent un

Impacts sur la faune

Dans les milieux envahis, certains groupes d'animaux indigènes voient leurs populations s'effondrer. C'est le cas notamment des fourmis et des Dans notre contexte insulaire, où les plantes et les animaux ont lentement co-évolué, la disparition de nombreuses espèces d'invertébrés locaux va avoir des répercussions sur l'ensemble de l'écosystème.

Les fourmis envahissantes sont des chasseuses redoutables. Un puissant venin ou acide couplé à une importante capacité de recrutement leur permet de chasser de très petites et de très grosses proies. Elles agissent comme de véritables aspirateurs de la biodiversité animale des milieux naturels calédoniens.

Impact sur la flore Les fourmis envahissantes tirent une grande partie de leur alimentation du miellat sucré produit par les homoptères (insectes suceurs de sève) qu'elles élèvent sur les parties les plus tendres des végétaux. L'état

> sanitaire des végétaux se dégrade quand les homoptères sont élevés en trop grande quantité. Outre l'affaiblissement et l'inoculation de divers agents phytopathogènes une couche de revêtement mycélien opaque, appe-

lée fumagine, se développe à la surface des végétaux et réduit la capacité de photosynthèse des plantes.

Recommandations

Ces recommandations concernent en priorité la fourmi électrique dont des populations ont été détectées sur différentes zones du site (Port, Vrac et Step) où elle occupe principalement la lisière de milieux paraforestiers.

Etant donné la petite taille des populations détectées nous estimons qu'elles sont d'arrivée récente. Nous rappelons que la dissémination de la fourmi électrique sur des moyennes ou longues distances est surtout le fait d'un transport humain. Ne pratiquant pas de vols nuptiaux, la fourmi électrique colonise de nouveaux milieux de proche en proche, les jeunes reines partent à pied fonder de nouvelles colonies qui gardent le contact avec les colonies mères.

La recommandation principale consiste donc à contenir les populations détectées et à éviter la dissémination de colonies sur d'autres zones du site. L'expansion de cette espèce dans les zones forestières conduira assurèment à une diminution significative de la biodiversité des arthropodes locaux qui y réside actuellement.