Inventaire piscicole de la Kwé Nord

Complément du rapport de l'Inventaire piscicole du Creek de la Baie Nord, de la Kwé principale, de la Wadjana et du Trou bleu du 11 octobre 2007

Christine Pöllabauer Dr ès Sciences

Version du 30/11/2007

SOMMAIRE

SOMMAIRE		3
RÉSUMÉ		7
I. INTRODUCTION		11
I. 1. SUIVI ENVIRONNEMENTAL		11
	OUCES	
II. 1. CARACTERISATION DU MILIEU	J ET DES HABITATS	14
	T CRUSTACES D'EAU DOUCE	
	ES DE QUALITE.	
III. METHODOLOGIE		10
	NAGE	
•	nage	
	ations	
	chimiques	
	nésologiques des stations	
III.2.4. Nombre et surface de S	Secteurs d'échantillonnage	
	cture d'âge d'une population cible	
	osition des peuplements de poissons, de l'	
	donnée	
	age	
	·	
	ons	
III.2.8.3 Sexe		21
III.2.10. Traitements statistiqu	ues	22
	ue et diversité	
	biotique (IIB)	
-	biolique (IIB)	
IV. RESULTATS		20
	ACTUALISEE	
	de qualité de milieu	
	LIEUX ET DES HABITATS	
	logiques des stations	
	S	
IV.2.3. Typologie des stations		29

IV.2.4. Ripisylve	
IV. 3. Inventaire faunistique	
IV.3.1. Les communautés ichtyologiques	30
IV.3.2. Densités des populations	31
IV.3.3. Biomasse	
IV. 4. L'INDICE D'INTEGRITE BIOTIQUE	
IV.4.1. La faune carcinologique	
IV.4.1.1 Biomasse par espèce et par station	35
V. CONCLUSION	36
V. 1. Inventaire faunistique	36
V.1.1. Densité	
V.1.2. Biomasse	
V.1.3. Indices d'intégrité biotique	36
V.1.4. Espèces sensibles	
VI. BIBLIOGRAPHIE	38
ANNEXE I : LISTE DES ESPÈCES RELEVÉES DURANT LES INVENTAIRES PRÉCÉDANTS	41
ANNEXE II: FICHES TERRAIN DE LA CAMPAGNE 2007	43
ANNEXE III: LISTE FAUNISTIQUE DÉTAILLÉE DES STATIONS SUPPLEMENTAIRES	350
Liste des Tableaux	
Tableau 1: Nombre minimal de tronçons à échantillonner selon la normes NF EN 14011.	
Tableau 2: Longueur minimale à échantillonner (EN 14011 : 2003)	
Tableau 3: Bibliographie consultée pour la taxonomie des espèces	
Tableau 4: Classe de qualité de l'IIB	24
Tableau 5 : Caractérisation mésologiques des stations	26
Tableau 6 : Typologie des stations de la zone d'étude relativement à l'impact observé en	00
Zoblacu 7. Dishagas aná sifigua at abandanas relativa nas bassina varsanta	
Tableau 7: Richesse spécifique et abondance relative par bassins versants	
Tableau 8: Captures en terme de biomasse / unité de surface	31
Tableau 9. Indice d'intégrité biotique de Nouvelle-Calédonie sur les rivières de la zone	24
d'étude (Campagne du 26/09/2007-11/10/2007)	
Tableau 11. Valeurs d'IIB des 2 affluents de la rivière Kwé, la Kwé Ouest et la Kwé Nord	
Tableau 12 : Listes des espèces recensées lors des inventaires précédents 1996-2004	
rableau 12 . Listes des especes recensees lors des inventaires precedents 1990-2004	72
Liste des Figures	
Figure 1: Carte des station de la rivière Kwé	13
Figure 2: Pêche électrique	
Figure 3: Anesthésie par l'Eugénol (l'huile de clou de girofle)	
Figure 4 : Biométrie : mesure de la longueur totale	
Figure 5 : Kwé Ouest : KWE_O-300(1) et KWE_O-300(2)	
Figure 6 : Kwé Nord : KWE_N-CS –FW16(2) et KWE_N-FW16(1)	
Figure 7 . Anguille marbrée Anguilla marmorata	
Figure 8 : Gobie Awaous guamensis (à gauche) et la carpe Kuhlia rupestris	30
Figure 9 : Mulet noir Cestraeus plicatilis	
Figure 10: Déroulement de la méthode d'appréciation de l'état écologique des cours d'ea	
par IIB (Schager et Peter, 2002).	32
Figure 11 : Macrobrachium aemulum, l'espèce dominante de crustacés	35

Annexes

ANNEXE I : LISTE DES ESPÈCES RELEVÉES DURANT LES INVENTAIRES	
PRÉCÉDANTS	.41
ANNEXE II: FICHES TERRAIN de la campagne 2007	.43
ANNEXE III: Liste Faunistique détaillée des stations supplémentaires	
ANNEXE IV: Carte des stations échantillonnées	.67

RÉSUMÉ

Une exploitation minière de nickel à large échelle est programmée dans le Sud de la Nouvelle-Calédonie; son procédé d'extraction est celui de la lixiviation acide¹. Une phase test a débuté avec la mise en place de l'usine pilote de Goro-Nickel en 1999, qui a été construite entre 1998 et 1999 et mise en fonctionnement fin 1999. L'activité de l'usine pilote a cessé en juin 2002.

En 1995, une première étude de caractérisation de l'environnement et plus particulièrement des communautés dulçaquicoles des zones cibles a été effectuée. Depuis 1999, quatre autres études de trois plans d'eau ont été réalisées en 1999, 2000, 2001, et 2002, puis en 2004, dont une en saison fraîche (en 1999) et trois en saison chaude. Une cinquième campagne, réalisée de mai à juillet 2004, avait pour objectif de caractériser une deuxième fois les milieux aquatiques et communautés faunistiques en saison fraîche.

Une nouvelle étude a été réalisé en mai et juin 2007 dans quatre cours d'eau, dont deux sont situés dans la zone du projet de Goro-Nickel (le creek de la Baie Nord et la rivière Kwé), et deux autres qui ne devraient subir aucun impact par le projet (la rivière Wadjana et la rivière du Trou bleu).

La mine de Goro Nickel est située dans le bassin de la rivière Kwé, sur le plateau de Goro. Une vaste zone de stockage de résidus se situera sur la Kwé Ouest nécessitant des terrassements, des travaux de construction d'un batardeau (système de gestion des eaux), d'une digue, ainsi que l'ouverture d'une route des crêtes.

Quatre stations complémentaires à l'inventaire de mai-juin 2007 ont été échantillonnées afin d'évaluer l'impact des pressions industrielles sur l'intégrité biotique du milieu aquatique. La première se trouvant sur la Kwé Ouest en aval de la digue, à proximité du peuplement de *Neocallitropsis* et de bois bouchon. Les deux autres sont situées sur la branche Nord de la rivière Kwé, 200m en amont d'une zone où la rivière était déviée temporairement de son lit naturel pour les besoins du chantier. Il s'agissait des stations FW15 et FW16 (Rescan, 2000) ainsi que d'une troisième station en amont de la FW16, situé sur l'affluent ouest de la Kwé Nord.

Sur chaque station, une longueur de tronçon de 100m linéaire a été échantillonnée par pêche électrique. Les pêches expérimentales réalisées du 26/09/2007 au 11/10/2007, période de printemps austral, ont permis de capturer et d'observer 11 poissons, dont 6 carpes *Kuhlia rupestris*, 3 mulets noirs (dont deux *Cestraeus oxyrhynchus* et un *Cestraeus sp.*), un gobie *Awaous guamensis*, et une espèce d'anguille *Anguilla marmorata*. Ainsi la

¹ Opération qui consiste à lixivier de la pulpe de minerai avec de l'acide sulfurique à haute pression et température, pour en extraire un ou plusieurs constituants solubles comme le nickel.

présence de 4 espèces de poissons appartenant à 4 familles (Anguillidae, Gobiidae, Kuhliidae, Mugilidae) a pu être confirmée. Notons qu'aucune espèce endémique de poissons n'a été observée. Les zones où les poissons carnivores étaient absents, montraient une population dense et une biomasse de 1,5kg / ha de crevettes (et d'autres invertébrés, tels que mollusques, insectes, ..).

Les surfaces des 5 stations échantillonnées représentaient 2 212m² pour la Kwé Ouest et 1 768m² pour la Kwé Nord. Au total, les effectifs et la densité étaient très faible par rapport aux campagnes précédentes : 11 poissons au total ont été capturé sur une surface totale de 3980m². La densité moyenne globale était de 28 poissons / ha, celle de la Kwé Ouest de 32 poissons par ha et celle de la Kwé Nord 23 poissons par ha. La biomasse totale de poisson s'élevait à 944,5g, soit 2,37kg de poisson / ha, dont 3,56kg / ha pour la Kwé Ouest et 0,89 kg/ha pour la Kwé Nord.

La biomasse des crustacés correspondait à un rendement de 1,5 kg/ ha. La biomasse moyenne par hectare – bien que faible-, varie d'une manière importante selon les deux affluents : ainsi la zone de rivière Kwé Ouest affichait une biomasse de 2,13 kg par ha, et la Kwé Nord 0,74 kg/ha. Une seule espèce, *Macrobrachium aemulum,* représentaient 99,5% de la biomasse totale des captures (toutes stations confondues). Les carpes *Kuhlia rupestris* représentaient 40,75% de la biomasse brute, les mulets noirs *Cestraeus sp.* 6,84%, la seule anguille *Anguilla marmorata* 50,8% de la biomasse totale.

Les milieux étudiés de la Kwé Ouest peuvent être caractérisés par un faciès d'écoulement de plat courant d'une profondeur de plus d'un mètre, entrecoupés de quelques radiers et rapides. Sous une petite chute en amont se trouve une fosse de dissipation bien oxygénée. Des roches et blocs constituent la majorité des types de fond, couverte d'une couche de 1-2cm de vase et de sédiments fin dans les zones calmes. La Kwé Nord a plutôt l'allure d'un petit torrent de montagne, à plus faible largeur et à pente plus élevée, une vitesse de courant supérieur et un fond moins envasé. La végétation et plus présente sur cet affluent, et fournit de l'ombrage jusqu'à couvrir totalement le cours d'eau par endroit. Des bois bouchon Retrophyllum minor se trouvent tout au long des deux affluents, voire directement dans le lit de la rivière (FW15). La hauteur d'eau augmente dans les mouilles de concavité des méandres. Globalement la profondeur était très faible (0,2-0,90m). Précisons que 6 des 7 poissons recensés se trouvaient dans une zone profonde (plus de 2m) bien oxygénée de la Kwé Ouest. Ceci représente le type d'habitat préférentiel des espèces pélagiques : la carpe Kuhlia rupestris et les mulets du genre Cestraeus. A proximité de la station de la Kwé Nord (FW15) se trouvait également un « trou » profond de plus de 2m où 13 mulets et 7 carpes ont été comptabilisés. Pour conserver ces peuplement piscicoles, il conviendrait donc de maintenir des zones profondes ou de créer artificiellement des « fosses d'affouillement, le long d'un obstacle à l'écoulement (embâcle, rocher, ..).

Pour ces deux affluents l'intégrité a été examinée par le biais des communautés piscicoles dont la structure et les caractéristiques permettent d'estimer le degré de dégradation d'un milieu. La proportion des espèces omnivores et tolérantes à la pollution est très élevée, tandis les espèces endémiques sensibles à la pollution sont absentes. Ceci souligne l'instabilité des communautés piscicoles. L'augmentation des sédiments fins enrichis en métaux lourds pourrait expliquer ces résultats - bien que nous ne puissions étayer cette hypothèse d'aucune donnée- compromettant l'intégrité biotique du milieu sur ces tronçons de rivière.

I. INTRODUCTION

Une usine de traitement des latérites à faible teneur à procédé hydrométallurgique est en cours de construction dans la plaine et sur le plateau de Goro dans le Grand Sud de la Nouvelle-Calédonie. Ce procédé d'extraction, qui requiert de grandes quantités d'eau, est celui de la lixiviation acide¹ à grande échelle, procédé de "lessivage" du minerai afin d'en isoler le nickel et le cobalt au moyen de dérivés du souffre.

La mine de Goro Nickel est située dans le bassin de la rivière Kwé, les ouvrages y ont été conçus et construits afin de protéger cette rivière, située en aval de l'excavation. Une phase test a débuté avec la construction d'une usine pilote mise en fonctionnement fin 1999.

I. 1. Suivi environnemental

Le suivi environnemental a débuté en 1995, avec une première étude de caractérisation des communautés dulçaquicoles des cours d'eau situés dans des zones cibles. Un inventaire faunistique a été réalisé au Lac en Huit, au Grand Lac et dans la rivière Kwé. Cette première approche sommaire de caractérisation écologiques des communautés dulçaquicoles susceptibles d'être affectés par des perturbations de milieux a permis de souligner la spécifité des ces écosystèmes : une biodiversité avec un taux d'endémisme élevé mais une faible biomasse dans les plans d'eau stagnants (Lac en Huit, Grand Lac), des communautés biologiques diversifiés à la rivière Kwé (SNC LAVALIN, 1995). Il est toutefois souligné qu'il s'agit d'une approche qualitative, non d'une description complète.

D'autres études d'inventaires suivaient concernant les rivières Kuébini, Wadjana, Kwé, Rivière du Trou bleu, Creek de la Baie Nord, ainsi que plusieurs plans d'eau stagnants (dolines, déversoir) (ERBIO, 1999a, 1999b, 2000, 2001, 2002, 2004; Rescan 2000). Une liste d'espèces relevées dans ces cours d'eau figurent en annexe 1. Ces cours d'eau peuvent être classé en fonction de leur richesse et de la santé de leur écosystème (par ordre décroissant): la rivière du Trou bleu, le Creek de la Baie Nord, la Wadjana, la Kuébini et la rivière Kwé.

Néanmoins aucune méthode standard ni d'indice de qualité concernant la faune piscicole n'existait pour la Nouvelle-Calédonie pour les études antérieures. En 2005, un indice d'intégrité biotique – un outil d'évaluation de la qualité des rivières et des changements relatifs aux impacts divers a été développé par notre bureau d'études, il permet l'application des méthodes quantitatives standard pour les inventaires et les suivis et il livre une image

Opération qui consiste à lixivier de la pulpe de minerai avec de l'acide sulfurique à haute pression et température, pour en extraire un ou plusieurs constituants solubles comme le nickel.

complète de la santé des écosystèmes dulçaquicoles. Cette même méthode sera dorénavant appliquée pour tout type d'inventaire ultérieur.

I. 2. Le site d'étude

Le plateau de Goro, site de la mine, est un massif latéritique composé d'une couche supérieure terreuse (issue d'une décomposition naturelle de roches) et de réseaux d'infiltration et de cavités souterraines. Ce secteur est la deuxième zone géographique la plus pluvieuse de Nouvelle-Calédonie, avec plus de trois mètres de précipitations annuelles. Ces pics de pluviométrie renforcent les ruissellements naturels, et augmente le risque d'érosion et de divers impacts liés à l'activité minière (ouverture de pistes, construction des infrastructures, rejets de la base vie, etc.). Ainsi les rivières courent le danger de subir une transformation liée à l'augmentation des transports solides et des matières en suspension (DANLOUX J. ET LAGANIER R., 1991).

I. 3. La protection des eaux douces

Pour prévenir et combattre la dégradation générale de ces écosystèmes, il importe de distinguer et de déterminer les effets des différentes sources de pollution, et de toutes les modifications que peut subir le milieu physique (http://www.cnrs.fr/cw/dossiers/doseau).

Une bonne connaissance de la morphologie de ce réseau hydrologique et de la géométrie des bassins versants a donc été nécessaire pour permettre la construction de bassins de décantation successifs, qui réceptionnent les eaux de pluie chargées en particules ou matières en suspension (MES).

Ces bassins utilisés sur toutes les mines calédoniennes depuis près de 20 ans, ont dû être surdimensionnés pour le plateau de Goro, compte tenu des épaisseurs latéritiques du sud et de l'envergure des travaux (http://www.goronickel.nc/pages/environnement/eau.htm) :

- La mine dispose depuis 2005 de 2 grands bassins principaux dont les capacités respectives sont de 20 700 m 3 et de 8 600 m 3 et d'un troisième bassin de sécurité supplémentaire permettant de réduire encore davantage les risques d'entraînement des MES vers la rivière Kwé.
- Une quarantaine d'autres bassins sont implantés en contrebas de toutes les zones défrichées. Des échantillons sont effectués pour contrôler les rejets.
- La zone de l'usine, le convoyeur et le port disposent aussi d'un ensemble de bassins de décantation.

