

Vale Nouvelle-Calédonie

Rapport annuel 2020 concernant l'activité minière

Incidence des activités minières sur l'occupation des sols, l'environnement et les eaux superficielles et souterraines

RAPPORT ANNUEL 2020 CONCERNANT L'ACTIVITE MINIERE

CENTRE MINIER DE GORO

Incidence des activités minières sur l'occupation des sols, l'environnement et les eaux superficielles et souterraines

Communes de Yaté et du Mont-Dore

Nouvelle-Calédonie

Directions Mine et Hygiène Sécurité, Environnement, Vale Nouvelle-Calédonie, Mars 2021

SOMMAIRE

1	INTRO	DUCTION	1
1.1	Contex	te et objectifs du rapport	1
1.2	Conten	ıu du rapport	2
2	L'EXPL	OITATION MINIERE EN 2020 ET INCIDENCE SUR L'OCCUPATION DE	S SOLS 3
2.1	Volume	es excavés et alimentation de l'usine	3
2.1.1	Liste	des verses actives et des verses inactives	5
2.1.2	Princi	ipales interventions	5
2.2	Surface	es défrichées et revégétalisées	6
2.2.1	Bilan	des défrichements en 2020	6
2.2.2	Bilan	des surfaces revégétalisées en 2020des	7
	2.2.2.1	Chantiers de revégétalisation 2020	7
	2.2.2.2	Techniques de revégétalisation utilisées	7
	2.2.2.3	Bilan des opérations de revégétalisation	8
2.2.3	Bilan	des mesures de compensation des impacts sur la flore	9
	2.2.3.1	Prescriptions techniques de l'AEM - Article E1-1.2 « Valorisation des itinérair	es techniques de
	production	on et de réhabilitation »	
	2.2.3.2	Prescriptions techniques de l'AEM - Article E1.2 « Compensation des impacts	s sur les milieux
	dulçaqui	icoles »	
	2.2.3.3	Prescriptions techniques de l'AEM - Article E1.4 « Compensation des impacts sur le	espèces rares et
	menacée		
2.2.4	l Remé	édiation du passif : réhabilitation de la mine A1Alianne	16
3	INCIDE	ENCES SUR L'ENVIRONNEMENT	20
3.1		es poussières	
3.1.1		entation du réseau de suivi des retombées de poussières	
3.1.2		ode	
3.1.3	•	onibilité des données	
3.1.4		ltats	
	3.1.4.1	Valeurs réglementaires	
	3.1.4.2	Valeurs obtenues	
3.1.5		pagne de mesure de métaux dans les poussières	
	3.1.5.1	Métaux contenus dans les poussières en suspension (PM10)	
	3.1.5.2	Métaux contenus dans les retombées atmosphériques	
3.1.6	-	pagne de mesure des poussières en suspension sur la mine	
3.1.7	Mesu	ıres d'atténuation	29
3.2	Suivis e	et mesures relatives à la flore	30
3.2.1	Suivis	5	30
	3.2.1.1	Suivi annuel de l'état de santé de la végétation des lisières forestières	30

	3.2.1.2	Suivi annuel de l'état de santé des massifs forestiers par télédétection	
	3.2.1.3	Suivi et contrôle des espèces exogènes	
	3.2.1.4	Suivi et production d'espèces rares et/ou menacées	
	3.2.1.6	Suivi de la ripisylve	
Le ta		uivi de la ripisylve est fourni en Annexe 8	
3.2.2		des mesures de préservation et d'atténuation	
	3.2.2.1	Arrosage des pistes et des chantiers	
	3.2.2.2	Récolte de graines, boutures et plantules	
	3.2.2.3	Récupération et utilisation du topsoil	51
3.3		t mesures relatives à la faune	
3.3.1	Suivis	de la faune terrestre	
	3.3.1.1	Suivi de la faune des milieux patrimoniaux (forêts, Lacs)	
	3.3.1.2	Suivi de l'échouage des oiseaux marins	
3.3.2		des mesures d'atténuation	
	3.3.2.1	Evaluation de la niche écologique du Scinque Leopard, Lacertoides Pardalis	
	3.3.2.2	Compilation des inventaires existants sur les fourmis envahissantes	
	3.3.2.3	Lutte contre les espèces envahissantes	
	3.3.2.4	Optimisation de l'éclairage	68
3.5	Gestion	des déchets	70
3.5.1	Gestic	on des déchets sur site	70
	3.5.1.1	Identification	70
	3.5.1.2	Collecte	71
	3.5.1.3	Stockage	71
	3.5.1.4	Transport	73
	3.5.1.5	Elimination/valorisation	73
3.5.2	2 Bilan o	de l'année 2020	74
3.5.3	B Analys	se des résultats	77
5	INCIDE	NCES SUR LES EAUX SUPERFICIELLES	78
5.1	Dluvion	nétrie	79
ا . ر 5.1.1		ntation des stations météorologiques	
5.1.		ntation des données.	
5.1.		téristiques des principaux évènements pluvieux	_
5.1.4		se statistique portant sur la pluie annuelle	
5.1.5		se statistique portant sur la pluie mensuelle	
5.1.6	•	se statistique portant sur la pluie journalière	
5.1.7	•	èse sur les précipitations	
5.2	Gestion	des eaux	85
5.2.1		ntation des ouvrages de gestion des eaux	
5.2.2		pales interventions sur les ouvrages de gestion des eaux	
5.2.3	-	des ouvrages lors des évènements pluvieux majeurs	
3.2.0	5.2.3.1	Comportement des ouvrages	
5.3	Evolutio	on des figures d'érosion	93
5.4			
J. 4	5.4.1.1	es débits de la Kwé Principale et des creeks alentours Présentation des stations	

	5.4.1.2	Présentation des données disponibles	97
	5.4.1.3	Analyse des impacts de la fosse minière sur le débit des rivières	100
5.5	Suivi hy	rdro-sédimentaire à la station KAL	103
	5.5.1.1	Présentation des données disponibles pour les débits et les matières en suspension (MES)	
	5.5.1.2	Résultats et interprétations	
5.6	Suivi pł	nysico-chimique des eaux de surface	105
5.6.	1 Prése	ntation des stations	105
5.6.	2 Prése	ntation des résultats	106
	5.6.2.1	Résultats aux stations de la Kwé Principale (KAL et 1-A)	106
	5.6.2.2	Résultats à la station Trou Bleu (3-C) : Bassin de référence	119
	5.6.2.3	Rivière Truu (TR-01 et TR-02)	129
	5.6.2.4	Rivière Wajana (WJ-01)	
5.6.	3 Interp	rétation des résultats	
	5.6.3.1	Kwé principale, 1-A (KAL)	142
	5.6.3.2	Trou Bleu (3-C): Bassin de référence	
	5.6.3.3	Rivière Truu (TR-01 et TR-02)	145
	5.6.3.4	Rivière Wajana (WJ-01)	146
5.8	Suivi bi	ologique des eaux de surface	147
5.8.	1 Indice	s biotiques en périphérie de l'exploitation minière	147
5.8.	2 Suivi	de la faune aquatique des lacs et dolines	147
5.9	Suivi de	es effluents	147
5.10	-	nsation et remédiation du passif – déplacement du captage de la Wajana et ré	
de sa	piste d'a	ccès	152
6	INCIDE	NCES SUR LES EAUX SOUTERRAINES	153
•	IIICIDE		133
6.1		nmélioration des connaissances du fonctionnement hydrogéologique de la Pla	
Lacs 2	2020-202	5	153
6.2	Suivi hy	drogéologique : Données disponibles et résultats obtenus	155
6.2.	-	ntation du réseau d'acquisition de données	
6.2.		ntation des données disponibles	
6.2.		se des impacts de la fosse minière sur les niveaux piézométriques	
6.2.	-	se des impacts de la fosse minière sur le niveau d'eau des lacs	
6.3	Actualis	sation du modèle hydrogéologique	160
7	SUIVI	DU MILIEU MARIN	167
7.1	Plan de	suivi de la baie Kwé	167
7.1.	1 Statio	ons suivies	
	7.1.1.1	Localisation des points de prélèvement règlementaire de l'eau de mer et des sédiments	
	7.1.1.2	Stations de surveillance de la santé des écosystèmes : suivi des peuplements récifaux, des in	
	et des po	issons	
	7.1.1.3	Surveillance de l'herbier de la baie Kwé	
7.1.	2 Indica	ateurs suivis et fréquence	171

7.1.2.1	Indicateurs biologiques des écosystèmes coralliens et des populations associées	171
7.1.2.2	Indicateurs biologiques pour le suivi de l'herbier de la baie KwéKwé	172
7.1.2.3	Indicateurs physico-chimiques	172
7.2 Résulta	its des suivis de l'année 2020	172
7.2.1 Vale	urs réglementaires et états de référence	172
7.2.2 Résu	ltats de la qualité physico-chimique de l'eau de mer en baies Kwé et Port-Boisé	173
7.2.2.1	Structure des masses d'eau	174
7.2.2.2	Concentration en éléments majeurs, valeurs de pH, et MES	175
7.2.2.3	Sels nutritifs	176
7.2.2.4	Métaux dissous	178
7.2.3 Suivi	des flux de matières en suspension	179
7.2.3.1	Paramètres météorologiques	180
7.2.3.2	Caractérisation des matières en suspension	182
Résulta	ts de la campagne du premier semestre	182
Résulta	ts de la campagne du second semestre	183
7.2.4 Suivi	des écosystèmes coralliens et des populations associées	185
7.2.4.1	Suivi du substrat (méthode LIT)	186
7.2.4.2	Le benthos	186
7.2.4.3	Les poissons	187
7.2.5 Suivi	du taux de sédimentation	190
7.2.6 Cara	ctérisation des herbiers en baie Kwé	190

FIGURES

Figure 1 : Vue de la fosse fin 2019	4
Figure 2 : État de la fosse fin 2020	4
Figure 3 : Processus d'application de l'inoculum d'endomycorhizes par les pépiniéristes de VNC avec des doseurs sur les godets de production des semis en même temps que le repiquage des plantules	10
Figure 4: Des plantes de Austrobuxus carunculatus inoculée en avant plant et les témoins en arrière-plan	11
Figure 5 : Localisation des plantations d'espèces ripisylves sur les berges du Grand Lac	12
Figure 6: Photos en haut de gauche à droite : Sphaigne formant de petits agglomérats et Sphaigne formant de petites buttes sur les berges de Xere Wapo. Photo en bas : Localisation des occurrences de sphaigne sur les berges de Xere Wapo	13
Figure 7 : Localisation des deux dolines, DP46 et Lac en long, prospectées en aout 2020	13
Figure 8 : Plantation en 2011 (gauche) et en 2019 (droite)	17
Figure 9 : Illustration de la différence de croissance entre zone indurée quasiment nue (haut) et une zone plus meuble bien avec une bonne reprise de la végétation (bas)	17
Figure 10 : Localisation des sites en fond de vallée_Mine A1	18
Figure 11 : Érosion des chenaux hydrographiques sur le piedmont en aval de l'emprise de la mine A1	19
Figure 17 : Bilan des défrichements miniers réalisés entre 2009 et 2020 et localisation des points de suivi de l'état de santé de la végétation	31
Figure 18 : Massifs forestiers d'intérêt prioritaire suivi par télédétection	34
Figure 19 : Evolution des surfaces non impactées, impactées et très impactées entre 2011 et décembre 2020 au niveau des massifs forestiers situés à proximité de la mine et des massifs forestiers témoins	36
Figure 20 : Indicateurs satellitaires (NDVI, EVI, GRVI et Fr) sur la période considérée	36
Figure 21 : Surfaces impactées par massif forestier en septembre 2020	37
Figure 22 : Individu de Pandanus lacuum en fruit recensé sur l'emprise de la fosse minière	40
Figure 23 : Localisation des stations de suivi SR01, SR02, SR04 au niveau de la Kwe Principale, la Kwe Ouest et SRT05 au niveau de la Kuebini	43
Figure 24 : Activité photosynthétique mesurée par site de suivi	45
Figure 25 : Localisation des points d'alimentation des arroseuses	
Figure 26 : Prélèvement d'eau dans la Kué Nord	47
Figure 27 : Triage et rangement des récoltes opérées sur le Plateau de Goro à la Pépinière VNC	49
Figure 28 : Production de boutures entièrement morte (gauche) et salle de préparation des lots de germination saccagée, avec destruction des lots de graines (droite)	51
55 Figure 29 : Evolution des oiseaux communs des massifs forestiers des alentours de l'emprise des travaux de	
Vale Nouvelle-Calédonie de 2008 à 2020	55
Figure 30 : Moyenne des contacts sur la période 2008 à 2020 par relique forestière et par espèces	56
Figure 31 : Nombre d'oiseaux échoués par année et par site	58
Figure 32 : Nombre d'oiseaux vivants relâchés	58
Figure 33 : Aire de distribution des populations connues de Lacertoides pardalis	59

Figure 34: Estimation de l'aire de distribution de Lacertoides pardalis selon la modélisation développée par Léopolde Doumerc, stagiaire Masters 2, IRD	61
Figure 35 : Radio télémétrie de Lacertoides sur la mine A1 (à gauche). Espace vital des individus suivis par radio télémétrie	61
Figure 36: Carte de distribution des différentes populations d'espèces de fourmis sur l'emprise du projet d'extension de la route du MAR au Col de l'Antenne (Ref. Ravary, Octobre 2020)	62
Figure 37 : Emplacement des pièges a cochons sur des liserés de forêt sur le bassin versant de la Kue ayant trace de passage de cochons	65
Figure 38 : Rayon de 400m de surveillance pour les moustiques et rongeurs au tour du port considérée comme le point d'entrée internationale (PEI) selon le Règlement Sanitaire International	66
Figure 39 : Emplacement de l'ensemble des zones contrôlée pour les rongeurs sur VNC par Callisto OROP	66
Figure 40: Emplacement des ruches sentinelles (en bleue) et les ruches à phéromones (en rouge) sur le port de VNC	67
Figure 41: Parc de tour d'éclairage au centre industriel minière de Vale Nouvelle-Calédonie	68
Figure 42 : Localisation des zones de dépôt de déchets	72
Figure 43: Localisation des stations de suivi des eaux de surface	78
Figure 44 : Localisation des stations automatiques d'enregistrements pluviométriques	80
Figure 45 : Evolution de la pluie annuelle au pluviomètre de l'ancienne pépinière entre 1997 et 2020	82
Figure 46 : Pluie mensuelle à la station Ancienne Pépinière : Ecart à la médiane 1951-2009	83
Figure 47 : Emplacement des bassins de sédimentation dans le périmètre de la fosse minière et le centre industriel de la mine	85
Figure 49 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur le BSKN	94
Figure 50 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur la Carrière Limonite Sud	94
Figure 51 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur la figure d'érosion CPKE	94
Figure 52 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur la figure d'érosion Grand kaori	95
Figure 53 : Photos satellites datant de 2017 (Gauche), 2018 (centre) et 2020 (Droite) centrées sur la figure d'érosion Kwé Ouest	95
Figure 54 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur la Verse à Stérile Kwé Est	95
Figure 55 : Localisation des figures d'érosion remarquables sélectionnées pour suivi	96
Figure 56: Station TR02 – Débits mesurés de 2016 à 2020 (Truu au radier)	98
Figure 57 : Station KAL – Débits mesurés de 2016 à 2020 (Kwé principale)	98
Figure 58 : Station 3C – Débits mesurés de 2016 à 2020 (Trou Bleu)	99
Figure 59 : Station WJ-01 – Débits mesurés de 2016 à 2020 (Wajana au radier)	99
Figure 60 : Station CCS-01 – Débits mesurés de 2016 à 2020 (Creek de la crête Sud)	.100
Figure 61 : Débits moyens mensuels à la station KAL : Ecarts à la moyenne 1998-2006. Comparaison avec la station 3C	. 102
Figure 62 : Débits moyens mensuels à la station WJ-01 : Ecarts à la moyenne 1998-2006. Comparaison avec la station 3C	.102
Figure 63 : Débits moyens mensuels à la station CCS01 : Ecarts à la moyenne 1998-2006. Comparaison avec la station 3C	.103

Figure 64: Station limnimétrique KAL : Débit et MES mesurés en 2020	.104
Figure 65: Evolution de la relation entre le flux sédimentaire et le débit de pointe sur la Kwé principale (station	
KAL) entre 2006 et 2020	
Figure 66 : Données de pH des stations KAL et 1-A entre janvier 2008 et 1er janvier 2021	
Figure 67 : Données de conductivité des station KAL et 1-A du 1er janvier 2008 au 1er janvier 2021	
Figure 68 : Données de température des stations KAL et 1-A du 1er janvier 2008 au 1er janvier 2021	
Figure 69 : Concentrations en sulfates des station KAL et 1-A entre le 1er janvier 2008 et le 1er janvier 2021	
Figure 70 : Concentrations en manganèse des stations KAL et 1-A entre janvier 2008 et le 1er janvier 2021	.112
Figure 71 : Concentrations en chlorures des stations KAL et 1-A entre le 1er janvier 2008 et le 1er janvier 2021	112
Figure 72 : Concentrations en nitrates des stations KAL et 1-A entre le 1 ^{er} janvier 2008 et le 1 ^{er} janvier 2021	
Figure 73 : Concentrations en chrome des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021	.115
Figure 74 : Concentrations en chrome VI des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021.	.115
Figure 75 : Concentrations en magnésium des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021	116
Figure 76 : Concentrations en nickel des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021	
Figure 77 : Concentrations en potassium des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021	.118
Figure 78 : Concentrations en sodium des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021	.118
Figure 79 : Données de pH de la station 3-C entre janvier 2008 et le 1er janvier 2021	.119
Figure 80 : Données de conductivité de la station 3-C du 1er janvier 2008 au 1er janvier 2021	.120
Figure 81 : Données de température de la station 3-C du 1er janvier 2008 au 1er janvier 2021	.121
Figure 82 : Concentrations en sulfates de la station 1-A entre le 1er janvier 2008 et le 1er janvier 2021	.122
Figure 83 : Concentrations en manganèse de la station 3-C entre janvier 2008 et le 1er janvier 2021	.123
Figure 84 : Concentrations en chlorures de la station 3-C entre le 1er janvier 2008 et le 1er janvier 2021	.124
Figure 85 : Concentrations en nitrates de la station 3-C entre le 1er janvier 2008 et 1er janvier 2021	.125
Figure 86 : Concentrations en magnésium de la station 3-C entre le 1er janvier 2008 et le 1er janvier 2021	.126
Figure 87 : Concentrations en nickel à la station 3-C entre le 1er janvier 2008 et le 1er janvier 2021	.127
Figure 88 : Concentrations en potassium à la station 3-C entre le 1er janvier 2008 et le 1er janvier 2021	.128
Figure 89 : Concentrations en sodium à la station 3- C entre le 1er janvier 2008 et le 1er janvier 2021	.128
Figure 90 : Mesures de pH pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	.129
Figure 91 : Mesures de conductivités pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	.130
Figure 92 : Mesures de température pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	
Figure 93 : Concentrations en sulfates pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	
Figure 94: Concentrations en magnésium pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	.133
Figure 95: Concentrations en nickel pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	
Figure 96 : Concentrations en chlorures pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	

Figure 97: Concentrations en nitrates pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	
Figure 98 : Concentrations en chrome pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvi	er
Figure 99 : Concentrations en chrome VI pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	er
Figure 100 : Concentrations en potassium pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	
Figure 101 : Concentrations en sodium pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021	er
Figure 102 : Mesures de pH pour la station WJ-01 entre janvier 2010 et le 1er janvier 2021	139
Figure 103 : Mesures de conductivité pour la station WJ-01 entre janvier 2010 et le 1er janvier 2021	140
Figure 104 : Mesures de température pour la station WJ-01 entre janvier 2010 et le 1er janvier 2021	141
Figure 105 : Mesures d'oxygène dissous pour la station WJ-01 entre janvier 2010 et le 1er janvier 2021	141
Figure 106: localisation des débourbeurs – séparateurs	149
Figure 107 : Conformité des points d'inspection en 2018 et 2020	151
Figure 108 : Données piézométriques disponibles sur 09EX0035 et 09EX0036	156
Figure 109 : Données piézométriques disponibles sur 09GH0001 et 09GH0003	156
Figure 110 : Données piézométriques disponibles sur 10EX0238 et 10EX0239	156
Figure 111 : Données piézométriques disponibles sur 10EX0371 et 10EX0332	157
Figure 112 : Données piézométriques disponibles sur 11EX0422 et 11EX0438	157
Figure 113 : Données piézométriques disponibles sur 11EX0449 et 11EX0473	157
Figure 114 : Données piézométriques disponibles sur 11EX0463 et 11EX0471	158
Figure 115 : Données limnimétriques disponibles sur le lac Xere Wapo et le lac Robert	158
Figure 116: Localisation de la zone d'influence théorique de la fosse minière sur les eaux souterraines Situation début janvier 2021	
Figure 117 : 10EX0332 : Comparaison entre la piézométrie observée et simulée	161
Figure 118: 10EX0371 : Comparaison entre la piézométrie observée et simulée	161
Figure 119: 11EX0422 : Comparaison entre la piézométrie observée et simulée	162
Figure 120 : 11EX0438 : Comparaison entre la piézométrie observée et simulée	162
Figure 121 : 09GH0001 : Comparaison entre la piézométrie observée et simulée	163
Figure 122 : 09GH0003 : Comparaison entre la piézométrie observée et simulée	163
Figure 123 : 10EX0238 : Comparaison entre la piézométrie observée et simulée	164
Figure 124: 10EX0239 : Comparaison entre la piézométrie observée et simulée	164
Figure 125: 11EX0463 : Comparaison entre la piézométrie observée et simulée	165
Figure 126 : 11EX0471 : Comparaison entre la piézométrie observée et simulée	165
Figure 127 : 11EX0449 : Comparaison entre la piézométrie observée et simulée	166
Figure 128: 11EX0473 : Comparaison entre la piézométrie observée et simulée	166
Figure 129 : Caractéristiques morphologiques du bassin versant de la rivière Kwé qui influence le milieu mar au niveau de la baie Kwé	
Figure 131 : Localisation géographique des stations de prélèvements d'eau et de sédiments en baie témo de Port boisé (St 03) et en baie Kwé (St 06)	
Figure 133 : Schéma structural de la station ST 08- PUKA	170

Figure 134 : Quad	ras de suivi de l'herbier en baie Kwé	171
	lls des précipitations, 5 jours avant (bleu) et pendant (rouge) les campagnes de prélèvement de 2007 à 2020 en saison chaude ; données météorologiques enregistrées à la station de l'usine	173
	ls des précipitations, 5 jours avant (bleu) et pendant (rouge) les campagnes de prélèvement de 2008 à 2020 en saison fraîche ; données météorologiques enregistrées à la station de l'usine	174
=	e totale de MES piégées et composition en fraction fine (<41 μm) et fraction grossière (>41 μm) des 12 prélèvements du piège séquentiel à St06-KW1 – Saison chaude	182
=	rcentage massique en fractions fines (<41 μm) et fractions grossières (>41 μm) des 12 prélèvements du piège séquentiel à St06-KW1 – Saison chaude	183
•	se totale de MES piégées et composition en fraction fine (<41µm) et fraction grossière (>41µm) des 12 prélèvements sur St06-KW01 – Saison fraîche	184
•	centage massique en fractions fines et fractions grossières dans les 12 prélèvements sur St06-KW1 – Saison fraîche	184
Figure 141 : Repre	sentation du recouvrement (en %) du substrat pour ST08A - octobre 2020	186
Figure 142 : Repre	sentation du recouvrement (en %) du substrat pour ST08B - octobre 2020	186
	rtition par sous-groupe de la richesse spécifique des macrophytes et des invertébrés (hors	187

TABLEAUX

Tableau 1: Production de l'année 2020, selon le type de matériaux	3
Tableau 2: Surfaces défrichées en 2020 par chantier	6
Tableau 3: Surfaces défrichées en 2020 par concessions	6
Tableau 4: Autorisations de défrichements nécessaires aux chantiers 2020	6
Tableau 5 : Travaux de revégétalisation en 2020	7
Tableau 6 : Bilan des travaux de réhabilitation sur la Mine VNC entre 2015 et 2020 et coûts associés	8
Tableau 7 : Espèces de maquis minier inoculées avec les endomycorhizes commercialisés par Aura Pacifica sur la pépinière de VNC en 2020	10
Tableau 8: Localisation, dénomination et caractéristiques des sites de mesures des poussières	20
Tableau 9: Pourcentage de données exploitables	22
Tableau 10 : Disponibilité des données de retombées de poussières, poussières en suspension et métaux	22
Tableau 11: Seuils applicables au suivi de la qualité de l'air pour les particules en suspension	23
Tableau 12 : Valeurs indicatives pour les métaux contenus dans les retombées de poussières	23
Tableau 13 : Obligations applicables au suivi de la qualité de l'air - métaux contenus dans les PM10	24
Tableau 14 : Comparaison des mesures de poussières aux obligations réglementaires	25
Tableau 15 : Moyenne annuelle 2020 des métaux dans les PM10 pour les stations Forêt Nord et Base-vie	27
Tableau 16 : Métaux contenus dans les retombées atmosphériques des stations Forêt Nord et Base-vie en 2020	27
Tableau 17 : comparaison aux valeurs de référence pour les métaux dans les retombées de poussière en 2020	28
Tableau 18: Paramètres de suivi et photographie	32
Tableau 19: Liste des points de suivi de la présence d'espèces exogènes	38
Tableau 20: Résultats des suivis des espèces exogènes végétales sur le point de suivi de la mine	39
Tableau 21: Synthèse des actions de conservation engagées en 2020	41
Tableau 22 : Paramètres de suivi et métriques associées	44
Tableau 23 : Volumes d'eau prélevés dans le BSKN	47
Tableau 24 : Récapitulatif des récoltes effectuées lors de la saison 2019-2020 sur le Plateau de Goro	47
Tableau 25 : Tableau récapitulatif des transplantations de plantules réalisées par VNC en 2020	50
Tableau 26 : Résultats des points d'écoute 2020 comparée à 2019 sur les massifs forestiers du plateau de Goro	54
Tableau 27 : Occurrences d'échouages d'oiseaux marins- Année 2020	58
Tableau 28 : Nombre Lacertoides par localités	60
Tableau 29: Espèces de fourmis identifiées pendant l'inventaire (Extension MAR_Septembre 2020)	62
Tableau 30: Liste des espèces de fourmis détectées sur le site industriel de VNC et Prony en mai 2020	63
Tableau 31: Liste des espèces de fourmis détectées sur le site industriel de VNC à Prony en novembre 2020	63
Tableau 32 : Registre des déchets traités sur le site de Vale Nouvelle-Calédonie pour l'année 2020	75

1er mars 2020	
Tableau 34 : Période de retour pour la station GORO_RESIDUS	
Tableau 35 : Période de retour pour la station GORO_RESIDOS	
Tableau 36 : Période de retour pour la station GORO_USINE	
Tableau 37 : Effectifs des précipitations journalières observées de 2012 à 2020	
Tableau 38: Caractéristiques des cycles pluviométriques de 2012 à 2020	
Tableau 39 : Nombre de débordements attribué aux différents bassins de la mine pour l'année 2019 et 202	
Tableau 40 : Représentation des bassins par rapport au nombre total de débordements pour l'année 2019 2020	
Tableau 41 : Description du suivi des débits prescrit dans l'AEM (6 stations)	
Tableau 42 : Description du suivi de la physico-chimie prescrit dans l'AEM (5 stations)	
Tableau 43 : Résultats d'analyse du suivi 2020 à la station KAL, Kwé principale	
Tableau 44 : Résultats d'analyse du suivi 2020 à la station 3-C (Trou Bleu)	
Tableau 45 : Résultats d'analyse du suivi 2020 aux stations TR-02 et TR-01 (Truu)	
Tableau 46 : Résultats d'analyse des séparateurs d'hydrocarbures	
Tableau 47 : Conformité réglementaire du suivi des rejets des séparateurs à hydrocarbures (2020)	
Tableau 48 : Planning du plan d'amélioration des connaissances hydrogéologiques	
Tableau 49 : Stations de suivi réglementaire des eaux souterraines	
Tableau 50 : Localisation géographique des stations de prélèvements d'eau et de sédiments en baie Kwé dans la baie témoin de Port boisé (Référentiel WGS-84)	et
Tableau 51 : Localisation de la station ST08 de suivi des écosystèmes coralliens (RGNC 91)	
Tableau 52 : Position des quadras de suivi de l'herbier, référentiel RGNC 91-93 LAMBERT	
Tableau 53 : Concentration en éléments majeurs, valeurs du pH et concentrations de MES lors de la campagi	ne
semestrielle de février 2020 en surface (S), mi-profondeur (M) et fond (F) – Stations : ST	
et ST03	
Tableau 54 : Comparaison des concentrations de MES entre la campagne de mars 2019 et février 2020	
Tableau 55 : Concentration en éléments majeurs, valeurs du pH et concentrations de MES lors de la campag semestrielle d'août 2020 en surface (S), mi-profondeur (M) et fond (F) – Stations : ST06 ST03	et
Tableau 56 : Comparaison des concentrations de MES entre la campagne d'août 2019 et août 2020	
Tableau 57 : Concentration des sels nutritifs lors de la campagne semestrielle de février 2020 en surface (
mi-profondeur (M) et fond (F) – Stations : ST03 et ST06	-
Tableau 58 : Comparaison des concentrations en sels nutritifs entre la campagne de mars 2019 et mars 201	20
Tableau 59 : Concentration des sels nutritifs lors de la campagne semestrielle d'août 2020 en surface (S), n	
profondeur (M) et fond (F) – Stations : ST03 et ST06	
Tableau 60 : Comparaison des concentrations en sels nutritifs entre la campagne d'août 2019 et août 2020	
Tableau 61 : Concentration en métaux dissous sur ST06 et ST03_Campagne de février 2020	178
Tableau 62 : Comparaison des concentrations en arsenic entre la campagne de mars 2019 et février 2020.	
Tableau 63 : Concentration en métaux dissous (campagne d'août 2020) sur ST06 et ST03	
Tableau 64 : Comparaison des concentrations en arsenic entre la campagne d'août 2019 et août 2020	179

Tableau 65 : Variables journalières des paramètres météorologiques (cumul de précipitations et moyenne de	
vitesse et direction de vents maximales instantanées) collectées par la station	
météorologique « GORO » - Saison chaude	.180
Tableau 66 : Variables journalières des paramètres météorologiques (cumul de précipitations et moyenne de	
vitesse et direction de vents maximales instantanées) collectées par la station	
météorologique « GORO » - Saison fraîche	.181
Tableau 67 : Concentrations en métaux et calcium obtenues dans les fractions fines des 12 prélèvements sur	
St06-KW1 – Saison chaude	.183
Tableau 68 : Concentrations en métaux et calcium obtenues dans les fractions fines des 12 prélèvements	.185
Tableau 69 : Données sur les poissons à la station ST08	.188
Tableau 70 : Liste des espèces complémentaires - station ST08	.189
Tableau 71 : Densité (nieds/m²) des nhanérogames et rénartition (%) de chaque espèce	190

ANNEXES

Annexe 1: Plan de localisation des défrichements réalisés en 2020, VNC

Annexe 2: Bilan des actions de revégétalisation VNC – année 2020 et tableau de synthèse, VNC

Fiches d'itinéraire technique, VNC Annexe 3:

Annexe 4: Espèces rares, menacées et/ou protégées dans la zone d'influence des infrastructures industrielles

et minières de VNC : Bilan 2020 des activités de conservation, VNC

Annexe 5: Résultats du suivi de l'état de santé de la végétation à proximité d'ouvrages miniers, VNC

Annexe 6: VEGUSINE_Etat actuel du suivi, Bluecham

Annexe 7: Détection précoce et suivi des espèces végétales exotiques envahissantes sur le site de VNC, VNC

Annexe 8: Tableau de suivi de la ripisylve 2020, VNC

Suivi de l'avifaune forestière et lacustre du plateau de Goro, année 2020, Hemispheres Annexe 9:

Annexe 10: Inventaire de la myrmécofaune présente le long du tracé de la future voie d'accès sécurisée (MAR-

LUCY) de VNC, septembre 2020

Annexe 11: Fiches de suivi des figures d'érosion, VNC

1 INTRODUCTION

1.1 Contexte et objectifs du rapport

La société Vale Nouvelle-Calédonie S.A.S. (Société par Actions Simplifiée) (ci-après nommée "VNC") valorise le gisement nickélifère et cobaltifère du plateau de Goro, situé à l'extrême sud de la Grande Terre de la Nouvelle-Calédonie.

VNC a produit en 2020 essentiellement des oxydes de nickel et du carbonate de cobalt jusqu'au mois d'avril 2020 avant de poursuivre avec la production d'un composé de nickel dénommé IPNM (Produit intermédiaire de la métallurgie du nickel "Intermediate Product of Nickel Metallurgy").

Outre la mine, le complexe industriel de VNC comprend notamment :

- une usine hydro-métallurgique exploitant un procédé de type HPAL, développé sur les minerais calédoniens dès 1999. Ce procédé a été adapté au gisement de Goro. Il permet de valoriser les minerais latéritiques en les associant aux saprolites ;
- des utilités (stockage de liquides inflammables, installation de transit de déchets industriels, installation de compression, installation de combustion);
- un port;
- une aire de stockage des résidus issus du traitement hydro-métallurgique localisée dans le bassin de la Kwé Ouest 2 (KO2) ;
- une usine d'assèchement des résidus susvisés ;
- des carrières.

L'exploitation du site minier de « GORO » est autorisée par l'arrêté n° 2698-2016/ARR/DIMENC du 30 septembre 2016 (ci-après désigné par « AEM »).

Conformément aux articles Lp. 142-6 et R. 142-9-2, le présent rapport rend compte de l'incidence des activités minières sur l'occupation des sols, sur l'environnement et sur les eaux superficielles et souterraines au cours de l'année 2020.

1.2 Contenu du rapport

Le présent rapport traite des thématiques suivantes :

- Occupation des sols :
 - Ouvrages miniers;
 - Défrichement ;
 - revégétalisation;
- Environnement :
 - suivi des poussières ;
 - suivis et mesures de mitigation relatives à la flore ;
 - suivis et mesures de mitigation relatives à la faune ;
 - gestion des déchets;
- Eaux superficielles :
 - pluviométrie;
 - suivi des ouvrages de gestion des eaux ;
 - suivi des figures d'érosion ;
 - suivi des débits de la Kwé Principale ;
 - suivi hydrosédimentaire à la station KAL;
 - suivi physico-chimique des eaux de surface ;
 - suivi biologique des eaux de surface;
 - suivi des effluents;
- Eaux souterraines :
 - suivi hydrogéologique ;
 - actualisation du modèle hydrogéologique ;
- Suivi du milieu marin

Le contenu de chaque partie a été établi selon les dispositions spécifiques de l'arrêter n° 2698-2016/ARR/DIMENC du 30 septembre 2016.

2 L'EXPLOITATION MINIERE EN 2020 ET INCIDENCE SUR L'OCCUPATION DES SOLS

2.1 Volumes excavés et alimentation de l'usine

L'objectif de production pour l'année 2020 était de 14,9 Mth en recourant à une soixantaine d'engins miniers.

La production de l'année 2020 a été de 11,36 Mth1.

Tableau 1: Production de l'année 2020, selon le type de matériaux

Horizon	2020
Unité	Mt humides
FCO	0.33
FRE	1.25
OVB	3.32
MBT	0.78
LAT	1.68
LMG	0.46
SAP	1.14
BRK	1.23
Reprise des bandes de roulement	1.18
Excavé Total	11,36

L'évolution de la fosse au cours de l'année 2020 est illustrée ci-après.

¹ Mth : million de tonnes humides

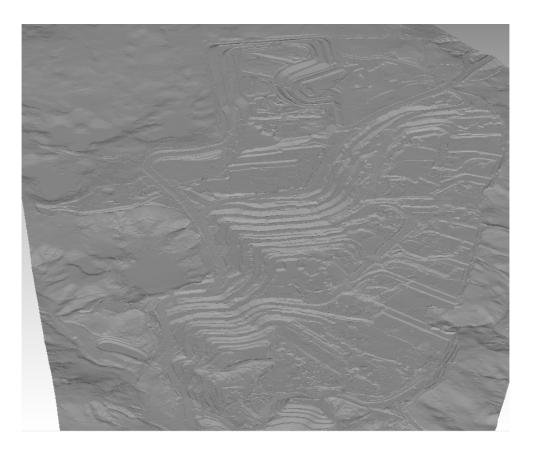


Figure 1 : Vue de la fosse fin 2019

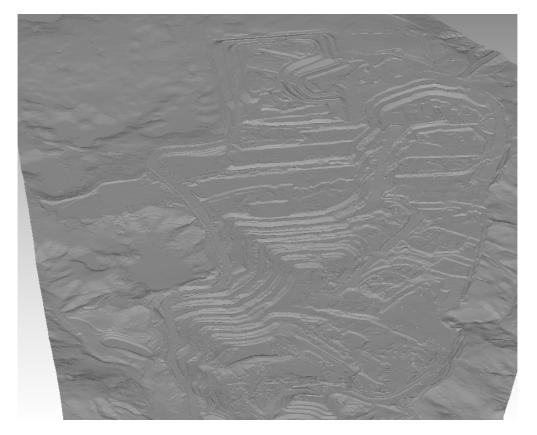


Figure 2 : État de la fosse fin 2020

2.1.1 Liste des verses actives et des verses inactives

La verse SMLT est actuellement la seule verse active sur le site minier. Les verses VSEM, V5 et VSKE sont existantes et inactives. La verse de la Kwé Ouest, verse utilisée dans le cadre de la construction du parc à résidus de la Kwé Ouest, est aussi inactive.

Le projet de verse Goro, localisé dans l'emprise de la fosse minière, assurera la continuité du stockage des stériles à partir de la fin de l'année 2021, une fois le fond de fosse suffisamment disponible.

2.1.2 Principales interventions

cf. Article D3.2 des prescriptions techniques de l'AEM

Les activités se sont concentrées sur la verse SMLT, seule verse en cours de construction et d'exploitation. Les principales interventions comprennent pour 2020 :

- Les mèches horizontales ont été finalisées et les cheminées et les descentes d'eau ont été prolongées au fur et à mesure de la rehausse;
- Poursuite de la méthodologie de construction consistant à édifier les voies d'accès en quinconce entre les niveaux N et N+1, tout en réutilisant les matériaux rocheux des niveaux précédents.
 Cette méthode de construction permet :
 - de maximiser les zones de roulage et donc des zones de verse disponibles ;
 - de réutiliser/recycler les matériaux rocheux à deux ou plusieurs reprises. Ceci a plusieurs avantages techniques et financiers évidents ;
 - de gagner en capacité de stockage de stériles (volume corps de voies de roulage converti en volume pour stériles).
- Poursuite de la construction de renforts extérieurs (de ceinture) et extension des rampes principales d'accès au niveau suivant;
- Epandage de terre végétale substantiellement terminée et creusage du fossé colature sud planifié Q4 2020 mais non terminé vu le contexte sur site fin 2020.

2.2 Surfaces défrichées et revégétalisées

2.2.1 Bilan des défrichements en 2020

Se référer à l'**Annexe 1**: Plan de localisation des défrichements réalisés en 2020, VNC

Les chantiers nécessitant du défrichement en 2020 sont listés dans le Tableau 2.

Tableau 2: Surfaces défrichées en 2020 par chantier

Chantiers	Végétation défrichée (ha)
MAR	2,53
CPA1	0,17
FOSSE 2020	6,94
PP2020	1,11
TOTAL	10,75

Les surfaces défrichées par concessions minières sont précisées dans le tableau ci-dessous.

Tableau 3: Surfaces défrichées en 2020 par concessions

Concessions	Surfaces (Ha)
AS 2	2,52
AS 7	0,20
FER	2,60
FER EXT	5,42
Hors concessions	0,01
Total général	10,75

Les autorisations de défrichement nécessaires à ces travaux sont les suivantes :

Tableau 4: Autorisations de défrichements nécessaires aux chantiers 2020

Chantiers	Références des autorisations de défrichement
Carrière CPA1	Arrêté n° 977-2016/ARR/DENV
Carriere CPA1	Arrêté n° 2233-2017ARR/DENV
	Arrêté n° 1872-2015/ARR/DENV
Chantiers miniers 2020	Arrêté n° 1981-2016/ARR/DENV
	Arrêté n° 1349-2017/ARR/DENV
Sondages de pré-production 2020	Arrêté n° 1349-2017/ARR/DENV
MAD	Arrêté 894-2020/ARR/DENV
MAR	Arrêté n° 1349-2017/ARR/DENV

Les défrichements les plus importants concernent la fosse minière.

2.2.2 Bilan des surfaces revégétalisées en 2020

2.2.2.1 Chantiers de revégétalisation 2020

En 2020, les activités de revégétalisation ont essentiellement concerné des travaux de compensation liés à des arrêtés d'autorisations de défrichement. Le détail de ces opérations figure dans le tableau cidessous :

Tableau 5 : Travaux de revégétalisation en 2020

Référence arrêté	Titre Minier	Localisation	Type de travaux	Surfaces (Ha)	Nb de plants	Nbr d'espèces	% réalisés sur l'arrêté correspondant
Arrêté n° 2848- 2013/ARR/DENV du	DOMAINE	PPRB	Travaux de plantations de maquis minier	10,2	101 562	40	42
07 novembre 2013		Plaine des lacs	Enrichissement de zones humides	5	5 000	23	58
Arrêté n°1172- 2013/ARR/DENV	AS3	PGK	Enrichissement forestier	6	6 000	20	100
Arrêté 460-2016- DIMENC Compensation Chêne gomme sur la zone de dépérissement en aval de l'usine	AS2	Patch à Chênes gomme en amont de PGK 1	Enrichissement forestier	6	18 000	23	27,8
Arrêté n° 987- 2016/ARR/DENV du 3 mai 2016	AS4	Lisière PGK	Enrichissement forestier PGK	3	3 000	25	27
Arrêté n° 887- 2016/ARR/DENV du 18 avril 2016	FER	Patch forestier au nord de SMLT	Enrichissement forestier	3	13 973	93	65
Arrêté 1981- 2016/ARR/DENV	CASCADE	Mine des Japonais	Travaux de plantations de maquis minier	2,1	21 000	30	13
	Sous-to	Sous-total Plantation de maquis		12,3	122 562	46	
	Sous-total Enrichissement		23	45 973	93		
	TOTAL GENERAL		35,3	168 535	125		

Les opérations de revégétalisation compensatoires sont présentées plus en détail dans le bilan des actions de revégétalisation VNC – Année 2020 et un tableau de synthèse fournis en **Annexe 2.**

2.2.2.2 Techniques de revégétalisation utilisées

cf. Articles D8.3 à D8.4 et C.5.3.3 des prescriptions techniques de l'AEM

De manières générales, les plantations suivent le protocole suivant :

• Trouaison réalisée avec une tarière thermique munie d'un foret de 100 mm. Les trous ainsi faits ont une profondeur d'environ une vingtaine de cm. Dans le cas de plantation de maquis, ils ne doivent pas excéder cette taille afin de ne pas être surdimensionnés par rapport aux plants (entre 20 et 30cm de la cime aux racines). Pour les plants de forêts, cela dépendra de la taille des plants (assez variable selon les espèces et leur âge) et la trouaison pourra se faire à la pelle au besoin.

- Ajout du mélange d'engrais minéral de type 700 jours (les nutriments seront libérés sur 700 jours) et hydro-rétenteur. Ce dernier est hydraté au préalable avant le début du chantier. De petits stocks hydratés peuvent être constitués au dock de la pépinière VNC mais doivent impérativement être stockés à l'abris.
- Une couche de paillage est ensuite déposée au pied du plant fraichement mis en terre. Ce paillage assurera une protection contre les précipitations et un dessèchement rapide. Elle constitue également une barrière contre les espèces exotiques végétales. De plus, il pourra à moyen terme constituer une source de matière organique.

En 2020, il n'y a pas eu d'épandage de boues de stations d'épuration.

2.2.2.3 Bilan des opérations de revégétalisation

cf. Article D8.2 des prescriptions techniques de l'AEM

Une prestation d'ensemencement hydraulique ou hydroseeding sur une verse de la MAR et le Col de l'Antenne était planifiée pour le dernier trimestre 2020. Cependant, les blocages du site n'ont pas permis la tenue des travaux.

Ci-dessous, le bilan de la réhabilitation sur la mine de ces 6 dernières années :

Tableau 6 : Bilan des travaux de réhabilitation sur la Mine VNC entre 2015 et 2020 et coûts associés

			Surfaces revégétalisées par an en (Ha)					
Zone à revégétaliser	Surfaces totales en hectares	Type de travaux	Surfaces 2015	Surfaces 2016	Surfaces 2017	Surfaces 2018	Surfaces 2019	Surfaces 2020
VSKE - réhabilitation	5	Hydroseeding	2					
STOCK KN2-3 -	2,5	Hydroseeding						
Réhabilitation	0,5	Travaux de plantations	0,5					
SMLT - Réhabilitation	90	Hydroseeding				2	2	
Surfaces								
Plantation de maquis minier	27		0,5	0	0	0	0	0
Hydroseeding	10		2	0	0	2	2	0
Surfaces totales (Ha)	37		2,5	0	0	2	2	0
Coûts estimés en XPF			21	0	0	18	18	0

Les travaux d'hydroseeding initialement prévus sur le VSKE et le stock KN2-3 ont été décalés en raison de manque de top-soil. Tout le top-soil produit lors des défrichements a été envoyé sur le SMLT pour sa réhabilitation. De plus, la nature des sols défrichés, très cuirassés sur la fosse, ne permet pas de recueillir les quantités de substrat attendues.

Au niveau de la verse SMLT, les travaux se sont réorientés vers la réhabilitation des talus par hydroseeding, les plateformes et les banquettes intermédiaires n'étant pas disponibles dans l'immédiat pour des plantations.

2.2.3 Bilan des mesures de compensation des impacts sur la flore

- cf. Article E1 des prescriptions techniques de l'AEM
- 2.2.3.1 Prescriptions techniques de l'AEM Article E1-1.2 « Valorisation des itinéraires techniques de production et de réhabilitation »

Plusieurs actions de l'Article E1-1.2 des prescriptions techniques de l'AEM « Valorisation des itinéraires techniques de production et de réhabilitation » ont été poursuivie en 2020. Ces actions sont décrites dans les paragraphes suivants.

Création des fichiers des itinéraires techniques des espèces utilisées dans la revégétalisation des sites miniers listées dans l'AEM

La pépinière dispose d'une base de données de production de plantes en constante évolution. Les fichiers d'itinéraires techniques sont réalisés sur des espèces pionnières de maquis et forêts sur la base des données phénologiques et de production validée ainsi que la disponibilité de photos illustratives de chaque étape (récoltes, conditionnement des graines, germination, élevage de plantes).

Au total, les fichiers d'itinéraires techniques ont été établis pour 20 espèces dont Austrobuxus carunculatus, Acridocarpus austrocaledonica, Alphitonia neocaledonica, Calophyllum caledonicum, Carpolepis laurifolia, Lomandra insularis, Pleioluma sebertii, Pleurocalyptus pancheri, Stenocarpus umbelliferus et Xanthostemon aurantiacum.

