

Surveillance des consommations Rapport annuel 2019 CAPTAGES

Vale Nouvelle-Calédonie Mars 2020 L'intégralité du présent rapport, en ce compris ses annexes, (ci-après désigné « RAPPORT ») reste la propriété exclusive de VALE Nouvelle-Calédonie SAS (ci-après désignée « VALE NC »), au titre de son droit de propriété intellectuelle.

A l'exception des autorités administratives destinataires du RAPPORT et dans le cadre d'une convention, ce dernier et les données qu'il contient ne peuvent être utilisées qu'à des fins de consultation à titre privé.

Ainsi le Rapport et les données qu'il contient ne pourront pas être utilisés ou reproduits (totalement ou partiellement) sur quelque support que ce soit, sans l'accord préalable et écrit de VALE NC.

En aucun cas le RAPPORT et les données qu'il contient ne pourront être utilisées à des fins commerciales et/ou en vue de porter atteinte aux intérêts de VALE NC et du groupe VALE, notamment par l'utilisation partielles des données et sorties de leur contexte global, sous peine de voir votre responsabilité engagée.

Si vous désirez des informations plus détaillées au sujet de la présente déclaration et/ou du RAPPORT, veuillez-vous adresser à :

VALE NC, Département Communication E-mail : <u>ValeNC-communication@vale.com</u>

Tel: +687 23.50.00

Sommaire

1.	ACQUI	SITION DES DONNEES	2
	1.1. Lo	OCALISATION	2
	1.2. M	ETHODE	2
	1.3. Do	Onnees disponibles	2
2.	RESUL	TATS	5
	2.1 V/	ALEURS REGIEMENTAIRES	5
		·	
	2.2.1		
	2.2.1	·	
	2.2.1	· ·	
3.			
4.	ANALY	SE DE LA RESSOURCE EN EAU	.0
	4.2. Q	UALITE DE LA RESSOURCE EN EAU AU NIVEAU DU GRAND LAC	.0
		-	
_			_
		Liste des figures	
۰,			
%		S .	
U	PM-CIM	Unité de Préparation de Minerai et Centre Industriel de la Mine	
	1.1. LOCALISATION. 2 1.2. METHODE. 2 1.3. DONNES DISPONIBLES. 2 1.3. DONNES DISPONIBLES. 2 2. RESULTATS. 5 2.1. VALEURS REGLEMENTAIRES. 5 2.1.1 Volumes captés. 5 2.2. VALEURS OBTENUES 6 2.2.1.1 Volumes d'eau captés. 6 2.2.1.1 Volumes d'eau captés. 6 2.2.1.1 Volumes d'eau captés. 6 2.2.1.1 Captage du lac de Yaté 6 2.2.1.2 Captage de la Pépinière. 7 2.2.1.3. Captage de la Pépinière. 7 2.2.1.3. Captage de La Pépinière. 7 2.2.1.4. Captage du BSKN. 8 8. 2.2.1 Incidents et observotions. 8 2.2.2 Incidents et observotions. 99 MESURE DES VARIATIONS DE NIVEAU DU GRAND LAC. 99 ANALYSE DE LA RESSOURCE EN EAU. 100 4.1. QUALITE DE LA RESSOURCE EN EAU AU NIVEAU DU GRAND LAC. 10 4.2. QUALITE DE LA RESSOURCE EN EAU AU NIVEAU DU GRAND LAC. 10 Liste des Tableaux ableau 1 : Localisation et description des captages 2 2 ableau 2 : Billan de la disponibilité des données des volumes d'eau journaliers captés 4 4 ableau 3 : Causes de non-acquisition de données sur les captages. 4 4 ableau 4 : Obligations règlementaires applicables aux captages 3 5 : Dépassements relevés lors des suivis de la ressource en eau du lac de Yaté 10 ableau 6 : Dépassements relevés lors des suivis de la ressource en eau du lac de Yaté 10 ableau 6 : Dépassements relevés lors des suivis de la ressource en eau du lac de Yaté 10 ableau 7 : Carte de localisation des sites de captage 11 Liste des figures 1 : Carte de localisation des sites de captage 11 Liste des figures 1 : Carte de localisation des sites de captage 12 : Volumes journaliers d'eau pompés au captage du lac de Yaté 12 : Carte de localisation des sites de captage 13 : Volumes pompés au niveau du captage du BoSKN 18 : 19 : Variations de niveau du captage de la Doline CR10/KN 18 : 19 : Variations de niveaux du Grand Lac 19 :		
	1.2 METHODE		