I. 4. Etude de suivi 2007

L'équilibre des écosystèmes aquatiques est basé sur des échanges multiples et permanents entre les différents éléments qui le composent. Mais, naturellement ou sous la pression de certaines activités humaines, des désordres peuvent naître en leur sein et dégrader les ressources en eau comme en matières vivantes. Connaître le fonctionnement et la dynamique de ces systèmes est donc primordiale pour pouvoir comprendre leur évolution, évaluer leur " état de santé " et mieux les protéger¹.

La zone d'étude vise à inclure tous les plans d'eau et bassins versants représentatifs pouvant être influencés par l'ensemble des effets appréhendés du projet (carte 1). Pour le complément d'étude en septembre et octobre 2007, Goro-Nickel a demandé un suivi de la faune aquacole, la composition faunistique et son évolution sur deux affluents de la rivière Kwé, la branche ouest et la branche nord (carte 1).

¹ http://www.cnrs.fr/cw/dossiers/doseau/decouv/ecosys/ecosysMenu.html

II. OBJECTIFS

L'étude de la rivière Kwé vise à atteindre trois objectifs :

- 1. La description et caractérisation des milieux et des habitats,
- 2. l'inventaire des espèces de poissons et de crustacés d'eau douce,
- 3. l'établissement d'indices de qualité des cours d'eau permettant un diagnostic sur l'état de santé des cours d'eau.

L'évaluation environnementale examinera les effets environnementaux (positifs et négatifs) que pourraient avoir la construction et l'exploitation minière et toutes les installations et infrastructures connexes. Elle précisera l'efficacité des mesures éventuelles d'atténuation et d'optimisation.

II. 1. Caractérisation du milieu et des habitats

Sur chaque affluent plusieurs stations ont été choisies pour caractériser les milieux et les habitats potentiels de la faune dulçaquicole.

Les paramètres mésologiques décrivant les secteurs serviront à caractériser les segments (granulométrie, hauteur d'eau, courant, qualité physico-chimique, etc.).

La nature d'un éventuel impact humain ou minier sera décrite et les secteurs seront regroupés selon leur degré d'influence par le projet en construction.

II. 2. Inventaire des poissons et crustacés d'eau douce

En se basant sur des travaux d'inventaire, l'objet de cette partie est de présenter une description qualitative et quantitative de la diversité et de l'abondance des espèces de poissons et de leur variabilité spatiale des zones étudiées en accordant une attention particulière aux espèces endémiques, rares, menacées, vulnérables, qui font d'objet d'une cueillette ou encore d'une exploitation commerciale.

Il s'agit notamment de :

- Identifier et déterminer le nombre d'espèces piscicoles présent ainsi que leur statut (endémique, autochtone, menacé, etc.).
- Déterminer la composition et l'abondance des communautés de poissons en terme d'individus / m² et de biomasse / m².
- Dresser l'état de référence des communautés de poissons, qui servira pour évaluer les répercussions éventuelles du projet sur cette faune. L'état de référence présente les caractéristiques actuelles des communautés dans les secteurs étudiés.
- Identifier les caractéristiques ou les particularités de la faune pouvant constituer un enjeu dans la perspective de l'exploitation minière de Goro-Nickel.

 Réaliser des comparaisons des résultats obtenus au cours de cette étude avec ceux obtenus dans le cadre des études précédentes.

II. 3. Etablissements des indices de qualité.

L'indice d'intégrité biotique (IIB) se veut la synthèse de l'information la plus pertinente afin de statuer sur la santé des écosystèmes fluviaux (rivières) ou leur intégrité biotique. Ainsi sera élaboré un indice poissons (Indice d'Intégrité Biotique ou IIB) reflétant la qualité des quatre cours d'eau étudiés. Il s'agit par ailleurs d'un outil fiable et mesurable de l'évolution de la santé d'un écosystème. Il représente un outil précieux pour le suivi des sites miniers.

III. METHODOLOGIE

III. 1. Travail de terrain

III.1.1. Zone d'étude

La zone d'étude comprend le bassin versant de la rivière Kwé, et plus particulièrement la branche ouest et la branche nord.

III. 2. Travaux d'échantillonnage

III.2.1. Stratégie d'échantillonnage

Pour obtenir une image représentative d'une communauté piscicole d'un cours d'eau, la norme européenne concernant la pêche électrique NF EN 14011 : 2003 conseille les démarches suivantes :

- D'une manière générale, la stratégie d'échantillonnage adoptée doit être celle qui livre des informations sur le statut actuel des communautés piscicoles dans un site donné. Le choix des sites à échantillonner (nombre et surface) est d'une grande importance pour l'évaluation des données collectés.
- Concernant l'échantillonnage des poissons, les données correctement obtenues sont directement liées à la densité de population. La stratégie doit être de pêcher dans une zone définie (tableaux 1 à 3 ci-dessous), en utilisant un équipement adéquat, en respectant des mesures de sécurité, en collaborant avec du personnel qualifié pour procurer une estimation de : l'abondance des espèces, la composition, et la structure de population. La mesure d'abondance absolue est basée sur un seul passage de pêche électrique sur un tronçon donné (EN 14011 :2003).

 Pour assurer la reproductibilité, l'effort de pêche, l'équipement, ainsi que le protocole de pêche doit être le même dans chaque station. Les sites d'échantillonnages doivent être localisées par GPS, la réalisation de photos des sites est recommandée.

III.2.2. Choix des stations

La reconnaissance d'un cours d'eau doit permettre d'effectuer un découpage de l'espace fluvial en tenant compte de critères tels que : pente, vitesse de courant, section de vallée, hydrogéologie, nature des berges et du fond, degré apparent de dégradation et interventions dans le milieu (déversement des matériaux, consolidation des berges, barrages anti-sel...), dont la conjonction donne les différents faciès du cours d'eau en autant d'ensembles fonctionnels.

En absence de toute base de données quantitatives, les stations ont été choisies pour optimiser les captures des espèces présentes en prenant en compte la section de la vallée (cours inférieur, cours moyen), la pente (zones de plats, zones de rapides et de cascades), la nature du fond (différents types de granulométrie), la vitesse de courant, le degré apparent de dégradation et interventions dans le milieu (berges dénudées, zones impactées) (cf carte Annexe IV, page 67).

III.2.3. Caractérisation des stations

Les travaux de caractérisation des cours d'eau seront menés en parallèle pour établir la succession des habitats lotiques (seuil, rapide, fosse). Les différents habitats de poissons et l'emplacement des barrières naturelles et artificielles à la migration des poissons reliées aux niveaux de l'eau seront décrits si possibles. Des fiches de description standard ont été remplies pour chaque station (Annexe 2).

III.2.3.1 Données physico-chimiques

Dans chaque station, préalablement à la pêche, les composantes physico-chimiques de l'eau (la température, l'oxygène dissous, le pH, et la conductivité électrique) ont été mesurées *in situ* à l'aide d'un instrument portatif Consort 537. Les sondes ont été calibrées 2 fois par jour dans une solution standard (le matin avant le départ sur le terrain et le soir au retour). Le courant était mesuré à l'aide d'un courantomètre à hélice Global Water Flow.

III.2.3.2 Caractéristiques mésologiques des stations

Pour chaque station et segment, les caractéristiques suivantes ont été relevées :

¹ Mésologie = partie de la biologie qui traite des milieux

- la position GPS avec un appareil de type Garmin Etrex Summit (d'une précision de 1 à 5 mètres avec corrections DGPS, 15 mètres RMS),
- l'altitude à l'origine du tronçon, mesurée à l'aide du GPS,
- la longueur du tronçon, mesurée à l'aide du topofil (métreur à fil perdu),
- la largeur de la station, mesurée en mètres avec un décamètre,
- la profondeur, mesurée en centimètres avec le décamètre,
- la vitesse du courant (lente : inférieur à 25cm/s, moyenne : de 25 à 50cm/s, rapide : plus de 50cm/s),
- la granulométrie (MALAVOI J.. ET SOUCHON Y., 1989.)
- les caractéristiques des berges.

De plus, divers clichés photographiques ont été pris pour chaque station.

III.2.4. Nombre et surface de Secteurs d'échantillonnage

III.2.4.1 Abondance et structure d'âge d'une population cible

Pour assurer les conclusions valides concernant l'abondance, la composition et la structure d'âge des espèces cibles, un nombre suffisant de tronçons par cours d'eau doit être échantillonné. Il était calculé en suivant les recommandations de la norme NF EN 14011 (juillet 2003). Ce nombre de stations dépend des variations spatiales des espèces entre différents sites, et du but principal de l'étude qui sera ou le suivi dans le temps d'une population ou la comparaisons des différentes populations. La variation spatiale est exprimée comme coefficient de la variation (CV), soit l'écart type moyen / moyenne de captures par tronçon¹. Ce CV doit être déterminé lors d'une étude pilote.

Pour comparer différentes populations de poissons, un nombre minimal de tronçons corrélés au CV est requis (tableau 1). Pour un CV de 0,2 le nombre minimal de tronçons doit être 3, pour un CV de 0,4 / 4 tronçons, pour 0,6 / 9 et pour 0,8 il faut 16 tronçons (tableau 1).

Tableau 1: Nombre minimal de tronçons à échantillonner selon la normes NF EN 14011

Cœfficient de variation CV	Nombre minimal de tronçons à échantillonner
0,2	3
0,4	4
0,6	9
8,0	16

¹ Le coefficient de variation est une mesure de dispersion des observations d'une variable quantitative d'intervalle. C'est une mesure neutre. Elle est calculée en divisant l'écart-type par la moyenne. Il permet de comparer la dispersion des variables différentes. Plus grand est le coefficient de variation, plus grande est la dispersion.

Nous ne disposions pas de données quantitatives des secteurs à échantillonner. Etant donné que la biodiversité diminue du cours inférieur vers le cours supérieur et pour maximiser les captures dans un laps de temps restreint, nous avons retenus 2 tronçons par station. Ces stations font office de l'étude pilote permettant par la suite de déterminer un nombre de stations plus précis nécessaire pour ce type d'inventaire.

La sélection des sites doit prendre en compte les différents types d'habitats du cours d'eau. Des cours d'eau avec un stress environnemental élevé où peu ou aucun poisson n'a pu être capturé dans différents sites ont un CV élevé, et par conséquent, un nombre élevé de stations de suivi est nécessaire pour donner une bonne estimation des abondance et de la structure d'age des espèces présentes.

Il faut également prendre en compte l'accès aux sites ainsi qu'une réalisation de l'étude garantissant un travail en toute sécurité des opérateurs.

La longueur minimale d'un cours d'eau à échantillonner figure dans le tableau 3.

Tableau 2: Longueur minimale à échantillonner (EN 14011 : 2003)

Dimension du cours d'eau	Longueur minimale à échantillonner				
Petits cours d'eau, largeur < 5 m	20 m, la largeur totale doit être				
	échantillonnée				
Petits cours d'eau, largeur 5m à 15m	50 m, la largeur totale doit être				
	échantillonnée				
Cours d'eau moyen ou grand, largeur > 15m	> 50m de bordure de rivière ou seulement				
	sur un côté ou des deux côtés				
Plan d'eau large de faible profondeur <70cm	200m²				
Grand plan d'eau (lacs,)	>50m de la zone littorale				

Si un petit cours contient une grande densité de poissons, une longueur plus petite peut être suffisant. Il faudrait capturer environ 200 poissons dans une station mais sur une surface minimale de 100m².

III.2.4.2 Etude de la composition des peuplements de poissons, de l'abondance et de la structure d'age d'un site donnée

Dépendant de la largeur et la profondeur d'un cours d'eau, deux différentes méthodes d'échantillonnage peuvent être utilisées. Si possible (dans les petites rivières), chaque cours d'eau est échantillonnés par pêche électrique à pied (« wading »). Dans des cours d'eau plus profonds, l'échantillonnage se fait par bateau (normalement proche des berges). La taille du secteur à échantillonner doit être suffisamment élevée pour être représentative des types d'habitats et de communautés de poissons.

La longueur minimale à échantillonner doit être 20 fois la largeur moyenne du cours d'eau (NF EN 14011 : 2003, Angermeier & Karr, 1986 ; Angermeier & Smogor, 1995 ; Simonson & Lyons, 1995 ; Yoder & Smith, 1998). Dans des cours d'eau ou différents types de courant rapide sont présents, il est important si possible d'échantillonner intégralement toute la

largeur. Pour des cours d'eau très large (> de 30m de large), si les communautés ichtyologiques sont uniformes, un tronçon d'une longueur de 10 fois la largeur de la rivière peut s'avérer suffisant.

III.2.5. Période d'échantillonnage

La période d'échantillonnage doit être en relation avec le cycle de vie des espèces cibles les plus importantes. Dans le plupart des cas, les campagnes de pêche doivent avoir lieu à la fin de la période de croissance quand les juvéniles des espèces cibles ont une taille suffisante pour être capturés par électricité. Dans le cas de suivi dans le temps, il faut maintenir cette même période pour un niveau d'eau semblable.

La période d'échantillonnage de cette campagne (septembre-octobre 2007) correspond à la période d'étiage, période favorable aux inventaires piscicoles. Nous tenons à signaler qu'une seule campagne de prélèvement permet de capturer en moyenne 50-60% des espèces réellement présentes.

Il est de ce fait recommandé de réaliser au moins deux campagnes de pêches (en saison chaude et en saison fraîche / ou au printemps et en automne austral), permettant d'augmenter le rendement et capturer 75-90% des espèces présentes.

III.2.6. Les movens de pêche :

Pour réaliser l'étude sur l'évolution des communautés de poissons et de la macrofaune des affluents Ouest et Nord de la rivière Kwé, la pêche électrique a été employée. On estime qu'il s'agit d'une méthode qui permet de capturer 20-30% des espèces présentes sur un tronçon de 50m d'un petit cours d'eau (Hortle & Pearson, 1990).

Figure 2: Pêche électrique (Creek de la Baie Nord, 26/05/2007)

Notre propre retour d'expérience sur le territoire permet d'obtenir des valeurs plus proches de 50% sur un premier passage. Il s'agit pourtant de la méthode la plus efficace si l'on excepte l'utilisation de la roténone, une méthode d'empoisonnement qui risque de déséquilibrer le stock total de poissons et cause ainsi des dégâts importants (CATALA, 1950; PORCHER, 1998).

Notons que les petites crevettes et les insectes n'étaient pas l'objectif prioritaire de cet inventaire. C'est pourquoi seule cette méthode de pêche a été choisie. Elle n'est effectivement pas adaptée aux très petits spécimens (de taille inférieure à 5 mm environ).

L'électricité est fournie par un appareil portable du type *HT-2000 Battery Backpack Electrofisher Halltech* qui émet de 50 à 950 volts à 30 ampères pour une puissance de 2 kilowatts. Le courant est réglé en fonction de la conductivité de l'eau. L'anode est plongée

vers l'avant, puis ramenée progressivement vers la surface. Dans un rayon d'environ de 2 à 5 mètres (selon la conductivité de l'eau), le poisson est pris dans un champ électrique, subit une nage inhibée, puis une nage forcée vers l'anode jusqu'au moment où une brève tétanie l'immobilise. Le poisson est alors pris à l'épuisette et déposé dans une bassine. Il s'agit d'un moyen de pêche non polluant pour lequel le poisson n'est aucunement blessé.

Ce type d'appareil de pêche électrique est adapté au cours d'eau que l'on peut entièrement prospecter à pied, d'une faible profondeur (moins d'un mètre de hauteur d'eau), à faible turbidité et à tout type de courant. Il nécessite l'aide de deux personnes par appareil de pêche munies d'épuisettes pour attraper la macrofaune attirée dans le champ électrique.

La pêche électrique atteint cependant ses limites si la conductivité de l'eau est supérieure à 700µ Siemens ou si la turbidité de l'eau est élevée (visibilité réduite).

Ce moyen de pêche, adapté aux eaux peu profondes (environ un mètre) et à tout type de courant, permet de prélever les poissons benthiques (vivants près des berges, entre les racines, enterrés dans le sable, dans les espaces interstitiels des graviers, sur les blocs, dans les cascades, etc.).

Nous disposons de 2 appareils de pêche électrique. Ils sont utilisés par des personnes expérimentés en respectant scrupuleusement les normes de sécurité (porteurs d'une attestation de formation aux premiers secours AFPS, équipés de cuissards ou waders isolants, de lunettes polarisantes, etc.). 1 à 2 tronçons de 100m peuvent être pêchés par jour.

