

N° DOSSIER	N° DOSSIER DATE CHARGE D'AFFAIRES		Controleur
A001-06009-0001	Juin 2008	Yann COMEAUD	Marie GAYRAUD
7.001.0000			

ETUDES HYDRAULIQUES CONCERNANT LES ZONES INONDABLES DE LA PROVINCE SUD

Secteur Ouenghi

Rapport Définitif

BUREAU D'ETUDES - INGENIEURS CONSEILS Eau – Environnement - Bâtiment 1, rue de La République Immeuble "OREGON" B.P. 3583 - 98846 NOUMEA Cedex Tél 28.34.80 - Fax 28.83.44

E-mail: soproner@soproner.nc

SOMMAIRE

1	Coll	ecte des données	4
	1.1	Reunion	4
	1.2	Photographies aeriennes	4
	1.3	Enquetes de terrain	5
	1.4	Topographie	6
	1.5	Urbanisme	6
	1.6	Climatologie	6
2	Esti	mation des débits de projet	8
	2.1	Méthode Rationnelle (CIA)	8
	2.1.1	Principe de la méthode	8
	2.1.2	Le bassin versant	8
	2.1.3	Temps de concentration	10
	2.1.4	Coefficient de ruissellement	11
	2.2	Analyse régionale	12
	2.2.1	Principe de la méthode	12
	2.2.2	Analyse régionale SOGREAH (1988) et SOPRONER (2006)	12
	2.3	Analyse hydrométrique et hydrologique de la DAVAR	14
	2.4	Ajustements de Gumbel	16
	2.5	Synthèse des débits théoriques retenus	17
	2.5.1	Présentation des résultats obtenus par les différentes méthodes	17
	2.5.2	Analyse critique des résultats	19
	2.5.3	Conclusion	20
	2.6	Estimation du débit de pointe de la crue Anne	21
	2.6.1	Débits estimés par SOGREAH en 1988	
	2.6.2	Exploitation des données de la station hydrométrique de la Ouenghi	21
	2.6.3	, ,	
	2.6.4		
	2.6.5		
3	Can	npagne topographique	24
	3.1	Profils existants	
	3.2	Laisses de crue	24
	3.3	Visites de terrain	24
	3.4	Campagne de leves topographiques	25
	3.5	Principales observations	25

4	Con	struction et calage du modèle hydraulique	26
	4.1	Elaboration du modele	26
	4.2	Caracterisation des écoulements de la Ouenghi	26
	4.3	Structure et calage du modèle	29
	4.3.1	Structure du modèle	29
	4.3.2	Résultats du calage du modèle sur la crue Anne	30
	4.4	Analyse sommaire de sensibilite aux incertitudes	32
	4.4.1	Sensibilité aux variations du débit	33
	4.4.2	Sensibilité aux variations de la rugosité (coefficient de Strickler)	33
	4.4.3	Sensibilité aux variations des conditions limite aval	33
5	Мос	delisation des crues de periode de retour 5, 10 et 100 ans	34
	5.1	Crue de periode de retour 5 ans	34
	5.2	Crue de periode de retour 10 ans	34
	5.3	Crue de periode de retour 100 ans	34
	5.4	Description du fonctionnement hydraulique en crue	36
6	Car	tographie de la zone inondable et des aléas	37
	6.1	Carte des iso-cotes, iso-hauteurs, iso-vitesses	37
	6.2	Carte des aléas	37
7	Bib	liographie	40
8		VEXES	

AVANT-PROPOS

SOPRONER a été mandaté par la Province Sud de la Nouvelle-Calédonie pour réaliser l'étude hydraulique simplifiée de quatre secteurs des rivières Ouenghi (commune de Boulouparis), Tonghoué, Nondoué et Katiramona (commune de Dumbéa).

L'objet de ces études est la délimitation des zones inondables et l'établissement des cartes d'aléas sur chacun des secteurs concernés.

Les études à réaliser sont du type « hydraulique simplifiée», dont la mise en oeuvre se distingue des études hydrauliques classiques par :

- Une information hydrologique et topographique réduite ;
- Des sections d'écoulement en nombre restreint.

Il est à noter que ces secteurs avaient déjà fait l'objet au préalable de différentes études :

- Atlas des cartes d'inondabilité potentielle de la commune de Dumbéa (CAREX 2003);
- étude hydraulique de la Tonghoué à proximité des Palmiers III et de la route des Palmiers (ETEC - juin 2004);
- étude hydraulique de la Tonghoué aval (HYDREX– 1997) ;
- délimitation de la zone inondable de la rivière Dumbéa (HYDREX 1995);
- étude hydraulique de la rivière Ouenghi et des endiguements en aval et en amont de la RT1 (SOGREAH 1988).

Chaque secteur d'étude sera étudié en trois phases :

- la phase 1 consistera en la collecte des données existantes, les reconnaissances de terrain, l'établissement du programme de levés topographiques à réaliser, l'étude hydrologique devant permettre de déterminer les débits de période de retour 5, 10 et 100 ans ;
- 2 la phase 2 consistera en la réalisation des prestations topographiques, le montage et le calage du modèle, puis la modélisation des débits de pointe de période de retour 5, 10 et 100 ans ;
- 3 la phase 3 consistera essentiellement en la réalisation des cartographies des zones inondables et en particulier en la réalisation de la carte des aléas d'inondation.

Le présent rapport présente les phases 1 et 2 de l'étude du secteur Ouenghi validées par le comité de pilotage.

1 COLLECTE DES DONNEES

1.1 REUNION

Le maître d'ouvrage de l'étude est la province Sud représentée par la Direction de l'Equipement, assistée par un groupe de travail composé de représentants de la Direction de l'Equipement (DE), de la Direction des Affaires Vétérinaires, Alimentaires et Rurales (DAVAR), de la Direction de l'Environnement (DENV) ainsi que, en tant que de besoin, des services techniques des communes concernées.

La réunion de lancement de l'étude a eu lieu le 16 février 2006, en présence du maître d'ouvrage, du groupe de travail, du cabinet de géomètres CAPESIUS-HANY et de SOPRONER.

Le groupe de travail apporte au bureau d'ingénierie les données de base nécessaires à la réalisation de l'étude mais contribue également, par son expérience et son expertise à l'échelle de la Nouvelle-Calédonie, au choix et à la mise en oeuvre des méthodes de calculs hydrologiques et hydrauliques.

Le maître d'ouvrage et le groupe de travail valident le travail réalisé à la fin de chaque phase de l'étude.

1.2 PHOTOGRAPHIES AERIENNES

Deux campagnes de photographies aériennes ont été réalisées sur la Ouenghi en septembre 2003 et septembre 2004. On constate la faiblesse de l'urbanisation et l'importance de la couverture végétale de type herbacée ou arbustive suivant les secteurs.

On distingue également très bien les anciens bras de la Ouenghi recoupés, probablement empruntés par les écoulements lors des fortes crues.

1.3 ENQUETES DE TERRAIN

Les enquêtes de terrain ont eu pour objectif :

- d'aider au positionnement des profils en travers à lever, en fonction de la topographie mais également des profils déjà levés lors d'études antérieures et des évolutions dans la topographie ayant pu advenir depuis;
- de repérer les particularités hydrauliques à lever (ouvrages, seuils modifications de sections...);
- de déterminer la nature des lits mineurs et majeurs en vue de fixer lors de la modélisation les coefficients de Strickler associés ;
- de déterminer le type d'occupation des sols du bassin versant, en particulier de constater d'éventuelles urbanisations depuis 1988 (date de l'étude réalisée par SOGREAH).

Elles ont eu lieu au mois d'avril et mai 2006 en compagnie des services techniques de la mairie de Boulouparis. A cette occasion nous avons rencontré les deux principaux propriétaires fonciers du secteur, messieurs Galliot et Sacilotto.

Les laisses de crue repérées n'ont pas fait l'objet de levés, ce travail ayant été effectué au préalable par les services de la DAVAR et ayant abouti à l'élaboration d'un rapport répertoriant les laisses de crue cotées (Commune de Boulouparis : Enquêtes historiques de crue – rapport sur les cotes d'inondation – DAVAR - juillet 2004).

Nous n'avons constaté aucune urbanisation nouvelle notable dans le secteur d'étude depuis 1988. Seule l'une des digues aval située sur la propriété de M.Galliot a été légèrement modifiée. Elle sera levée à nouveau dans le cadre de la présente étude.

La couverture végétale était constituée d'herbes hautes dans les zones de prairies et d'une savane à niaoulis dans les zones boisées. La nature de cette couverture végétale sera précisée sur chaque profil réalisé par le géomètre, de même que la nature du fond du lit mineur. Nous pourrons ainsi lors de l'élaboration du modèle hydraulique, ajuster les coefficients de Strickler à attribuer à chaque section de rivière.

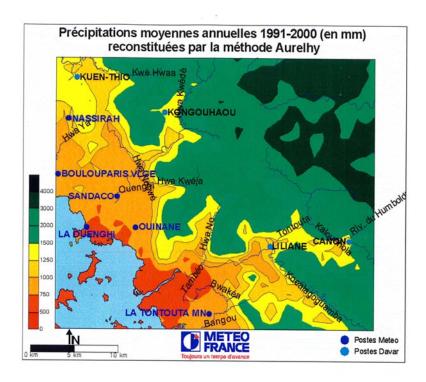
1.4 TOPOGRAPHIE

Les fonds de plan informatisés au 1/10 000^{ème} du secteur ont été récupérés. Ils ont servi de base à l'implantation des profils en travers et à la cartographie des zones inondables.

1.5 **URBANISME**

L'urbanisation du secteur est très limitée. Les seules infrastructures notables sont :

- 1 au sud de la RT1, les bâtiments de la propriété de M.Galliot. Ils sont situés sur une butte non inondable :
- 2 au nord de la RT1, une dizaine d'habitations situées en rive droite de la Ouenghi à proximité de la rivière, et le complexe touristique des paillotes de la Ouenghi (un golf, un restaurant, une piscine et des bungalows). Ce dernier est théoriquement protégé des inondations liées à la Ouenghi par une digue en terre.


Deux projets d'urbanisation sont à l'étude :

- un lotissement d'une cinquantaine de lots situé dans l'enceinte du golf. Ce lotissement est situé sur la carte d'implantation des profils
- au sud de la RT1, M.Galliot envisage la possibilité de mise en place d'installations légères d'hébergement touristique ou autre, dont le type reste encore à définir.

1.6 **CLIMATOLOGIE**

Afin de déterminer la pluviométrie du secteur et en particulier les intensités des pluies de projet à appliquer au bassin versant de la Ouenghi dans le cadre de la méthode rationnelle (cf. chapitre II.1 ci-dessous), nous avons commandé à METEO-FRANCE une étude des précipitations, fournie en annexe 2.

La carte page suivante permet de localiser les principales stations exploitées par METEO-FRANCE dans le secteur d'étude.

Localisation des stations météorologiques dans le secteur d'étude

Sur les quatre stations dont les données sont exploitables à proximité du secteur d'étude seul le pluviographe DAVAR du mont Kongouhaou se situe dans le bassin versant de la Ouenghi. Placée à une altitude de 1000 mètres, cette station délivre des mesures d'intensités de pluies depuis 1986 ; ainsi 20 années de mesures continues sont disponibles.

Les trois autres stations de Canon, Liliane et Toutouta sont toutes situées sur le bassin versant de la Tontouta.

Les bassins versants de la Tontouta et de la Ouenghi, séparés par une ligne de crête font tous deux partie d'une même unité météorologique. En effet, la plaine littorale qui s'étend du nord-ouest de Boulouparis au sud-est de Tontouta reçoit un régime de précipitations homogène. Cette homogénéité a été constatée plus en altitude dans les vallées de La Ouenghi et de La Tontouta avec une évolution du gradient pluviométrique similaire.

De ce fait, on peut raisonnablement utiliser les stations présentant les plus longues périodes de mesures sur des pas de temps permettant la production de courbes IDF (Intensité, Durée, Fréquence) d'un bassin versant pour les appliquer à l'autre.

Pour ces raisons, et suite aux conclusions du rapport météorologique, nous avons retenu comme postes de référence, de l'amont à l'aval du bassin versant les stations de Canon, Liliane et Tontouta.

Nota: le choix de la station de Canon comme référence pour les intensités pluviographiques de la partie haute du bassin versant de la Ouenghi permet de retenir une hypothèse « sécuritaire », les intensités calculées à cette station étant supérieures à celles obtenues à celle de Kongouhaou.

2 ESTIMATION DES DEBITS DE PROJET

Les débits de projets vont être estimés à l'aide de deux types de méthodes :

- des méthodes d'ajustement des débits mesurés aux stations hydrométriques;
- des méthodes d'ajustement des précipitations mesurées aux stations pluviométriques associées à des méthodes de transformation des données de pluie en débit.

2.1 METHODE RATIONNELLE (CIA)

2.1.1 Principe de la méthode

Cette méthode se fonde sur l'hypothèse que les débits maximaux de crue d'un bassin versant sont directement proportionnels aux intensités pluviométriques calculées sur son temps de concentration. Le coefficient de proportionnalité, ou coefficient de ruissellement (C), est généralement rattaché au degré d'imperméabilisation du bassin versant. Il varie également en fonction de sa superficie, de sa pente et de l'intensité des précipitations. L'approche dite « rationnelle » nous conduit à une évaluation maximaliste des débits possibles.

Cette méthode est adaptée aux petits bassins versants (superficie < 5 km²).

Basée sur une connaissance de la pluviométrie locale et des caractéristiques du bassin versant, l'équation s'écrit comme suit :

$$Q = \frac{1}{3.6} \text{C.i (tc).A}$$

Avec C - coefficient de ruissellement

i (tc) - intensité pluviométrique associée à la période de retour de l'événement pluvieux et au temps de

concentration du bassin (mm/h)

A - superficie du bassin versant (km²)

Q - débit de pointe (m³/s)

2.1.2 Le bassin versant

Le bassin versant de la Ouenghi a été divisé en plusieurs sous-bassins versants afin de prendre en compte les données d'intensités pluviométriques associées à chaque zone.

Caractéristiques du bassin versant de la Ouenghi et localisation de la zone d'étude

Les caractéristiques morphologiques de ce bassin versant, déterminées à l'aide de la carte I.G.N. au $1/50\ 000^{\rm eme}$, sont les suivantes :

•	Superficie:	258.5 km ²
•	Plus long cheminement hydraulique :	34.5 km
•	Le dénivelé maximal :	1353 m
•	Pente moyenne calculée suivant ce cheminement :	3.9 %
•	Pente pondérée calculée suivant ce cheminement :	0. 59 %

Pour le calcul de la pente pondérée, nous avons utilisé la formule :

$$I = (L/(\Sigma(L_K/\sqrt{I_k}))^2$$

Avec L = plus long cheminement hydraulique constitué de tronçons successifs « L_k » de pente sensiblement constante « I_k ».

Le bassin versant de la Ouenghi a été divisé de l'aval vers l'amont en 5 tronçons successifs :

2.1.3 Temps de concentration

Le temps de concentration Tc du bassin versant peut être estimé à partir de plusieurs méthodes.

Du fait de la taille du bassin versant les formules de Johnstone et Cross et du service routier de l'état de Californie nous ont semblé les plus adaptées. Les temps de concentration obtenus sont respectivement de 5.32 heures et de 3.53 heures.

Nous retiendrons la moyenne de ces deux valeurs soit un temps de concentration de 4.42 heures.

Dans la note technique rédigée par la DAVAR sur les courbes enveloppes des débits spécifiques maximaux de crues pour le quart sud ouest de la Nouvelle-Calédonie, le temps de concentration est estimé en considérant une vitesse de transfert de l'ordre de 2m/s (4 m/s si la pente est supérieure à 15%) appliquée au drain hydraulique le plus long.

Si on applique 2 m/s sur la longueur de rivière ou la pente est inférieure à 15% et 4m/s ou la pente est supérieur à 15% on obtient une vitesse moyenne de 2.26 m/s. En appliquant cette vitesse sur la longueur totale d'écoulement (34.5 km) on obtient un temps de transfert de 4.24 heures, soit un résultat très proche de celui déterminé à l'aide des formules de Johnstone et Cross et du service routier de l'état de Californie.

2.1.4 Coefficient de ruissellement

L'estimation des débits de crue nécessite de plus une évaluation du coefficient de ruissellement du bassin (C). Ce paramètre traduit l'aptitude du sol à ruisseler et représente la portion de pluie tombée qui rejoint effectivement l'exutoire du bassin versant.

Le coefficient de ruissellement varie en fonction de l'intensité de la pluie, de la pente du bassin versant, de sa texture et de l'occupation des sols. A l'image des reliefs de la chaîne, le bassin versant étudié se caractérise par un massif de péridotites pour les altitudes proches de 1000 m et par des terrains essentiellement sédimentaires en partie basse.

La végétation est relativement dense en altitude et laisse place à des espaces plus clairsemés au niveau de la plaine. L'urbanisation est relativement peu développée pour l'instant et participe peu à l'augmentation du ruissellement en bas de bassin.

Comme préconisé dans la note technique de la DAVAR de février 2006 « Courbes enveloppes des débits spécifiques maximaux de crues pour le quart Sud Ouest de la Nouvelle-Calédonie La Foa – La Coulée », nous avons retenu pour la crue centennale un coefficient de ruissellement proche de 1, en l'occurrence 0.9 eu égard à la taille importante du bassin versant.

Pour les crues quinquennale et décennale nous avons retenu en première approche des coefficients de ruissellement respectivement de 0.6 et 0.7.

Le bien fondé de ces coefficients sera validé a posteriori (chapitre II.5.2.5) en vérifiant que les rapports des débits Q100/Q5 et Q100/Q10 correspondent aux valeurs données dans la note technique citée plus haut à savoir respectivement 2.44 et 1.81.

Comme on a pu le voir dans l'analyse des données météorologiques, le bassin versant peut être divisé selon trois régimes d'intensité (i) de précipitation. On propose donc d'utiliser une seule valeur de « i » correspondant à la pondération de chaque valeur d'intensité par la surface du bassin versant à laquelle elle se rapporte.

Période Retour	C (%)	I p (mm/h)	Q (m ³ /s)	q (m³/s/km²)	H (mm)
5 ans	0.6	30	1286	5.0	132
10 ans	0.7	35	1772	6.9	156
100 ans	0.9	53	3445	13.3	236

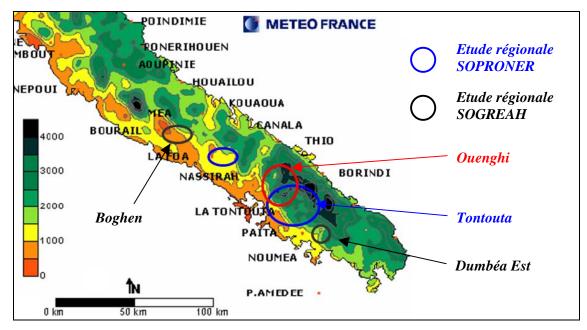
Calcul des débits de pointe de crue par la méthode rationnelle

Avec q : débit spécifique et H : hauteur de la lame d'eau précipitée.

2.2 ANALYSE REGIONALE

2.2.1 Principe de la méthode

Il s'agit là d'une méthode qui utilise une simple transposition des données hydrométriques d'un bassin versant connu (Q2) à un bassin versant inconnu (Q1) :


 $Q1 = Q2 (S1/S2)^{0.75}$

\$1 : superficie du bassin inconnu
\$2 : superficie du bassin connu
0.75 : coefficient de transposition*

*Le coefficient varie généralement entre 0,7 et 0,8. Ce paramètre a été calé à 0.75 en Nouvelle Calédonie à l'aide des ajustements de Gumbel effectués pour les débits de retour Q100 utilisant les 22 stations hydrométriques de la Nouvelle Calédonie (cf. chapitre II.3).

2.2.2 Analyse régionale SOGREAH (1988) et SOPRONER (2006)

Il existe déjà une analyse régionale réalisée par la SOGREAH en 1988 pour le bassin versant de la Ouenghi. On propose de réaliser une nouvelle analyse régionale en se basant sur la nouvelle carte des précipitations annuelles de la côte Ouest fournie par METEO-FRANCE à partir des résultats du modèle Aurelhy sur la période 1991-2000. Les bassins versants utilisés pour les analyses SOGREAH et SOPRONER sont replacés ci-dessous dans leur contexte pluviographique.

Localisation des bassins versants utilisés pour l'analyse régionale

L'étude SOGREAH utilise le bassin versant de la Boghen et de la Dumbéa Est et présente les résultats suivants (coefficient de transposition = 0.6) :

		Débit	(m³/s)
Station	Taille du bassin versant (km²)	T = 5	T = 10
Boghen aval Aremo	114	950	1200
Dumbéa Est	56	650	900
Ouenghi RT1, analyse régionale depuis la Boghen.	240	1485	1875
Ouenghi RT1, analyse régionale depuis la Dumbéa.	240	1555	2155
Ouenghi QT moyen	240	1520	2015

Calcul des débits de pointe par la méthode régionale, étude SOGREAH 1988

L'étude SOPRONER utilise le bassin versant de la Tontouta et présente les résultats suivants (coefficient de transposition = 0.75) :

	Débit (m³/s)			
Station	Taille du bassin versant (km²)	T = 5	T = 10	T = 100
Tontouta	385	1845	2633	5100
Ouenghi, analyse régionale depuis la Tontouta.	258.5	1369	1953	3783

Calcul des débits de pointe par la méthode régionale, étude SOPRONER 2006

Nota: Dans son étude, la SOGREAH a considéré une surface de 240 km² pour la Ouenghi correspondant à la superficie du bassin versant au niveau du pont de la RT1, alors que nous travaillons avec une surface de 258.5 km², correspondant à la limite de notre zone d'étude, située plus à l'aval.

2.3 ANALYSE HYDROMETRIQUE ET HYDROLOGIQUE DE LA DAVAR

La DAVAR a établi un certain nombre de fiches techniques relatives aux caractéristiques de stations hydrométriques dont elle a la gestion. A l'aide des mesures réalisées sur ces stations hydrométriques et de l'application de méthodes de transformation de la pluie en débit, des courbes enveloppes des débits spécifiques maximaux de crue ont été établies pour le quart sud-ouest de la Nouvelle-Calédonie (Courbes enveloppes des débits spécifiques maximums de crues pour le quart sud-ouest de la Nouvelle Calédonie La Foa La Coulée – DAVAR – février 2006).

Les stations hydrométriques ayant permis l'établissement des courbes enveloppes (période de retour 100 ans) sont les suivantes :

La Coulée Ouenghi

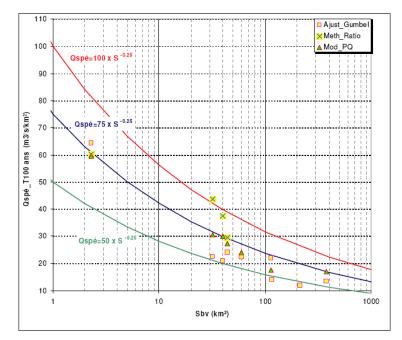
Dumbéa Nord Namie cote 11

Dumbéa Est barrage La Foa

Couvelée Boghen

Tontouta

Trois méthodes ont été utilisées pour déterminer les débits de crue et trois courbes enveloppes ont été réalisées :


- Ajustement de Gumbel sur les débits évalués à partir des hauteurs d'eau mesurées ;
- Méthode rationnelle de calcul des débits de pointe en fonction des caractéristiques du bassin versant et des pluies locales;
- Modèle pluie-débit spatialement distribué (Moatha, Wotling, 2000) de calcul des débits de pointe en fonction des caractéristiques du bassin versant et des pluies locales.