En 2020, des fichiers d'itinéraires techniques ont été établis pour 2 espèces (*Garcinia balansae, Machaerina deplanchei*). Les fichiers des données techniques revus en interne de ces deux espèces sont présentés en **Annexe 3.**

Recherches et expérimentations sur les techniques industrielles d'inoculation des espèces endémiques avec des mycorhizes et bactéries fixateurs d'azote

Etudes sur les endomycorhizes

Dans le cadre d'amélioration des connaissances de l'utilisation des endomycorhizes pour la revégétalisation des sites miniers avec du maquis, deux volets d'études ont été lancé avec l'université de la Nouvelle-Calédonie. La première est une étude du comportement et croissance des plantes et des endomycorhizes sur du résidu sec issus du procédé de projet Lucy mélangée à du topsoil. Cette étude a été lancée en 2018 dans la continuité des recherches effectuée sur les résidus issus du procédé de VNC de 2010. Une deuxième étude visant des souches d'endomycorhizes isolées réalisée par l'université et commercialisée par Aura Pacifica a été lancée en 2020 sur des plantes de maquis de la pépinière de VNC.

Croissance de maquis de la pépinière de VNC inoculé avec des souches endomycorhizes (Aura Pacifica)

L'étude d'évaluation de croissance de plantes de 6 espèces de maquis minier inoculées avec des souches de endomycorhizes développée par l'UNC et commercialisée par Aura Pacifica a été lancée en octobre 2020. Ce premier test sur la pépinière de VNC avait pour but d'évaluer les performances de croissance et la santé des plantes inoculées avec la souche comparée à un mélange standard de la pépinière de VNC avec de l'humus broyé contenant un inoculum naturel de champignons et un substrat de latérite témoin.

Tableau 7 : Espèces de maquis minier inoculées avec les endomycorhizes commercialisés par Aura Pacifica sur la pépinière de VNC en 2020

Tableau des espèces inoculées au mycorhizes							
Espèces	Effectif testé	Effectif en témoin					
Issues des bacs de germination	Issues des bacs de germination						
Myodocarpus fraxinifolius	100	100					
Gymnostoma deplancheanum	100	100					
Jaffrea xerocarpa	100	100					
Austrobuxus carunculatus	100	100					
Total	400	400					
Issues des repiquages datant du 05/02/2020							
Gardenia aubryi	100	100					
Alstonia coriace	100	100					
Total	200	200					
Total général	600	600					

Figure 3 : Processus d'application de l'inoculum d'endomycorhizes par les pépiniéristes de VNC avec des doseurs sur les godets de production des semis en même temps que le repiquage des plantules

Figure 4: Des plantes de Austrobuxus carunculatus inoculée en avant plant et les témoins en arrière-plan

L'étude d'évaluation de la croissance devrait être entièrement reconduite en 2021 avec les espèces pionnières de maquis disponible à la pépinière de VNC. Cette étude est compromise car beaucoup de plantes, présentes dans la serre de recherche de VNC, ont été perdues par déshydratation à partir de novembre 2020 faute d'irrigation de la pépinière liée aux actes de vandalisme répétés de novembre à février 2021 sur le site.

2.2.3.2 Prescriptions techniques de l'AEM - Article E1.2 « Compensation des impacts sur les milieux dulçaquicoles »

Les actions de compensation des impacts sur les milieux dulçaquicoles ont été initiées en 2017 avec la stabilisation des berges du Grand Lac. Les berges sud et sud-ouest du Grand Lac, constituées de matières colluviales actives, sont soumises à des apports terrigènes en provenance du chemin rural CR10. Ses berges abritent deux espèces rares, *Retrophyllum minus* et *Callitris pancheri* dont les populations apparaissent étendues mais constituées d'individus épars. En 2020, 18 individus de *Callitris pancheri* et 96 individus de *Retrophyllum minus* ont été produits et viendront intégrer ces plantations dès que leur stade de croissance le permettra. Cette action sera poursuivie en 2022, les individus de *Retrophyllum minus* étant encore en cours de croissance à la pépinière et trop jeune pour partir en plantation. Ces plantations permettront de stabiliser les berges et ainsi de réduire les dépôts terrigènes vers les eaux peu profondes du Grand Lac.

Figure 5 : Localisation des plantations d'espèces ripisylves sur les berges du Grand Lac

Autre action engagée en 2020 en vue d'assurer la conservation de la potentielle nouvelle espèce de *sphaigne Sphagnum leratianum* localisée sur les berges du lac Xere Wapo :

En 2020, l'équipe conservation de VNC a été informée par la DDDT de la découverte d'une potentielle nouvelle espèce de sphaigne sur les bords du lac Xere Wapo lors d'une mission de Monsieur Louis Thouvenot conduite en 2019 pour le compte du Museum d'Histoire Naturelle. En effet, cette espèce serait assez proche morphologiquement de *Sphagnum leratianum*, connue du Plateau de Dogny, mais distincte sur plusieurs points, ne permettant pas d'écarter le cas d'une nouvelle espèce à ce stade. L'équipe Conservation de VNC a ainsi engagé une mission de prospection visant, dans un premier temps, à préciser la localité de cette espèce de Sphaigne afin de mieux caractériser son biotope. Plusieurs localités ont ainsi été recensées, géolocalisées et photographiées sur les berges du Lac Xere Wapo (Figure 5). Elle a été retrouvée de manière assez abondante en bordure immédiate des berges du lac au niveau de populations de *Melaleuca gnidioides* sur des sols terreux et gorgés d'eau dépourvus de blocs de cuirasse. Elle forme ainsi de petites buttes voir des tapis de couleur verte assez remarquables.

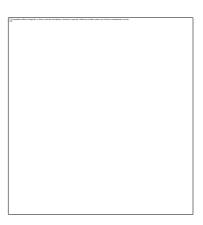
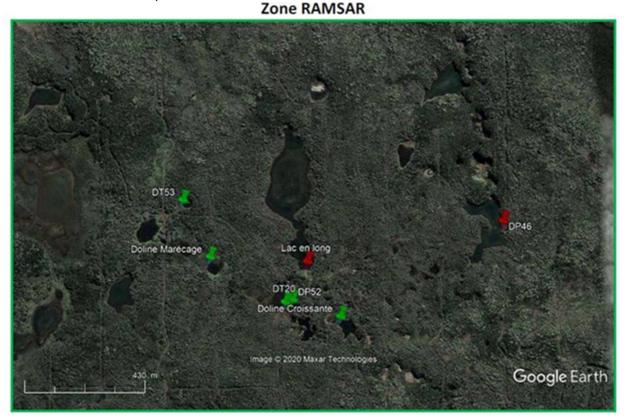



Figure 6: Photos en haut de gauche à droite : Sphaigne formant de petits agglomérats et Sphaigne formant de petites buttes sur les berges de Xere Wapo. Photo en bas : Localisation des occurrences de sphaigne sur les berges de Xere Wapo

Plusieurs dolines permanentes ont par la suite été sélectionnées afin d'engager des opérations de prospection en vue de retrouver cette potentielle nouvelle espèce de sphaigne sur de nouvelles localités. Les dolines à prospecter ont été sélectionnées pour leurs berges à fond plat et leur hydromorphie permanente, à savoir : le Lac Robert, DP46 et le Lac en long (Figure 6). Les missions de prospection ont été réalisées en aout 2020 au niveau de ces trois dolines mais n'ont pas permis de retrouver cette espèce de sphaigne.

Des prélèvements d'eau sur le Lac Robert et Xere Wappo ont également été réalisé pour analyse afin d'évaluer leur qualité et la possibilité de réaliser des essais de transplantations en pot de quelques individus avec du substrat prélevé in situ.

Figure 7 : Localisation des deux dolines, DP46 et Lac en long, prospectées en aout 2020

2.2.3.3 Prescriptions techniques de l'AEM - Article E1.4 « Compensation des impacts sur les espèces rares et menacées »

Actualisation du plan de compensation sur les espèces rares

Le plan de conservation des espèces rares et menacées de VNC a été actualisé en 2017 afin de répondre au plan de compensation des impacts résiduels engendrés par l'exploitation minière. Ce plan intègre 41 espèces rares présentes sur la zone de référence socio-économique, la zone d'influence et la zone d'emprise de VNC et se divise en trois principaux programmes adaptés aux enjeux de ces différentes zones. Pour chaque zone, les espèces ont été hiérarchisées selon leur priorité de conservation et des plans d'actions opérationnels ont été définis pour chacune de ces espèces.

Les actions de conservation engagées en 2021 impliquant le suivi, les récoltes, la production et les plantations d'espèces rares inscrites au plan de conservation sont présentées en **Annexe 4**.

Tableau 5 : Liste des espèces rares inscrites au plan de conservation

Espece	Statut	Zone
Planchonella latihila	CR	
Canacom yrica m onticola	EN	
Pandanus verecundus	CR	
Pittosporum muricatum	EN	
Araucaria goroensis	EN	
Pycnandra caeruleilatex	EN	
Agathis ovata	EN	
Rauvolfia sevenetii	EN	
Xanthostem on cf. sebertii	EX	
Callitris pancheri	EN	
Kerm adecia pronyensis	W	
Pandanus lacuum	EN	
Planchonella pronyensis	W	Zone emprise
Retrophyllum minus	EN	
Xanthostem on sulfureus	W	
Tristaniopsis reticulata	W	
Tristaniopsis vieillardii	W	
Virotia neurophylla	NE	
Pycnandra glabella	EN	
Serianthes petitiana	LC	
Agathis lanceolata	W	
Araucaria bernieri	W	
Tristaniopsis macphersonii	W	
Sarcochilus rarus	NE	
Araucaria nem orosa	CR	
Gm elina lignum vitreum	CR	
Kentiopsis piriformis	EN	
Pycnandra goroensis	CR	
Saribus jeanneneyi	CR	Zone influence
Dacrydium guillauminii	CR	
Tristaniopsis yateensis	EN	
Pycnandra canaliculata	EN	
Hib bertia favieri	CR	
Canarium whitei	CR	
Hibbertia bouletii	CR	
Hib bertia tontoutensis	EN	
Myrsine pronyensis	EN	Zone reference
Acianthus aegeridantennatus		
Bulb ophyllum gracilim um		
Calochilus neocaledonicus		
Podocarpus beecherae	LC	

Espéces prioritaires : Bilan stationnels, plan de suivi et de production

Espéces produites de manière opportuniste

 Caractérisation de l'état structurelle et phytosanitaire des populations d'Araucaria muelleri (prescription E1.4.1 de l'AEM)

Le protocole de cette étude sera défini en 2021. L'étude sera lancée en 2022.

Participation au processus de révision du statut des espèces endémiques par le comité local UICN et transmission des données d'inventaires floristiques :

En 2020, VNC a participé au processus de révision du comité local de l'UICN, du statut des espèces concernées par le développement de l'exploitation minière. La participation de VNC à ce groupe d'expert implique une participation aux différents ateliers d'évaluation ainsi qu'un temps de travail relatif à la centralisation des données d'inventaires floristiques et des illustrations en prévision des ateliers. Des informations (occurrences, écologie, production, photographies...) concernant plus de 19 taxons de flore présents dans le Grand Sud ont ainsi été transmises par VNC au RLA et ont été discutés lors des ateliers d'évaluation technique des taxons en 2020. La centralisation de ces données d'inventaires floristiques et des illustrations des espèces a nécessité l'implication d'un ingénieur et de deux techniciens durant 10 jours. A noter qu'en 2020, 21% des données transmises pour enrichir la base de données d'Endemia ont été transmises par les entreprises minières.

2.2.4 Remédiation du passif : réhabilitation de la mine A1

- cf. Article F2 des prescriptions techniques de l'AEM
- Rappel des travaux réalisés

Située en partie sur la concession VNC « KUE », cette mine orpheline a fait l'objet de travaux de gestion des eaux par la DDR en 2009, suivis de travaux de revégétalisation par VNC en 2011 (cf. Statistiques 2017 et 2018). Les surfaces se divisaient essentiellement en zones indurées parfois très rocheuses et en zones plus meubles de remblais ou de piedmont. Au total, ce sont 6 hectares qui ont été revégétalisés à l'aide de 40 000 plants de 36 espèces de maquis miniers.

Suivi de la revégétalisation

Après 8 ans de suivi, les résultats ont été plutôt mitigés. En effet, une grande disparité de réussite a été observée en fonction de la nature des sols présents. Sans surprise, c'est les sols les moins indurés et les moins rocheux qui ont présenté les meilleurs résultats. Aussi, l'exposition au vent a été un facteur déterminant dans la réussite de la plantation. Le suivi de cette plantation s'est terminé en 2019.

A noter qu'à l'origine, l'étalage d'une couche de top-soil avait été envisagé par VNC sur les zones bien enrochées. Cependant, cette option a dû être écartée en raison de la dangerosité d'une telle opération sur le site (problèmes d'accès notamment). Malgré tout, VNC avait fait le pari de réhabiliter ces zones.

Figure 8 : Plantation en 2011 (gauche) et en 2019 (droite)

Figure 9 : Illustration de la différence de croissance entre zone indurée quasiment nue (haut) et une zone plus meuble bien avec une bonne reprise de la végétation (bas)

Aucun chantier n'est prévu sur la zone traitée en 2011 : les taux de réussite sur les zones fortement indurées et/ou enrochées ne risquent pas d'évoluer et de nouveaux travaux ont peu de chance d'y réussir. Cependant, dans le cadre des prescriptions relatives à l'arrêté 987-2016/ARR/DENV, il est prévu à partir de 2021, si les conditions sur site nous le permettent de réhabiliter les zones de fond de vallée du site (Figure 10). Ce terrain, plus favorable aux plantations - zones meubles et à l'abris du vent – devrait présenter des résultats plus satisfaisants.

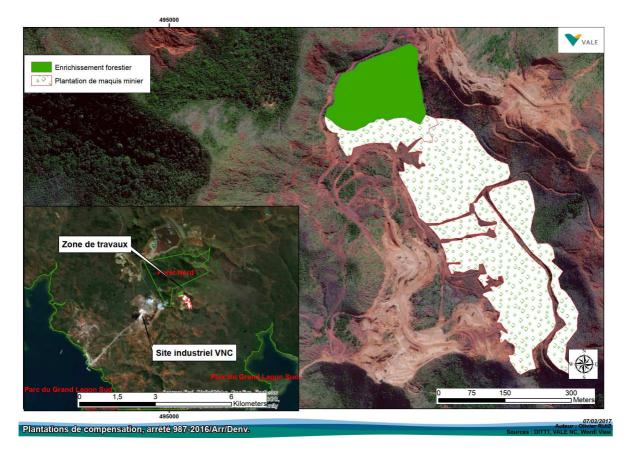


Figure 10 : Localisation des sites en fond de vallée_Mine A1

En 2020, une étude pour évaluer la gestion des eaux en place a été réalisée. Les principales conclusions de cette étude sont reprises ci-après.

Compte tenu des conditions d'accès et des matériaux rocheux à disposition, il faut admettre que les aménagements réalisés sur l'emprise de la mine A1 sont bien exécutés et efficaces pour empêcher l'érosion dans l'ancien périmètre d'exploitation. Les talus découverts par l'exploitation sont désormais protégés par un couvert formé de graves et blocs rocheux. En revanche, les chenaux hydrographiques en aval du périmètre d'exploitation sont très dégradés.

Le programme de réhabilitation de ce site et la protection des chenaux hydrographique se heurtera à deux difficultés majeures :

- Les conditions d'accès (pistes d'accès peu nombreuses, étroites et défoncées) limitent les moyens d'intervention (engins de petit gabarit, faible puissance);
- Les matériaux de construction qui pourraient être prélevés sur place sont pratiquement inexistants.

Le recours à des méthodes manuelles parait incontournable pour enrayer les mécanismes d'érosion dans les chenaux hydrographiques.

Figure 11 : Érosion des chenaux hydrographiques sur le piedmont en aval de l'emprise de la mine A1

Pour empêcher l'érosion de se poursuivre, il faut envisager la construction de seuils de correction torrentielle. Pour l'implantation optimale des seuils et leur dimensionnement, un levé topographique à haute résolution sera nécessaire. Pour calibrer la forme des seuils et des autres ouvrages hydrauliques, on pourra utiliser la station météorologique du Col de l'Antenne située à une altitude proche de celle de la mine A1.

3 INCIDENCES SUR L'ENVIRONNEMENT

3.1 Suivi des poussières

> cf. Article D12 des prescriptions techniques de l'AEM

3.1.1 Présentation du réseau de suivi des retombées de poussières

Dans le cadre des arrêtés d'autorisation d'exploitation de ses ICPE, VNC a déjà déployé un réseau de suivi de la qualité de l'air et notamment des poussières. Dans le cadre de l'arrêté d'exploitation minière, une partie de ce réseau est reprise en prescription ainsi que deux nouvelles stations de suivi poussières dans la fosse minière et l'unité de préparation du minerai. Le tableau et le plan ci-après présentent la localisation de ces stations et leurs caractéristiques de suivi.

Tableau 8: Localisation, dénomination et caractéristiques des sites de mesures des poussières

Nom de la station de	Forêt Nord	Base-vie	Aire de repos de la KN2-3	UPM
surveillance			109-0001	109-0002
Longitude RGNC91)	493923	493230	499004	497548
Latitude (RGNC91)	209578	209507	212254	211569
Type de station	Fixe	Fixe	-	-
Particules en suspension	2 campagnes d'1	2 campagnes d'1	2 campagnes de 15	2 campagnes de 15
Particules en suspension	mois	mois	jours	jours
Métaux dans les PM10	2 campagnes d'1	2 campagnes d'1	-	-
IVIELAUX GAIIS IES PIVITO	mois	mois		
Retombées de poussières	2 campagnes d'1	2 campagnes d'1	-	-
Retollibees de poussieles	mois	mois		
Métaux dans les retombées de	2 campagnes d'1	2 campagnes d'1	-	-
poussières	mois	mois		

Figure 12: Carte de localisation des stations de suivi des poussières dans le cadre de l'AEM

3.1.2 Méthode

Pour le suivi quantitatif des poussières sur la station Base vie et Forêt Nord, deux méthodes sont utilisées .

- une pour définir les retombées totales ;
- une autre, plus sélective, pour déterminer la quantité de poussières en suspension PM10 et déployée sur les stations Base-vie, Forêt Nord, Aire de repos et UPM.

Les prélèvements des retombées de poussières sont réalisés conformément à la norme NF X43-014 "Détermination des retombées atmosphériques totales – Echantillonnage – Préparation des échantillons avant analyses" et à l'aide de collecteurs de précipitation de type Jauge Owen. Ces capteurs sont exposés pendant un mois sur les sites de mesures puis récoltés pour envoi en analyse au laboratoire afin d'y déterminer les poussières sédimentables.

La quantification des poussières PM10 est réalisée à l'aide d'un analyseur en continu, le MP101 fourni par la société Environnement SA, répondant aux normes NF X 43021,43023 et 43017.

Les stations semestrielles sur la mine sont équipées d'échantillonneurs passifs SIGMA-2 développés par le laboratoire PASSAM pour la mesure des PM10. Cet échantillonneur capte les particules de 2,5 à 100µm par sédimentation. Les particules en suspension sont recueillies sur un substrat adhésif sur une durée de 15 jours. Les particules ainsi recueillies sont ensuite analysées par microscopie électronique.

3.1.3 Disponibilité des données

Mesures continues :

Le Tableau 9 présente les statistiques de disponibilité des mesures continues pour les stations Forêt Nord et Base-Vie.

Tableau 9: Pourcentage de données exploitables

Paramè	etres/Station	Nombre de mesures horaires acquises / An	Nombre de valeurs horaires manquantes/An	Taux de mesures horaires
PM10	Forêt Nord	7174	1610	81.9
PINITO	Base-Vie	7882	902	90.0

Une série de données est considérée comme exploitable à partir du moment où 75 % des valeurs attendues sont acquises et valides (valeur prescrite dans le fascicule de documentation de l'ADEME « Règles et recommandations en matière de validation des données – critères d'agrégation »).

La disponibilité des données des campagnes de mesures des poussières et métaux est présentée au Tableau 10.

Tableau 10 : Disponibilité des données de retombées de poussières, poussières en suspension et métaux

	Méthode d'échantillonnage	Nombre de stations suivies	Nombre de campagne attendues	Nombre de résultats attendus	% de résultats disponibles
Retombées Poussières	Jauges Owen	14	2	1	50
Poussières en suspension - PM10	Partisol+	72	2	6	60
Retombées Poussières	Echantillonneur passif Sigma-2	2	2	1	50

Trois différentes campagnes de mesures des poussières et des métaux sont réalisées.

L'échantillonnage des métaux dans les retombées de poussières à proximité de deux stations de qualité de l'air sont réalisées par jauge Owen. Deux stations ont été suivies en 2020, une campagne a été réalisée. La campagne du second semestre n'a pas été réalisée, elle était programmée en novembre au moment des blocages du site industriel :

- Forêt Nord, une campagne de suivi du 29/06/2020 au 30/07/2020 ;
- Base Vie, une campagne de suivi du 29/06/2020 au 30/07/2020.

Les métaux suivis dans les dépôts de poussières sont l'arsenic, le cadmium, le nickel, le plomb, le zinc et le mercure.

L'échantillonnage des métaux dans les poussières en suspension, à proximité des stations de suivi de la qualité de l'air est réalisé par Partisol. En 2020 deux stations, Base-vie et Forêt Nord ont fait l'object d'une campagne de mesure, du 02/07/2020 au 06/08/2020.

L'échantillonnage des retombées de poussières pour deux stations situées à proximité de la fosse minière et de l'unité de préparation du minerai est réalisé par des échantillonneur passif SIGMA-2. Une campagne a été réalisée en 2020, 08/07/2020 au 20/07/2020. La deuxième campagne de suivi a été réalisée, mais les échantillons collectés été entreposés avant envoi dans un bâtiment qui a été incendié lors des blocages du site industriel.

3.1.4 Résultats

3.1.4.1 Valeurs réglementaires

Mesures continues

Tableau 11: Seuils applicables au suivi de la qualité de l'air pour les particules en suspension

Polluant	Туре	Période considérée	Valeur (µg/m3)	Mode de calcul et remarques
Particules	Objectif de qualité	Année civile	30	Moyenne
en suspension de diamètre	Valeur limite pour la protection de la santé humaine	Journalière	50	centile 90.4 des moyennes journalières, soit 35 jours de dépassement autorisés par année civile
<10μm	Seuils d'alerte	Année civile	40	Moyenne

Retombées totales

Il n'existe pas de valeurs de référence françaises ou européennes pour les concentrations en métaux dans les retombées de poussières. En l'absence de valeurs de référence, les quantités de retombées de poussières et métaux sont comparées aux valeurs mesurées en 2009. A titre indicatif, les résultats sont aussi comparés aux valeurs réglementaires du TA LUFT (Allemagne, version du 24 juillet 2002), exprimées en moyenne annuelle. Les valeurs de référence sont présentées au Tableau 12.

Tableau 12 : Valeurs indicatives pour les métaux contenus dans les retombées de poussières

		Valeurs du TA LUFT	Valeurs de 2009	Valeurs de 2009
		(à titre indicatif)	Forêt Nord	Port Boisé
Poussières sédimentables	mg/m².jour	350	19	90
As		4	0.5	0.03
Cd		2	<0.9	<0.8
Ni		15	26	28
Pb	μg/m².jour	100	1.8	1.8
Hg		1	<0.4	<0.4
Zn		400	20	58

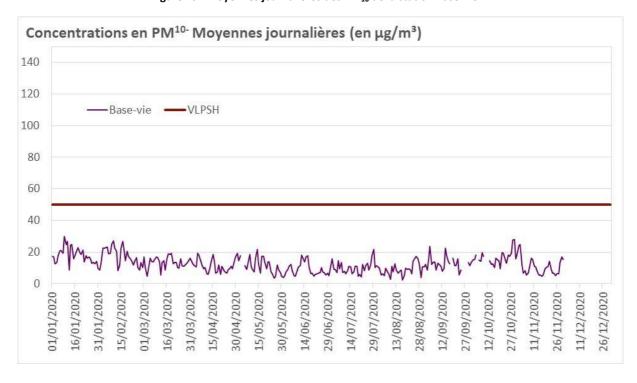
Il existe aussi une valeur de référence suisse (Conseil Fédéral Suisse : Ordonnance sur la Protection de l'air du 3 juin 2003) pour le Zn (400 µg/m2/jour), également exprimée en moyenne annuelle.

Métaux contenus dans les poussières en suspension (PM10)

Le Tableau 13 présente les différents textes et types de valeurs de référence retenus pour vérifier les résultats des métaux dans les poussières en suspension.

Tableau 13 : Obligations applicables au suivi de la qualité de l'air - métaux contenus dans les PM10

	Décret n° 2002-213		Directive n° 2003-0164 du parlement Européen	Guideline for Air Quality, WHO, Geneva 2000		
Danamaktura			Moyenne annuelle			
Paramètres -	Valeur limite	Objectif qualité	Valeur cible	Valeur seuil recommandée par l'OMS		
	μg/m³		ng/m³			
As	-	-	6	-		
Cd	-	-	5	-		
Ni	-	-	20	-		
Pb	0,5	0,25	-	-		
Mn	-	-	-	150		


Il n'existe pas de valeur de référence pour le mercure dans les PM₁₀.

3.1.4.2 Valeurs obtenues

Suivi des particules en suspension de diamètre inférieur à 10μm (PM10)

Les Figure 13 et Figure 14 présentent les moyennes journalières des concentrations en poussières et les comparent aux différents seuils fixés par la réglementation.

Figure 13 : Moyennes journalières des PM₁₀ de la station Base-vie

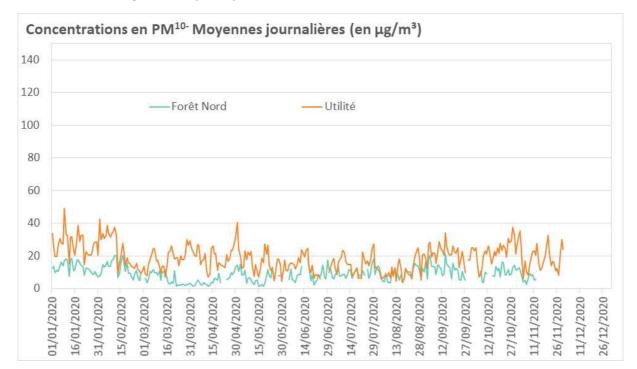


Figure 14 : Moyennes journalières des PM₁₀ des stations Forêt Nord et Utilité

Le Tableau 14 présente une synthèse des résultats par rapport aux obligations réglementaires pour l'année 2020.

Tableau 14 : Comparaison des mesures de poussières aux obligations réglementaires

Polluant	Туре	Valeur (µg/m3)	Mode de calcul	Forêt Nord - Protection des écosystèmes	Base-vie - Santé humaine	Utilité - Protection des écosystèmes	Station mobile - Protection des écosystèmes
	Objectif de qualité	30	Moyenne Annuelle	9.2	12.6	18.9	
Particules en suspension de diamètre <10µm	Valeur limite pour la protection de la santé humaine	50	centile 90.4 des moyennes journalières, soit 35 jours de dépassement autorisés par année civile		0		
	Valeur limite pour la protection de la santé humaine	40	Moyenne Annuelle		12.6		

Les mesures continues des poussières en suspension des stations de suivi de la qualité de l'air sont inférieures aux objectifs de qualité et aux valeurs limites pour la protection de la santé humaine.

3.1.5 Campagne de mesure de métaux dans les poussières

3.1.5.1 Métaux contenus dans les poussières en suspension (PM10)

La Figure 15 présente les niveaux de métaux relevés lors des campagnes de suivi réalisées aux stations de suivi de la qualité de l'air Forêt Nord et Base-vie en 2020.

0.3 0.26 Cadmium Arsenic 0.25 0.8 0.21 0.7 0.2 0.6 0.15 0.5 0.4 0.1 0.3 0.2 0.05 0.1 0 0 0 02/02/2020 02/02/2020 23/07/2020 02/01/2020 02/02/20/60 02/02/2020 23/07/2020 02/02/2020 02/02/20 02/02/2020 02/02/2020 02/02/2020 23/07/2020 02/02/20/06 10 6.47 9.22 Nickel **Plomb** 6 5 6 5.23 4 4.57 4.57 5 3 2.08 2.52 1.76 3 2.12 2 2 Mercure 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 02/02/2020

Figure 15 : Métaux contenus dans les poussières en suspension (PM₁₀) pour les stations Forêt Nord et Base-vie en 2020

D'après la Figure 15, les résultats les plus élevés sont observés lors de la période du 30 juillet au 6 aout l'arsenic, et du 2 au 9 juillet pour les métaux Nickel et Plomb. Les résultats en mercure et cadmium sont inférieurs aux limites de quantification.

Le Tableau 15 présente les résultats en moyenne annuelle des métaux analysés dans les poussières en suspension des stations Forêt Nord et Base Vie.

Tableau 15 : Moyenne annuelle2 2020 des métaux dans les PM10 pour les stations Forêt Nord et Base-vie

		BASE VIE	FORET NORD
Nickel	Moyenne annuelle 2020 (ng/m³)	4.468	2.758
Nickei	Valeur cible Moyenne annuelle Nickel (ng/m³)	20	20
Cadmium	Moyenne annuelle 2020 (ng/m³)	<0.09	<0.09
Caumum	Valeur cible Moyenne annuelle Nickel (ng/m³)	5	5
Arsenic	Moyenne annuelle 2020 (ng/m³)	0.124	0.11
Arsenic	Valeur cible Moyenne annuelle Nickel (ng/m³)	6	6
	Moyenne annuelle 2020 (ng/m³)	1.7	0.71
Plomb	Objectif de qualité (ng/m³)	250	250
	Valeur cible (ng/m³)	500	500
Mercure	Moyenne annuelle 2020 (ng/m³)	<0.18	<0.18

Les moyennes annuelles des concentrations en Nickel, Cadmium, Arsenic et plomb dans les poussières en suspensions sur la Foret nord et la Base-vie sont inférieures aux valeurs cibles données par la directive n°2003-0164 du parlement Européen.

3.1.5.2 Métaux contenus dans les retombées atmosphériques

Le Tableau 16 présente les métaux totaux contenus dans les dépôts de poussière de la campagne de juin/juillet 2020.

Tableau 16 : Métaux contenus dans les retombées atmosphériques des stations Forêt Nord et Base-vie en 2020

Début d'échantillonnage		29/06/2020	29/06/2020
Fin d'échantillonnage		30/07/2020	30/07/2020
Station		Base Vie	Forêt Nord
Dépôts poussière	mg/m²/jour	6.58	6.58
As	μg/m²/jour	0.05	0
Cd	μg/m²/jour	0	0
Ni	μg/m²/jour	55.96	37.59
Pb	μg/m²/jour	0.78	0.62
Zn	μg/m²/jour	646.75	30.61
Hg	μg/m²/jour	0	0

En 2020, les mesures de métaux totaux dans les retombées de poussières ont été effectuées sur les stations fixes Forêt Nord et Base Vie.

Les concentrations en nickel sur Forêt Nord et Base-vie de 2020 dépassent les valeurs mesurées en 2009 et la valeur limite de référence du TA Luft.

٠

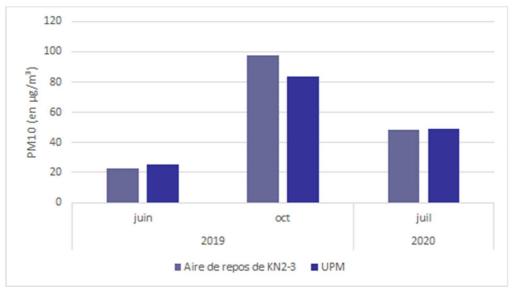
² Ces moyennes annuelles ont été obtenues en prenant la limite de quantification divisée par 2

Le résultat en Zinc pour la station Base-vie dépasse la valeur limite de référence du TA Luft de 400µg/m²/j et les concentrations relevées sont supérieures aux valeurs de 2009 pour la station Forêt Nord.

Les résultats en dépôts de poussières, Arsenic, Plomb, Cadmium et mercure sont inférieurs aux valeurs de référence retenues.

Le Tableau 17 est une synthèse du respect des obligations réglementaires pour les métaux contenus dans les retombées de poussière.

Tableau 17 : comparaison aux valeurs de référence pour les métaux dans les retombées de poussière en 2020


	Juin/juillet 2020
Forêt Nord	Nickel et zinc
Base Vie	Nickel et zinc

Sur les 5 métaux analysés, le nickel et le zinc présentent des valeurs supérieures la valeur limite de référence du TA Luft et/ou aux valeurs de référence de 2009.

3.1.6 Campagne de mesure des poussières en suspension sur la mine

La Figure 16 présente les résultats des campagnes de prélèvement des poussières en suspension réalisées depuis 2019 au niveau de deux stations du secteur minier. Une station est située en aval de l'influence de la fosse minière, elle est nommée Aire de repos KN2-3, et une station est située en aval de l'influence de l'Unité de Préparation du Minerais, nommée UPM.

Figure 16 : Résultats des deux campagnes de suivis des poussières en suspension – Secteur Mine

La campagne de suivi de 2020 s'est déroulée sur une période de 12 jours, contrairement aux campagnes de 2019 qui se sont déroulées sur 1 mois. Il est observé une différence entre les résultats, liée aux conditions météorologiques. La campagne d'octobre est représentative d'une longue période sans précipitations. La vitesse des vents moyens sont identiques entre les deux campagnes de 2019.

Les secteurs de vents sont différents :

- Campagne de juin 2019 : vents représentatifs de secteurs sud-sud-ouest et est-nord-est
- Campagne d'octobre 2019 : vents représentatifs de secteur est-sud-est à sud-sud-ouest.
- Campagne de juillet 2020 : vents de secteurs variables sur la période

3.1.7 Mesures d'atténuation

Le paragraphe §3.2.2.1, p46 traite des moyens mis en œuvre pour l'arrosage des pistes et chantiers.

3.2 Suivis et mesures relatives à la flore

3.2.1 Suivis

- cf. Article D8.1 des prescriptions techniques de l'AEM
- 3.2.1.1 Suivi annuel de l'état de santé de la végétation des lisières forestières

3.2.1.1.1 Présentation du réseau de suivi

L'activité minière peut être source de perturbations potentielles et engendrer des impacts indirects sur la végétation alentour (poussières, espèces exogènes, modifications hydriques et perturbations des cours d'eau, coupes de bois illégales, déchets, modification de la composition spécifique et de la structure des formations végétales).

Peu d'études sont actuellement disponibles. Un plan de suivi de l'état de santé de la végétation à proximité d'ouvrages miniers a ainsi été engagé en réponse à l'arrêté n°2848-2013/ARR/DENV pour l'exploitation de la mine et de la verse V5, à l'arrêté n° 977-2016/ARR/DENV autorisant le défrichement de la CPA1 et à l'arrêté n° 2698-2016/PS autorisant l'exploitation du site minier de « Goro ». Sept sites de suivi ont été sélectionnés à proximité de cinq projets dans le cadre du développement minier ainsi qu'un site témoin au niveau de Pic du Grand Kaori afin d'assurer un suivi de l'état de santé de la végétation (Cf. Figure 17). Les points de suivi sont localisés en lisière de forêt et de maquis paraforestier. Le suivi est réalisé trois fois par an avec une fréquence de suivi plus rapprochée durant la saison sèche. Le protocole intègre le suivi de plusieurs paramètres afin de détecter tout impact potentiel des travaux miniers sur la végétation (Tableau 18).

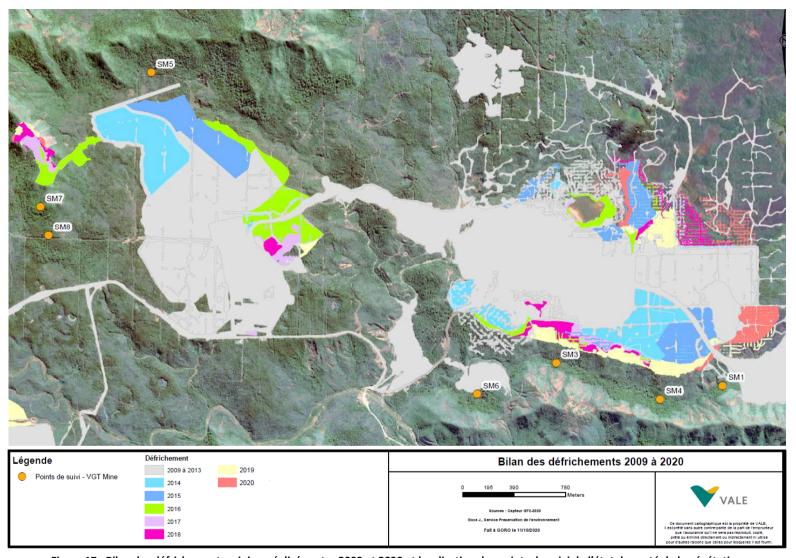


Figure 17 : Bilan des défrichements miniers réalisés entre 2009 et 2020 et localisation des points de suivi de l'état de santé de la végétation

Tableau 18: Paramètres de suivi et photographie

Paramétre de suivi	Indice		Description	Photographie	
Etat de santé de la végétation	Quantitatif	Activité photosynthétique (FV/Fm)	Phenologie: Espéces en floraison et/ou fructification,	Vue d'ensemble	
et Activité photosynthétique	Qualitatif	Mauvais, Moyen, Bon	phytosanitaire: Espèces et pathogénes associés	de la végétation	
Poussiére	Quantitatif	Pourcentage d'individus (%)	Type de dépôts : Couche fine/diffuse, Petit amas localisé, Plaque	v	
Foussiere	Qualitatif	Rien, Leger, Moyen, Fort	Type de depots : Couche fille/diffuse, Petit allias localise, Flaque	Х	
Symptômes foliaires	Quantitatif	Pourcentage d'individus (%)	Espéces et Type de symptômes : Chloroses, Necroses, Déformations	v	
Symptomes ronaires	Qualitatif	Rien, Leger, Moyen, Fort	Especes et Type de symptomes : Chloroses, Necroses, Deformations	X	
Etat de la régénération	Quantitatif	Activité photosynthétique (FV/Fm)	,	V	
Liai de la regeneration	Qualitatif	Rien, Legere, Moderee, Forte		Х	
Bruit	Quantitatif	dB(A)	Type de bruit	,	
Diuit	Qualitatif	Rien, Leger, Moyen, Fort	Type de bluit	/	
Dobrie lignouv au col	Quantitatif	Deursantage de recouvrement (0/)	Dranchagos au sol resents ancions décomposés	,,	
Debris ligneux au sol	et qualitatif	Pourcentage de recouvrement (%)	Branchages au sol : recents, anciens, décomposés	Х	
Déchets	Quantitatif	Quantité	Tuno do déchoto		
Decliets	et qualitatif	Quantite	Type de déchets	Х	
Fyagána	Quantitatif	Indica da braun blanquat	Fenáces		
Exogéne	et qualitatif	Indice de braun-blanquet	Espéces	Х	
Coupo do hois	Quantitatif	Quantite et Diamétre	Fenécos		
Coupe de bois	et qualitatif	Quantite et Diametre	Espéces	Х	
Erosion du Sol	Qualitatif	Oui/Non	Source	Х	
Cours d'eau	Qualitatif	Sec, Normal, Crue/debordement	Turbité	Х	

3.1.1.1.2. Résultats

Les résultats liés à l'évaluation des différents paramètres de suivi entre octobre 2015 et novembre 2020 sont présentés en **Annexe 4**.

Globalement, l'ensemble des habitats forestiers et paraforestiers situés à proximité de projets miniers sont apparus en bon état de santé avec une dégradation durant les saisons sèches de 2016 et 2017.

Une légère augmentation des symptômes foliaires et la présence de quelques individus séchés ou présentant des branchages séchés a été relevée en octobre 2016 sur les sites SM1 et SM5 ainsi que sur la majorité des sites en septembre et novembre 2017. Globalement, on note une stabilisation du nombre d'individus avec symptômes foliaires sur la majorité des sites de suivi à compter de 2018. En 2020, le site de suivi ayant présenté le plus de symptômes foliaires de chloroses et/ou de nécroses est le site SM6 avec moins de 10 % des individus présentant des symptômes foliaires.

Le suivi de l'état de santé des massifs forestiers autour de la mine par télédétection montre également une tendance à l'augmentation des surfaces impactées à compter de juillet 2017 puis une stabilisation en 2020. Cette tendance se retrouve également au niveau des massifs forestiers témoins tendant à indiquer un impact global à tous les massifs. La situation de sécheresse constatée en 2017 est à prendre en considération dans l'interprétation de ces tendances. Entre mai et novembre 2017, la Nouvelle-Calédonie a en effet connu un épisode de sécheresse intense (Météo France, 2018). Les indicateurs satellitaires utilisés pour le suivi de l'état de santé de la végétation par télédétection ont également tous marqués la période de sécheresse du second semestre 2017.

Sur la période 2020, le suivi par télédétection montre que la tendance est globalement à la stabilité. Les massifs FKE et FT apparaissent stables depuis 2019. Ces résultats confortent les relevés des symptômes foliaires réalisés sur le terrain au niveau des sites SM1, SM3 et SM4 situé au sein du massif FKE et SM8 situé au sein du massif FT. Les massifs FCPA1 et FCPKE présentent toujours une très légère augmentation des impacts. Le suivi des symptômes foliaires réalisés sur SM6 au niveau de FCPKE conforte ces résultats avec une augmentation des symptômes en mai 2020. Le massif FSMLT présente en 2020 une très légère tendance à l'amélioration à l'instar des observations faites sur SM5 au niveau de FSMLT qui montre une diminution du nombre d'individus avec symptômes foliaires en mai 2020.

Aucun dépôt de poussière de type « Fort » n'a été relevé sur l'ensemble des sites de suivi. Le site ayant présenté les dépôts de poussière les plus importants liés à l'activité minière est le site SM5 situé au Nord de SMLT avec près de 40% d'individus ayant présenté des dépôts de poussière entre octobre 2015 et octobre 2016. On note une diminution des dépôts de poussières à compter de mai 2017 durant la saison des pluies au niveau de ce site jusqu'à atteindre moins de 20% d'individus avec des dépôts de poussières en octobre 2020. Une augmentation des dépôts de poussière liée à l'activité minière au sud de la fosse minière a été constaté en mai 2017 au niveau du site de suivi SM3, le plus proche de la fosse puis se sont stabilisés jusqu'en 2020 avec 20 % d'individus. Une augmentation des dépôts de poussières a également été constatée au niveau du site SM7 situé à proximité de CPA1 entre 2016 et avril 2019 puis ont diminués et ce sont stabilisés à 30 % d'individus en 2020. Il s'agit du site ayant présenté le pourcentage d'individus avec dépôts de poussière le plus important en octobre 2020. Les dépôts de poussière au niveau de SM4, SM8 et SM9 sont quant à eux restés stables durant l'ensemble des suivis.

Dans l'ensemble, on constate une augmentation des dépôts de poussière selon l'activité à proximité (augmentation des surfaces défrichées et roulage minier) en lisière ou au niveau des zones ouvertes des sites de suivi (ancien layon...) puis une diminution des dépôts par lessivage par les pluies dès que l'activité minière s'atténue. Les dépôts en grande partie lessivés peuvent persister sur les feuilles du bas de la végétation sous forme de petites plaques ou de dépôts localisés en apex des feuilles.

L'augmentation des symptômes foliaires n'apparait pas liée aux dépôts de poussières, l'évolution de ces deux paramètres ne suivant pas les mêmes tendances sur l'ensemble des sites de suivi.

Malgré l'augmentation des symptômes foliaires et des dépôts de poussière sur certains sites au cours de la période de suivi, l'activité photosynthétique moyenne par site et par campagne de suivi a varié entre 0.717 et 0.844 entre 2017 et 2020 suggérant un bon état de santé de l'ensemble des sites de suivi. La valeur d'activité photosynthétique moyenne la plus basse a par ailleurs été enregistrée au niveau du site témoin de Pic du Grand Kaori durant la campagne de suivi de septembre 2018. On note une bonne régénération naturelle au niveau de ces formations végétales et de nombreuses espèces ont pu renouveler leur feuillage et assurer leur floraison et fructification entre octobre 2015 et octobre 2020. Seul SM7 a présenté une régénération, qualifiée de légère, s'expliquant par l'habitat en lui-même avec une strate cypéracéenne particulièrement développée limitant ainsi la germination. Aucune attaque phytosanitaire ou impacts anthropiques majeurs (coupe de bois, déchet) n'ont été constatés sur l'ensemble des sites de suivis durant la période de suivi.

3.2.1.2 Suivi annuel de l'état de santé des massifs forestiers par télédétection

Présentation du réseau de suivi

Depuis 2016, VNC a mandaté Bluecham pour la mise en place d'un protocole de suivi par imagerie satellitaire de l'évolution de l'état de santé de la végétation située à proximité de l'activité minière de VNC. Neuf massifs forestiers d'intérêt prioritaire dont deux massifs forestiers témoins ont été sélectionnés pour ce suivi (Figure 18 : Massifs forestiers d'intérêt prioritaire suivi par télédétection).

Figure 18 : Massifs forestiers d'intérêt prioritaire suivi par télédétection

Le processus de suivi de l'évolution de l'état de la végétation est réalisé à partir d'une combinaison d'indices satellitaires permettant de :

- suivre l'activité photosynthétique de la végétation,
- suivre la structure de la canopée et le couvert de feuilles,

suivre le stress hydrique de la végétation (fraction de la végétation).

Les indices requis en entrée sont des indices scientifiquement validés et approuvés depuis de nombreuses années dans le suivi de la végétation en milieu tropical. Ces paramètres présentent des variations complémentaires pour la caractérisation de l'état de la végétation permettant une intégration pertinente au sein de l'indicateur ISEV.

Le suivi global est réalisé à l'aide de l'indicateur ISEV. A partir des changements mesurés pour chaque paramètre caractérisant la végétation, l'indicateur synthétique de l'évolution de la végétation ISEV permet de mettre en évidence trois états de la végétation :

- Les valeurs centrées autour de 0 correspondent à des zones sans ou à très faible changements;
- Les valeurs tendant vers + 1 indiquent des changements positifs de l'activité de la végétation (1 = apparition de la végétation) ;
- Les valeurs tendant vers 1 indiquent des changements négatifs de l'activité de la végétation (-1 = mort ou disparition de la végétation)

* Résultats

Les résultats issus de l'étude VEGUSINE indiquent que les surfaces non impactées des massifs forestiers d'intérêt prioritaire situés à proximité de projet minier apparaissent largement supérieures aux surfaces impactées en juillet 2020 (Annexe 6). Les secteurs impactés représentent alors 2.85 % de la surface totale des massifs forestiers hors massifs témoins (Figure 15, Figure 17). Ces impacts apparaissent relativement faibles et les surfaces impactées varient entre 1.2 % et 10.2 % selon les massifs concernés (Figure 17).