INTRODUCTION

Implanté dans le Sud de la Nouvelle-Calédonie, aux lieux-dits « Goro » et « Prony-Est » sur les communes de Yaté et du Mont-Dore, le complexe industriel (usine, mine, port) détenu par Vale Nouvelle-Calédonie a pour objectif d'extraire du minerai latéritique et de le traiter par un procédé hydrométallurgique visant à produire 60 000 t/an de nickel et 4 500 t/an de cobalt.

Le procédé de traitement employé par Vale Nouvelle-Calédonie requiert un apport journalier d'eau important ; la solution retenue a été de capter les eaux du lac de Yaté pour répondre à ce besoin. Les eaux sont utilisées dans le procédé de traitement de Vale Nouvelle-Calédonie, pour la centrale thermique de Prony Energies et pour la consommation humaine.

Vale Nouvelle-Calédonie effectue également d'autres prélèvements en eau au niveau du Grand Lac pour les besoins de la Pépinière et du Camp de la Géologie.

Pour limiter les envols de poussière dans le cadre de l'activité minière, des arrosages de routes sont réalisés. Les pompages réalisés en aval du bassin de sédimentation nommé BSKN sont destinés à ce type d'utilisation de l'eau.

Les captages temporaires sont utilisés dans le cadre des campagnes de sondages miniers.

Les captages permanents de Vale Nouvelle-Calédonie sont :

- Captage du Lac du barrage de Yaté,
- Captage du Grand Lac pour la Pépinière,
- Captage du Grand Lac pour le Camp de la Géologie,
- Captage du BSKN pour l'activité minière.

Les captages utilisés temporairement par Vale Nouvelle-Calédonie sont :

- Captage de la Doline CR10/KN
- Captage du Creek Nicolas, campagne de sondage Christmas 01
- Captage de N'Go et Touongo, campagne de sondage Dunite KLMN

Ce document est un rapport des consommations annuelles en eau et des volumes d'eau qui ont été pompés ou captés sur le site industriel et minier de Vale Nouvelle-Calédonie en 2019.

477162

210875

1. ACQUISITION DES DONNEES

1.1. Localisation

Les points de captages d'eau pour la consommation humaine et pour l'opération du complexe industriel de Vale Nouvelle-Calédonie, ainsi que les autorisations, sont répertoriés dans le tableau ci-dessous. Au total, 4 captages permanents et 1 captage temporaire sont présentés dans le tableau 1 et la figure 1.

Coordonnées RGNC Statut **Bassin** Type de 91 **Dénomination** en Autorisation Versant suivi 2019 X Arrêté n°70-Lac de Captage lac du 488618 227090 Captage Actif 2007/PS du 12 barrage de Yaté Yaté février 2007 N°293-Captage du Grand lac Plaine des 2020/ARR/DDR du Captage Actif 493970 214322 pour la Pépinière lacs 16 janvier 2020 Captage du grand lac N°79-Plaine des pour le Camp de la Captage 2020/ARR/DDR du 494066 214500 Actif lacs Géologie 16 janvier 2020 Arrêté n°2417-Kwé Captage Actif 2017-ARR/DDR du 498855 Captage du BSKN 211150 8 septembre 2017 Arrêté n°1626-Captage Doline 500877 212584 Kwé Captage Actif 2019/ARR/DDR du CR10/KN 18 juin 2019 Arrêté n°2978-Creek Christmas_01 Captage Actif 2019/ARR/DDR du 482929 210629 Nicolas 24 octobre 2019 477130 215388 Arrêté n°2354-Touongo et 476746 214863 **Dunite KLMN** Captage Actif 2019/ARR/DDR du 476735 214672 N'Go 22 août 2019