Les formules d'ajustement obtenues sont données ci-dessous (S=surface du bassin versant en km²) :

• Ajustement de Gumbel : $Qsp\acute{e}_{T100 ans} (m^3/s/km^2) = 50xS^{-0.25}$

■ Modèle Pluie-débit spatialement distribué :Qspé_{T100 ans} (m³/s/km²) = 75xS^{-0.25}

■ Méthode rationnelle : Qspé_{T100 ans} (m³/s/km²) =100xS^{-0.25}

Courbes enveloppes pour les bassins versants de Nouvelle Calédonie (DAVAR 2006)

Nous reprenons ci-dessous les limites d'utilisation de ces courbes enveloppes définies par la DAVAR :

« La courbe enveloppe proposée doit correspondre à la majorité des bassins versants côtiers du quart sud ouest de la Grande Terre. Néanmoins, des configurations morphologiques atypiques, une altitude moyenne particulièrement basse ou haute, ou encore une géologie singulière pourraient conduire à des résultats différents. A noter également que l'essentiel des observations concerne des bassins versants supérieurs à 30 km².

Aussi, la plus grande incertitude relative se situe pour les bassins versants de quelques hectares à quelques kilomètres carrés.»

Globalement, on peut considérer que :

- 1 la courbe obtenue au moyen de la méthode rationnelle s'applique pour de petits bassins versants dont la superficie est de l'ordre du km²;
- 2 la courbe obtenue au moyen de la méthode de Gumbel s'applique pour des bassins versants supérieurs à 30 km²;
- 3 La courbe obtenue au moyen du modèle pluie-débit s'applique pour des bassins versants intermédiaires ou comme hypothèse sécuritaire sur de grands bassins versants.

Les débits caractéristiques de crues pour des périodes de retour décennales peuvent se déduire facilement via des coefficients de proportionnalité relativement stables à l'échelle de la Nouvelle-Calédonie :

Q10 = Q100/1.81

Q5 = Q100/2.44

2.4 AJUSTEMENTS DE GUMBEL

La Ouenghi a été successivement suivie par deux stations limnimétriques : Pont RT1 (BV = 240 km²) et Creugnet un peu plus à l'amont (BV = 212 km²).

La station du pont de la RT1 a fonctionné de 1954 à 1994. Celle de Creugnet de 1993 à 2005

Nous reprenons ci-dessous une partie de la note technique réalisée par la DAVAR sur cette station hydrométrique (2005) (cf. annexe 3).

« Pour les plus hautes eaux (PHE), les données ne sont exploitables qu'à partir de 1970. Vu les incertitudes sur l'estimation des débits maximaux de crues sur ces stations, la différence minime de superficie entre les deux stations et leur situation aval, il peut être considéré que les phénomènes d'amortissement de l'onde de crue compensent l'accroissement de superficie. Aussi, les séries de débits maximaux de crue ont été concaténées sans facteur correctif.

Du fait de la position aval de la station limnigraphique, le lit majeur au niveau de la section de contrôle est particulièrement large, ce qui rend l'évaluation des débits de hautes eaux très imprécise. Au niveau de la station aval, la présence de digues artificielles dont celle que constitue la RT1 rendait encore moins fiable l'évaluation des débits de crue débordante.

Aussi, les débits caractéristiques de crue sont à utiliser avec circonspection. »

L'ajustement à la loi de Gumbel réalisé par la DAVAR s'est avéré médiocre. Les résultats en terme de débit spécifique apparaissent toutefois cohérents avec les résultats obtenus sur d'autres bassins versants du sud-ouest calédonien. Afin de prendre en considération l'incertitude importante sur l'estimation des débits aux stations de mesure, un ajustement maximaliste a également été retenu (hypothèse haute du graphique du chapitre II.5.1).

Les résultats de ces ajustements sont donnés ci-dessous pour les périodes de retour 5, 10 et 100 ans.

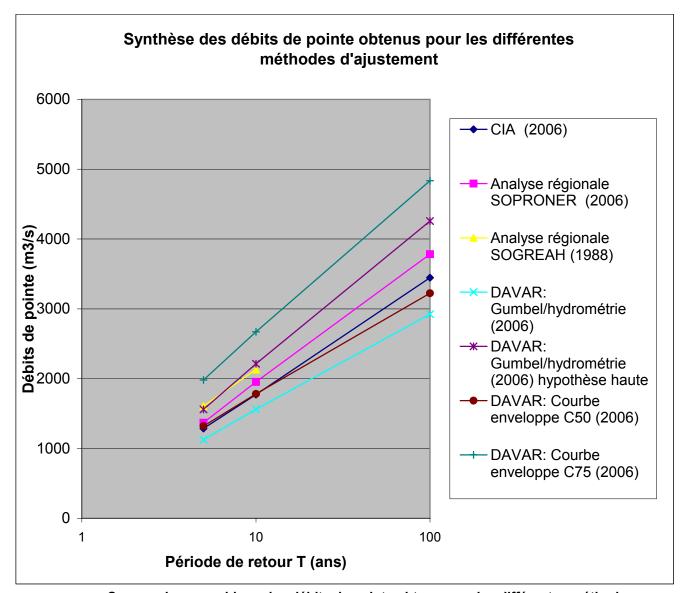
	Période de retour T (années)					
	5 ans 10 ans 100 ar					
Q (m ³ /s)	970	1345	2520			
Q (m³/s) Hypothèse haute	1345	1908	3670			

Calcul des débits de pointe par ajustements de Gumbel

2.5 SYNTHESE DES DEBITS THEORIQUES RETENUS

2.5.1 Présentation des résultats obtenus par les différentes méthodes

Les débits calculés par les différentes méthodes ayant été établis en des points différents, nous allons, afin de pouvoir comparer les résultats, les affecter d'un coefficient de proportionnalité fonction de la taille du bassin versant amont.


Pour se faire, on utilise la méthode régionale (vue précédemment) en admettant que les débits du bassin versant de surface 258.5 km² sont inconnus. Ainsi chaque valeur de débit associée aux différentes études sera ramenée à la valeur équivalente de débit pour un bassin versant de 258.5 km².

$$Q1 = Q2 * (S1 / S2)^{0.75}$$

Le tableau et le graphique ci-dessous présentent les valeurs ajustées des débits.

			en fonction or retour (anné	des périodes es)
Méthode	Aire (km2)	5	10	100
CIA (2006)	258.5	1286	1772	3445
Analyse régionale SOPRONER (2006)	258.5	1369	1953	3783
Analyse régionale SOGREAH (1988)	258.5	1607	2130	-
DAVAR: Gumbel/hydrométrie (2006)	258.5	1126	1561	2924
DAVAR: Gumbel/hydrométrie (2006) hypothèse haute	258.5	1560	2213	4257
DAVAR: Courbe enveloppe C50 (2006)	258.5	1321	1781	3223
DAVAR: Courbe enveloppe C75 (2006)	258.5	1982	2671	4835

Comparaison des débits de pointe théoriques obtenus par les différentes méthodes (bassin versant de 258.5 km²)

Comparaison graphique des débits de pointe obtenus par les différentes méthodes

Les courbes enveloppes sont utilisées comme bornes, au-delà desquelles les valeurs de débits sont inexploitables car non représentatives de la région (C50 borne des minima, C75 borne des maxima).

2.5.2 Analyse critique des résultats

Chacune des méthodes ayant permis d'évaluer les débits présente des avantages et inconvénients rappelés ci-dessous.

2.5.2.1 Courbe enveloppes C50 et C75

Ces méthodes permettent de donner l'enveloppe à l'intérieur de laquelle doivent se trouver les débits de pointe sur la Ouenghi. Elles permettent notamment de mettre en évidence que l'ajustement de Gumbel sur les débits mesurés à la station du pont de la Ouenghi donne des résultats visiblement trop faibles.

2.5.2.2 Ajustements de Gumbel

Cette méthode donne des valeurs relativement faibles, probablement liées à l'imprécision de l'ajustement et aux incertitudes sur les étalonnages de hautes eaux.

A l'inverse l'hypothèse haute semble conduire à des débits élevés.

2.5.2.3 Méthode régionale SOGREAH 1988 et SOPRONER 2006

L'analyse SOGREAH (en jaune) donne des débits proches de l'hypothèse haute des ajustements de Gumbel. Les bassins versants qui ont été utilisés en 1988 apparaissent toutefois à la fois petits et éloignés du site de la Ouenghi. De plus on ne disposait à l'époque que d'une quantité limitée de données d'enregistrements limnimétriques sur ces stations.

A l'inverse, le bassin versant de la Tontouta retenu pour l'analyse SOPRONER présente de nombreuses analogies avec celui de la Ouenghi (proximité géographique, superficie, altitudes et régime pluviométriques proches) et l'on y dispose d'une série importante de données hydrométriques (données depuis 1954).

2.5.2.4 Méthode rationnelle

Cette méthode donne des valeurs de débit maximalistes pour les petits bassins versants. Elle est également affectée par de grandes incertitudes sur les coefficients de ruissellement (C) et sur les temps de concentration (Tc) à retenir.

Adaptée à des bassins versants de taille inférieure à 5 km², elle donne toutefois dans le cas de la Ouenghi des résultats tout à fait cohérents avec ceux des autres méthodes.

2.5.3 Conclusion

Les débits obtenus au moyen de la méthode régionale appliquée à partir des valeurs de débit des ajustements de Gumbel de la station de mesure de la Tontouta nous paraissent les plus fiables. Toutefois, en raison des incertitudes importantes liées à la fois aux données de base et aux méthodes d'estimation des débits, nous avons affecté ces derniers d'un intervalle de validité dont la marge supérieure correspond approximativement aux débits estimés à l'aide de l'ajustement de Gumbel hypothèse haute et la marge inférieure à ceux estimés à l'aide de la courbe enveloppe C50.

Une analyse de sensibilité sera réalisée en phase 2 de façon à déterminer l'impact de ces variations de débit sur les résultats de modélisation (en terme de vitesse, hauteur d'eau et étendue de la zone inondable). A la suite de cette analyse, un débit unique sera retenu pour chaque période de retour.

Nous retiendrons donc les débits de projet suivants pour la zone d'étude :

Q5 = 1370 m³/s (de 1320 à 1560 m³/s) Q10 = 1950 m³/s (de 1780 à 2210 m³/s) Q100 = 3780 m³/s (de 3220 à 4260 m₃/s)

Nota : Le rapport Q100/Q5 (entre deux valeurs de débit situées en bas, au milieu ou en haut de l'intervalle de validité) varie de 2.44 à 2.75.

Le rapport Q100/Q10 (entre deux valeurs de débit situées en bas, au milieu ou en haut de l'intervalle de validité) varie de 1.81 à 1.93.

Ces valeurs, cohérentes avec celles préconisées dans la note technique de la DAVAR de février 2006 « Courbes enveloppes des débits spécifiques maximums de crues pour le quart Sud Ouest de la Nouvelle-Calédonie La Foa – La Coulée » (Q100/Q5 = 2.44 et Q100/Q10 = 1.81), permettent de valider les méthodes utilisées et en particulier le choix des coefficients de ruissellement retenus pour l'application de la méthode rationnelle.

2.6 ESTIMATION DU DEBIT DE POINTE DE LA CRUE ANNE

De nombreux relevés de laisses de crues ont été réalisés suite à la crue Anne de 1988. Cet évènement permettra donc le calage du modèle hydraulique qui sera mis en place. L'approche suivante consiste donc en la détermination du débit de pointe de crue de cet évènement.

2.6.1 Débits estimés par SOGREAH en 1988

Le débit de la crue Anne avait été estimé lors de l'étude SOGREAH à 2000 m³/s au niveau du pont de la RT1.

Ce résultat avait été obtenu en recherchant, au moyen du modèle hydraulique calé sur de petites crues, le débit permettant d'approcher au mieux les cotes des laisses de crue du cyclone Anne.

2.6.2 Exploitation des données de la station hydrométrique de la Ouenghi

Des jaugeages ont eu lieu dans une section située à 40 m à l'amont du pont, en hautes eaux, en 1974 et 1975 (d'après « Etude hydraulique de la rivière Ouenghi et des endiguements en aval et an amont de la RT1 – SOGREAH 1988 »). Le plus fort débit jaugé en lit mineur a été de 1068 m³/s pour une cote NGNC de 8.21 m environ mesurée à l'échelle sur le pont.

Pour une crue de 1780 m³/s (hypothèse basse de la crue décennale), le modèle hydraulique réalisé et calé sur l'hypothèse d'un débit de la crue liée au cyclone Anne de 2000 m3/s donne une cote atteinte de 8.27 m sous le pont et un débit transitant dans le lit mineur au niveau du profil 14 (80 m environ à l'amont du pont) de 1092 m3/s, le reste du débit transitant par les lits majeurs droit et gauche.

On retombe donc très précisément sur les valeurs mesurées en lit mineur, pour le plus fort débit entre1974 et 1975. Par contre on constate qu'une part importante du débit passe en lit majeur et n'a donc pu être jaugée.

La hauteur mesurée à l'échelle pour le cyclone Anne était de 8.32 m. Le modèle donne 8.40 m pour un débit de 2000 m³/s.

Le calage du modèle en retenant l'hypothèse d'un débit de la crue Anne de 2000 m3/s donne donc des résultats cohérents avec les hauteurs d'eau mesurées à la station hydrométrique.

2.6.3 Analyse régionale

D'après les ajustements de Gumbel réalisés par la DAVAR sur la station de la Tontouta, le débit de pointe engendré par le cyclone Anne a été estimé à 4600 m3/s pour un bassin versant de 385 km2.

Ce débit a une période de retour supérieure à 50 ans sur ce bassin versant.

La formule régionale Q1 = $Q2*(S1/S2)^{0.75}$, conduit à un débit de 3412 m³/s pour la Ouenghi, très supérieur aux 2000 m³/s estimés et qui semble irréaliste au vu des ajustements de Gumbel de la station Ouenghi.

Nous avons modélisé les écoulements pour ce débit avec les coefficients de Strickler fixés au maximum des valeurs admissibles tout en restant réalistes (16 en lit majeur et 25 en lit mineur), de façon à modéliser les cotes minimales atteintes pour un tel débit.

Les cotes modélisées restant très supérieures aux cotes des laisses de crue, le débit de 3412 m3/s apparaît donc bien irréaliste. Ceci s'explique par le fait que la crue Anne a eu une période de retour beaucoup plus importante sur la Tontouta (supérieure à 50 ans) que sur la Ouenghi (de l'ordre de 10 ans).

2.6.4 Méthode rationnelle

La méthode rationnelle a été appliquée sur les bassins versants de la Tontouta et de la Ouenghi.

Les caractéristiques du bassin versant de la Tontouta sont les suivantes :

Plus long parcours hydraulique : 30 km

- Pente moyenne: 4.9 %

Superficie: 385 km²

On en déduit les temps de concentration à l'aide des formules précédemment utilisées. Du fait de la taille du bassin versant nous avons choisi de retenir la moyenne des valeurs données par la formule de Johnstone et Cross : 4.43 heures. En considérant une vitesse de transfert de 2 m/s sur les 30 kilomètres du chemin hydraulique le plus long, on obtient un temps de concentration de 4.16 heures, ce qui vient confirmer le valeur précédente.

On retiendra donc un temps de concentration de 4.43 heures pour le bassin versant de la Tontouta.

Ce temps de concentration est très proche de celui trouvé sur la Ouenghi ce qui peut s'expliquer par des longueurs de cheminements similaires et même si le bassin versant de la Tontouta est plus important que celui de la Ouenghi (385 km² contre 258 km²), la pente plus forte du bassin versant de la Tontouta compense, en matière de temps de concentration, cette surface supplémentaire drainée.

A partir des intensités de pluie enregistrées lors du cyclone Anne, les débits de pointe ont été calculés sur les bassins versants de la Ouenghi et de la Tontouta. Les caractéristiques des pluies ont été commandées à Météo-France et sont fournies en annexe 2.

Sur 4.4 heures, on peut considérer que l'intensité moyenne de pluie aura été de 37 mm/h au poste de Konghouaou. Au vu des résultats des différents postes, on peut considérer qu'il y a proportionnalité entre la pluie journalière et l'intensité maximale sur 4.4 heures. On en déduit une intensité moyenne sur 4.4 heures de 20 mm/h au poste de Ouinane. On applique les données du poste de Kongouhaou sur la zone météo 1 et 2 et celles du poste de Ouinane sur la zone météo 3. On en déduit une intensité moyenne sur l'ensemble du bassin versant de la Ouenghi de 34.7 mm/h.

En appliquant la méthode rationnelle, on en déduit Q=1744 m3/s avec C= 0.7 et Q=1993 m3/s avec C=0.8.

Pour le bassin de la Tontouta, en appliquant les données du poste de Canon sur 50 % de la superficie et celles du poste de La Tontouta sur les 50 % restants on obtient une intensité moyenne de 54 mm/h.

En appliquant la méthode rationnelle avec C= 0.8, on en déduit Q= 4620 m3/s, valeur très proche des 4600 m3/s estimés par ajustement de Gumbel.

Ce résultat vient confirmer la validité des résultats obtenus avec la méthode CIA et des coefficients de ruissellement élevés pour les fortes pluies. Ces coefficients de ruissellement élevés sont d'autant plus réalistes que les fortes intensités de précipitation se sont produites alors que les quantités importantes de pluie tombées préalablement pendant plus de 24 heures avaient largement eu le temps de saturer le sol en eau.

2.6.5 Débit retenu de la crue Anne

En conclusion, le débit de la crue Anne est situé avec une probabilité forte entre 1700 et 2000 m³/s.

Afin d'effectuer le calage du modèle, nous avons choisi de retenir la valeur sécuritaire de 1700 m³/s comme débit de pointe de la crue Anne.

3 CAMPAGNE TOPOGRAPHIQUE

Les profils en travers sont des levés topographiques réalisés perpendiculairement à l'écoulement de la rivière. Implantés à intervalles réguliers, une série de profils doit permettre de relever les singularités hydrauliques d'un cours d'eau (ruptures de pente, variations de sections ...). Ils doivent décrire la géométrie du lit mineur et du lit majeur.

3.1 PROFILS EXISTANTS

En 1988, une modélisation hydraulique a été réalisée par SOGREAH. Il s'agissait d'étudier le phénomène de rupture de digues de protection à la suite de la crue générée par le cyclone Anne.

Les profils levés lors de ces investigations ont été partiellement réutilisés dans le cadre de la présente étude. Ils sont positionnés en annexe 4. Sur ces profils, les sections correspondant aux lits mineurs, les plus susceptibles d'avoir évoluées, ont été levées à nouveau ainsi qu'une petite partie du lit majeur permettant de vérifier la concordance des cotes anciennes et nouvelles.

3.2 LAISSES DE CRUE

L'enquête historique de crue (DAVAR, 2004) répertorie de nombreux repères de crue. Nous avons, chaque fois que cela était possible et pertinent, fait passer les profils en travers par ces repères de crue de façon à caler le modèle hydraulique de manière précise. Les laisses de crue sont présentées sur le plan d'implantation des profils en travers fourni en annexe 5.

3.3 <u>VISITES DE TERRAIN</u>

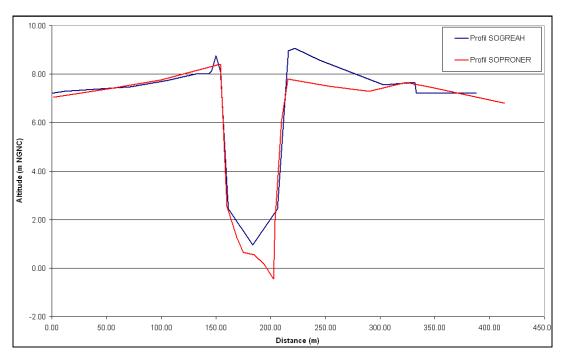
Une fois toutes les données pouvant influer sur le positionnement des profils prises en compte (urbanisation actuelle et future, profils existants, laisses de crue), les profils ont été implantés lors de plusieurs visites de terrain en fonction des singularités hydrauliques constatées sur place : digues, ouvrages de franchissement et bras secondaire.

Il a été noté au cours de ces visites qu'un secteur d'environ 15 m était endommagé sur la digue aval de M.Galliot (éboulement de terre). Il serait nécessaire de redonner à la digue son profil initial au niveau de cet éboulement de façon à éviter qu'une brèche plus importante se crée lors d'une prochaine crue. La localisation des digues existantes est présentée sur le plan fourni en annexe 5.

Les ouvrages hydrauliques sous la RT1 permettant l'écoulement des eaux des bras secondaires et du lit majeur sont généralement en bon état. Ils sont par contre très souvent encombrés de végétation à leur aval et à leur amont

Le programme de levés ainsi établi a été transmis au maître d'ouvrage (Province Sud) puis validé par le comité de pilotage.

3.4 CAMPAGNE DE LEVES TOPOGRAPHIQUES


La campagne de levés topographiques a eu lieu d'août à novembre 2006. Les levés (à l'échelle du 1/100ème en altimétrie et à l'échelle du 1/500ème en planimétrie) ont été réalisés conformément au plan d'implantation fourni en annexe 4.

3.5 PRINCIPALES OBSERVATIONS

La comparaison des anciens et des nouveaux profils montre peu d'évolution dans l'altimétrie des lits majeurs.

Quelques évolutions sont perceptibles au niveau du lit mineur plus sujet à des variations rapides dans le temps. Les variations de cotes de fond des profils ont varié de +2 m à -1 m.

Il semble toutefois délicat de dresser des conclusions fiables sur la base de ces comparaisons, les profils SOGREAH ne comportant pas en effet la même densité de points en lit mineur que ceux réalisés pour la présente étude. D'autre part, en fonction de la localisation exacte des levés réalisés des différences peuvent naturellement apparaître dues à des singularités ponctuelles.

Comparaison des profils SOGREAH et SOPRONER en amont du pont de la RT1

4 CONSTRUCTION ET CALAGE DU MODELE HYDRAULIQUE

4.1 ELABORATION DU MODELE

Le modèle hydraulique a été construit sous le logiciel HEC-RAS 4.0, logiciel de simulation dynamique des écoulements en rivières qui résout les équations de Barré Saint Venant. Il a été construit sur la base des profils en travers levés lors de la présente campagne topographique et des profils levés lors de l'étude SOGREAH en 1988.

Pour les besoins de la modélisation certains profils ont été extrapolés en partie ou en totalité à partir des données existantes. Les profils en travers modélisés sont localisés en annexe 5, annexe qui inclut également le tableau de correspondance des numéros de profils modélisés avec les profils levés.

4.2 CARACTERISATION DES ECOULEMENTS DE LA OUENGHI

La Ouenghi présente sur ce secteur une structure de lit en toit, c'est à dire que les sommets des berges rive droite et rive gauche du cours d'eau sont plus hauts que les lits majeurs correspondants. La différence de niveau peut atteindre 1 à 2,50 m, parfois plus du fait de la présence d'anciens chenaux d'écoulement ou méandres recoupés.

Ainsi, les écoulements lors des crues ont lieu de la manière suivante :

- Pour de petites crues, l'écoulement reste confinés dans le lit mineur.
- Lors de crues moyennes, il y a débordement et on peut observer des écoulements distincts : en lit mineur principal et dans les parties bases des lits majeurs en rive gauche et en rive droite.
- Lors de fortes crues, la hauteur d'eau dépasse systématiquement les cotes de sommet des berges et varie peu entre le lit mineur et le lit majeur.

Les schémas suivants présentent le fonctionnement de la Ouenghi en crue.