Il n'y a pas d'évolution notable des impacts observés sur la période 2011 - 2017. A partir de 2017, les impacts augmentent très légèrement. Cette augmentation continue en 2019 et se stabilise en 2020 et les forêts de référence présentent à partir de 2019 un faible pourcentage (< à 10%) de zone impactée tendant à indiquer un impact global à tous les massifs. La situation de sécheresse constatée en 2017 et très marquée sur la zone est à prendre en considération dans l'interprétation de ces tendances. Les indicateurs satellitaires ont en effet tous marqués la période de sécheresse du second semestre 2017 avec une diminution de l'EVI (stress de la végétation); du NDVI (activité photosynthétique), du Fr (fermeture de la canopée) et du GRVI (jaunissement de la végétation) (Figure 16). Deux pics de stress de la végétation (EVI) et de baisse d'activité photosynthétique (NDVI) des massifs forestiers situés autour de la mine sont observés en juillet 2019 et juillet 2020. Il convient de noter que ces pics ont également été observés en juillet 2019 et juillet 2020 au niveau des massifs forestiers situés autour de l'usine tendant à indiquer que ce phénomène est global.

Sur la période 2020, la tendance est globalement à la stabilité. Les massifs FKE, FT sont stable depuis 2019. FCPA1 et FCPKE présente toujours une très légère augmentation des impacts. FSMLT présente en 2020 une très légère tendance à l'amélioration.

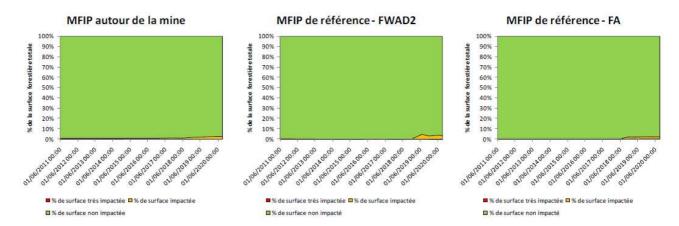
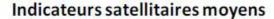



Figure 19 : Evolution des surfaces non impactées, impactées et très impactées entre 2011 et décembre 2020 au niveau des massifs forestiers situés à proximité de la mine et des massifs forestiers témoins

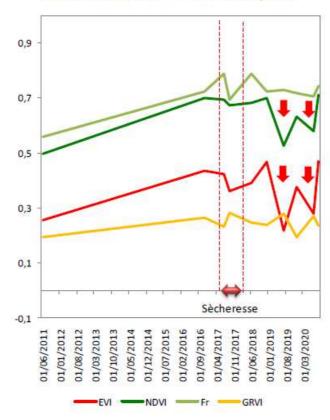


Figure 20 : Indicateurs satellitaires (NDVI, EVI, GRVI et Fr) sur la période considérée

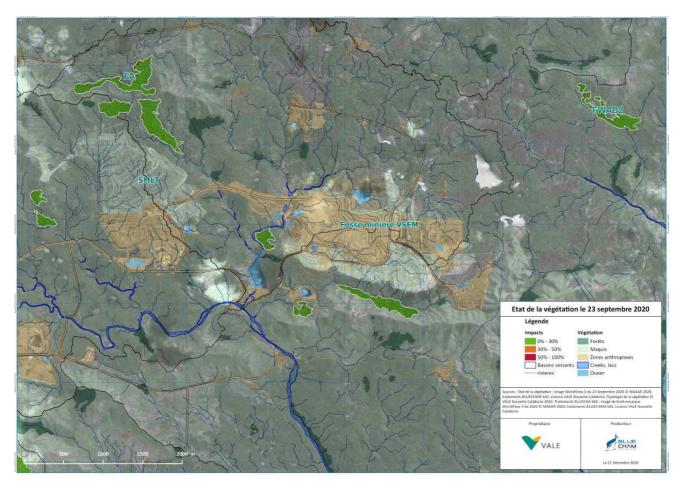


Figure 21 : Surfaces impactées par massif forestier en septembre 2020

3.2.1.3 Suivi et contrôle des espèces exogènes

* Présentation du réseau de suivi

Plusieurs zones du site industriel minier de VNC sont régulièrement suivies dans le cadre de la politique de suivi et contrôle des espèces exogènes de VNC. La liste de ces différents points figure dans le tableau ci-dessous :

Tableau 19: Liste des points de suivi de la présence d'espèces exogènes

Site	Localité/description	Type de zone	Coordonnée X	Coordonnée Y
PS 0	Usine Drain -Amont Creek Baie Nord	ZONE A RISQUE	493860	207580
PS 1	Usine - Bassin U7	ZONE A RISQUE	493499	207574
PS 2	Usine - Doline temporaire	ZONE A RISQUE	493458	207826
PS 3	Route CDE Doline	SENTINELLE	493237	208385
PS 4	Ancienne cimenterie-zone stockage de matériel	ZONE A RISQUE	493841	208775
PS 7	Base vie aval fosse	ZONE A RISQUE	492874	209574
PS 8	Usine - Plateforme dite "des terres souillées"	ZONE A RISQUE	494064	206360
PS 9	Forêt Nord - Bord de route	SENTINELLE	494137	208428
PS 10	Camp de géologie - Drain et fosse	SENTINELLE	494118	214272
PS 11	Usine pilote et convoyeur	ZONE A RISQUE	493547	206815
PS 12	Radier - Creek Baie Nord	SENTINELLE	491522	207498
PS 13	Littoral wharf Baie Nord	ZONE A RISQUE	491009	206391
PS 14	Littoral Port	ZONE A RISQUE	491851	205647
PS 16	Usine - Stock calcaire	ZONE A RISQUE	493893	207245
PS 17	Kue Principale - Radier	ZONE A RISQUE	498578	210989
PS 18	Maintenance Kue Ouest	ZONE A RISQUE	496809	210300
PS 19	FPP- Parking et STEP	ZONE A RISQUE	497696	211484
PS 20	Pic du Grand Kaori - Terre plein	SENTINELLE	492220	212863

Trois points de suivi ont été sélectionnés au niveau de la mine à savoir PS 17, 18, 19 car ils regroupent les bureaux, ateliers, vestiaires, parkings et zones de stockages et représentent des sources de diffusion potentielle d'espèces végétales envahissantes.

❖ Résultats

Le suivi réalisé en 2020 sur ce point a donné le résultat présenté dans le Tableau 20.

Tableau 20: Résultats des suivis des espèces exogènes végétales sur le point de suivi de la mine

Famille	Espèce	PS17	PS18	PS19
ASTERACEAE	Bidens pilosa	Χ	Х	Х
POACEAE	Cenchrus echinatus	Х	Х	Х
FABACEAE	Chamaecrista nictitans	Х		
ASTERACEAE	Crassocephalum crepidioides	Х		
FABACEAE	Desmodium incanum	Х	Х	Χ
POACEAE	Eleusine sp.	Х		
ASTERACEAE	Emilia sonchifolia	Х	Х	Х
EUPHORBIACEAE	Euphorbia hirta	Х		
POACEAE	Paspalum cf. urvillei	Х	Х	Х
ASTERACEAE	Pluchea odorata	Х	Х	Χ
POLYGALACEAE	Polygala paniculata	Х	Х	Χ
MALVACEAE	Sida acuta	Х	Х	
POACEAE	Sporobulus spp.	Х	Х	Χ
POACEAE	Stenotaphrum dimidiatum	Х		
ASTERACEAE	Ageratum conyzoides		Х	Χ
POACEAE	Chloris barbata		Х	
ASTERACEAE	Conyza canadensis		Х	Χ
LYTHRACEAE	Cuphea carthagenensis		Х	Χ
BALSAMINACEAE	Impatiens walleriana		Х	
POACEAE	Imperata cylindrica		Х	Χ
CONVOVULLACEAE	lpomoea sp.		Х	
FABACEAE	Leucaena leucocephala		Х	Χ
FABACEAE	Mimosa pudica		Х	Χ
PASSIFLORACEAE	Passiflora sp.		Х	Χ
PHYLLANTHACEAE	Phyllanthus tenellus		Х	Χ
SOLANACEAE	Solanum capsicoides		Х	
SOLANACEAE	Solanum lycopersicum		Х	
POACEAE	Sporobulus elongatus		Х	Χ
ASTERACEAE	Youngia japonica		Х	Χ
ASTERACEAE	Cyanthillium cinereum			Χ
APIACEAE	Cyclospermum leptophyllum			Χ
LAMIACEAE	Hyptis pectinata			Χ
LAIVIIACEAE				
FABACEAE	Macroptilium atropurpureum			Х
-	Macroptilium atropurpureum Mikania micrantha			X
FABACEAE				
FABACEAE ASTERACEAE	Mikania micrantha			Χ
FABACEAE ASTERACEAE CUCURBITACEAE	Mikania micrantha Momordica charantia			X
FABACEAE ASTERACEAE CUCURBITACEAE OXALIDACEAE	Mikania micrantha Momordica charantia Oxalis spp.			X X
FABACEAE ASTERACEAE CUCURBITACEAE OXALIDACEAE POACEAE	Mikania micrantha Momordica charantia Oxalis spp. Paspalum cf. conjugatum			X X X
FABACEAE ASTERACEAE CUCURBITACEAE OXALIDACEAE POACEAE PLANTAGINACEAE	Mikania micrantha Momordica charantia Oxalis spp. Paspalum cf. conjugatum Plantago cf. lanceolata			X X X X
FABACEAE ASTERACEAE CUCURBITACEAE OXALIDACEAE POACEAE PLANTAGINACEAE Lamiaceae	Mikania micrantha Momordica charantia Oxalis spp. Paspalum cf. conjugatum Plantago cf. lanceolata Plectranthus amboinicus			X X X X X
FABACEAE ASTERACEAE CUCURBITACEAE OXALIDACEAE POACEAE PLANTAGINACEAE Lamiaceae POACEAE	Mikania micrantha Momordica charantia Oxalis spp. Paspalum cf. conjugatum Plantago cf. lanceolata Plectranthus amboinicus Sacciolepis indica			X X X X X X

Lors de la campagne de suivi de septembre 2020, aucune nouvelle espèce exotique envahissante végétale non présente en Nouvelle-Calédonie ou non présente sur l'emprise de VNC au sens de la stratégie de

lutte contre les espèces végétales envahissantes de VNC n'a été détectée sur les zones d'études au niveau de la mine (Cf. Rapport suivi EVE 2020 en Annexe). 43 espèces exogènes ont été recensées au niveau de ces points de suivi. Une nouvelle espèce, *Tridax procubens*, présente sur l'un des sites de suivi de la Mine, PS19 a été relevée en 2020. Cette espèce exogène est relativement commune en Nouvelle-Calédonie et sur le site de VNC et ne représente pas de menace pour les milieux naturels environnant.

L'ensemble des espèces relevées sur les points de suivi de la mine présentent un faible risque d'envahissement des milieux naturels environnants du fait de leur préférence écologique, à l'exception de Leucena leucocephala et Mikania micrantha présentant un risque fort d'envahissement et de Pluchea odorata présentant un risque très fort d'envahissement. Ces espèces sont déjà présentes sur l'emprise de VNC et des mesures de contrôle et/ou d'éradication ont été engagées pour ces espèces.

3.2.1.4 Suivi et production d'espèces rares et/ou menacées

Les suivis

Les suivis phénologiques ont pour objectif de caractériser les périodes de floraison et de fructification afin d'optimiser les collectes de fruits et ainsi répondre aux objectifs de production. En 2020, les suivis ont été réalisés par deux techniciens de VNC. Plusieurs espèces sont suivies sur une journée en fonction de leur phénologie et de leur localité. 16 jours ont été consacrés aux suivis phénologiques et aux suivis de l'état de santé des populations de 11 espèces rares. Toutes sont des espèces rares prioritaires du plan de conservation en 2020. 27 % des espèces rares prioritaires inscrites au plan de conservation ont ainsi été suivies. Les principales observations relevées lors du suivi des espèces rares durant l'année 2020 sont présentées dans le bilan des activités de conservation 2020 (Cf. **Annexe 3**).

Figure 22 : Individu de Pandanus lacuum en fruit recensé sur l'emprise de la fosse minière

* Récoltes, production et plantation d'espèces rares et/ou menacées

Le bilan des récoltes pour l'année 2020 est présenté dans le Tableau 21. Dix espèces ont été récoltées en 2020. Parmi ces espèces, 40 % sont classées en EN et 20 % en CR. Six espèces protégées par le code de l'environnement de la Province Sud ont été récoltées. Les espèces *Dacrydium guillauminii* et *Planchonella latihila* classées CR ont été récoltées en 2020.

400 plantes ont été produites pour 10 espèces rares. Des espèces telles que *Planchonella latihila*, *Hibbertia bouletii et Araucaria nemorosa* classées CR ont été produites (Tableau 18). La production d'espèces rares a malheureusement été impactées par les blocages liés à la reprise de l'usine du Sud avec une perte potentielle de 1493 individus d'espèces rares.

On notera également la transplantation de 7 individus d'Araucaria goroensis récupérés sur l'emprise de la fosse minière. Trois des individus d'Araucaria goroensis transplantés sont des individus âgés de plusieurs centaines d'années et ont été directement plantés au sein des infrastructures de la pépinière de VNC avec mise en place d'un dispositif d'arrosage afin d'assurer leur survie. Cette opération de transplantation a été réalisée en collaboration avec la mine et l'entreprise Colas.

Enfin, un total de 503 plants d'espèces rares est sorti des stocks de la pépinière de VNC en 2020 pour des plantations de maquis et d'enrichissement forestier.

Tableau 21: Synthèse des actions de conservation engagées en 2020

	Satut UICN	Protection Province Sud	Poids et/ ou nombre de graines	Nombre de plants repiqués	Nombre de plants transplantés	Plantation
Agathis lanceolata	VU		560 gr			45
Araucaria goroenis	EN	Х			7	
Araucaria nemorosa	CR	Х		33		
Agathis ovata	EN	Х	200 gr	62		195
Callitris pancheri	EN	Х	<1gr	18		
Cunonia deplanchei	VU					1
Dacrydium guillauminii	CR	Х	15 graines			
Hibbertia bouletii	CR	Х		4		
Diopsyros macrocarpa	LC		10 fruits			1
Pandanus lacuum	EN	Х	90 fruits	3		31
Podocarpus lucienii	LC					12
Planchonela latihila	CR	Х	21 graines/8,5gr	3		
Pycnandra canaliculata	NT		80 gr			15
Rauvolfia sevenetii	EN	Х		57		142
Retrophyllum minus	EN	Х	642 gr	96		
Serianthes Calycina	VU					2
Xanthostemon cf. sebertii	EX	X				59
Pittosporum pronyense	NT		26 gr	117		
Total				4	00	503

3.2.1.6 Suivi de la ripisylve

Prescription D5.2.4 de l'AEM

Présentation du réseau de suivi

L'activité minière peut être source de perturbations potentielles et engendrer des impacts indirects sur la végétation alentour : modifications du régime hydrique, poussières, espèces exogènes, coupe de bois illégale, déchets ou encore une modification de la composition spécifique et de la structure des formations végétales.

Parmi les modifications les plus notables, les défrichements miniers réalisés en amont des cours d'eau peuvent entrainer une augmentation des apports en sédiments durant la saison des pluies et plus particulièrement en cas de crue. Les zones dénudées suite aux défrichements peuvent également perdre leur capacité à réguler les eaux de surfaces et entrainer une augmentation de la durée des périodes d'étiages. Le maintien d'une végétation rivulaire étant corrélé à la présence d'un débit suffisant en eau de ruissellement mais aussi en eau souterraine, une modification des conditions hydriques peut avoir des effets néfastes sur la flore rivulaire.

Aucune étude portant sur l'impact des modifications des conditions hydriques sur l'état de santé de la ripisylve n'a été réalisée en Nouvelle-Calédonie.

Un plan de suivi de l'état de santé de la ripisylve en aval d'ouvrages miniers a ainsi été engagé en réponse à l'arrêté n° 2698-2016/PS autorisant l'exploitation du site minier de « Goro ». Il a pour objectif de détecter tout impact potentiel des travaux miniers sur la ripisylve de la Kwé principale située en aval de la mine et du Parc à résidus de VNC. Afin de répondre à cet objectif, plusieurs indicateurs de suivi de ces impacts potentiels ont été définis. Les sources d'impact, les effets potentiels attendus sur le cours d'eau et la ripisylve, les indicateurs de suivi et les métriques associées sont détaillés dans le Tableau 22.

Quatre sites de suivi ont été sélectionnés en se basant sur la composition floristique de la ripisylve en place, sur les résultats issus de la modélisation de la réduction des débits hydrologiques du bassin de la Kwé et sur la présence d'espèces rares inféodées aux milieux humides (Figure 23). Le suivi est réalisé deux fois par an en fin de saison des pluies et en fin de saison sèche. Les paramètres suivis afin de détecter tout impact potentiel des travaux miniers sur la végétation sont présentés dans le Tableau 22.

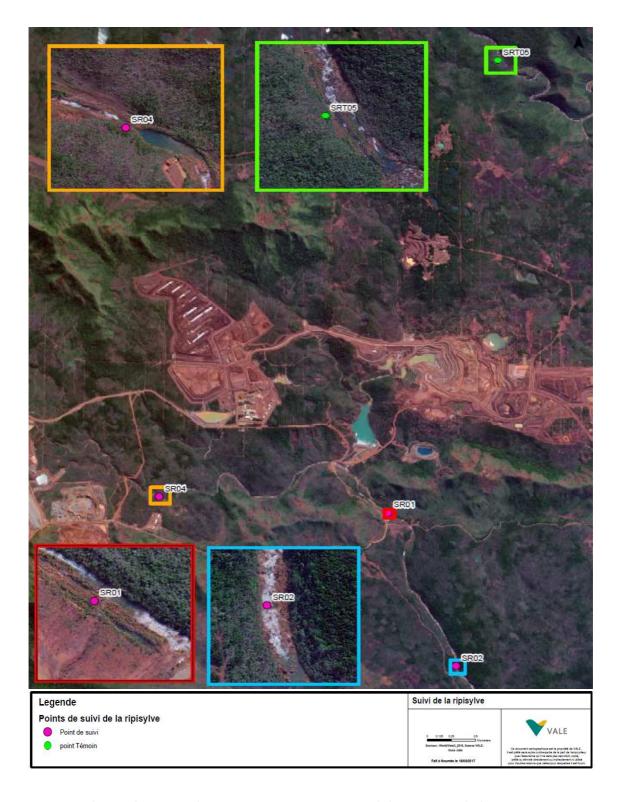


Figure 23 : Localisation des stations de suivi SR01, SR02, SR04 au niveau de la Kwe Principale, la Kwe Ouest et SRT05 au niveau de la Kuebini

Tableau 22 : Paramètres de suivi et métriques associées

Sources d'impact	Effet sur le cours d'eau et la ripisylve	Indicateur de suivi	Indice qualitatif	Indice quantitatif - Metrique			
Crue	Destruction de végétation (arrachage, ensevelissement)	Dépôts latéritiques et débris végétaux	Rien, leger, important	1			
Defrichement.	Erosion	Structure des rives : Exposition du sol, exposition des racines des arbres	Stable, légèrement érodée, érodée, très érodée	Degré d'exposition des racines (%) Exposition du sol (%)			
travaux de		Pente des rives		Ecotone : Pente (%)			
terrassement	Modification dépots granulométrique	Substrat	Type de substrat	Ecotone : Substrat (%)			
	Augmentation des apports sédimentaires	Turbidité	Claire, Legerement trouble, trouble, terreuse	/			
	Modification composition floristique	Inventaire floristique	Espece	Indice de Braun Blanquet (%)			
	Modification de la structure	inventarie fronstique	Recouvrement de la végéta	ation (photo drône)			
		Symptômes foliaires	Rien, Leger, Moyen, Fort	Pourcentage d'individus avec symptômes (%)			
	Stress hydrique	Régénération naturelle de la végétation	Rien, peu, modéré, Fort	Peameter : Activité photosynthétique			
Reduction des		Etat de santé de la végétation	Bon, Moyen, mauvais	Peameter : Activité photosynthétique			
débits	Impact sur les espèces sensibles	Suivi Retrophyllum minus, Callitris pancheri, Dracophyllum cosmelioides et Xyris pancheri	Inventaire	Indice de Braun Blanquet (%) Pourcentage d'individus avec symptômes (%)			
	Assechement des cours d'eau	Activité du cours d'eau	Sec, normal, debordement	Ecotone : Profondeur moyenne et maximale (cr Ecotone : Largeur du lit (m)			
	Euthrophisation du cours d'eau	Algues, végétaux aquatiques	Espece	Indice de Braun-Blanquet (%)			
Immet	Production de dechets	Déchets	Туре	Quantité			
Impact anthropique	oupe de bois Traces de coupe de bois		Espece	Quantité Diametre (cm)			
Modification composition	Developpement d'espèces exogénes animales et végétales	Especes exogénes	Espece	Indice Braun-Blanquet (%)			
composition	Perturbation de l'équilibre	Ecotone : Eau : PH, Conductivité, concentra	tion en Oxygéne dissout (pp	om et %)			
sols et de l'eau	ecologique	Sol : PH, Conductivité, soufre, Calcium					

* Résultats

Les résultats liés à l'évaluation des différents paramètres de suivi de l'état de santé de la ripisylve entre octobre 2017 et novembre 2020 ont montrés que la ripisylve des sites de suivis est apparue en bon état de santé avec une légère dégradation durant les saisons sèches d'octobre 2017 et de novembre 2018 se traduisant par une augmentation des symptômes foliaires. Les symptômes foliaires, de type chlorose diffuse et nécrose apicale, sont apparus plus marqués et ont concerné plus d'individus durant ces périodes de déficit hydrique avec une prépondérance de symptômes en octobre 2017. Les données météorologiques de météo France indiquent un important déficit hydrique de l'ordre de moins 70% pour l'année 2017 et un léger déficit de précipitation de moins 5% en 2018 par rapport à la moyenne 1981-2010. En 2020, on note une nette diminution des symptômes foliaires sur la ripisylve avec 5% des individus présentant des symptômes de type « léger » sur l'ensemble des sites de suivi.

Les indices d'activité photosynthétique Fv/Fm moyen relevés sur l'ensemble des sites de suivi entre 2017 et 2020 affichent des valeurs comprises entre 0.648 et 0.807 suggérant une bonne activité de la végétation malgré l'augmentation de symptômes foliaires en saison sèche.

Les inventaires floristiques réalisés entre 2017 et 2020 n'ont pas montré de modification de la structure et de la composition spécifique des formations végétales en place. On note une bonne régénération naturelle au niveau de la ripisylve des sites de suivi. Seul SR01 a présenté une régénération, qualifiée de légère, s'expliquant par l'habitat en lui-même et notamment par les passages d'eau favorisant des plages de sols nus et limitant le développement de plantules. La strate plantule est apparue en bon état de santé et l'indice d'activité photosynthétique le plus bas a été relevé au niveau du site témoin SRT05 en novembre 2018.

Le suivi des espèces rares inféodées aux milieux humides (Retrophyllum minus, Dracophyllum cosmelioides, Xyris pancheri, Callitris pancheri) n'a pas montré de cas de mortalité. On constate la

présence de symptômes foliaires caractéristique de stress hydrique sur *Retrophyllum minus* et Callitris pancheri en saison sèche. Aucune attaque phytosanitaire ou impacts anthropiques majeurs (coupe de bois, déchet) n'ont été constatés sur l'ensemble des sites de suivis durant la période de suivi.

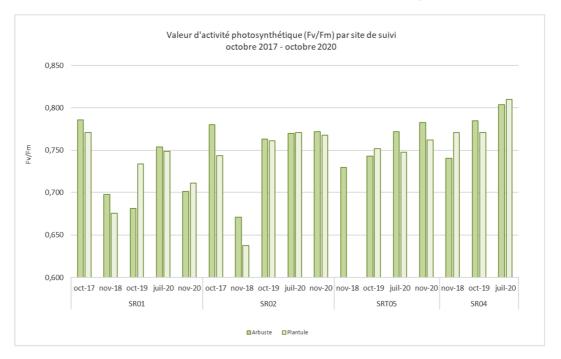


Figure 24 : Activité photosynthétique mesurée par site de suivi

Le tableau de suivi de la ripisylve est fourni en Annexe 8.

3.2.2 Bilan des mesures de préservation et d'atténuation

3.2.2.1 Arrosage des pistes et des chantiers

VNC recourt au captage du BSKN pour alimenter les arroseuses dont l'intervention permet de limiter l'envol des poussières. Les chantiers desservis sont les suivants :

- Fosse minière ;
- Verse SMLT;
- ROM-Pad;
- Carrière CPA1;
- Piste reliant le CIM au barrage de la Kwé Ouest.

Le renouvellement de l'autorisation de captage a été délivré par arrêté n° 2417-2017/ARR/DDR du 8 septembre 2017 jusqu'en août 2022. Le débit maximal est fixé à 3 580 m³/jour sur la base de 10h de prélèvement par jour.

Les eaux issues du captage sont acheminées vers trois potences qui servent au remplissage des arroseuses. Les potences sont positionnées de manière à limiter la distance de roulage. Les points d'approvisionnement sont situés (cf. Figure 25) :

- sur le ROM-Pad : potence ROM-Pad (n°1) ;
- à l'entrée de la fosse minière : potence KN2-3 (n°2).
- à proximité du captage : potence BSKN (n°3) ;

Les deux potences éloignées du point de prélèvement sont alimentées par des réservoirs de 250 m³ qui sont alimentés par une conduite de 250 mm en PEHD. Les suppresseurs permettent de relever l'eau jusqu'aux cuves.

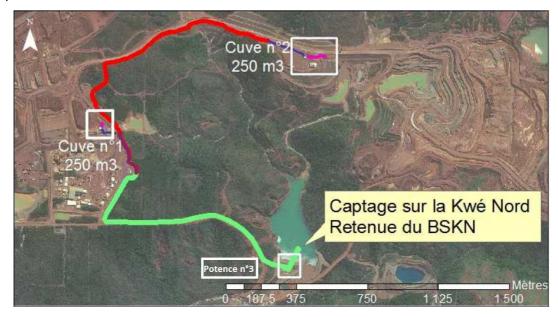
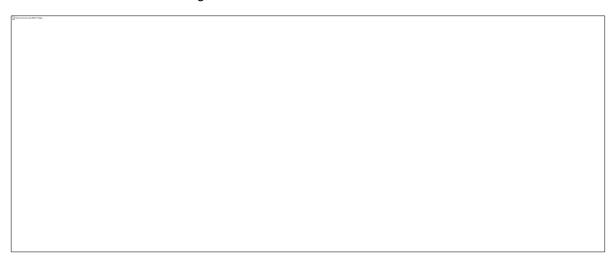


Figure 25: Localisation des points d'alimentation des arroseuses



Les volumes d'eau relevés aux compteur volumétrique installé au niveau du point de captage de la kwé nord, au niveau du ROM-Pad et sur la ligne permettant d'alimenter la cuve d'eau KN2/3 sont présentés dans le tableau ci-après.

Tableau 23 : Volumes d'eau prélevés dans le BSKN

	date début	Compteur (m³)	date fin	Compteur (m³)	Consommation annuelle (m ³)
BSKN	23/01/2020	1 109 131	03/11/2020	1 230 816	121 685
KN2-3	23/01/2020	123 063	09/11/2020	149 908	26 845
Rompad	23/01/2020	436 703	09/ /2020	522 444	85 741

Figure 26: Prélèvement d'eau dans la Kué Nord

Avec ces trois compteurs on peut déduire que le volume d'eau prélevé directement au niveau du captage (au pied du barrage de BSKN) a été de 9099 m³ en 2020. Cette eau a été dédiée à l'arrosage de la road pipe et d'une partie de la Kwé ouest, de la carrière CPA1 et de la verse SMLT.

3.2.2.2 Récolte de graines, boutures et plantules

Les récoltes de graines sont assurées par le personnel du service « Préservation de l'environnement » tout au long de l'année. Ainsi, la campagne 2019-2020 a permis de récolter 367,5 kg de fruits de 72 espèces différentes. Le détail des récoltes figure dans le tableau ci-dessous.

Tableau 24 : Récapitulatif des récoltes effectuées lors de la saison 2019-2020 sur le Plateau de Goro

Espèces	Poids (Kg)
Acridocarpus austrocaledonicus	1,38
Agathis lanceolata	0,56
Agathis ovata	0,2
Alfordia kendack	0,06
Alstonia coriaceae	0,66
Arytera lepidota	1,51
Atractocarpus heterophyllus	0,14
Austrobuxus carunculatus	16,64
Austrobuxus rubiginosus	0,14
Austrobuxus sp	0,04

Espèces	Poids (Kg)
Beauprea	0,12
Beauprea spathulifolia	2,22
Codia	0,18
Cryptocaria guillauminii	0,27
Cunonia deplanchei	0,22
Dacrydium araucarioides	1,16
Deplanchea speciosa	1,42
Dodonaea viscosa	3,38
Dubouzetia elegans	0,12
Elaeocarpus alaternoides	0,46
Elaeocarpus sp	0,6
Elaeocarpus speciosus	7,9
Garcinia balansae	6,74
Gardenia aubryi	0,523
Gardenia aubryii	0,08
Garnieria spathulaefolia	1,94
Geissois pruinosa	0,86
Grevillea exul	89,894
Grevillea gillivrayi	0,26
Guioa sp	0,058
Gymnostoma deplanchaenum	113,408
Gymnostoma leucodon	0,76
Gymnostoma poissonianum	10,38
Hibbertia lucens	1,4
Hugonia penicillanthemum	0,16
Jaffrea xerocarpa	2,16
Jasminum neocaledonicum	0,12
Lomandra insularis	16,06
Longetia buxoides	4,417
Metrosideros operculata	0
Montrouziera cauliflora	0,56
Montrouziera gabriellae	0,766
Myodocarpus fraxinifolius	1,26
Myrtopsis sellingii	0,34
Neoguillauminia cleopatra	0,86
Oxera nerifolia	0,22
Pittosporum deplanchei	0,18
Pittosporum pronyense	0,026
Planchonella sphaerocarpa	1,66
Plerandra gordonii	0,12
Plerandra sp	0,018
Podocarpus lucienii	0,22
Podonephelium gongrocarpum	6,6

Espèces	Poids (Kg)
Pycnandra canaliculata (ex	
gatopensis)	0,08
Rauvolfia sevenitii	1,676
Retrophyllum minus	0,18
Scaevola balansae	3,74
Stenocarpus comptonii	10,78
Stenocarpus umbelliferus	40
Storckiella pancheri	1,02
Storthocalyx chryseus	0,4
Syzygium badouinii	0,66
Syzygium frutescens	1,88
Syzygium laurifolia	0,38
Syzygium mouanum	0,46
Syzygium neolaurifolium	1,54
Syzygium pancheri	0,8
Syzygium sp	1,32
Syzygium sp	0,2
Tarenna hexamera	0,4
Uromyrtus sp	0,4
Austrobuxus carunculatus	0,22
Total	367,566

Figure 27 : Triage et rangement des récoltes opérées sur le Plateau de Goro à la Pépinière VNC

VNC pratique également le bouturage, notamment pour les espèces pour lesquelles la germination n'est pas maitrisée. Cette pratique, bien que permettant d'augmenter la richesse spécifique de la production de plantes, nécessite une manutention importante lors de la préparation des boutures. Le bilan des boutures réalisées en 2020 figure dans le tableau ci-dessous.

Tableau 16 : Tableau récapitulatif des boutures réalisées par VNC en 2020

Familles	Espèces	Nbre bouture
MYRTACEAE	Babingtonia leratii (s. leratii)	3500
CUNONIACEAE	Codia albifrons	3737
CUNONIACEAE	Codia nitida	1000
SAPINDACEAE	Guioa villosa	800
RUTACEAE	Halfordia kendac	1360
DILLENIACEAE	Hibbertia pulchella	1771
MYRTACEAE	Melaleuca dawsonii	262
RUBIACEAE	Normandia neocaledonica	1200
OLEACEAE	Osmanthus austrocaledonicus	1135
LAMIACEAE	Oxera neriifolia	2130
CELASTRACEAE	Peripterygia marginata	2000
PODOCARPACEAE	Podocarpus novaecaledoniae	500
ERICACEAE	Styphelia longistilis	200
ERICACEAE	Styphelia pancheri	200
ERICACEAE	Styphelia veillonii	200
ANNONACEAE	Xylopia pancheri	100
Total		20 095

VNC pratique également de la transplantation des plantules, même pour des espèces maitrisées en germination. Cette pratique opportuniste peut parfois se substituer aux germinations, surtout lorsque les récoltes ont été peu fructueuses ou dans le cas de mortalités importantes ou de retards observés sur les germinations en serre.

Le détail de ces transplants figure dans le tableau ci-dessous.

Tableau 25 : Tableau récapitulatif des transplantations de plantules réalisées par VNC en 2020

Familles	Espèces	Total
CUNONIACEAE	Codia spatulata	2 417
CYPERACEAE	Alphitonia neocaledonica	2 060
CYPERACEAE	Schoenus neocaledonicus	10 550
MYODOCARPACEAE	Myodocarpus fraxinifolius	5 200
MYRTACEAE	Arillastrum gummiferum	2 110
MYRTACEAE	Syzygium wagapense	1 019
RHAMNACEAE	Alphitonia neocaledonica	690
SAPINDACEAE	Dodonaea viscosa	1 350
SAPINDACEAE	Guioa villosa	2 743
Total		28 139

Cependant, ces efforts de récoltes et de bouturages ont été mis à mal par les multiples exactions dont la pépinière a été victimes entre décembre 2020 et mars 2021. Une estimation faite lors d'une visite sur site a permis de mettre en évidence des pertes importantes, notamment au niveau des serres de germinations et bouturages :

- 79 800 semis et boutures
- 1 493 individus d'espèces rares

De plus, les stocks de graines ont également été victimes de vandalisme, compromettant fortement la production de plantes pour l'année 2022.

Figure 28 : Production de boutures entièrement morte (gauche) et salle de préparation des lots de germination saccagée, avec destruction des lots de graines (droite)

3.2.2.3 Récupération et utilisation du topsoil

En 2020, les défrichements ont été principalement effectués autour de la fosse minière. Ce top-soil, prélevés sur des zones très cuirassées, est relativement pauvre en matières organiques mais très rocheux. Le gyrobroyage de la végétation réalisé en amont du décapage de la cuirasse permet toutefois d'apporter un supplément de matière organique.

L'essentiel de ce top-soil a été transféré puis étalé sur les talus de la verse SMLT. Des talus précédemment traités de la sorte ont montré des signes de reprise naturelles avec des Cypéracées et quelques ligneux (Alphitonia sp. ou Gahnia novocaledoensis par exemple) ainsi que quelques orchidées comme des Eriaxis sp. Lorsqu'il n'y a pas de reprise naturelle, un hydrosseding avec des espèces endémiques est réalisé.

La surface traitée en 2020 correspond environ à 2.5 ha de talus au Sud de la verse SMLT (Cf. **Annexe 2**). Un levé topographique plus détaillé prévue en novembre 2020 n'a pu être réalisé par l'entreprise DUMEZ en raison des blocages. Il sera effectué quand la situation sera revenue à la normal.

3.3 Suivis et mesures relatives à la faune

> Cf. article D8.5 des prescriptions techniques de l'AEM

3.3.1 Suivis de la faune terrestre

3.3.1.1 Suivi de la faune des milieux patrimoniaux (forêts, Lacs)

3.3.1.1.1 Présentation du réseau de suivi

❖ Volet Avifaune:

Le suivi de l'avifaune se fait tous les ans, sur 12 patchs forestiers et 3 plans d'eau répartis autour de l'emprise minière et dans les réserves spéciales.

Les douze forêts sont :

- la forêt cuvette à la mine des japonais (FC), la forêt Jaffré (FJ),
- la forêt de la Reserve de Forêt Nord (FN),
- la forêt Nord côté port boisé (FN2),
- la forêt S2 (S2), la forêt du tuyau (FT),
- la forêt de la Kwé Est côté carrière (KEC),
- la forêt de la Kwé Est dite forêt longue (KE),
- la forêt de la Kwé Nord (KN),
- la forêt de la Reserve du Pic du Grand Kaori (PGK),
- la forêt de la Reserve de Pic du Pin (PDP)
- et la forêt du site témoin sur le bassin versant de la Wadjana (WA).

Les trois plans d'eau sur la Plaines des Lac sont :

- le Lac en Huit (LH),
- le Lac Intermédiaire (LI)
- et le Grand Lac (GL).

Effort de recherche :

Chaque point d'écoute en forêt est effectué sur 10 minutes, il y a quatre réplicas, deux en matinée à l'aube et deux en fin de journée. Les données sont analysées et fournissent des indices ponctuels d'abondance (= nombre moyen de contacts par point d'écoute pour une espèce donnée) et de fréquence d'occurrence (= pourcentage de points d'écoute ou une espèce donnée a été détectée).

Concernant l'avifaune dulçaquicole des deux secteurs de Lac en Huit, le Lac Intermédiaire et Grand Lac, deux points de suivis sont effectués par lac ou secteur de lac. Le suivi consiste en une vérification visuelle des plans d'eau et des bords de lacs avec des jumelles pour identifier et dénombrer les oiseaux sur une

durée de 5 à 20 minutes entre 10h et 13 h, période où l'avifaune est plutôt active.

❖ Volet Herpétofaune :

VNC effectue ses suivis des lézards (scinques+geckos) sur quatre forêts dont deux en alternance d'une année sur l'autre. En 2020, les trois forêts suivies sont : la forêt sur éboulis au nord de SMLT, la forêt de piedmont de la Reserve de la Forêt Nord et la forêt de piedmont de la reserve de Pic du Grand Kaori.

Effort de recherche:

La méthodologie de suivi de l'herpétofaune forestières des réserves développée et appliquée depuis 2007 lors de la période la plus optimale d'activité des reptiles entre Novembre et Décembre ; Cette méthode consiste en un suivi visuel des populations des scinques au sol et par pitfall de jour sur des transects de 200m. De nuit, un passage est fait sur les mêmes transects pour faire un repérage des geckos par un éclairage qui permet de soit repérer les Bavayia dans les sous-bois soit le reflet oculaire des grands geckos dans les arbres. Deux passages par forêt sont effectués au tombé de la nuit (suivi nocturne) avec des conditions météo sèches considérées comme plus adaptées pour le suivi.

3.3.1.1.2 Résultats

Volet Avifaune

Les tableaux ci-dessous synthétisent les résultats du suivi de l'avifaune du plateau de Goro en 2020, disponible en **Annexe 9.**

Tableau 26 : Résultats des points d'écoute 2020 comparée à 2019 sur les massifs forestiers du plateau de Goro

Code	Nom latin	Nom commun	End	UKIN	Ind. abd. 2020	Fq occ. 2020	Ind. abd. 2019	Fq occ. 2019
AUVE	Accipiter haplochrous	Autour à ventre blanc	EE	NT	0,25	25%	0,27	27%
BAPE	Pandion haliaetus cristatus	Balbuzard	LR	LC	0,06	2%	-	-
BUGO	Circus approximans	Busard de Gould	LR	LC	0,04	4%	0,02	2%
COCA	Corvus moneduloides	Corbeau	EE	LC	0,13	13%	0,08	8%
COEC	Chrysococcyx lucidus layardi	Coucou cuivré	LR	LC	0,60	40%	0,52	42%
COEV	Cacomantis flabelliformis pyrrhophanus	Coucou à éventail	SE	LC	0,60	52%	0,33	31%
COTU	Chalcophaps indica chrysochlora	Tourterelle verte	LR	LC	0,17	17%	-	-
DIPS	Erythrura psittacea	Cardinal	EE	LC	0,56	48%	0,67	63%
ECCA	Coracina caledonica	Échenilleur calédonien	SE	LC	0,35	33%	0,40	38%
ECPI	Lalage leucopyga montrosieri	Échenilleur pie	SE	LC	0,60	50%	0,60	54%
GEME	Gerygone flavolateralis flavolateralis	Gérygone	SE	LC	1,35	94%	1,19	94%
LAVE	Artamus leucorynchus	Hirondelle busière	SE	LC	0,02	2%	0,10	10%
LOTE	Trichoglossus haematodus deplanchei	Loriquet	SE	LC	0,17	10%	0,19	10%
MEBA	Glycifohia undulata	Méliphage barré	EE	LC	3,23	96%	3,06	98%
MEOR	Lichmera incana incana	Suceur	SE	LC	3,13	85%	2,92	81%
MISI	Haliastur sphenurus	Milan siffleur	LR	LC	-	-	0,02	2%
MIVE	Eopsaltria flaviventris	Miro	EE	LC	1,13	79%	1,04	69%
MOBR	Clytorhynchus pachycephaloides pachycephaloides	Monarque brun	SE	LC	0,31	29%	0,25	23%
MOME	Myiagra caledonica	Monarque à large bec	SE	LC	0,92	67%	0,85	71%
MYCA	Myzomela caledonica	Sucrier	EE	LC	4,13	100%	3,67	100%
NOTO	Ducula goliath	Notou	EE	NT	0,81	40%	0,52	35%
PEFR	Cyanoramphus novaezelandiae saisseti	Perruche à front rouge	SE	LC*	0,96	63%	1,06	58%
PIGO	Columba vitiensis hypoenochroa	Pigeon collier blanc	SE	LC	0,02	2%	0,06	6%
POMO	Philemon diemenensis	Polochion moine	EE	LC	0,13	8%	0,54	40%
RHCO	Rhipidura albiscapa bulgeri	Petit rhipidure	SE	LC	1,00	79%	1,17	85%
RHTA	Rhipidura verreauxi verreauxi	Rhipidure tacheté	SE	LC	0,71	52%	0,77	60%
SASO	Collocalia esculenta albidior	Salangane soyeuse	SE	LC	0,15	10%	0,21	15%
SICA	Pachycephala caledonica	Sourd à ventre jaune	EE	LC	2,42	98%	2,44	96%
SIIT	Pachycephala rufiventris xanthetraea	Sourd à ventre roux	SE	LC	1,17	73%	0,88	69%
STCA	Aplonis striata striata	Stourne calédonien	SE	LC	-1		0,04	4%
ZODV	Zosterops xanthochrous	Lunette à dos vert	EE	LC	3,00	100%	3,17	100%

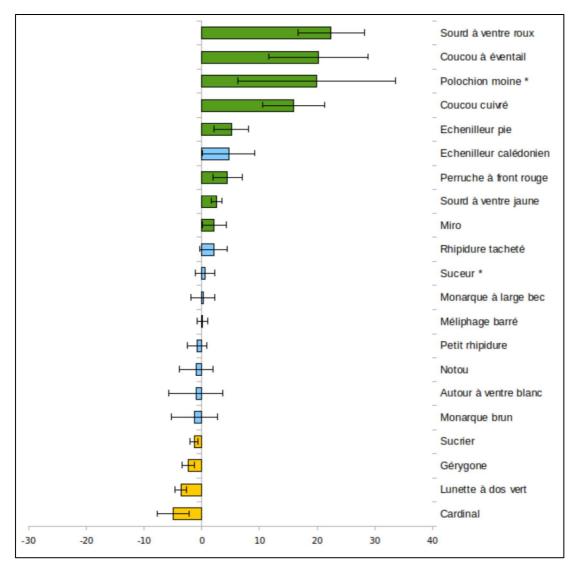


Figure 29 : Evolution des oiseaux communs des massifs forestiers des alentours de l'emprise des travaux de Vale Nouvelle-Calédonie de 2008 à 2020

	Forêt cuvette _ Mine des Japonais	Forêt Jaffré	Forêt Nord	Forêt Nord_ Port Boisé	Forêt Tuyau	Koué Est_ Forêt longue	Koué Est_ Carrière	Koué Nord	Pic du Pin	Pic du Grand Kaori	Forêt S2	Wadjana
Autour à ventre blanc	0,5	1,7	0,6	1,4	1,4	0,6	0,6	0,5	1,8	1,6	0,0	0,7
Corbeau	0,0	0,3	1,1	0,2	0,0	0,0	0,1	0,0	1,6	0,6	0,1	0,2
Coucou cuivré	1,5	1,8	3,1	3,2	1,8	0,1	0,1	0,1	1,8	3,0	0,0	0,7
Coucou à éventail	1,3	1,7	2,7	1,8	2,0	0,1	0,0	0,2	1,1	1,8	0,0	1,3
Cardinal	4,1	3,7	2,1	3.3	4,7	4,3	1,9	4,3	5,8	1,8	2,4	3,2
Echenilleur calédonien	1,3	1,3	3,2	2,3	1,8	0,9	0,4	1,4	1,6	2,0	0,0	0,7
Echenilleur pie	2,3	3,6	1,3	1,3	4,2	2,8	2,0	2,7	2,0	3,4	0,0	0,7
Gérygone	6,8	5,8	6,4	6,4	6,0	6,9	6,2	4,8	6,5	6,1	5,5	5,7
Méliphage barré	10,9	12,8	6,9	16,1	11,6	9,3	11,6	11,3	15,3	12,7	11,4	11,0
Suceur	9,9	1,4	7,3	12,6	10,1	3,6	13,4	9,2	11,8	21,3	6,3	14,7
Miro	5,0	4,8	5,1	6,8	5,7	3,8	2,3	3,8	3,6	4,9	1,2	2,1
Monarque brun	2,6	2,1	2,4	3,0	0,7	0,3	0,0	0,0	2,6	1,9	0,0	0,3
Monarque à large bec	3,8	3,8	3,0	5,3	3,6	2,1	1,9	3,3	5,0	5,2	0,2	1,0
Sucrier	15,9	18,0	13,7	20,0	17,6	14,3	14,5	16,0	14,1	16,5	15,7	14,9
Notou	2,1	1,3	5,8	10,3	0,4	0,2	0,1	0,0	1,6	7,7	0,0	2,3
Perruche à front rouge	2,3	5,4	3,5	4.5	4,8	1,8	1,0	2,3	7,3	5,8	1,7	1,4
Polochion moine	0,8	1,1	0,8	3.5	1,5	1,0	0,9	0,6	1,3	1,3	0,0	0,0
Petit rhipidure	3,7	4,7	5,3	4.3	4,2	3,0	3,6	2,9	6,6	4,0	4,3	3,8
Rhipidure tacheté	4,0	4,2	3,5	4.5	4,7	3,1	2,3	2,8	4,3	3,7	0,7	1,4
Sourd à ventre jaune	8,7	9,3	9,3	9,3	8,3	7,7	5,8	6,8	9,8	9,6	6,5	8,4
Sourd à ventre roux	2,2	2,8	1,6	1,2	2,6	2,1	1,7	0,9	3,7	2,9	0,4	2,6
Lunette à dos vert	19,4	13,1	18,0	23,8	15,2	13,0	14,8	14,8	15,0	13,9	12,3	16,1

Figure 30 : Moyenne des contacts sur la période 2008 à 2020 par relique forestière et par espèces

En 2020, 48 points d'écoutes de 10 minutes répliqués 4 fois ont été effectuées du 17 octobre au 8 novembre sur les 12 reliques forestières conformément au protocole appliqué depuis 2008. Les indices d'abondance relevés en 2020 sont très similaires à ceux de 2019 pour la plupart des espèces contactées. 8 espèces apparaissent en progression (2 coucous, l'Echenilleur pie, le Polochion moine, le miro, les 2 sourds et la perruche à front rouge). Neuf sont stables : le Rhipidure tacheté, l'Echenilleur calédonien, le meliphage barré, le suceur, les deux monarques, le petit Rhipidure, l'Autour à ventre blanc (classée NT selon UICN), le notou. Quatre d'entre eux semblent en régression : le sucrier, la Lunette à doc vert, le gerygone et le cardinal.