Tableau 1 : Localisation et description des captages

1.2. Méthode

Les relevés des compteurs d'eau des différents captages et pompages sont effectués par Vale Nouvelle-Calédonie, par la CDE et une entreprise de forage. Les données relevées sont vérifiées puis transmises à Vale Nouvelle-Calédonie. Les captages actuellement munis de compteurs volumétriques sont :

- captage du Lac du barrage de Yaté (VNC)
- captage de la Pépinière (VNC et CDE)
- captage du Camp de la Géologie (CDE)
- captage du BSKN (VNC)

1.3. Données disponibles

Le bilan des données disponibles porte sur les données relevées sur les compteurs volumétriques, les résultats sont présentés au Tableau 2.

Les données de volume acquises au niveau du captage du Lac de Yaté sont relevées instantanément. Pour des raisons de traitement des données, celles-ci ont été extraites au pas de temps horaire. Pour les autres captages permanents les données doivent être relevées quotidiennement. Pour les captages temporaires un bilan des données disponibles n'est pas applicable.

Figure 1 : Carte de localisation des sites de captage

Tableau 2 : Bilan de la disponibilité des données des volumes d'eau journaliers captés

	Nombre de données attendues	Nombre de données acquises	Pourcentage de données acquises (%)
Captage lac du barrage de Yaté	365	365	100
Captage de la Pépinière	365	155	42.5
Captage du Camp de la Géologie	365	86	23.6
Captage du BSKN	365	45	12

Le pourcentage de données acquises est bon pour le captage du lac de Yaté. En revanche, le pourcentage de données acquises pour le captage de la pépinière, du camp de la géologie et du BSKN est faible.

Le tableau 3 présente les raisons pour lesquelles les volumes journaliers ne sont pas disponibles.

Tableau 3 : Causes de non-acquisition de données sur les captages

	Compteur non relevé (%)	Problème de réception de la donnée (%)
Captage lac du barrage de Yaté	-	-
Captage de la Pépinière	100	0
Captage du Camp de la Géologie	100	0
Captage du BSKN	100	0

Les données journalières des captages de la pépinière et du camp de la géologie n'ont pas pu être relevées à la fréquence règlementaire, l'accès aux compteurs d'eau est interdit le weekend. Concernant le captage du BSKN, les relevés sont prévus une fois par semaine.

2. RESULTATS

2.1. Valeurs réglementaires

2.1.1 Volumes captés

Les arrêtés imposent une valeur limite de captage ou de pompage, ces valeurs sont reprises dans le tableau 4 pour chaque installation.