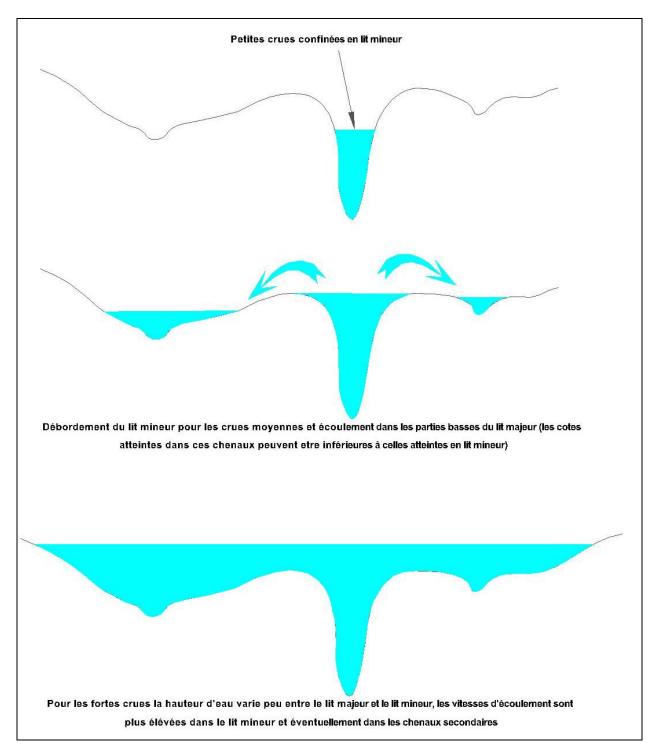


Schéma du fonctionnement du lit en toit de la Ouenghi

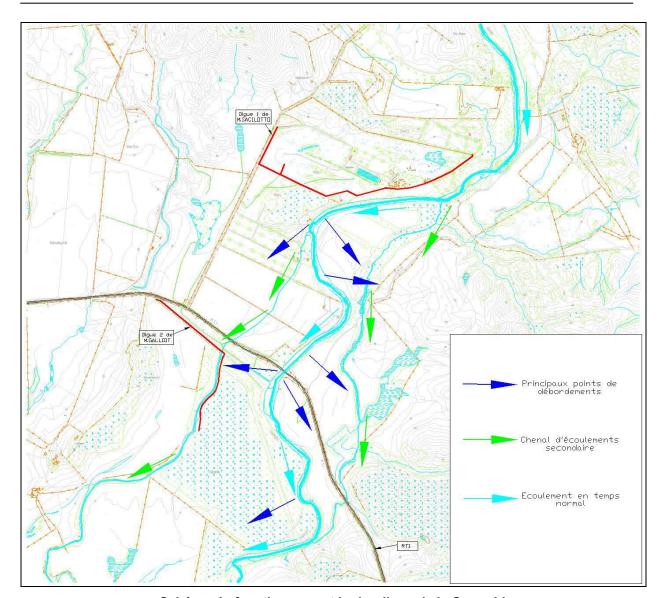


Schéma du fonctionnement hydraulique de la Ouenghi

Une telle configuration d'écoulement est complexe à modéliser avec un logiciel unidimensionnel dans la mesure où les écoulements dans les chenaux secondaires sont différents de ceux dans le lit mineur, ce qui se traduit par des hauteurs d'eau (et une charge hydraulique) différente sur un même profil. D'autre part, des débordements apparaissent en certains points mais en d'autres endroits les niveaux peuvent être susceptibles de s'équilibrer entre écoulements secondaires et principaux.

Malgré cette limite d'utilisation d'un modèle unidimensionnel, le modèle construit et calé sur la crue Anne permettra d'obtenir une approche simplifiée du fonctionnement de la Ouenghi sur ce secteur avec une représentation assez correcte de cet évènement.

D'autres singularités sont également à noter :

- La RT1 fait obstacle aux écoulements en traversant tout le lit majeur ;
- La digue 2 de M. GALLIOT, plus haute que la RT 1 barre la majeure partie du lit majeur de rive droite.

La digue 1 de M. SACILOTTO présente une longueur d'environ 2 km au total. Une partie (environ 1000 m) est parallèle au lit de la rivière, elle a donc pour effet un rétrécissement du lit mineur. La digue dévie ensuite vers la droite traversant ainsi le lit majeur puis remonte légèrement à l'amont. Si le niveau dépasse en un point le niveau de la crête de digue, il y a possibilité de surverse. L'eau surversée est piégée au sein de l'enclos créé par la dique.

Une étude réalisée en 1988 par la SOGREAH a eu pour objectif de déterminer les responsabilités éventuelles des propriétaires dans le phénomène de rupture des digues suite au cyclone Anne. Les conclusions en étaient les suivantes :

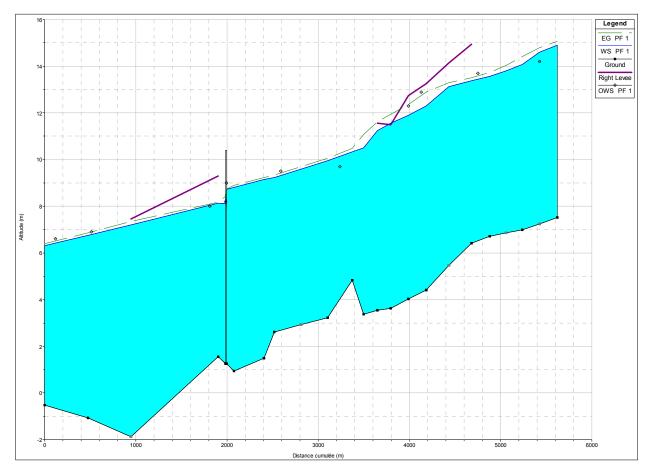
- La digue de M. GALLIOT ne crée qu'au plus un remous de 50 cm à l'aval de l'aménagement de M. SACILOTTO.
- A l'inverse, la rupture de la digue aval de M. SACILOTTO a eu lieu en début de la pointe de crue alors que le niveau d'eau à l'aval était déjà très haut et n'a donc pas pu être la cause d'un vague de 30 cm observée par M. GALLIOT en fin de pointe de pointe de crue (presque 2h plus tard).

4.3 STRUCTURE ET CALAGE DU MODELE

4.3.1 Structure du modèle

Le modèle a été construit en fonction des observations de terrains et de la conceptualisation des écoulements telle que décrite précédemment.

- La digue 1 a été modélisée par un outil permettant de ne pas activer le lit majeur derrière cette digue jusqu'à surverse (outil « Levee »). Passé cette cote, le fonctionnement en casier a été modélisé par une zone où l'écoulement est nul (outil « Ineffective Flow Area ») derrière la digue. Pour le profil 25 (profil en amont de la zone où la digue est perpendiculaire au courant, l'écoulement a été fixé comme nul, jusqu'à la cote moyenne de la digue (cote de surverse). Au-delà de cette cote, l'écoulement en lit majeur est actif.
- La digue 2 a été modélisé par l'introduction d'une zone en rive droite où l'écoulement est nul (entre le profil 10 et 14) jusqu'à la cote moyenne de dessus de digue. Passé cette cote, l'écoulement est possible. Cet outil permet de représenter le blocage des écoulements par cette digue en amont sur son emprise dans le lit majeur.
- Le profil de la RT1 ainsi que les caractéristiques de l'ouvrage de franchissement ont été intégrés au modèle. A noter que les ouvrages de franchissement en lit majeur non pas été modélisés dans la mesure où les capacités de ces ouvrages (buses Ø 800 ou 1000 mm) restent négligeables au vu des débits transités mais également car ces ouvrages sont influencés par contrôle aval pour la crue Anne (la cote de l'eau à l'aval est plus importante que la cote de la génératrice supérieure de tous les ouvrages) ce qui limite d'autant plus leur débitance. Il n'en reste pas moins que ces ouvrages ont leur importance d'une part pour l'évacuation, en temps normal, et la continuité des fossés et bras traversés et d'autre part pour la vidange des lits majeurs après une crue conséquente.


La condition limite aval a été fixée à la hauteur normale calculée sur la base d'une pente de la ligne d'énergie de 0.083 %, pente moyenne de la Ouenghi à l'aval de la RT1.

Les coefficients de Strickler ont été fixés uniformément à :

- 21 en lit mineur ;
- 7 en lit majeur pour tous les profils hormis ceux-ci-après ;
- 4 pour le lit majeur en rive gauche des profils 30 à 15 afin de représenter une zone de cuvette très fortement végétalisée et en broussailles où les vitesses sont vraisemblablement très faibles voire nulles.

4.3.2 Résultats du calage du modèle sur la crue Anne

Le graphique ci-dessous illustre les lignes d'eau et de charge calculées en comparaison des laisses de crues relevées lors de l'enquête historique de 2004.

Lignes d'eau et de charge modélisées pour la crue Anne de 1988 (débit de 1700 m3/s)

(La ligne bleue correspond à la hauteur d'eau, la verte à la ligne de charge et les violettes aux digues présentes. Les laisses de crues sont représentées par les symboles ovales)

Le tableau ci-après présente les cotes et charges hydrauliques calculées en comparaison des cotes observées soit issues de l'analyse historique de 2004 soit du rapport SOGREAH de 1988.

			Charge	Diffé	rence
Localisation	Cote Cote calculée (m NGNC)	hydraulique calculée (m NGNC)	Cote calculée - observée	Charge calculée – cote observée	
P33 (180 m en aval)	14.20	14.61	14.79	41 cm	59 cm
P32	13.80	14.08	14.42	28 cm	62 cm
	13.70			-23 cm	-9 cm
P30 (75 m en amont)	13.67*	13.47	13.61	- 20 cm	- 6 cm
	13.96*			-35 cm	-35 cm
D00	12.89*	40.04	40.00	- 58 cm	0 cm
P28	13.00*	12.31	12.89	- 69 cm	- 11 cm
P28 (55 m en aval)	12.90	12.17	12.77	- 73 cm	-13 cm
P27	12.30	11.89	12.35	- 41 cm	+ 5 cm
P26	11.50*	11.57	11.94	+ 7 cm	+ 44 cm
P21 (135 m en aval)	9.70	10.11	10.24	+ 41 cm	+ 54 cm
D40	9.69*	0.05	10.05	+ 26 cm	+ 36 cm
P19	10.45*	9.95		-50 cm	- 40 cm
P16 (70 m en amont)	9.50	9.31	9.44	-19 cm	- 6 cm
P16	9.52*	9.22	9.35	- 30 cm	- 17 cm
	9.00			-28 cm	- 26 cm
P14	8.95*	8.72	8.74	- 23 cm	-21 cm
	9.02*			-30 cm	- 28 cm
P11	8.20	8.12	8.42	- 8 cm	+ 22 cm
P10 (95 m en aval)	8.00	8.05	8.10	+ 5 cm	+10 cm
P3 (40 m en amont)	6.90	6.80	6.90	- 10 cm	0 cm
P1 (120 m en amont)	6.60	6.41	6.53	- 19 cm	- 7 cm

^{*} Cotes observées issues de l'étude SOGREAH

Idéalement, les cotes observées devraient se situées entre la ligne d'eau et la ligne de charge. La charge hydraulique est définie comme la somme de la hauteur d'eau (traduisant l'énergie potentielle) et de l'énergie cinétique. En lit majeur, il est fréquent que la laisse de crue soit relevée sur des secteurs où la vitesse s'annule. Dans de tels cas, la charge hydraulique est donc égale à la hauteur d'eau en ce point alors qu'au centre du cours d'eau elles diffèrent (ce qui explique en partie que sur un même profil, la cote de l'eau peut légèrement varier selon la vitesse présente).

La différence moyenne entre les paramètres calculés et les cotes observés est de l'ordre de 20 à 30 cm. Les écarts les plus importants restent raisonnables au vu de la précision des laisses relevées et de la configuration relativement complexe du site qui conduit à des différences de cotes non négligeables sur un même profil.

La modélisation de la crue Anne permet de faire les premières constations suivantes :

- La digue de M.Saciloto (golf de la Ouenghi) est légèrement submergée au droit du profil 26;
- La digue de M Galliot n'est pas submergée hormis au niveau de l'effondrement présent en aval du profil 4 ;
- La RT1 est sous les eaux, hormis au niveau du pont où la chaussée est surélevée;
- Le remous engendré par la digue 2 et la RT1 est de l'ordre de 0.60 m.

4.4 ANALYSE SOMMAIRE DE SENSIBILITE AUX INCERTITUDES

Une analyse sommaire de la sensibilité du modèle aux différents paramètres et données introduites a été réalisée.

Cette analyse porte sur :

- Le débit : Une variation de ±15 % du débit a été simulée, variation qui correspond d'une part à la fourchette d'incertitude de la crue Anne (entre 1700 et 2000 m3/s) mais également à la fourchette d'incertitude des débits théoriques. A noter que les valeurs extrêmes des fourchettes d'incertitudes des débits théoriques ont également été modélisées et sont présentées en annexe.
- Le coefficient de Strickler : une variation de ±20 % de l'ensemble des coefficients a été simulée ce qui retraduit, pour le lit mineur, une fourchette de variation de ce coefficient entre 17 et 25, valeurs encore crédibles pour ce type d'écoulements :
- La condition limite aval : La pente a été fixée d'une part à une valeur « forte » de 0.14 % (pente moyenne de la Ouenghi sur le secteur d'études) et à une valeur faible de 0.04 % (pente deux fois plus faible que celle retenue).

Les résultats et comparaisons de lignes d'eau sont présentés en annexe 6.

4.4.1 Sensibilité aux variations du débit

Une variation de ±15 % du débit de la crue Anne engendre une variation de la ligne d'eau moyenne comprise entre 25 et 30 cm avec un écart maximum d'environ 45 cm sur les secteurs où le lit majeur est moins important (en particulier au niveau de la digue 1 amont).

Cette variation et donc cette sensibilité du modèle aux variations de débit est non négligeable mais reste toutefois dans les gammes de précision du modèle.

4.4.2 Sensibilité aux variations de la rugosité (coefficient de Strickler)

Une variation de ±20 % des coefficients de Strickler traduisant la rugosité et donc les pertes de charges linéaires par frottement engendre une variation moyenne de ± 30 cm de la ligne d'eau par rapport à l'épisode de calage du modèle.

Le constat réalisé précédemment pour les variations de débits est identique pour l'incertitude sur la rugosité.

4.4.3 Sensibilité aux variations des conditions limite aval

Les variations de la condition aval engendrent des variations ponctuelles de la ligne d'eau qui peuvent être importantes (de 50 à 80 cm), notamment au niveau de la limite aval du modèle mais également en amont.

L'incidence se limite toutefois au niveau de la RT1.

A noter que peu d'enjeux sont présents sur la partie aval du modèle, ce qui limite l'impact de cette incertitude.

5 MODELISATION DES CRUES DE PERIODE DE RETOUR 5, 10 ET 100 ANS

Les résultats de simulation des crues théoriques modélisées sont présentés en annexe 7, sous forme de tableaux avec l'ensemble des paramètres hydrauliques et également sous forme de profil en long.

5.1 CRUE DE PERIODE DE RETOUR 5 ANS

La crue de période de retour 5 ans a été modélisée avec un débit de 1370 m³/s. Les valeurs extrêmes de la fourchette d'incertitude ont également été modélisées soit 1320 et 1560 m3/s.

Il ressort de ces modélisations que la ligne d'eau de la crue quinquennale est en moyenne de 40 cm inférieure à celle de la crue Anne de 1988.

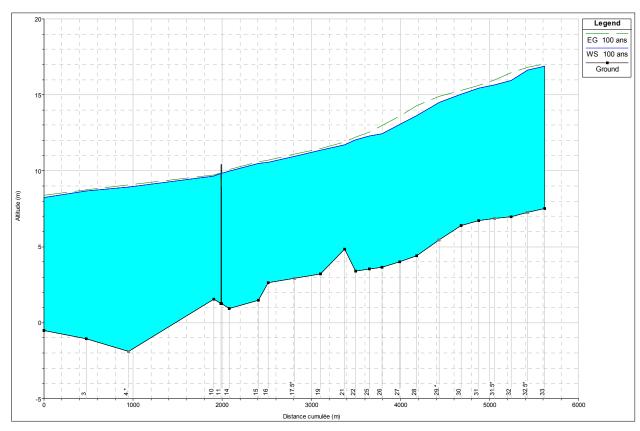
La comparaison avec les valeurs extrêmes de la fourchette d'incertitude des débits conduit à la fourchette d'incertitude des cotes modélisées de -25 cm à + 10 cm.

5.2 CRUE DE PERIODE DE RETOUR 10 ANS

La crue de période de retour 10 ans a été modélisée avec un débit de 1950 m³/s. Les valeurs extrêmes de la fourchette d'incertitude ont également été modélisées soit 1780 et 2210 m³/s.

Il ressort de ces modélisations que la ligne d'eau de la crue décennale est en moyenne de 25 cm supérieure à celle de la crue Anne de 1988.

La comparaison avec les valeurs extrêmes de la fourchette d'incertitude des débits conduit à la fourchette d'incertitude des cotes modélisées de -20 cm à + 25 cm.


5.3 CRUE DE PERIODE DE RETOUR 100 ANS

La crue de période de retour 100 ans a été modélisée avec le débit moyen de **3780 m³/s.** Les valeurs extrêmes de la fourchette d'incertitude ont également été modélisées soit 3220 et 4260 m³/s.

Il ressort de ces modélisations que la ligne d'eau de la crue centennale est en moyenne de 1.50 m supérieure à celle de la crue Anne de 1988.

La comparaison avec les valeurs extrêmes de la fourchette d'incertitude des débits conduit à la fourchette d'incertitude moyenne des cotes modélisées de -40 cm à + 35 cm.

Le profil en long et le tableau suivants présentent les résultats de simulation de cette crue centennale :

Lignes d'eau et de charge modélisées pour la crue centennale (débit de 3780 m3/s)

Profil	Ligne d'eau (m NGNC)	Profil	Ligne d'eau (m NGNC)
33	16.90	21	11.71
32.5	16.63	19	11.34
32	15.95	17.5	10.94
31.5	15.66	16	10.55
31	15.43	15	10.47
30	15.03	14	9.96
29	14.50	13	9.84
28	13.65	11	9.82
27	13.04	10	9.67
26	12.45	4	8.95
25	12.30	3	8.67
22	12.05	1	8.25

Cote de la crue centennale au droit des différents profils

A noter que les deux digues présentent sur le secteur d'études sont totalement submergées et que la hauteur d'eau sur la RT 1 est d'environ 2 m à 2.5 m.

5.4 DESCRIPTION DU FONCTIONNEMENT HYDRAULIQUE EN CRUE

L'analyse des résultats du modèle hydraulique permet de dresser les constats suivants

sur le fonctionnement en crue de la rivière Ouenghi sur le secteur d'études. En ce qui concerne la digue 1 (propriété Monsieur Sacilotto) :

- Cette digue est en partie submergée pour les crues 5 et 10 ans, plus particulièrement en amont de l'ouvrage (au droit des profils 30 et 29) et également au niveau du profil 26 pour la crue décennale. Ce déversement en quelques points de la digue entraîne un remplissage du secteur derrière l'ouvrage, avec des durées de submersion qui peuvent être importantes le temps que ce « casier » se vidange;
- Pour la crue centennale, la digue est entièrement submergée.
- Pour les crues d'occurrence modérée (5 et 10 ans), l'impact de cette digue est non négligeable et se traduit par une surélévation de la ligne d'eau entre les profils 26 et 30, due à la réduction du lit majeur en rive droite par l'ouvrage. Cet impact n'a cependant pas été quantifiée de manière précise, dans la mesure on ce n'est pas l'objet de la présente étude. L'absence d'enjeux, en rive gauche au droit de ce secteur permet de minimiser cet impact sur les biens environnants.

Pour la digue 2 (propriété Monsieur Galliot) :

- Le tronçon de digue parallèle à la RT1, n'est pas submergé pour les crues 5 et 10 ans. En crue centennale, la digue est totalement submergée;
- La digue est en partie submergée sur son linéaire aval (profil 4 à 3) pour ces crues modérées, ce qui induit un remplissage du secteur « protégé » par l'aval. Ce constat est d'autant plus vrai que l'affaissement de la digue présent sur ce linéaire réduit l'occurrence de protection de l'ouvrage et menace également sa stabilité en temps de crues (érosion de la digue par un écoulement concentré par cet affaissement);
- Pour les crues d'occurrences modérées, l'analyse de la ligne d'eau fait apparaître, une surélévation de la ligne d'eau de 40 à 50 cm entre l'amont et l'aval de la RT1, incidence principalement créée par cet ouvrage, qui « bloque » une grande partie du lit majeur en rive droite. L'incidence de la RT1 est limitée car son profil reste proche du terrain naturel en amont et en aval. Ici encore, l'étude de l'impact de cette digue n'a pas été étudiée précisément, mais cet impact apparaît sur les lignes d'eau modélisées.

Il est important de noter que ces deux digues n'ont pas été aménagées en cas de surverse (déversoir, ...), la stabilité de ces ouvrages est donc compromise dans de telles situations. Les risques pour les enjeux derrière ces ouvrages sont donc accrus car une rupture brutale et même un déversement implique une lame d'eau et des vitesses importantes.

D'une manière plus générale, la configuration du lit en toit de la Ouenghi (cf. précédemment) implique des hauteurs d'eau (et donc des aléas) qui sont souvent plus importantes en bordure de lit majeur qu'à proximité de son lit mineur. Même si les cartographies suivantes ne le font pas apparaître de manière explicite, les hauteurs d'eau dans le lit majeur sont conséquentes (2 à 3 m d'eau en moyenne en aval de la RT1 et 3 à 4 m en amont). Les vitesses dans le lit majeur restent faibles à

modérées (entre 0.2 et 0.5 m/s) mais peuvent être ponctuellement plus importantes, notamment au droit de chenaux secondaires peu obstrués, lors des premiers débordements de la Ouenghi.

6 CARTOGRAPHIE DE LA ZONE INONDABLE ET DES ALEAS

6.1 CARTE DES ISO-COTES, ISO-HAUTEURS, ISO-VITESSES

Lors de la modélisation de la crue centennale, les vitesses et cotes ont été calculées par le logiciel HEC-RAS au droit des différents profils.

Les iso-hauteurs (qui représentent les classes de hauteur d'eau par incrément de 0,5 m) et iso-vitesses (vitesse > 1m/s ou < 1 m/s) ont été déterminées à partir des données issues de la modélisation et des relevés topographiques existants (plan topographique au 1/2000^{ème}).

Les iso-cotes sont également reportées sur cette cartographie et représentent l'emplacement où la cote d'inondation indiquée (crue centennale) est à appliquer. Le plan page suivante présente ces informations.

6.2 CARTE DES ALEAS

Un aléa est la probabilité d'occurrence en un point donné d'un phénomène naturel de nature et d'intensité définies. Les inondations, glissements de terrains, tornades sont des exemples de phénomènes naturels.

Sur une zone soumise à un aléa, l'ensemble des activités, des biens, des personnes, ... représente l'enjeu. Celui-ci est entre autres caractérisé par sa vulnérabilité à l'aléa, c'est-à-dire l'ampleur des dommages que l'enjeu est susceptible de subir.

Un risque est la confrontation d'un aléa avec des enjeux. La carte des aléas résulte ici du croisement entre la hauteur d'eau et la vitesse selon les critères suivants:

Vitesse	Faible à modérée	Forte à très forte
Hauteur d'eau	≤ 1m/s	> 1m/s
H≤1 m	Moyen	Fort
1 < H ≤ 1,5 m	Fort	- > .
H > 1,5 m	Très fort	Très fort

La zone de protection des thalwegs et cours d'eau est également portée sur la carte des aléas. Cette zone est définie par une bande de 6 m de part et d'autre des berges des thalwegs et cours d'eau. La cartographie des aléas est fournie ci-après.