Le cortège d'oiseaux sur les plans d'eau de la plaine des lacs en 2020 sont similaires aux années précédentes mise à part la réduction en nombre des Fuligule australe et des Canards à sourcil depuis 3 ans en lien avec des niveaux d'eau élevés enregistrés en 2020.

Les 12 reliques forestières suivies sont de tailles variables et représentent des habitats différents (ex : forêt humide mixte sur éboulis sur S2, WA, FC, forêt humide dominée par *Arillastrum* sur FJ, KN, KEC et

KE). Elles présentent des richesses spécifiques voisines à l'exception des forêts S2, Kué Nord (KN) et Kué Est Carrière (KEC); ces trois reliques sont plus particulièrement isolées, à proximité immédiate des zones d'activité (route et projet Lucy, fosse minière et carrière) et de faible superficie. La faible superficie forestière induit des effets de lisière importants sur la communauté végétale (Ibanez et al 2017), qui peut se traduire par une altération de la qualité de l'habitat pour certaines espèces d'oiseaux, en plus de limiter de fait la présence des espèces d'oiseaux à large domaine vital. L'isolation des fragments limite les possibilités d'échange entre populations (immigration et émigration d'oiseaux, échanges génétiques), à un degré qui reste à déterminer et à relativiser par rapport aux autres facteurs (qualité de l'habitat, taille du fragment forestier, impact de l'activité d'exploitation). Aucune baisse d'indice d'abondance importante n'est ressortie pour l'une ou l'autre des espèces contactées sur le plateau de Goro, ni globalement de l'avifaune pour une des 12 reliques forestières particulière.

Le suivi joue ici son rôle et indique pour l'instant qu'il n'y pas de sonnette d'alarme à déclencher pour une espèce ou une relique forestière particulières. Cependant, il faut rappeler que la plupart des espèces forestières de la Grande Terre sont longévives, même les plus petites (Duval & Wanguene 2017 b), leur mobilité et leur écologie restent mal connues et donc une latence à la diminution des effectifs peut exister et être supérieure à une dizaine d'années (par le vieillissement des reproducteurs, l'immigration de nouveaux individus, etc.). Des indices d'abondance en hausse sur la période 2008 – 2020 doivent être inversement considérés avec prudence pour plusieurs espèces ; par exemple, les coucous, capables vraisemblablement de variations annuelles d'abondance très marquées (« invasions », années « avec ou sans coucous »), ou le polochion moine, peu contacté et vraisemblablement très nomade, entre autres en fonction de la variation des ressources alimentaires.

Le rapport de suivi de l'avifaune forestière et lacustre du plateau de Goro, année 2020, est fourni en Annexe.

En résumé, le suivi réalisé de l'avifaune en fin 2020 indique que dans les quelques reliques forestières situées à proximité de la zone d'exploitation minière, les populations d'oiseaux restent stables. Cette tendance peut être considérée comme fiable car observée depuis plus d'une dizaine d'années malgré les quelques biais méthodologiques lors des changements de prestataire ne changent pas la conclusion. Il n'y a donc pas d'impact indirect de l'exploitation actuelle détectable sur l'avifaune des reliques forestières avoisinantes. L'impact est plus probablement historique avec un siècle d'exploitation minière et forestières ainsi que de nombreux incendies qui ont généré un paysage forestier très fragmenté et appauvri comme témoigne l'étude de la diversité et fragmentation du Grand Sud de Birmbaum et al (2017). Ces reliques contiennent des communautés d'oiseaux moins riches mais bien résilientes aux conditions de fragmentation.

Volet herpétofaune

Les récents évènements de blocage sur les axes routiers menant au complexe industriel et minier de VNC survenus à partir du début du mois de novembre 2020 n'ont pas permis le déroulement, en condition de sécurité, des travaux de suivis de l'herpétofaune des forêts de la réserve de la Forêt Nord, du Pic du Grand Kaori et de la forêt au nord de SMLT prévus en novembre et décembre 2020. Les suivis spécialisés en herpétofaune en 2020 ont donc été annulés pour raison de sécurité par VNC et le prestataire.

3.3.1.2 Suivi de l'échouage des oiseaux marins

Les occurrences d'échouages d'oiseaux marins répertoriées en 2020 sont listées dans le tableau cidessous.

Tableau 27 : Occurrences d'échouages d'oiseaux marins- Année 2020

Annee	Espèce	Nombre d'individus	Rélaché	Mort	Transfert PZF	Total
2020	Puffin fouquet	13	11	1	1	13

La majeure partie des échouages d'oiseaux marins s'est faite à la fin du mois de Mai (temps pluvieux), ce qui correspond à la période de premier envol des juvéniles du terrier.

L'année 2020 fait état de 13 individus échoués, dont deux individus morts, 11 individus relâchés et un individu blessé. Parmi les 13 individus, seuls des Puffins Fouquet ont été recensés.

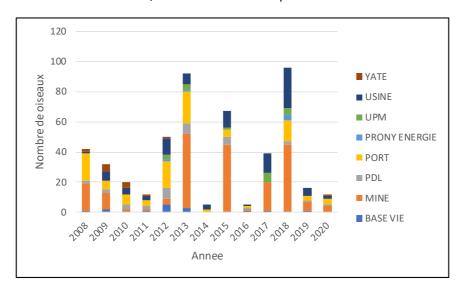


Figure 31 : Nombre d'oiseaux échoués par année et par site

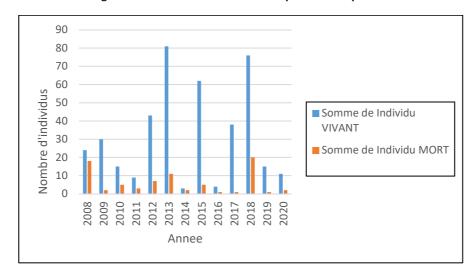


Figure 32: Nombre d'oiseaux vivants relâchés

A la suite des principaux échouages observés en Mai et Juin, une mise à jour de la communication interne « toolbox sauvetage des oiseaux marins » a été faite en Juillet afin de clarifier les conditions d'accueil et les personnes à informer en cas d'échouage.

La majeure partie des échouages d'oiseaux marins en 2020 s'est faite sur la zone minière (37%), de l'usine (31%) et du port (19%). Toutefois, sur les 13 individus échoués, la grande majorité d'entre eux (87,5%) a pu être sauvée et relâchée dans leur environnement. L'individu blessé qui n'a pas pu être relâché a été envoyé au Parc Zoologique et Forestier afin d'y être soigné.

Les échouages se concentrent principalement sur la 2ème quinzaine du mois de mai lors des premiers envols (fin mars à début juin globalement), avec cependant un individu retrouvé au mois d'Août. La diminution en nombre d'échouage en 2020 par rapport à 2019 est fortement liée aux conditions météorologiques qui étaient plus clémentes et sans évènements pluvieux importants lors des premiers envols.

Des campagnes de communication sont lancées régulièrement en interne, courant Mars/Avril, afin de sensibiliser les employés de VNC au sauvetage des oiseaux marins.

3.3.2 Bilan des mesures d'atténuation

3.3.2.1 Evaluation de la niche écologique du Scinque Leopard, Lacertoides Pardalis

Les travaux de recherche sur la répartition, les besoins en espace vital du scinque *Lacertoides pardalis* ont été poursuivis en 2020 conformément à l'article 5 de l'arrêté 2233 DENV/PS du 31 Juillet 2017 (Travaux Carrière CPA1, Travaux MAR). Ces travaux de recherche divisés en 3 volets sont portés par Matthias DEUSS Doctorant à l'IRD. Le premier volet dédié à l'évaluation de l'aire de distribution grâce à des tests de différentes techniques de piégeage a été finalisé en 2020 et a permis la découverte de 6 nouvelles populations.

Figure 33 : Aire de distribution des populations connues de Lacertoides pardalis

La Figure 33 présente l'aire de distribution des populations de Lacertoides connu en 2020 y compris les nouvelles populations (indiquées par les points verts) découvertes en 2019 et 2020 lors des travaux de thèse de Matthias DEUSS doctorant d'IRD.

Le tableau ci-dessous indique l'effort de piégeage et le nombre de *Lacertoides* ainsi que les nouvelles localités découvertes en 2020 (en vert). La découverte d'une population de *Lacertoides* en 2020 par l'herpétologue Stephane Astrongatt sur une concession minière de la société Ballande sur la presqu'ile de Bogota étend l'aire d'occurrence géographique septentrionale de l'espèce de Canala au Grand Massif du Sud. L'espèce classée vulnérable selon IUCN en 2017 supposée inféodée aux crêtes rocheuses a aussi été trouvée sur les gorges de la rivière (Dumbea Nord) et cascade (Camille) suggérant une préférence des habitats d'affleurement plus vastes.

Tableau 28 : Nombre Lacertoides par localités

Nom Localité	Commune	N° Pieges	N° Jours	N° Piege Jours	N° Individus	Taux de capture
Ilot Némou	Thio	20	3	56,5	3	5,31
Col de l'Antenne	Mt Dore	30-50	8	308	0	0
Mine A1	Mt Dore	30-50	22	838	8	0,95
Mine Yolande	Thio	60-66	3	156	3	1,92
Riviere Dumbea Nord	Dumbea	40	3	120	0	0
Dzumac	Dumbea	60	3	180	1	0,56
Crête Lac en Huit	Yaté	30	3	90	1	1,11
Cascade Camille	Yaté	20	3	60	1	1,67
Pépinière Est (Aerodrome, PDL)	Yaté	60	4	240	5	2,08
Moyenne						1,51
Total			52	2048,5	22	

L'évaluation des différentes techniques de détection de *Lacertoides* par camera et piégeage (piège collant, piège entonnoir) avec ou sans abri montre que les pièges collants appâtés à la purée de fruit sous une abri de protection naturel de cavité rocheux ainsi que le temps entre chaque récupération (passage sur les pièges deux fois par jour) permet de réduire l'exposition de l'animal capturé.

Une identification des unités écologiques par analyses génétiques a été faite sur des échantillons prélevés sur les queues des *Lacertoides* pour actualiser et approfondir les résultats de la première étude de *Sadlier et al* (2014). Une première modélisation des niches écologique de *Lacertoides* utilisant la méthode (ESM-Ensemble small models) via Biomode 2 a été faite avec 21 couches d'informations environnementales indiquant l'occurrence de l'ensemble des captures (105) pour alimenter les modèles. Les variables retenues comme celles le plus significatives sont : l'iso thermalité, saisonnalité des températures, température minimale du trimestre le plus froid. Le modèle est conforme avec l'hypothèse que le Lacertoides est adapté aux maquis miniers présent dans des microclimats frais semblables aux pays tempérés. Les zones en rouge sur la figure ci-dessous correspondent aux endroits où la présence des Lacertoides est fortement probable à l'inverse des zones bleues.

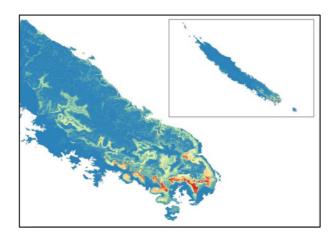


Figure 34: Estimation de l'aire de distribution de Lacertoides pardalis selon la modélisation développée par Léopolde Doumerc, stagiaire Masters 2, IRD

Une évaluation de l'espace vital par radio-télémétrie a été conduite sur 5 Lacertoides capturés sur la mine A1 de mai à Juin. Une confirmation d'une réduction d'activité à partir de juin a été constatée et est liée à la durée d'ensoleillement parfois de milieu de journée. Les surfaces d'occupation vitales restent réduites à un demi-hectare.

Figure 35 : Radio télémétrie de Lacertoides sur la mine A1 (à gauche). Espace vital des individus suivis par radio télémétrie.

3.3.2.2 Compilation des inventaires existants sur les fourmis envahissantes

La carte fournie dans <u>l'Erreur! Source du renvoi introuvable.</u> fait la synthèse des résultats d'inventaires des fourmis envahissantes de type *Wasmannia Auropunctata, Anoplolepsis gracilipes, Pheidole megacephala* et *Solenopsis geminata/invicta* sur la zone minière.

Une évaluation des communautés de fourmis a été effectuée en septembre 2020 pour le projet d'extension de la route d'accès à la mine (2,25 km) le long de la CR7 nécessaire pour acheminer le minerai saprolitique de la mine au port 5 (**Cf. Annexe 10**). L'inventaire de la myrmécofaune a couvert une superficie de 15 ha correspondant à une route de 30m de largeur. Il a permis identifier la présence de 12 espèces de fourmis dont 3 exogènes envahissantes, 4 exogènes peu envahissantes et 5 autochtones ou endémiques (tableau). *Anoplolepis* et *Brachymrymex* sont les espèces les plus abondant avec une

occupation de 40% et 36% des points évaluations. *Wasmannia auropunctata* a été localisée sur seulement une petite surface en proximité de l'entrée du col de l'antenne.

Tableau 29: Espèces de fourmis identifiées pendant l'inventaire (Extension MAR_Septembre 2020)

Sous-famille	Espèce	Statut (*)	Présence connue en NC
Dolichoderinae			
	Ochetellus cf. glaber	ELoc	Oui
	Tapinoma melanocephalum	EInt	Oui
Formicinae			
	Anoplolepis gracilipes	EInt	Oui
	Brachymyrmex obscurior	EInt	Oui
	Paraparatrechina cf. caledonica	Eloc	Oui
	Polyrhachis guerini	Eloc	Oui
Myrmicinae			
	Cardiocodyla obscurior	EInt	Oui
	Monomorium floricola	EInt	Oui
	Solenopsis geminata	Elnt	Oui
	Solenopsis papuana	ELoc	Oui
	Wasmannia auropunctata	EInt	Oui
Ponerinae			
	Odontomachus cf. simillimus	ELoc	Oui

La carte ci-dessous fait la synthèse des résultats d'inventaires des fourmis sur la zone d'emprise du projet de route entre le MAR et col de l'Antenne.

Figure 36: Carte de distribution des différentes populations d'espèces de fourmis sur l'emprise du projet d'extension de la route du MAR au Col de l'Antenne (Ref. Ravary, Octobre 2020)

Les résultats de la veille biosécurité biannuel (réalisé en mai et novembre 2020) des fourmis envahissantes sont synthétisés dans les tableaux suivants.

Tableau 30: Liste des espèces de fourmis détectées sur le site industriel de VNC et Prony en mai 2020

Sous-famille	Espèce	Statut	Présence connue en		Zones p	prospectée	s	
Jous-laillille	Espece	(*)	NC NC	MAGASIN	VRAC	STEP	PORT	MODULES
Dolichoderinae								
	Iridomyrmex calvus	ELoc	Oui	X		X	X	
	Leptomyrmex nigriceps	ELoc	Oui		X			
	Leptomyrmex pallens	ELoc	Oui		X	X		
	Tapinoma melanocephalum	EInt	Oui	X		X	X	
Formicinae								
	Anoplolepis gracilipes	EInt	Oui	X		X	X	
	Brachymyrmex obscurior	EInt	Oui	X	X	X	X	
	Nylanderia vaga	EInt	Oui	X	X	X	X	
	Paraparatrechina cf. caledonica	ELoc	Oui		X	X		
	Paratrechina longicornis	EInt	Oui	X	X	X	X	
	Polyrhachys guerini	ELoc	Oui			X		
Myrmicinae								
	Cardiocondyla obscurior	EInt	Oui				X	
	Monomorium destructor	EInt	Oui				X	
	Monomorium floricola	EInt	Oui				X	
	Pheidole oceanica	EInt	Oui		X	X		
	Solenopsis geminata	EInt	Oui	X	X	X	X	
	Solenopsis cf. papuana	ELoc	Oui			X		
	Tetramorium pacificum	EInt	Oui			X		
	Tetramorium simillimum	EInt	Oui			X		
	Wasmannia auropunctata	EInt	Oui	X		X	X	
Ponerinae								
	Odontomachus cf. simillimus	ELoc	Oui	X	X	X	X	X
	Nombre d'espèces par zone			9	9	16	12	1

En rouge sont identifiées les pestes majeures en Nouvelle-Calédonie, en vert les espèces locales et en noir les espèces exogènes pas ou peu envahissantes (Source : Ravary Mai, 2020).

Tableau 31: Liste des espèces de fourmis détectées sur le site industriel de VNC à Prony en novembre 2020

			Présence		Zones	prospectée	!S		
Sous-famille	Espèce	Statut (*)	connue en NC	MAGASIN	VRAC	STEP	PORT	MINE	SAPRO
Dolichoderinae									
	Iridomyrmex calvus	ELoc	Oui	X			X	X	X
	Leptomyrmex nigriceps	ELoc	Oui		X				
	Leptomyrmex pallens	ELoc	Oui		X	X		X	
	Tapinoma melanocephalum	EInt	Oui	X		X		X	
Formicinae									
	Anoplolepis gracilipes	Eint	Oui			X	X		
	Brachymyrmex obscurior	EInt	Oui	X	X	X	X	X	X
	Nylanderia vaga	EInt	Oui	X	X	X	X	X	X
	Paraparatrechina cf. caledonica	ELoc	Oui		X				
	Paratrechina longicornis	EInt	Oui	X	X	X	X	X	
	Polyrhachys guerini	ELoc	Oui			X		X	X
Myrmicinae									
,	Cardiocondyla obscurior	EInt	Oui	X		X			
	Monomorium destructor	EInt	Oui	X					
	Pheidole megacephala	EInt	Oui			X			
	Pheidole oceanica	EInt	Oui		X	X		X	
	Solenopsis geminata	EInt	Oui	X	X	X	X	X	X
Ponerinae	co.copsis gerimiata		Our	^	^	^	^	^	^
Tonermac	Odontomachus cf. simillimus	ELoc	Oui	X	X	X	X	X	X
	Nombre d'espèces par zone			9	9	12	7	10	6

En 2020, aucune nouvelle espèce de fourmis exogène envahissante n'a été détectée. La fourmi de feu importée *Solenopsis invicta* ainsi que la fourmi d'Argentine *Linepithema humile* sont donc toujours absentes. Parmi les espèces introduites détectées, deux comptent parmi les cinq espèces de fourmis envahissantes les plus néfastes : *Anoplolepis gracilipes* et *Wasmannia auropunctata*. On retrouve

communément ces espèces introduites dans les milieux perturbés de Nouvelle-Calédonie et elles ont un impact catastrophique sur la diversité des arthropodes dans les milieux naturels qu'elles colonisent.

Deux sites supplémentaires, ponctuel, de veille biosécurité des fourmis envahissantes ont été inspecté en Mai et novembre 2020. Le premier se situe au niveau de l'aire d'entreposage des modules du projet Lucy à proximité du vestiaire de l'usine. Le prélèvement a été réalisé lors du déchargement des modules. Aucune introduction de nouvelles espèces n'a été constatée. Seul, l'espèce autochtone *Odondontomachus similimus* était présente comme sur l'ensemble des sites évaluées.

Le second site se situe à proximité du port, sur une verse revegetalisée en 2009 en maquis ligno-herbacé identifiées comme une aire de stockage de saprolite. Six espèces de fourmis dont 3 autochtones, 2 peu envahissantes et 1 très envahissante (*Solonopsis geminata*), ont été détectées sur l'emprise du projet d'aire de stockage. Toutefois, l'espèce envahissante a été détectée sur l'ensemble des sites.

3.3.2.3 Lutte contre les espèces envahissantes

❖ Volet chats:

La campagne de régulation des populations de chats harets (chats retournés à l'état sauvage) a été suspendue en 2019 sur l'ensemble du site VNC.

Résultats :

Aucun chat n'a été capturé ni euthanasié sur la base vie en 2020 car les nombres semblent rester stable. Les chats stérilisés encore présents sur la base vie principale et MIA jouent encore un rôle territorial qui réduit l'installation de nouveau chat haret ainsi et ils contrôlent les populations de rongeurs.

Volet cochons :

Aucun cochon n'a été piégée malgré des efforts conséquents et ciblés du FFCNC en 2017 et 2018, il a été convenu d'arrêter la prestation en continu de régulation des cochons faite par la Fédération des Chasseurs au profil d'un suivi en interne en 2019. Ce suivi a été repris en interne par les assistants environnement de VNC en 2020 et a consisté à appâter des cages déjà en place de manière mensuelle en saison des pluies (Mars-Juin) et de faire une inspection visuelle des cages pour évaluer le nombre et la fréquence de passage.

Figure 37 : Emplacement des pièges a cochons sur des liserés de forêt sur le bassin versant de la Kue ayant trace de passage de cochons

Résultats :

On observe une faible population (nombre d'individus inférieurs à 20) saisonnière (en hiver) de cochon sur les zones de pièges installés sur les chemins de déplacement préférentielle des cochons identifiés par la fédération de chasse en 2017. Aucune présence notable des cochons aux abords des cages n'a été observée.

Volet rongeurs :

Dans le cadre d'un renforcement des contrôles des points d'entrée des marchandises sur le site de VNC, afin de mieux signaler et lutter contre des nouveaux vecteurs et leurs parasites, plusieurs visites techniques ont été effectuées au niveau du port et du magasin par des agents de la DASS. L'objet des deux visites en 2018 était d'évaluer les risques, signaler les moyens de contrôle (propreté des installations, distance d'isolement des zones à risque) et d'établir un inventaire des moyens de lutte déjà mis en place et suivis par la prestataire Callisto OROP. À la suite des recommandations de la dernière visite de l'agent de la DASS en Décembre 2018, les coordonnées GPS des 75 points de contrôles des rongeurs effectués de manière hebdomadaire ont été enregistrées de Janvier à Mai 2019 par les techniciens du prestataire Callisto OROP afin de fournir à VNC et la DASS le réseau de suivi des nuisibles.

Figure 38 : Rayon de 400m de surveillance pour les moustiques et rongeurs au tour du port considérée comme le point d'entrée internationale (PEI) selon le Règlement Sanitaire International.

Figure 39 : Emplacement de l'ensemble des zones contrôlée pour les rongeurs sur VNC par Callisto OROP

Résultats :

Les 75 points de contrôle ont été vérifiés de manière hebdomadaire par le prestataire en 2020. Aucun nouveau point de contrôle n'a été rajouté suggérant que la maille de vérification et de contrôle est adaptée.

❖ Volet veille apicole :

Le RESA a pour objectifs le suivi sanitaire de l'ensemble du rucher calédonien, la prévention et le contrôle de la survenue d'épidémies ainsi que la définition du statut sanitaire officiel du rucher calédonien à l'Organisation Mondiale pour la Santé Animale (OIE). Dans le cadre de ses missions conventionnée avec la SIVAP, le RESA met en œuvre la veille sanitaire apicole en Nouvelle-Calédonie, via la réalisation de visites sanitaires mensuel sur des ruches sentinelles établies sur les ports d'entrée de marchandise et des exploitations apicoles du territoire et met en place un programme de prévention de l'introduction de pathogènes exotiques des abeilles ou d'espèces d'abeilles nuisibles sur le territoire. C'est dans cette seconde optique que 4 pièges à essaim sentinelle et 5 pièges a phéromone ont été installés sur le port de VNC en Octobre 2020 et qu'une procédure de gestion des essaims sauvages est mise en place dans les zones les plus à risque d'introduction.

Figure 40: Emplacement des ruches sentinelles (en bleue) et les ruches à phéromones (en rouge) sur le port de VNC

3.3.2.4 Optimisation de l'éclairage

Descriptif du parc de tours d'éclairages amovibles

Le parc de tours d'éclairage amovibles utilisées sur la zone minière en 2020 été composé d'environ 52 tours d'éclairage appartenant à VNC. Le parc de tours d'éclairage de la mine de VNC est présenté en Figure 41.

Figure 41: Parc de tour d'éclairage au centre industriel minière de Vale Nouvelle-Calédonie

Les tours d'éclairage de VNC sont disposées sur les zones de travaux, voies de roulage, zones de maintenance des engins et sur le parc à engins pour la durée des campagnes de travaux. Ainsi les tours d'éclairage sont réparties sur les différents secteurs de la mine et sont déplacés selon les chantiers en activité. En 2020, 2/3 des tours étaient dans la fosse minière et 1/3 sur la verse SMLT.

Mesures d'atténuation

Le tableau ci-après fait un historique des travaux d'inventaire et d'atténuation des pollutions lumineuses.

2007- 2012	Inventaires des éclairages externes sur les installations de l'usine/port, base vie et MIA
2008	Mise en place d'un réseau de sensibilisation récupération des oiseaux marins échoués sur les installations de VNC en collaboration avec le SCO et PZF
2009	Financement de formation pour les premiers soins des oiseaux marins auprès du personnel de Vale et PZF
2010	Financement d'un centre de soins des oiseaux marin au PZF
2013	Sensibilisation du personnel de VNC à travers des actions de dialogues découvertes de mesures correctives de pollution lumineuses et de récupération de oiseaux marin échouées (Création de procédures de fonctionnement des tours d'éclairage sur la zone minier).
2015	Inventaire des tours d'éclairage sur la mine. La maintenance des tours par EIM avec notamment des actions de correction d'éclairage
2018	Recensement des sources d'éclairage externe sur l'usine pour mieux sécuriser les sites de travail

2019	Etude de faisabilité de la mise en place de tours d'éclairage fixe sur la voie de roulage et ROM pad de la mine : non concluante (car les tours fixes étaient très onéreuses et ne présentent aucun bénéfice environnemental du fait de leur grande hauteur) Renforcement sensibilisation « toolbox sauvetage des oiseaux marin » sur l'usine et mine.
Mai et juin 2019	Mise en application des bonnes pratiques _Extinction des tours d'éclairage sur les chantiers fermés en cas d'intempéries (carrière CPA1, SMLT) durant la période des premiers envols de pétrels pour réduire les échouages.
2020	Maintien des bonnes pratiques sur le site

Les projecteurs sont orientés afin d'optimiser l'éclairage selon un objectif de réduction de l'impact bénéfique pour l'environnement voisin, sans affecter le fonctionnement sécuritaire des tours. Les préconisations d'utilisation des tours d'éclairage seront ensuite communiquées « pour exécution » lors de la réunion « toolbox » à l'ensemble du personnel et des sous-traitants utilisant les tours.

Le recensement des luminaires extérieurs existants sur l'ensemble des zones de VNC sur Prony et Goro sont réalisés régulièrement. Une attention particulière sera maintenue pour le choix des ampoules utilisées et de leur consommation énergétique.

D'autre part, des mesures d'atténuation sont prises afin de diminuer l'impact des émissions lumineuses sur la biodiversité environnante par la mise en place de formation et d'installation de premiers soins des oiseaux marins, des campagnes de sensibilisation et récupération des pétrels.

Améliorations envisagées

- Continuer la sensibilisation du personnel de Vale Nouvelle-Calédonie sur les mesures correctives pour atténuer les effets de nuisance sur l'environnement.
- Achats (choix d'ampoule selon lieux de travail, de caches d'éclairage directionnel)
- Poursuivre à rappeler les opérateurs et prestataires de maintenance sur le réglage d'angles des projecteurs existantes et choix des ampoules.
- Continuer la collaboration dans le processus de premiers soins des oiseaux marins échouées offert par les membres du PZF et SCO.
- Poursuivre à renforcer la sensibilisation du processus de premiers soins aux échouages des oiseaux marin auprès du personnel VNC en Avril en prévision des premiers envols en Mai (matériel de premier soins –cartons, contacts). Par exemple, poursuivre l'extinction des tours éclairage sur les chantiers sur la mine en cas d'intempérie pendant les périodes des premiers envoles.

3.5 Gestion des déchets

cf. Article D14 des prescriptions techniques de l'AEM

Les activités liées au complexe Vale Nouvelle-Calédonie sont à l'origine d'une production variée de déchets.

Afin de s'assurer que ces déchets produits ne portent pas atteinte à l'environnement, leur gestion ainsi que le suivi de leur devenir ont été mis en place. Cette gestion est revue au besoin dans le cadre de notre politique de développement durable.

La gestion des déchets sur le site de VNC est confiée à plusieurs sous-traitants. Les deux principaux sont EMC (Etablissements Métallurgiques Calédoniens) et STAR PACIFIQUE.

3.5.1 Gestion des déchets sur site

On entend par "gestion d'un déchet" les étapes successives et complémentaires suivantes :

Identification \rightarrow Collecte \rightarrow Stockage \rightarrow Transport \rightarrow Elimination/Valorisation

3.5.1.1 Identification

Les principaux types de déchets recensés sur site sont répartis en 2 catégories :

- Les déchets non dangereux
- Les déchets inertes : résidus de béton et de gravats, ainsi que la terre saine issue des chantiers de construction/démolition ainsi que des opérations de curage des ouvrages de gestion des eaux
- Les déchets métalliques ferreux et non ferreux ;
- Les déchets domestiques ;
- Les boues de stations d'épuration ;
- Les déchets de bacs à graisse et huiles alimentaires ;
- Les déchets en mélange de matières plastiques, bois, papier, carton, verre, pneu, caoutchouc divers, polymère.
- o Les déchets industriels dangereux
- Les batteries, piles et accumulateurs ;
- Les Déchets d'Equipements Electriques et Electroniques (DEEE);
- Les Déchets d'Activités de Soins à Risques Infectieux et Assimilés (DASRIA);
- Les déchets souillés par matières dangereuses ;
- Les solutions chimiques (solution acide, solution contaminée en métaux, peinture, ...);
- Les déchets industriels spéciaux éliminés dans le procédé interne (gâteau de soufre (résidus de soufre imbrulé), terres et boues souillées par hydrocarbures, croutes d'autoclaves, briques réfractaires usagées, ...);
- Les hydrocarbures (gasoil, HFO, huiles).

3.5.1.2 Collecte

Les déchets industriels banals, les déchets métalliques, les déchets domestiques, les déchets de station d'épuration et les déchets industriels spécifiques sont collectés en bennes sur l'ensemble du site.

Les déchets liquides sont collectés par des camions hydrocureurs.

Concernant les autres déchets, les producteurs doivent les déposer directement à la station de tri et de transit qui les réceptionne, tout en respectant la réglementation en matière de transport et de conditionnement.

3.5.1.3 Stockage

Plusieurs zones de transit des déchets existent sur le site, à savoir :

- La déchetterie principale (station opérée par EMC) ;
- Les zones de déchets inertes : verse béton/gravats, verse à stériles ;
- La zone de stockage des huiles usagées ;
- La zone de stockage des terres souillées par hydrocarbures ;
- La zone de stockage des boues souillées par hydrocarbures ;
- La zone de stockage de vrac solide qui accueille les déchets de gâteau de soufre, calcaire souillé,

A noter que la zone de stockage des terres souillées par hydrocarbures n'est plus utilisée à ce jour puisque leur élimination se fait directement à l'Unité de préparation du minerai. Néanmoins, un stock historique d'environ 500 m3 est toujours présent sur la zone et n'a toujours pas été éliminé.

Figure 42 : Localisation des zones de dépôt de déchets

3.5.1.4 Transport

Dans la majorité des cas, le transport est principalement pris en charge par l'entreprise EMC.

Les déchets sont acheminés vers :

• Le Centre d'Enfouissement et de Transfert (CET) de Gadji (Commune de Paita) pour les déchets non dangereux à l'exception des déchets inertes et des déchets métalliques ;

A noter que l'éco-organisme TRECODEC, en charge de la gestion des déchets à filières réglementées par la province Sud dispose d'une plateforme au CET pour la gestion des déchets précités et des déchets générés suivants : piles et accumulateurs, batteries, DEEE, huiles de moteur et hydrauliques, pneus. Ces déchets sont ensuite exportés pour revalorisation énergétique

- La plateforme de stockage de EMC (Nouméa) pour les déchets métalliques ;
- L'usine de la SLN (Commune de Nouméa) pour les hydrocarbures usagés ;
- La station de traitement des déchets localisée à Auckland, Nouvelle-Zélande ;
- L'Unité de Préparation du Minerai (UPM) pour les déchets industriels dangereux de type croute d'autoclave, briques réfractaires, ...
- L'usine de calcaire et de chaux pour les déchets de type calcaire souillé, gâteau de soufre, ...

3.5.1.5 Elimination/valorisation

Le mode d'élimination ou de valorisation dépend du type de déchets :

- Les déchets non dangereux sont enfouis au CET;
- Les déchets inertes sont stockés ou enfouis sur les verses dédiées sur site ;
- Les déchets métalliques sont triés par EMC et NOVELLA en vue d'être recyclés (principalement en Australie) ;
- Les huiles de moteur et hydrauliques usagées sont incinérées avec récupération de chaleur à la SLN (process TRECODEC). Le gasoil et le HFO suivent la même filière de traitement mais ne sont pas pris en charge par TRECODEC;
- Les autres déchets à filières réglementées par la province Sud sont gérés par TRECODEC et sont exportés pour revalorisation énergétique ;
- Les déchets dangereux exportés pour traitement en Nouvelle-Zélande sont gérés par la société SOCADIS. La majorité de ces déchets subissent une étape de neutralisation avant enfouissement.

Les déchets injectés à l'UPM et à l'usine de calcaire et de chaux sont éliminés dans le procédé.

3.5.2 Bilan de l'année 2020

Pour l'année 2020, les bilans des déchets issus des documents transmis par les prestataires de Vale Nouvelle-Calédonie, et les responsables des unités d'injection (UPM et usine de calcaire/chaux) sont compilés dans le tableau ci-dessous. A noter que les quantités de déchets sont définies à partir de pesées systématiques.

Les bordereaux d'élimination des déchets traités hors site, ainsi que les registres des injections en interne sont disponibles et consultables sur demande.

Tableau 32 : Registre des déchets traités sur le site de Vale Nouvelle-Calédonie pour l'année 2020

Désignation du déchet	Code 1	Code 2	Quantités mesurées 2018 (en tonnes)	Quantités mesurées 2019 (en tonnes)	Quantités mesurées 2020 (en tonnes)	Origine du déchet	Transporteur	Eliminateur/ Valorisateur	Mode de traitement (1)
Déchets industriels dangereux (type aérosols, SX1, futs de peinture pleins, déchets souillés divers, catalystes et céramiques, acétone, chiffons souillés par HC, graisses usagées, filtres à huiles,)	08 01 11*, 15 02 02*,	Y6	1064,449	1157,131	348,74	Divers : maintenance, ateliers, laboratoire	EMC (SOCADIS)	Waste Management	PC
DASRI	18 01 03*		0,032	0,0486	0,36	Centre médical	Handicap Conseil	PROMED	PRE et
Déchets non dangereux en mélange : papier, carton, plastique,	20 03 01		1129,51	1332, 72	655,11	Divers : toutes zones	EMC (STAR PACIFIQUE)	CSP	DC2
Déchets métalliques	17 04 07		1618,633	1883,3	1431,72	Divers : toutes zones	EMC et NOVELLA	EMC et NOVELLA	VAL
Déchets domestiques	20 03 01		447,360	507,6	399,9	Base-vie	NGU MWA	CSP	DC2
Boues de station d'épuration	19 08 05		46,58	0	Aucune évacuation en 2020 - Stockage dans des casiers	Stations d'épuration de la base-vie	EMC	CSP	DC2
Bacs à graisse	19 08 09		20	0	29,5	Activité NEWREST	YATCHEE VIDANGE	CSP	DC2

L'environnement et les eaux superficielles et souterraines

Déchets industriels spéciaux : briques réfractaires, gâteau de soufre, croutes d'autoclaves, terres et boues souillées par hydrocarbures, croûtes de gypse	16 11 03*, 16 11 06, 06 03 13*, 16 03 04			10884,09	5923,49	Unités opérationnelles (maintenance, production, incidents)	EMC (STAR PACIFIQUE)	VNC	RI
Gravats, béton	17 01 01		100	90	268,66	Construction/démolition	Divers prestataires	VNC	VI
			Déc	hets règlem	entés par le	e code de l'environner	ment (filières TREC	CODEC)	
Batteries	16 06 01*	A1160	16,884	18,151	9.4	VL, PL, engins	EMC	ETV	VAL
Piles et accumulateurs	16 06 01*, 16 06 03*		0	0,898	Aucune évacuation en 2020	Bureaux administratifs	EMC	CSP	VAL
Huiles usagées	13 02 05* 13 01 10*		395,450	369,61	341,91	Divers : procédés, ateliers,	AD Vidange/ TRECODEC	SLN	IE
Pneumatique (VL/PL)	16 01 03		10,060	989,98	249,35	Divers : toutes zones	STAR PACIFIQUE	CSP	DC2
Déchets d'équipement électrique et électronique (DEEE)	16 02 13*	Y22, Y31	12,296	27,8445	55,76	Service Informatique, gros électroménager, luminaires, télécommunication	EMC	SOCADIS, EMC, CSP	VAL

(1) :

PC : Traitement physico-chimique pour destruction

VAL : Valorisation
PRE : Prétraitement

IE : Incinération avec récupération d'énergie

DC2 : Mise en décharge de classe 2

VI : Valorisation interne RI : Recyclage interne

3.5.3 Analyse des résultats

A noter que, le volume de déchets traités en 2020 est nettement inférieur à 2019. Cette situation peut s'expliquer par les évènements suivants survenus au cours de l'année.

Au cours du 1^{er} semestre 2020, la crise sanitaire de la COVID 19 a entrainé une réduction des effectifs sur site et donc une baisse des activités et de la production.

Depuis la mi-novembre 2020, des opposants à la reprise de l'usine du Sud par le consortium *Prony Resources* bloquent les accès routiers de part et d'autre du site industriel et minier.

Ces blocages ont des conséquences directes sur la gestion des déchets de l'année 2020, et notamment sur le volume de déchets traités :

- Impossibilité d'effectuer des transports extra-site réguliers en vue de l'évacuation des déchets.
 Seulement quelques évacuations ont pu être organisées par barges maritimes en décembre et ont concerné en priorité l'évacuation des déchets alimentaires provenant des zones de restauration. Aucun transport de bennes de déchets (DIB, ...) n'a eu lieu le début des blocages;
- Arrêt de l'UPM entrainant l'arrêt des injections de certains déchets industriels spéciaux dans le process;
- Fermeture de la station de tri et de transit des déchets ;
- Suspension des contrats de gestion des déchets.

Vale Nouvelle-Calédonie poursuit les démarches de valorisation des déchets en continuant la recherche de filières adaptées.

5 INCIDENCES SUR LES EAUX SUPERFICIELLES

Les stations de suivi des eaux de surface sont représentées sur la Figure 43 ci-dessous.

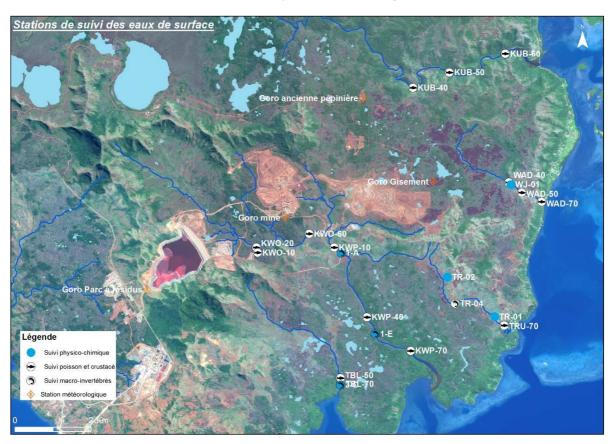


Figure 43 : Localisation des stations de suivi des eaux de surface

5.1 Pluviométrie

> cf. Article D2.1 des prescriptions techniques de l'AEM

5.1.1 Présentation des stations météorologiques

Les enregistrements pluviométriques de Vale Nouvelle-Calédonie sont réalisés sur quatre stations automatiques installées en fin d'année 2010 et opérées par Météo France.

Ces stations sont implantées aux zones suivantes :

- à l'ancienne pépinière, partie nord du gisement de Goro ;
- aux bureaux de la Mine MIA;
- à proximité du col de l'antenne, côté parc à résidus.
- à l'usine Pilote, en Baie de Prony

Les précipitations sont enregistrées sous forme de cumul par intervalles de six minutes, selon les standards de Météo France. Les tableaux ci-dessous montrent les cumuls max en fonction des durées d'observations.

5.1.2 Présentation des données

Durant l'année 2020, on distingue un évènement pluviométrique majeur qui s'est déroulé entre le 28 février et le dimanche 1 mars 2020.

Les données de pluviométrie journalière sont présentées graphiquement pour l'année 2020 en Annexe 16.

Une évaluation de la période de retour est réalisée pour cet épisode pluviométrique. Les cumuls pluviométriques permettant l'évaluation des durées de retour sont obtenus sur la base de cumul glissant suivant la période d'observation.

L'évaluation de la période de retour a été réalisée à partir des enregistrements effectués aux emplacements des trois stations historiques et sur la base des courbes IDF établies par Vale Nouvelle-Calédonie et par la DAVAR (suivant les stations).

Les courbes IDF Vale Nouvelle-Calédonie établies en 2006 ont peu de représentativité statistique car établies sur 9 ans seulement. Elles présentent néanmoins l'avantage d'avoir été établies avec les enregistrements des stations d'observation actuelles. Etant donnée la faible profondeur des données, elles ont tendance à fortement surévaluer la période de retour des pluies peu fréquentes.

Les courbes IDF établies par la DAVAR en 2011 pour la station d'observation du Col de l'antenne sont plus robustes car elles sont basées sur les données acquises entre 1996 et 2010 (soit 15 ans de données). Toutefois, la transposition de ces courbes aux autres stations météorologique pose un problème car il a été mis en évidence un gradient pluviométrique est/ouest fortement marqué. En effet, les précipitations enregistrées par la station Ancienne Pépinière (SMAA) sont beaucoup plus abondantes que pour la station du Col de l'antenne.

Par conséquent, dès 2013, pour la station de l'Ancienne Pépinière, des courbes IDF ont été établies pour la période d'observation de 1997 à 2013 (soit 17 ans d'observation). Ces courbes seront utilisées spécifiquement pour cette station.

5.1.3 Caractéristiques des principaux évènements pluvieux

En 2020, un seul événement pluvieux notable a eu lieu sur le site de Goro. Cet épisode pluvio-orageux a impacté la Nouvelle-Calédonie mais plus particulièrement l'extrême sud de la Grande-Terre entre le 28 février et dimanche 1 mars 2020

Des enregistrements pluviométriques ont été réalisés sur les stations suivantes :

- A l'ancienne pépinière, partie nord du gisement de Goro,
- A l'Usine Pilote, baie du Prony,
- A proximité du col de l'antenne, côté parc à résidus.

Les stations Mine et Gisement sont hors service.

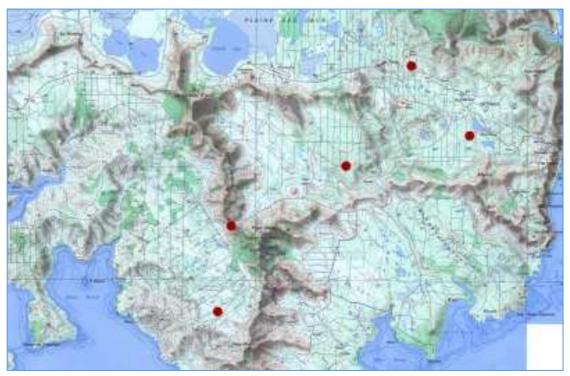


Figure 44 : Localisation des stations automatiques d'enregistrements pluviométriques

Le maximum pluviométrique sur 24h, soit 480 mm, est enregistré du bassin versant de la Kwe Ouest. Le maximum pluviométrique sur 1h, soit 119 mm, est enregistré sur la station de l'usine pilote. (Cf. tableau 30). Des cumuls moins importants ont été observés au niveau de la station de l'ancienne pépinière, située sur le plateau de Goro.

Tableau 33 : Intensités pluviométriques sur les 3 stations de VNC pour l'évènement pluvieux du 28 février au 1er mars 2020

Maximum pluviométrique (mm)	GORO_USINE	GORO ANCIENNE PEPINIERE	GORO_RESIDUS
6mn	14.3	10.1	13.7
30mn	67.9	37.6	58.7
1H	119.0	52.3	109.6
2H	212.0	67.3	193.9
3H	280.6	78.6	268.4
4H	321.3	104.4	329.3
6H	360.9	145.6	385.7
12H	425.0	217.9	452.4
24H	446.0	236.2	480.0
48H	457.0	253.2	494.8

L'évaluation de la période de retour a été réalisée à partir des enregistrements effectués aux emplacements des trois stations historiques et sur la base des IDF établies par Vale Nouvelle-Calédonie et par la DAVAR. Les durées de retour ci-après ont été évaluées suivant les différents IDF VNC et Davar. Pour les périodes d'intégration de 3h et 6h, les périodes de retour sont évaluées à plus de 100 ans (durées

de retour centennales) aux stations Goro Résidus et Goro Usine. Les périodes de retour évaluées à l'ancienne pépinière pour l'ensemble des durées d'intégration sont inférieures à 2 ans.

Tableau 34 : Période de retour pour la station GORO_RESIDUS

	Mine Kwe Ouest: Goro_Residus									
Durée d'observation	Cumul max (mm)	Durée de retour Vale (année)	Durée de retour DAVAR (année)							
6min	13.7		2.4							
30min	58.7	7.5								
1h	109.6	14.8	98.0							
2h	193.9	25.8	276.8							
3h	268.4	161.9								
6h	385.7	367.7	1314.3							
12h	452.4	38.1								
24h	480.0	19.3	22.6							

Tableau 35 : Période de retour pour la station GORO_ANCIENNE_PEPINIERE

Mine Ancienne Pépinière: Goro Ancienne Pépinière									
Durée d'observation	Cumul max (mm)	Durée de retour Vale (année)	Durée de retour DAVAR (année)						
6min	10.1		0.6						
30min	37.6	0.9							
1h	52.3	0.7	1.2						
2h	67.3	0.6	0.8						
3h	78.6	0.5							
6h	145.6	1.2	2.0						
12h	217.9	1.9							
24h	236.2	1.2	1.3						

Tableau 36 : Période de retour pour la station GORO_USINE

Usine : Goro_Usine					
Durée d'observation	Cumul max (mm)	Durée de retour Vale (année)	Durée de retour DAVAR (année)		
6min	14.3		0.1		
30min	67.9	61.0			
1h	119.0	46.0	201.9		
2h	212.0	56.3	642.3		
3h	280.6	141.9			
6h	360.9	282.5	672.4		
12h	425.0	174.6			
24h	446.0	153.5	15.1		

5.1.4 Analyse statistique portant sur la pluie annuelle

Cette analyse porte sur la station Ancienne Pépinière qui dispose d'une chronique de données qui s'étend sur 24 ans (1997-2020).

Avec une lame d'eau cumulée de 2 331 mm, l'année 2020 présente un déficit pluviométrique de l'ordre de -30% par rapport à la moyenne calculée sur une période de référence de 20 ans (3 299 mm entre 1997-et 2016).

Il s'agit de :

- La quatrième année la moins pluvieuse sur 24 années d'observations (en excluant 2010 qui présente des lacunes importantes de données),
- La septième année consécutive de déficit pluviométrique.