- Avantages : efficace pour les poissons benthiques, adaptée aux petites rivières à courants variables, et de tout type de granulométrie ; les poissons capturés sont en bon état.
- Inconvénients : peu adaptée aux poissons pélagiques, aux nageurs rapides (mugilidés, kuhlidés,cichlidés,...).

III.2.7. Traitements des poissons

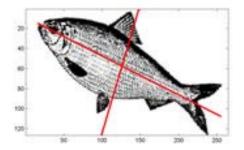

Les poissons capturés sont conservés dans un bac oxygéné, et anesthésiés par l'eugénol (l'huile de clou de girofle). L'état de léthargie dure quelques minutes, le temps nécessaire pour effectuer les mesures biométriques, les photographier, et les identifier. Ensuite ils sont transférés dans un bassin de réveil, puis remis dans une partie calme de la rivière.

Figure 3: Anesthésie par l'Eugénol (l'huile de clou de girofle)

Une équipe de deux personnes effectuera les identifications des poissons et les relevés

biométriques sur place. Concernant l'identification des espèces nouvelles, des spécialistes extérieurs, avec lesquels nous collaborons régulièrement, seront consultés (cf. Liste des partenaires).

Figure 4 : Biométrie : mesure de la longueur totale (jusqu'au bout de la caudale)

III.2.8. Biométrie

III.2.8.1 Longueur totale

La longueur totale, mesurée de la bouche à l'extrémité de la queue, a été établie à l'aide de règles à poissons (300 mm et 1 000 mm) précises au millimètre près et d'un pied à coulisse précis au dixième de millimètre. Pour des raisons d'homogénéité des données, la longueur totale est donnée en mm. Pour les crustacés, celle-ci s'entend de l'extrémité du rostre à l'extrémité du telson1 pour les crevettes et comprend la largeur du céphalothorax pour les crabes.

III.2.8.2 Poids

Le poids de chaque poisson et crustacé a été mesuré individuellement avec une balance électronique portable (MM-600) précise à 0,1 g et d'une capacité de 0,1 à 600g. Pour les poissons excédant ce poids, une balance à crochet d'une capacité de 6 kg et d'une précision de 50 g a été utilisée. Dans le cas d'individus de faible poids (< 0,1 g), une pesée globale par espèce et par lot a été effectuée.

Les biomasses (poids frais) ont été mesurées par station pour chaque taxon, si la quantité est suffisante pour permettre des mesures au milligramme (taxons les plus abondants ou les plus gros). La balance utilisée a été une Mettler Toledo AB 104 d'une précision de 0,1 mg (min 10 mg, max 101 mg).

III.2.8.3 Sexe

L'identification du sexe a été réalisée lorsque le dimorphisme sexuel était apparent sur l'animal vivant. Cette identification dépend en grande partie principalement de l'espèce et également de l'état de maturité sexuelle des individus. Quelques individus morts lors des manipulations ont été conservés au congélateur et disséqués pour déterminer le sexe au vu des gonades.

III.2.9. Identification

Les poissons capturés pré-triés par famille ou par genre, sont étiquetés sur le terrain et maintenus vivants dans des récipients réfrigérés durant la journée de pêche. Les espèces

2

facilement identifiables ont été anesthésiées¹ sur le terrain pour la durée des relevés biométriques, puis relâchées. Les autres ont été ramenés au laboratoire, identifiés à l'aide de 2 stéréo-microscopes (ZEISS, Stemi 2000 C et Stemi DV4) et les clés des bibliographies existantes (tableau 5), puis mesurés, pesés, sexés, et les anomalies annotée le jour même si possible.

Les techniques de pêche utilisées pour l'inventaire des poissons ont également permis de récolter des crustacés. De la même façon que les poissons, les individus ont été identifiés, mesurés, pesés, et si possible sexés (la présence d'œufs était notée).

Tableau 3: Bibliographie consultée pour la taxonomie des espèces

Année	Auteur	Titre	Editions
1915	WEBER M., De BEAUFORT,	Les Poissons d'eau douce de la Nouvelle- Calédonie	Nova Caledonia Zool., F. Sarasin et J. Roux
1984	NELSON Joseph S.	Fishes of the World	2 nd ed., ISBN 0-471-86475-7
1988		Diadromy in fishes: Migrations between Freshwater and Marine Environments	ISBN 0-88192-114-9, Timber Press, University Press, Cambridge
1991	Dr. Gerald R. Allen	Field guide to the Freshwater Fishes of New Guinea	ISBN 9980-85-304-2, Christensen Resarch Inst,, P.O.Box 305
1997	THOMSON, J.M.	The Muglidiae of the World	Mem. Of the Queensland Museum, Vol. 41, Part 3
1999	PÖLLABAUER C.	Faune ichtyologique et carcinologique de Nouvelle-Calédonie	DRN, Province Sud
2000	LABOUTE P., GRANDPERRIN René	Poissons de Nouvelle-Calédonie	Ed. C. Ledru
2001	ERBIO	Inventaire de la Faune Ichtyologique d'Eau douce et Caractérisation initiale du milieu	Mandat Bio-2 et 12b, Projet Koniambo, Etude Env. de Base
2002	G.R. Allen, S.H. Midgley, M. Allen	Field guide to the Freshwater Fishes of Australia	Western Australian Museum, ISBN 0 7307 5486 3
2003		Atlas des Poissons et des Crustacés d'eau douce de Nouvelle-Calédonie	ISBN 2-85653-552-6, Publications scientifiques du M.N.H.N.
2004	PUSEY B., KENNARD M. & ARTHINGTON A.	Freshwater Fishes of North-Eastern Australia	CSIRO Publishing, ISBN 0 643 06966 6

III.2.10. Traitements statistiques

III.2.10.1 Richesse spécifique et diversité

La composition spécifique dépend de la zoogéographie des espèces, qui est le résultat d'événements géologiques et climatiques passés. Elle dépend également, dans une large mesure, des conséquences écologiques du régime hydrologique. Les facteurs contraignants (conductivité élevée, déficit en oxygène, assèchement périodique, pollutions minérales ou organiques) conduisent à ce qu'une faune devienne peu diversifiée et, dans des conditions extrêmes, seules guelques espèces adaptées parviennent à subsister.

¹ CHANSEAU M., BOSC S., GALIAY E., OULES G. (2002) L'utilisation de l'huile de clou de girofle comme anesthésique pour les smolts de saumon atlantique (Salmo salar L.) et comparaison de ses effets avec ceux du 2-phénoxyéthanol. Bull. Fr. Pêche Piscic., 2002, 365-366: 579-589: L'huile de clou de girofle est un bon anesthésique agissant en faibles concentrations. Les concentrations optimales permettant la manipulation des poissons, les mesures des tailles et des poids se situent entre 1,7.10⁻⁴ mol.L⁻¹ et 2,35.10⁻⁴ mol.L⁻¹, soit entre 0,3 mL et 0,4 mL d'huile essentielle de clou de girofle (90% d'eugénol) pour 10 litres d'eau.

Les communautés de poissons et crustacés inventoriées sont globalement définies par leur composition taxonomique, leur densité et leur biomasse (Thollot, 1996). Un peuplement est donc caractérisé par sa richesse spécifique et sa diversité. Pour caractériser les peuplements (ichtyologiques), trois indices sont employés couramment :

- La richesse spécifique d'un peuplement (S) est le nombre d'espèces récoltées.
- L'indice de Shannon H' (exprimé en bit) permet de différencier des peuplements qui comporteraient un même nombre d'espèces mais avec des fréquences relatives très différentes : $H' = -\Sigma$ pi $\log 2$ pi, où pi est la fréquence relative de l'espèce i dans le peuplement. Cet indice de diversité spécifique varie à la fois en fonction du nombre d'espèces présentes et en fonction de l'abondance relative des diverses espèces.
- L'indice d'équitabilité peut être calculé afin de distinguer la part de l'abondance relative des différentes espèces:

E = H' / Hmax

dans lequel Hmax est la diversité maximale d'un peuplement de même richesse spécifique, diversité atteinte lorsque toutes les espèces ont la même abondance, c'est-à-dire (Hmax = log2 S), soit E = H' / log2 S. E varie de 0 (une espèce représentant la totalité des captures) à 1 (équirépartition des espèces). Les valeurs de l'équitabilité renseignent donc sur l'homogénéité des captures et l'équilibre du peuplement. Il est généralement admis que des valeurs inférieures à **0,80** traduisent un état de non-stabilité du peuplement (Daget, 1979).

III.2.10.2 Abondance

Les données sur les poissons ont été compilées par section d'échantillonnage, par station et pour l'ensemble des cours d'eau, à l'aide de tableaux indiquant :

- · le nombre absolu d'individus capturés par espèce et global;
- les densités et biomasses par unité de surface;
- la biomasse par unité de surface totale et par espèce.

Compte tenu du faible rendement des pêches expérimentales, peu de traitements statistiques ont pu être réalisés.

III.2.10.3 L'indice d'intégrité biotique (IIB)

L'élaboration et la mise en place d'un indice poissons reflétant la qualité des rivières représentent un outil précieux pour le suivi de la santé des écosystèmes. Ce type d'indice a une validité internationale. Il est possible ainsi de disposer d'un outil fiable et mesurable : l'Indice d'Intégrité Biotique a été développé par ERBIO pour les cours d'eau de la Nouvelle-Calédonie et présenté lors de la conférence internationales « Biodiversité Sciences et

етрус

gouvernance » à Paris en janvier 2005. L'IIB a été appliqué lors des études antérieures sur d'autres cours d'eau et sites miniers (en 2004 et 2005) et la méthodologie a prouvé son efficacité.

Etant donné la complexité et la spécificité de leurs exigences par rapport à l'habitat, les poissons sont de bons indicateurs de l'état hydrologique et morphologique des eaux dans lesquelles ils évoluent. L'indice d'intégrité biotique (IIB) est un outil sensible basé sur les relevés multifactoriels de ces communautés ichtyologiques. Il permet de qualifier l'état des cours d'eau de la Nouvelle-Calédonie et reflète d'une manière fiable chaque dégradation de milieu. Il permet ainsi de dégager à l'échelle régionale les points critiques sur lesquels il est nécessaire d'intervenir et les mesures d'amélioration pour assurer une protection durable de la biodiversité unique des cours d'eau de Nouvelle-Calédonie (Pöllabauer et Bargier, 2005). L'IIB est la somme de 19 notes, il combine 5 paramètres explorant différents aspects de la structure des communautés de poissons (tableau 6). Trois paramètres concernent la composition et l'abondance, un autre pour l'organisation trophique et un dernier pour la condition des poissons face aux crustacés. Il varie donc de 12 à 60 en 5 classes qualité pour l'évaluation de l'état écologique des cours d'eau :

Tableau 4: Classe de qualité de l'IIB

excellent	plus de 75				
bon	61-75				
passable	46-60				
pauvre	31-45				
très pauvre	inférieur ou égal à 30				

IV. RESULTATS

IV. 1. Revue bibliographique actualisée

Une revue de la littérature a été réalisée pour actualiser les données présentées en janvier 2005 (ERBIO, 2005).

IV.1.1. Normes et indicateurs de qualité de milieu

Les **normes AFNOR** suivantes apportent des éléments intéressants pour développer des outils et des méthodes de suivi standard, elles ont en partie été reprises, adaptées à la Nouvelle-Calédonie et appliquées lors de cette étude :

- NF EN 14011 (juillet 2003): Prélèvements de poissons par pêche électrique: ce document décrit les procédures à utiliser par des personnes qualifiées et formées dans l'évaluation des populations de poissons de rivières, pour attribuer un statut écologique à un cours d'eau.
- NF T90-344 (mai 2004): l'indice poissons rivière (IPR) (indice de classement de la qualité de l'eau): Ce document spécifie la méthode de détermination de l'Indice Poissons Rivière (IPR) qui permet de déterminer la qualité biologique générale des cours d'eau à partir de la connaissance de la structure des peuplements des poissons. L'IPR est applicable aux parties continentales des cours d'eau naturels ou anthropisés.
- PR NF ISO 23893-1 (avril 2006): Qualité de l'eau Mesures biochimiques et physiologiques sur poisson – Partie 1: Echantillonnage des poissons, manipulation et conservation des échantillons.
- NF EN 14614 (Janvier 2005): Qualité de l'eau: Guide pour l'évaluation des caractéristiques hydromorphologiques des rivières.

Notre bureau a acquis une seule norme supplémentaire depuis l'inventaire du mois de maijuin 2007, il s'agit de la norme :

• NF EN ISO 5667-1 : Lignes directrices pour la conception des programmes et des techniques d'échantillonnages.

IV. 2. Caractérisation des milieux et des habitats

Une bonne connaissance du fonctionnement des écosystèmes d'eau courante nécessite la prise en considération d'un certain nombre de variables physiques supposées les régir. Trois variables jouent un rôle essentiel pour la communauté biotique : la vitesse de courant, la hauteur d'eau et la granulométrie du lit.

IV.2.1. Caractéristiques mésologiques des stations

Pour chaque station et tronçon, plusieurs variables morphodynamiques et physico-chimiques ont été relevées (Tableau 5) :

La description de la pêche, la localisation géographique de la station (coordonnées GPS), la température de l'eau, la conductivité, la teneur en oxygène, la granulométrie du lit de la rivière, le faciès d'écoulement, la profondeur moyenne, la vitesse de courant moyen, la surface échantillonnée ainsi que les caractéristiques de berges et de la végétation rivulaire.

Tableau 5 : Caractérisation mésologiques des stations

Rivière		Kwé Ouest (KO1)	Kwé Ouest (KO2)	Kwé Nord CS (KN1)	Kwé Nord FW15 (KN2)	Kwé Nord FW16 (KN3)
Code Station		KWE_O- 300(1)	KWE_O-300(2)	KWE_N-CS	KWE_N-FW15	KWE_N-FW16
Date de pêche		26/09/2007	26/09/2007	28/09/2007	28/09/2017	11/10/2007
Coordonnées	58K	0 699 920	0 699 896	701 434	701 814	701 536
GPS (WGS 84)	UTM	7 532 052	7 532 135	7 533 858	7 532 972	7 532 829
Altitude	М	104	108	146	79	133
Longueur de tronçon	M	100m	100m	100m	100m	100m
Largeur moyenne de la station	M	13,02	9,10	6,20	5,96	5,52
Surface échantillonnée	m²	1302	910	620	596	552
Vitesse de courant moyenne	m/h	93,27	65,94	108,31	87,25	100,69
Caractérisation de l'habitat		Des mouilles de concavités entrecoupées de radiers et de rapides, faible profondeur, vitesse de courant moyenne, fond de rivière constitué de blocs, roche et galets, poussières rouges omniprésentes, turbidité élevée	Un grand plat courant de plus d'un mètre de profondeur, fond vaseux à particules très fines, peu de courant, puis des escaliers et radiers à courant plus rapide	Station du cours supérieur 800m linéaire au dessus de l'embranchement. Le faciès d'écoulement dominant sont les rapides, puis quelques zones calmes (chenal lentique). Des petites cascades ainsi qu'une de plus d'un mètre de hauteur en contrebas d'une piste qui croise la rivière en amont. Profondeur faible, vitesse de courant élevée.	Cette station de la Kwé Nord se trouve en aval d'un embranchement et en amont des travaux de construction pour le bassin de décantation. La largeur du cours d'eau est fortement rétrécit, le courant élevée dans le chenal lotique. Profondeur avoisinant 1m par endroit, eau claire, belle végétation rivulaire.	Station d'origine de Rescan FW16, la rivière se fourche dans un virage. Végétation couvrant en partie ou totalement le lit de rivière, de nombreux radiers et rapides avec un courant élevée.
Commentaires		En aval de la station des Neocallitropsis.	Le « trou » d'eau héberge des poissons pélagiques tels que carpes et mulets.	La coupure abrupte en contrebas d'une piste récemment ouverte impacte visiblement ce tronçon dans sa partie haute. Beaucoup de poussières fines colmatent la rivière.	Un grand trou d'eau de plus de 2m en aval de la station héberge un vivier de poissons, 13 mulets et plusieurs carpes y ont été observés.	

IV.2.2. Description des stations

Les paramètres relevés des stations se trouvent en annexe II.

IV.2.2.1 Kwé Ouest

Les faciès d'écoulement des tronçons de la Kwé Ouest sont en majorité des zones calmes de plat courant, les fonds sont constitués de roches, de blocs, de graviers et de sables, parfois couverts de vase et sédiments fins colmatant. Quelques radiers et rapides entrecoupent les zones

(figure 5). Quelques espèces pélagiques ont été observées (carpes, mulets), une espèce de gobie qui s'enterre dans le sable et la vase (*Awaous guamensis*), et une anguille *Anguilla marmorata*.