Carto Hauteur Vitesse

Carto des aléas

7 BIBLIOGRAPHIE

DAVAR - Février 2006 : Courbes enveloppes des débits spécifiques maximums de crues pour le quart Sud Ouest de la Nouvelle-Calédonie La Foa - La Coulée.

METEO-FRANCE - Juin 2006: Précipitations dans la région de Ouenghi – METEO-FRANCE pour le compte de SOPRONER.

DAVAR - Juillet 2004 : Commune de Boulouparis - enquêtes historiques de crues - rapport sur les cotes d'inondation.

SOGREAH - 1988 : « Etude hydraulique de la rivière Ouenghi et des endiguements en aval et en amont de la RT1» pour la Direction du Développement et de l'Economie Rurale.

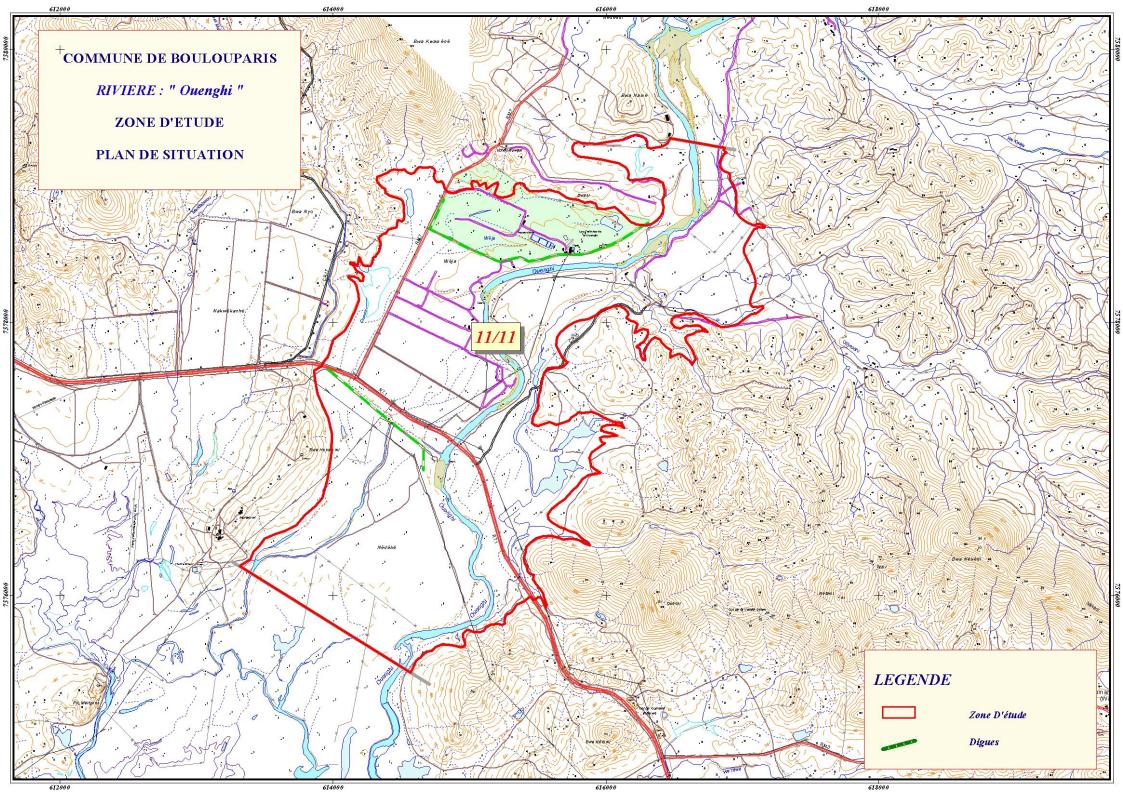
8 ANNEXES

Annexe 1: Localisation du secteur d'étude

Annexe 2 : Etude météorologique Météo-France

Annexe 3 : Caractéristiques de la station hydrométrique de la Ouenghi

Annexe 4 : Levés topographiques


Annexe 5 : Localisation des profils en travers modélisés

Annexe 6 : Analyse des incertitudes – Résultats de simulation sur la crue Anne

Annexe 7 : Résultats de simulation des crues Anne, 5, 10 et 100 ans

Annexe 1:

Localisation du secteur d'étude

Annexe 2:

Etude météorologique Météo-France

Précipitations dans la région de Ouenghi

Pour le compte de SOPRONER Juin 2006

Direction Interrégionale de Nouvelle-Calédonie

et de Wallis et Futuna

1, rue Vincent Auriol – BP 151 - 98845 Nouméa Cedex

Téléphone: (687) 27 93 00

Fax: (687) 27 93 27

Rédigé par Luc Maitrepierre

Email: luc.maitrepierre@meteo.nc

Vérifié par Sterenn Caudmont

Météo-France reste propriétaire des informations de cette étude. Elles ne peuvent donc être rediffusées ou revendues, en partie ou en totalité, sans son autorisation préalable. Toute publication de travaux utilisant explicitement ces informations doit en mentionner la provenance.

Malgré les contrôles effectués, ces informations ne peuvent être garanties exemptes d'erreurs. Météo-France ne peut être tenu pour responsable des conséquences directes ou indirectes de l'utilisation des informations contenues dans ce dossier.

1 **AVANT PROPOS**

Les stations automatiques étant rares dans cette région, il a été convenu de faire une comparaison des intensités de précipitations calculées dans la vallée de la rivière Tontouta qui se trouve dans une configuration semblable à celle de la rivière Ouenghi.

2 RENSEIGNEMENTS CONCERNANT LES POSTES UTILISÉS

2.1 Position géographique

Nom de la station	X IGN 72	Y IGN 72	Altitude (m)	Nature du poste	Remarques
NASSIRAH	609565	7586936	50	Bénévole puis Station automatique	Poste ouvert en 1979. Il se trouve juste au pied du col de Nassirah. Poste bénévole de 1979 à 1998, station automatique depuis 1999.
BOULOUPARIS	608315	7580487	7	Bénévole	Poste ouvert en 1956 à l'entrée sud du village.
LA OUENGHI	611544	7574376	5	Bénévole	Poste ouvert en 1973 à la ferme aquacole d'IFREMER à l'embouchure de la rivière Ouenghi
SANDACO	615012	7577856	10	Bénévole	Poste ouvert en 1991 sur la rive droite de la rivière Ouenghi.
KONGOUHAOU	620651	7587562	780	Station automatique de la DAVAR	Poste ouvert en 1981, sur les hauteurs dominant la rive droite de la rivière Ouenghi. La station automatique existe depuis 1986. Il a enregistré 478 mm en 24 h lors du cyclone Anne.
OUINANE	617224	7574334	25	Bénévole	Poste ouvert en 1979 entre Tomo et la rivière Ouenghi.
CANON	642001	7572746	100	Station automatique de la DAVAR	Poste ouvert en 1981 au fond de la vallée de la Tontouta. La station automatique existe depuis 1987. Il a enregistré des pluies exceptionnelles lors du cyclone Anne (janvier 1988) avec 913,5 mm en 24 h.
LILIANE	632814	7572149	30	Station automatique de la DAVAR	Poste ouvert en 1981 dans la vallée de la Tontouta en aval de Canon. La station automatique existe depuis 1991. Les maximums en 24 h ont été relevés pendant les cyclones Anne avec 521,5 mm et Beti (mars 1996) avec 417 mm.
LA TONTOUTA	625754	7564489	36	Synoptique	Poste de référence pour cette partie côtière de la Côte Ouest

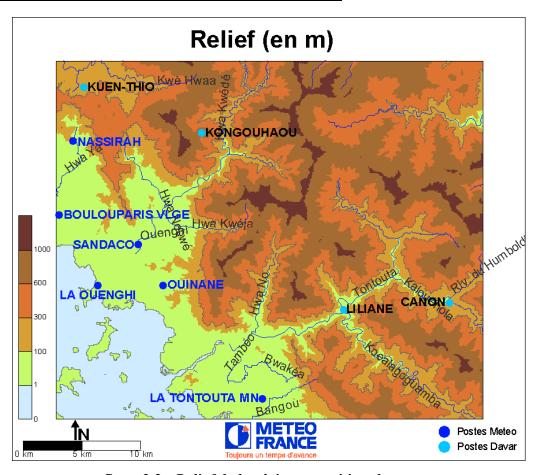
Tableau 2.1 : Position géographique des postes utilisés

Pour avoir un élément de comparaison objectif entre les postes, nous allons travailler sur la période commune 1991-2005 en ce qui concerne les statistiques et les valeurs moyennes. En revanche, la période totale de mesure sera utilisée pour les records.

2.2 Renseignement sur les postes

Les postes de Boulouparis, La Ouenghi, Sandaco et Ouinané sont des postes bénévoles qui ne produisent que des données quotidiennes de précipitations.

Les postes de La Tontouta, Nassirah, Kongouhaou, Canon et Liliane enregistrent des données pluviographiques permettant le calcul des courbes IDF.


Le poste de La Tontouta dispose de l'échantillon le plus long de la côte Ouest, c'est pourquoi il sert de référence pour cette région en ce qui concerne les intensités de précipitations.

Kongouhaou se trouve en surplomb de la vallée de la rivière Ouenghi dans la partie médiane de son cours alors que Sandaco et La Ouenghi sont plus en aval.

L'axe La Tontouta-Liliane-Canon pourra être utilisé comme comparaison pour l'étude des précipitations le long de la rivière Ouenghi.

Le poste de Nassirah ne dispose pas encore d'un échantillon suffisant pour réaliser les calculs des courbes IDF.

2.3 Cartographie de la région et situation des postes

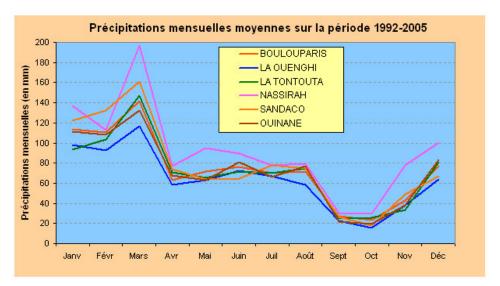
Carte 2.2 : Relief de la région et position des postes

3 RÉGIME GÉNARAL DES PLUIES DANS LA RÉGION DE OUENGHI

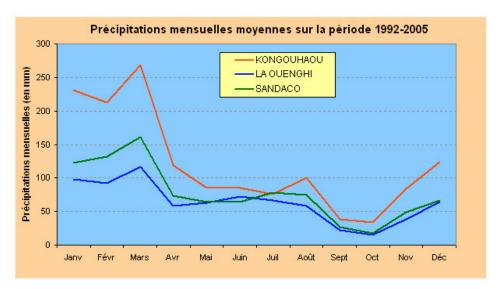
Précipitations moyennes annuelles 1991-2000 (en mm) reconstituées par la méthode Aurelhy Kwé Hwaa KUEN-THIO <mark>K∯</mark>NGOUHAOU NASSIRAL BOULOUPARIS Hwa Kwéja CANON RIV. du Humbold 4000 3000 2000 OUINANE 1500 LILIANE 1250 1000 750 500 Postes Meteo

3.1 Répartition géographique des quantités annuelles de pluie

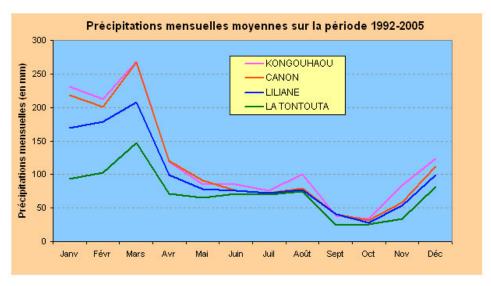
Carte 3.1 : Relief de la région et position des postes


Cette carte des quantités annuelles de précipitations, réalisée à partir des résultats du modèle Aurelhy sur la période 1991-2000, permet de mettre en évidence le gradient important des pluies entre le littoral (moins de 750 mm) et la Chaîne Centrale (plus de 3000 mm/an). On remarque aussi la grande similitude dans la répartition des précipitations entre la vallée de la rivière Ouenghi et celle de Tontouta.

3.2 Cycle annuelle des précipitations


10 km

Les cycles annuels des précipitations des postes sélectionnés présentent les caractéristiques classiques du régime des précipitations de la Nouvelle-Calédonie avec une saison des pluies centrée sur le premier trimestre et une saison sèche très marquée en septembre et octobre.


Postes Davar

Graphique 3.2 : Cycle annuel des précipitations des stations situées en plaine

Graphique 3.3 : Cycle annuel des précipitations des stations situées près des reliefs

Graphique 3.4 : Cycle annuel des précipitations des stations de la vallée de la Ouenghi

On observe que tous les postes réagissent de la même façon et que les postes proches des reliefs enregistrent plus de précipitations qu'en plaine.

Dans la vallée de la Ouenghi (*Graphique 3.3*), on peut noter le gradient des précipitations mensuelles entre le littoral et Kongouhaou. Ce gradient est encore plus net lors de la saison des pluies.

Le *Graphique 3.4* permet de confirmer la similitude du régime des précipitations entre la vallée de la Ouenghi et de la Tontouta. C'est surtout remarquable entre Kongouhaou et Canon.

3.3 Quantités journalières maximales annuelles

Dans les *Tableaux 3.5 et 3.6*, le maximum annuel n'est présent que si le nombre de données quotidienne est d'au moins 150 valeurs par an. Les épisodes les plus marquants ont été enregistrés lors du passage des cyclones Anne en janvier 1988 et Beti en mars 1996. La quantité de 911 mm enregistrée à Canon est une valeur exceptionnelle car très au dessus du maximum des autres postes (521,5 mm à Liliane).

Maximum annuel des										
U ME	TEO	précipit	ations	s journaliè	ères					
		p. co.p		mm)		E CALLED				
	KONO	GOUHAOU	`	ANON		ILIANE				
An	(mm)	date	(mm)	date	(mm)	date				
1981	mgt	mqt	608.7	24/12/1981	329.8	24/12/1981				
1982	123.5	09/03/1982	136.2	09/03/1982	104.2	12/10/1982				
1983	58.0	25/11/1983	66.5	25/10/1983	mat	mgt				
1984	00.0		mat	20/ 10/ 1000	142.5	03/06/1984				
1985	mqt 113.5	mqt 14/09/1985	mgt	mqt mat	94.5	31/03/1985				
1986	225.5	20/05/1986		mqt mat	183.5	16/12/1986				
1987	69.0	22/02/1987	mqt 40.5	mqt 21/02/1987	42.5	22/02/1987				
1987	478.0		911.0	12/01/1988		12/02/1987				
		12/01/1988	-							
1989	204.0	10/04/1989	251.0	10/04/1989	202.4	10/04/1989				
1990	260.0	23/01/1990	256.0	25/02/1990	200.8	22/01/1990				
1991	65.0	02/12/1991	mqt	mqt	80.5	02/12/1991				
1992	310.5	07/04/1992	352.5	07/04/1992	261.5	07/04/1992				
1993	88.5	26/02/1993	83.0	14/03/1993	62.5	14/03/1993				
1994	101.5	27/02/1994	159.5	05/01/1994	104.5	27/02/1994				
1995	92.5	25/11/1995	82.0	08/08/1995	76.0	08/08/1995				
1996	402.0	27/03/1996	385.0	27/03/1996	374.5	27/03/1996				
1997	182.0	07/01/1997	243.5	07/01/1997	188.5	07/01/1997				
1998	101.0	19/05/1998	79.5	19/05/1998	91.0	19/05/1998				
1999	142.5	16/02/1999	111.0	21/05/1999	98.5	20/02/1999				
2000	98.5	08/11/2000	70.5	31/10/2000	81.0	11/06/2000				
2001	107.5	24/01/2001	95.5	24/01/2001	82.0	24/01/2001				
2002	82.5	23/12/2002	155.5	01/02/2002	129.0	06/03/2002				
2003	131.5	14/03/2003	220.0	14/03/2003	199.5	14/03/2003				
2004	103.5	10/05/2004	130.5	10/05/2004	101.5	10/05/2004				
2005	129.0	08/01/2005	124.5	08/01/2005	81.0	08/01/2005				
Maxi	478.0	12/01/1988	911.0	12/01/1988	521.5	12/01/1988				

Tableau 3.5 : Données journalières maximales annuelles de pluie près des reliefs

ME FRA	TEO	Maximi	um a	annuel d	es p	récipitat					า)	
	LA T	ATUOTAC	OI	JINANE	LA (OUENGHI	SA	NDACO	BOU	LOUPARIS	NA	SSIRAH
An	(mm)	date	(mm)	date	(mm)	date	(mm)	date	(mm)	date	(mm)	date
1951	222.1	26/02/1951	mqt	mqt								
1952	107.3	11/03/1952	mqt	mqt								
1953	61.4	03/11/1953	mqt	mqt								
1954	88.0	31/10/1954	mqt	mqt								
1955	78.9	20/09/1955	mqt	mqt								
1956	72.6	21/05/1956	mqt	mqt	mqt	mqt	mqt	mqt	104.5	05/04/1956	mqt	mqt
1957	201.7	06/01/1957	mqt	mqt	mqt	mqt	mqt	mqt	134.7	06/01/1957	mqt	mqt
1958	81.6	15/01/1958	mqt	mqt	mqt	mqt	mqt	mqt	106.2	14/01/1958	mqt	mqt
1959	98.4	13/03/1959	mqt	mqt	mqt	mqt	mqt	mqt	134.0	17/01/1959	mqt	mqt
1960	56.0	26/05/1960	mat	mqt	mat	mgt	mat	mgt	83.0	26/05/1960	mat	mgt
1961	128.6	07/02/1961	mat	mgt	mat	mgt	mat	mgt	92.5	06/02/1961	mat	mgt
1962	111.0	29/05/1962	mat	mgt	mqt	mqt	mat	mgt	110.0	11/07/1962	mat	mgt
1963	120.5	03/01/1963	mat	mat	mqt	mqt	mat	mat	89.1	03/01/1963	mat	mat
1964	57.4	10/06/1964	mat	mqt	mqt	mgt	mat	mqt	78.1	10/06/1964	mat	mgt
1965	67.6	24/02/1965	mat	mgt	mgt	mgt	mat	mgt	76.0	24/12/1965	mat	mgt
1966	63.0	17/07/1966	mqt	mqt	mqt	mqt	mqt	mqt	108.6	17/07/1966	mgt	mqt
1967	138.4	27/06/1967	mqt	mqt	mqt	mqt	mqt	mgt	164.5	29/03/1967	mgt	mqt
1968	117.1	19/01/1968	mgt	mgt	mgt	mgt	mgt	mgt	107.5	19/01/1968	mgt	mgt
1969	157.0	01/02/1969	mgt	mqt	mqt	mqt	mgt	mgt	69.5	06/03/1969	mgt	mgt
1970	55.9	04/06/1970	mqt	mqt	mqt	mqt	mgt	mgt	78.6	02/01/1970	mgt	mgt
1971	62.9	01/05/1971	mgt	mgt	mgt	mgt	mat	mgt	88.2	14/03/1971	mat	mgt
1972	93.4	07/01/1972	mqt	mqt	mgt	mqt	mqt	mgt	143.2	07/01/1972	mgt	mgt
1973	79.7	25/03/1973	mgt	mgt	62.6	25/03/1973	mgt	mgt	86.5	07/07/1973	mgt	mgt
1974	130.3	04/02/1974	mgt	mgt	65.0	19/01/1974	mgt	mgt	113.9	04/02/1974	mgt	mgt
1975	123.0	07/03/1975	mgt	mgt	106.7	07/03/1975	mgt	mgt	120.4	07/03/1975	mgt	mgt
1976	52.0	20/02/1976	mgt	mqt	73.5	16/10/1976	mat	mqt	92.8	16/10/1976	mgt	mqt
1977	66.1	27/06/1977	mgt	mgt	55.5	27/06/1977	mgt	mgt	65.3	27/06/1977	mgt	mgt
1978	53.8	14/04/1978	mgt	mgt	106.4		mgt	mgt	99.5	14/04/1978	mgt	mgt
1979	97.8	05/02/1979	96.3	05/02/1979	42.2	03/03/1979	mgt	mgt	102.0	30/07/1979	80.7	30/07/1979
1980	67.9	23/04/1980	84.8	23/04/1980	80.0	23/04/1980	mqt	mgt	99.5	24/01/1980	83.0	24/12/1980
1981	171.7	24/12/1981	185.2	24/12/1981	132.0	24/12/1981	mat	mgt	137.5	12/02/1981	242.0	24/12/1981
1982	74.6	09/03/1982	98.0	09/03/1982	99.0	09/03/1982	mgt	mgt	85.5	09/03/1982	102.0	12/10/1982
1983	45.4	23/01/1983	40.7	23/01/1983	46.0	23/01/1983	mgt	mgt	64.7	14/02/1983		25/11/1983
1984	118.6	03/06/1984	103.0	03/06/1984		03/06/1984	mgt	mgt	84.6	23/10/1984		03/06/1984
1985	77.9	14/12/1985	81.0	14/09/1985	71.0	14/09/1985	mgt	mgt	83.0	31/03/1985	112.0	14/09/1985
1986	142.0	20/05/1986	150.0	16/12/1986	122.0	20/05/1986	mgt	mgt	145.2	20/05/1986	160.0	20/05/1986
1987	31.3	23/02/1987	49.9	21/02/1987	51.0	27/10/1987	mgt	mgt	64.7	27/10/1987	48.0	11/11/1987
1988	166.2	12/01/1988	259.3	12/01/1988	228.0	12/01/1988	mgt	mgt	183.6	12/01/1988	300.0	12/01/1988
1989	98.0	31/12/1989	120.0	10/04/1989	100.8	10/04/1989	mgt	mqt	91.5	16/12/1989	166.0	10/04/1989
1990	144.0	23/01/1990	193.0	22/01/1990	166.5		mqt	mqt	100.0	25/02/1990		23/01/1990
1991						02/12/1991						
1992						07/04/1992						
1993				30/03/1993		30/03/1993						26/02/1993
1994				27/02/1994		27/02/1994						05/01/1994
1995				08/08/1995		08/08/1995						
1996						27/03/1996						
1997				07/01/1997		06/07/1997						mqt
1998				25/08/1998				19/05/1998				mqt
1999				16/02/1999		20/02/1999						mqt
2000						14/01/2000						
2001				24/01/2001		29/03/2001		29/03/2001				26/01/2001
2002				06/03/2002		06/03/2002						06/03/2002
2003						29/12/2003						
2004						27/06/2004		mqt		10/05/2004		
2005						11/01/2005				08/01/2005		
Maxi						12/01/1988						
Ινιαλί	<i>LLL</i> .1	<i>L0/02/13</i> 31	200.0	12/01/1900	220.0	12/01/1900	202.0	£1/00/1990	100.2	21/00/1990	500.0	12/01/1900

Tableau 3.6 : Données journalières maximales annuelles de pluie en plaine

Dans le *Tableau 3.6*, on peut remarquer la grande cohérence des résultats et observer que les quantités maximales sont de très loin inférieures à celles observées près des reliefs.

4 ANALYSE DES INTENSITÉS DE PRÉCIPITATIONS

4.1 Remarques

La méthode utilisée pour les calculs de durées de retour est celle dite "du Renouvellement". Celle-ci ayant été largement diffusée ces dernières années, elle n'est pas incluse dans ce rapport, mais il est toujours possible de nous contacter en cas de difficulté de compréhension.