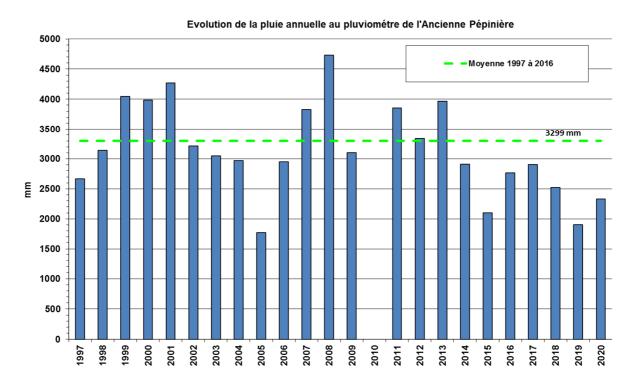


Figure 45 : Evolution de la pluie annuelle au pluviomètre de l'ancienne pépinière entre 1997 et 2020

5.1.5 Analyse statistique portant sur la pluie mensuelle

Cette analyse porte également sur la station Ancienne Pépinière qui dispose d'une chronique de données mesurées sur la période 1997-2020 et de données reconstituées sur la période 1951-1997 (Reconstitution à l'aide des cumuls mensuels disponibles à la station Yaté Usine (Météo-France).

L'année 2020 est marquée par :

- Des cumuls pluviométriques globalement inférieurs à la normale, 8 mois sur 12,
- Des déficits pluviométriques importants, supérieurs à -50%, en mai, juin, août et octobre,

• Des cumuls supérieurs à la normale en fin d'année (septembre, novembre et décembre).

Figure 46 : Pluie mensuelle à la station Ancienne Pépinière : Ecart à la médiane 1951-2009

5.1.6 Analyse statistique portant sur la pluie journalière

Cette analyse porte également sur la station Ancienne Pépinière. Une pluie de coupure de 10 mm a été choisie pour mener une analyse de la distribution des pluies journalières intra-annuelles. Cette distribution est présentée dans le Tableau 37.

	Effectifs des précipitations journalières relevées par année et par classe de pluie								
Classe de pluie (mm)	2012	2013	2014	2015	2016	2017	2018	2019	2020
0-10	295	298	304	303	308	306	299	319	307
10-20	30	26	25	34	25	24	34	21	32
20-30	7	12	15	8	10	8	13	14	14
30-40	12	9	4	11	4	11	8	3	4
40-50	4	2	4	4	6	3	4	3	1
50-60	6	3	2	0	4	3	1	2	2
60-70	0	3	2	0	2	2	1	0	1
70-80	2	1	1	2	0	2	1	0	2
80-90	1	2	3	0	2	1	0	0	0
90-100	4	2	1	0	1	0	1	0	0
100-150	4	2	2	2	3	2	2	2	2
150-200	0	2	2	1	0	1	0	1	0
200-250	1	0	0	0	0	2	1	0	1
250-300	0	0	0	0	0	0	0	0	0
300-350	0	2	0	0	1	0	0	0	0
350-400	0	0	0	0	0	0	0	0	0
400-450	0	1	0	0	0	0	0	0	0
450-500	0	0	0	0	0	0	0	0	0

Tableau 37 : Effectifs des précipitations journalières observées de 2012 à 2020

L'année 2020 est caractérisée par (Tableau 38) :

- Un cumul annuel de pluie efficace qui est toujours faible, à l'image de ce qui est observé depuis 2014,
- Une certaine régularité des épisodes de pluie comprise entre 10 et 50 mm, ce qui est favorable à la recharge des eaux souterraines,
- Un faible nombre de pluies pouvant engendrer des épisodes de crue notables (Pluie supérieure à 100 mm) par rapport à la période 2014-2018.

Tableau 38: Caractéristiques des cycles pluviométriques de 2012 à 2020

Année	Pluie efficace annuelle (mm)	,	Nb de jours avec pluie >10 mm	Nb moyen de jours entre 2 pluies > 10 mm	Nb maximum de jours entre 2 pluies > 10 mm
2012	2880	228	71	5.2	44
2013	3624	249	67	5.3	26
2014	2559	230	61	6.1	49
2015	1924	232	71	5.8	29
2016	2392	240	58	6.5	36
2017	2520	247	59	6	78
2018	2125	223	66	5.7	33
2019	1591	242	46	7.9	61
2020	1941	220	59	6.3	35

5.1.7 Synthèse sur les précipitations

La période de sécheresse pluviométrique, démarrée en 2014, se poursuit en 2020 avec des déficits en pluie encore importants, même si la situation s'améliore par rapport à 2019.

Les pluies comprises entre 10 et 50 mm, ont été plutôt régulières, ce qui est un élément favorable en matière de recharge des eaux souterraines.

Les pluies pouvant engendrer des épisodes notables de crue ont été peu fréquentes.

En cumul annuel, l'année 2020 est classée 4ième année la plus sèche sur les 24 dernières années.

5.2 Gestion des eaux

5.2.1 Présentation des ouvrages de gestion des eaux

Les ouvrages de gestion des eaux actifs en début et fin d'année 2020 sont présentés sur la carte cidessous.

- En février 2020, un nouveau bassin a été inauguré dans la fosse minière, le bassin BS17.
- Au nord de la fosse minière, une zone d'emprunt de fer, appelée « ZEF Lac Goro Est », était en cours de démantèlement au dernier trimestre de l'année 2020. Le Bassin BS12 qui permettait de drainer et traiter les eaux superficielles de cette zone a aussi été démantelé.
- Dans ce contexte, le lac Goro deviendra pour deux ans un bassin de sédimentation. Il qui permettra de drainer le périmètre qui sera miné au cours des deux prochaines années.



Figure 47 : Emplacement des bassins de sédimentation dans le périmètre de la fosse minière et le centre industriel de

5.2.2 Principales interventions sur les ouvrages de gestion des eaux

cf. Article D2.1 des prescriptions techniques de l'AEM

Deux bassins, BS13 et BS15 ont été modifiés du fait de l'aménagement de la Mine Access Road (MAR)

- Le bassin BS15 a été remblayé
- Le bassin BS13 sera modifié au niveau de son déversoir pour permettre l'élargissement la MAR.

Le bassin BS17 a été achevé dans la fosse minière et un nouveau décanteur (HRD4) a été construit en fin d'année. Ce dernier draine une partie de la MHR au droit du franchissement avec la rivière Kwé Nord (KN2).

Dans la fosse minière le chantier d'excavation du bassin BS18 est pratiquement achevé et une partie de déversoir a été recouverte de géotextile et enrochée. En amont de la zone d'excavation le caniveau de mise hors d'eau du bassin BS18 est pratiquement achevé, et débouche dans le bassin BS17.

5.2.3 Suivi des ouvrages lors des évènements pluvieux majeurs

5.2.3.1 Comportement des ouvrages

Au cours de l'année 2020, nous avons observé une série de débordements des bassins (Tableau 39). La répartition du nombre de débordements est peu différente de l'année 2019 (Tableau 40).

Les écarts de répartition des débordements sur les différents bassins s'expliquent simplement

- Le dispositif de vidange du bassin BS1 avait été endommagé en 2019 et c'est pour cela que les débordements avaient été plus nombreux par rapport à l'année 2020 ;
- Les débordements du bassin BS2 sont systématiquement plus nombreux car ce bassin a une capacité de rétention plus faible par rapport aux autres bassins;
- Le Bassin BSO est l'exutoire des sousverses du bassin BSC, son plan d'eau est volontairement maintenu au niveau maximum pour :
 - o Ne pas remobiliser les sédiments qui y sont stockés ;
 - Pour permettre un laminage complémentaire des eaux drainées par les sousverses du bassin BSC.³
- Les débordements du bassin BS4 ont été plus nombreux en 2020 car son dispositif de vidange a été enseveli sous les sédiments.

.

³ En pratique on note que la turbidité décroit de 2 à 3 unités entre la sousverse du bassin BSC et la surverse du bassin BSO

Tableau 39 : Nombre de débordements attribué aux différents bassins de la mine pour l'année 2019 et 2020

	Surverse observée				
	2019	2020			
BS1	15	7			
BS11	4	4			
BS2	26	17			
BS3	5	4			
BS4	9	19			
BS5	1	2			
BS6	6	3			
BS7	2	2			
BSC	3	1			
BSO	41	21			
Total	112	80			

Tableau 40 : Représentation des bassins par rapport au nombre total de débordements pour l'année 2019 et 2020

	Surverse observée		
	2019	2020	
BS1	13%	9%	
BS11	4%	5%	
BS2	23%	21%	
BS3	4%	5%	
BS4	8%	24%	
BS5	1%	3%	
BS6	5%	4%	
BS7	2%	3%	
BSC	3%	1%	
BSO	37%	26%	

Au cours de l'année 2020 aucunes dégradations n'ont été observés sur les bassins.

Vue du BS1

Déversoir du BS1

Vue du BS2

Déversoir du BS2

Déversoir du BS3

Déversoir du BS4

Vue du BS5

Déversoir du BS5

Vue du BS6

Déversoir du BS6

Vue du BS7

Déversoir du BS7

Vue du BS8

Vue du BS11

Déversoir du BS11

Vue du BS14

Vue du BS14

Vue du BS16

Déversoir du BS16

Vue du BSC

Déversoir du BSC

Figure 48 : Photographies des bassins de sédimentation

5.2.3.1.2 Résultats du suivi des MES

cf. Article D2.1 des prescriptions techniques de l'AEM

Le nombre d'échantillon récupéré à la suite de l'événement pluvieux de 2020, n'a pas été suffisant et n'a pas permis de couvrir l'événement pluvieux

5.3 Evolution des figures d'érosion

cf. Article D2.4 des prescriptions techniques de l'AEM

Un état des lieux initial des zones d'arrachement et d'érosion remarquables dans l'emprise du périmètre de l'exploitation minière a été transmis au service Mines et Carrières de la DIMENC par courrier référencé G-DG-EN-C-20170928-205 du 28 septembre 2017.

La méthodologie retenue pour sélectionner les figures d'érosion remarquables s'appuie sur des analyses réalisées avec un SIG couplées à des données recueillies sur le terrain. La première étape a consisté à présélectionner des zones de recherche préférentielle via l'étude des caractéristiques géographiques (ex : pente, surface). La deuxième étape a été de se rendre sur le terrain sur chaque zone de recherche présélectionnée pour photographier les figures d'érosion et déterminer leur accessibilité en vue de la mise en place du suivi annuel.

Le croisement des zones de recherche présélectionnées par analyse SIG aux données recueillies sur le terrain a permis d'identifier six figures d'érosion (Cf. Figure 55). Les critères retenus pour retenir les figures d'érosion sont l'accessibilité, la pente moyenne et la valeur d'indice potentiel d'érosion.

Une seconde étape de terrain a été effectuée pour positionner les 3 points de photo pour chaque figure d'érosion. Deux points de repère ont été posés pour chaque photo. L'un indiquant la position du photographe l'autre indiquant l'axe de la photo.

Les zones d'arrachement et d'érosion remarquables sélectionnées sur l'emprise du site minier de Goro seront surveillées par VNC notamment après la survenue d'un évènement pluvieux intense. L'état du lit des creeks, des berges et de la végétation rivulaire situés en aval immédiat des figures d'érosion retenues seront inspectés annuellement (suivi photographique).

Pour l'année 2020, deux campagnes de suivi ont été effectué. Une campagne a été effectuée à la suite de l'événement pluvieux du 29 février 2020 et une campagne pour le suivi annuel en Novembre 2020.

L'ensemble des fiches de suivi classées par campagnes sont disponibles en **Annexe 11** du présent rapport.

Le suivi visuel sur le terrain et l'interprétation des photos montre une stabilité globale des figures d'érosion. L'interprétation des photos prise sur le terrain confirme le maintien stable des formes et des lignes caractéristiques de chaque figure d'érosion suivi. La couverture satellite 2020 permet de constater l'absence d'évolution l'importante de la figure d'érosion et de son environnement.

Figure 49 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur le BSKN

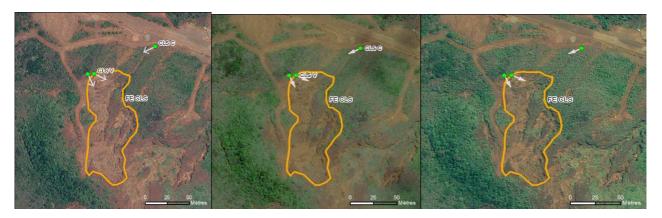


Figure 50 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur la Carrière Limonite Sud

Figure 51 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur la figure d'érosion CPKE

Figure 52 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur la figure d'érosion Grand

Figure 53 : Photos satellites datant de 2017 (Gauche), 2018 (centre) et 2020 (Droite) centrées sur la figure d'érosion Kwé Ouest

Figure 54 : Photos satellites datant de 2018 (Gauche), 2019 (centre) et 2020 (Droite) centrées sur la Verse à Stérile Kwé Est

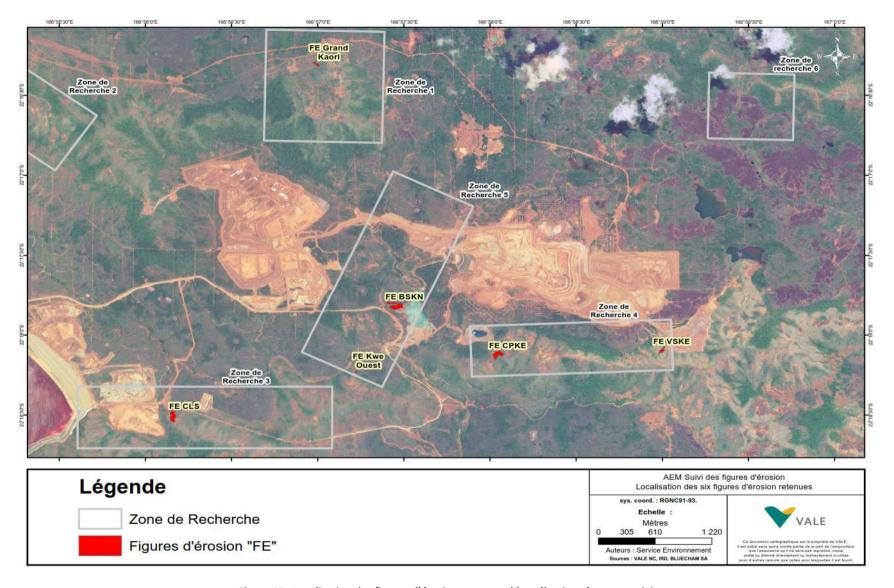


Figure 55 : Localisation des figures d'érosion remarquables sélectionnées pour suivi

5.4 Suivi des débits de la Kwé Principale et des creeks alentours

> cf. Article D5.1 des prescriptions techniques de l'AEM

5.4.1.1 Présentation des stations

Dans le cadre de l'article D5.1 des prescriptions techniques de l'autorisation d'exploitation minière, un suivi des débits des creeks est prescrit au niveau de six stations dans et en périphérie du périmètre minier (par jaugeages et suivi limnimétrique).

Le tableau suivant présente les stations et décrit les suivis associés à chaque station.

Tableau 41 : Description du suivi des débits prescrit dans l'AEM (6 stations)

Nom	Bassin Versant	Type de suivi	Fréquence*	RGNC 91 Est	RGNC 91 Nord
		Jaugeages	М		
TR-01 (radier)	Truu	Suivi Iimnimétrique	continu	503174	208768
	Kwé	Jaugeages	М		
1-A (KAL)	Principale	Suivi Iimnimétrique	continu	499142	210447
		Jaugeages	М		
3-C	Trou Bleu	Suivi Iimnimétrique	continu	499124	206972
Kuébini		Jaugeages	M		
(non débuté)	Kuébiny	Suivi Iimnimétrique	continu	503247	215603
		Jaugeages	М		
WJ-01	Wajana	Suivi Iimnimétrique	continu	503581	212268
	Creek de la	Jaugeages	М		
CCS-01	crête Sud	Suivi Iimnimétrique	continu	499348	210409

5.4.1.2 Présentation des données disponibles

A l'heure actuelle, le suivi au niveau du bassin versant de la Kuebini n'a pu être réalisé en raison de difficultés techniques (pas de sections de mesure facilement aménageables, problématique d'accès à la station).

Le suivi au niveau de la station Truu radier est stoppé depuis février 2019. ARGUMENTAIRE?

Pour les autres stations, le suivi réalisé en 2020 est conforme aux préconisations techniques de l'arrêté. Les données de débit obtenues entre 2016 et 2020 sont présentées aux Figure 56 à Figure 60. Il convient

de noter que les séries de données actuellement disponibles pour 2020 ne sont pas complètes, étant donné que les relèves de stations ont été temporairement stoppées, suite à la dégradation du climat social au second semestre 2020.

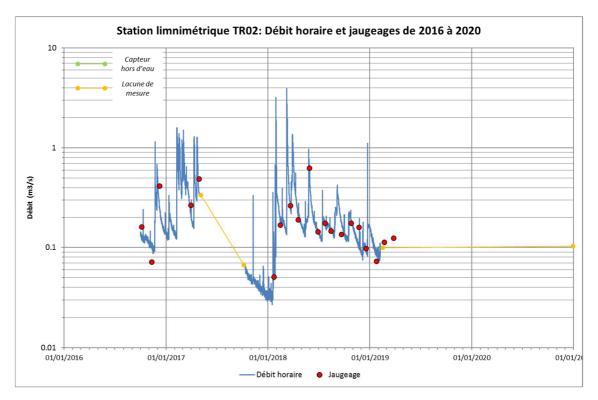


Figure 56: Station TR02 – Débits mesurés de 2016 à 2020 (Truu au radier)

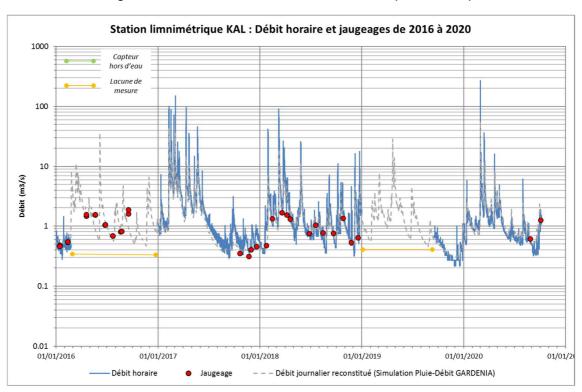


Figure 57 : Station KAL – Débits mesurés de 2016 à 2020 (Kwé principale)

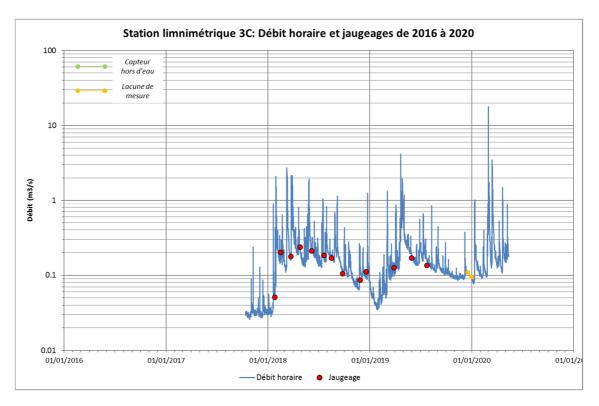


Figure 58 : Station 3C – Débits mesurés de 2016 à 2020 (Trou Bleu)

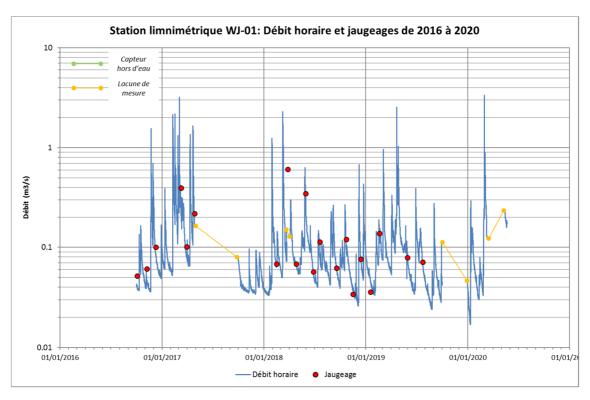


Figure 59 : Station WJ-01 – Débits mesurés de 2016 à 2020 (Wajana au radier)

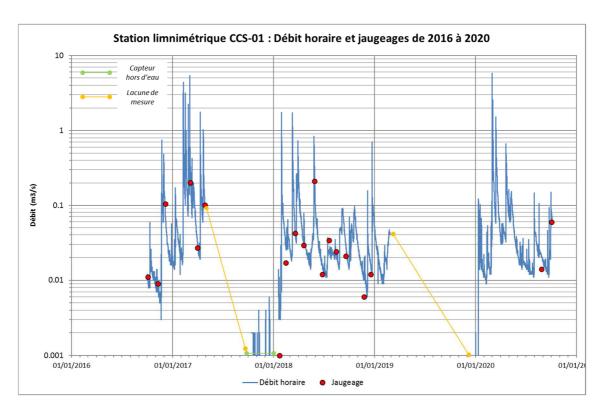


Figure 60 : Station CCS-01 - Débits mesurés de 2016 à 2020 (Creek de la crête Sud)

5.4.1.3 Analyse des impacts de la fosse minière sur le débit des rivières

Pour rappel, la méthodologie d'évaluation d'impact utilisée dans le cadre du bilan 2017 a consisté à comparer la courbe des débits classés observés sur la période 1998-2011 avec celle établie pour la période 2012-2017.

Pour le bilan 2018, une modification de la méthodologie a été proposée. Cette modification a porté sur :

- Une réduction de la durée de la période de référence (Période ou le fonctionnement hydrologique des rivières de la zone est considéré comme peu ou pas perturbé par l'activité minière au sens large) qui passe de 1998-2011 à 1998-2006. Cela permet de s'affranchir d'éventuels biais dus à l'influence potentielle du démarrage effectif de l'activité minière sur le fonctionnement de la rivière après 2006. Pour les stations TR02, 3C, WJ-01 et CCS-01 installées après 2006, les données utilisées pour la période de référence proviennent de simulations réalisées à l'aide du modèle GARDENIA (A2EP, 2015),
- Pour chaque station, une comparaison directe entre la courbe de débits classés de l'année considérée pour le bilan avec des courbes de débits classés caractéristiques de la période de référence 1998-2006. Les débits caractéristiques utilisés sont les moyennes, minima et maxima journaliers mesurés durant la période de référence,
- Une comparaison relative des débits moyens mensuels entre chaque station de suivi d'impact (TR-02, KAL, WJ-01 et CCS-01) et la station de référence 3C au droit de laquelle le fonctionnement hydrologique de la rivière Trou Bleu est considéré comme pas ou peu perturbé par les activités humaines.

Pour 2020 ; il n'est pas possible d'établir les courbes de débits classés étant donné que les chroniques de données sont incomplètes. Seule la comparaison relative portant sur les débits moyens mensuels est

proposée pour la période de janvier à avril 2020 uniquement et ce pour les stations KAL, WJ-01 et CCS-01. Cette limitation de l'analyse est une conséquence de l'absence de données sur la station de référence à partir de mai et de l'absence totale de données sur la station TR-02.

Les résultats obtenus sont les suivants :

- Kwé principale à la station KAL: Entre janvier et avril, les déficits débitmétriques observés sont significativement inférieurs à ceux constatés sur la station de référence (Figure 61). Il est possible que cette situation soit due à une différence de pluviométrie entre les deux bassins versants. L'écart à la moyenne positif, observé sur la station KAL en mars mais absent sur la station de référence, pourrait notamment indiquer que l'épisode de pluie intense de fin février/début mars 2020, n'a pas impacté de la même façon les deux bassins. Mais cela pourrait également être le marqueur d'un impact de la fosse minière qui en favorisant le ruissellement et le drainage des eaux souterraines, participe à une augmentation des débits en saison des pluies. Pour rappel, un des impacts attendus de la fosse minière est une augmentation du débit mensuel de la rivière Kwé principale, de l'ordre de +20% en situation de hautes eaux,
- Wajana à la station WJ-01 (Wajana au radier): Il n'y a pas de différence significative de comportement entre la station WJ-01 et la station de référence en janvier et février 2020 (Figure 62). Cela semble indiquer que le développement de la fosse minière n'a pas modifié significativement le fonctionnement hydrologique de la rivière Wajana en 2020, au moins durant les mois ou des observations sont disponibles,
- Creek de la crête Sud à la station CCS-01: les déficits débitmétriques observés sont inférieurs à ceux constatés sur la station de référence (Figure 63). Cela semble indiquer que le développement de la fosse minière n'a pas modifié significativement le fonctionnement hydrologique de la rivière Wajana en 2020, au moins durant les mois ou des observations sont disponibles.

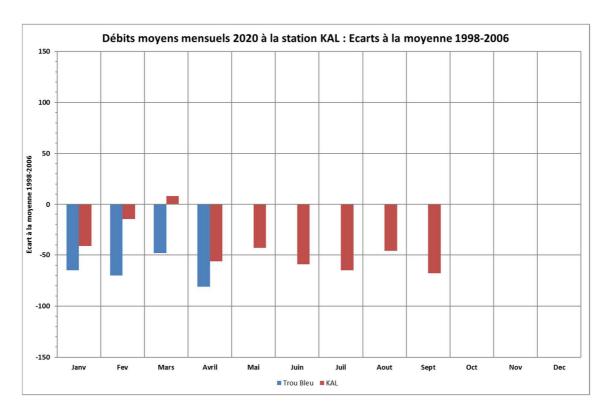


Figure 61 : Débits moyens mensuels à la station KAL : Ecarts à la moyenne 1998-2006. Comparaison avec la station 3C

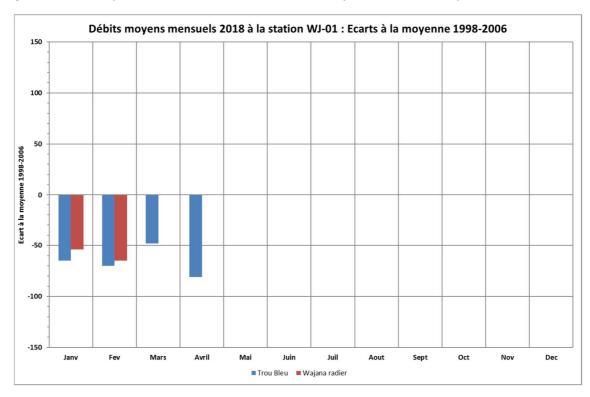


Figure 62 : Débits moyens mensuels à la station WJ-01 : Ecarts à la moyenne 1998-2006. Comparaison avec la station

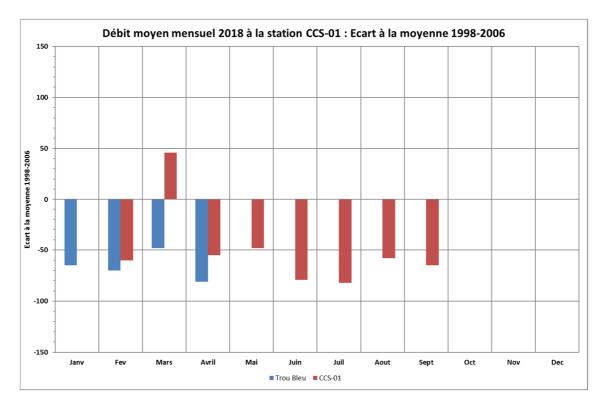


Figure 63 : Débits moyens mensuels à la station CCS--01 : Ecarts à la moyenne 1998-2006. Comparaison avec la station 3C

5.5 Suivi hydro-sédimentaire à la station KAL

> cf. Article D2.1 des prescriptions techniques de l'AEM et Article D5.1 des prescriptions techniques de l'AEM

La station KAL est localisée au débouché de la rivière Kwé dans le bassin de Port Boisé, en aval de l'ensemble des aménagements miniers et industriels implantés dans le bassin versant de la Kwé. La superficie du bassin contrôlé par la station est de 33 km².

5.5.1.1 Présentation des données disponibles pour les débits et les matières en suspension (MES)

Les données de débit et de MES disponibles en 2020 sont présentées à la Figure 64.

L'année 2020 est marquée par deux épisodes significatifs de crue :

- La crue du 29 février au 1 mars engendrée par un épisode de pluies orageuses très intenses. Le débit de pointe de cette crue est évalué à 269 m3/s. Il s'agit de la quatrième crue la plus forte, enregistrée depuis 1997,
- La crue du 14 au 16 mars engendrée par la dépression tropicale forte Gretel. Le débit de pointe est plus modeste avec 36 m³/s.

Durant la crue du 29 février, le préleveur automatique de la station KAL a été abimé et aucune analyse de MES n'a pu être réalisée.

La station a été réinstallée immédiatement après cette crue ce qui a permis de suivre l'évolution des flux sédimentaires durant l'épisode du 14 mars.

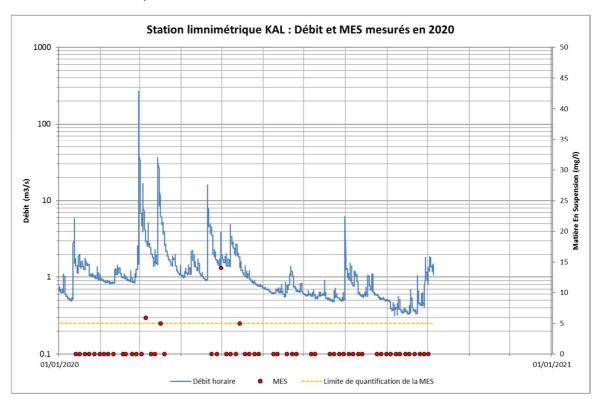


Figure 64: Station limnimétrique KAL : Débit et MES mesurés en 2020

5.5.1.2 Résultats et interprétations

Une évaluation des flux sédimentaires a été réalisée à l'échelle des épisodes de crue par intégration du débit et des mesures de MES. La Figure 65 présente la relation entre le flux sédimentaire et le débit de pointe établie pour l'ensemble des crues pour lesquelles des données étaient disponibles sur la période 2006-2020 (Soit 45 épisodes de crue).

Cette figure montre que la relation Flux sédimentaire-Débit de pointe reste globalement stable alors que la surface défrichée dans le bassin de la Kwé a augmenté de +61% entre 2009 et 2020.

Ce résultat suggère que les différents aménagements de gestion des eaux mis en place dans le bassin de la Kwé permettent de stabiliser les flux sédimentaires produits par l'activité minière.

Le flux sédimentaire généré lors de l'épisode du 14 au 16 mars 2020 apparaît anormalement faible par rapport à ce qui a pu être observé précédemment. Ce phénomène est probablement à relier au fait que la forte crue du 29 février, qui a eu lieu 15 avant, avait évacuée tout ou partie partie des matériaux latéritiques facilement mobilisables dans les zones d'activité.

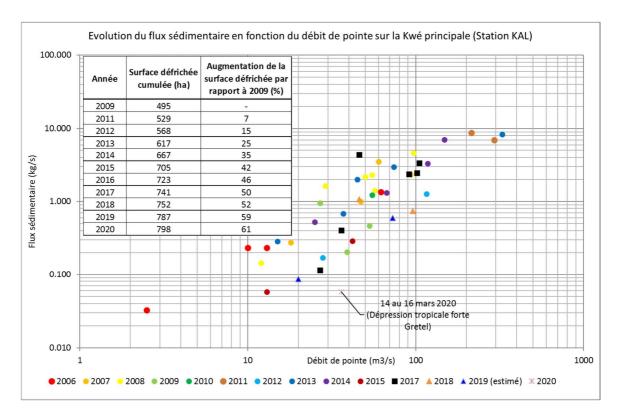


Figure 65: Evolution de la relation entre le flux sédimentaire et le débit de pointe sur la Kwé principale (station KAL) entre 2006 et 2020

5.6 Suivi physico-chimique des eaux de surface

> cf. Article D5.1 des prescriptions techniques de l'AEM

5.6.1 Présentation des stations

Dans le cadre des prescriptions de l'autorisation d'exploitation minière, un suivi de la qualité physicochimique des eaux superficielles est prescrit au niveau de cinq stations. Des mesures physico-chimiques in situ (température, conductivité, pH, oxygène dissous) et des analyses chimiques complètes en laboratoire sont à réaliser au niveau de ces stations.

Le tableau suivant présente les stations et décrit les suivis associés à chaque station.

Tableau 42: Description du suivi de la physico-chimie prescrit dans l'AEM (5 stations)

Nom	Bassin Versant	Type de suivi	Fréquence*	RGNC 91 Est	RGNC 91 Nord
		Analyses chimiques complètes laboratoire	S	501907	209787
TR-02 (source)	Truu	Analyses in situ (température, pH, conductivité, oxigène dissous)	M	501907	209787

Nom	Bassin Versant	Type de suivi	Fréquence*	RGNC 91 Est	RGNC 91 Nord
	Kwé	Analyses chimiques complètes laboratoire	M	499142	210447
KAL	Principale	Analyses in situ (température, pH, conductivité, oxigène dissous)	M	499142	210447
		Analyses chimiques complètes laboratoire	М	499124	206972
3-C	Trou Bleu	Analyses in situ (température, pH, conductivité, oxigène dissous)	M	499124	206972
Kuébini (non débuté)	Kuébini	Analyses in situ (température, pH, conductivité, oxigène dissous)		503247	215603
WJ-01	Wajana	Analyses in situ (température, pH, conductivité, oxigène dissous)	М	503581	212268

A l'heure actuelle, le suivi au niveau du bassin versant de la Kuebini n'a pu être réalisé pour les mêmes raisons que celles présentées au paragraphe §5.4.1.2.

5.6.2 Présentation des résultats

Les paramètres suivants ont été recherchés au cours de l'année 2020 : Ph, température, sulfates, manganèse, chlorures, nitrates, chrome et chrome VI, magnésium, nickel, potassium, sodium, aluminium, arsenic, cadmium, cobalt, calcium, cuivre, étain, fer, ammoniac, nitrites, plomb, zinc, demande chimique en oxygène, hydrocarbures totaux et titre alcalimétrique.

Les prescriptions de l'AEM demandent le suivi des paramètres mercure et ammonium à fréquence mensuelle au niveau de la station KAL (Kué aval), 3-C (Trou Bleu) et semestrielle à la source de la Truu.

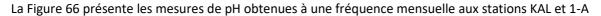
5.6.2.1 Résultats aux stations de la Kwé Principale (KAL et 1-A)

<u>NB :</u> Concernant les stations KAL et 1-A situées à la confluence des rivières Kwé Ouest, Kwé Nord et Kwé Est. Plus exactement, 1-A est située à 260 mètres en aval de KAL.

Ces deux stations apparaissent dans plusieurs prescriptions réglementaires (ICPE Usine, AEM et dernièrement ICPE Lucy) avec chacune leur spécificité en termes de paramètre et de fréquence de suivi. Depuis 2008, nous représentions les résultats de qualité physicochimique de ces deux stations sous 1-A car ces stations présentent les mêmes caractéristiques du fait de leur proximité. Cependant, avec la mise en place de l'arrêté Lucy qui recommande un suivi à haute fréquence (bihebdomadaire) sur plusieurs paramètres, il était important de faire la distinction entre les stations de prélèvements et les fréquences de suivi imposées.

Donc à partir du 12 juillet 2019, les résultats des mesures in situ et laboratoire à fréquence continue, bihebdomadaire et mensuels sont effectuées au niveau de la station KAL, telles que décrit dans l'arrêté Lucy et l'AEM. Les mesures à fréquence mensuelle décrites dans l'arrêté Usine sont effectuées à la station 1-A.

Pour ce bilan annuel 2020, les données relevées seront différenciées afin de respecter les recommandations des différents arrêtés


En 2020, la limite de quantification du laboratoire interne n'a jamais été atteinte à la station KAL pour les paramètres suivants : *aluminium, cadmium, cobalt, nitrites, zinc, hydrocarbures totaux, titre alcalimétrique et mercure.*

La limite de quantification a été rarement atteinte à 1-A pour les paramètres suivants : *calcium, cuivre, fer, manganèse, arsenic, plomb*. Les concentrations mesurées pour ces paramètres sont faibles et équivalentes à la limite de quantification du laboratoire pour le cuivre, le manganèse, le plomb. Ces valeurs ne sont pas indicatrices d'évolution particulière dans le milieu naturel.

Les éléments pour lesquels des variations sont observées ou qui doivent être suivis avec une attention particulière du fait des activités exercées sur le bassin versant de la Kwé sont présentés dans les graphiques suivants.

Mesures de PH

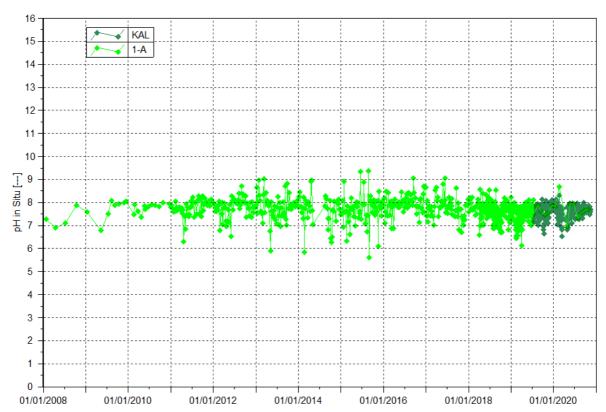


Figure 66 : Données de pH des stations KAL et 1-A entre janvier 2008 et 1er janvier 2021

Statistiques	KAL	1-A
Nombre de valeurs	159	9
Moyenne	7.61	7.72
Maximum	8.3	8.68
Minimum	6.52	6.92
Moyenne 2008-2019	7.67	7.67

Mesures de conductivité

La Figure 67 présente les mesures de conductivité obtenues à une fréquence mensuelle aux stations KAL et 1-A.

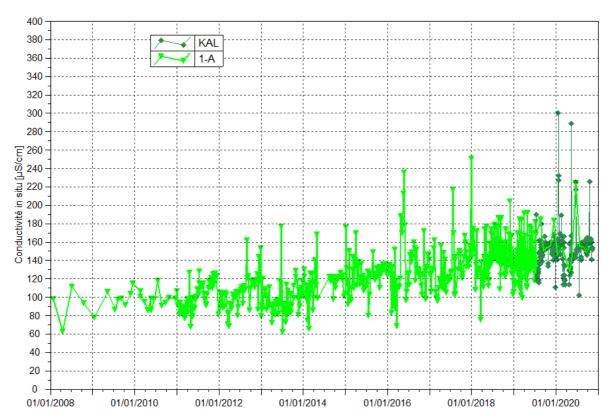


Figure 67 : Données de conductivité des station KAL et 1-A du 1er janvier 2008 au 1er janvier 2021

Statistiques	KAL	1-A
Nombre de valeurs	159	9
Moyenne	154.3	156.7
Maximum	300	224
Minimum	102	128
Moyenne 2008-2019	-	127.18

En moyenne, les relevées de 2020 sont en légère hausse par rapport à la moyenne des conductivités relevées entre 2008 et 2019. La conductivité maximale de 300 μ S/cm est relevée le 21 janvier 2020. Cette mesure correspond également à la conductivité maximale enregistrée depuis 2008.

Mesures de température

La Figure 68 présente les mesures de température obtenues à une fréquence mensuelle aux stations KAL et 1-A.

Figure 68 : Données de température des stations KAL et 1-A du 1er janvier 2008 au 1er janvier 2021

Statistiques	Température : KAL
Nombre de valeurs	160
Moyenne	23.03
Maximum	29.4
Minimum	19.7

Les fluctuations de 2020 montrent des évolutions similaires depuis 2008, basées sur des variations saisonnières.

Concentrations en sulfates

La Figure 16 présente les concentrations en sulfates obtenues à une fréquence mensuelle aux stations KAL et 1-A.

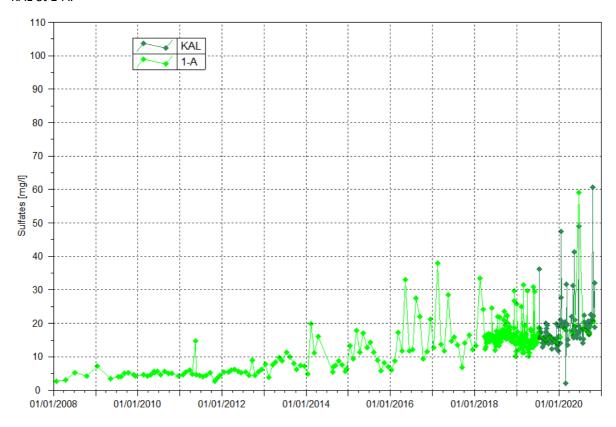


Figure 69 : Concentrations en sulfates des station KAL et 1-A entre le 1er janvier 2008 et le 1er janvier 2021

Statistiques	KAL	1-A
Nombre de valeurs	64	9
Moyenne	21.03	22.56
Maximum	60.6	59
Minimum	2	15.8
Moyenne 2008-2019	15.96	13.46

Les teneurs mesurées en 2020 confirment la croissance légère et constante des sulfates observées depuis 2013 dans la Kwé principale. La maximale mesurée en 2020 soit 60.6 mg/L est mesurée le 19 octobre 2020 et correspond à la teneur la plus élevée depuis le début des suivis.

Concentrations en manganèse

La Figure 70 présente les concentrations en manganèse obtenues à une fréquence mensuelle aux stations KAL et 1-A.

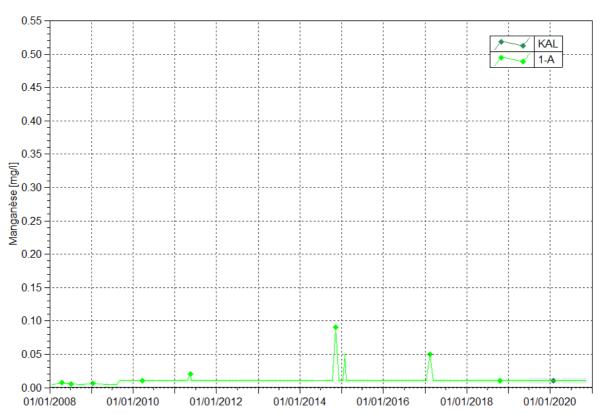


Figure 70 : Concentrations en manganèse des stations KAL et 1-A entre janvier 2008 et le 1er janvier 2021

En 2020, le manganèse est détecté ponctuellement et faiblement le 27 janvier 2020 au niveau de la rivière de la Kwé principale. La teneur mesurée à cette date est de 0.01 mg/L, correspondant à la limite de détection du laboratoire.

Concentrations en chlorures

La Figure 71 présente les concentrations en chlorures obtenues à une fréquence mensuelle aux stations KAL et 1-A.

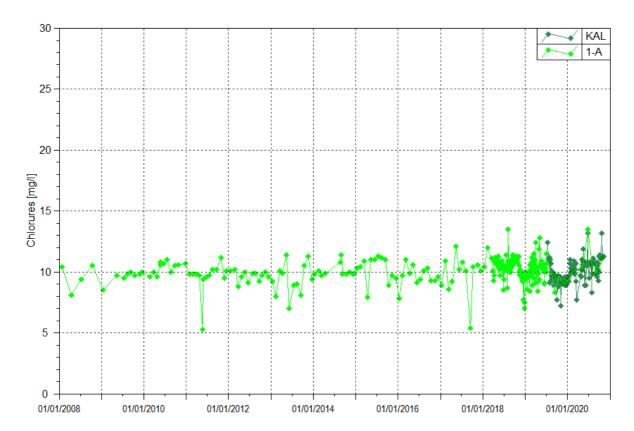


Figure 71 : Concentrations en chlorures des stations KAL et 1-A entre le 1er janvier 2008 et le 1er janvier 2021

Statistiques	KAL	1-A
Nombre de valeurs	63	9
Moyenne	10.41	10.67
Maximum	13.2	13.5
Minimum	7.7	9.5
Moyenne 2008-2019	-	10.09

Les teneurs en chlorures relevées en 2020 à la station KAL sont en moyenne légèrement supérieures aux années précédentes.

Concentrations en nitrates

La Figure 72 présente les concentrations en nitrates obtenues à une fréquence mensuelle aux stations KAL et 1-A.

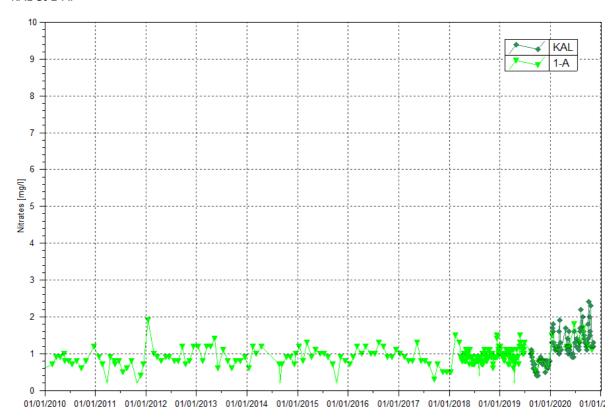


Figure 72 : Concentrations en nitrates des stations KAL et 1-A entre le 1er janvier 2008 et le 1er janvier 2021

Statistiques	KAL	1-A
Nombre de valeurs	64	9
Moyenne	1.37	1.34
Maximum	2.4	1.8
Minimum	0.9	1.1
Moyenne 2008-2019	0.73	0.90

Les teneurs en nitrates en 2020 sont globalement supérieures aux normales mesurées depuis 2008 à la station KAL (1-A).

Concentrations en chrome et chrome VI

La Figure 73 et la Figure 74 présentent les concentrations en chromes et chrome VI obtenues à une fréquence mensuelle aux stations KAL et 1-A.

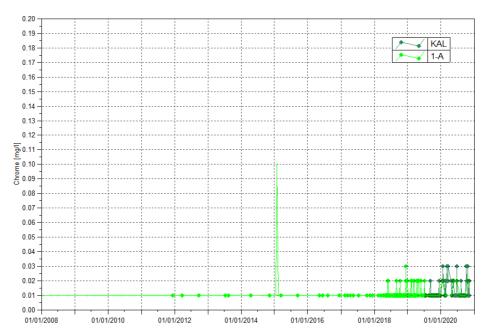


Figure 73: Concentrations en chrome des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021

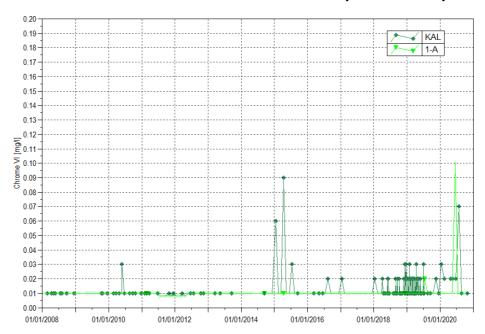


Figure 74 : Concentrations en chrome VI des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021

Depuis 2008, les concentrations en chrome et chrome VI sont en majorité inférieures à la limite de détection dans la rivière Kwé principale. En 2020, les teneurs en chrome VI mesurées au niveau de la station KAL sont comprises entre 0.01 et 0.03 mg/L. Les teneurs en chrome VI sont comprises entre 0.01 et 0.07 mg/L.

Concentrations en magnésium

La Figure 75 présente les concentrations en magnésium obtenues à une fréquence mensuelle aux stations KAL et 1-A.