Figure 5 : Kwé Ouest : KWE_O-300(1) et KWE_O-300(2)

A: Plats courant de la KWE_O-300(2) hébergeant les carpes *Kuhlia rupestris*, les mulets du genre *Cestraeus sp.*, le gobie *Awaous guamensis* et l'anguille *Anguilla marmorata*; **B**: Dépôt colmatant de sédiments fins sur le fond; **C**: Radier en aval de la station des *Neocallitropsis*; **D**: Zone calme de la station KWE_O-300(1).

IV.2.2.2 Kwé Nord

La Kwé Nord a globalement une allure de torrent de montagne à fond rocheux et courant rapide. 3 stations ont été échantillonnées, le cours supérieur KWE N-CS FW16(2), le tronçon se termine par une cascade et une cuvette en contrebas d'une piste récemment ouverte (figure 6, A), la station KWE_N-FW-16(1) (figure 6, B et C), avec des « geisers» souterraines (figure 6,B), des escaliers et des plats courants.

Figure 6: Kwé Nord: KWE_N-CS -FW16(2) et KWE_N-FW16(1)

Les diffèrents faciès d'écoulement de la rivière Kwé Nord. A part le tronçon du cours supérieur (figure 6,A), la branche nord semble de bonne qualité, les berges sont couverte d'une forêt rivulaire dense offrant de l'ombre et des caches au lit de la rivière et à ses habitants (figure 6 C et D).

IV.2.3. Typologie des stations

Une typologie des cours d'eau selon l'impact observé lors de la phase terrain est présenté cidessous (tableau 6). La Wadjana et la rivière du Trou bleu apparaissent relativement préservées, le Creek de la Baie Nord, malgré des habitats dégradés a su maintenir une faune peu affectée, et la rivière Kwé qui apparaît fortement impactée.

Tableau 6 : Typologie des stations de la zone d'étude relativement à l'impact observé en 2007

Caractéristiques du cours d'eau	Rivière	Stations	Perturbations observables à la date de la campagne d'échantillonnage du 26- 29/09/2007 et le 11/10/2007	Echantillonnés en phase de :
Zones de référence, peu ou pas influencé				
Zones ayant subi un faible impact humain		FW15	Au moment de l'inventaire, peu de turbidité, peu de sédiments et poussières.	
Secteurs peu perturbés par des activités ou des interventions humaines, susceptibles d'être influencés par le projet.	Kwé Nord	FW CS FW16 FW16	Poussières minières, pollution organique, fond colmaté par endroit, végétation rivulaire dégradée ou absente	Construction
Secteurs fortement influencés à l'amont par des activités minières ou des interventions humaines	Rivière Kwé	KWE_O- 300(1) KWE_O- 300(2)	Fond colmaté par des poussières minières, forte turbidité, végétation rivulaire dégradé ou absente, écosystème fortement affecté	Construction

IV.2.4. Ripisvlve¹

La forêt bordant le réseau hydrographique (ripisylve) a une importance primordiale sur les communautés piscicoles et benthiques. En effet, une ripisylve fournie procure un ombrage en bord de cours d'eau ou sur sa totalité. Cet ombrage a un effet thermique non négligeable (baisse générale de la température). De plus la végétation développe des racines et des branches sur la berge qui servent d'abris vis à vis des prédateurs, d'abris hydraulique par rapport aux grandes vitesses de courant, de nutrition... Enfin cette végétation sert de filtre aux écoulements superficiels pour limiter l'apport des substances nocives ou des particules fines lors des pluies d'intensité moyenne.

¹ Ri**pisylve** (ripi= rive, sylva = bois): formation végétale où domine l'arbre, riveraine et dépendante d'un cours d'eau; écosystème forestier inondé de façon régulière ou exceptionnelle (source : http://www.fne.asso.fr/Ripisylves/glossaire.htm)

IV. 3. Inventaire faunistique

IV.3.1. Les communautés ichtvologiques

Dans les 5 stations étudiées, 4 espèces appartenant à 4 familles de poissons ont été capturées, aucune n'était endémique. Au total 11 poissons, dont 6 *Kuhlia rupestris* (figure 8), 3 mulets, dont 2 *Cestraeus oxyrhynchus* (le 3^e a été observé uniquement, l'espèce n'a donc pa pu être déterminé, une anguille *Anguilla marmorata* (figure 7) et un gobie Awaous guamensis.

Figure 7 . Anguille marbrée Anguilla marmorata

Figure 8 : Gobie Awaous guamensis (à gauche) et la carpe Kuhlia rupestris

Figure 9: Mulet noir Cestraeus plicatilis

Cestraeus plicatilis a deux lobes charnus qui se terminent au niveau de la mâchoire inférieur (ligne bleue); Cestraeus oxyrhynchus a des lobes plus courts qui se terminent à mi-hauteur de la mâchoire (ligne orange).

Tableau 7: Richesse spécifique et abondance relative par bassins versants

(26/09/2007-011/10/2007)

	Kwé Ouest		Kwé Nord			Abandanaa	Als and days as
	KWE_O- 300(1)	KWE_O- 300(2)	KWE_N- FW15	KWE_N- FW16	Total	Abondance relative	Abondance cumulée
Kuhlia rupestris	1	3		2	6	54,55	54,55
Cestraeus oxyrhynchus			2		2	18,18	72,73
Awaous guamensis		1			1	9,09	81,82
Cestraeus sp.		1			1	9,09	90,91
Anguilla marmorata		1			1	9,09	100,00
Effectif total par tronçon	1	6	2	2	11	100,00	
% par rivière	9,09	54,55	18,18	18,18			
Nombre d'espèces par rivière	1	4	1	1			

La richesse spécifique de poissons restait globalement très faible entre 1 à 4 espèces par affluent (tableau 7).

IV.3.2. Densités des populations

Dans les 2 affluents étudiés, les surfaces échantillonnaient représentaient 3 980m² (0,4 ha). La densité des populations est exprimée par le nombre de poissons capturés sur une surface donnée.

Les surfaces des 2 stations échantillonnées représentaient 2 212m² pour la Kwé Ouest et les 3 stations 1 768m² pour la Kwé Nord. Au total, les effectifs et la densité étaient très faible par rapport aux campagnes précédentes : 11 poissons au total ont été capturés sur une surface totale de 3980m². La densité moyenne globale était de 28 poissons / ha, celle de la Kwé Ouest de 32 poissons par ha et celle de la Kwé Nord 23 poissons par ha, soit environ 1/10 de la campagne précédente.

IV.3.3. Biomasse

La biomasse totale de poisson s'élevait à 944,5g, soit 2,37kg de poisson / ha, dont 3,56kg / ha pour la Kwé Ouest et 0,89 kg/ha pour la Kwé Nord. Les carpes *Kuhlia rupestris* représentaient 40,75% de la biomasse brute, les mulets noirs *Cestraeus sp.* 6,84%, la seule anguille *Anguilla marmorata* 50,8% de la biomasse totale.

Tableau 8: Captures en terme de biomasse / unité de surface

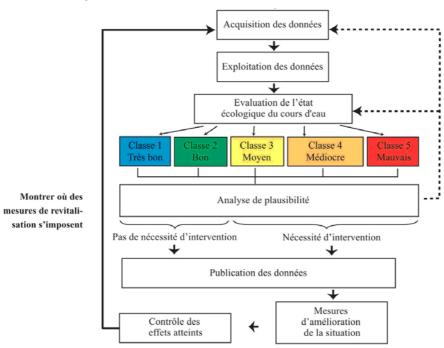
(Campagne du 23/05/2007-01/06/2007)

POISSONS	Biomasse (g)	Surface (m²)	g par m²	Biomasse (g) par ha	Biomasse (kg) par ha	Classement
KWE_O-300(1)	24,3	1302	0,019	186,64	0,19	4
KWE_O-300(2)	763,5	910	0,839	8 390,11	8,39	1
KWE_N-CS	0	620	0,000	0,00	0,00	5
KWE_N-FW16	123,1	552	0,223	2 230,07	2,23	2
KWE_N-FW15	33,6	596	0,056	563,76	0,56	3
TOTAL	944,50	3 980	0,237	2 373,12	2,37	

IV. 4. L'indice d'Intégrité biotique

L'indice d'intégrité » biotique a été développé par Dr. James KARR pour des rivières d'eau chaude (trop chaud pour les Salmonidae) en Illinois central et Indiana. Il a ensuite été » adapté

au contexte calédonien par ERBIO et présenté lors de la conférence « Biodiversité Sciences et Gouvernance » en janvier 2005 à Paris.


La somme des valeurs attribuées aux différents paramètres (cf. méthodologie) donne une valeur totale qui correspond à un certain état écologique.

Une fois la valeur de l'indice déterminée, la classe d'intégrité biotique doit engendrer un choix de gestion selon un processus logique (Figure 14).

Les valeurs élevées signifient qu'une rivière supporte et maintient une communauté d'organismes équilibrée, bien intégrée, capable de s'adapter au changement et ayant une composition spécifique, une diversité et une organisation fonctionnelle comparable à celle d'un écosystème naturel. Aucune intervention n'est nécessaire si ce n'est une surveillance de l'évolution de l'écosystème voire une protection dans certains cas.

Au contraire, les valeurs moyennes ou faibles mettent en avant un déséquilibre plus ou moins critique des communautés. Les individus, puis les espèces, ne pouvant s'adapter aux diverses perturbations vont modifier leur comportement, dégénérer voire disparaître, modifiant ainsi la communauté spécifique inféodée à un type de milieu. Les perturbations peuvent être très variées telles que la modification du milieu physique, la modification de la physico-chimie de l'eau, l'introduction de nouvelles espèces ou toute autre action directement ou indirectement imputée aux interventions humaines. Dans ce cas de figure, un plan de gestion conséquent et d'éventuelles mesures compensatoires pourront être envisagées. Le but visé est alors de stopper ou de réduire les perturbations, lorsque cela est possible, et de favoriser un transfert de protection sur une autre entité (sur le même bassin versant ou sur un autre) lorsque la situation est reconnue comme irréversible.

Figure 10: Déroulement de la méthode d'appréciation de l'état écologique des cours d'eau par IIB (Schager et Peter, 2002).

Le tableau 9 présente les scores d'IIB-NC obtenus pour les cours d'eau de la zone d'étude. Les rivières affichent une valeur d'IIB comprise entre 25 et 31, désignant un état d'intégrité pauvre à très pauvre de la rivière Kwé (Tableau 9).

Le score d'IIB ne devait cependant pas être calculé pour le bassin versant de la rivière Kwé, au vu des effectifs d'échantillonnage extrêmement faibles obtenues sur cette rivière, valeurs qui ne permettent pas d'obtenir un système de variables significatives, car seuls 11 individus ont été capturés; rappelons que la norme NF EN14011 conseille la capture de 200 individus minimum pour garantir la représentativité des résultats. Il apparaît cependant probable, d'après les analyses et observations générales, que la rivière Kwé se situe parmi les cours d'eau à classe d'intégrité très faible.

Il est important de noter que la significativité des résultats obtenus est plus grande lorsque l'ensemble du cours d'eau est échantillonné (cours inférieur, moyen et supérieur), la comparaison des résultats entre rivières doit tenir compte de cet élément.

Tableau 9. Indice d'intégrité biotique de Nouvelle-Calédonie sur les rivières de la zone d'étude (Campagne du 26/09/2007-11/10/2007)

ndice d'intégrité biotique		Moyen	Faible	Kwé Ouest		Kwé Nord	
	5	3	1	C*	Note	С	Note
Paramètre 1 : Richesse spécifique (nombre d'espèces de poissons / cours d'eau)							
- Nombre d'espèces indigènes	> 23	12 à 23	< 12	4	1	2	1
- Nombre d'espèces endémiques et/ou intolérantes	>3	2 à 3	1	0	0	0	0
- Nombre d'espèces d'un intérêt halieutique	>5	3 à 5	<3	4	3	2	1
- Nombre d'espèces endémiques menacées ou très rares (Nesogalaxias, Protogobius, Rhyacichthys)	3	2	1	0	0	0	0
- Nombre d'espèces tolérantes	<10%	10-20%	>20%	>20%	1	>20%	1
- Nombre d'espèces introduites	0	1 à 2	>2	0	5	0	5
Paramètre 2 : Diversité et équitabilité							
- Distribution des fréquences d'espèces indigènes	>10	5 à 10	<5	<5	1	<5	1
- Distribution des fréquences d'espèces endémiques et/ou intolérantes	>3	2 à 3	<2	0	0	0	0
- Distribution des fréquences d'espèces caractéristiques d'un intérêt halieutique	>5	3 à 5	<3	<3	1	2	1
- Distribution des fréquences d'espèces endémiques menacées ou très rares							
(Nesogalaxias, Protogobius, Rhyacichthys)	3	2	1	0	0	0	0
- Distribution des fréquences d'espèces de poissons tolérants	<5	5 à 10	>10	<5	5	1	5
- Distribution des fréquences d'espèces introduites	0	1 à 10	>10	0	0	0	0
Paramètre 3 : Organisation trophique (Nombre de poissons/ catégorie trophique/ cours d'eau)							
- Abondance relative d'omnivores (Kuhlia, Tilapia, Awaous)	<25%	25-70%	>70%	>70%	1	50%	2
- Abondance relative de carnivores (insectes, crevettes, mollusques, poissons, etc.)	>60%	30-60	<30	<30	1	0	0
- Abondance relative de benthophages (vase, algues, épiphytes, etc.)	>20%	12-20%	<12%	27%	5	50%	2
Paramètre 4 : Structure de la population (pyramide des âges)							
- Nombre d'espèces présentant les caractéristiques d'une population naturelle (toutes les classes d'âge bien représentées)	>3	2 à 3	<1	0	0	0	0
 Nombre d'espèces ne présentant que partiellement les caractéristiques d'une population naturelle 	>1	2 à 3	<3	0	0	0	0
- Population non naturelle (prédominance d'une classe d'âge)	<5	5 à 10	>10	4	5	2	5
Paramètre 5 : Présence de Macrobrachium							
- Macrobrachium (en % de la biomasse)	<15%	15-30%	>30%	16,6	2	330	1
	Note final		finale		31		25
C*= Base de calcul				pau	vre	très pa	auvre

L'IIB est un outil performant pour juger de l'état de santé général des rivières, il reste toutefois en cours d'évolution, mis à jour et affiné au fur et à mesure que s'étend la base de données des connaissances sur les cours d'eau et la faune ichtyologique de Nouvelle-Calédonie. De futurs développements visent à augmenter l'acuité des résultats, en prenant notamment en compte dans l'établissement de la notation, la superficie du bassin versant et les données mésologiques, telles que la nature du substratum, dont dépendent les communautés de faune ichtyologique.

IV.4.1. La faune carcinologique

Les pêches ont permis de capturer 530 crevettes dans toutes les stations confondues (tableau 10). Au total, 3 espèces ont pu être identifiées, la plus abondante *Macrobrachium aemulum* appartient à la famille des Palaemonidae autochtones ou grandes crevettes, les *Paratya* appartiennent à la famille des Atyidae, toutes les Paratya sont endémiques au territoire. Deux Paratya sont de statut incertain. En effet, aucune description ne correspond à ces deux espèces prélevées ; il pourrait s'agir de nouvelles espèces ou de variétés morphologiques.

Tableau 10 : Effectifs de crustacés pa	r station
--	-----------

	Kwé	Ouest	ŀ	Kwé Nord	t		Abandanaa	Abondance cumulée	
	KWE_O- 300(1)	KWE_O- 300(2)	KWE_N- FW15	KWE- N-CS	KWE_N- FW16	Total	Abondance relative		
Macrobrachium aemulum	116	185	141	25	27	494	93,21	93,21	
Paratya bouvieri	2		19		4	25	4,72	97,92	
Paratya intermedia		9				9	1,70	99,62	
Paratya sp.	1	2				2	0,38	100,00	
						0			
Effectif total par tronçon	118	196	160	25	31	530	100,00		
% par rivière	22,26	36,98	30,19	4,72	5,85	100,00			
Nombre d'espèces par rivière	3	3	2	1	2				

IV.4.1.1 Biomasse par espèce et par station

La biomasse des crustacés correspondait à un rendement de 1,5 kg/ ha (soit 530 crevettes de 602,10g pour 3980m²).