Néanmoins, il est utile de rappeler que les ajustements permettant le calcul des durées de retour sont caractérisés par un paramètre de position **Po** et la pente **GD** de la droite d'ajustement. Nous avons directement la relation :

P=GD*Ln(T)+Po

P pour précipitations et T la durée de retour

Avec Po=précipitations pour une durée de retour de 1 an.

4.2 Résultats du poste de Kongouhaou

	Quant	ités max	imales	de préc	ipitation	ıs (en m	m) à KC	NGOUL	IAOU-D	AVAR	
Valeurs	calculées a	vec la méth	ode du re	nouvellem	ent					Période 1	986-2005
	Nombre	METEO FRANCE		T = Durée de retour (en années) Paramètres							
Durée (en min)	d'années de mesure	1	2	5	10	20	50	100	GD(d)	Po(d)	Max
6	18.4	9.5	10.8	12.4	13.6	14.9	16.5	17.7	1.78	9.5	13.8
15	18.4	18.7	21.2	24.6	27.1	29.6	33.0	35.5	3.66	18.7	30.0
30	18.4	28.4	32.7	38.3	42.5	46.8	52.4	56.6	6.13	28.4	43.7
60	18.4	41.1	47.7	56.4	63.0	69.6	78.4	85.0	9.52	41.1	59.4
90	18.4	50.2	58.7	69.8	78.3	86.7	97.9	106.4	12.19	50.2	76.3
120	18.4	57.6	68.4	82.8	93.6	104.5	118.8	129.7	15.65	57.6	90.5
180											
360	18.4	91.2	120.4	159.0	188.2	217.4	256.0	285.2	42.11	91.2	216.9
720											
1440	18.4	148.4	218.1	310.2	380.0	449.7	541.8	611.6	100.58	148.4	478.2
2880	18.4	166.5	256.0	374.3	463.7	553.2	671.4	760.9	129.07	166.5	519.5
4320											
5760	18.4	179.1	281.6	417.0	519.5	621.9	757.3	859.8	147.80	179.1	599.5

Tableau 4.1 : Durées de retour à Kongouhaou

Notons que les durées de retour correspondant aux maximums réellement observés sont tous inférieurs ou très proche de 20 ans ce qui correspond à la période de mesure. Les résultats ne donnent pas des valeurs extrêmes très fortes et cela est plus particulièrement vrai pour les petites périodes d'intégration (en dessous de 6 heures) qui me semblent plutôt faibles.

Les IDF réalisées à partir des durées de retour (*Tableau 4.1*) sont en annexe à la fin du document, de même que les graphiques des paramètres d'ajustement sur lesquels figurent les paramètres GD(d) et Po(d) (*Tableau 4.1*), ainsi que les droites d'ajustements dont les données sont synthétisées dans le *Tableau 4.2*.

Concrètement, si on veut calculer la valeur des précipitations maximales de Kongouhaou pour une durée de retour de 20 ans et une période d'intégration de 15 minutes, il suffit de prendre les valeurs du *Tableau 4.2* pour calculer $GD(15 \text{ mn}) = 0.518*15^{0.711}$ et Po(15 mn) = $3.391*15^{0.610}$, soit respectivement 3,55 et 17,68. Puis on calcule directement la précipitation selon la formule exposée au paragraphe maximale **4.1**: P=3,55*LN(20)+17,68=28,3 mm. Ce résultat est très proche de la valeur de 29,6 mm qui se trouve dans le *Tableau 4.1*. Ainsi, il est facile de calculer les précipitations maximales pour toutes les périodes voulues et pour toutes les durées de retour souhaitées.

Param	Paramètres d'ajustement à KONGOUHAOU-DAVAR, période 1986-2005										
METEO FRANCE		tels que	GD(d)=Ad ^B e	t Po(d)=Ad ^B							
FRANCE	6 min =< 0	d =< 90 min	90 min =< d	=< 1440 min	1440 min =< d	=< 5760 min					
	Α	В	Α	В	Α	В					
GD(d)	0.518	0.711	0.407	0.766	13.607	0.278					
Po(d)	3.391	0.610	8.882	0.390	55.612	0.136					
		•	= Ad^B avec I(c 90 min =< d	i i	e ure 1440 min =< d	=< 5760 min					
T	Α	В	Α	В	Α	В					
2 ans	223.9	-0.377	425.1	-0.526	3461.9	-0.816					
5 ans	251.3	-0.364	377.4	-0.460	3997.7	-0.787					
10 ans	272.2	-0.357	366.1	-0.428	4483.7	-0.774					
20 ans	293.2	-0.351	364.3	-0.404	4998.2	-0.766					
50 ans	321.1	-0.344	370.0	-0.380	5701.1	-0.758					
100 ans	342.3	-0.340	377.8	-0.366	6242.9	-0.754					

Tableau 4.4 : Paramètres d'ajustement à Kongouhaou (1986-2005)

Sur le graphique en *Annexe* 2, il est à noter que les points sont relativement bien alignés sur les droites d'ajustement, ce qui est le gage d'une certaine progressivité des résultats et donc de leur cohérence. Il en est de même pour les courbes IDF en *Annexe* 1.

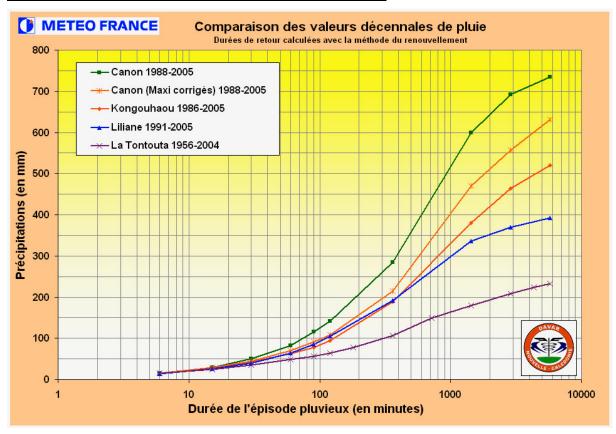
Pour finir, il est totalement déconseillé d'extrapoler les durées de retour au-delà de 3 ou 4 fois la taille de l'échantillon. Cela limite le calcul à des durées de retour de l'ordre de 50 ans pour le poste de Kongouhaou. La valeur centennale est donnée à titre indicatif.

4.3 Résultats du poste de La Tontouta

MET FRAN	EO Q	uantités	maxim	ales de	précipit	ations (e	en mm)	à LA TO	NTOUT	Ά	
Valeurs	calculées a	vec la métl	hode du re	nouvellem	ent					Période 1	956-2004
	Nombre			T = Durée	de retour (en années))		Paran	nètres	
Durée (en min)	d'années de mesure	1	2	5	10	20	50	100	GD(d)	Po(d)	Max
6	49.0	9.2	10.9	13.2	14.9	16.6	18.8	20.5	2.45	9.2	17.0
15	49.0	15.2	17.8	21.2	23.8	26.4	29.8	32.4	3.73	15.2	27.4
30	49.0	21.3	25.4	30.9	35.1	39.2	44.7	48.9	6.00	21.3	50.0
60	49.0	28.2	34.5	42.9	49.2	55.5	63.8	70.1	9.09	28.2	71.6
90	49.0	32.8	40.0	49.6	56.9	64.2	73.8	81.0	10.48	32.8	72.6
120	49.0	36.6	45.0	56.1	64.5	73.0	84.1	92.5	12.15	36.6	74.5
180	49.0	43.1	53.6	67.6	78.1	88.6	102.5	113.1	15.20	43.1	95.3
360	49.0	57.0	72.1	92.0	107.1	122.2	142.1	157.2	21.76	57.0	130.8
720	49.0	70.4	94.1	125.3	149.0	172.6	203.9	227.5	34.11	70.4	181.3
1440	49.0	86.3	114.2	151.1	179.0	206.9	243.8	271.7	40.26	86.3	218.8
2880	49.0	101.1	133.2	175.7	207.9	240.0	282.5	314.6	46.36	101.1	278.6
4320	49.0	107.2	142.3	188.6	223.6	258.6	304.9	340.0	50.54	107.2	312.4
5760	49.0	112.9	148.9	196.5	232.5	268.5	316.1	352.1	51.96	112.9	333.0

Tableau 4.3 : Durées de retour à La Tontouta

Notons que la période de mesure est de 49 ans ce qui permet d'avoir une grande confiance en ces résultats. Les quantités de pluie associées aux durées de retour du *Tableau 4.3* sont nettement plus faibles que pour Kongouhaou, sauf pour la période d'intégration de 6 minutes. L'écart est de plus en plus important lorsque l'on augmente la durée de la période d'intégration. Cela prouve que les intensités instantanées (faible période d'intégration) sont souvent du même ordre de grandeur mais que la situation géographique a une très grande influence sur les quantités maximales cumulées sur de plus longues périodes d'intégration.


Les IDF réalisées à partir des durées de retour (*Tableau 4.3*) sont en annexe à la fin du document, de même que les graphiques des paramètres d'ajustement sur lesquels figurent les paramètres GD(d) et Po(d) (*Tableau 4.3*), ainsi que les droites d'ajustement dont les données sont synthétisées dans le *Tableau 4.4*.

Sur le graphique en *Annexes 3* et *4*, il est à noter que les points sont remarquablement bien alignés sur les droites d'ajustement, ce qui est le gage d'une très bonne progressivité des résultats et donc de leur cohérence. Le poste de La Tontouta représente donc très bien les intensités de cette région de la côte Ouest.

Para	Paramètres d'ajustement à LA TONTOUTA, période 1956-2004										
METEO FRANCE		tels que	GD(d)=Ad ^B e	t Po(d)=Ad ^B							
TIVATACE	6 min =< 0	d =< 30 min	30 min =< d	=< 720 min	720 min =< d	=< 5760 min					
	Α	В	Α	В	Α	В					
GD(d)	0.892	0.550	0.967	0.534	8.888	0.206					
Po(d)	Po(d) 3.669 0.519 5.910 0.381 16.415 0.225										
		tels que l(d,T)	•	I,T) en mm/he I =< 720 min	eure 720 min =< d	=< 5760 min					
Т	Α	В	Α	В	Α	В					
2 ans	257.1	-0.476	378.2	-0.588	1352.2	-0.780					
5 ans	305.9	-0.471	419.1	-0.562	1839.1	-0.783					
10 ans	342.9	-0.469	453.5	-0.549	2207.9	-0.785					
20 ans	379.9	-0.467	489.5	-0.539	2576.9	-0.786					
50 ans	428.9	-0.465	538.6	-0.529	3064.9	-0.787					

Tableau 4.4 : Paramètres d'ajustement à La Tontouta (1956-2004)

4.4 Comparaison avec les postes de Canon et Liliane

Graphique 4.5 : Comparaison des précipitations décennales

Sur le *Graphique 4.5*, on peut noter l'écart important entre le poste de Canon et ceux de Kongouhaou et de Liliane. Cela s'explique par les quantités extraordinaires de précipitations enregistrées au poste de Canon lors du cyclone Anne. A tel point qu'il est difficile d'intégrer ces valeurs dans les ajustements et donc d'estimer la période de retour d'un tel épisode pluvieux. A titre de comparaison, j'ai réalisé les calculs des durées de retour du poste de

Canon, identifié par « Canon (Maxi corrigés) » sur le **Graphique 4.5**, en remplaçant les valeurs enregistrées à ce poste pendant le cyclone Anne par celles du poste de Kongouhaou. Les ajustements sont plus cohérents et les résultats paraissent plus conformes à ce qui a été calculé pour les autres postes.

Je propose donc de considérer le poste de « Canon (Maxi corrigé) » comme étant représentatif de la partie haute du bassin de la Ouenghi ainsi que des valeurs maximales. Les autres postes montrent une décroissance des valeurs associées aux durées de retour qui est comparable au gradient des précipitations annuelles identifié sur la Carte 3.1. On pourra prendre successivement les résultats de ces postes pour représenter des sites de la partie haute de la rivière jusqu'à l'embouchure. Les conditions minimales étant celles du poste de La Tontouta.

En conséquence, voici les tableaux des postes de « Canon (Maxi corrigé) » et Liliane. Pour le premier, j'ai aussi ajouté une colonne avec les maximums enregistrés pendant le cyclone Anne (*Tableau 4.6* et *Tableau 4.7*).

Quantités maximales de précipitations (en mm) à CANON-DAVAR Les valeurs du cyclones Anne ont été remplacées par celles du poste de Kongouhaou Valeurs calculées avec la méthode du renouvellement Période 198												988-2005
	Nombre	FRANCE - Dailot do lottodi (on dillioso)									Max	Max
Durée (en min)	d'années de mesure	1	2	5	10	20	50	100	GD(d)	Po(d)	corrigés	réels
6	16.7	9.9	11.4	13.4	14.9	16.5	18.5	20.0	2.19	9.9	14.5	14.5
15	16.7	18.6	21.8	26.1	29.4	32.6	36.9	40.1	4.68	18.6	30.1	30.1
30	16.7	27.8	32.9	39.7	44.8	49.9	56.7	61.8	7.39	27.8	49.0	58.5
60	16.7	42.1	50.5	61.7	70.1	78.5	89.6	98.1	12.15	42.1	81.0	108.0
90	16.7	51.7	63.7	79.6	91.7	103.7	119.6	131.6	17.35	51.7	111.3	159.0
120	16.7	59.6	74.3	93.8	108.6	123.3	142.8	157.6	21.29	59.6	131.9	203.8
180												
360	16.7	99.7	134.2	179.9	214.4	249.0	294.6	329.1	49.82	99.7	220.5	436.2
720												
1440	16.7	178.7	266.6	382.7	470.6	558.5	674.7	762.6	126.79	178.7	534.8	913.5
2880	16.7	212.3	316.0	453.0	556.6	660.3	797.3	901.0	149.54	212.3	604.3	983.5
4320												
5760	16.7	235.4	354.3	511.6	630.5	749.5	906.7	1025.7	171.61	235.4	689.0	988.0

Tableau 4.6 : Durées de retour à Canon avec des données corrigées.

Paramètres d'ajustement à CANON-DAVAR, période 1988-2005										
METEO FRANCE		tels que	GD(d)=Ad ^B e	t Po(d)=Ad ^B						
FRANCE	6 min =< 0	d =< 90 min	90 min =< d	=< 1440 min	1440 min =< d	=< 5760 min				
	Α	В	Α	В	Α	В				
GD(d)	0.587	0.748	0.683	0.721	26.026	0.218				
Po(d)	3.425	0.610	7.001	0.447	42.565	0.199				
		• • •		I,T) en mm /he =< 1440 min	e ure 1440 min =< d	=< 5760 min				
T	Α	В	Α	В	Α	В				
2 ans	227.3	-0.368	376.5	-0.483	3626.0	-0.795				
5 ans	257.4	-0.348	373.6	-0.432	5050.7	-0.791				
10 ans	280.6	-0.337	385.5	-0.408	6130.5	-0.789				
20 ans	304.1	-0.328	403.0	-0.391	7211.1	-0.788				
50 ans	335.4	-0.319	430.7	-0.374	8640.4	-0.787				
100 ans	359.2	-0.313	453.8	-0.364	9721.9	-0.786				

Tableau 4.7 : Paramètres d'ajustement à Canon avec des données corrigées.

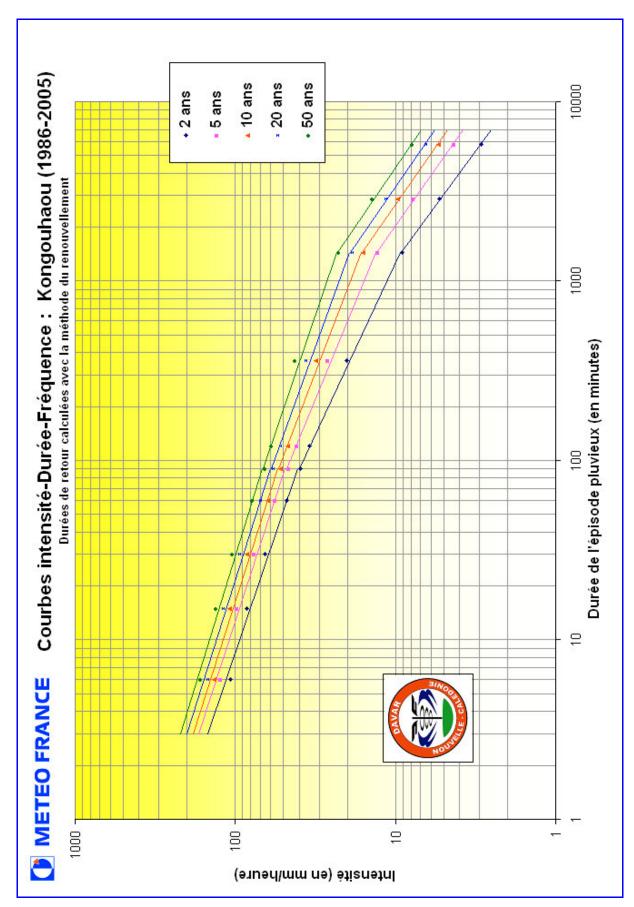

Valeurs	Qu calculées a	iantités vec la méth		•	•	itions (e	n mm) à	LILIAN	E-DAV	AR Période 1	991-2005
	Nombre	METEO FRANCE		T = Durée de retour (en années) Paramètr							
Durée (en min)	d'années de mesure	1	2	5	10	20	50	100	GD(d)	Po(d)	Max
6	13.9	9.1	10.5	12.5	14.0	15.4	17.4	18.8	2.12	9.1	15.2
15	13.9	17.6	20.2	23.6	26.2	28.8	32.3	34.9	3.77	17.6	26.5
30	13.9	25.9	30.0	35.4	39.5	43.6	49.0	53.1	5.89	25.9	38.1
60	13.9	37.5	45.7	56.5	64.6	72.8	83.6	91.7	11.77	37.5	69.6
90	13.9	45.8	57.5	73.0	84.8	96.5	112.1	123.8	16.95	45.8	98.6
120	13.9	52.7	68.2	88.8	104.3	119.9	140.4	155.9	22.42	52.7	127.0
180											
360	13.9	84.0	116.2	158.9	191.1	223.4	266.0	298.3	46.53	84.0	214.5
720											
1440	13.9	118.2	183.7	270.2	335.7	401.2	487.7	553.2	94.46	118.2	417.0
2880	13.9	131.9	203.3	297.7	369.1	440.5	534.9	606.3	103.02	131.9	457.5
4320											
5760	13.9	150.2	223.2	319.7	392.7	465.7	562.2	635.2	105.30	150.2	505.5

Tableau 4.8 : Durées de retour à Liliane.

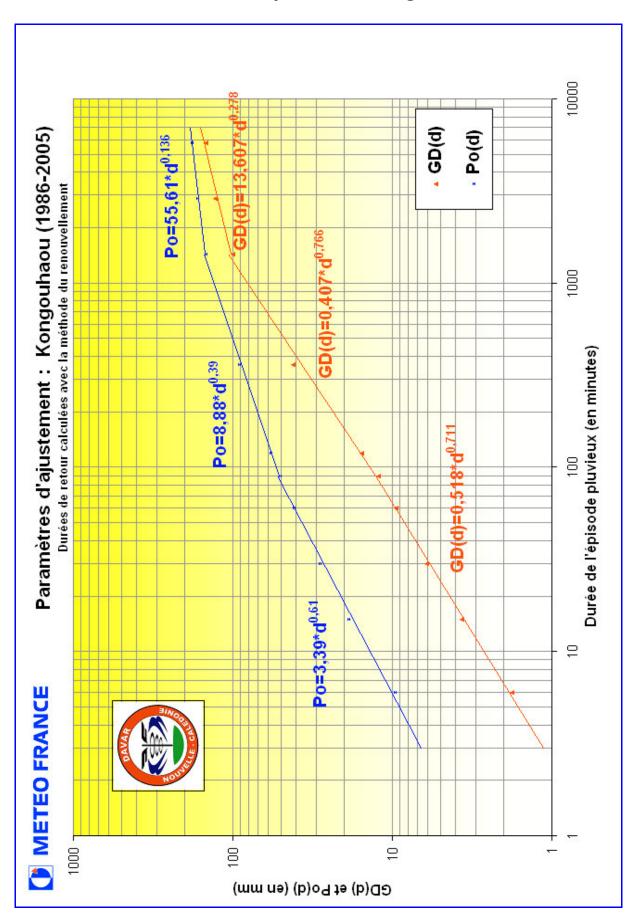
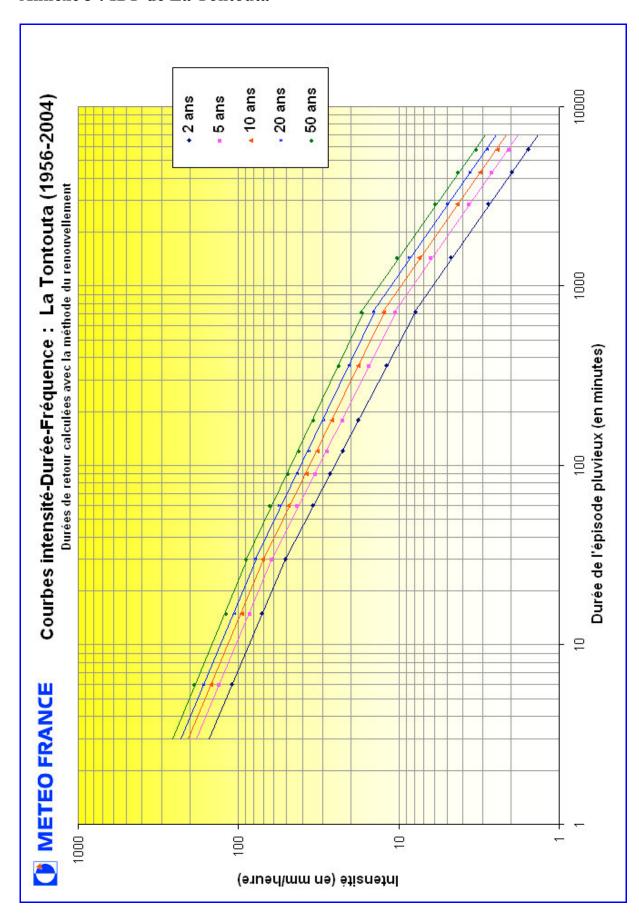
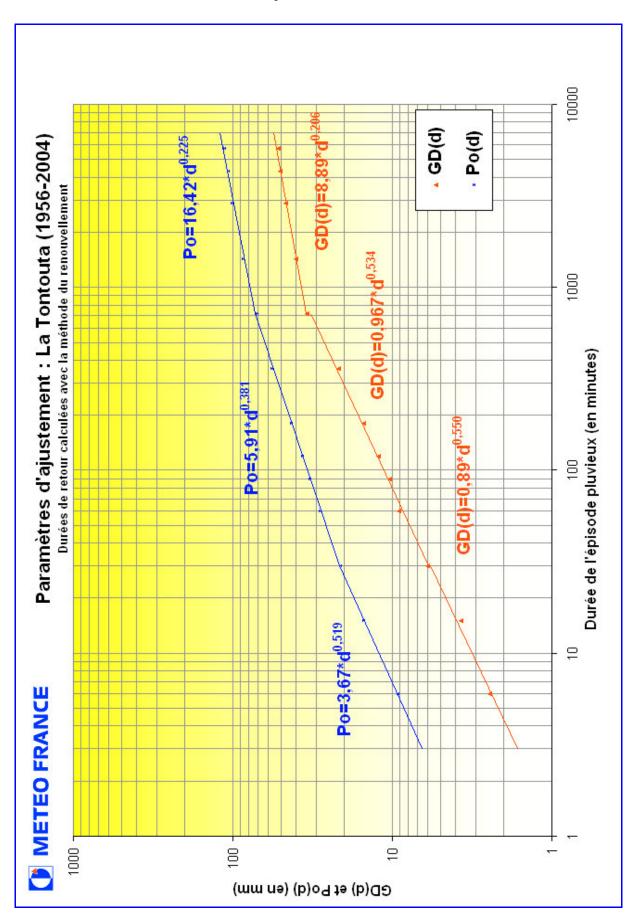

Pa	Paramètres d'ajustement à LILIANE-DAVAR, période 1991-2005										
METEO FRANCE		tels que	GD(d)=Ad ^B e	t Po(d)=Ad ^B							
FRANCE	6 min =< 0	d =< 90 min	90 min =< d	=< 1440 min	1440 min =< d	=< 5760 min					
	Α	В	Α	В	Α	В					
GD(d)	0.490	0.770	1.168	0.611	53.999	0.078					
Po(d)	3.321	0.592	10.228	0.343	33.473	0.173					
		tels que l(d,T)		I,T) en mm/he =< 1440 min	e ure 1440 min =< d	=< 5760 min					
T	Α	В	Α	В	Α	В					
2 ans	214.9	-0.378	552.2	-0.583	3966.9	-0.859					
5 ans	237.8	-0.352	558.6	-0.531	6738.8	-0.879					
10 ans	256.1 -0.337 584.4 -0.508 8895.4 -0.887										
20 ans	274.8	-0.326	618.1	-0.491	11078.2	-0.892					
50 ans	300.2	-0.314	669.1	-0.475	13987.7	-0.898					
100 ans	319.6	-0.307	710.5	-0.466	16200.0	-0.900					

Tableau 4.8 : Paramètres d'ajustement à Liliane.