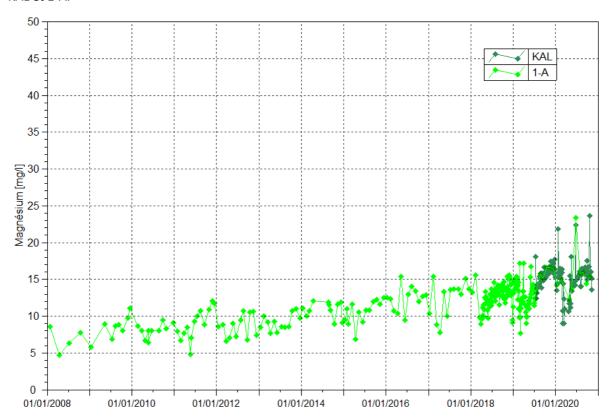


Figure 75 : Concentrations en magnésium des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021

Statistiques	KAL	1-A
Nombre de valeurs	65	9
Moyenne	15.07	15.56
Maximum	23.6	23.4
Minimum	9	12.3
Moyenne 2008-2019		11.62

En 2020, les concentrations en magnésium se stabilisent dans les stations de la rivière de la Kwe principale alors qu'une tendance légère à la hausse s'est amorcée depuis 2013. La concentration maximale de 23.6 mg/L relevée le 19 septembre est supérieure aux maximales mesurées les années précédentes.

Concentrations en nickel

La Figure 76 présente les concentrations en nickel obtenues à une fréquence mensuelle aux stations KAL et 1-A.

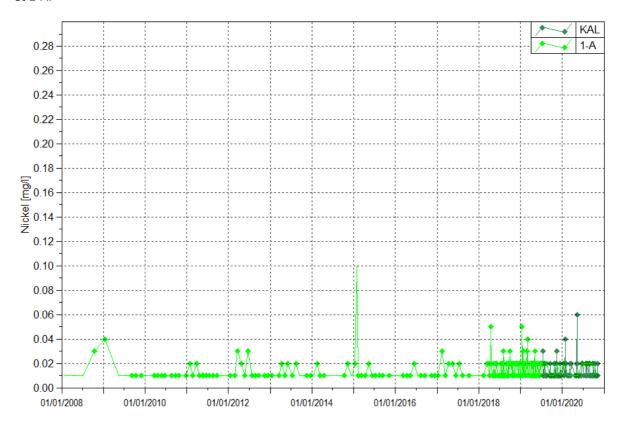


Figure 76 : Concentrations en nickel des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021

Statistiques	KAL	1-A
Nombre de valeurs	65	9
Moyenne	0.01	0.01
Maximum	0.06	0.02
Minimum	0.01	0.01
Moyenne 2008- 2019		0.01

Concentrations en potassium et sodium

La Figure 77 et la Figure 78 présentent les concentrations en potassium et sodium obtenues à une fréquence mensuelle aux stations KAL et 1-A.

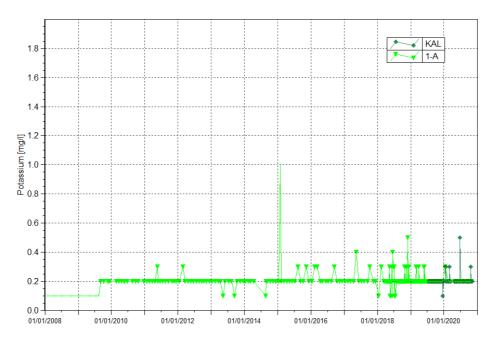


Figure 77 : Concentrations en potassium des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021

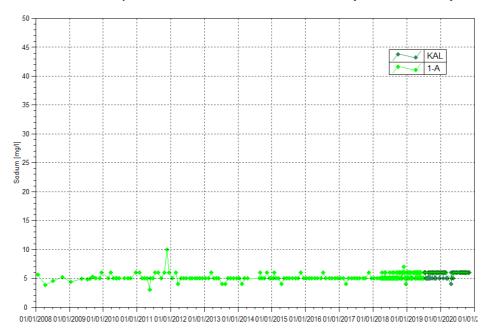
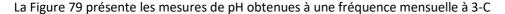


Figure 78: Concentrations en sodium des stations KAL et 1-A entre le 1er janvier 2008 et 1er janvier 2021

En 2020, les concentrations en potassium et sodium n'indiquent pas d'évolution particulière.


5.6.2.2 Résultats à la station Trou Bleu (3-C) : Bassin de référence

En 2020, les résultats de suivi dans la rivière Trou Bleu démontrent que la limite de quantification du laboratoire interne n'a jamais été atteinte pour les paramètres suivants : *aluminium, arsenic, cadmium, calcium, cobalt, chrome, chrome VI, fer, nitrites, manganèse, zinc, titre alcalimétrique, hydrocarbures totaux et mercure*.

Les paramètres suivants ont été détecté ponctuellement en 2020 : *cuivre, plomb et ammoniac.* Les concentrations mesurées pour ces paramètres sont faibles et équivalentes à la limite de quantification pour l'ammoniac. Ces valeurs ne sont pas indicatrices d'évolution particulière dans le milieu naturel.

Les éléments pour lesquels des variations sont observées ou qui doivent être suivis avec une attention particulière du fait des activités liées à l'exploitation minière sont présentés dans les graphiques suivants.

Mesures de pH

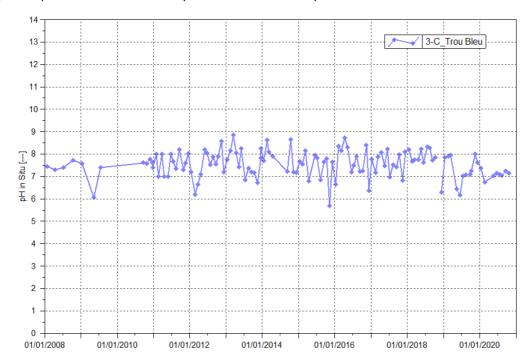
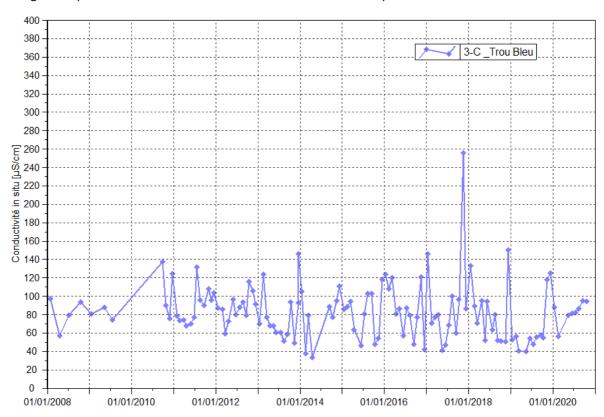


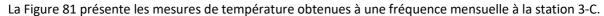
Figure 79 : Données de pH de la station 3-C entre janvier 2008 et le 1er janvier 2021

Statistiques	pH : 3-C
Nombre de valeurs	8
Moyenne	7,10
Maximum	7.38
Minimum	6.74
Moyenne 2008-2019	7,56

En 2020, le pH oscille entre 6,74 et 7.38.

Mesures de conductivité




Figure 80 : Données de conductivité de la station 3-C du 1er janvier 2008 au 1er janvier 2021

Statistiques	Conductivité : 3-C
Nombre de valeurs	8
Moyenne	82.88
Maximum	95.2
Minimum	56
Moyenne 2008-2019	83.38

En 2020, la conductivité est comprise entre 56 et 95.2 μ S/cm. Les conductivités relevées en 2020 sont comparables aux années précédentes.

Mesures de température

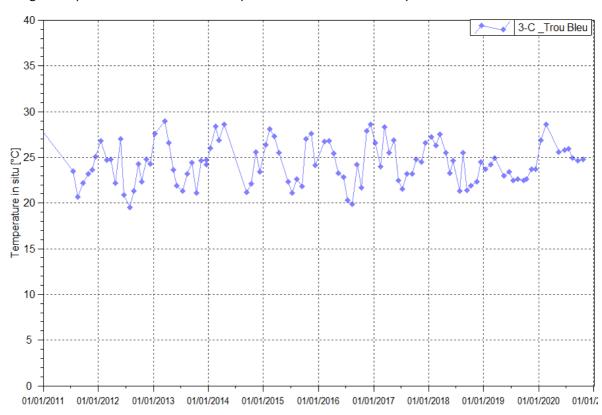


Figure 81 : Données de température de la station 3-C du 1er janvier 2008 au 1er janvier 2021

Statistiques	Température : 3-C
Nombre de valeurs	8
Moyenne	25.88
Maximum	28.6
Minimum	24.6

Concentrations en sulfates

La Figure 82 présente les concentrations en sulfates obtenues à une fréquence mensuelle à la station 3-C.

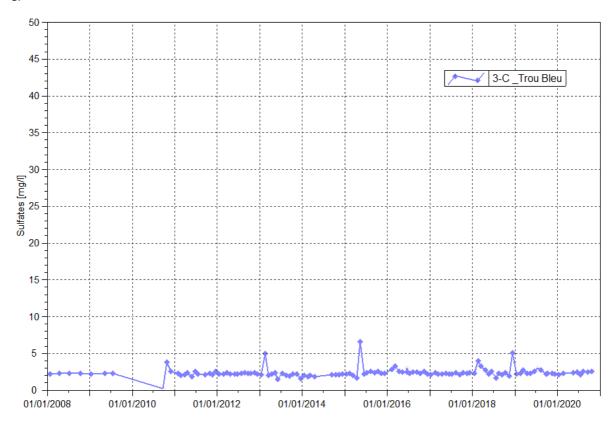


Figure 82 : Concentrations en sulfates de la station 1-A entre le 1er janvier 2008 et le 1er janvier 2021

Statistiques	Sulfates : 3-C
Nombre de valeurs	8
Moyenne	2,38
Maximum	2.6
Minimum	2.1
Moyenne 2008-2019	2,38

Depuis 2008, les concentrations en sulfates sont toujours inférieures à 10 mg/L.

Concentrations en manganèse

La Figure 83 présente les concentrations en manganèse obtenues à une fréquence mensuelle à la station 3-C.

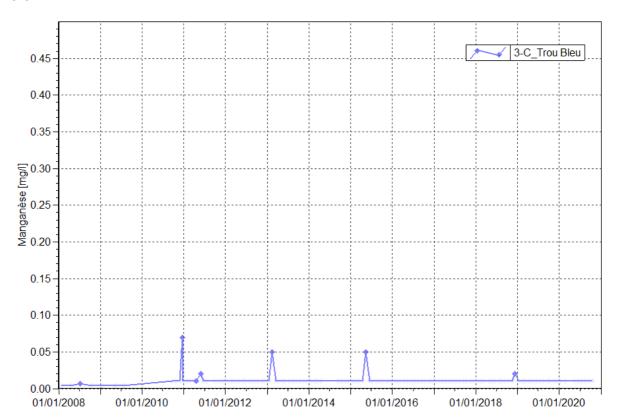


Figure 83 : Concentrations en manganèse de la station 3-C entre janvier 2008 et le 1er janvier 2021

Le manganèse n'est pas détecté au niveau de la station 3-C en 2020.

Concentrations en chlorures

La Figure 84 présente les concentrations en chlorures obtenues à une fréquence mensuelle à la station 3-C.

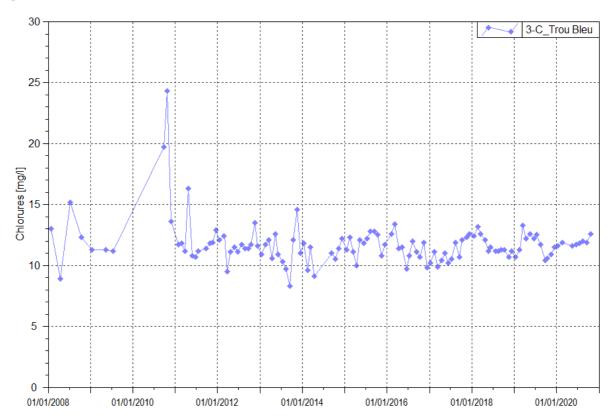


Figure 84 : Concentrations en chlorures de la station 3-C entre le 1er janvier 2008 et le 1er janvier 2021

Statistiques	Chlorures : 3-C
Nombre de valeurs	8
Moyenne	11,88
Maximum	12.6
Minimum	11.6
Moyenne 2008-2019	11,72

Les résultats de suivi de 2020 ne montrent pas d'évolution particulière en comparaison avec les années précédentes.

Concentrations en nitrates

La Figure 85 présente les concentrations en nitrates obtenues à une fréquence mensuelle à la station 3-C.

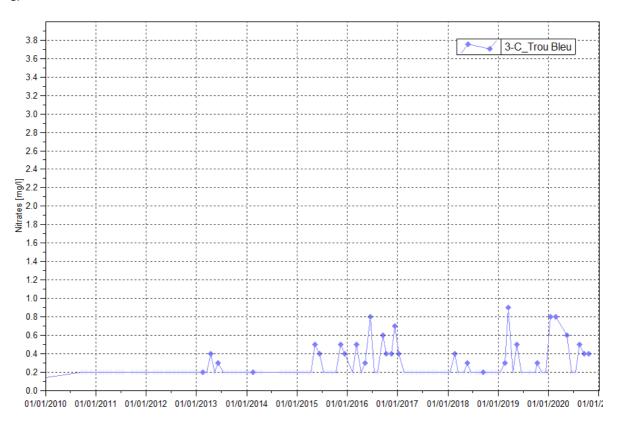


Figure 85 : Concentrations en nitrates de la station 3-C entre le 1er janvier 2008 et 1er janvier 2021

En 2020, ce paramètre est quantifié à plusieurs reprises dans la rivière Trou Bleu. Les concentrations mesurées sont comprises entre 0.2 et 0.8 mg/L. Des variations en nitrates sont observées depuis 2013 au niveau de la rivière Trou Bleu. Les concentrations de 2020 restent dans la gamme des valeurs observées depuis le début des suivis.

Concentrations en magnésium

La Figure 86 présente les concentrations en magnésium obtenues à une fréquence mensuelle à la station 3-C.

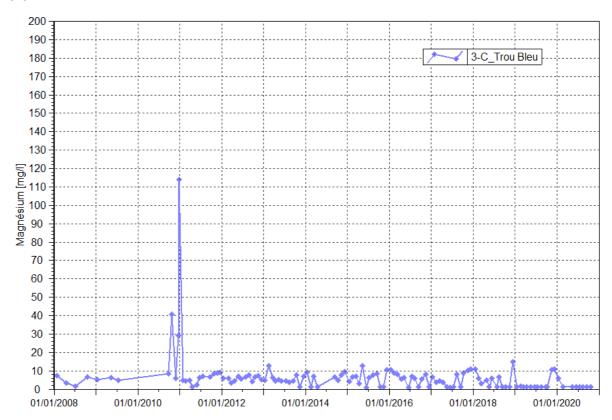


Figure 86 : Concentrations en magnésium de la station 3-C entre le 1er janvier 2008 et le 1er janvier 2021

Statistiques	Magnésium : 3-C
Nombre de valeurs	8
Moyenne	1.76
Maximum	5.8
Minimum	1.1
Moyenne 2008-2019	6.85

En 2020, les teneurs en magnésium n'indiquent aucune évolution particulière.

Concentrations en nickel

La Figure 87 présente les concentrations en nickel obtenues à une fréquence mensuelle à la station 3-C.

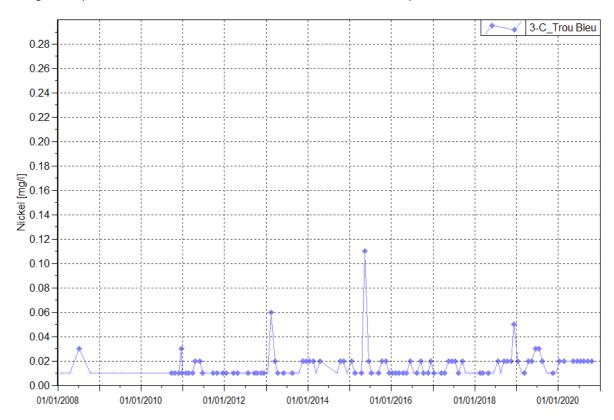


Figure 87 : Concentrations en nickel à la station 3-C entre le 1er janvier 2008 et le 1er janvier 2021

Statistiques	Nickel : 3-C
Nombre de valeurs	8
Moyenne	0.02
Maximum	0.02
Minimum	0.02
Moyenne 2008-	
2019	0.011

En 2020, la teneur en nickel dans la rivière Trou Bleu n'a pas varié et est toujours équivalente à 0.02 mg/L.

Concentrations en potassium et sodium

La Figure 88 et la Figure 89 présentent les concentrations en potassium et sodium obtenues à une fréquence mensuelle à la station 3-C.

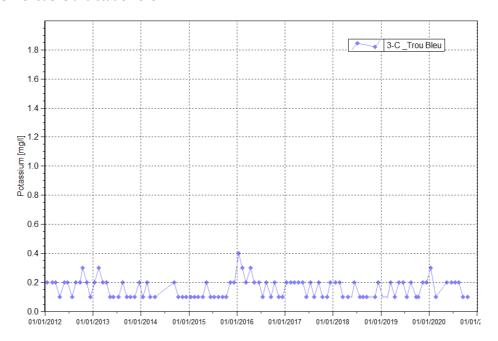


Figure 88 : Concentrations en potassium à la station 3-C entre le 1er janvier 2008 et le 1er janvier 2021

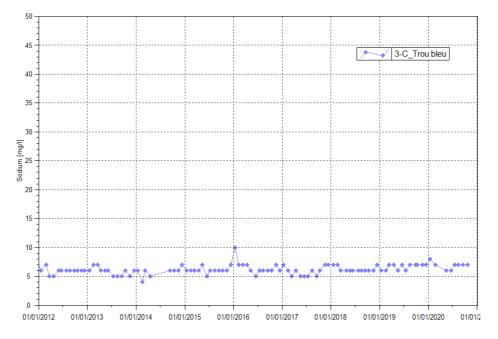


Figure 89 : Concentrations en sodium à la station 3- C entre le 1er janvier 2008 et le 1er janvier 2021

Concernant les concentrations en potassium et sodium, les résultats de suivi de 2020 ne montrent aucune évolution particulière.

5.6.2.3 Rivière Truu (TR-01 et TR-02)

Deux stations de suivis situées dans le bassin versant de la Truu sont localisées comme suit :

- TR01: dans la rivière Truu, en aval de TR02, au niveau du radier de la rivière Truu,
- TR02 : source de la rivière de Truu.

En 2020, la limite de quantification du laboratoire interne n'a jamais été atteinte voir rarement sur l'ensemble des stations de la Truu pour les paramètres suivants : *aluminium, arsenic, cadmium, cobalt, cuivre, fer, ammoniac, manganèse, nitrites, zinc, titre alcalimétrique, hydrocarbures totaux et mercure.*

Les paramètres suivants ont été détecté ponctuellement ou rarement en 2020 : *calcium et plomb*. Les valeurs mesurées ne sont pas indicatrices d'évolution particulière dans le milieu naturel.

Les éléments pour lesquels des variations sont observées ou qui doivent être suivis avec une attention particulière du fait des activités exercées sur le bassin versant de la Kwé sont présentés dans les graphiques suivants.

Mesure de pH

La Figure 90 présente les mesures de pH obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

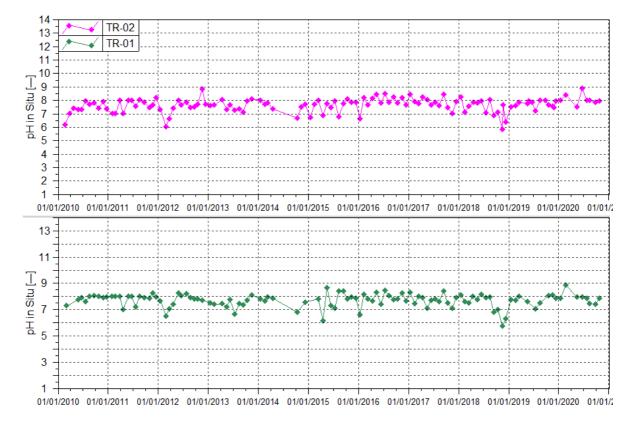


Figure 90 : Mesures de pH pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

Les résultats de suivi en 2020 du bassin versant de la rivière Truu montrent un pH élevé lors du contrôle du 18 juin. Les mesures de pH oscillent entre 7.41 et 8.88 en 2020.

Mesure de conductivité

La Figure 91 présente les mesures de conductivités obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

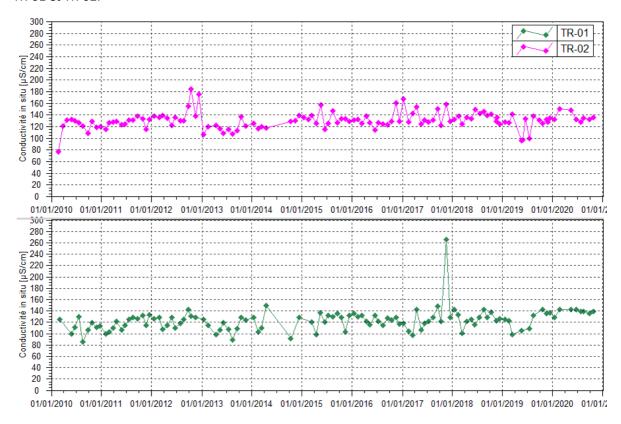


Figure 91 : Mesures de conductivités pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

Station TR-02 : Les mesures de conductivité au niveau de la source TR-02 sont comprises entre 128 et $151 \,\mu\text{S/cm}$ en 2020.

Station TR-01 : en 2020, les mesures de conductivité varient entre 128 et 143 μ S/cm.

Mesures de température

La Figure 92 présente les mesures de température obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

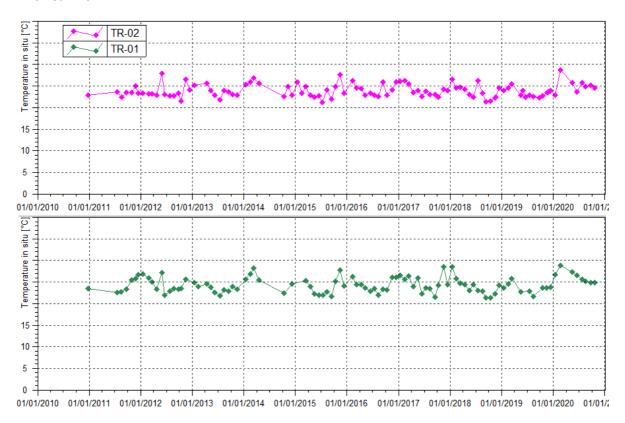


Figure 92 : Mesures de température pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

Stations TR-02 et TR-01 : les relevés de température sont variables depuis 2011. Les variations sont basées sur des fluctuations saisonnières.

Concentrations en sulfates

La Figure 93 présente les concentrations en sulfates obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

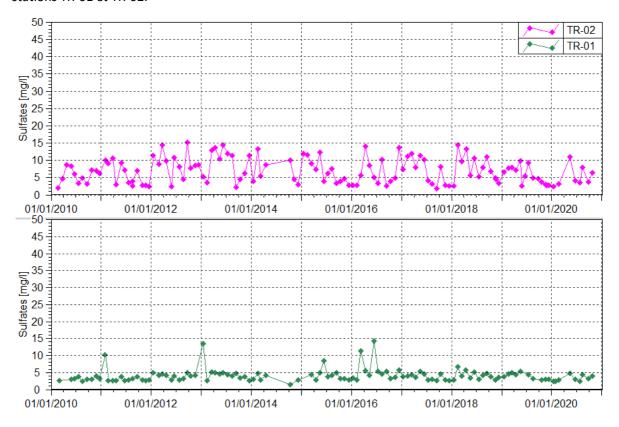


Figure 93 : Concentrations en sulfates pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

StationsTR-02 et TR-01: en 2020, les teneurs en sulfates au niveau de la rivière Truu évoluent similairement aux années précédentes. Les teneurs oscillent entre 2.6 et 14.4 mg/L à la source TR-02 et entre. 2.8 et 6.6 mg/L à la station TR-01.

Concentrations en magnésium

La Figure 94 présente les concentrations en magnésium obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

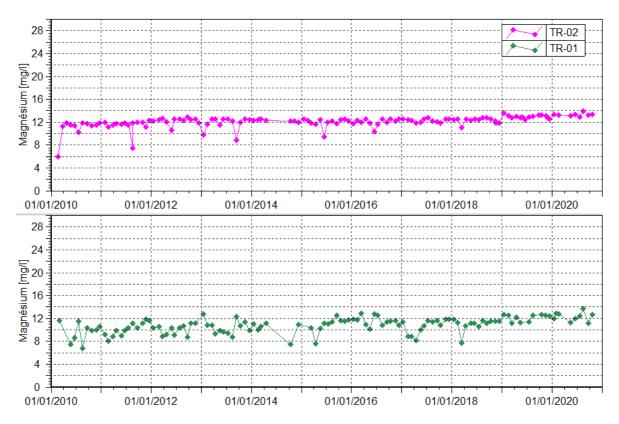


Figure 94 : Concentrations en magnésium pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

Stations TR-02 et TR-01: les résultats de suivi indiquent une légère hausse des concentrations en magnésium depuis 2019 au niveau des stations de la rivière Truu.

Statistiques	TR-02	TR-01
Nombre de valeurs	8	9
Moyenne 2020	13.28	12.3
Maximum	13.9	13.7
Minimum	12.9	11.2
Moyenne 2019	12.95	12.15
Moyenne 2008-2018	11.9	10.54

Concentrations en nickel

La Figure 95 présente les concentrations en nickel obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

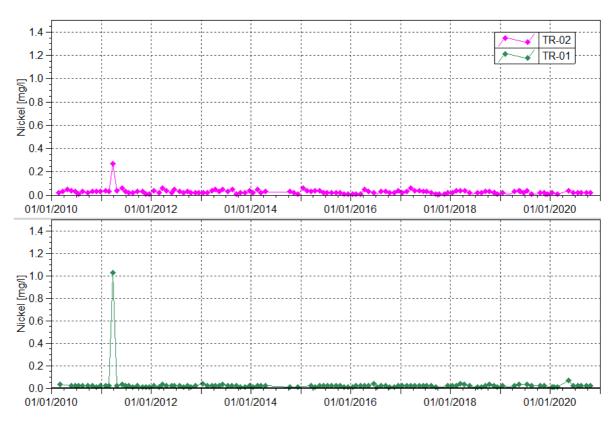


Figure 95 : Concentrations en nickel pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

Station TR-02 et TR-01: les concentrations en nickel dans la rivière de la Truu sont stables depuis 2012.

Concentrations en chlorures

La Figure 96 présente les concentrations en chlorures obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

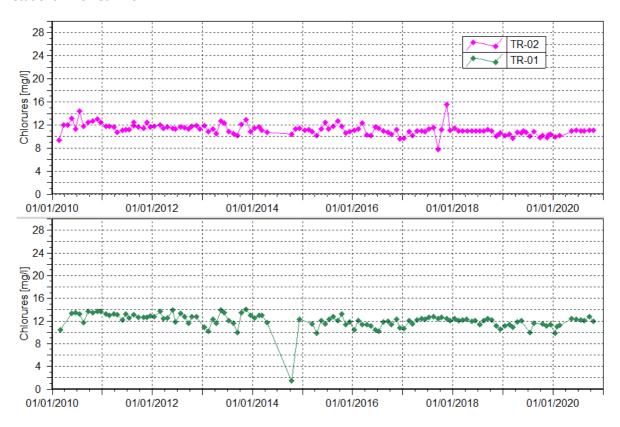


Figure 96 : Concentrations en chlorures pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

Stations TR-02 et TR-01: les concentrations en chlorures sont stables en 2020 et dans la gamme de valeurs relevées durant les années précédentes.

Concentrations en nitrates

La Figure 97 présente les concentrations en nitrates obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

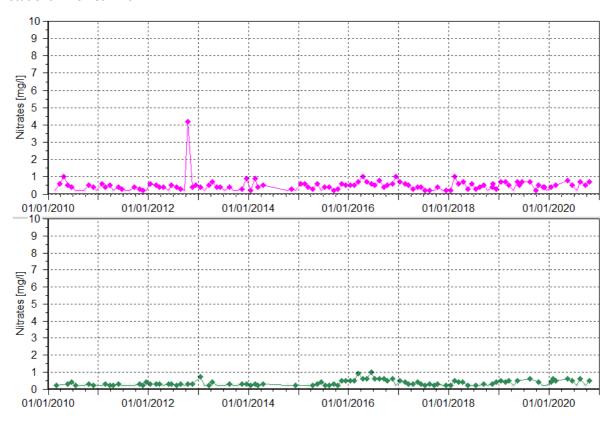


Figure 97 : Concentrations en nitrates pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

Stations TR-02 et **TR-01** : les teneurs mesurées en 2020 correspondent aux normales mesurées depuis 2010.

Concentrations en chrome et chrome VI

La Figure 98 et la Figure 99 présentent les concentrations en chrome et chrome VI obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

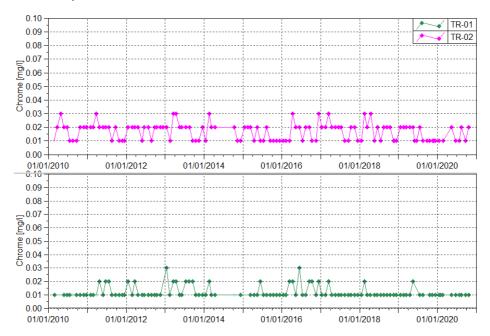


Figure 98 : Concentrations en chrome pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

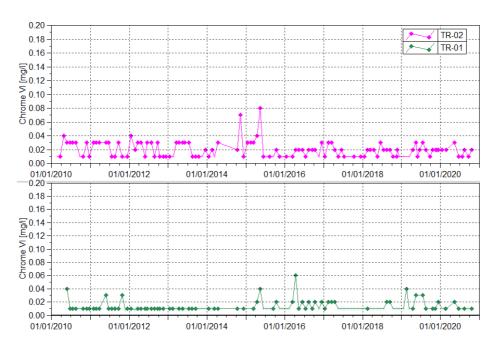


Figure 99 : Concentrations en chrome VI pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

Stations TR-02 et TR-01 : les concentrations relevées sont faibles et aucune évolution particulière n'est constatée pour ces paramètres dans la rivière TRUU en 2021.

Concentrations en sodium et potassium

La Figure 100 et la Figure 101 présentent les concentrations en sodium et potassium obtenues à une fréquence mensuelle pour les stations TR-01 et TR-02.

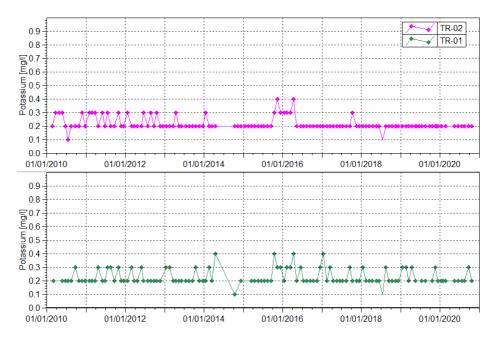


Figure 100 : Concentrations en potassium pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

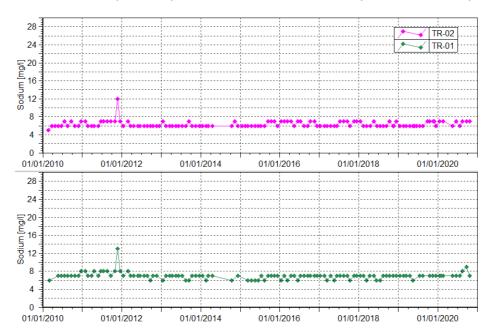


Figure 101 : Concentrations en sodium pour les stations TR-01 et TR-02 entre janvier 2010 et le 1er janvier 2021

StationsTR-02 et TR-01: les teneurs en potassium évoluent normalement en 2020 au niveau de la source de la Truu et du radier de la rivière Truu. Une légère variation en sodium est enregistrée au niveau du radier de la Truu (TR-01) durant le second semestre 2020.

5.6.2.4 Rivière Wajana (WJ-01)

Dans le cadre des prescriptions de l'autorisation d'exploitation minière, une station de suivi est prescrite dans le bassin versant de la rivière Wajana. Cette station nommée WJ-01 est située au niveau du radier

de la rivière. Des mesures physico-chimiques in situ (température, conductivité, pH, oxygène dissous) et de débit sont effectués sur cette station à fréquence mensuelle.

Le suivi de ces paramètres physico-chimiques est présenté dans les graphiques suivants. Les mesures d'oxygène dissous au niveau de cette station ont débuté en octobre 2017. Les résultats seront présentés lors du prochain bilan.

Mesures de pH

La Figure 102 présente les mesures de pH obtenues à une fréquence mensuelle pour la station WJ-01.

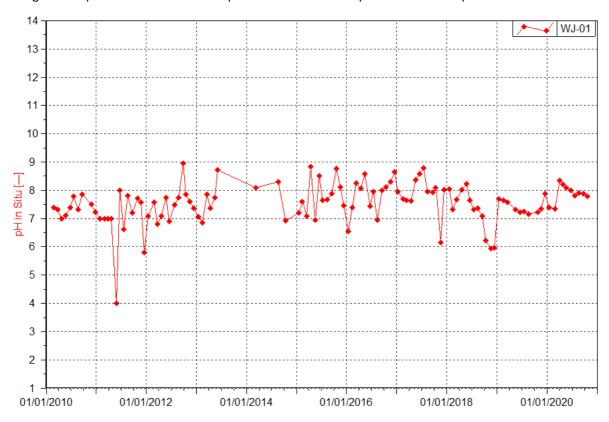


Figure 102 : Mesures de pH pour la station WJ-01 entre janvier 2010 et le 1er janvier 2021

Les mesures de pH au niveau de cette station sont variables depuis le début des suivis. En 2020, le pH est compris entre 7.35 et 8.35. En 2020, le pH évolue dans les gammes de mesures en baisse au niveau de cette station.

Mesures de conductivité

La Figure 103 présente les mesures de conductivité obtenues à une fréquence mensuelle pour la station WJ-01.

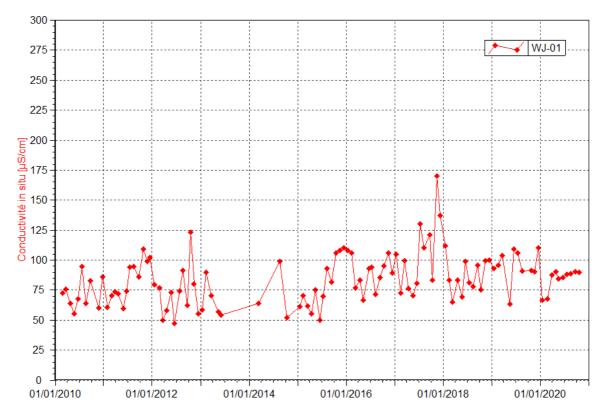


Figure 103 : Mesures de conductivité pour la station WJ-01 entre janvier 2010 et le 1er janvier 2021

En 2020, les mesures de conductivité sont stables. La conductivité moyenne est de 83.83 μ S/cm en 2020.

Mesures de température et oxygène dissous

La Figure 104 présente les mesures de température obtenues à une fréquence mensuelle et la figure présente les mesures d'oxygène dissous à fréquence mensuelle pour la station WJ-01.

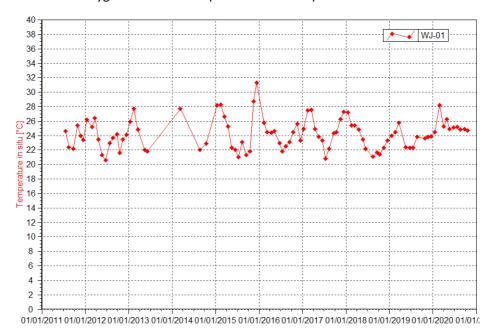


Figure 104 : Mesures de température pour la station WJ-01 entre janvier 2010 et le 1er janvier 2021

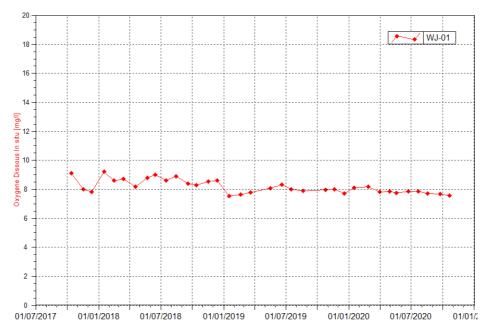


Figure 105 : Mesures d'oxygène dissous pour la station WJ-01 entre janvier 2010 et le 1er janvier 2021

Les relevées de température sont variables suivant les saisons depuis le début des suivis. En 2020, la température varie entre 24.5 et 28.2 °C.

En 2020, les teneurs en oxygène dissous sont comprises entre 11.2 et 13.7 mg/L.

5.6.3 Interprétation des résultats

5.6.3.1 Kwé principale, 1-A (KAL)

L'augmentation légère en conductivité et sulfates qui a débuté en 2013 se poursuit en 2020. Les variations de concentrations en sulfates dans la Kwé Principale observées sont les résultats des variations de concentrations en sulfates en amont, et notamment du bras de la Kwe Ouest qui est sous influence du parc à résidus de la Kwe Ouest et de l'UPM-CIM.

Cependant, les résultats du suivi physico-chimique de 2020 attestent d'une bonne qualité physico-chimique des eaux de la Kwé principale. Les résultats d'analyse de 2020 sont récapitulés dans le tableau ci-après.

Tableau 43: Résultats d'analyse du suivi 2020 à la station KAL, Kwé principale

	Resultats Analyses 20 Station KAL, Kwe Princ		Total Analyses	Nb Analyses < LD	Moyenne	Min	Max	Limites de qualité des eaux brutes destinées à la consommation humaine (Arrêté du 11/01/2017)
	Calcium	(mg/L)	67	63	0.06	<ld< td=""><td>1</td><td>-</td></ld<>	1	-
<u> </u>	Magnesium	(mg/L)	67	0	15.10	9	23.6	-
sico	Sodium	(mg/L)	67	0	5.85	4	6	200
ohy:	Potassium	(mg/L)	67	0	0.21	0.2	0.5	-
es p	Sulfates	(mg/L)	67	0	21.20	13.5	60.6	150
nètres phy chimiques	Chlorures	(mg/L)	67	0	10.45	7.7	13.2	200
Paramètres physico- chimiques	pH	, , ,	160	0	7.61	6.52	8.3	-
Par	Conductivité	(μs/cm)	160	0	154.31	102	300	
	Oxygène dissous	(mg/L)	160	0	8.53	7.53	9.83	
	Température	(°C)	160	0	23.04	19.7	29.4	
	Nitrates	(mg/L)	67	0	1.37	0.9	2.4	50
	Ammoniac		67	63	0.045	<ld< td=""><td>2.5</td><td></td></ld<>	2.5	
Si Se	Aluminium	(mg/L)	67	67	ND	<ld< td=""><td>0</td><td></td></ld<>	0	
etre	Cuivre	(mg/L)	67	66	ND	<ld< td=""><td>0.01</td><td></td></ld<>	0.01	
amè ésir	Fer	(mg/L)	67	65	0.004	<ld< td=""><td>0.2</td><td></td></ld<>	0.2	
Paramètres indésirables	Zinc	(mg/L)	67	67	ND	<ld< td=""><td>0</td><td></td></ld<>	0	
	Manganèse	(mg/L)	67	66	ND	<ld< td=""><td>0.01</td><td>1</td></ld<>	0.01	1
	Cobalt	(mg/L)	67	67	ND	<ld< td=""><td>0</td><td></td></ld<>	0	
	Hydrocarbures totaux	(mg/Kg)	67	67	ND	<ld< td=""><td>0</td><td></td></ld<>	0	
S	Nickel	(mg/L)	67	13	0.012	<ld< td=""><td>0.06</td><td></td></ld<>	0.06	
dne	Plomb	(mg/L)	67	62	0.001	<ld< td=""><td>0.01</td><td>0.05</td></ld<>	0.01	0.05
. <u>i</u>	Cadmium	(mg/L)	67	67	ND	<ld< td=""><td>0</td><td>0.005</td></ld<>	0	0.005
Substances toxiques	Arsenic	(mg/L)	67	65	0.001	<ld< td=""><td>0.02</td><td>0.1</td></ld<>	0.02	0.1
anc	Mercure	(μg/L)	9	9	ND	<ld< td=""><td>0</td><td>0.001</td></ld<>	0	0.001
bst	Chrome	(mg/L)	67	1	0.015	<ld< td=""><td>0.03</td><td>0.05</td></ld<>	0.03	0.05
Su	Chrome VI	(mg/L)	67	10	0.016	<ld< td=""><td>0.07</td><td></td></ld<>	0.07	
				imite de dete	ection du lab			

Les analyses sont caractéristiques d'une eau faiblement minéralisée avec une conductivité moyenne de $154.3~\mu\text{S/cm}$ et un pH neutre à légèrement basique, caractéristique d'une eau circulant au sein des massifs péridotiques.

A titre indicatif, les résultats d'analyse de 2020 pour l'ensemble des paramètres indiquent des valeurs mesurées très inférieures aux limites mentionnées dans la norme de qualité des eaux destinées à la consommation humaine de l'arrêté métropolitain du 11/01/2007

5.6.3.2 Trou Bleu (3-C): Bassin de référence

Dans le bassin de référence de la rivière Trou Bleu, les résultats de suivi attestent d'une bonne qualité physico-chimique de la rivière Trou Bleu.

En 2020, les résultats de suivi indiquent une eau faiblement minéralisée avec une conductivité moyenne de 82.89 μ S/cm, un pH neutre à légèrement basique (compris entre 6.74 et 7.38). Ce profil est caractéristique de l'eau circulant au sein d'un massif péridotique. Les résultats d'analyse de 2020 pour cette station sont résumés dans le tableau ci-après.

Tableau 44 : Résultats d'analyse du suivi 2020 à la station 3-C (Trou Bleu)

	Resultats Analyses 2 3-C (Trou Bleu)	sultats Analyses 2020 3-C (Trou Bleu)		Nb Analyses < LD	Moyenne	Min	Max	Arrêté du 11/01/2017 concernant les limites de qualité des eaux brutes destinées à la consommation humaine
	Calcium	(mg/L)	8	8	ND	-	-	-
	Magnesium	(mg/L)	8	0	1.76	1.1	5.8	-
8	Sodium	(mg/L)	8	0	6.88	6	8	200
Paramètres physico- chimiques	Potassium	(mg/L)	8	0	0.18	0.1	0.3	-
ld sa idne	Sulfates	(mg/L)	8	0	2.39	2.1	2.6	150
nètres phy chimiques	Chlorures	(mg/L)	8	0	11.89	11.6	12.6	200
ram	рН		8	0	7.10	6.74	7.38	-
Ра	Conductivité	(µs/cm)	8	0	82.89	56	95.2	
	Oxygène dissous	(mg/L)	8	0	7.60	6.6	7.85	
	Température	(°C)	8	0	25.89	24.6	28.6	
	Nitrates	(mg/L)	8	2	0.44	<ld< td=""><td>0.8</td><td>50</td></ld<>	0.8	50
	Ammoniac	(mg/L)	8	7	ND	<ld< td=""><td>0.1</td><td></td></ld<>	0.1	
. 60	Aluminium	(mg/L)	8	8	ND	-	-	
tres	Cuivre	(mg/L)	8	7	ND	<ld< td=""><td>0.02</td><td></td></ld<>	0.02	
Paramètres indésirables	Fer	(mg/L)	8	8	ND	-	-	0.3
Para	Zinc	(mg/L)	8	8	ND	-	-	3
	Manganèse	(mg/L)	8	8	ND	-	-	1
	Cobalt	(mg/L)	8	8	ND	-	-	
	Hydrocarbures totaux	(mg/Kg)	8	8	ND	-	-	
S	Nickel	(mg/L)	8	0	0.02	0.02	0.02	
dne	Plomb	(mg/L)	8	7	ND	<ld< td=""><td>0.02</td><td>0.05</td></ld<>	0.02	0.05
toxi	Cadmium	(mg/L)	8	8	ND	-	-	0.005
Substances toxiques	Arsenic	(mg/L)	8	8	ND	-	-	0.1
tan	Mercure	(μg/L)	8	8	ND	-	-	0.001
sqn	Chrome	(mg/L)	8	8	ND	-	-	0.05
<i>V</i> 1	Chrome VI	(mg/L)	8	8	ND	-	-	
	N	D: Non Dét	terminé, LD :	= Limite de de	etection du la	borato	ire	

A titre indicatif, les résultats d'analyse de 2020 pour l'ensemble des paramètres indiquent des valeurs mesurées très inférieures aux limites mentionnées dans la norme de qualité des eaux destinées à la consommation humaine de l'arrêté métropolitain du 11/01/2007

5.6.3.3 Rivière Truu (TR-01 et TR-02)

Au niveau du suivi de la rivière Truu, les résultats de suivi confirment une tendance légère à la hausse du magnésium depuis 2019 au niveau de la rivière Truu. Pour les autres paramètres, aucune évolution particulière n'est à constater à l'issu de ce bilan annuel. Les résultats attestent d'une bonne qualité physico-chimique de la rivière Truu.

Les résultats d'analyses 2020 pour la rivière Truu sont résumés dans le tableau ci-après.

Tableau 45: Résultats d'analyse du suivi 2020 aux stations TR-02 et TR-01 (Truu)

	Resultats Analyses TR-02 et TR-01 (Ti		Total Analyses	Nb Analyses < LD	Moyenne	Min	Max	Arrêté du 11/01/2017 concernant les limites de qualité des eaux brutes destinées à la consommation humaine		
	Calcium	(mg/L)	17	16	ND	<ld< td=""><td>4</td><td>-</td></ld<>	4	-		
	Magnesium	(mg/L)	17	0	12.78	11.2	13.9	-		
Paramètres physico- chimiques	Sodium	(mg/L)	17	0	7.06	6	9	200		
hys	Potassium	(mg/L)	17	0	0.21	0.2	0.3	-		
nètres phy chimiques	Sulfates	(mg/L)	17	0	0.02	0.01	0.07	250		
ètre	Chlorures	(mg/L)	17	0	11.29	9.8	12.8	200		
am	рН		17	0	7.47	6	8	-		
Par	Conductivité	(µs/cm)	16	0	3.73	0.6	7.2			
	Oxygène dissous	(mg/L)	16	0	7.99	7.41	8.88			
	Température	(°C)	16	0	25.71	22.9	28.8			
	Nitrates	(mg/L)	17	3	0.46	<ld< td=""><td>0.8</td><td>50</td></ld<>	0.8	50		
	Ammoniac	(mg/L)	1	1	ND	<ld< td=""><td>-</td><td></td></ld<>	-			
	Aluminium	(mg/L)	17	17	ND	<ld< td=""><td>-</td><td></td></ld<>	-			
es les	Cuivre	(mg/L)	17	17	ND	<ld< td=""><td>-</td><td></td></ld<>	-			
Paramètres indésirables	Fer	(mg/L)	17	17	ND	<ld< td=""><td>-</td><td></td></ld<>	-			
ıran dés	Zinc	(mg/L)	17	17	ND	<ld< td=""><td>-</td><td></td></ld<>	-			
E .	Manganèse	(mg/L)	17	17	ND	<ld< td=""><td>- </td><td>1</td></ld<>	-	1		
	Cobalt	(mg/L)	17	17	ND	<ld< td=""><td>-</td><td></td></ld<>	-			
	Hydrocarbures totaux	(mg/Kg)	1	1	ND	<ld< td=""><td>-</td><td></td></ld<>	-			
es	Nickel	(mg/L)	16	0	7.82	7.43	8.35			
rigu	Plomb	(mg/L)	17	14	0.002	<ld< td=""><td>0.02</td><td>0.05</td></ld<>	0.02	0.05		
ţ	Cadmium		17	17	ND	<ld< td=""><td>-</td><td>0.005</td></ld<>	-	0.005		
Substances toxiques	Arsenic		17	17	ND	<ld< td=""><td>-</td><td>0.1</td></ld<>	-	0.1		
tan	Mercure	(μg/L)						0.001		
sqn	Chrome	(mg/L)	17	0	0.012	0.01	0.02	0.05		
S	Chrome VI		17	4	0.012	<ld< td=""><td>0.03</td><td></td></ld<>	0.03			
	ND: Non Déterminé, LD = Limite de detection du laboratoire									

A titre indicatif, les résultats d'analyse de 2020 pour l'ensemble des paramètres indiquent des valeurs mesurées très inférieures aux limites mentionnées dans la norme de qualité des eaux destinées à la consommation humaine de l'arrêté métropolitain du 11/01/2007

5.6.3.4 Rivière Wajana (WJ-01)

Les résultats du suivi physico-chimique attestent d'une bonne qualité physico-chimique des eaux de la rivière Wajana en 2020.