La biomasse moyenne par hectare – bien que faible-, varie d'une manière importante selon les deux affluents : ainsi la zone de rivière Kwé Ouest affichait une biomasse de 2,13 kg par ha, et la Kwé Nord 0,74 kg/ha. Une seule espèce, *Macrobrachium aemulum (figure 11)*, représentaient 99,5% de la biomasse totale des captures (toutes stations confondues).

Figure 11 : Macrobrachium aemulum, l'espèce dominante de crustacés

V. CONCLUSION

V. 1. Inventaire faunistique

Les pêches expérimentales réalisées du 26/09/2007-11/10/2007 lors de la campagne d'échantillonnage en période d'étiage dans 2 affluents de la rivière Kwé (Kwé Ouest et Kwé Nord) ont permis de capturer 11 poissons, et de confirmer la présence de 4 espèces de poissons appartenant aux 4 familles suivantes : Anguillidae (*A. marmorata*), Gobiidae (*Awaous guamensis*), Kuhliidae (*Kuhlia rupestris*) et Mugilidae (*Cestraeus oxyrhynchus* et *Cestraeus sp.*). Lors des mêmes pêches 530 crevettes ont été capturées appartenant à deux familles, les Palaemonidae (*Macrobrachium aemulum*) et les Atyidae (*Paratya bouvieri, Paratya intermedia, Paratya sp. 1, Paratya sp. 2*)..

V. 2. Densité

Dans les 2 affluents étudiés, les surfaces échantillonnaient représentaient 3 980m² (0,4 ha). La densité des populations est exprimée par le nombre de poissons capturés sur une surface donnée. Les surfaces échantillonnées représentaient 2 212m² pour la Kwé Ouest et 1 768m² pour la Kwé Nord. Au total, 11 poissons ont été capturés. La densité moyenne globale était de 28 poissons / ha, celle de la Kwé Ouest de 32 poissons par ha et celle de la Kwé Nord 23 poissons par ha, soit environ 1/10 de la campagne précédente.

La densité de crevettes est nettement supérieure à celle des poissons avec 1332 crustacés /ha.

V. 3. Biomasse

La biomasse totale de poisson s'élevait à 944,5g, soit 2,37kg de poisson / ha, dont 3,56kg / ha pour la Kwé Ouest et 0,89 kg/ha pour la Kwé Nord.

Celle des crevettes représente correspond à un rendement de 1,5 kg/ ha (soit 530 crevettes de 602,10g pour 3980m²).

La biomasse moyenne par hectare – bien que faible-, varie d'une manière importante selon les deux affluents : ainsi la zone de rivière Kwé Ouest affichait une biomasse de 2,13 kg par ha, et la Kwé Nord 0,74 kg/ha. Une seule espèce, *M. aemulum* représente 99,5% de la biomasse des crustacés.

V. 4. Indices d'intégrité biotique

Le indice d'intégrité biotique a été calculé pour les deux affluents, il reflète l'état de santé des écosystèmes (tableau 11). Les rivières affichent une valeur d'IIB comprise entre 25 et 31, désignant un état d'intégrité pauvre à très pauvres pour les tronçons étudiés de la rivière Kwé. Bien que les effectifs sont extrêmement faible pour le calcul d'un tel indice, il reflète néanmoins assez fidèlement l'intégrité des écosystèmes étudiés.

Tableau 11. Valeurs d'IIB des 2 affluents de la rivière Kwé, la Kwé Ouest et la Kwé Nord

		KWE Ouest	Kwé Nord
excellent	plus de 75		
bon	61-75		
passable	46-60		
pauvre	31-45	31	
très pauvre	inférieur ou égal à 30		25

V. 5. Espèces sensibles

Les petites crevettes du genre Paratya, sont d'origine ancienne et leur aire de répartition est surtout concentrée sur le Grand Sud. Il convient de préserver ces espèces d'éventuels impacts environnementaux. Leur taxonomie reste néanmoins incertaine.

VI. BIBLIOGRAPHIE

ALLEN, G.R., 1991. Field guide to the freshwater fishes of New Guinea. Publication n°9. Christensen Research Institute, Papua New Guinea. 268 p.

ARRIGNON, J., 1991. Aménagement piscicole des eaux douces (4e édition). Technique et Documentation Lavoisier, Paris. 631 p.

CHAZEAU J., 1993. Research on New Caledonian terrestrial fauna: achievment and prospects Biodiversity letters, 1, 123-129.

CLUZEL D., 1998. Du Gondwana au caillou : les origines géologiques de la Nouvelle-Calédonie. Mines, Bull. d'information du secteur minier de la Nouvelle-Calédonie, 2, 21-24.

DAGET J., 1979. Les modèles mathématiques en écologie. Paris, Masson. 172p.

DAJOZ R., 2000. Précis d'écologie. 7eme édition. Dunod.

DANLOUX J. ET LAGANIER R., 1991. Classification et quantification des phénomènes d'érosion, de transport et de sédimentation sur les bassins touchés par l'exploitation minière en Nouvelle-Calédonie Hydrol. continent., vol. 6, no 1, 1991: 1528

ERBIO, 2005. Ecosystèmes d'eau douce. Rapport de synthèse pour la Caractérisation de l'état initial. 85 p.

GARGOMINY O. 1996 Conséquences des introductions d'espèces animales et végétales sur la biodiversité en Nouvelle-Calédonie Rev. Ecol. (Terre Vie), vol. 51.

HOLTHUIS, 1969. Etudes hydrobiologiques en Nouvelle Calédonie (Mission 1965 du Premier Institut de Zoologie de l'Université de Vienne). The freshwater shrimps (Crustacea Decapoda, Natantia) of New Caledonia.

HORTLE, K.G. PEARSON R.G., 1990. Fauna of the Annan River system, Far North Queensland, with reference to the impact of tin mining. I. Fishes. Australian Journal of Marine and Freshwater Research 41, 6. pp 677-694

LAMOTTE, M., BOURLIERE, F. 1969. Problèmes d'écologie : Echantillonnage des peuplements animaux des milieux terrestres Editions Masson & Cie, Paris Masson 303p

LAMOTTE, M., BOURLIERE, F. 1971. Problèmes d'écologie: l'échantillonnage des peuplements. animaux des milieux aquatiques. Paris, Masson, 294 pp.

LA VIOLETTE, N. ET Y. RICHARD, 1996. Le bassin de la rivière Châteauguay : les communautés ichtyologiques et l'intégrité biotique du milieu, ministère de l'Environnement et de la Faune, Direction des écosystèmes aquatiques, Québec, Envirodoq no EN960454, rapport no EA-7, 64 p. et 9 annexes.

LA VIOLETTE N., FOURNIER D., DUMONT P. et MAILHOT Y., 2003. Caractérisation des communautés de poissons et développement d'un indice d'intégrité biologique pour le fleuve Saint-Laurent, 1995-1997. Société de la faune et des parcs du Québec.

MALAVOI J.. ET SOUCHON Y., 1989. Méthodologie de description et quantificationdes variables morphodynamiques d'un cours d'eau à fond caillouteux. Rev. De Géog. De Lyon, Vol. 64, N° 4, pp. 252-259.

MARQUET G., KEITH P. ET E. VIGNEUX, 2003. ATLAS DES POISSONS ET DES CRUSTACES D'EAU DOUCE DE NOUVELLE-CALEDONIE. PATRIMOINES NATURELS, 58 : 282P.

PÖLLABAUER, C., 1996: Etude de gestion rationnelle de la faune aquacole III: Inventaire 3 et Etude de croissance de *Kuhlia rupestris* et *Cestraeus plicatilis*. Service de l'Environnement de la Province Sud, pp.33. ISBN 2-9509343-3-1

PÖLLABAUER, C., Mars 1999 (a). Le milieu fluvio-lacustre de 4 rivières dans le Sud de la Grande Terre : Kwé, Trou Bleu, Wadjana et Creek de la Baie Nord. Rapport d'étude ; 67p.

PÖLLABAUER, C., 1999 (b). Faune ichtyologique et carcinologique de Nouvelle Calédonie. Rapport final de l'inventaire des cours d'eau de la Province Sud. ERBIO, pour la Province Sud NC, Direction des Ressources Naturelles. Juillet. 183 p.

PÖLLABAUER, C., Juillet 1999 (c). Inventaire faunistique de la doline de l'usine pilote Goro-Nickel et déversoir Rapport d'étude.

PÖLLABAUER, CH. 1999. Faune ichtyologique et carcinologique de Nouvelle-Calédonie : rapport final de l'inventaire faunistique des cours d'eau de la Province Sud / [ERBIO, Études et recherches biologiques ; pour la Direction des ressources naturelles, Province Sud] ; [réd. par] - ISBN 2-9509343-9-0

PÖLLABAUER, C. 2000. Deuxième Inventaire faunistique de la doline de l'usine pilote Goro-Nickel et du Déversoir, Rapport d'étude. 27p.

PÖLLABAUER, C. ET BARGIER N., 2005 : Indice d'Intégrité biotique : Proposition d'un outil d'évaluation de la qualité des rivières et des changements relatifs aux impacts divers. Poster. Conférence Biodiversité : Science et Gouvernance, Janvier 2005.

PORCHER, J.P., 1998. Réseau Hydrobiologique et Piscicole (R.H.P.), Cahier des Charges techniques. Conseil Syupérieur de la Pêche, Délégation Régionale n° 2, 84 rue de Rennes – 35510 CESSON SEVIGNE – France. Jean-pierre.porcher@csp.environnement.gouv.fr

SARASIN F. & ROUX J., Nova Caledonia, Kreidels Verl., Wiesbaden, A.Zool., 2 (1): 57-72.

SEBER G.A.F., 1982, The Estimation of Animal Abundance and Related Parameters.

SNC LAVALIN, 1995. Projet Goro Nickel, Nouvelle-Calédonie. Etude de caractérisation de l'environnement – Rapport N/Référence : 007445. INCO Exploration and Technical Services Inc.

THOMSON, J.M. (1997) The Mugilidae of the World, Mem. of the Queensland Museum, Vol. 41, part 3, pp.457-566.

WATSON R. & PÖLLABAUER C.: A new genus and species of freshwater goby from New Caledonia with a comlete lateral line. Senckenbergiana biologica 77 (2). Pp. 147-153.

WATSON, R. (1992) A review of the goboid fish genus Awaous from insular streams of the Pacific Plate. Ichtyol. Explor. Freshwaters 3 (2):pp 161-176

WEBER, M., L.F., DE BEAUFORT, 1953. The fishes of the Indo-Australian archipelago, X Gobioidea. E.J. Brill, Leiden. pp. 392.

WINNER, R.W., B.W. BOESEL, and M.P. FARRELL. 1980. Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 37: 647-655.

ANNEXE I : LISTE DES ESPÈCES RELEVÉES DURANT LES INVENTAIRES PRÉCÉDANTS

Tableau 12 : Listes des espèces recensées lors des inventaires précédents 1996-2004

Les cellules bleues indiquent la présence de l'espèce.

Famille		Espèce		de la Ba	aie Nord	Riv	. du Troi	u bleu		Kwé			Wadjan	a
Poissons		•	CI	CM	CS	CI	CM	CS	CI	CM	CS	CI	CM	CS
Acanthuridae	1	Acanthurus blochii												
Anguillidae	2	Anguilla marmorata												
Anguillidae	3	Anguilla reinhardtii												
Anguillidae	4	Anguilla obscura												
Anguillidae	5	Anguilla megastoma												
Anguillidae	6	Anguilla australis												
Apogonidae	7	Apogon amboinensis												
Carcharhinidae	8	Carcharhinus leucas												
Eleotridae	9	Eleotris melanosoma												
Eleotridae	10	Eleotris fusca												
Eleotridae	11	Ophiocara porocephala												
Eleotridae	12	Ophieleotris nsp.												
Gerreidae	13	Gerres filamentosus												
Gobiidae	14	Awaous guamensis												
Gobiidae	15	Glossogobius celebius												
Gobiidae	16	Periophtalmus argenilineatus												
Gobiidae	17	Redigobius bikolanus												
Gobiidae	18	Schismatogobius fuligimentus												
Gobiidae	19	Sicyopterus lagocephalus												
Gobiidae	20	Sicyopterus sarasini												
Gobiidae	21	Stenogobius yateiensis												
Kuhliidae	22	Kuhlia rupestris												
Kuhliidae	23	Kuhlia marginata												
Kuhliidae	24	Kuhlia munda												
Lutjanidae	25	Lutjanus argentimaculatus												
Lutjanidae	26	Lutjanus russeli												
Mugilidae	27	Cestraeus plicatilis												
Mugilidae	28	Cestraeus oxyrhynchus												
Mugilidae	29	Crenimugil crenilabis												
Rhyacichthydae	30	Protogobius attiti												
Sparidae	31	Acantopagrus berda												
Sphyraenidae	32	Sphyraena barracuda												
Syngnathidae	32	Microphis brachyurus brachyurus												
Teraponiadae	33	Terapon jarbua												

ANNEXE II: FICHES TERRAIN DE LA CAMPAGNE 2007

EXPLICATIONS et CODIFICAIONS POUR LA FICHE DE TERRAIN STANDARD Hydrologie: Exposition: 1. Plein soleil Ensoleillé 1. Crue 1. 2. 1/4 ombragé Nuageux 2. Lit plein 2. 1/2 ombragé 3. **Pluvieux** Moyennes eaux 3. 3. Basses eaux Forte pluie 3/4 ombragé Venté 5. 5. Trous d'eau Pollution: Section mouillée : lit du cours d'eau Encombrement du lit : submergé au moment du relevé. Algues vertes 1. Dépôt colmatant Algues brunes 2. Débris végétaux Lit mineur : lit du cours d'eau submergé 3. Encombres branchages Poussières minières lors d'une crue plein bord (retour 4. Détritus 4. Encombres détritus théorique 2 ans), matérialisé par la limite de la végétation arborée 5. Pas de pollution 5. Berges effondrées Nature végétation aquatique : Recouvrement: Faciès d'écoulement : schémas ci dessous pour déterminer la Algues unicellulaires 1. 0-5% 2. Algues filamenteuses 2. 6-20% proportion de chaque faciès. 21-50% 3. Algues incrustantes 3. 4. Characées, Mousses 4. 51-75% 5. Nageantes libres 5. >75%

Pente berge :

- 1. <10°
- 10-40° 2.

6. Hydrophytes Macrophytes

- 40-70° 3.
- >70° 4.

Nature des berges :

Naturelle ou Artificielle

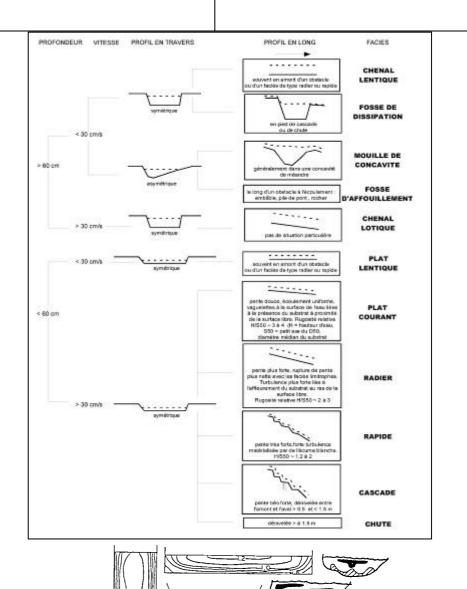
- 1. Stable
- Qq érosions 2.
- Très érodée 3.

Nature ripisylve :

- végétation primaire
- 2. Forêt humide
- 3. Forêt sèche
- Végétation secondaire
- 5. Maquis minier
- Savane 6.
- Plantation

Structure ripisylve:

- Absente
- Buissons 2.
- 3. Arbres isolés
- Rideau d'arbres
- Multistrate


Déversement végétal :

- 1. 0-5%
- 2. 6-20%
- 3. 21-50%
- 4. 51-75%
- >75%

Mesure de la vitesse maximale de courant :

L'hélice doit être située dans la zone noire sur les schémas de vue en coupe ci contre.

La zone hachurée est la zone de turbulence maximale.