Annexe 1: IDF de Kongouhaou


Annexe 2 : Paramètres d'ajustement à Kongouhaou

Annexe 3: IDF de La Tontouta

Annexe 4 : Paramètres d'ajustement à La Tontouta

Annexe 3:

Caractéristiques de la station hydrométrique de la Ouenghi

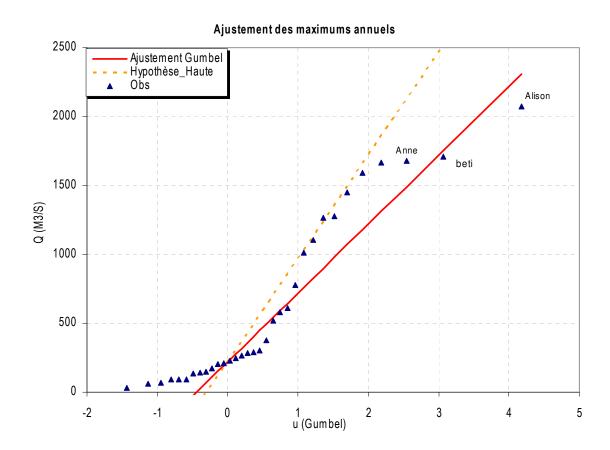
Caractéristiques hydrométriques de la station 5703300103 Rivière Ouenghi

Localisation et durée des observations

2275	07.47.011		LOCALISATIO	OBSERVATIONS			
CODE	STATION	Coordonnées UTM (m) X Y			BV (km²)	Début	Fin
5703300101	Ouenghi Pont RT1. Cote 5	614861	7577118	5	240	03/07/1954	31/08/1994
5703300103	Ouenghi c% Creugnet	616739	7580125	0	212	31/08/1993	25/07/2005

La Ouenghi a été successivement suivie par 2 stations limnimétriques: Pont RT1 et Creugnet

OBSERVATIONS									
Durée Qmin (M3/S) Qmax (M3/S)									
Début	Fin Eff.(ans)		Jaugé	Evalué	Jaugé	Evalué			
03/07/54	25/07/05	41.20	0.659	0.560	260	1862			


Pour les plus hautes eaux (PHE), les données ne sont statistiquement exploitables qu'à partir de 1970. Vu les incertitudes sur l'estimation des débits maximums de crues sur ces stations, la différence minime de superficie entre les deux stations et leur situation aval, il peut être considéré que les phénomènes d'amortissement de l'onde de crues compensent l'accroissement de superficie. Aussi, les séries de débits maximums de crues ont été concaténées sans facteur correctif.

Du fait de la position aval de la station limnigraphique, le lit majeur au niveau de la section contrôle est particulièrement large ce qui rend l'évaluation des débits de hautes eaux très imprécise. Au niveau de la station aval, la présence de digue artificielle dont celle que constitue la RT1 rendait encore moins fiable l'évaluation des débits de crues débordantes.

Aussi, les débits caractéristiques de crues sont à utilisés avec circonspection.

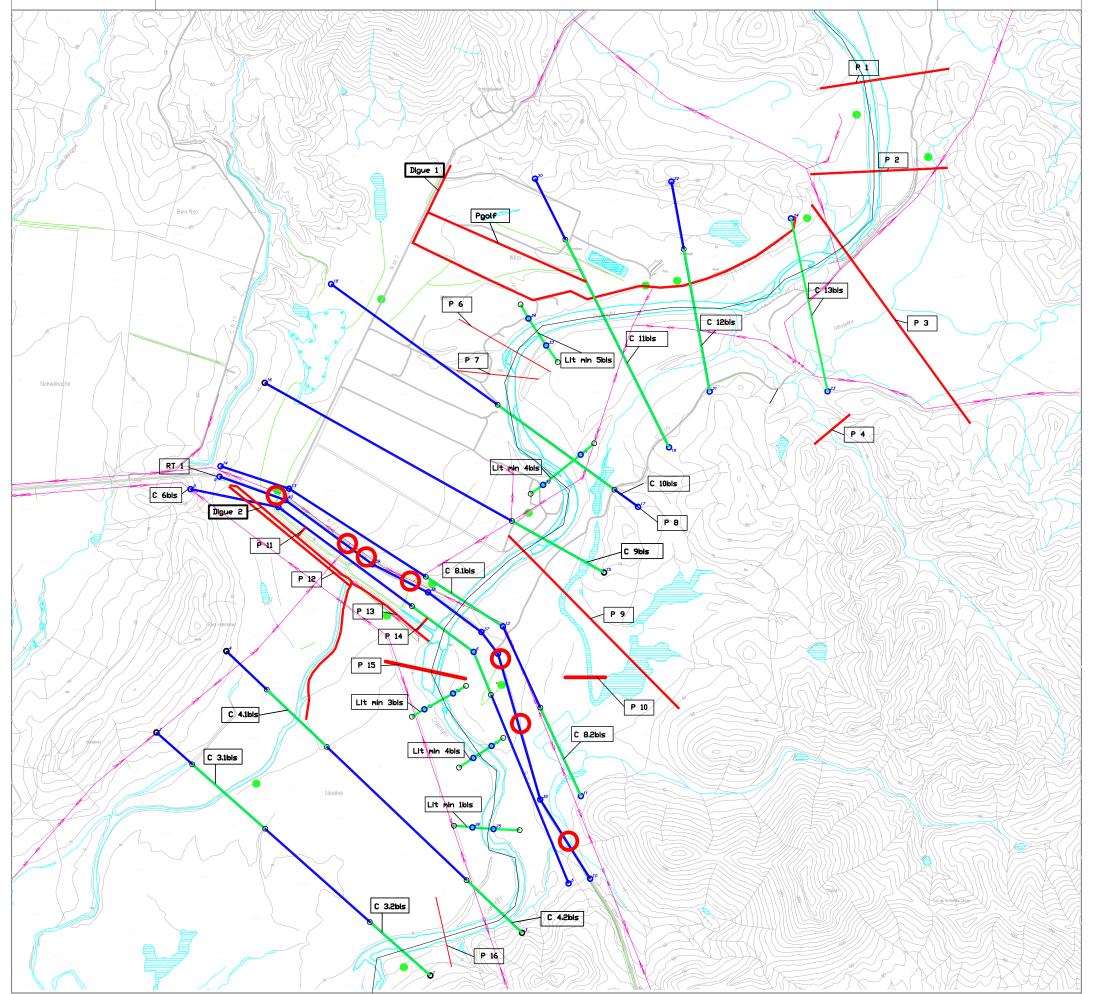
Débits maximums de crues

		Parametre de Gumbel							
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	220	403	970	1345	1705	2171	2520	500	220
Qspé(m³/s/km²)	1.04	1.90	4.58	6.35	8.04	10.24	11.89	2.36	1.04
Q (m³/s) Hyp_haute	220	495	1345	1908	2448	3146	3670	750	220
Qspé(m³/s/km²)	1.04	2.33	6.34	9.00	11.55	14.84	17.31	3.54	1.04

L'ajustement à la loi de Gumbel est de qualité très médiocre. Il semble notamment se dessiner une rupture de pente pour u>0.5 (T>2 ans). L'ajustement moyen conduit à un débit spécifique centennal d'environ 12 m3/s/km², ce qui semble cohérent dans le contexte régional notamment par rapport aux évaluations obtenus sur les rivières de Tontouta (13.2 m3/s/km² pour 385km²) et de la Foa (14.1 m3/s/km² pour 116 km²). Il est également présenté un ajustement maximaliste (i.e. hypothèse haute) qui conduit à un débit spécifique centennal d'environ 17 m3/s/km² qui ne peut être rejeté vu les incertitudes générales sur l'évaluation des hautes eaux.

Annexe 4:

Levés topographiques



Province Sud: Etude des zones inondables - Secteur Ouenghi

Echelle: 1 / 16000

Format A3

Annexe 4 : Plan de localisation des levés topographiques

Légende

Profil levé en 1988 <u>à ne pas relever.</u>

NB: L'ensemble des profils à lever est d'environ 18 km linéaire

O correspond aux têtes de profils de 1988 (respecter l'alignement sur le terrain)

O correspond aux têtes des profils de contrôles. A aligner sur les profils de 1988

Désignation	Linéaire levé (m)	Désignation	Linéaire levé (m)
P1	555	C13bis	748
P2	585	C12bis	612
P3	1154	C11bis	983
Digue 1	2081	Lit min 5bis	298
Pgolf	734	C10bis	611
P4	199	Lit min 4bis	346
P6	448	C9bis	448
P7	350	C8.1bis	388
Digue 2	1315	C8.2bis	411
P9	1029	C6bis	518
P10	170	Lit min 3bis	265
P11	54	Lit min 2bis	225
P12	660	Lit min 1bis	279
P13	421	C4.1bis	348
P14	74	C4.2bis	324
P15	345	C3.1bis	408
P16	304	C3.2bis	338
		Total	18028

Annexe 5:

Localisation des profils en travers modélisés



Province Sud: Etude des zones inondables - Secteur Ouenghi

Echelle: 1 / 16000

Format A3

ANNEXE 5 : Plan de localisation des profils en travers

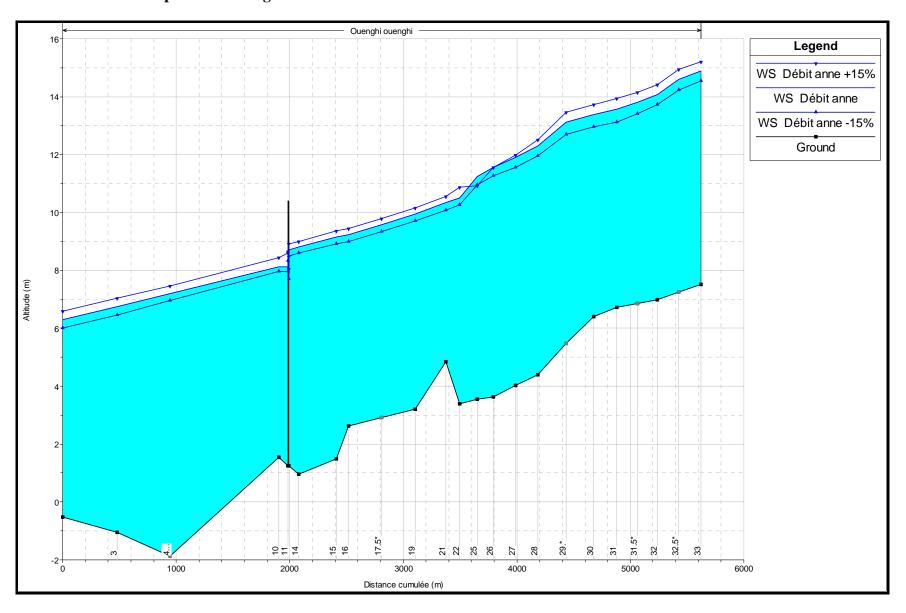
Légende

- 9.00 : Laisses de crues Anne 1988 (m NGNC)
- Profils levés
- Profils extrapolés
- —— Digues

Correspondance des profils modélisés avec les profils levés

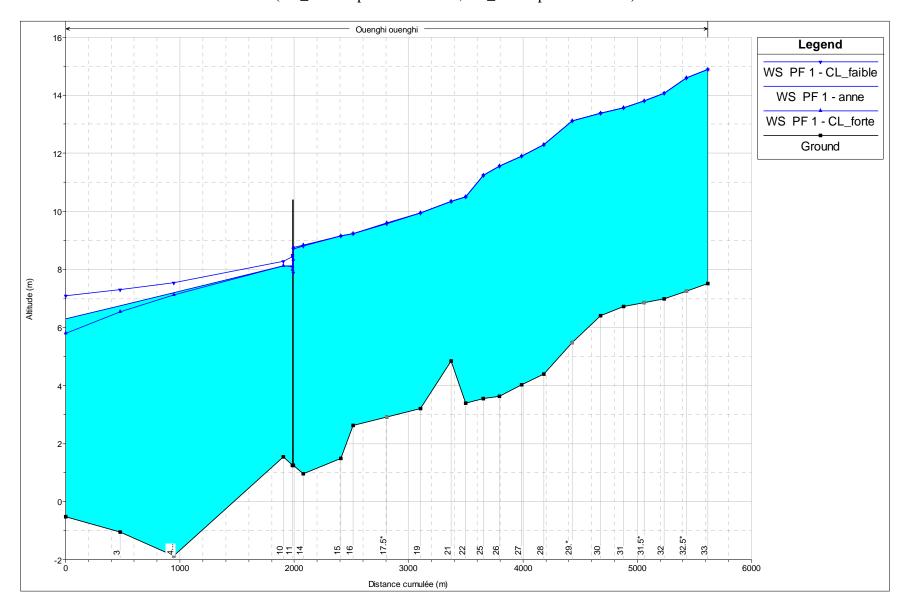
Profil modélisé	Profil levé	Profil modélisé	Profil levé	
33	P1	21	P6	
32.5	extrapolé	19	P8+C10bis	
32	P2	17.5	extrapolé	
31.5	extrapolé	16	C9bis	
31	P3	15	P9	
30	C13bis	14	C8.1+C8.2bis	
29	extrapolé	13	extrapolé	
28	C12bis	11	extrapolé	
27	extrapolé	10	C6bis	
26	C11bis	4	Lit min 1bis	
25	extrapolé	3	C4.2bis	
22	Lit mineur 5bis	1	C3.2bis	

Annexe 6:

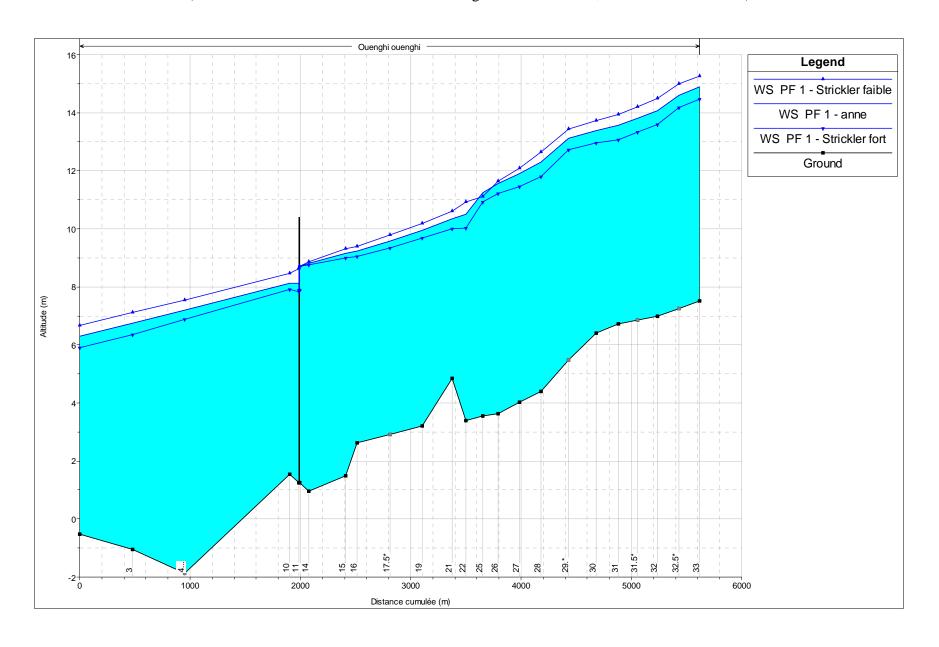

Analyse des incertitudes – Résultats de simulation sur la crue Anne

Sensibilité du modèle aux divers paramètres

		Débit An	nne + 15%	Débit An	nne - 15%	Strickle	er +20 %	Strickl	er -20 %		on limite = 0.04%)		limite forte 0.14%)
Profil	Cote crue Anne	Cote	Différence (m)	Cote	Différence (m)	Cote	Différence (m)	Cote	Différence (m)	Cote	Différence (m)	Cote	Différence (m)
33	14.89	15.22	0.33	14.54	-0.35	15.27	0.38	14.47	-0.42	14.89	0	14.89	0
32.5*	14.61	14.95	0.34	14.22	-0.39	14.98	0.37	14.17	-0.44	14.61	0	14.61	0
32	14.08	14.42	0.34	13.72	-0.36	14.5	0.42	13.59	-0.49	14.08	0	14.08	0
31.5*	13.79	14.14	0.35	13.42	-0.37	14.19	0.4	13.34	-0.45	13.79	0	13.79	0
31	13.58	13.93	0.35	13.11	-0.47	13.95	0.37	13.06	-0.52	13.58	0	13.58	0
30	13.39	13.73	0.34	12.95	-0.44	13.72	0.33	12.97	-0.42	13.39	0	13.39	0
29.*	13.13	13.46	0.33	12.69	-0.44	13.45	0.32	12.72	-0.41	13.13	0	13.13	0
28	12.31	12.51	0.2	11.95	-0.36	12.65	0.34	11.79	-0.52	12.31	0	12.31	0
27	11.89	11.99	0.1	11.55	-0.34	12.1	0.21	11.45	-0.44	11.89	0	11.89	0
26	11.57	11.55	-0.02	11.26	-0.31	11.63	0.06	11.22	-0.35	11.57	0	11.57	0
25	11.24	10.94	-0.3	10.95	-0.29	11.1	-0.14	10.94	-0.3	11.24	0	11.24	0
22	10.5	10.88	0.38	10.28	-0.22	10.93	0.43	10.03	-0.47	10.5	0	10.5	0
21	10.33	10.55	0.22	10.07	-0.26	10.6	0.27	9.99	-0.34	10.33	0	10.33	0
19	9.95	10.17	0.22	9.72	-0.23	10.19	0.24	9.69	-0.26	9.95	0	9.96	0.01
17.5*	9.58	9.79	0.21	9.35	-0.23	9.8	0.22	9.34	-0.24	9.58	0	9.59	0.01
16	9.22	9.44	0.22	8.99	-0.23	9.4	0.18	9.04	-0.18	9.22	0	9.24	0.02
15	9.15	9.36	0.21	8.91	-0.24	9.3	0.15	8.99	-0.16	9.15	0	9.16	0.01
14	8.81	9.01	0.2	8.59	-0.22	8.87	0.06	8.76	-0.05	8.81	0	8.84	0.03
13	8.72	8.91	0.19	8.5	-0.22	8.72	0	8.72	0	8.72	0	8.75	0.03
11	8.12	8.59	0.47	7.97	-0.15	8.62	0.5	7.84	-0.28	8.44	0.32	8.11	-0.01
10	8.13	8.44	0.31	7.96	-0.17	8.47	0.34	7.91	-0.22	8.29	0.16	8.12	-0.01
4.*	7.21	7.46	0.25	6.96	-0.25	7.55	0.34	6.87	-0.34	7.55	0.34	7.13	-0.08
3	6.76	7.04	0.28	6.46	-0.3	7.12	0.36	6.35	-0.41	7.32	0.56	6.53	-0.23
1	6.31	6.59	0.28	6	-0.31	6.68	0.37	5.89	-0.42	7.09	0.78	5.81	-0.5


 $Rq: la \ différence \ est \ calculée \ entre \ la \ cote \ pour \ le \ scénario « situation testée» et la \ cote \ de \ la \ crue \ Anne$

Comparaison des lignes d'eau avec variation du débit de la crue Anne de + ou – 15 %


Comparaison des lignes d'eau avec variation de la condition limite

(CL_faible : pente = 0.04 % ; CL_forte : pente =0.14 %)

Comparaison des lignes d'eau avec variation du coefficient de Strickler

(Strickler faible : - 20 % du Strickler de calage de la crue Anne ; Strickler fort : + 20 %)

Annexe 7:

Résultats de simulation des crues Anne, 5, 10 et 100 ans

						Ré	sultats de s	simulation	: Ouengh	i crue Anne	(débit : 17	00 m3/s)								
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	14.890	15.080	0.900	0.340	2.150	0.290	1700	124.530	1310.010	265.460	0.14	0.048	0.14	14.200	13.610	7.510	0.240
32.5*	190.500	190.500	190.000	14.610	14.790	0.920	0.350	2.240	0.400	1700	121.670	1191.010	387.320	0.14	0.048	0.14	14.940	13.000	7.250	0.210
32	270.000	180.000	115.000	14.080	14.420	1.420	0.400	2.910	0.590	1700	116.180	1313.620	270.210	0.14	0.048	0.14	15.680	12.400	6.990	0.300
31.5*	270.000	180.000	115.000	13.790	14.030	1.100	0.330	2.560	0.610	1700	180.990	1188.440	330.580	0.14	0.048	0.14	14.440	11.140	6.850	0.240
31	350.000	200.000	155.000	13.580	13.740	0.880	0.290	2.210	0.600	1700	239.300	1092.840	367.870	0.14	0.048	0.14	13.190	9.880	6.720	0.200
30	240.000	248.000	240.000	13.390	13.510	0.840	0.200	1.720	0.420	1700	186.010	1402.500	111.490	0.25	0.048	0.14	12.790	11.200	6.410	0.150
29.*	240.000	248.000	240.000	13.130	13.290	0.850	0.200	2.030	0.380	1700	165.580	1335.070	199.350	0.25	0.048	0.14	10.940	10.040	5.470	0.160
28	170.000	194.000	230.000	12.310	12.890	1.550	0.310	3.810	0.930	1700	157.600	1317.680	224.720	0.25	0.048	0.14	9.090	8.880	4.400	0.300
27	140.000	194.000	210.000	11.890	12.350	1.380	0.260	3.250	0.580	1700	159.760	1448.020	92.220	0.25	0.048	0.14	9.950	9.770	4.020	0.290
26	120.000	144.000	144.000	11.570	11.940	1.260	0.230	2.840	0.070	1700	168.340	1527.280	4.380	0.25	0.048	0.14	10.810	10.660	3.630	0.370
25	124.000	154.000	166.000	11.240	11.630	1.290	0.280	2.950	0.300	1700	219.060	1473.700	7.230	0.25	0.048	0.14	10.420	10.610	3.550	0.280
22	85.000	122.000	194.000	10.500	11.070	1.700	0.360	3.570		1700	208.530	1491.470		0.25	0.048		10.720	10.810	3.380	0.410
21	120.000	273.000	170.000	10.330	10.470	0.740	0.270	2.180	0.500	1700	206.120	954.340	539.540	0.25	0.048	0.14	10.600	10.480	4.840	0.180
19	170.000	292.500	230.000	9.950	10.050	0.590	0.250	1.810	0.360	1700	243.480	968.050	488.470	0.25	0.048	0.14	8.850	10.420	3.220	0.140
17.5*	170.000	292.500	230.000	9.580	9.700	0.620	0.220	1.930	0.340	1700	129.600	1026.650	543.750	0.25	0.048	0.14	9.260	9.660	2.920	0.150
16	130.000	110.000	50.000	9.220	9.350	0.640	0.210	2.020	0.350	1700	61.090	972.190	666.720	0.25	0.048	0.14	9.670	8.910	2.620	0.150
15	500.000	329.000	300.000	9.150	9.240	0.430	0.200	1.890	0.280	1700	372.600	837.060	490.340	0.25	0.048	0.14	8.700	8.590	1.480	0.100
14	85.000	84.000	55.000	8.810	8.900	0.530	0.370	1.920	0.290	1700	782.130	724.930	192.940	0.14	0.048	0.14	8.750	9.070	0.950	0.110
13	0.100	0.100	0.100	8.720	8.740	0.590	0.500	1.730	0.290	1700	1109.040	478.690	112.270	0.14	0.048	0.14	8.200	8.560	1.250	0.140
12	Bridge													Bridge						
11	80.000	79.000	50.000	8.120	8.420	0.850	0.520	3.530	0.420	1700	830.720	797.120	72.160	0.14	0.048	0.14	8.200	8.560	1.250	0.200
10	193.000	956.000	492.000	8.130	8.180	0.500	0.380	1.460	0.280	1700	892.090	633.350	174.560	0.14	0.048	0.14	7.750	8.050	1.550	0.110
4.*	178.000	472.000	200.000	7.210	7.360	0.760	0.240	2.290	0.450	1700	46.860	910.720	742.410	0.14	0.048	0.14	6.520	6.480	-1.880	0.180
3	441.000	476.000	459.000	6.760	6.860	0.600		1.900	0.320	1700		940.970	759.030		0.048	0.14	7.450	5.810	-1.060	0.140
1				6.310	6.410	0.640	0.240	1.820	0.340	1700	23.580	996.630	679.790	0.14	0.048	0.14	4.940	5.010	-0.510	0.130

						Rési	ultats de si	mulation :	Ouenghi	crue 100 ans	s (débit : 3	220 m3/s)								
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	16.420	16.570	0.830	0.480	2.250	0.440	3220	370.980	1851.500	997.530	0.14	0.048	0.14	14.200	13.610	7.510	0.160
32.5*	190.500	190.500	190.000	16.150	16.340	0.980	0.520	2.520	0.570	3220	394.010	1791.590	1034.400	0.14	0.048	0.14	14.940	13.000	7.250	0.170
32	270.000	180.000	115.000	15.490	15.960	1.640	0.700	3.660	0.880	3220	441.040	2120.610	658.350	0.14	0.048	0.14	15.680	12.400	6.990	0.280
31.5*	270.000	180.000	115.000	15.190	15.480	1.220	0.570	3.110	0.820	3220	709.390	1852.400	658.210	0.14	0.048	0.14	14.440	11.140	6.850	0.210
31	350.000	200.000	155.000	14.950	15.150	0.970	0.480	2.680	0.750	3220	891.530	1682.890	645.580	0.14	0.048	0.14	13.190	9.880	6.720	0.170
30	240.000	248.000	240.000	14.590	14.840	1.130	0.320	2.480	0.640	3220	469.060	2512.050	238.880	0.25	0.048	0.14	12.790	11.200	6.410	0.180
29.*	240.000	248.000	240.000	14.110	14.470	1.240	0.350	3.090	0.690	3220	411.240	2359.300	449.460	0.25	0.048	0.14	10.940	10.040	5.470	0.200
28	170.000	194.000	230.000	13.270	13.870	1.290	0.440	4.550	0.830	3220	353.850	1801.610	1064.540	0.25	0.048	0.14	9.090	8.880	4.400	0.240
27	140.000	194.000	210.000	12.690	13.200	1.200	0.370	3.970	0.710	3220	353.150	1995.700	871.150	0.25	0.048	0.14	9.950	9.770	4.020	0.230
26	120.000	144.000	144.000	12.150	12.650	1.200	0.340	3.760	0.610	3220	356.820	2219.750	643.420	0.25	0.048	0.14	10.810	10.660	3.630	0.250
25	124.000	154.000	166.000	11.980	12.220	0.810	0.320	2.980	0.510	3220	370.720	1712.400	1136.880	0.25	0.048	0.14	10.420	10.610	3.550	0.170
22	85.000	122.000	194.000	11.730	11.880	0.780	0.310	2.500	0.600	3220	363.870	1414.700	1441.430	0.25	0.048	0.14	10.720	10.810	3.380	0.150
21	120.000	273.000	170.000	11.400	11.560	0.860	0.370	2.530	0.660	3220	472.310	1519.810	1227.870	0.25	0.048	0.14	10.600	10.480	4.840	0.170
19	170.000	292.500	230.000	11.030	11.150	0.710	0.330	2.210	0.510	3220	489.490	1533.010	1197.500	0.25	0.048	0.14	8.850	10.420	3.220	0.130
17.5*	170.000	292.500	230.000	10.640	10.780	0.740	0.300	2.330	0.500	3220	277.640	1564.240	1378.110	0.25	0.048	0.14	9.260	9.660	2.920	0.140
16	130.000	110.000	50.000	10.270	10.410	0.750	0.280	2.420	0.510	3220	139.860	1441.220	1638.930	0.25	0.048	0.14	9.670	8.910	2.620	0.140
15	500.000	329.000	300.000	10.190	10.300	0.530	0.280	2.300	0.430	3220	755.580	1206.750	1257.670	0.25	0.048	0.14	8.700	8.590	1.480	0.100
14	85.000	84.000	55.000	9.720	9.840	0.670	0.570	2.500	0.300	3220	1709.500	1105.380	405.120	0.14	0.048	0.14	8.750	9.070	0.950	0.140
13	0.100	0.100	0.100	9.600	9.640	0.710	0.670	2.210	0.300	3220	2114.610	809.820	295.560	0.14	0.048	0.14	8.200	8.560	1.250	0.160
12	Bridge													Bridge						
11	80.000	79.000	50.000	9.490	9.530	0.840	0.930	1.530	0.330	3220	2808.240	191.200	220.560	0.14	0.048	0.14	8.200	8.560	1.250	0.210
10	193.000	956.000	492.000	9.320	9.380	0.590	0.520	1.820	0.240	3220	1870.460	1065.180	284.360	0.14	0.048	0.14	7.750	8.050	1.550	0.130
4.*	178.000	472.000	200.000	8.520	8.660	0.750	0.440	2.560	0.520	3220	244.140	1306.830	1669.030	0.14	0.048	0.14	6.520	6.480	-1.880	0.150
3	441.000	476.000	459.000	8.220	8.300	0.620	0.150	1.940	0.430	3220	0.560	1270.250	1949.190	0.14	0.048	0.14	7.450	5.810	-1.060	0.110
1				7.790	7.910	0.740	0.350	2.140	0.480	3220	82.340	1493.100	1644.560	0.14	0.048	0.14	4.940	5.010	-0.510	0.120

						Rési	ultats de si	mulation :	Ouenghi	crue 100 ans	s (débit : 4	260 m3/s)								
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	17.290	17.430	0.850	0.530	2.320	0.500	4260	540.120	2189.720	1530.160	0.14	0.048	0.14	14.200	13.610	7.510	0.140
32.5*	190.500	190.500	190.000	17.020	17.220	1.040	0.610	2.680	0.650	4260	594.330	2178.320	1487.350	0.14	0.048	0.14	14.940	13.000	7.250	0.160
32	270.000	180.000	115.000	16.320	16.840	1.760	0.840	4.000	1.010	4260	707.500	2622.500	930.000	0.14	0.048	0.14	15.680	12.400	6.990	0.270
31.5*	270.000	180.000	115.000	16.040	16.350	1.280	0.680	3.330	0.900	4260	1135.260	2251.120	873.610	0.14	0.048	0.14	14.440	11.140	6.850	0.200
31	350.000	200.000	155.000	15.810	16.020	1.010	0.570	2.840	0.810	4260	1428.640	2016.490	814.860	0.14	0.048	0.14	13.190	9.880	6.720	0.160
30	240.000	248.000	240.000	15.370	15.690	1.250	0.380	2.830	0.730	4260	696.300	3233.750	329.950	0.25	0.048	0.14	12.790	11.200	6.410	0.180
29.*	240.000	248.000	240.000	14.810	15.260	1.320	0.430	3.550	0.700	4260	614.790	2978.620	666.580	0.25	0.048	0.14	10.940	10.040	5.470	0.210
28	170.000	194.000	230.000	13.950	14.600	1.390	0.520	4.960	0.980	4260	535.280	2142.610	1582.120	0.25	0.048	0.14	9.090	8.880	4.400	0.230
27	140.000	194.000	210.000	13.320	13.890	1.290	0.450	4.400	0.850	4260	544.540	2407.460	1308.000	0.25	0.048	0.14	9.950	9.770	4.020	0.230
26	120.000	144.000	144.000	12.710	13.280	1.290	0.420	4.190	0.760	4260	558.740	2684.510	1016.750	0.25	0.048	0.14	10.810	10.660	3.630	0.240
25	124.000	154.000	166.000	12.590	12.830	0.840	0.360	3.110	0.590	4260	529.940	1982.970	1747.090	0.25	0.048	0.14	10.420	10.610	3.550	0.160
22	85.000	122.000	194.000	12.340	12.500	0.840	0.350	2.700	0.690	4260	524.920	1726.960	2008.120	0.25	0.048	0.14	10.720	10.810	3.380	0.150
21	120.000	273.000	170.000	12.010	12.190	0.930	0.410	2.730	0.740	4260	653.220	1896.770	1710.010	0.25	0.048	0.14	10.600	10.480	4.840	0.160
19	170.000	292.500	230.000	11.650	11.790	0.770	0.360	2.390	0.590	4260	652.820	1888.140	1719.040	0.25	0.048	0.14	8.850	10.420	3.220	0.130
17.5*	170.000	292.500	230.000	11.280	11.430	0.800	0.340	2.510	0.580	4260	383.650	1890.650	1985.700	0.25	0.048	0.14	9.260	9.660	2.920	0.140
16	130.000	110.000	50.000	10.920	11.060	0.810	0.320	2.580	0.590	4260	199.850	1717.120	2343.030	0.25	0.048	0.14	9.670	8.910	2.620	0.140
15	500.000	329.000	300.000	10.840	10.950	0.570	0.320	2.450	0.500	4260	1017.700	1409.860	1832.440	0.25	0.048	0.14	8.700	8.590	1.480	0.100
14	85.000	84.000	55.000	10.420	10.520	0.680	0.600	2.500	0.380	4260	2224.730	1232.690	802.580	0.14	0.048	0.14	8.750	9.070	0.950	0.130
13	0.100	0.100	0.100	10.340	10.370	0.690	0.660	2.140	0.380	4260	2617.320	944.250	698.430	0.14	0.048	0.14	8.200	8.560	1.250	0.130
12	Bridge													Bridge						
11	80.000	79.000	50.000	10.110	10.150	0.810	0.900	1.710	0.450	4260	3320.110	321.590	618.300	0.14	0.048	0.14	8.200	8.560	1.250	0.170
10	193.000	956.000	492.000	9.970	10.030	0.610	0.550	1.890	0.310	4260	2391.060	1267.180	601.770	0.14	0.048	0.14	7.750	8.050	1.550	0.110
4.*	178.000	472.000	200.000	9.290	9.420	0.760	0.490	2.550	0.570	4260	385.430	1475.560	2399.010	0.14	0.048	0.14	6.520	6.480	-1.880	0.130
3	441.000	476.000	459.000	9.040	9.120	0.650	0.210	2.010	0.480	4260	2.070	1495.300	2762.620	0.14	0.048	0.14	7.450	5.810	-1.060	0.100
1				8.620	8.750	0.800	0.420	2.300	0.550	4260	134.200	1804.690	2321.110	0.14	0.048	0.14	4.940	5.010	-0.510	0.120

						Rési	ultats de si	mulation :	Ouenghi	crue 100 ans	s (débit : 3	780 m3/s)								
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	16.900	17.050	0.840	0.510	2.280	0.470	3780	462.100	2034.630	1283.260	0.14	0.048	0.14	14.200	13.610	7.510	0.150
32.5*	190.500	190.500	190.000	16.630	16.830	1.010	0.570	2.610	0.610	3780	501.230	2001.180	1277.600	0.14	0.048	0.14	14.940	13.000	7.250	0.160
32	270.000	180.000	115.000	15.950	16.450	1.710	0.780	3.850	0.960	3780	582.460	2392.340	805.200	0.14	0.048	0.14	15.680	12.400	6.990	0.270
31.5*	270.000	180.000	115.000	15.660	15.970	1.250	0.630	3.230	0.870	3780	935.710	2069.500	774.790	0.14	0.048	0.14	14.440	11.140	6.850	0.210
31	350.000	200.000	155.000	15.430	15.630	0.990	0.530	2.770	0.780	3780	1178.480	1864.240	737.270	0.14	0.048	0.14	13.190	9.880	6.720	0.160
30	240.000	248.000	240.000	15.030	15.310	1.200	0.360	2.680	0.690	3780	590.190	2903.960	285.850	0.25	0.048	0.14	12.790	11.200	6.410	0.180
29.*	240.000	248.000	240.000	14.500	14.910	1.260	0.390	3.340	0.650	3780	518.990	2693.530	567.480	0.25	0.048	0.14	10.940	10.040	5.470	0.200
28	170.000	194.000	230.000	13.650	14.280	1.350	0.490	4.780	0.910	3780	449.880	1988.940	1341.180	0.25	0.048	0.14	9.090	8.880	4.400	0.240
27	140.000	194.000	210.000	13.040	13.580	1.250	0.410	4.220	0.790	3780	454.410	2223.910	1101.680	0.25	0.048	0.14	9.950	9.770	4.020	0.230
26	120.000	144.000	144.000	12.450	12.990	1.250	0.390	4.020	0.700	3780	462.080	2479.880	838.040	0.25	0.048	0.14	10.810	10.660	3.630	0.240
25	124.000	154.000	166.000	12.300	12.550	0.830	0.340	3.070	0.560	3780	455.660	1865.760	1458.590	0.25	0.048	0.14	10.420	10.610	3.550	0.170
22	85.000	122.000	194.000	12.050	12.210	0.820	0.330	2.630	0.650	3780	449.210	1588.680	1742.100	0.25	0.048	0.14	10.720	10.810	3.380	0.150
21	120.000	273.000	170.000	11.710	11.890	0.910	0.400	2.660	0.710	3780	568.770	1727.680	1483.540	0.25	0.048	0.14	10.600	10.480	4.840	0.170
19	170.000	292.500	230.000	11.340	11.470	0.750	0.350	2.340	0.560	3780	577.280	1732.770	1469.950	0.25	0.048	0.14	8.850	10.420	3.220	0.130
17.5*	170.000	292.500	230.000	10.940	11.090	0.790	0.330	2.480	0.550	3780	333.330	1755.390	1691.280	0.25	0.048	0.14	9.260	9.660	2.920	0.140
16	130.000	110.000	50.000	10.550	10.700	0.800	0.310	2.570	0.570	3780	170.400	1612.000	1997.600	0.25	0.048	0.14	9.670	8.910	2.620	0.150
15	500.000	329.000	300.000	10.470	10.580	0.570	0.310	2.450	0.480	3780	894.760	1339.730	1545.510	0.25	0.048	0.14	8.700	8.590	1.480	0.100
14	85.000	84.000	55.000	9.960	10.090	0.710	0.620	2.650	0.350	3780	1997.160	1217.180	565.650	0.14	0.048	0.14	8.750	9.070	0.950	0.140
13	0.100	0.100	0.100	9.840	9.890	0.750	0.710	2.320	0.350	3780	2425.160	908.130	446.710	0.14	0.048	0.14	8.200	8.560	1.250	0.160
12	Bridge													Bridge						
11	80.000	79.000	50.000	9.820	9.870	0.820	0.910	1.640	0.400	3780	3092.650	261.690	425.650	0.14	0.048	0.14	8.200	8.560	1.250	0.190
10	193.000	956.000	492.000	9.670	9.730	0.610	0.540	1.860	0.280	3780	2155.970	1177.560	446.470	0.14	0.048	0.14	7.750	8.050	1.550	0.120
4.*	178.000	472.000	200.000	8.950	9.080	0.750	0.470	2.550	0.540	3780	319.580	1398.000	2062.420	0.14	0.048	0.14	6.520	6.480	-1.880	0.140
3	441.000	476.000	459.000	8.670	8.750	0.640	0.190	1.980	0.460	3780	1.280	1392.010	2386.710	0.14	0.048	0.14	7.450	5.810	-1.060	0.110
1				8.250	8.370	0.780	0.390	2.230	0.520	3780	109.610	1662.670	2007.710	0.14	0.048	0.14	4.940	5.010	-0.510	0.120

						Rés	ultats de si	imulation :	Ouenghi	crue 10 ans	(débit : 2	210 m3/s)								
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	15.530	15.680	0.820	0.400	2.130	0.350	2210	211.650	1484.740	513.610	0.14	0.048	0.14	14.200	13.610	7.510	0.180
32.5*	190.500	190.500	190.000	15.270	15.440	0.900	0.410	2.260	0.470	2210	215.340	1378.090	616.570	0.14	0.048	0.14	14.940	13.000	7.250	0.180
32	270.000	180.000	115.000	14.750	15.100	1.420	0.510	3.080	0.690	2210	229.080	1573.520	407.400	0.14	0.048	0.14	15.680	12.400	6.990	0.270
31.5*	270.000	180.000	115.000	14.490	14.720	1.060	0.420	2.620	0.670	2210	375.150	1387.490	447.360	0.14	0.048	0.14	14.440	11.140	6.850	0.210
31	350.000	200.000	155.000	14.300	14.450	0.830	0.360	2.240	0.620	2210	482.630	1265.460	461.910	0.14	0.048	0.14	13.190	9.880	6.720	0.160
30	240.000	248.000	240.000	14.090	14.240	0.880	0.240	1.890	0.480	2210	292.900	1760.170	156.930	0.25	0.048	0.14	12.790	11.200	6.410	0.150
29.*	240.000	248.000	240.000	13.820	14.010	0.890	0.250	2.240	0.440	2210	263.040	1641.730	305.230	0.25	0.048	0.14	10.940	10.040	5.470	0.150
28	170.000	194.000	230.000	12.800	13.550	1.690	0.400	4.430	1.100	2210	262.440	1645.140	302.430	0.25	0.048	0.14	9.090	8.880	4.400	0.310
27	140.000	194.000	210.000	12.250	12.880	1.550	0.330	3.870	0.730	2210	255.510	1820.040	134.450	0.25	0.048	0.14	9.950	9.770	4.020	0.310
26	120.000	144.000	144.000	11.800	12.330	1.380	0.290	3.450	0.180	2210	251.360	1926.810	31.830	0.25	0.048	0.14	10.810	10.660	3.630	0.370
25	124.000	154.000	166.000	11.090	11.810	1.810	0.360	4.030	0.370	2210	258.600	1944.410	6.990	0.25	0.048	0.14	10.420	10.610	3.550	0.410
22	85.000	122.000	194.000	11.070	11.200	0.700	0.250	2.210	0.510	2210	211.990	1078.100	919.910	0.25	0.048	0.14	10.720	10.810	3.380	0.150
21	120.000	273.000	170.000	10.750	10.890	0.780	0.310	2.280	0.560	2210	300.060	1139.520	770.430	0.25	0.048	0.14	10.600	10.480	4.840	0.170
19	170.000	292.500	230.000	10.360	10.470	0.630	0.280	1.960	0.410	2210	328.760	1166.470	714.770	0.25	0.048	0.14	8.850	10.420	3.220	0.130
17.5*	170.000	292.500	230.000	9.990	10.110	0.660	0.250	2.070	0.400	2210	180.310	1211.660	818.030	0.25	0.048	0.14	9.260	9.660	2.920	0.140
16	130.000	110.000	50.000	9.630	9.760	0.670	0.230	2.160	0.410	2210	84.950	1133.280	991.770	0.25	0.048	0.14	9.670	8.910	2.620	0.150
15	500.000	329.000	300.000	9.550	9.650	0.460	0.230	2.030	0.340	2210	501.840	964.960	743.190	0.25	0.048	0.14	8.700	8.590	1.480	0.090
14	85.000	84.000	55.000	9.180	9.270	0.590	0.440	2.050	0.350	2210	1090.530	825.970	293.510	0.14	0.048	0.14	8.750	9.070	0.950	0.120
13	0.100	0.100	0.100	9.080	9.110	0.640	0.550	1.860	0.350	2210	1431.150	582.810	196.040	0.14	0.048	0.14	8.200	8.560	1.250	0.140
12	Bridge													Bridge						
11	80.000	79.000	50.000	8.770	8.810	0.870	0.920	1.020	0.360	2210	2075.450	53.110	81.440	0.14	0.048	0.14	8.200	8.560	1.250	0.220
10	193.000	956.000	492.000	8.610	8.660	0.520	0.410	1.520	0.320	2210	1181.620	752.100	276.280	0.14	0.048	0.14	7.750	8.050	1.550	0.110
4.*	178.000	472.000	200.000	7.680	7.870	0.760	0.350	2.590	0.450	2210	112.280	1136.990	960.730	0.14	0.048	0.14	6.520	6.480	-1.880	0.180
3	441.000	476.000	459.000	7.300	7.390	0.600		1.890	0.370	2210		1049.500	1160.500		0.048	0.14	7.450	5.810	-1.060	0.130
1				6.860	6.960	0.680	0.280	1.940	0.400	2210	40.630	1171.470	997.890	0.14	0.048	0.14	4.940	5.010	-0.510	0.130