5.8 Suivi biologique des eaux de surface

5.8.1 Indices biotiques en périphérie de l'exploitation minière

> cf. Article D5.2.1 des prescriptions techniques de l'AEM

Ce paragraphe sera complété ultérieurement. Les données sont en cours de traitement.

5.8.2 Suivi de la faune aquatique des lacs et dolines

cf. Article D5.2.3 des prescriptions techniques de l'AEM

Ce paragraphe sera complété ultérieurement. Les données sont en cours de traitement.

5.9 Suivi des effluents

cf. Article D5.3 des prescriptions techniques de l'AEM

Une analyse annuelle des effluents en sortie des séparateurs hydrocarbures du site industriel et minier doit être réalisée. Ces analyses sont présentées au Tableau 46. La conformité est évaluée relativement aux valeurs limites de rejets prescrites dans l'arrêté n° 1467-2008/PS du 9 octobre 2008 autorisant la société GORO NICKEL SAS à l'exploitation d'une usine de traitement de minerai de nickel et de cobalt sise "Baie Nord" - commune du Mont-Dore, et d'une usine de préparation du minerai et d'un centre de maintenance de la mine sis "Kwé Nord" - commune de Yaté.

Tableau 46 : Résultats d'analyse des séparateurs d'hydrocarbures

Date de prélèvement	Numéro	Zone		Hd	Ή	рсо	Conformité du rejet
22/01/2020	6	Dalle des Terres Souillées	34	6.8	invalide	208	NON-CONFORME
28/01/2020	13	SAS dalle de lavage VL	28	7.2	<10	29	CONFORME
14/01/2020	11	P 05	<5	7.4	< 0.5	42	CONFORME
27/02/2020	11	P 05	7.8	7.7	<0.5	40	CONFORME
02/03/2020	11	P 05	<5	6.8	<10	<10	CONFORME
16/03/2020	11	P 05	<5	7.4	<10	12	CONFORME
08/04/2020	11	P 05	<5	7.6	<10	20	CONFORME
21/04/2020	11	P 05	<5	7.2	<10	16	CONFORME
11/05/2020	11	P 05	<5	8.2	<10	<10	CONFORME
24/06/2020	11	P 05	7.5	7.9	<10	29	CONFORME
30/07/2020	11	P 05	<5	7.2	na	39	CONFORME
02/08/2020	11	P 05	5.3	7.5	<0.5	32	CONFORME
21/08/2020	11	P 05	<5	7.6	<10	13	CONFORME
25/09/2020	11	P 05	<5	8.1	<0.5	36	CONFORME
21/10/2020	11	P 05	<5	7.2	<10	21	CONFORME
09/11/2020	11	P 05	23	8.1	<10	24	CONFORME
09/12/2020	11	P 05	<5	7	<10	12	CONFORME
14/12/2020	11	P 05	<5	7.2	<10	18	CONFORME
29/12/2020	11	P 05	18	7.9	<10	18	CONFORME

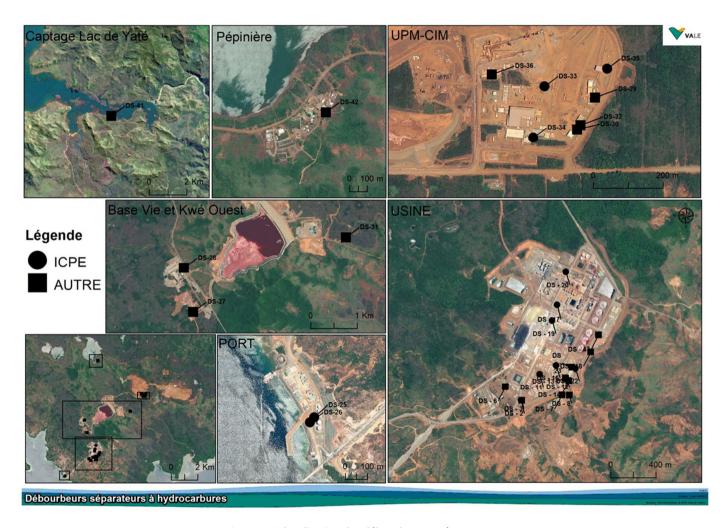


Figure 106: localisation des débourbeurs – séparateurs

Les séparateurs à hydrocarbures sont des systèmes dont le fonctionnement ne dépend pas uniquement de la pluviosité mais également des activités ou installations raccordées à ce type de traitement. Selon l'arrêté n°1467-2008/PS, les campagnes de suivi des rejets n'ont pas de fréquence établie, la périodicité de l'autosurveillance indiquée est « non-permanente ». Les rejets sont analysés lors des inspections réalisées tous les deux mois, toutefois il n'a pas toujours été possible de le faire à cette fréquence en raison de l'absence de rejet au moment des inspections.

Les résultats du suivi des rejets des séparateurs à hydrocarbures présents sur le site industriel et minier révèlent des non-conformités (cf. Tableau 47).

Tableau 47 : Conformité réglementaire du suivi des rejets des séparateurs à hydrocarbures (2020)

	MES	ьU	HT	DCO	Total des	Conformités
	mg/l	рН	mg/l	mg/l	analyses	des rejets
Nombre de conformités	19	19	18	18	74	18
Nombre de non-conformités	0	0	0	1	1	1
% de conformités	100	100	100	95	99	95
% de non-conformités	0	0	0	5	1	5

En 2020, 19 suivis ont été réalisés au niveau des rejets des séparateurs à hydrocarbures (DS-6, DS-13 et DS-11); 90% de ces suivis sont conformes (cf. Tableau 47). Concernant les analyses, les paramètres MES, pH, hydrocarbures et DCO sont analysés, 99% des analyses réalisées sont conformes. La DCO, avec 95% de conformités, est le paramètre qui présente le plus de résultats non-conformes (1 analyse).

En complément des suivis par échantillonnage, des inspections visuelles sont effectuées dans l'objectif de déterminer si le séparateur à hydrocarbures est correctement entretenu et si une vidange complète du système est à prévoir. Les inspections sont adaptées en fonction du type de séparateur (Séparateur à hydrocarbure en acier ou débourbeur séparateur en béton ou plastique). Elles portent sur l'aspect du rejet et l'état de l'équipement ; son étanchéité, la présence d'hydrocarbures et/ou de boues, les éléments à changer. La Figure 107 présente un bilan de conformité des points inspectés en 2018, 2019 et 2020.

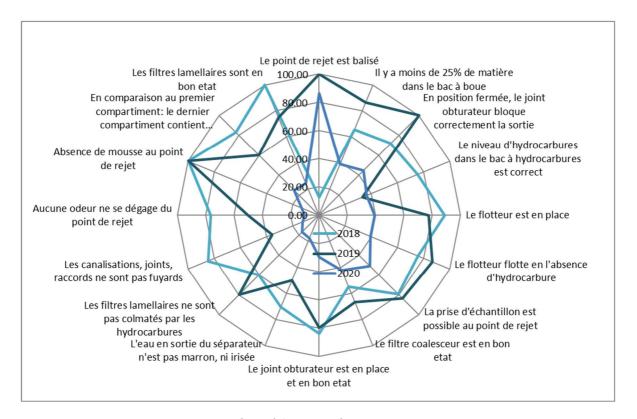


Figure 107 : Conformité des points d'inspection en 2018 et 2020

En 2020, 60 inspections de séparateurs à hydrocarbures ont été menées, 37% des points inspectés sont conformes. Cela représente deux inspections pour l'ensemble des séparateurs à hydrocarbures en fonctionnement sur l'ensemble des sites de VNC.

En 2020, les non-conformités relevées portent majoritairement sur une eau irisée ou turbide en sortie de séparateur, un colmatage des filtres lamellaires, des canalisations, joints ou raccords fuyards, une odeur et une présence de mousse au point de rejet. Lorsqu'une non-conformité est relevée, une mise à blanc du séparateur à hydrocarbure est réalisée. Cela consiste en une vidange complète du dispositif par un camion spécialisé qui est ensuite rempli d'eau claire pour un fonctionnement optimal.

En plus du suivi des rejets et des inspections, un planning bimensuel d'écrémage est mis en place pour tous les séparateurs à hydrocarbures de VNC. Cette prestation est contractualisée permettant ainsi de s'assurer de sa réalisation.

5.10 Compensation et remédiation du passif – déplacement du captage de la Wajana et réfection de sa piste d'accès

> cf. Articles E2 et F1 des prescriptions techniques de l'AEM

VNC a proposé au service Mines et Carrières de la DIMENC un plan d'action pour :

- la réfection de la piste d'accès du futur captage de la Wajana dans le but de diminuer les apports terrigènes et améliorer la qualité de l'eau de la rivière Wajana (remédiation du passif) : phase 1
- le déplacement du captage de la Wajana alimentant la tribu de Goro (compensation) : phase 2,
- la construction d'un seuil en aval du futur point de captage pour suivre les impacts de l'exploitation minière sur la Wajana: phase 3.

Ce plan d'action a fait l'objet des courriers référencés G-DG-EN-C-20170607-128 (du 6 juillet 2017) et G-DG-EN-C-20170928-205 (du 28 septembre 2017). Il prévoit une reconnaissance de terrain identifiant les figures d'érosion et dégradations le long de la piste d'accès et permettant de dresser des préconisations relatives à la remise en état des ouvrages de GDE existants et la construction de nouveaux ouvrages (ex : cassis, enrochements, collecteurs / ralentisseurs). Puis un avant-projet détaillé sera établi pour chacune des trois phases décrites ci-dessus. Il est prévu de créer une conduite d'adduction entre la prise d'eau projetée et le raccordement actuel du réseau AEP de la commune, qui serait connectée sur la conduite forcée de la centrale hydroélectrique Enercal. Une étude hydrologique sera également conduite dans le but de déterminer les gammes de débits du cours d'eau puis une étude hydraulique permettra de définir la forme de seuil et sa section optimale.

La reconnaissance de terrain est prévue de débuter en octobre 2020, l'avant-projet détaillé en novembre 2020 et la réalisation des travaux est prévue de septembre à novembre 2020.

6 INCIDENCES SUR LES EAUX SOUTERRAINES

6.1 Plan d'amélioration des connaissances du fonctionnement hydrogéologique de la Plaine des Lacs 2020-2025

> cf. Article D4 des prescriptions techniques de l'AEM

L'étude d'impact hydrogéologique réalisée dans le cadre de la DAEM a conclu que :

- Le développement de l'exploitation minière entre 2012 et 2031 ne devrait avoir aucune incidence sur le fonctionnement hydrogéologique et hydrologique de la partie est de la plaine des lacs notamment la partie inscrite à la convention RAMSAR.
- Des études complémentaires sont nécessaires pour évaluer les impacts hydrogéologiques potentiels à partir de 2031.

Ce dernier point constitue le cadre du plan d'amélioration de la connaissance hydrogéologique et hydrologique dans le secteur de la plaine des lacs. Ce programme vise à mettre en place un ensemble d'investigations et d'études nécessaires pour permettre d'étendre les deux modèles mathématiques hydrogéologiques existants dans le secteur de la plaine des lacs.

Le plan a bien débuté en 2020 avec la réalisation d'un essai par traçage avec injection de chlorure de sodium dans le Trou du Tahitien. Cet essai a été effectué en 2 phases d'injection, la première le 4 août (180 Kg de chlorure de sodium) et la seconde le 9 septembre (400 Kg de chlorure de sodium). Le premier essai a montré l'existence d'une connexion rapide entre le Trou du Tahitien et le creek KN2 (affluent de la Kwé Nord), selon un axe orienté nord-sud. Mais cette connexion n'a pas été retrouvée lors du second essai, sans raison clairement définie.

Le planning prévisionnel du plan d'amélioration de la connaissance est présenté dans le Tableau 48.

Tableau 48 : Planning du plan d'amélioration des connaissances hydrogéologiques

Thème	Intitulé	2020	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Préparation de la campagne et transmission de la DTM pour la construction												
1 - Extension du réseau de suivi piézométrique	Construction de 16 plateformes piézomètriques (soit 32 piézomètres : 16 PEC et 16 PEL) + rafraichissement et/ou création de piste d'accés												
2- Extension du réseau de suivi des niveaux de lacs	Construction de 2 stations limnimétriques (Lac en Long et Lac en Y) et ré-équipement Trou du Tahitien	_											
3- Achat matériel de mesure	Sondes piézomètriques et limnimétriques etc.												
4- Acquisition de données environnementales	Fonctionnement réseau acquisition de données environnementales (Piézométrie, débit de rivière, niveau de lac, hydrochimie)												
E Folkoviton of con-	Petit entretien stations de mesure (dont ré- installation de sondes)												
5-Entretien réseau	Entretien pistes d'accés												
	Mise à jour base de données globale Hydras3												
6 - Etude hydrogeologique	Préparation de la campagne et réalisation d'un essai par tracage Le Trou												
détaillée secteur Plaine des lacs	Chocs hydrauliques												
	Ingénierie hydrogeologie et hydrologie												
7 - modéles mathématiques	Mise à jour des 2 modèles mathématiques hydrogéologique de l'AEM												

6.2 Suivi hydrogéologique : Données disponibles et résultats obtenus

6.2.1 Présentation du réseau d'acquisition de données

Le suivi des eaux souterraines est réalisé sur 14 piézomètres dont 6 sont implantés dans l'aquitard latéritique et 8 dans l'aquifère principal.

Ce suivi est destiné à évaluer l'étendue de la zone d'influence des aménagements miniers sur les écoulements d'eaux souterraines et ainsi s'assurer que l'impact réel reste dans la limite de l'impact modélisé dans le cadre de l'étude hydrogéologique du dossier de demande d'autorisation d'exploitation.

En complément, deux stations limnimétriques permettent de mesurer les niveaux d'eau dans le lac Robert et dans le lac Xere Wapo pour suivre leur assèchement, tel que prévu dans l'étude d'impact hydrogéologique.

Tableau 49 : Stations de suivi réglementaire des eaux souterraines

-		Coordonn	ées RGNC	Mesure du niveau	Suivi	
Station	Lieux	X	Y	de nappe	limnimétrique	
11EX0449	PF1 Nord Est Gisement	499460	214826	Continue		
11EX0473	PF1 Nord Est Gisement	499458	214828	Continue		
11EX0463	PF2 Nord Est Gisement	500487	214438	Continue		
11EX0471	PF2 Nord Est Gisement	500489	214437	Continue		
10EX0238	PF3 Nord Est Gisement	501460	213632	Continue		
10EX0239	PF3 Nord Est Gisement	501460	213628	Continue		
09GH0001	PF4 Wajana	502144	213177	Continue		
09GH0003	PF5 Wajana	502624	212567	Continue		
10EX0332	PF6 Lac Xere Wapo	501590	212917	Continue		
10EX0371	PF6 Lac Xere Wapo	501591	212915	Continue		
11EX0422	PF7 Lac Robert	501992	212014	Continue		
11EX0438	PF7 Lac Robert	501995	212017	Continue		
09EX0035	PF8 Aval KO5	497905	211259	Continue		
09EX0036	PF8 Aval KO5	497905	211262	Continue		
Lac Robert	Lac Robert	499182	210420		Continu	
Lac Xere Wapo	Lac Xere Wapo	499129	207012		Continu	

6.2.2 Présentation des données disponibles

Les données disponibles en 2020 sur les stations de suivi sont présentées de la Figure 108 à la Figure 115.

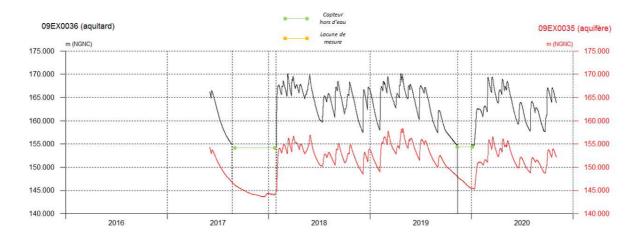


Figure 108: Données piézométriques disponibles sur 09EX0035 et 09EX0036

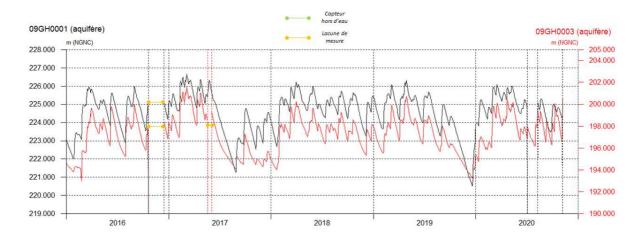


Figure 109 : Données piézométriques disponibles sur 09GH0001 et 09GH0003

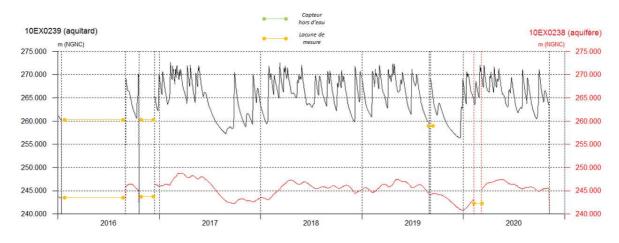


Figure 110 : Données piézométriques disponibles sur 10EX0238 et 10EX0239

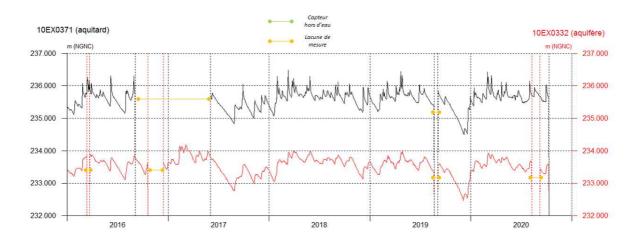


Figure 111 : Données piézométriques disponibles sur 10EX0371 et 10EX0332

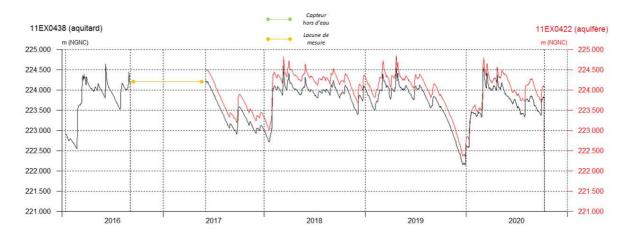


Figure 112 : Données piézométriques disponibles sur 11EX0422 et 11EX0438

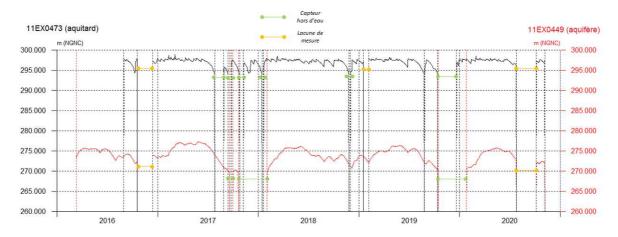


Figure 113 : Données piézométriques disponibles sur 11EX0449 et 11EX0473

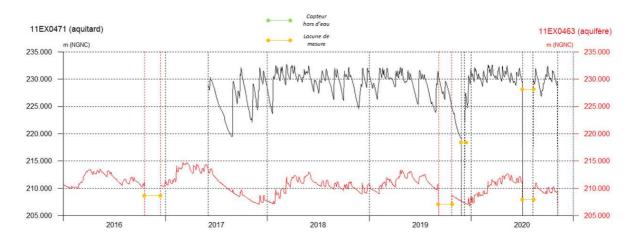


Figure 114 : Données piézométriques disponibles sur 11EX0463 et 11EX0471

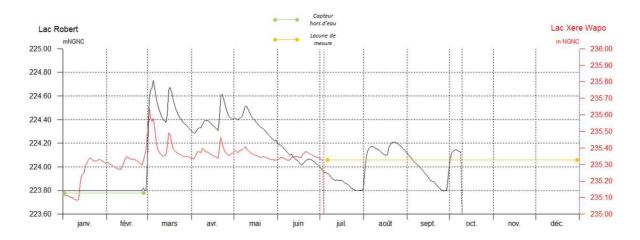


Figure 115 : Données limnimétriques disponibles sur le lac Xere Wapo et le lac Robert

6.2.3 Analyse des impacts de la fosse minière sur les niveaux piézométriques

Article D4 des prescriptions techniques de l'AEM

La méthodologie utilisée en 2018 pour quantifier l'influence hydrogéologique de la fosse minière est reconduite. Pour rappel, cela consiste à :

- Simuler des niveaux piézométriques sur le réseau de suivi réglementaire en condition de pré développement de la fosse minière (Condition « naturelle »),
- Simuler des niveaux piézométriques sur le réseau de suivi réglementaire en condition de développement réel de la fosse minière constaté en décembre de l'année considérée (Condition « fosse »),

 Comparer les niveaux piézométriques observés et les niveaux simulés en condition « naturelle » et en condition « fosse ». L'objectif de la comparaison est d'évaluer quelle condition simulée se rapproche le plus des observations.

Les simulations ont été effectuées avec le modèle MODFLOW qui avait été développé entre 2012 et 2014 dans le cadre du dossier de DAEM. La période de simulation va de janvier 2020 à décembre 2020.

Les pluies utilisées en entrée du modèle sont celles réellement observées durant cette période. Afin de simplifier l'analyse, la géométrie de la fosse atteinte en octobre 2020 a été utilisée sur l'ensemble de l'année 2020.

Les résultats obtenus sont les suivants :

- Pour les piézomètres du réseau de suivi réglementaire, il n'y a pas de différence significative entre les niveaux simulés en condition « naturelle » et ceux en condition « fosse »,
- Par rapport à fin décembre 2019, la zone d'influence théorique de la fosse minière sur les eaux souterraines évolue très peu,
- Fin décembre 2020, cette zone d'influence n'a pas encore atteint les piézomètres du suivi réglementaire, notamment les ouvrages localisés à proximité des lacs Xere Wapo et Robert (Piézomètres les plus proches de la fosse),

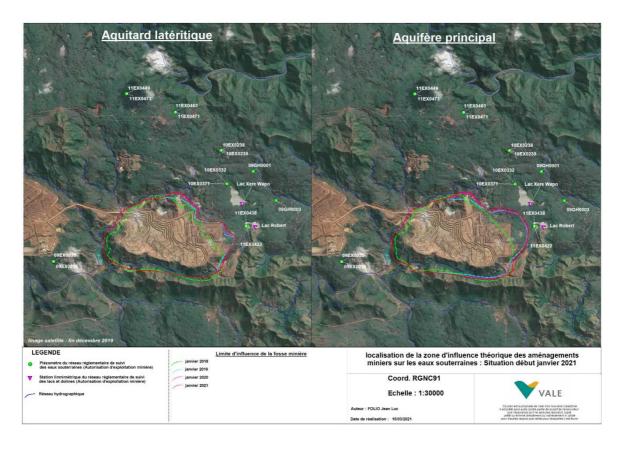


Figure 116: Localisation de la zone d'influence théorique de la fosse minière sur les eaux souterraines : Situation début janvier 2021

6.2.4 Analyse des impacts de la fosse minière sur le niveau d'eau des lacs

Sur la base de l'analyse menée sur les niveaux piézométriques, il est conclu que les aménagements miniers n'ont pas encore d'effet indirect sur le niveau d'eau mesurés dans les lacs Robert et Xere Wapo.

6.3 Actualisation du modèle hydrogéologique

Article D4 des prescriptions techniques de l'AEM

Une comparaison entre les niveaux piézométriques simulés et observés sur les piézomètres réglementaires est proposée de la Figure 117 à la Figure 128.

A l'image de ce qui a été observé en 2018 et 2019, cette analyse montre que :

- Pour les piézomètres proches des lacs Xere Wapo et Robert, la correspondance entre les niveaux simulés et observés est bonne (11EX0438, 11EX0422, 10EX0332, 10EX0371, 09GH0003),
- Pour les autres piézomètres situés plus au Nord du plateau de Goro, les amplitudes piézométriques simulées apparaissent soit trop faibles (10EX0238 et 10EX0239,) soit trop fortes (11EX0463, 11EX0471) par rapport aux observations. Néanmoins, la tendance d'évolution est reproduite correctement,
- Le comportement des nappes d'eau souterraine, notamment celui de l'aquifère profond, est toujours mal reproduit en limite Nord du plateau de Goro, à l'interface avec la plaine des lacs (11EX0449, 11EX0473),

Par ailleurs, la présence d'un phénomène de dérive est confirmée sur le piézomètre 09GH0001 avec une augmentation progressive de l'écart entre niveaux simulés et observés. Du point de vue de l'évaluation des impacts, cette dérive est conservatrice puisque les niveaux simulés baissent plus rapidement que les observations. Une reprise du calage de ce point sera néanmoins intégrée au travail de révision complète du modèle hydrogéologique qui sera réalisé lorsque les résultats du plan d'amélioration de la connaissance hydrogéologique de la plaine des lacs seront disponibles.

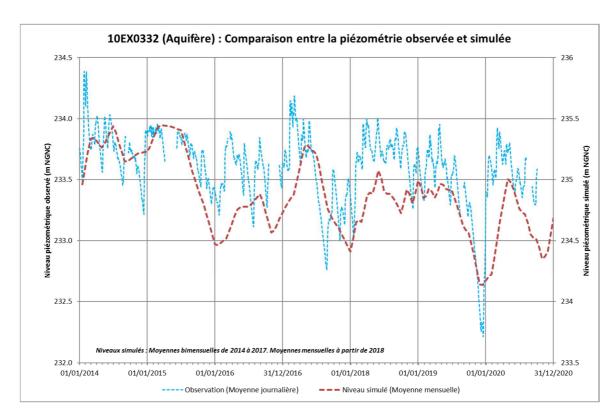


Figure 117 : 10EX0332 : Comparaison entre la piézométrie observée et simulée

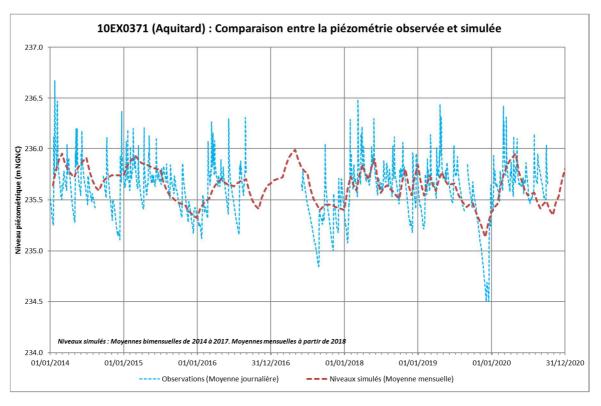


Figure 118: 10EX0371 : Comparaison entre la piézométrie observée et simulée

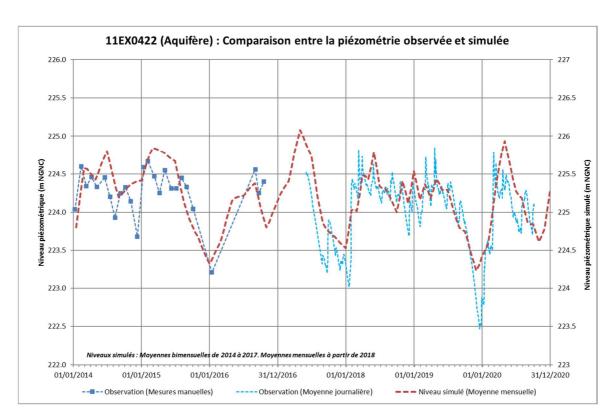


Figure 119: 11EX0422 : Comparaison entre la piézométrie observée et simulée

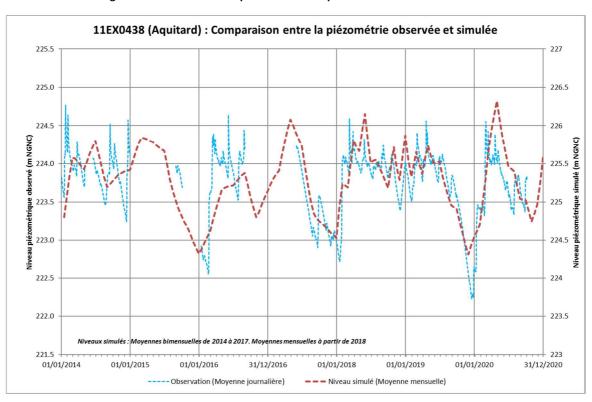


Figure 120 : 11EX0438 : Comparaison entre la piézométrie observée et simulée

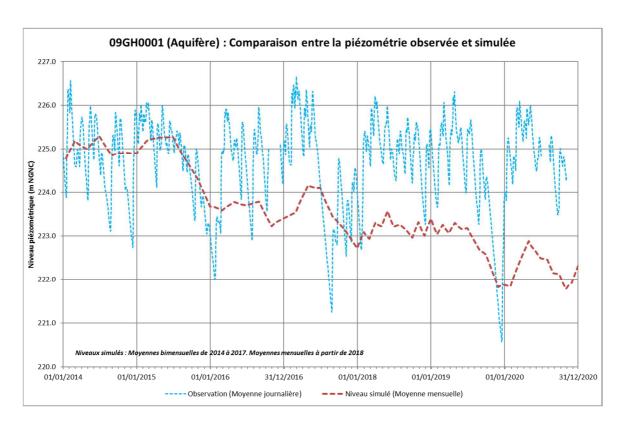


Figure 121 : 09GH0001 : Comparaison entre la piézométrie observée et simulée

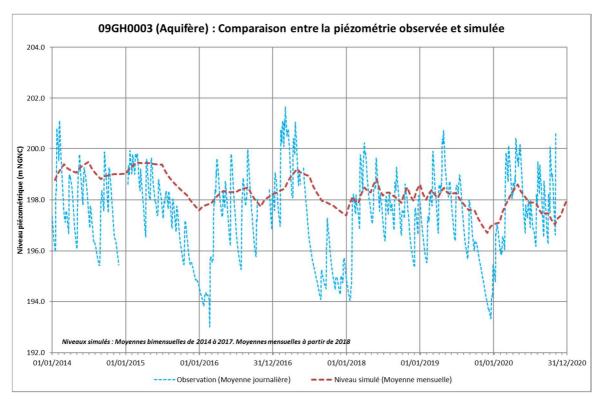


Figure 122 : 09GH0003 : Comparaison entre la piézométrie observée et simulée

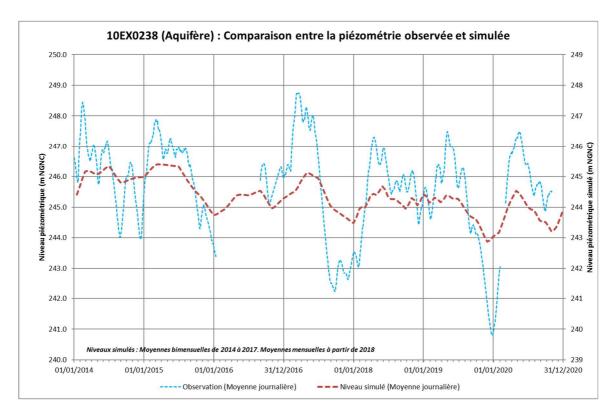


Figure 123 : 10EX0238 : Comparaison entre la piézométrie observée et simulée

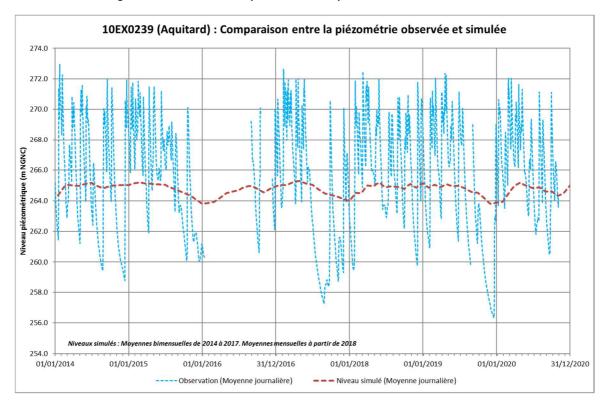


Figure 124: 10EX0239 : Comparaison entre la piézométrie observée et simulée

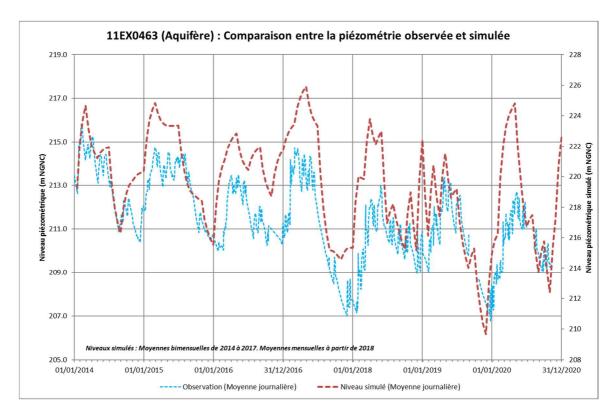


Figure 125: 11EX0463 : Comparaison entre la piézométrie observée et simulée

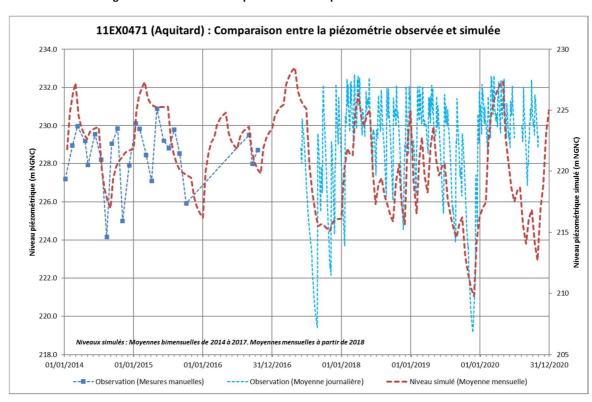


Figure 126 : 11EX0471 : Comparaison entre la piézométrie observée et simulée

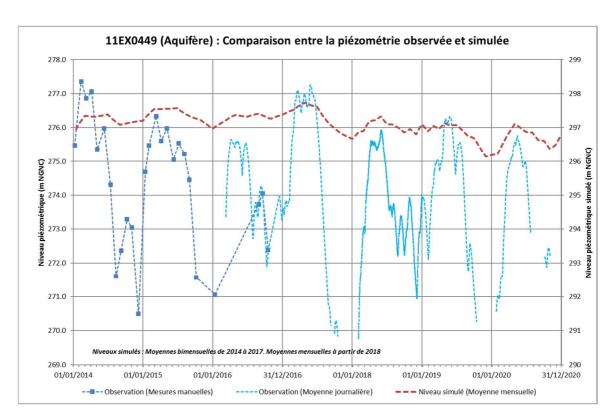


Figure 127 : 11EX0449 : Comparaison entre la piézométrie observée et simulée

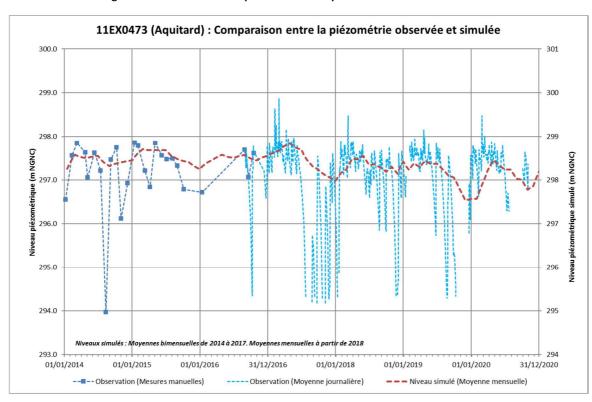


Figure 128: 11EX0473 : Comparaison entre la piézométrie observée et simulée

7 SUIVI DU MILIEU MARIN

> cf. Article D6 des prescriptions techniques de l'AEM

La surveillance du milieu marin dans la zone d'influence globale du complexe VNC et des zones témoins est effectuée sur la base de quatre groupes d'indicateurs physico-chimiques et biologiques, donnant des indications ponctuelles ou intégrées.

- Indicateurs physico-chimiques de la qualité de l'eau de mer de la colonne d'eau ;
- Indicateurs physico-chimiques des matières en suspension (MES) et des sédiments :
 - Flux de MES en circulation;
 - Géochimie des sédiments ;
 - Taux de sédimentation ;
- Bioindicateurs de l'état des peuplements récifaux et des populations associées ;
- Caractérisation de l'herbier de phanérogames en baie Kwé (suivi volontaire de VNC).

Le plan de suivi de l'état du milieu marin a été élaboré en collaboration avec les autorités de tutelle et leurs conseillers scientifiques (DIMENC et DENV) à partir des études océanographiques existantes, des données de suivi de zones témoins, des états initiaux, des études d'impacts et de l'analyse des pressions exercées sur le milieu marin par l'ensemble des activités de VNC.

Ce chapitre est consacré à l'incidence des <u>activités minières</u> sur la baie de Kwé (Arrêté n°2698-2016 du 30 septembre 2016). Il ne concerne donc qu'une partie du plan de surveillance global des activités de VNC dont les bilans sont réalisés puis transmis périodiquement au service Industrie de la DIMENC.

7.1 Plan de suivi de la baie Kwé

7.1.1 Stations suivies

Les bassins versants sous l'influence des activités minières (et par lesquels s'exerce une pression sur le milieu marin) débouchent dans la baie Kwé. Celle-ci n'est pas sous l'influence de l'usine ou du port.

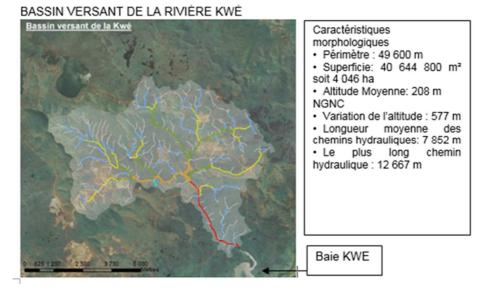


Figure 129 : Caractéristiques morphologiques du bassin versant de la rivière Kwé qui influence le milieu marin au niveau de la baie Kwé

La baie de Port Boisé située à l'ouest de la baie Kwé n'est pas sous influence minière mais elle présente des caractéristiques proches dans une hydro-région marine similaire à celle de la baie Kwé. Celle-ci est suivie comme zone témoin et nous présentons donc les stations de suivi dans cette baie, en plus des suivis en baie Kwé (Méthodologie de suivi BACI : Before / After & Control / Impact).

7.1.1.1 Localisation des points de prélèvement règlementaire de l'eau de mer et des sédiments

Les coordonnées géographiques des points de prélèvement sont indiquées dans le tableau suivant, ainsi que la profondeur du lagon. Les prélèvements d'eau sont effectués à trois profondeurs : en surface, à mi profondeur et au fond.

Trois échantillons d'eau sont prélevés pour chaque point, à chaque mission. Les cartes de la Figure 130 présentent les positionnements de ces points.

Tableau 50 : Localisation géographique des stations de prélèvements d'eau et de sédiments en baie Kwé et dans la baie témoin de Port boisé (Référentiel WGS-84)

Localisation	Station	Longitude E	Latitude S	Profondeur (en m)	Nombre de prélèvements
Baie Kwé	St06	166° 59,112	22° 20,830	20	3
Baie de Port Boisé	St03	166° 58,010	22° 21,190	29	3

Figure 131 : Localisation géographique des stations de prélèvements d'eau et de sédiments en baie témoin de Port boisé (St 03) et en baie Kwé (St 06)

7.1.1.2 Stations de surveillance de la santé des écosystèmes : suivi des peuplements récifaux, des invertébrés et des poissons

Cette surveillance est effectuée sur la station « sentinelle fixe » ST08–PUKA. Le Tableau 51 montrent son point d'implantation.

La station STO8 est implantée dans la zone d'influence des eaux sortantes de la baie Kwé.

Les modélisations ont montré que le panache issu de la rivière Kwé, notamment lors des crues, s'oriente préférentiellement vers la zone d'estuaire nord—ouest de la baie Kwé, puis vers la face ouest de la baie et la pointe Puka. De plus les eaux de la baie de Port Boisé (et notamment celles qui subissent l'influence des effluents en provenance de l'hôtel à marée sortante), peuvent atteindre cette station qui supporte l'ensemble des pressions possibles. Cette station supporte aussi les effets mécaniques de la houle lors des cyclones tropicaux et les effets chimiques des influences terrigènes pluviales.

C'est une station « sentinelle » judicieusement choisie et qui subit de nombreuses pressions, dont celle des panaches issus de la baie Kwé.

Tableau 51 : Localisation de la station ST08 de suivi des écosystèmes coralliens (RGNC 91)

Localisation	Station	Longitude	Latitude	Profondeur
Récif Pointe Puka	ST08	166°58.566	22°21.243	12m

Figure 132 : Localisation de la station ST 08 de suivi des écosystèmes coralliens en zone affectée par les panaches issus de la Baie Kwé

Une station fixe sous-marine est habituellement constituée de trois *transects* fixes délimités sur le fond par des piquets implantés et entretenus à chaque visite (Figure 133). Elle est comparable à « un jardin » sous-marin fixe bien délimité qui est inspecté tous les six mois. La fidélisation des biologistes qui plongent plusieurs fois par an sur les stations permet de limiter les biais interprétatifs. ST08 est inspectée sur 2 transects depuis 2007.

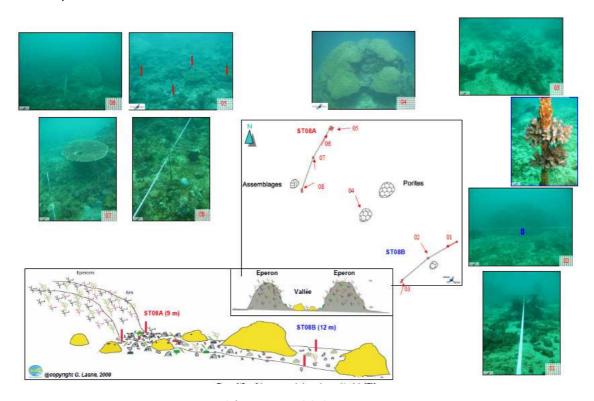


Figure 133 : Schéma structural de la station ST 08- PUKA

7.1.1.3 Surveillance de l'herbier de la baie Kwé

Le Tableau 52 indique les zones de surveillance de l'herbier de la baie Kwé.

Tableau 52: Position des quadras de suivi de l'herbier, référentiel RGNC 91-93 LAMBERT

Station	Latitude S	Longitude E	Distance à la cote	Profondeur
Station 01 = HE 01 (Est)	501 835	206 345	62 m	0,5 m
Station 02 = HO 02 (Ouest)	500 885	205 902	220m	0,5 m
Station 03 = HE03 (Est)	501 800	206 274	145m	0,5 m
Station 04 = HO 04 (Ouest)	501 150	205 871	480	0,5 m

La Figure 134 présente la baie Kwé au niveau de l'implantation d'un herbier de part et d'autre de son chenal central ainsi que les quatre stations de surveillance de cet herbier.

Figure 134 : Quadras de suivi de l'herbier en baie Kwé

7.1.2 Indicateurs suivis et fréquence

7.1.2.1 Indicateurs biologiques des écosystèmes coralliens et des populations associées Les indicateurs biologiques suivis sont les suivants :

- Le substrat : 28 items du suivi continu du substrat (méthode LIT) ;
- Les poissons : nombre, densité et biomasse sur liste restreinte imposée ;
- Le macro-benthos : sur des couloirs de 100m².

Ces indicateurs sont suivis à fréquence semestrielle par le bureau d'études AQUA TERRA.

7.1.2.2 Indicateurs biologiques pour le suivi de l'herbier de la baie Kwé

Selon la méthodologie du guide de suivi du lagon calédonien (CNRT / ZoNeCo 2011), les indicateurs suivis sont les suivants :

- La composition spécifique (la biodiversité);
- Le recouvrement du substrat en %;
- La densité de chaque espèce inventoriée par m².

Il s'agit d'un suivi triennal. Le suivi des herbiers a été réalisé cette année par AQUA TERRA.

7.1.2.3 Indicateurs physico-chimiques

Les suivis se font sur la colonne d'eau, les sédiments et les flux particulaires.

Les métaux indicateurs terrigènes sont : Co, Mn, Ni, Cr et Cr (VI) ; le Fe n'est pas corrélé.

La température, la salinité, la fluorescence (liée à la chlorophylle) et la turbidité sont observés en « continu » de la surface jusqu' au fond par immersion d'une sonde multiparamétrique. Ces données ne seront pas présentées dans ce rapport.

Les suivis sont semestriels pour la qualité de l'eau et les flux de MES ainsi que le suivi des écosystèmes. Les suivis ont lieu tous les 3 ans pour la qualité des sédiments marins de surface et le taux de sédimentation. Une campagne de caractérisation du taux de sédimentation a été effectué cette année. AEL est en charge de la réalisation de ces campagnes de surveillance.

7.2 Résultats des suivis de l'année 2020

Les suivis qualitatifs et quantitatifs qui concernent les trois stations réglementaires à suivre dans le cadre de l'arrêté d'autorisation d'exploitation minière sont les suivants :

- Suivi de la qualité physico-chimique de l'eau de mer et des sédiments (flux de particules) ;
- Suivi de l'état des peuplements récifaux et des organismes associés.

7.2.1 Valeurs réglementaires et états de référence

Pour la surveillance du milieu marin, il n'y a pas de dépassement de seuils réglementaires proprement dits, il ne s'agit pas d'émissions sujettes à des seuils⁴ mais il s'agit de la surveillance de la santé des écosystèmes et de la qualité du milieu récepteur (eau et sédiments) par rapport à leur état de référence et par comparaison avec des zones témoins (Méthode BACI).

Vale Nouvelle-Calédonie Rapport 2020

⁴ Le guide pour le suivi de la qualité du milieu marin en Nouvelle-Calédonie, élaboré en 2011 par ZONECO/CNRT présente des grilles de lecture ainsi que des références bibliographiques certains types d'indicateurs, il peut servir de <u>quide, mais en aucun cas de références « seuils »</u>, avec toutes les recommandations interprétatives qu'il préconise, et à conditions de conserver exactement la même méthodologie de suivi que celle utilisée pour les grilles proposées par le guide.