Kwé Ouest	N° de S KWE		N° de tronçon	2	en a	val des Neocallitropsis		
	Date de pêch	ie	Ref. Étude :		CN: Nº42C7			
Moyen de pêc	26/09/2007	loctrique	Nb. d'appareils	2	GNi N°1367 Opérateurs : 4	ánuisattas : 1		
			c Marlier, Pöllabauer		•	epuiselles . 4		
Heure début:	14h00	Pause:	I viariici, i oliabauci	H. fin:	16h30	Compteur 1700		
GPS Début	141100	i ause.		11. 1111.	Altitude:	104m		
GPS Fin 100m	58K: 0 699	920	UTM: 7 532 052)	Altitude:	107m		
Analyses physi		/	OTIVI: 7 332 032	-	Aititude:	107111		
chimiques			Caractéristique	es mésolog	iques (cf. fiche	e explicative)		
T surface °C			Météo		ensoleillé	1		
T >1m °C			Hydrologie		Lit plein	2		
рН			Pollution		poussières minière	es 3		
Turbidité (NTU)			Exposition		plein soleil	1		
O2 dissous (mg/	1)		Encombrement	du lit	dêpot colmatant			
O2 dissous (%)			Nature vég. aqu	atique	0	0		
Conductivité (µS	5/cm)		Recouvrement		0-5%	1		
Granulométrie	(%)	Section mouillée	Lit mineur	Faciès d'é (cf. fiche ex	coulement (plicative)	%		
Rocher ou dalle	<u>(>1m)</u>	25%	25%	Chenal len	tique			
Blocs (>20cm)		25%	25%	Fosse de d	lissipation			
Galets (>2cm)		25%	50% végétation	Mouille de	concavité	25%		
Graviers (>2mm)				Mouille d'a	ffouillement			
Sables (>0,02mm		20%		Chenal lotique				
Limons/ vases		5%		Plat lentiqu	ie	15%		
Débris végét.				Plat courar		25%		
Largeur au départ (m)	13,20	26,60	Confees	Escalier		10%		
à 25m	11,60	34,60	Surface	Radier en	tresse	15%		
à 50m	10,60	9,30	échantil-	Rapides		10%		
à 75m	14,20	31,40	lonnée : 1302 m²	Cascade				
à 100m	15,50	23,90	1302 111	Chute				
Larg. Moy. :	13,02			Influence b	arrage			
Profondeur(m)	moyenne	maximale	Vitesse m/h	Moyenne	Maximale	Photo		
Prof. Départ	0,20	0,33	Vit. de départ	145,00	170,00	Oui		
Prof. à 25m	0,20	0,33	Vitesse à 25m	91,52	126,03	Oui		
Prof. à 50m	1,05	1,25	Vitesse à 50m	62,00	69,20	Oui		
Prof. à 75m	0,30	1,20	Vitesse à 75m	8,40	27,50	Oui		
Prof. à 100m	0,22	0,90	Vit. à 100m	89,50	143,50	Oui		
Caractéristique	· · · · · · · · · · · · · · · · · · ·			-,	Acc			
			Rive droite 10-40° stable uis minier	Nec	e situe en aval de celle du Retrophyllum minor m, poids 24.9g)			
Structure ripisylv		arbres isolés	multistrate					
Déversement vé	gétal	~30%	100%%	0				
Devis ERBIO n° 02/0407 - Contrat GNi n° 1367 -Avenant								

	N° de S	Station	N° de		1	Neocallitropsis		
Kwé Ouest	KWE	-400	tronçon		•	reocama opsis		
	Date de pêch	ie	Def Étude :		ON: N94207			
Moyen de pêch	26/09/2007	loctrique	Ref. Étude : Nb. d'appareils	2	GNi N°1367	l épuisettes : 4		
Nom des opérate		•				epuisettes . 4		
_			ivianier, i oliabadei No					
Heure début:	10h45	Pause:		Heure fin:	12h45	Compteur 2117		
GPS Début	58K: 0 699 9		UTM: 7 532 052		Altitude:	106m		
GPS Fin 100m	58K: 0 699 8	396	UTM: 7 532 135		Altitude:	108m		
Analyses physico-	chimiques		Caractéristique	es mesologiqu	·			
T surface °C		21,0°	Météo		ensoleillé	1		
T >1m °C			Hydrologie		Lit plein poussières	2		
pH			Pollution		minières	3		
Turbidité (NTU)		moyenne	Exposition		plein soleil	1		
O2 dissous (mg/l)		14,45	Encombrement		dêpot colmatar			
O2 dissous (%)			Nature végétation	on aquatique		0		
Conductivité (µS/c	em)	54,40	Recouvrement			1		
Granulométrie (%	6)	Section mouillée	Lit mineur	Faciès d'écoulement (cf. fiche explicative)		%		
Rocher ou dalle (>	-1m)	60%		Chenal lentique				
Blocs (>20cm)		30%		Fosse de diss	ipation			
Galets (>2cm)			végétation	Mouille de concavité				
Graviers (>2mm)				Mouille d'affou				
Sables (>0,02mm				Chenal lotique				
Limons/ vases		10%		Plat lentique				
Débris végétaux				Plat courant	80%			
Largeur au								
départ (m)	15,50	23,90		Escalier		10%		
à 25m	5,30	14,70	Surface	Radier		10%		
à 50m	5,70	14,90	échantil-	Rapides	ides			
à 75m	7,70	16,30	lonnée :	Cascade				
à 100m	11,30	20,10	910 m ²	Chute				
Largeur moy. :	9,10	17,98		Influence barra	age			
Profondeur (m)	moyenne	maximale	Vitesse m/h	Moyenne	Maximale	Photo		
D (D)			Vitesse de	400.00				
Prof. Départ	0,22	0,90	départ	123,63	135,68	Oui		
Prof. à 25m	0,47	0,53	Vitesse à 25m	40,02	120,50	Oui		
Prof. à 50m	0,52	0,87	Vitesse à 50m	39,60	48,00	Oui		
Prof. à 75m	0,49	0,72	Vitesse à 75m Vitesse à	48,60	61,80	Oui		
Prof. à 100m	0,66	0,82	100m	18,02	23,50	Oui		
Caractéristiques					Accès			
	Rive	Rive						
_	gauche	droite						
Pente berge (°)	<10	10-40		KWE OUEST: Station du Neocallitropsis et Retrophyllum minor: Espèces observées: Kuhlia rupestris (23,15 et 17cm); 1 mulet n (15cm) et 1 Awaous guamensis (13cm), 1 and				
Nature berges	stable .	stable						
Nature ripisylve	maquis							
Struct. Ripisylve	multis	strate		Anguilla marmorata (repérage visuel)				
Déversement								

	I											
	N° de S	Station	N° de		2							
	KWE No	'd FW-16	tronçon									
Date de pêche	11/10/2007		Ref. Étude :		GNi N°1367							
Moyen de pêc	he : Pêche é	lectrique	Nb. d'appareils : 2	1	Opérateurs :	3 épuis	ettes : 4					
Nom des opérate	eurs: Berton Ric	chard, Frédéric		hristine								
Heure début:	9h15	Pause:		Heure fin:	12h45	;	Compteur 2002					
GPS Début	58K: 701 53	6	UTM: 7 532 829)	Altitude	e:						
GPS Fin 100m	58K: IGN -7	2	UTM:		Altitude	e:						
Analyses physic chimiques	0-		Caractéristique	es mésolog	iques (cf. fic	he expl	icative)					
T surface °C	13h	26,00	Météo		ensoleillé	•	1					
T >1m °C		24,4°	Hydrologie		basses eaux		4					
pН		en panne	Pollution		poussières mini	ères	3					
Turbidité (NTU)			Exposition		1/2 ombragé		3					
O2 dissous (mg/l)	T	10,05	Encombrement		dêpot + algues	s	1+3					
00 diagona (0/)		404.50	Nature végétation	on			4					
O2 dissous (%)		134,50	aquatique		mousses, chara	cées	4					
Conductivité (µS/d	CIII)	90,10 Section	Recouvrement	Facilia diá	0-5% coulement		1					
Granulométrie (%	%)	mouillée	Lit mineur	(cf. fiche e			%					
Rocher ou dalle (>1m)	75%		Chenal len	tique							
Blocs (>20cm)				Fosse de d	dissipation							
Galets (>2cm)			végétation	Mouille de								
Graviers (>2mm)		5%		Mouille d'a	ffouillement							
Sables (>0,02mm		5%		Chenal loti	que							
Limons/ vases		5%		Plat lentiqu	ıe							
Débris végétaux		10%		Plat coura	nt		25%					
Largeur au départ (m)	6,40	9,20	Curtoso	Escalier			10%					
à 25m	4,10	5,70	Surface	Radier			25%					
à 50m	7,40		échantil-	Rapides			25%					
à 75m	5,30	7,50	lonnée : 552 m²	Cascade			15%					
à 100m	4,40	6,70	552 III⁻	Chute								
Largeur moy. :	5,52			Influence b	arrage							
Profondeur (m)	moyenne	maximale	Vitesse m/h	Moyenne	Maxima	le	Photo					
Prof. Départ	0,25	0,35	Vit. de départ	53,72	124,40)	Oui					
Prof. à 25m	0,31	0,66	Vitesse à 25m	118,15	213,40)	Oui					
Prof. à 50m	0,20	0,45	Vitesse à 50m	47,27	181,20)	Oui					
Prof. à 75m	0,24	0,64	Vitesse à 75m	34,32	211,20)	Oui					
Prof. à 100m	0,60	0,65	Vitesse à 100m	10,90	12,30		Oui					
Caractéristiques			plicative)		Acc	cès						
	Rive	Rive										
Dente harry (0)	gauche	droite		En partant de l'embranchement sur l'afflu								
Pente berge (°)	10-40°	10-40°					ur l'aπiuent ouest n embranchement,					
Nature berges	stable	stable		une chute	de 1,80m envir	on, piste	au dessus de la					
Nature ripisylve Structure	maquis	minier		chute. La station est en amont de la FW-16								
ripisylve	rideau o	d'arbres		l'origine. 2 Carpes, crevettes, mollusques, invertébrés								
Déversement				invertebres								
végétal	51-75%	51-75%										
	De	evis ERBIO n°	Devis ERBIO n° 02/0407 - Contrat GNi n° 1367 -Avenant									

	N° de S KWE Nor		N° de tronçor	1	1	Affluent ouest de la Kwé Nord, en amont de la FW16	
Date de pêche	28/09/2007	u 1 VV-10	Ref. Étude :		GNi N°1367		
Moyen de pêci		ectrique	Nb. d'appareils 2	: 1		épuisettes : 4	
Nom des opérate	u rs : Berton Ricl	hard, Frédéric N	larlier, Pöllabauer Ré	my, Pöllabau	er Christine		
Heure début:	11h30	Pause:		Heure fin:	13h00	Compteur 2092	
	58K: 701 434		UTM: 7 533 858	+			
	58K: 701 475	5	UTM: 7 533 845	146m			
Analyses physico	-chimiques		Caractéristique	s mésolog	iques (cf. fich nuageux		
T surface °C			Météo		2		
	pas de		Hydrologie		ux 3		
'	sondes!		Pollution		poussières miniè		
Turbidité (NTU)			Exposition		1/4 ombragé	2	
O2 dissous (mg/l)			Encombrement of		dêpot colmatar	nt 1	
O2 dissous (%)			Nature vég. aqua	atique			
Conductivité (µS/c	m)		Recouvrement	6-20%		2	
Granulométrie (%)	Section mouillée	II It MINGIIF	Faciès d'é (cf. fiche ex	%		
Rocher ou dalle (>	1m)	55%		Chenal lentique		25%	
Blocs (>20cm)		15%		Fosse de d	3%		
Galets (>2cm)			végétation	Mouille de			
Graviers (>2mm)				Mouille d'affouillement			
Sables (>0,02mm		20%		Chenal lotique			
Limons/ vases				Plat lentiqu	ıe		
Débris végétaux		10%		Plat courar			
Largeur au							
départ (m)	3,50	7,10		Escalier			
à 25m	7,60	11,10	Surface	Radier		12%	
à 50m	11,70	13,70		Rapides		55%	
à 75m	4,40	12,30	620 m ²	Cascade		5%	
à 100m	3,80	11,40		Chute			
Largeur moy. :	6,20			Influence b	arrage		
Profondeur (m)	moyenne	maximale	Vitesse m/h	Moyenne	Maximale	Photo	
Prof. Départ	0,15	0,23	Vitesse de départ	89,35	143,50	Oui	
Prof. à 25m	0,21	0,66	Vitesse à 25m	77,38	98,40	Oui	
Prof. à 50m	0,24	0,39	Vitesse à 50m	105,26	185,00	Oui	
Prof. à 75m	0,27	0,87	Vitesse à 75m	29,33	166,90	Oui	
Prof. à 100m	0,13	0,40	Vitesse à 100m	52,23	135,70	Oui	
Caractéristiques	· · · · · · · · · · · · · · · · · · ·			,	Accès		
-	Rive gauche	Rive droite	,				
Pente berge (°)	40-70°	40-70°		En partant de l'embranchement sur l'af ouest ~environ 800m linéaire, arrivé à			
Nature berges	stable	stable					
Nature ripisylve	maquis			embranchement, une chute de 1,80m e			
Structure ripisylve	multis		très érodé plus	piste au dessus de la chute. La stati			
Déversement végétal	>75%	>75%	haut!	amont de la FW-16 à l'origine.			
J	Devis ERBIO n° 02/0407 - Contrat GNi n° 1367 -Avenant						

						En aval de			
	N° de S		N° de		1	l'embranchement des affluents de			
	_	rd FW-15	tronçon			la Kwé Nord			
	Date de pêcl 28/09/2007	ne	Ref. Étude :		GNi N°1367	,			
Moyen de pêc		lectrique	Nb. d'appareil	s 1		4 épuisettes : 4			
Nom des opérat				•					
Heure début:	14h00	Pause:	Heure fin:	16h00	Compteui	r 2430			
GPS Début	58K: 701 81		UTM: 7 533 97	2					
GPS Fin 100m	58K: 701 86		UTM: 7 533 07		Altitude:				
Analyses physic					l e	iche explicative)			
T surface °C			Météo		ensoleillé	1			
					Moyennes				
T >1m °C	pas de		Hydrologie		eaux	3			
рН	sondes!		Pollution		Algues brunes, poussières	2+3			
Turbidité (NTU)			Exposition		plein soleil	1			
,	١			du lit	Débris	2+3			
O2 dissous (mg/l O2 dissous (%))		Encombrement		+branchages	4			
Conductivité (µS/	(om)		Végétation aqu Recouvrement	alique	Mousses 0-5%	1			
Conductivite (µS/	CIII)	Section	Recouviement	Eaciòs d'á	coulement				
Granulométrie (%)	mouillée	Lit mineur	(cf. fiche e		%			
Rocher ou dalle ((>1m)	35%		Chenal ler					
Blocs (>20cm)	· · · · · · · · · · · · · · · · · · ·	20%		Fosse de					
Galets (>2cm)		2070	végétation	Mouille de					
Graviers			vegetation	Woulde de					
(>2mm)				Mouille d'affouillement					
Sables									
(>0,02mm		40%		Chenal lot	ique	85%			
Limons/ vases				Plat lentique	ıe				
Débris végétaux		5%		Plat coura	nt				
Largeur départ									
(m)	3,50	18,40	Surface	Escalier					
à 25m	11,70	24,90	échantil-	Radier		1-01			
à 50m	3,20	23,70	lonnée :	Rapides		15%			
à 75m	6,60	28,40	596 m ²	Cascade					
à 100m	4,50	25,30		Chute	arraga				
Largeur moy. : Profondeur (m)	5,96	mavimala	Vitesse m/h	Influence b	Maximale	Photo			
Prof. Départ	moyenne 0,15	maximale 0,23	Vitesse m/n Vit. de départ	Moyenne 23,24	53,0	Photo Oui			
Prof. à 25m	0,13	0,66	Vit. de depart Vitesse à 25m	109,12	345,2	Oui			
Prof. à 50m	0,21	0,39	Vitesse à 50m	51,44	57,6	Oui			
Prof. à 75m	0,24	0,87	Vitesse à 75m	38,78	47,2	Oui			
Prof. à 100m	0,13	0,40	Vit. à 100m	62,23	84,7	Oui			
Caractéristiques	· · · · · · · · · · · · · · · · · · ·			52,25	Accè	L .			
	Rive	Rive	,,		7,000	<u> </u>			
	gauche	droite		En partant de l'embranchement vers l'aval, piste longe la rivière en parallèle, la station situe 200m en amont des travaux pour le bassin de décantation, la rivière est dévié c					
Pente berge (°)	<10°	10-40°							
Nature berges	stable	stable							
Nature ripisylve	Vég. rivulaire, Panc								
Structure	T uno	Arbres	très érodé plus		on lit naturel er	n contrebas.			
ripisylve	multistrate	isolés	haut!		Echelle limnin	netrique!			
D	51-75%	6-20%							
Dévers. végétal	n - / n 0/2	D- /110/2		GNi n° 1367 -Avenant					