						Rés	ultats de si	imulation :	Ouenghi	crue 10 ans	(débit : 1	780 m3/s)								
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	15.000	15.180	0.880	0.350	2.150	0.300	1780	138.960	1343.130	297.910	0.14	0.048	0.14	14.200	13.610	7.510	0.230
32.5*	190.500	190.500	190.000	14.720	14.900	0.910	0.360	2.230	0.420	1780	136.380	1218.800	424.820	0.14	0.048	0.14	14.940	13.000	7.250	0.200
32	270.000	180.000	115.000	14.200	14.540	1.410	0.420	2.940	0.610	1780	133.340	1354.520	292.140	0.14	0.048	0.14	15.680	12.400	6.990	0.290
31.5*	270.000	180.000	115.000	13.920	14.150	1.080	0.350	2.560	0.620	1780	211.660	1218.690	349.650	0.14	0.048	0.14	14.440	11.140	6.850	0.230
31	350.000	200.000	155.000	13.700	13.870	0.860	0.290	2.220	0.600	1780	268.510	1126.130	385.360	0.14	0.048	0.14	13.190	9.880	6.720	0.190
30	240.000	248.000	240.000	13.510	13.640	0.840	0.200	1.740	0.430	1780	203.250	1458.050	118.700	0.25	0.048	0.14	12.790	11.200	6.410	0.150
29.*	240.000	248.000	240.000	13.260	13.430	0.850	0.210	2.070	0.380	1780	181.730	1388.070	210.200	0.25	0.048	0.14	10.940	10.040	5.470	0.160
28	170.000	194.000	230.000	12.410	13.010	1.560	0.320	3.900	0.950	1780	175.380	1367.340	237.270	0.25	0.048	0.14	9.090	8.880	4.400	0.300
27	140.000	194.000	210.000	11.990	12.470	1.390	0.270	3.320	0.600	1780	178.110	1501.960	99.930	0.25	0.048	0.14	9.950	9.770	4.020	0.290
26	120.000	144.000	144.000	11.660	12.040	1.230	0.240	2.900	0.110	1780	187.660	1580.270	12.070	0.25	0.048	0.14	10.810	10.660	3.630	0.340
25	124.000	154.000	166.000	11.330	11.730	1.300	0.290	3.010	0.330	1780	240.790	1530.520	8.690	0.25	0.048	0.14	10.420	10.610	3.550	0.280
22	85.000	122.000	194.000	10.560	11.160	1.710	0.370	3.650		1780	226.470	1553.530		0.25	0.048		10.720	10.810	3.380	0.410
21	120.000	273.000	170.000	10.410	10.550	0.750	0.280	2.190	0.500	1780	222.590	982.490	574.920	0.25	0.048	0.14	10.600	10.480	4.840	0.180
19	170.000	292.500	230.000	10.030	10.130	0.590	0.250	1.830	0.370	1780	257.160	999.660	523.170	0.25	0.048	0.14	8.850	10.420	3.220	0.130
17.5*	170.000	292.500	230.000	9.660	9.770	0.630	0.230	1.940	0.350	1780	137.910	1053.880	588.200	0.25	0.048	0.14	9.260	9.660	2.920	0.150
16	130.000	110.000	50.000	9.310	9.430	0.640	0.210	2.030	0.360	1780	64.940	993.930	721.120	0.25	0.048	0.14	9.670	8.910	2.620	0.150
15	500.000	329.000	300.000	9.230	9.320	0.430	0.210	1.900	0.290	1780	393.590	853.390	533.020	0.25	0.048	0.14	8.700	8.590	1.480	0.090
14	85.000	84.000	55.000	8.900	8.980	0.540	0.370	1.930	0.300	1780	830.610	740.040	209.340	0.14	0.048	0.14	8.750	9.070	0.950	0.110
13	0.100	0.100	0.100	8.810	8.830	0.590	0.500	1.720	0.300	1780	1159.160	492.260	128.580	0.14	0.048	0.14	8.200	8.560	1.250	0.140
12	Bridge													Bridge						
11	80.000	79.000	50.000	8.380	8.420	0.930	0.950	0.490	0.170	1780	1763.640	6.400	9.950	0.14	0.048	0.14	8.200	8.560	1.250	0.270
10	193.000	956.000	492.000	8.200	8.250	0.510	0.390	1.480	0.290	1780	937.110	653.830	189.060	0.14	0.048	0.14	7.750	8.050	1.550	0.110
4.*	178.000	472.000	200.000	7.280	7.430	0.760	0.260	2.310	0.460	1780	54.890	934.170	790.930	0.14	0.048	0.14	6.520	6.480	-1.880	0.180
3	441.000	476.000	459.000	6.850	6.950	0.600		1.900	0.330	1780		958.200	821.800		0.048	0.14	7.450	5.810	-1.060	0.140
1				6.400	6.500	0.650	0.250	1.840	0.350	1780	26.070	1024.780	729.150	0.14	0.048	0.14	4.940	5.010	-0.510	0.130

						Rés	ultats de si	imulation :	Ouenghi	crue 10 ans	(débit : 1	950 m3/s)								
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	15.210	15.380	0.850	0.370	2.140	0.320	1950	167.430	1401.630	380.940	0.14	0.048	0.14	14.200	13.610	7.510	0.200
32.5*	190.500	190.500	190.000	14.940	15.110	0.910	0.380	2.250	0.440	1950	166.710	1281.630	501.660	0.14	0.048	0.14	14.940	13.000	7.250	0.190
32	270.000	180.000	115.000	14.410	14.760	1.420	0.460	3.010	0.640	1950	167.990	1445.500	336.510	0.14	0.048	0.14	15.680	12.400	6.990	0.280
31.5*	270.000	180.000	115.000	14.140	14.370	1.080	0.380	2.600	0.640	1950	271.040	1290.500	388.460	0.14	0.048	0.14	14.440	11.140	6.850	0.220
31	350.000	200.000	155.000	13.920	14.090	0.850	0.320	2.250	0.620	1950	346.240	1186.980	416.780	0.14	0.048	0.14	13.190	9.880	6.720	0.180
30	240.000	248.000	240.000	13.720	13.860	0.870	0.220	1.810	0.450	1950	236.770	1579.950	133.280	0.25	0.048	0.14	12.790	11.200	6.410	0.150
29.*	240.000	248.000	240.000	13.450	13.640	0.870	0.230	2.160	0.400	1950	211.370	1493.730	244.900	0.25	0.048	0.14	10.940	10.040	5.470	0.160
28	170.000	194.000	230.000	12.510	13.190	1.650	0.350	4.180	1.030	1950	201.860	1486.420	261.720	0.25	0.048	0.14	9.090	8.880	4.400	0.310
27	140.000	194.000	210.000	11.990	12.560	1.520	0.290	3.640	0.660	1950	195.110	1645.420	109.470	0.25	0.048	0.14	9.950	9.770	4.020	0.320
26	120.000	144.000	144.000	11.550	12.040	1.470	0.260	3.280	0.080	1950	190.520	1755.730	3.750	0.25	0.048	0.14	10.810	10.660	3.630	0.430
25	124.000	154.000	166.000	10.940	11.570	1.730	0.320	3.720	0.290	1950	205.310	1740.430	4.260	0.25	0.048	0.14	10.420	10.610	3.550	0.410
22	85.000	122.000	194.000	10.880	11.000	0.680	0.230	2.130	0.480	1950	174.800	988.500	786.700	0.25	0.048	0.14	10.720	10.810	3.380	0.150
21	120.000	273.000	170.000	10.550	10.690	0.760	0.300	2.220	0.520	1950	255.810	1043.100	651.090	0.25	0.048	0.14	10.600	10.480	4.840	0.180
19	170.000	292.500	230.000	10.170	10.270	0.610	0.260	1.890	0.380	1950	286.070	1067.990	595.940	0.25	0.048	0.14	8.850	10.420	3.220	0.130
17.5*	170.000	292.500	230.000	9.800	9.920	0.640	0.240	1.990	0.370	1950	154.780	1115.780	679.450	0.25	0.048	0.14	9.260	9.660	2.920	0.140
16	130.000	110.000	50.000	9.450	9.570	0.650	0.220	2.070	0.380	1950	72.880	1047.480	829.640	0.25	0.048	0.14	9.670	8.910	2.620	0.150
15	500.000	329.000	300.000	9.370	9.460	0.440	0.220	1.950	0.310	1950	436.780	895.870	617.350	0.25	0.048	0.14	8.700	8.590	1.480	0.090
14	85.000	84.000	55.000	9.030	9.110	0.560	0.400	1.950	0.320	1950	939.650	766.750	243.600	0.14	0.048	0.14	8.750	9.070	0.950	0.110
13	0.100	0.100	0.100	8.930	8.960	0.600	0.520	1.760	0.320	1950	1266.670	527.170	156.170	0.14	0.048	0.14	8.200	8.560	1.250	0.140
12	Bridge													Bridge						
11	80.000	79.000	50.000	8.510	8.560	0.910	0.950	0.740	0.260	1950	1900.690	19.360	29.960	0.14	0.048	0.14	8.200	8.560	1.250	0.250
10	193.000	956.000	492.000	8.340	8.390	0.520	0.400	1.520	0.300	1950	1032.810	696.620	220.570	0.14	0.048	0.14	7.750	8.050	1.550	0.110
4.*	178.000	472.000	200.000	7.440	7.590	0.770	0.280	2.350	0.480	1950	71.880	982.690	895.430	0.14	0.048	0.14	6.520	6.480	-1.880	0.170
3	441.000	476.000	459.000	7.030	7.130	0.600		1.890	0.350	1950		994.110	955.890		0.048	0.14	7.450	5.810	-1.060	0.130
1				6.590	6.690	0.660	0.260	1.880	0.370	1950	31.600	1083.500	834.900	0.14	0.048	0.14	4.940	5.010	-0.510	0.130

					Ré	sultats de	simulation	: Ouengh	i crue 5 ar	s "fourchet	te haute" ((débit : 1 50	60 m3/s)							
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	14.700	14.890	0.950	0.320	2.140	0.280	1560	99.320	1249.160	211.520	0.14	0.048	0.14	14.200	13.610	7.510	0.260
32.5*	190.500	190.500	190.000	14.390	14.580	0.950	0.320	2.250	0.380	1560	96.070	1142.760	321.170	0.14	0.048	0.14	14.940	13.000	7.250	0.220
32	270.000	180.000	115.000	13.880	14.210	1.430	0.400	2.850	0.560	1560	96.980	1231.860	231.160	0.14	0.048	0.14	15.680	12.400	6.990	0.310
31.5*	270.000	180.000	115.000	13.570	13.810	1.130	0.300	2.550	0.600	1560	130.310	1133.000	296.700	0.14	0.048	0.14	14.440	11.140	6.850	0.270
31	350.000	200.000	155.000	13.340	13.510	0.910	0.280	2.190	0.590	1560	185.030	1036.920	338.050	0.14	0.048	0.14	13.190	9.880	6.720	0.210
30	240.000	248.000	240.000	13.150	13.270	0.840	0.180	1.680	0.410	1560	156.570	1304.430	99.000	0.25	0.048	0.14	12.790	11.200	6.410	0.160
29.*	240.000	248.000	240.000	12.900	13.060	0.850	0.190	1.980	0.360	1560	138.990	1250.770	170.230	0.25	0.048	0.14	10.940	10.040	5.470	0.170
28	170.000	194.000	230.000	12.110	12.660	1.530	0.280	3.670	0.880	1560	127.480	1229.760	202.760	0.25	0.048	0.14	9.090	8.880	4.400	0.310
27	140.000	194.000	210.000	11.710	12.140	1.380	0.230	3.130	0.540	1560	128.700	1352.380	78.920	0.25	0.048	0.14	9.950	9.770	4.020	0.300
26	120.000	144.000	144.000	11.400	11.740	1.290	0.200	2.720	0.270	1560	135.870	1417.870	6.260	0.25	0.048	0.14	10.810	10.660	3.630	0.290
25	124.000	154.000	166.000	11.090	11.450	1.280	0.250	2.840	0.260	1560	182.730	1372.320	4.950	0.25	0.048	0.14	10.420	10.610	3.550	0.290
22	85.000	122.000	194.000	10.380	10.910	1.670	0.330	3.420		1560	176.730	1383.260		0.25	0.048		10.720	10.810	3.380	0.410
21	120.000	273.000	170.000	10.200	10.340	0.740	0.260	2.160	0.480	1560	179.890	903.770	476.330	0.25	0.048	0.14	10.600	10.480	4.840	0.180
19	170.000	292.500	230.000	9.830	9.920	0.580	0.240	1.760	0.340	1560	224.030	906.280	429.690	0.25	0.048	0.14	8.850	10.420	3.220	0.140
17.5*	170.000	292.500	230.000	9.460	9.570	0.620	0.210	1.880	0.320	1560	115.300	972.770	471.930	0.25	0.048	0.14	9.260	9.660	2.920	0.150
16	130.000	110.000	50.000	9.100	9.220	0.630	0.200	1.980	0.330	1560	54.680	926.890	578.430	0.25	0.048	0.14	9.670	8.910	2.620	0.160
15	500.000	329.000	300.000	9.020	9.110	0.420	0.200	1.850	0.270	1560	336.790	800.850	422.360	0.25	0.048	0.14	8.700	8.590	1.480	0.100
14	85.000	84.000	55.000	8.690	8.780	0.520	0.350	1.870	0.270	1560	701.880	690.460	167.660	0.14	0.048	0.14	8.750	9.070	0.950	0.110
13	0.100	0.100	0.100	8.600	8.630	0.580	0.490	1.700	0.260	1560	1019.830	450.370	89.800	0.14	0.048	0.14	8.200	8.560	1.250	0.140
12	Bridge													Bridge						
11	80.000	79.000	50.000	8.060	8.340	0.810	0.480	3.330	0.390	1560	749.660	746.510	63.830	0.14	0.048	0.14	8.200	8.560	1.250	0.190
10	193.000	956.000	492.000	8.080	8.120	0.470	0.360	1.380	0.260	1560	816.190	588.570	155.240	0.14	0.048	0.14	7.750	8.050	1.550	0.110
4.*	178.000	472.000	200.000	7.080	7.220	0.750	0.210	2.250	0.430	1560	33.900	867.790	658.320	0.14	0.048	0.14	6.520	6.480	-1.880	0.180
3	441.000	476.000	459.000	6.600	6.710	0.610		1.900	0.310	1560		909.970	650.030		0.048	0.14	7.450	5.810	-1.060	0.150
1				6.140	6.240	0.630	0.230	1.780	0.320	1560	19.400	946.570	594.030	0.14	0.048	0.14	4.940	5.010	-0.510	0.140

					Ré	sultats de	simulation	: Ouengh	i crue 5 an	s "fourchet	te basse" ((débit : 1 3	20 m3/s)							
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	14.360	14.560	1.040	0.270	2.110	0.260	1320	60.010	1128.240	131.750	0.14	0.048	0.14	14.200	13.610	7.510	0.300
32.5*	190.500	190.500	190.000	14.020	14.220	1.000	0.270	2.250	0.330	1320	56.970	1049.200	213.830	0.14	0.048	0.14	14.940	13.000	7.250	0.260
32	270.000	180.000	115.000	13.520	13.840	1.440	0.360	2.710	0.490	1320	61.360	1089.810	168.830	0.14	0.048	0.14	15.680	12.400	6.990	0.330
31.5*	270.000	180.000	115.000	13.220	13.450	1.170	0.290	2.440	0.540	1320	82.490	1002.790	234.720	0.14	0.048	0.14	14.440	11.140	6.850	0.280
31	350.000	200.000	155.000	12.920	13.140	1.410		2.350	0.610	1320		1013.200	306.800		0.048	0.14	13.190	9.880	6.720	0.240
30	240.000	248.000	240.000	12.720	12.860	1.450		1.750	0.410	1320		1236.540	83.460		0.048	0.14	12.790	11.200	6.410	0.240
29.*	240.000	248.000	240.000	12.480	12.630	0.850	0.160	1.880	0.320	1320	95.070	1100.660	124.280	0.25	0.048	0.14	10.940	10.040	5.470	0.180
28	170.000	194.000	230.000	11.790	12.250	1.490	0.250	3.350	0.790	1320	89.940	1065.180	164.870	0.25	0.048	0.14	9.090	8.880	4.400	0.320
27	140.000	194.000	210.000	11.420	11.790	1.350	0.190	2.860	0.470	1320	83.920	1177.240	58.840	0.25	0.048	0.14	9.950	9.770	4.020	0.320
26	120.000	144.000	144.000	11.060	11.420	2.590	0.040	2.680	0.200	1320	0.220	1316.960	2.810	0.25	0.048	0.14	10.810	10.660	3.630	0.460
25	124.000	154.000	166.000	10.790	11.110	1.270	0.210	2.640	0.170	1320	123.450	1194.800	1.750	0.25	0.048	0.14	10.420	10.610	3.550	0.310
22	85.000	122.000	194.000	10.150	10.620	1.620	0.290	3.160		1320	124.550	1195.450		0.25	0.048		10.720	10.810	3.380	0.420
21	120.000	273.000	170.000	9.930	10.080	0.740	0.240	2.120	0.440	1320	138.760	812.640	368.600	0.25	0.048	0.14	10.600	10.480	4.840	0.190
19	170.000	292.500	230.000	9.570	9.650	0.570	0.220	1.630	0.350	1320	177.770	779.440	362.790	0.25	0.048	0.14	8.850	10.420	3.220	0.140
17.5*	170.000	292.500	230.000	9.200	9.310	0.610	0.190	1.790	0.300	1320	88.740	864.470	366.790	0.25	0.048	0.14	9.260	9.660	2.920	0.160
16	130.000	110.000	50.000	8.850	8.960	0.630	0.180	1.900	0.310	1320	42.790	835.190	442.020	0.25	0.048	0.14	9.670	8.910	2.620	0.170
15	500.000	329.000	300.000	8.770	8.860	0.410	0.180	1.730	0.260	1320	266.560	716.840	336.600	0.25	0.048	0.14	8.700	8.590	1.480	0.100
14	85.000	84.000	55.000	8.470	8.550	0.490	0.310	1.780	0.240	1320	562.690	632.100	125.210	0.14	0.048	0.14	8.750	9.070	0.950	0.110
13	0.100	0.100	0.100	8.380	8.400	0.560	0.460	1.690	0.220	1320	855.890	410.150	53.960	0.14	0.048	0.14	8.200	8.560	1.250	0.150
12	Bridge													Bridge						
11	80.000	79.000	50.000	7.850	8.120	0.770	0.430	3.180	0.330	1320	587.390	687.160	45.450	0.14	0.048	0.14	8.200	8.560	1.250	0.190
10	193.000	956.000	492.000	7.840	7.890	0.550	0.370	1.480		1320	737.080	582.920		0.14	0.048		7.750	8.050	1.550	0.120
4.*	178.000	472.000	200.000	6.840	6.980	0.740	0.200	2.160	0.390	1320	19.690	787.390	512.920	0.14	0.048	0.14	6.520	6.480	-1.880	0.190
3	441.000	476.000	459.000	6.300	6.430	0.620		1.900	0.280	1320		850.990	469.010		0.048	0.14	7.450	5.810	-1.060	0.170
1				5.840	5.940	0.620	0.200	1.710	0.290	1320	12.840	857.290	449.870	0.14	0.048	0.14	4.940	5.010	-0.510	0.140

						Rés	ultats de s	imulation	: Ouenghi	crue 5 ans	(débit : 1 3	370 m3/s)								
N°coupe	Dist. RG	Dist. LM	Dist. RD	Z (m)	H (m)	V_Total (m/s)	V_RG (m/s)	V_LM (m/s)	V_RD (m/s)	Q_Total (m3/s)	Q_RG (m3/s)	Q_LM (m3/s)	Q_RD (m3/s)	n RG	n LM	n RD	Berge LM RG (m)	Berge LM RD (m)	Fond (m)	Froude
33	190.500	190.500	190.000	14.430	14.630	1.020	0.280	2.120	0.260	1370	67.620	1155.530	146.840	0.14	0.048	0.14	14.200	13.610	7.510	0.290
32.5*	190.500	190.500	190.000	14.100	14.300	0.990	0.290	2.250	0.340	1370	64.480	1070.490	235.020	0.14	0.048	0.14	14.940	13.000	7.250	0.250
32	270.000	180.000	115.000	13.590	13.910	1.440	0.370	2.750	0.500	1370	68.110	1120.830	181.060	0.14	0.048	0.14	15.680	12.400	6.990	0.330
31.5*	270.000	180.000	115.000	13.280	13.520	1.170	0.290	2.470	0.560	1370	91.580	1031.360	247.070	0.14	0.048	0.14	14.440	11.140	6.850	0.280
31	350.000	200.000	155.000	12.980	13.200	1.440		2.400	0.630	1370		1048.800	321.200		0.048	0.14	13.190	9.880	6.720	0.240
30	240.000	248.000	240.000	12.810	12.930	0.840	0.170	1.620	0.380	1370	117.300	1170.620	82.080	0.25	0.048	0.14	12.790	11.200	6.410	0.170
29.*	240.000	248.000	240.000	12.550	12.710	0.850	0.170	1.910	0.330	1370	103.090	1133.810	133.100	0.25	0.048	0.14	10.940	10.040	5.470	0.180
28	170.000	194.000	230.000	11.830	12.320	1.510	0.260	3.440	0.810	1370	96.610	1101.280	172.100	0.25	0.048	0.14	9.090	8.880	4.400	0.320
27	140.000	194.000	210.000	11.450	11.840	1.380	0.200	2.950	0.480	1370	89.510	1218.640	61.850	0.25	0.048	0.14	9.950	9.770	4.020	0.320
26	120.000	144.000	144.000	11.160	11.470	1.290	0.170	2.540	0.210	1370	95.010	1271.460	3.530	0.25	0.048	0.14	10.810	10.660	3.630	0.310
25	124.000	154.000	166.000	10.860	11.190	1.270	0.220	2.680	0.190	1370	135.640	1232.020	2.340	0.25	0.048	0.14	10.420	10.610	3.550	0.310
22	85.000	122.000	194.000	10.210	10.680	1.620	0.290	3.210		1370	135.280	1234.720		0.25	0.048		10.720	10.810	3.380	0.410
21	120.000	273.000	170.000	10.000	10.140	0.740	0.240	2.130	0.450	1370	145.180	832.270	392.550	0.25	0.048	0.14	10.600	10.480	4.840	0.190
19	170.000	292.500	230.000	9.640	9.720	0.560	0.220	1.640	0.350	1370	185.610	798.080	386.310	0.25	0.048	0.14	8.850	10.420	3.220	0.130
17.5*	170.000	292.500	230.000	9.270	9.380	0.610	0.200	1.820	0.290	1370	95.870	898.240	375.890	0.25	0.048	0.14	9.260	9.660	2.920	0.160
16	130.000	110.000	50.000	8.910	9.030	0.620	0.190	1.940	0.300	1370	46.000	865.780	458.220	0.25	0.048	0.14	9.670	8.910	2.620	0.160
15	500.000	329.000	300.000	8.830	8.920	0.410	0.180	1.780	0.250	1370	284.930	743.680	341.390	0.25	0.048	0.14	8.700	8.590	1.480	0.100
14	85.000	84.000	55.000	8.520	8.600	0.490	0.320	1.790	0.240	1370	591.740	644.370	133.890	0.14	0.048	0.14	8.750	9.070	0.950	0.110
13	0.100	0.100	0.100	8.430	8.450	0.570	0.470	1.680	0.230	1370	890.870	417.920	61.210	0.14	0.048	0.14	8.200	8.560	1.250	0.150
12	Bridge													Bridge						
11	80.000	79.000	50.000	7.900	8.170	0.780	0.440	3.200	0.350	1370	621.810	698.850	49.340	0.14	0.048	0.14	8.200	8.560	1.250	0.190
10	193.000	956.000	492.000	7.890	7.940	0.550	0.370	1.490		1370	772.160	597.840		0.14	0.048		7.750	8.050	1.550	0.120
4.*	178.000	472.000	200.000	6.890	7.030	0.740	0.200	2.180	0.400	1370	22.420	804.540	543.040	0.14	0.048	0.14	6.520	6.480	-1.880	0.190
3	441.000	476.000	459.000	6.370	6.490	0.620		1.910	0.290	1370		864.660	505.340		0.048	0.14	7.450	5.810	-1.060	0.170
1				5.900	6.000	0.620	0.210	1.730	0.300	1370	14.150	876.180	479.670	0.14	0.048	0.14	4.940	5.010	-0.510	0.140