Tableau 4 : Obligations règlementaires applicables aux captages

Prélèvement/ captage	Limite horaire (m³/h)	Limite journalière (m³/jour)	Limite mensuelle (m³/mois)	Limite annuelle (m³/an)	Utilisation de l'eau captée
Lac de barrage de Yaté	2 300	55 200	1 660 000	18 000 000	Approvisionnement en eau des installations de Vale Nouvelle-Calédonie et de la centrale à charbon de Prony Energies. Alimentation en eau potable de la base-vie, de l'Usine, de l'Unité de Préparation du Minerai et de Prony Energies pendant la phase d'exploitation.
Grand Lac pour la Pépinière	-	60	-	-	Alimentation en eau brute de la Pépinière de Vale Nouvelle-Calédonie
Grand Lac pour le Camp de la Géologie	4.8	48	-	-	Alimentation en eau du Camp de la Géologie
Captage du BSKN	358	3580	-	-	Arrosage des voies minières pour limiter l'envol des poussières
Captage de la doline CR10/KN	8	80	-	-	Alimentation en eau de la campagne de sondages miniers de préproduction 2018
Captage Creek Nicolas	8	80	-	-	Alimentation en eau brute de la campagne de sondages miniers dénommée « CHRISTMAS_01 »
Captage N'Go1	8	80	-	-	Alimentation en eau brute de la campagne de sondages miniers dénommée « DUNITEKLMN_01 »
Captage N'Go2	8	80	-	-	Alimentation en eau brute de la campagne de sondages miniers dénommée « DUNITEKLMN_01 »
Captage N'Go3	8	80	-	-	Alimentation en eau brute de la campagne de sondages miniers dénommée « DUNITEKLMN_01 »
Captage Touongo	8	80	-	-	Alimentation en eau brute de la campagne de sondages miniers dénommée « DUNITEKLMN_01 »
Captage DuniteOP1	8	80	-	-	Alimentation en eau brute de la campagne de sondages miniers dénommée « DUNITEOP_01 »
Captage Creek Saint Louis	8	80	-	-	Alimentation en eau brute de la campagne de sondages miniers dénommée « DUNITEOP_01 »

2.2. Valeurs obtenues

2.2.1 Volumes d'eau captés

2.2.1.1. Captage du lac de Yaté

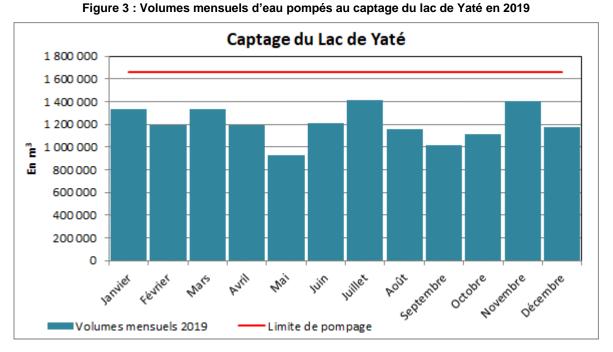
La figure 2 présente les volumes d'eau pompés par jour au niveau du captage du Lac de Yaté en 2019.

Captage du Lac de Yaté

60 000

50 000

40 000


20 000

10 000

Thinks of the property of the

Figure 2 : Volumes journaliers d'eau pompés au captage du lac de Yaté

La figure 3 présente les volumes d'eau pompés par mois au captage du Lac de Yaté en 2019.

Le captage du Lac de Yaté est utilisé depuis octobre 2007. Les eaux pompées sont utilisées pour la production d'eau potable et d'eau industrielle pour les activités de l'usine.

La conformité des prélèvements journaliers en 2019 est de 100%.

Aucun volume de prélèvement mensuel ne dépasse la limite autorisée de 1 660 000 m3.

Le volume pompé en 2019 est de 14 478 016 m³, et ne dépasse pas la limite de prélèvement annuelle de 18 000 000 m³.

2.2.1.2. Captage de la Pépinière

Le compteur volumétrique de consommation en eau de la Pépinière a été mis en service le 18 décembre 2008. Les volumes journaliers consommés en 2019 sont présentés en figure 4 et les volumes mensuels sont présentés en figure 5.

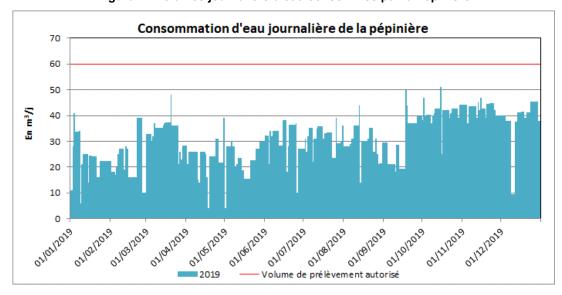


Figure 4 : Volumes journaliers d'eau consommés par la Pépinière

Les consommations d'eau de la pépinière sont conformes à 100% en 2019. Le volume total des prélèvements en 2019 est de 11 306 m³.