ANNEXE III: LISTE FAUNISTIQUE DÉTAILLÉE DES STATIONS SUPPLEMENTAIRES

Rivière	Date de capture	Code Station	N°Echantillon	Espèce	Longueur (cm)	Masse (g)	Sexe	Conservation de l'échantillon	Identification/ Biométrie
KWE Nord	11/10/2007	KWE_N-FW16	P-477	Kuhlia rupestris	14,50	45,80		relâché	CP
KWE Nord	11/10/2007	KWE_N-FW16	P-480	Kuhlia rupestris	17,00	77,30		relâché	CP
Kwé Nord	28/09/2007	KWE N-FW15	P-478	Cestreaeus oxyrhynchus	14,60	26,90	mâle	congelé	CP
Kwé Nord	28/09/2007	KWE N-FW15	P-479	Cestreaeus oxyrhynchus	9,50	6,70	mâle	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1335	Paratya bouvieri	2,40	0,10	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1336	Paratya bouvieri	2,40	0,20	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1337	Paratya bouvieri	2,20	0,20	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1338	Paratya bouvieri	2,20	0,10	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1339	Paratya bouvieri	2,40	0,20	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1340	Paratya bouvieri	2,20	0,10	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1341	Paratya bouvieri	2,60	0,20	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1342	Paratya bouvieri	2,10	0,10	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1343	Paratya bouvieri	2,30	0,10	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1344	Paratya bouvieri	2,40	0,10	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1345	Paratya bouvieri	2,20	0,10	sans œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1346	Paratya bouvieri	2,30	0,10	œufs	alcool 90°	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1347	Macrobrachium aemulum	4,02	1,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1348	Macrobrachium aemulum	3,60	0,60	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1349	Macrobrachium aemulum	4,30	1,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1350	Macrobrachium aemulum	4,37	1,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1351	Macrobrachium aemulum	4,06	1,00	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1352	Macrobrachium aemulum	3,77	0,90	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1353	Macrobrachium aemulum	3,53	0,60	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1354	Macrobrachium aemulum	4,56	1,10	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1355	Macrobrachium aemulum	4,01	0,90	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1356	Macrobrachium aemulum	4,02	0,90	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1357	Macrobrachium aemulum	3,88	0,80	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1358	Macrobrachium aemulum	3,78	0,60	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1359	Macrobrachium aemulum	3,40	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1360	Macrobrachium aemulum	4,26	1,40	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1361	Macrobrachium aemulum	5,48	2,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1362	Macrobrachium aemulum	4,52	1,40	sans œufs	congelé	СР

Kwé Nord	28/09/2007	KWN-FW15	C-1363	Macrobrachium aemulum	4,63	1,80	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1364	Macrobrachium aemulum	4,33	1,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1365	Macrobrachium aemulum	5,20	1,90	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1366	Macrobrachium aemulum	5,53	2,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1367	Macrobrachium aemulum	4,64	1,10	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1368	Macrobrachium aemulum	3,58	0,50	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1369	Macrobrachium aemulum	4,23	1,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1370	Macrobrachium aemulum	5,00	1,80	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1371	Macrobrachium aemulum	4,14	0,80	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1372	Macrobrachium aemulum	3,00	0,30	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1373	Macrobrachium aemulum	3,26	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1374	Macrobrachium aemulum	3,00	0,40	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1375	Macrobrachium aemulum	3,28	0,50	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1376	Macrobrachium aemulum	3,75	0,80	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1377	Macrobrachium aemulum	3,00	0,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1378	Macrobrachium aemulum	4,28	0,80	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1379	Macrobrachium aemulum	3,57	0,50	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1380	Macrobrachium aemulum	3,86	0,70	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1381	Macrobrachium aemulum	3,97	0,90	œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1382	Macrobrachium aemulum	3,72	0,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1383	Macrobrachium aemulum	3,53	0,50	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1384	Macrobrachium aemulum	3,62	0,60	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1385	Macrobrachium aemulum	3,00	0,30	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1386	Macrobrachium aemulum	3,11	0,50	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1387	Macrobrachium aemulum	3,60	1,00	œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1388	Macrobrachium aemulum	2,96	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1389	Macrobrachium aemulum	3,25	0,50	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1390	Macrobrachium aemulum	3,36	0,40	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1391	Macrobrachium aemulum	3,80	0,80	œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1392	Macrobrachium aemulum	3,33	0,60	œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1393	Macrobrachium aemulum	3,29	0,40	œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1394	Macrobrachium aemulum	3,17	0,50	œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1395	Macrobrachium aemulum	3,27	0,80	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1396	Macrobrachium aemulum	3,67	0,40	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1397	Macrobrachium aemulum	3,20	0,30	sans œufs	congelé	СР

Kwé Nord	28/09/2007	KWN-FW15	C-1398	Macrobrachium aemulum	3,10	0,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1399	Macrobrachium aemulum	3,30	0,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1400	Macrobrachium aemulum	3,59	0,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1401	Macrobrachium aemulum	3,60	0,40	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1402	Macrobrachium aemulum	3,20	0,60	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1403	Macrobrachium aemulum	3,50	1,00	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1404	Macrobrachium aemulum	4,10	0,70	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1405	Macrobrachium aemulum	3,77	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1406	Macrobrachium aemulum	2,90	0,50	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1407	Macrobrachium aemulum	3,17	0,80	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1408	Macrobrachium aemulum	3,60	0,80	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1409	Macrobrachium aemulum	3,80	0,50	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1410	Macrobrachium aemulum	3,23	0,50	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1411	Macrobrachium aemulum	3,12	0,50	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1412	Macrobrachium aemulum	3,10	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1413	Macrobrachium aemulum	3,20	0,50	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1414	Macrobrachium aemulum	3,26	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1415	Macrobrachium aemulum	3,14	0,50	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1416	Macrobrachium aemulum	3,27	0,70	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1417	Macrobrachium aemulum	3,55	0,50	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1418	Macrobrachium aemulum	3,25	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1419	Macrobrachium aemulum	3,50	0,30	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1420	Macrobrachium aemulum	3,00	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1421	Macrobrachium aemulum	3,10	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1422	Macrobrachium aemulum	3,00	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1423	Macrobrachium aemulum	2,80	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1424	Macrobrachium aemulum	2,34	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1425	Macrobrachium aemulum	3,10	0,60	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1426	Macrobrachium aemulum	3,42	0,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1427	Macrobrachium aemulum	3,80	0,70	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1428	Macrobrachium aemulum	3,72	0,40	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1429	Macrobrachium aemulum	2,89	0,60	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1430	Macrobrachium aemulum	3,10	0,70	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1431	Macrobrachium aemulum	2,93	0,50	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1432	Macrobrachium aemulum	2,83	0,60	œufs	congelé	CP

Kwé Nord	28/09/2007	KWN-FW15	C-1433	Macrobrachium aemulum	3,11	0,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1434	Macrobrachium aemulum	2,90	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1435	Macrobrachium aemulum	3,05	0,40	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1436	Macrobrachium aemulum	2,92	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1437	Macrobrachium aemulum	2,92	0,50	œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1438	Macrobrachium aemulum	3,24	0,40	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1439	Macrobrachium aemulum	3,15	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1440	Macrobrachium aemulum	3,76	0,40	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1441	Macrobrachium aemulum	3,60	0,30	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1442	Macrobrachium aemulum	2,69	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1443	Macrobrachium aemulum	2,87	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1444	Macrobrachium aemulum	3,10	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1445	Macrobrachium aemulum	3,00	0,40	œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1446	Macrobrachium aemulum	2,83	0,30	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1447	Macrobrachium aemulum	3,03	0,30	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1448	Macrobrachium aemulum	2,63	0,10	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1449	Macrobrachium aemulum	2,00	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1450	Macrobrachium aemulum	2,40	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1451	Macrobrachium aemulum	2,20	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1452	Macrobrachium aemulum	2,70	0,40	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1453	Macrobrachium aemulum	3,17	0,30	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1454	Macrobrachium aemulum	2,68	0,40	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1455	Macrobrachium aemulum	2,53	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1456	Macrobrachium aemulum	2,70	0,30	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1457	Macrobrachium aemulum	3,30	0,20	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1458	Macrobrachium aemulum	2,78	0,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1459	Macrobrachium aemulum	2,52	0,10	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1460	Macrobrachium aemulum	2,19	0,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1461	Macrobrachium aemulum	1,90	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1462	Macrobrachium aemulum	2,42	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1463	Macrobrachium aemulum	2,70	0,20	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1464	Macrobrachium aemulum	2,61	0,20	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1465	Macrobrachium aemulum	2,62	0,30	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1466	Macrobrachium aemulum	2,68	0,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1467	Macrobrachium aemulum	1,98	0,20	sans œufs	congelé	СР

Kwé Nord	28/09/2007	KWN-FW15	C-1468	Macrobrachium aemulum	2,37	0,00	sans œufs	congelé	СР
Kwé Nord	28/09/2007	KWN-FW15	C-1469	Macrobrachium aemulum	2,30	0,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1470	Macrobrachium aemulum	2,10	0,40	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1471	Macrobrachium aemulum	2,94	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1472	Macrobrachium aemulum	2,61	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1473	Macrobrachium aemulum	2,67	0,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1474	Macrobrachium aemulum	2,41	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1475	Macrobrachium aemulum	2,61	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1476	Macrobrachium aemulum	3,20	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1477	Macrobrachium aemulum	2,42	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1478	Macrobrachium aemulum	2,07	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1479	Macrobrachium aemulum	1,98	0,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1480	Macrobrachium aemulum	2,14	1,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1481	Macrobrachium aemulum	2,50	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1482	Macrobrachium aemulum	2,12	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1483	Macrobrachium aemulum	2,54	0,20	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1484	Macrobrachium aemulum	2,05	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1485	Macrobrachium aemulum	2,39	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1486	Macrobrachium aemulum	2,62	0,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1487	Macrobrachium aemulum	2,21	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1488	Paratya bouvieri	1,61	0,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1489	Paratya bouvieri	1,90	0,10	chlorophylle	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1490	Paratya bouvieri	1,93	0,10	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1491	Paratya bouvieri	1,69	0,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1492	Paratya bouvieri	1,73	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1493	Paratya bouvieri	1,70	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-FW15	C-1494	Paratya bouvieri	1,56	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1495	Macrobrachium aemulum	6,75	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1496	Macrobrachium aemulum	6,33	4,00	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1497	Macrobrachium aemulum	6,45	3,80	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1498	Macrobrachium aemulum	6,17	3,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1499	Macrobrachium aemulum	6,06	3,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1500	Macrobrachium aemulum	5,18	2,10	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1501	Macrobrachium aemulum	4,56	1,20	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1502	Macrobrachium aemulum	5,73	2,80	sans œufs	congelé	CP

Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1503	Macrobrachium aemulum	4,22	1,40	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1504	Macrobrachium aemulum	5,15	2,20	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1505	Macrobrachium aemulum	4,50	1,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1506	Macrobrachium aemulum	4,39	1,40	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1507	Macrobrachium aemulum	4,98	1,80	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1508	Macrobrachium aemulum	5,20	2,90	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1509	Macrobrachium aemulum	4,57	1,40	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1510	Macrobrachium aemulum	4,58	1,80	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1511	Macrobrachium aemulum	4,03	0,90	œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1512	Macrobrachium aemulum	3,58	0,60	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1513	Macrobrachium aemulum	3,10	0,40	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1514	Macrobrachium aemulum	2,94	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1515	Macrobrachium aemulum	3,61	0,50	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1516	Macrobrachium aemulum	3,37	0,30	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1517	Macrobrachium aemulum	2,42	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1518	Macrobrachium aemulum	2,51	0,10	sans œufs	congelé	CP
Kwé Nord	28/09/2007	KWN-CS FW16(2)	C-1519	Macrobrachium aemulum	2,63	0,20	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1520	Macrobrachium aemulum	4,74	1,40	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1521	Macrobrachium aemulum	4,35	1,30	œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1522	Macrobrachium aemulum	5,43	2,50	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1523	Macrobrachium aemulum	4,34	1,10	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1524	Macrobrachium aemulum	3,54	0,80	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1525	Macrobrachium aemulum	3,38	0,60	œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1526	Macrobrachium aemulum	3,26	0,50	œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1527	Macrobrachium aemulum	3,78	0,70	œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1528	Macrobrachium aemulum	3,77	0,80	œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1529	Macrobrachium aemulum	3,22	0,40	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1530	Macrobrachium aemulum	3,10	0,50	œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1531	Macrobrachium aemulum	3,20	0,30	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1532	Macrobrachium aemulum	3,06	0,50	œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1533	Macrobrachium aemulum	2,88	0,30	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1534	Macrobrachium aemulum	2,85	0,50	œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1535	Macrobrachium aemulum	2,20	0,00	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1536	Macrobrachium aemulum	2,18	0,20	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1537	Macrobrachium aemulum	2,07	0,10	sans œufs	congelé	CP

Kwé Nord	11/10/2007	KWN-FW16(1)	C-1538	Macrobrachium aemulum	1,90	0,10	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1539	Macrobrachium aemulum	1,94	0,10	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1540	Macrobrachium aemulum	2,78	0,30	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1541	Macrobrachium aemulum	2,33	0,10	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1542	Macrobrachium aemulum	1,80	0,00	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1543	Macrobrachium aemulum	2,32	0,20	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1544	Macrobrachium aemulum	2,00	0,10	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1545	Macrobrachium aemulum	3,30	0,70	œufs	_	
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1546	Macrobrachium aemulum	1,70	0,00	sans œufs		
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1547	Paratya bouvieri	2,00	0,10	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1548	Paratya bouvieri	1,71	0,00	sans œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1549	Paratya bouvieri	2,22	0,20	œufs	congelé	CP
Kwé Nord	11/10/2007	KWN-FW16(1)	C-1550	Paratya bouvieri	2,00	0,10	œufs	congelé	СР
KWE Ouest	26/09/2007	KWE O-300(1)	P-470	Kuhlia rupestris	22,20	24,30		relâché	CP
KWE Ouest	26/09/2007	KWE O-300(2)	P-471	Kuhlia rupestris*	23,00	153,00		relâché	CP
KWE Ouest	26/09/2007	KWE O-300(2)	P-472	Kuhlia rupestris*	15,00	12,50		relâché	CP
KWE Ouest	26/09/2007	KWE O-300(2)	P-473	Kuhlia rupestris*	17,00	72,00		relâché	CP
KWE Ouest	26/09/2007	KWE O-300(2)	P-474	Cestraeus sp.*	15,00	31,00		relâché	CP
KWE Ouest	26/09/2007	KWE O-300(2)	P-475	Awaous guamensis*	13,00	15,00		relâché	CP
KWE Ouest	26/09/2007	KWE O-300(2)	P-476	Anguilla marmorata*	60,00	480,00		relâché	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1020	Macrobrachium aemulum	6,30	3,10	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1021	Macrobrachium aemulum	6,00	2,70	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1022	Macrobrachium aemulum	5,80	2,10	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1023	Macrobrachium aemulum	5,20	1,60	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1024	Macrobrachium aemulum	4,10	2,50	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1025	Macrobrachium aemulum	6,20	1,70	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1026	Macrobrachium aemulum	5,10	1,50	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1027	Macrobrachium aemulum	5,00	1,80	œufs	congelé	СР
Kwé Ouest	26/09/2007	KWE-300(1)	C-1028	Macrobrachium aemulum	5,10	2,80	sans œufs	congelé	СР
Kwé Ouest	26/09/2007	KWE-300(1)	C-1029	Macrobrachium aemulum	6,00	2,40	sans œufs	congelé	СР
Kwé Ouest	26/09/2007	KWE-300(1)	C-1030	Macrobrachium aemulum	5,70	2,30	sans œufs	congelé	СР
Kwé Ouest	26/09/2007	KWE-300(1)	C-1031	Macrobrachium aemulum	4,60	1,00	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1032	Macrobrachium aemulum	5,10	1,40	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1033	Macrobrachium aemulum	4,90	1,20	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1034	Macrobrachium aemulum	4,80	1,10	sans œufs	congelé	CP