Les états initiaux (de référence) évalués avant le développement du projet Vale Nouvelle-Calédonie servent de référence. Les études des états initiaux du milieu marin ont débuté en 1994 et se sont renforcées dès 2000. Les états de référence doivent bien intégrer la variabilité saisonnière qui peut être importante sur certains paramètres. Les dépressions tropicales fortes et cyclones ont une influence majeure sur le lagon et tous ces paramètres. Une station météorologique a été installée sur le Récif loro afin de corréler les données météorologiques avec les résultats des suivis.

Les bases de données (issues des missions de suivis antérieures) permettent une analyse des tendances évolutives.

Pour cette raison, la Baie de Port-Boisé (St03) est suivie en parallèle de la baie Kwé (St06) et les conclusions quant à l'évolution de la baie Kwé ne peuvent pas se résumer à une comparaison Before/After, elles doivent aussi tenir compte de l'évolution temporelle de la Baie de Port-Boisé, son homologue.

7.2.2 Résultats de la qualité physico-chimique de l'eau de mer en baies Kwé et Port-Boisé

Les données météorologiques, notamment les précipitations, ont une influence directe sur la physicochimie des eaux et sur la concentration en métaux dissous.

Les conditions météorologiques durant la 1^{ère} campagne semestrielle, qui s'est déroulée du 20 au 25/02/2020, sont marquées par des pluies très modérées cumulant moins de 5mm en trois jours – cf. Figure 135. La seconde campagne, qui s'est déroulée du 06 au 11 août, est également marquée par de très faibles précipitations, et donc potentiellement moins d'apports terrigènes vers la mer – cf. Figure 136.

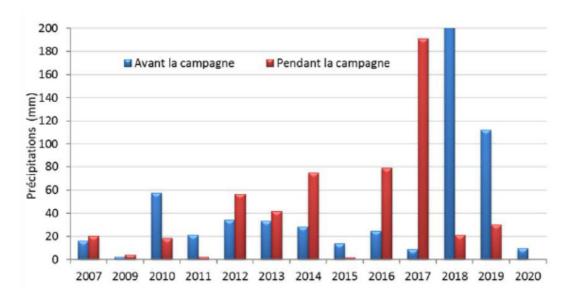


Figure 135 : Cumuls des précipitations, 5 jours avant (bleu) et pendant (rouge) les campagnes de prélèvement de 2007 à 2020 en saison chaude ; données météorologiques enregistrées à la station de l'usine

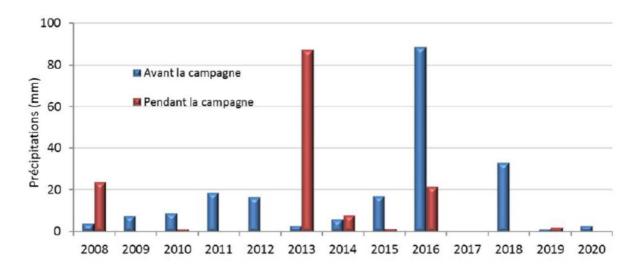


Figure 136 : Cumuls des précipitations, 5 jours avant (bleu) et pendant (rouge) les campagnes de prélèvement de 2008 à 2020 en saison fraîche ; données météorologiques enregistrées à la station de l'usine

7.2.2.1 Structure des masses d'eau

Les mesures de température, salinité, fluorescence et turbidité sont nécessaires pour déterminer la stratification verticale des masses d'eau et ont pour objectif de détecter toute modification importante des principales caractéristiques en lien ou non avec l'activité minière.

Température

En saison chaude, les profils de température sont très homogènes sur la verticale aux stations ST03 et ST06. En revanche, en saison fraîche, par rapport aux autres stations étudiées, seuls les profils de température de ces stations augmentent légèrement avec la profondeur.

Aucune thermocline n'est toutefois observable.

Salinité

Lors de la 1^{ère} campagne, l'influence des apports en eau douce est observable dans la couche de surface de la station en baie Kwé, avec la présence de la halocline la plus marquée de toutes les stations étudiées dans la zone d'influence potentielle de VNC.

La seconde campagne met en évidence une halocline clairement marquée sur ST03 à 5m de profondeur environ, traduisant une dessalure de surface sans doute liée aux quelques précipitations précédant la campagne. Cette dessalure de surface n'est pas aussi marquée pour la baie Kwé.

o <u>Fluorescence</u>

Sur toutes les stations suivies dans la zone d'influence de VNC lors de la campagne 1, les plus fortes valeurs sont obtenues sur ST03 avec un maximum en profondeur, entre -25 et -30m.

La 2ème campagne de l'année montre que la fluorescence augmente radicalement avec la profondeur sur la station de Port-Boisé (+0,3 à +0,8mg/m³). Cette augmentation indique une biomasse phytoplanctonique particulièrement importante entre 10 et 20m de profondeur.

o Turbidité

On constate une hausse de la turbidité en profondeur sur STO3 pendant la campagne 1.

Lors de la campagne 2, les stations ST06 et ST03 montrent une turbidité augmentant avec la profondeur, causées par la chute des particules terrigènes amenées par la rivière dans la colonne d'eau.

7.2.2.2 Concentration en éléments majeurs, valeurs de pH, et MES

Au cours des deux campagnes de 2020, les concentrations en éléments majeurs demeurent très homogènes spatialement et restent dans les mêmes ordres de grandeur que lors des précédentes campagnes.

Les concentrations les plus élevées en MES sont obtenues en baie de Port-Boisé durant la campagne de février 2020, dans les prélèvements effectués à mi-profondeur et au fond.

Aucune autre tendance particulière n'est à signaler.

Tableau 53 : Concentration en éléments majeurs, valeurs du pH et concentrations de MES lors de la campagne semestrielle de février 2020 en surface (S), mi-profondeur (M) et fond (F) – Stations : ST06 et ST03

Station		Eléments majeurs, pH et MES (mg/L)								
	Niveau	Ca	К	Mg	Na	Cl	SO4	MES	рН	
	S	453	517	1465	11435	20833	2300	0.210	8.2	
St03	М	449	511	1450	11374	18750	2250	0.756	8.23	
	F	446	503	1433	11292	18750	2350	0.789	8.2	
	S	443	501	1432	11269	20139	2300	0.316	8.19	
St06	М	465	525	1503	11552	19792	2050	0.258	8.21	
	F	442	498	1425	11275	20139	2300	0.226	8.23	

Tableau 54 : Comparaison des concentrations de MES entre la campagne de mars 2019 et février 2020

Station	Niveau	MES (mg/L)
Station	Niveau	Mars 2019	Février 2020
	S	0.734	0.210
St03	M	0.592	0.756
	F	1.169	0.789
	S	0.581	0.316
St06	M	0.547	0.258
	F	1.294	0.226

Tableau 55 : Concentration en éléments majeurs, valeurs du pH et concentrations de MES lors de la campagne semestrielle d'août 2020 en surface (S), mi-profondeur (M) et fond (F) – Stations : ST06 et ST03

Station N	NIS	Eléments majeurs, pH et MES (mg/L)								
	Niveau	Ca	К	Mg	Na	Cl	SO4	MES	рН	
	S	439.83	488.555	1405.52	11942.86	21180.44	2750	0.404	8.09	
St03	М	423.23	471.234	1352.69	11483.56	21527.66	2200	0.336	8.20	
	F	450.92	496.824	1403.82	12003.68	21874.88	2450	0.334	8.18	
St06	S	441.05	492.0.16	1408.13	11921.46	22569.32	2350	0.346	8.23	

Station	Niveau		Eléments majeurs, pH et MES (mg/L)								
		Ca	К	Mg	Na	Cl	SO4	MES	рН		
	М	427.92	477.38	1366.92	11561.20	20833.22	2550	0.292	8.19		
	F	430.62	483.213	1372.48	11630.98	19791.56	2500	0.864	8.14		

Tableau 56 : Comparaison des concentrations de MES entre la campagne d'août 2019 et août 2020

Station	Nivoqu	MES (mg/L)
Station	Niveau	Août 2019	Août 2020
	S	0,31	0.404
St03	M	0.324	0.336
	F	0.096	0.334
	S	0.446	0.346
St06	M	0.27	0.292
	F	0.202	0.864

7.2.2.3 Sels nutritifs

Les concentrations en sels nutritifs sur les deux stations concernées au cours de la campagne de suivi de février 2020 sont présentées au Tableau 57.

Les résultats indiquent principalement :

- une homogénéité des concentrations en nitrates et nitrites pour la station de Port-Boisé. La station ST06 montre des valeurs plus importantes en surface de la colonne d'eau.
- Par rapport aux mesures effectuées sur les autres stations dans la zone d'influence de VNC, les plus fortes valeurs moyennées en ammonium sur la colonne d'eau sont mesurées en profondeur sur ST03 et ST06.
- Des valeurs plus élevées en phosphate sur la station STO3 en profondeur.
- Une concentration élevée en silicate en surface sur ST06. Cette mesure peut être mise en relation avec l'altération des roches et les apports en silice dans le lagon en provenance de la rivière Kwé.

Tableau 57 : Concentration des sels nutritifs lors de la campagne semestrielle de février 2020 en surface (S), mi-profondeur (M) et fond (F) – Stations : ST03 et ST06

Station	Niveau	Sels nutritifs (µmol/L)						
Station		NO3 + NO2	NH4	PO4	SiO4			
	S	0.146	0.159	0.050	0.752			
St03	M	0.142	0.195	0.050	<0.600			
	F	0.151	0.378	0.105	<0.600			
	S	0.615	0.220	0.050	3.914			
St06	М	0.189	0.354	0.056	<0.600			
	F	0.227	0.786	0.050	<0.600			

Tableau 58 : Comparaison des concentrations en sels nutritifs entre la campagne de mars 2019 et mars 2020

		Sels nutritifs (µmol/L)								
Station	Niveau	NO3 + NO2		NI	NH4		PO4		04	
		mars-19	févr-20	mars-19	févr-20	mars-19	févr-20	mars-19	févr-20	
	S	0,412	0.146	0,497	0.159	<0,050	0.050	11,84	0.752	
St03	М	0,15	0.142	0,196	0.195	<0,050	0.050	1,86	<0.600	
	F	0,42	0.151	0,286	0.378	0,08	0.105	1,94	<0.600	
	S	2,966	0.615	0,718	0.220	<0,050	0.050	20,33	3.914	
St06	М	0,219	0.189	0,188	0.354	<0,050	0.056	1,99	<0.600	
	F	0,305	0.227	0,223	0.786	<0,050	0.050	1,63	<0.600	

Les concentrations en sels nutritifs sur les stations St03 et St06 au cours de la campagne de suivi d'août sont indiquées dans leTableau 59.

On peut constater que :

- la présence de nitrate et de nitrite est variable dans la colonne d'eau ;
- les concentrations des sels nutritifs restent globalement dans le même ordre de grandeur que les précédents suivis à la même saison.

Tableau 59 : Concentration des sels nutritifs lors de la campagne semestrielle d'août 2020 en surface (S), miprofondeur (M) et fond (F) – Stations : ST03 et ST06

Station	Niveau	Sc	Sels nutritifs (μmol/L)						
Station		NO3 + NO2	NH4	PO4	SiO4				
	S	0.050	0.668	<0.050	ND				
St03	M	0.239	0.126	<0.050	ND				
	F	0.087	0.248	<.0.050	ND				
	S	0.404	0.202	<0.050	ND				
St06	М	0.307	0.002	0.005	ND				
	F	0.144	0.203	0.019	ND				

Tableau 60 : Comparaison des concentrations en sels nutritifs entre la campagne d'août 2019 et août 2020

		Sels nutritifs (µmol/L)								
Station	Niveau	NO3 + NO2		N	NH4		04	SiO4		
		août-19	août-20	août-19	août-20	août-19	août-20	août-19	août-20	
	S	<0,050	0,05	0,431	0,668	<0,050	<0,050	2,27	ND	
St03	М	0,399	0,239	0,123	0,126	<0,050	<0,050	1,79	ND	
	F	0,059	0,087	0,307	0,248	<0,050	<0,050	1,37	ND	
	S	0,209	0,404	0,132	0,202	<0,050	<0,050	1,33	ND	
St06	М	<0,050	0,307	0,375	0,002	<0,050	0,005	1,13	ND	
	F	<0,050	0,144	0,042	0,203	<0,050	0,019	1,21	ND	

7.2.2.4 Métaux dissous

Les valeurs des concentrations en métaux dissous issues de la campagne de février sont présentées dans le Tableau 61.

Les concentrations en métaux dissous pour les deux stations présentent une relative variabilité intercampagne, notamment au niveau des couches de surface.

Les concentrations en As ne présentent pas de distribution particulière du fait de son ubiquité dans l'environnement marin calédonien.

Les concentrations en Cadmium se situent en dessous de la limite de quantification, quant au cobalt, les concentrations maximales sont de l'ordre de $0.09 \mu g/L$.

Parmi toutes les stations échantillonnées, la station ST06 présente les concentrations les plus élevées en fer. Aucune tendance particulière n'est à relever pour les autres paramètres.

Tableau 61 : Concentration en métaux dissous sur ST06 et ST03_Campagne de février 2020

Ct-ti	Niman	Métaux dissous (μg/L)											
Station	Niveau	As	Cd	Со	Cr VI	Cr total	Cu	Fe	Mn	Ni	Pb	Zn	
	S	1.71	<0.025	0.081	0.144	0.237	0.038	<0.059	0.242	0.365	0.121	<1.07	
ST03	М	2.03	<0.025	0.031	0.113	0.199	<0.025	<0.059	0.175	0.149	<0.100	<1.07	
	F	1.89	<0.025	0.059	0.106	0.171	<0.025	<0.059	0.100	0.181	<0.100	<1.07	
	S	1.76	<0.025	0.091	0.352	0.527	0.080	0.081	0.670	0.583	<0.100	<1.07	
ST06	М	2.33	<0.025	0.032	0.112	0.163	<0.025	0.082	0.233	0.169	0.209	<1.07	
	F	2.05	<0.025	<0.027	0.107	0.204	<0.025	0.064	0.221	0.146	<0.100	<1.07	

Tableau 62 : Comparaison des concentrations en arsenic entre la campagne de mars 2019 et février 2020

Challer	N1	As (µg/L)				
Station	Niveau	Mars 2019	Février 2020			
C+0.3	S	1,31	1,71			
St03	M	2,08	2,03			

Classic .	A11.	As (µ	ıg/L)
Station	Niveau	Mars 2019	Février 2020
	F	1,86	1,89
	S	1,64	1,76
St06	M	1,88	2,33
	F	2,09	2,05

Les valeurs des concentrations en métaux dissous issues de la campagne d'août sont présentées dans le Tableau 63. Les valeurs obtenues en As sont en adéquation avec elles obtenues lors des campagnes précédentes. Aucune tendance particulière n'est à signifier pour les autres paramètres.

Tableau 63 : Concentration en métaux dissous (campagne d'août 2020) sur ST06 et ST03

Station	Niveau		Métaux dissous (μg/L)												
Station	Niveau	As	Cd	Со	Cr VI	Cr total	Cu	Fe	Mn	Ni	Pb	Zn			
	S	1.6	<0.025	<0.027	0.263	0.649	<0.03	<0.06	0.10	0.32	<0.10	<1.07			
ST03	М	1.4	<0.025	<0.027	0.137	0.245	<0.03	<0.06	0.14	0.22	<0.10	<1.07			
	F	0.5	<0.025	<0.027	0.112	0.199	<0.03	<0.06	0.22	0.25	<0.10	<1.07			
	S	1.6	<0.025	<0.027	0.199	0.358	<0.03	<0.06	0.26	0.27	<0.10	<1.07			
ST06	М	1.93	<0.025	<0.027	0.156	0.26	<0.03	<0.06	0.54	0.37	<0.10	<1.07			
	F	1.72	<0.025	<0.027	0.125	0.283	<0.03	<0.06	0.34	0.26	<0.10	<1.07			

Tableau 64 : Comparaison des concentrations en arsenic entre la campagne d'août 2019 et août 2020

Challen	Missess	As (μg/L)					
Station	Niveau	Août 2019	Août 2020				
	S	2,21	1,6				
St03	M	2,04	1,4				
	F	2,05	0,5				
	S	1,75	1,6				
St06	M	1,89	1,93				
	F	1,86	1,72				

7.2.3 Suivi des flux de matières en suspension

Le suivi des flux de MES consiste en un suivi temporel des densités de flux verticaux afin d'estimer les apports métalliques véhiculés par les particules fines au niveau de la baie Kwé. Des mouillages de lignes équipées de pièges à sédiments séquentiels (automatisation) sont utilisés.

En 2020, il y a eu deux campagnes. 12 échantillons ont été prélevés durant 48 jours (sur un pas de temps par godet de 96 heures).

- \$1/2020 : Début de la collecte des particules : 22 janvier / Fin : 09 mars.
- S2/2020 : Début : 08 juillet / Fin : 25 août.

7.2.3.1 Paramètres météorologiques

Les conditions météorologiques régnant dans la zone pendant la période d'immersion des pièges à particules pour les 2 campagnes sont fortement susceptibles d'influer la quantité et la nature de MES collectées.

Données météorologiques lors de la campagne en saison chaude

Les valeurs des paramètres météorologiques données par la station GORO sont présentées dans le tableau suivant.

Tableau 65 : Variables journalières des paramètres météorologiques (cumul de précipitations et moyenne de vitesse et direction de vents maximales instantanées) collectées par la station météorologique « GORO » - Saison chaude

- 40		GC	ORO					GO	RO		
Prélèvement -	Date	RR	FXI	DXI	Régime	Prélèvement	Date	RR	FXI	DXI	Régime
	22/01/2020	2,4	10,6	130	SE		15/02/2020	0,2	12,9	70	ENE
22.	23/01/2020	1,6	11,4	130	SE		16/02/2020	2,0	14,3	100	E
001	24/01/2020	0,0	11,5	100	E	007	17/02/2020	0,0	12,5	80	E
	25/01/2020	6,1	16,9	140	SE		18/02/2020	1,6	14,4	80	E
	26/01/2020	2,0	15,2	90	E		19/02/2020	0,6	11,0	100	E
000	27/01/2020	0,2	10,8	110	ESE	000	20/02/2020	0,0	10,8	90	E
002	28/01/2020	0,8	11,5	90	E	800	21/02/2020	0,0	9,7	110	ESE
	29/01/2020	0,0	10,4	90	E		22/02/2020	0,0	11,3	110	ESE
	30/01/2020	0,6	10,2	130	SE		23/02/2020	3,5	11,6	140	SE
003	31/01/2020	6,5	11,8	100	E	000	24/02/2020	1,8	10,6	120	ESE
003	01/02/2020	0,0	11,8	100	E	009	25/02/2020	0,6	14,0	70	ENE
	02/02/2020	0,0	11,8	70	ENE		26/02/2020	37,0	11,5	70	ENE
	03/02/2020	0,0	11,3	70	ENE		27/02/2020	22,7	11,8	80	Е
004	04/02/2020	0,0	13,0	90	E	010	28/02/2020	15,4	12,9	50	NE
004	05/02/2020	0,4	13,2	100	E	010	29/02/2020	-	18,2	30	NNE
	06/02/2020	0,0	17,4	100	E		01/03/2020	0,0	-	-	-
	07/02/2020	0,0	14,7	70	ENE		02/03/2020	0,0	10,4	50	NE
005	08/02/2020	2,2	13,3	100	E	011	03/03/2020	64,5	9,1	110	ESE
005	09/02/2020	1,8	17,1	100	E	011	04/03/2020	0,2	9,6	90	E
	10/02/2020	6,0	15,5	100	E		05/03/2020	0,2	10,8	80	E
	11/02/2020	29,6	21,1	80	E		06/03/2020	5,8	14,0	110	ESE
005	12/02/2020	5,8	24,0	60	ENE	012	07/03/2020	0,0	10,8	80	E
006	13/02/2020	1,4	12,2	360	N	012	08/03/2020	0,0	10,1	80	E
	14/02/2020	1,8	12,8	80	E		09/03/2020	0,0	11,2	70	ENE

^{- :} données manquantes.

Pour cette campagne, le cumul des précipitations s'est élevé à 225,3 mm. A noter toutefois le passage d'un phénomène climatique pluvio-orageux qui a entrainé des précipitations exceptionnelles du 29 février au 01 mars. En effet, le 29 février, la pluviométrie a de la station GORO Résidus a enregistré un cumul exceptionnel de 385,7 mm en 6h (soit une durée de retour centennale et un nouveau record absolu de cumul de pluie depuis 1961).

Données météorologiques lors de la campagne en saison fraîche

Les valeurs des paramètres météorologiques données par la station GORO sont présentées dans le tableau suivant.

Tableau 66 : Variables journalières des paramètres météorologiques (cumul de précipitations et moyenne de vitesse et direction de vents maximales instantanées) collectées par la station météorologique « GORO » - Saison fraîche

Prélèvement -		GC	ORO			- Prélèvement		GO	ORO		
Prelevement -	Date	RR	FXI	DXI	Régime	- Prelevement	Date	RR	FXI	DXI	Régime
	08/07/2020	0,0	9,7	170	S		01/08/2020	0,2	12,5	200	SSO
	09/07/2020	2,4	15,7	110	ESE		02/08/2020	0,0	11,2	230	so
001	10/07/2020	0,4	15,5	120	ESE	007	03/08/2020	0,8	9,0	180	S
	11/07/2020	8,6	14,7	110	ESE		04/08/2020	0,0	6,6	110	ESE
	12/07/2020	1,0	13,4	100	E		05/08/2020	0,0	7,7	80	Е
002	13/07/2020	5,4	11,6	40	NE	000	06/08/2020	0,0	7,2	220	so
002	14/07/2020	7,5	14,6	40	NE	. 008	07/08/2020	0,0	8,4	90	Е
	15/07/2020	0,2	10,6	280	0		08/08/2020	0,0	9,3	100	Е
	16/07/2020	ND	ND	ND	ND		09/08/2020	0,8	19,1	30	NNE
	17/07/2020	ND	ND	ND	ND	. 009	10/08/2020	1,0	15,4	330	NNO
003	18/07/2020	ND	ND	ND	ND		11/08/2020	0,0	11,8	260	0
	19/07/2020	ND	ND	ND	ND		12/08/2020	0,0	10,6	230	so
	20/07/2020	ND	ND	ND	ND		13/08/2020	0,0	9,4	240	oso
	21/07/2020	ND	ND	ND	ND		14/08/2020	7,2	12,9	120	ESE
004 -	22/07/2020	ND	ND	ND	ND	010	15/08/2020	2,7	13,4	80	E
	23/07/2020	ND	ND	ND	ND		16/08/2020	0,0	12,9	50	E
	24/07/2020	ND	ND	ND	ND		17/08/2020	31,2	13,5	20	NNE
005	25/07/2020	ND	ND	ND	ND		18/08/2020	0,0	11,9	240	oso
005 -	26/07/2020	ND	ND	ND	ND	011	19/08/2020	0,0	6,6	210	SSO
	27/07/2020	ND	ND	ND	ND		20/08/2020	0,0	8,8	320	NO
	28/07/2020	ND	ND	ND	ND		21/08/2020	0,0	7,8	240	oso
000	29/07/2020	6,4	17,4	80	Е	012	22/08/2020	0,0	7,0	210	sso
006 -	30/07/2020	0,0	16,9	40	NE	012	23/08/2020	1,0	9,2	230	so
	31/07/2020	30,3	12,7	40	NE		24/08/2020	0,2	5,7	230	so

ND : données manquantes.

Le cumul des précipitations relevé à la station GORO Usine s'est élevé à 107,3 mm. Il est à noter que cette station a été défaillante car aucunes données n'ont été enregistrées du 16 au 28 juillet.

7.2.3.2 Caractérisation des matières en suspension

Résultats de la campagne du premier semestre

L'immersion du piège à particules séquentiel sur la station St06-KW1 a permis de dresser les observations suivantes :

Du 22-25 janvier (prélèvement 001) au 07-10 février (005)

Les flux de matière sont très faibles et n'augmentent qu'à la fin de celle-ci. En revanche, l'évolution des concentrations de Ni à la hausse et les rations Ca/Fe à la baisse sont plus marqués. Ces observations correspondent avec une période relativement stable pour ce qui concerne la pluviométrie journalière et la direction des vents. La vitesse des vents est plus variable, passant de 10m/s à 17m/s, ce qui semble avoir une incidence particulière sur les flux des particules terrigènes collectées en toute fin de période.

Du 11-14 février (006) au 23-26 février (009)

En début de période, la quantité de MES piégées et la concentration de Ni diminuent tandis que le ratio Ca/Fe augmente significativement. En fin de période (007 au 009), les vents et les précipitations accompagnent une légère augmentation des quantités de MES collectées. De manière concomitante, les ratios Ca/Fe suivent l'évolution inverse tandis que les teneurs en Ni restent étonnement faibles et stables.

• Du 27-01 mars (010) au 06-09 mars (012)

Cette période se caractérise par une très forte quantité de MES piégée (godet 010) qui chute brutalement par la suite. La hausse de la quantité de MES est accompagnée par une hausse et une baisse drastique des concentrations en Ni et des rations Ca/Fe. Cette évolution est en corrélation avec une perturbation atmosphérique liée à l'épisode pluvio-orageux du 29 février.

Entre les différentes campagnes conduites à St06-KW1, la masse moyenne de MES collectée lors de cette dernière correspond à la deuxième plus forte.

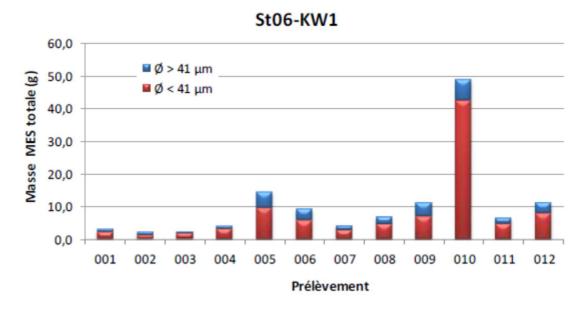


Figure 137 : Masse totale de MES piégées et composition en fraction fine (<41 μm) et fraction grossière (>41 μm) des 12 prélèvements du piège séquentiel à St06-KW1 – Saison chaude

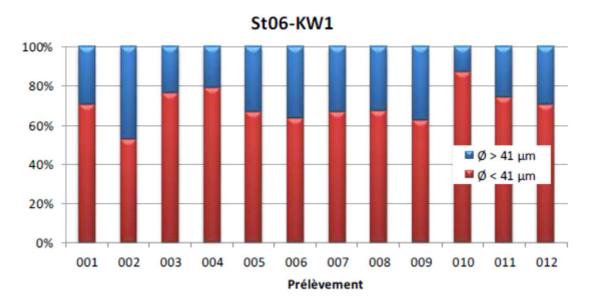


Figure 138 : Pourcentage massique en fractions fines (<41 μm) et fractions grossières (>41 μm) des 12 prélèvements du piège séquentiel à St06-KW1 – Saison chaude

Le tableau ci-après illustre les concentrations en métaux et calcium dans les fractions fines ($<41\mu m$) sur St06-KW1 lors de la campagne de début d'année 2020.

Tableau 67 : Concentrations en métaux et calcium obtenues dans les fractions fines des 12 prélèvements sur St06-KW1 – Saison chaude

		5	t06-KW1			
Eléments (mg/kg ps)	Ca	Co	Cr	Fe	Mn	Ni
Min	42 903	65,2	2 798	113 194	554	1 414
Max	303 026	481,4	10 860	436 546	3 157	8 125
Moyenne	234 324	149,0	4 640	184 601	1 112	2 825
Ecart-type	87 212	143,1	2 779	112 952	869	2 317
CV (%)	37	96	60	61	78	82

Résultats de la campagne du second semestre

La campagne du 08 juillet au 24 août donne les résultats suivants :

<u>Du 08-11 juillet (001) au 25-27 juillet (005)</u>

Pour la première période (001 à 003), les flux de matière et les ratios Ca/Fe diminuent puis augmentent dans les godets 004 et 005, les concentrations de Ni évoluant de manière similaire. Si durant cette période de 20 jours, la pluviométrie journalière a été relativement basse, en revanche les régimes de vents ont été instables, ce qui semble avoir eu une incidence sur le flux de particules terrigènes collectées.

Du 28-31 juillet (006) au 21-24 août (012)

En début de période (006 à 008), les quantités de MES piégées augmentent significativement puis chutent pour le godet 009. Quant aux ratios, Ca/Fe, ils suivent la même tendance et atteint sa valeur maximale dans le prélèvement 009. Les concentrations de Ni suivent l'évolution inverse. Vers la fin de la période (010 à 012), les vents changent et les précipitations cumulent 42,3 mm, favorisant le flux de matière terrigène vers l'emplacement du piège. Les rations Ca/Fe diminuent et les teneurs en Ni augmentent.

Pour cette campagne, peu de liens évidents entre le flux de particules collectées et les facteurs météorologiques se dégagent.

Entre les différentes campagnes conduites à St06-KW1, la masse moyenne de MES collectée lors de cette dernière est parmi les plus faibles.

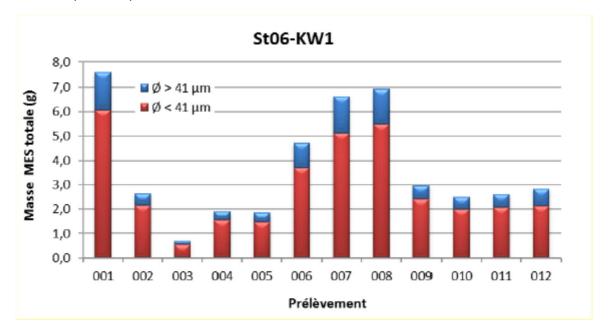


Figure 139 : Masse totale de MES piégées et composition en fraction fine (<41μm) et fraction grossière (>41μm) des 12 prélèvements sur St06-KW01 – Saison fraîche

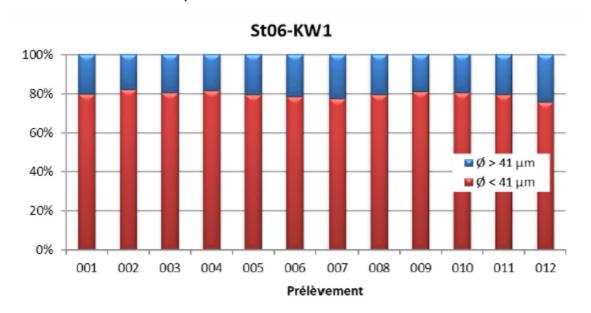


Figure 140 : Pourcentage massique en fractions fines et fractions grossières dans les 12 prélèvements sur St06-KW1 – Saison fraîche

Le tableau ci-après illustre les concentrations en métaux et calcium dans les fractions fines ($<41\mu m$) sur St06-KW1 lors de la deuxième campagne de l'année 2020.

Tableau 68 : Concentrations en métaux et calcium obtenues dans les fractions fines des 12 prélèvements

		s	t06-KW1			
Eléments (mg/kg ps)	Ca	Со	Cr	Fe	Mn	Ni
Min	240 200	90,4	3 210	147 425	1 023	2 510
Max	279 027	133	4 335	203 434	1 460	3 641
Moyenne	261 502	108	3 694	170 486	1 218	2 985
Ecart-type	12 292	11,7	328	15 481	121	313
CV (%)	5	11	9	9	10	10

7.2.4 Suivi des écosystèmes coralliens et des populations associées

La station ST08 dite de la « pointe Puka » est située en bordure du récif frangeant du canal de la Havannah entre les baies de Port-Boisé et de Kwé.

Le suivi est effectué sur 2 transects (A et B).

L'influence terrigène est très importante (dépôts de particules fines) mais l'hydrodynamisme peut être également soutenu (houle et ressac). Les dépôts sédimentaires entrainent des nécroses sur les colonies coralliennes.

Cette station présente de grandes colonies de *Porites lobata* dans la zone, et de *Tubipora musica*. Les spongiaires sont relativement bien développés et colonisent les débris coralliens et les colonies coralliennes encore vivantes.

Cette station a connu d'importantes dégradations depuis la mission menée en mars 2011 à mai 2018 qui ont été accentuées par de nombreuses dépressions tropicales. Les colonies coralliennes sont pour la plupart mortes en octobre 2014.

Suite à ces épisodes, la richesse corallienne augmente avec la présence de colonies juvéniles. Les nouvelles espèces sont adaptées à la turbidité.

Un important blanchissement corallien s'est produit en début d'année 2016, quelques colonies sont mortes ou nécrosées.

En octobre 2019 et mai 2020, le recouvrement corallien était stable. On observait un léger blanchissement corallien, quelques lésions coralliennes suite à la maladie de la bande blanche et ponctuellement par la sédimentation.

Les cyanobactéries étaient absentes au transect B, et en diminution au transect A. Pas de présence de corallivores observés.

→ 2 missions de suivi ont été réalisées en 2020, respectivement en mai et octobre.

Ce chapitre dresse les résultats de la campagne la plus récente, soit la mission d'octobre 2020.

7.2.4.1 Suivi du substrat (méthode LIT)

Le substrat du transect haut est composé d'une large part de coraux morts recouverts d'algues (61%) avec un bon taux de coraux scléractiniaires vivants qui augmente très légèrement. La hausse est relativement constante depuis 2017 et atteint pour cette mission le meilleur taux depuis le début du suivi. Il présente pour cette mission 99% de recouvrement biotique.

Au transect B, comme depuis 1 an, c'est la catégorie « corail mort avec algues » qui domine (73,5%) ce qui fait que le substrat est majoritairement biotique. Ce transect ne possède que 2,5% de coraux scléractiniaires.

Hormis les fluctuations cycliques du sable (avec les coraux morts recouverts d'algues), globalement, la station est stable.

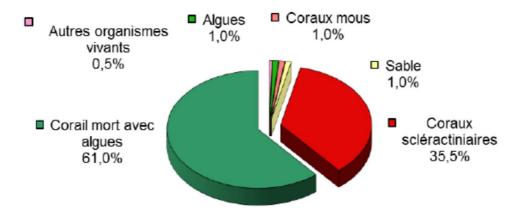


Figure 141 : Représentation du recouvrement (en %) du substrat pour ST08A - octobre 2020

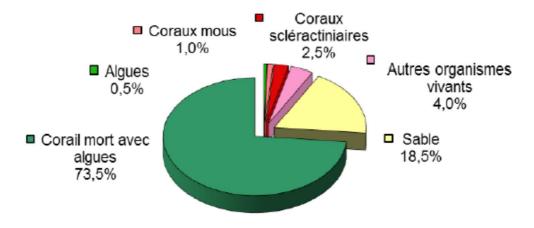


Figure 142 : Représentation du recouvrement (en %) du substrat pour ST08B - octobre 2020

7.2.4.2 Le benthos

En octobre 2020, la richesse spécifique de la station Puka est composée de :

38 espèces d'invertébrés dont 10 espèces de mollusques; 8 espèces de cnidaires: alcyonaires (3 taxons), actiniaires (3 taxons), zoanthaires (1 taxon), hydrozoaires (1 taxon); 8 espèces d'échinodermes: holothurides (1 taxon), astéries (3 taxons), échinides (1 taxon), ophiurides (2 taxons), crinoïdes (1 taxon); 6 espèces d'éponges; 4 espèces d'ascidies;

- 6 espèces de macrophytes : algues brunes (1 taxon), algues rouges (2 taxons), algues vertes (3 taxons);
- 1 espèce de cyanobactéries.

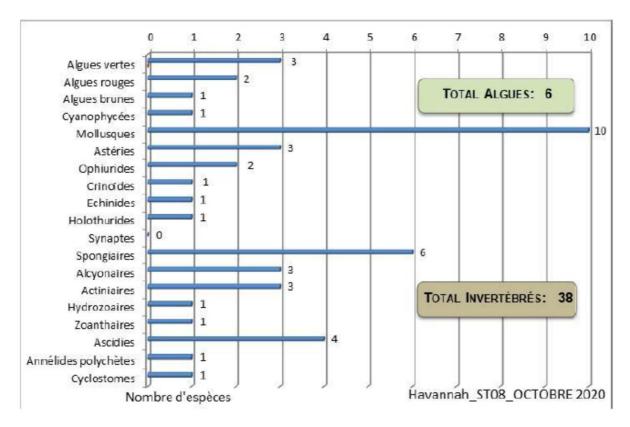


Figure 143 : Répartition par sous-groupe de la richesse spécifique des macrophytes et des invertébrés (hors coraux durs) à la station ST08

7.2.4.3 Les poissons

La liste des espèces observées sur les transects et les résultats bruts sont fournis dans le Tableau 69.

Tableau 69 : Données sur les poissons à la station ST08

	Puka ST08		Transe	ct		Transe	ct	Station			
	ruka 5100		A			В			Moyenn	e	
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Bion	
Aca	Acanthurus blochii				1	0,01	0,98	0,50	0,00	0,49	
Aca	Ctenochaetus striatus	1	0,02	0,40				0,50	0,01	0,20	
Aca	Naso lituratus	1	0,01	3,91				0,50	0,01	1,95	
Aca	Zebrasoma veliferum	1	0,02	2,40				0,50	0,01	1,20	
Can	Canthigaster valentini				2	0,01	0,01	1,00	0,01	0,00	
Cha	Chaetodon auriga				1	0,01	0,06	0,50	0,00	0,03	
Cha	Chaetodon bennetti	3	0,05	0,46				1,50	0,03	0,23	
Cha	Chaetodon flavirostris				3	0,03	0,50	1,50	0,01	0,25	
Cha	Chaetodon lunulatus				3	0,03	0,17	1,50	0,01	0,09	
Cha	Chaetodon mertensii				2	0,02	0,07	1,00	0,01	0,04	
Cha	Chaetodon plebeius	4	0,07	0,26	2	0,02	0,04	3,00	0,04	0,15	
Cha	Chaetodon ulietensis	2	0,03	0,13	2	0,02	0,11	2,00	0,03	0,12	
Cha	Chaetodon vagabundus	2	0,03	0,44				1,00	0,02	0,22	
Cha	Heniochus acuminatus				1	0,01	0,97	0,50	0,00	0,49	
Cha	Heniochus singularus				2	0,02	1,94	1,00	0,01	0,9	
Epi	Epinephelus Howlandi	1	0,02	2,40				0,50	0,01	1,20	
Epi	Plectropomus leopardus				3	0,02	46,88	1,50	0,01	23,44	
Hae	Plectorhinchus lessonii				1	0,01	1,97	0,50	0,00	0,99	
Lab	Bodianus perditio				1	0,01	2,46	0,50	0,00	1,23	
Lab	Cheilinus chlorourus	1	0,02	1,01	1	0,01	1,14	1,00	0,01	1,0	
Lab	Hemigymnus melapterus				1	0,01	1,52	0,50	0,00	0,70	
Lab	Labroides dimidiatus				2	0,01	0,01	1,00	0,01	0,00	
Lab	Stethojulis bandanensis				1	0,01	0,03	0,50	0,00	0,02	
Lab	Thalassoma lunare				3	0,02	0,15	1,50	0,01	0,0	
Lut	Lutjanus fulvus				3	0,02	2,50	1,50	0,01	1,2	
Mul	Parupeneus barberinoides	3	0,05	1,56		0,02	2,00	1,50	0,03	0,78	
Mul	Parupeneus cyclostomus	6	0,06	8,23				3,00	0,03	4,12	
Nem	Scolopsis bilineatus		-,		4	0,03	0,57	2,00	0,01	0,29	
Poc	Centropyge bicolor	2	0,03	0,04	2	0,02	0,05	2,00	0,03	0,04	
Poc	Centropyge flavissima		-,	,	2	0,02	0,14	1,00	0,01	0,0	
Poc	Centropyge tibicen	2	0,03	0,04	3	0,03	0,04	2,50	0,03	0,04	
Pom	Amphiprion chrysopterus		-,		10	0,10	0,13	5,00	0,05	0,00	
Pom	Chrysiptera rollandi	5	0,08	0,09	4	0,04	0,02	4,50	0,06	0,00	
Pom	Chrysiptera taupou	4	0,07	0,04	6	0,06	0,03	5,00	0,06	0,0	
Pom	Dascyllus aruanus		0,07	0,01	8	0,08	0,04	4,00	0,04	0,02	
Pom	Dascyllus reticulatus	15	0,25	0,14	10	0,10	0,05	12,50	0,18	0,02	
Pom	Dascyllus trimaculatus	13	0,23	0,14	10	0,10	0,03	5,00	0,18	0,0	

	Indice de Shannon = Equitabilité =	0.892								
	Biodiversité		21			32			45	
	Total	65	1,04	35,95	98	0,87	66,24	81,50	0,96	51,10
Zan	Zanclus cornutus				1	0,01	0,59	0,50	0,00	0,29
Sig	Siganus punctatus	2	0,03	7,10				1,00	0,02	3,55
Sig	Siganus puellus	3	0,05	1,73				1,50	0,03	0,86
Sig	Siganus doliatus	2	0,03	1,46				1,00	0,02	0,73
Sca	Scarus rubroviolaceus				2	0,01	1,67	1,00	0,01	0,83
Sca	Scarus niger				1	0,01	1,14	0,50	0,00	0,57
Sca	Scarus flavipectoralis	3	0,05	4,10				1,50	0,03	2,05
Pom	Pomacentrus moluccensis	2	0,03	0,04				1,00	0,02	0,02

Sur l'ensemble des transects de la station, 163 individus appartenant à 45 espèces différentes ont pu être observés. Ils représentent une densité de 0,96 poissons/m² pour une biomasse de 51.10 g/m².

104 espèces complémentaires (hors des transects et hors liste restreinte) ont été observées sur la station.

Tableau 70 : Liste des espèces complémentaires - station ST08

Fam	Espèces	Fam	Espèces	Fam	Espèces
Aca	Acanthurus blochii	Hol	Myripristis kuntee	Mul	Parupeneus indicus
Aca	Acanthurus nigricauda	Hol	Sargocentron ensifer	Nem	Scolopsis bilineatus
Aca	Ctenochaetus striatus	Hol	Sargocentron rubrum	Pem	Pempheris oualensis
Aca	Naso lituratus	Kyp	Kyphosus cinerascens	Pin	Parapercis cylindrica
Aca	Naso unicornis	Lab	Anampses femininus	Ple	Assessor macneilli
Aca	Zebrasoma scopas	Lab	Anampses melanurus	Poc	Centropyge bicolor
Aca	Zebrasoma veliferum	Lab	Anampses neoguinaicus	Poc	Centropyge flavissima
Apo	Cheilodipterus macrodon	Lab	Bodianus axillaris	Poc	Centropyge tibicen
Aul	Aulostomus chinensis	Lab	Bodianus perditio	Pom	Amblyglyphidodon leucogaster
Bal	Sufflamen fraenatus	Lab	Cheilinus chlorourus	Pom	Amblyglyphidodon orbicularis
Ble	Exallias brevis	Lab	Coris batuensis	Pom	Amphiprion chrysopterus
Ble	Meiacanthus atrodorsalis	Lab	Coris gaimard	Pom	Chrysiptera rollandi
Can	Canthigaster valentini	Lab	Epibulus insidiator	Pom	Chrysiptera taupou
Cha	Chaetodon auriga	Lab	Halichoeres argus	Pom	Dascyllus aruanus
Cha	Chaetodon baronessa	Lab	Halichoeres ornatissimus	Pom	Dascyllus reticulatus
Cha	Chaetodon bennetti	Lab	Halichoeres prosopeion	Pom	Dascyllus trimaculatus
Cha	Chaetodon ephippium	Lab	Hemigymnus fasciatus	Pom	Neoglyphidodon nigroris
Cha	Chaetodon flavirostris	Lab	Hemigymnus melapterus	Pom	Neoglyphidodon nigroris
Cha	Chaetodon lunulatus	Lab	Labroides dimidiatus	Pom	Neopomacentrus azysron
Cha	Chaetodon mertensii	Lab	Labropsis australis	Pom	Plectroglyphidodon lacrymatus
Cha	Chaetodon plebeius	Lab	Novaculichthys taeniourus	Pom	Pomacentrus adelus
Cha	Chaetodon ulietensis	Lab	Stethojulis bandanensis	Pom	Pomacentrus moluccensis
Cha	Chaetodon vagabundus	Lab	Thalassoma lunare	Pri	Priacanthus hamrur
Cha	Heniochus acuminatus	Lab	Thalassoma lutescens	Sca	Scarus flavipectoralis
Cha	Heniochus singularus	Let	Lethrinus atkinsoni	Sca	Scarus ghobban
Cha	Heniochus varius	Let	Monotaxis grandoculis	Sca	Scarus niger
Cir	Cirrhitichthys falco	Lut	Lutjanus fulviflamma	Sca	Scarus psittacus

Cir	Cirrhitichthys falco	Lut	Lutjanus fulviflamma	Sca	Scarus rubroviolaceus	
Cir	Paracirrhites forsteri	Lut	Lutjanus fulvus	Sca	Scarus schlegeli	
Epi	Epinephelus Howlandi	Lut	Lutjanus russellii	Sig	Siganus doliatus	
Epi	Epinephelus maculatus	Lut	Lutjanus vitta	Sig	Siganus puellus	
Epi	Plectropomus leopardus	Mic	Gunnellichthys curiosus	Sig	Siganus punctatus	
Hae	Plectorhinchus chaetodonoides	Mon	Oxymonacanthus longirostris	Syn	Synodus variegatus	
Hae	Plectorhinchus lessonii	Mul	Parupeneus barberinoides	Zan	Zanclus cornutus	
Hae	Plectorhinchus lineatus	Mul	Parupeneus cyclostomus			

7.2.5 Suivi du taux de sédimentation

La campagne de carottage s'est déroulée sur St06 le 23 avril 2020.

Les résultats sont les suivants :

- Les dépôts à cette station sont rythmés par la charge particulaire transportée par le creek Kwé dont la granulométrie est fine et très homogène. Composées initialement de débris détritiques carbonatés, l'influence marine diminue avec le temps, la Goethite passant à 36 à 40% (14 à 19% en 2017). L'alternance dans l'alimentation se reflète également dans les profils de concentration en métaux dont les fluctuations relativement sont synchrones.
- Malgré des apports pulsés, le taux d'accumulation moyen calculable et est en progression: 1,47 g/cm²/an en 2020, contre 1,22 g/cm²/an en 2017. Cette légère augmentation est vraisemblablement à mettre en lien avec les évènements pluvieux de 2019, et traduit effectivement une érosion du bassin versant consécutive de ces conditions météorologiques fortes.

7.2.6 Caractérisation des herbiers en baie Kwé

Le suivi des herbiers a été effectué en juin 2020. Celui-ci apporte les conclusions suivantes :

- Les densités sont relativement comparables entre les 2 suivis, avec une légère diminution en 2020 par rapport à 2017.
- L'espèce Halophila ovalis est moins présente.

Tableau 71 : Densité (pieds/m²) des phanérogames et répartition (%) de chaque espèce

Station		DENSITE (pieds/m²)	%			
	Halodule uninervis	Cymodocea serrulata	Halophila ovalis	Total	Halodule uninervis	Cymodocea serrulata	Halophila ovalis
HO02	1 042	28	0	1 069	97	3	0
HO04	317	56	53	425	78	12	10
HE03	811	333	11	1 156	69	30	1
HE01	681	281	0	961	68	32	0