2.2.1.3. Captage du Camp de la Géologie

Les volumes pompés en 2019 au niveau du captage pour le Camp de la Géologie sont présentés en figure 5.

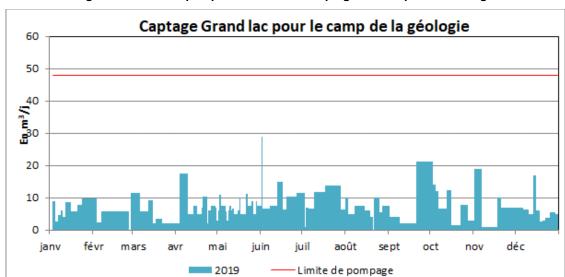


Figure 5 : Volumes pompés au niveau du captage du Camp de la Géologie

Vale Nouvelle-Calédonie Page **7**Mars 2020

Le volume total des prélèvements en eau en 2019 est de 2 758 m³ pour le captage du Camp de la Géologie. Les volumes d'eau pompés pour les besoins du camp de la géologie sont conformes à 100%.

2.2.1.4. Captage du BSKN

Les volumes pompés en 2019 au niveau du captage du BSKN sont présentés en figure 6.

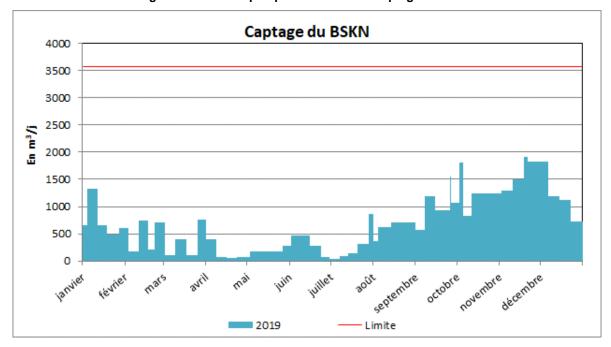


Figure 6 : Volumes pompés au niveau du captage du BSKN

Le volume total des prélèvements en eau en 2019 est de 241 586 m³ pour le captage du BSKN. Les volumes d'eau pompés pour les besoins de la mine sont conformes à 100%.

2.2.1.5. Captages temporaires

Les volumes pompés en 2019 au niveau des captages temporaires sont présentés en figure 7. Les captages temporaires actifs en 2019 pour les campagnes de sondage sont la Doline CR10, Creek Nicolas et N'Go.

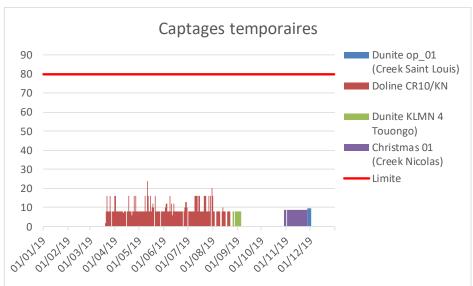


Figure 7 : Volumes pompés dans le cadre de campagnes de sondage

Les volumes pompés en 2019 sont conformes aux arrêtés temporaires.

2.2.2 Incidents et observations

Aucun incident majeur n'est à reporter sur les installations de captage.

3. MESURE DES VARIATIONS DE NIVEAU DU GRAND LAC

Les niveaux relevés en 2019 au niveau du Grand Lac sont présentés en figure 9.