Kwé Ouest	26/09/2007	KWE-300(1)	C-1035	Macrobrachium aemulum	4,50	1,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1036	Macrobrachium aemulum	4,70	1,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1037	Macrobrachium aemulum	3,60	0,60	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1038	Macrobrachium aemulum	4,70	1,20	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1039	Macrobrachium aemulum	4,50	1,30	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1040	Macrobrachium aemulum	4,90	1,40	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1041	Macrobrachium aemulum	5,00	1,30	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1042	Macrobrachium aemulum	4,50	1,00	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1043	Macrobrachium aemulum	3,90	0,70	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1044	Macrobrachium aemulum	4,60	1,20	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1045	Macrobrachium aemulum	4,60	1,20	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1046	Macrobrachium aemulum	3,80	0,70	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1047	Macrobrachium aemulum	4,00	1,00	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1048	Macrobrachium aemulum	4,50	1,20	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1049	Macrobrachium aemulum	4,40	1,10	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1050	Macrobrachium aemulum	4,80	1,00	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1051	Macrobrachium aemulum	4,80	1,30	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1052	Macrobrachium aemulum	3,80	0,80	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1053	Macrobrachium aemulum	4,00	0,80	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1054	Macrobrachium aemulum	3,90	1,00	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1055	Macrobrachium aemulum	4,00	0,70	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1056	Macrobrachium aemulum	3,60	0,80	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1057	Macrobrachium aemulum	3,90	0,70	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1058	Macrobrachium aemulum	3,20	0,50	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1059	Macrobrachium aemulum	3,80	0,60	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1060	Macrobrachium aemulum	3,70	1,00	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1061	Macrobrachium aemulum	3,30	0,50	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1062	Macrobrachium aemulum	3,40	0,50	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1063	Macrobrachium aemulum	4,20	0,80	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1064	Macrobrachium aemulum	4,00	0,90	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1065	Macrobrachium aemulum	3,20	0,60	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1066	Macrobrachium aemulum	3,40	0,40	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1067	Macrobrachium aemulum	3,60	0,60	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1068	Macrobrachium aemulum	3,40	0,70	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1069	Macrobrachium aemulum	3,40	0,60	œufs	congelé	CP

Kwé Ouest	26/09/2007	KWE-300(1)	C-1070	Macrobrachium aemulum	3,50	0,50	œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1071	Macrobrachium aemulum	3,70	0,70	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1072	Macrobrachium aemulum	4,20	0,80	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1073	Macrobrachium aemulum	4,50	0,90	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1074	Macrobrachium aemulum	4,40	1,00	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1075	Macrobrachium aemulum	4,10	0,70	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1076	Macrobrachium aemulum	3,20	0,50	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1077	Macrobrachium aemulum	3,40	0,50	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1078	Macrobrachium aemulum	3,50	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1079	Macrobrachium aemulum	3,00	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1080	Macrobrachium aemulum	3,50	0,50	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1081	Macrobrachium aemulum	3,00	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1082	Macrobrachium aemulum	2,70	0,70	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1083	Macrobrachium aemulum	3,60	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1084	Macrobrachium aemulum	2,70	0,40	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1085	Macrobrachium aemulum	3,20	0,60	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1086	Macrobrachium aemulum	3,20	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1087	Macrobrachium aemulum	2,80	0,40	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1088	Macrobrachium aemulum	3,10	0,40	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1089	Macrobrachium aemulum	3,10	0,40	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1090	Macrobrachium aemulum	3,40	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1091	Macrobrachium aemulum	3,00	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1092	Macrobrachium aemulum	2,40	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1093	Macrobrachium aemulum	3,20	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1094	Macrobrachium aemulum	2,90	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1095	Macrobrachium aemulum	2,90	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1096	Macrobrachium aemulum	2,70	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1097	Macrobrachium aemulum	2,80	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1098	Macrobrachium aemulum	2,80	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1099	Macrobrachium aemulum	3,00	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1100	Macrobrachium aemulum	2,90	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1101	Macrobrachium aemulum	2,30	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1102	Macrobrachium aemulum	2,50	0,10	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1103	Macrobrachium aemulum	3,00	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1104	Macrobrachium aemulum	2,50	0,20	sans œufs	congelé	СР

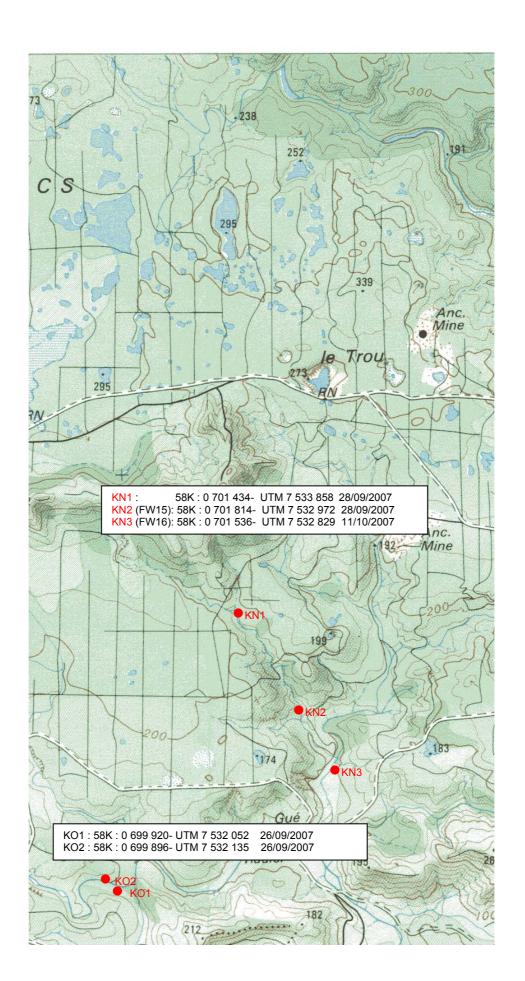
Kwé Ouest	26/09/2007	KWE-300(1)	C-1105	Macrobrachium aemulum	2,40	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1106	Macrobrachium aemulum	2,00	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1107	Macrobrachium aemulum	2,80	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1108	Macrobrachium aemulum	2,50	0,30	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1109	Macrobrachium aemulum	2,60	0,10	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1110	Macrobrachium aemulum	2,90	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1111	Macrobrachium aemulum	2,90	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1112	Macrobrachium aemulum	2,70	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1113	Macrobrachium aemulum	2,70	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1114	Macrobrachium aemulum	2,80	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1115	Macrobrachium aemulum	2,70	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1116	Macrobrachium aemulum	2,50	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1117	Macrobrachium aemulum	2,50	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1118	Macrobrachium aemulum	2,70	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1119	Macrobrachium aemulum	2,50	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1120	Macrobrachium aemulum	2,50	0,20	sans œufs	congelé	СР
Kwé Ouest	26/09/2007	KWE-300(1)	C-1121	Macrobrachium aemulum	2,60	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1122	Macrobrachium aemulum	2,30	0,10	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1123	Macrobrachium aemulum	2,40	0,20	sans œufs	congelé	СР
Kwé Ouest	26/09/2007	KWE-300(1)	C-1124	Macrobrachium aemulum	2,20	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1125	Macrobrachium aemulum	2,70	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1126	Macrobrachium aemulum	2,10	0,10	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1127	Macrobrachium aemulum	2,50	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1128	Macrobrachium aemulum	2,40	0,10	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1129	Macrobrachium aemulum	2,10	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1130	Macrobrachium aemulum	2,20	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1131	Macrobrachium aemulum	2,50	0,20	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1132	Macrobrachium aemulum	2,40	0,20	sans œufs	congelé	СР
Kwé Ouest	26/09/2007	KWE-300(1)	C-1133	Macrobrachium aemulum	2,40	0,10	sans œufs	congelé	СР
Kwé Ouest	26/09/2007	KWE-300(1)	C-1134	Macrobrachium aemulum	2,10	0,10	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1135	Macrobrachium aemulum	2,00	0,10	sans œufs	congelé	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1136	Paratya bouvieri	2,70	0,10	petits œufs	Alcool à 90°	CP
Kwé Ouest	26/09/2007	KWE-300(1)	C-1137	Paratya bouvieri	2,60	0,10	sans œufs	Alcool à 90°	CP

Kwé Ouest	26/09/2007	KWE-300(1)	C-1138	Paratya sp. gros œufs, peu de dents sur le			gros œufs		
		()		rostre	1,80	0,00		Alcool à 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1139	Macrobrachium aemulum		1,00	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1140	Macrobrachium aemulum		1,50	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1141	Macrobrachium aemulum		1,50	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1142	Macrobrachium aemulum		0,70	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1143	Macrobrachium aemulum		1,30	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1144	Macrobrachium aemulum		1,50	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1145	Macrobrachium aemulum		1,60	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1146	Macrobrachium aemulum		1,20	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1147	Macrobrachium aemulum		1,30	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1148	Macrobrachium aemulum		1,40	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1149	Macrobrachium aemulum		1,20	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1150	Macrobrachium aemulum		2,20	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1151	Macrobrachium aemulum		0,90	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1152	Macrobrachium aemulum		1,80	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1153	Macrobrachium aemulum		1,40	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1154	Macrobrachium aemulum		1,00	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1155	Macrobrachium aemulum		1,10	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1156	Macrobrachium aemulum		0,60	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1157	Macrobrachium aemulum		0,20	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1158	Macrobrachium aemulum		1,00	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1159	Macrobrachium aemulum		0,90	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1160	Macrobrachium aemulum		0,40	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1161	Macrobrachium aemulum		0,80	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1162	Macrobrachium aemulum		0,70	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1163	Macrobrachium aemulum		0,90	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1164	Macrobrachium aemulum		0,70	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1165	Macrobrachium aemulum		1,10	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1166	Macrobrachium aemulum		1,10	œufs	congelé	СР
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1167	Macrobrachium aemulum		0,40	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1168	Macrobrachium aemulum		0,60	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1169	Macrobrachium aemulum		0,70	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1170	Macrobrachium aemulum		0,50	œufs	congelé	CP

Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1171	Macrobrachium aemulum	0,40	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1172	Macrobrachium aemulum	0,40	œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1173	Macrobrachium aemulum	3,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1174	Macrobrachium aemulum	1,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1175	Macrobrachium aemulum	1,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1176	Macrobrachium aemulum	1,60	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1177	Macrobrachium aemulum	2,40	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1178	Macrobrachium aemulum	2,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1179	Macrobrachium aemulum	1,40	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1180	Macrobrachium aemulum	1,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1181	Macrobrachium aemulum	1,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1182	Macrobrachium aemulum	0,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1183	Macrobrachium aemulum	0,60	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1184	Macrobrachium aemulum	1,40	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1185	Macrobrachium aemulum	1,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1186	Macrobrachium aemulum	1,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1187	Macrobrachium aemulum	0,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1188	Macrobrachium aemulum	0,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1189	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1190	Macrobrachium aemulum	0,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1191	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1192	Macrobrachium aemulum	0,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1193	Macrobrachium aemulum	0,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1194	Macrobrachium aemulum	0,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1195	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1196	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1197	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1198	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1199	Macrobrachium aemulum	0,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1200	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1201	Macrobrachium aemulum	0,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1202	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1203	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1204	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1205	Macrobrachium aemulum	0,20	sans œufs	congelé	CP

Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1206	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1207	Macrobrachium aemulum	0,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1208	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1209	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1210	Macrobrachium aemulum	0,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1211	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1212	Macrobrachium aemulum	0,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1213	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1214	Macrobrachium aemulum	0,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1215	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1216	Macrobrachium aemulum	0,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1217	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1218	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1219	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1220	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1221	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1222	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1223	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1224	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1225	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1226	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1227	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1228	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1229	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1230	Macrobrachium aemulum	0,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1231	Macrobrachium aemulum	0,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1232	Macrobrachium aemulum	4,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1233	Macrobrachium aemulum	4,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1234	Macrobrachium aemulum	5,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1235	Macrobrachium aemulum	4,80	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1236	Macrobrachium aemulum	5,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1237	Macrobrachium aemulum	3,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1238	Macrobrachium aemulum	4,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1239	Macrobrachium aemulum	4,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1240	Macrobrachium aemulum	4,70	sans œufs	congelé	CP

Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1241	Macrobrachium aemulum	4,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1242	Macrobrachium aemulum	4,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1243	Macrobrachium aemulum	3,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1244	Macrobrachium aemulum	4,80	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1245	Macrobrachium aemulum	5,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1246	Macrobrachium aemulum	3,80	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1247	Macrobrachium aemulum	5,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1248	Macrobrachium aemulum	4,90	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1249	Macrobrachium aemulum	4,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1250	Macrobrachium aemulum	3,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1251	Macrobrachium aemulum	4,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1252	Macrobrachium aemulum	4,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1253	Macrobrachium aemulum	3,90	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1254	Macrobrachium aemulum	3,40	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1255	Macrobrachium aemulum	4,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1256	Macrobrachium aemulum	4,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1257	Macrobrachium aemulum	4,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1258	Macrobrachium aemulum	3,90	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1259	Macrobrachium aemulum	4,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1260	Macrobrachium aemulum	4,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1261	Macrobrachium aemulum	3,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1262	Macrobrachium aemulum	3,90	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1263	Macrobrachium aemulum	4,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1264	Macrobrachium aemulum	3,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1265	Macrobrachium aemulum	3,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1266	Macrobrachium aemulum	3,40	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1267	Macrobrachium aemulum	6,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1268	Macrobrachium aemulum	4,80	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1269	Macrobrachium aemulum	5,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1270	Macrobrachium aemulum	4,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1271	Macrobrachium aemulum	5,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1272	Macrobrachium aemulum	5,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1273	Macrobrachium aemulum	5,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1274	Macrobrachium aemulum	4,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1275	Macrobrachium aemulum	4,50	sans œufs	congelé	CP


Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1276	Macrobrachium aemulum	3,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1277	Macrobrachium aemulum	3,90	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1278	Macrobrachium aemulum	5,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1279	Macrobrachium aemulum	4,60	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1280	Macrobrachium aemulum	5,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1281	Macrobrachium aemulum	3,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1282	Macrobrachium aemulum	2,80	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1283	Macrobrachium aemulum	3,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1284	Macrobrachium aemulum	3,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1285	Macrobrachium aemulum	3,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1286	Macrobrachium aemulum	2,90	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1287	Macrobrachium aemulum	3,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1288	Macrobrachium aemulum	2,90	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1289	Macrobrachium aemulum	3,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1290	Macrobrachium aemulum	2,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1291	Macrobrachium aemulum	2,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1292	Macrobrachium aemulum	2,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1293	Macrobrachium aemulum	3,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1294	Macrobrachium aemulum	3,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1295	Macrobrachium aemulum	3,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1296	Macrobrachium aemulum	2,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1297	Macrobrachium aemulum	2,40	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1298	Macrobrachium aemulum	2,60	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1299	Macrobrachium aemulum	2,90	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1300	Macrobrachium aemulum	2,40	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1301	Macrobrachium aemulum	2,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1302	Macrobrachium aemulum	3,00	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1303	Macrobrachium aemulum	2,70	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1304	Macrobrachium aemulum	2,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1305	Macrobrachium aemulum	2,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1306	Macrobrachium aemulum	2,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1307	Macrobrachium aemulum	2,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1308	Macrobrachium aemulum	2,60	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1309	Macrobrachium aemulum	2,80	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1310	Macrobrachium aemulum	2,40	sans œufs	congelé	CP

Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1311	Macrobrachium aemulum		2,10	sans œufs	congelé	СР
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1312	Macrobrachium aemulum		2,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1313	Macrobrachium aemulum		2,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1314	Macrobrachium aemulum		2,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1315	Macrobrachium aemulum		2,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1316	Macrobrachium aemulum		2,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1317	Macrobrachium aemulum		2,30	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1318	Macrobrachium aemulum		2,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1319	Macrobrachium aemulum		2,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1320	Macrobrachium aemulum		2,10	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1321	Macrobrachium aemulum		2,20	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1322	Macrobrachium aemulum		2,40	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1323	Macrobrachium aemulum		2,50	sans œufs	congelé	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1324	Paratya intermedia	1,70	0,00	œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1325	Paratya intermedia	1,80	0,10	œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1326	Paratya intermedia	1,80	0,00	œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1327	Paratya intermedia	1,80	0,10	œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1328	Paratya intermedia	2,00	0,10	sans œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1329	Paratya intermedia	1,80	0,10	sans œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1330	Paratya intermedia	1,50	0,00	œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1331	Paratya intermedia	1,80	0,10	œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1332	Paratya intermedia	1,80	0,10	œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1333	Paratya sp.1	1,60	0,00	sans œufs	alcool 90°	CP
Kwé Ouest (Neocallitropsis)	26/09/2007	KWE-300(2)	C-1334	Paratya sp.2	1,50	0,00	sans œufs	alcool 90°	CP

ANNEXE IV: CARTE DES STATIONS ECHANTILLONNNEES

Carte 1 : Localisation des stations d'échantillonnage