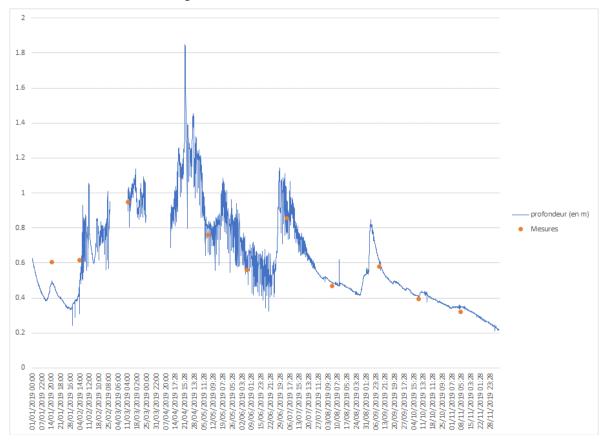


Figure 9 : Variations de niveaux du Grand Lac

Depuis fin janvier 2019, le signal renvoyé par la sonde présente d'importantes variations. La sonde de niveau installée au Grand Lac a été remplacée en avril 2019. À la suite de cette modification le matériel installé présente également un signal erratique. Ces variations sont liées à une accumulation d'humidité dans le câble. Début juillet, l'ensemble de l'équipement a été réinstallé en s'assurant de limiter la perméabilité à l'humidité externe.

Aucune donnée est disponible depuis le 5 décembre 2019. Les données sont déchargées tous les mois, au moment du déchargement planifié de janvier 2020, la piste d'accès était impraticable et le niveau du Lac trop haut pour assurer la protection des personnes en charge du suivi. Les données seront présentées lors du rapport semestriel 2020.

4. ANALYSE DE LA RESSOURCE EN EAU

4.1. Qualité de la ressource en eau au niveau du Lac de Yaté

Le site de captage dont les eaux sont destinées à la consommation humaine est le captage du Lac de Yaté. Afin de contrôler la **qualité de la ressource**, l'arrêté n°79-153/SGCG du 3 avril 1979 et l'arrêté du 11 janvier 2007 relatif au programme de prélèvement et d'analyse du contrôle sanitaire pour les eaux fournies par un réseau de distribution, pris en application des articles R. 1321-10, R. 1321-15 et R. 1321-16 du code de la santé publique, ont été pris en compte. Cette liste de paramètres inclut également les molécules suivies par la DAVAR au niveau du Lac de Yaté.

La ressource en eau a été analysée le 3 juin et le 17 décembre 2019. Les analyses sont présentées en Annexe I et les dépassements enregistrés au cours des suivis sont présentés au tableau 5.

21/06/2018 22/11/2018 03/06/2019 7/12/2019 Groupe de qualité A1 30/11/2017 06/06/2017 **Paramètre** Valeur limite Valeur quide impérative Substances extractibles au < 0.1 < 0.1 < 0.1 0,1 mg/L chloroforme (mg/L) Coliformes totaux 50 579 359 512 193 240 260 UFC/100mL UFC/100mL 4 DBO5 5 4 4 <2 4 <3

Tableau 5 : Dépassements relevés lors des suivis de la ressource en eau du lac de Yaté

La qualité des eaux du Lac de Yaté destinées à la consommation doit respecter la classe de qualité A1 de l'arrêté du 11 janvier 2007 précité. Cette classe de qualité correspond à une eau subissant un traitement physique simple et une désinfection. L'unité de traitement de l'eau potable est une Unité Compacte Degrémont (UCD) permettant ce type de traitement.

5.9

7.55

7.8

6.5-8.5

Les substances extractibles au chloroforme ont été quantifiées à 1mg/L en juin 2017 et 0.4mg/L en novembre 2017, ne sont plus quantifiées en 2018 et sont à nouveau quantifiées en juin 2019. Elles peuvent avoir pour origine des pesticides, phénols, hydrocarbures, huiles, graisses ; toutefois aucune des analyses indicatrices de ces pollutions n'a été détectée.

4.2. Qualité de la ressource en eau au niveau du Grand Lac

7.55

7

7.35

Le captage de la Pépinière au niveau du Grand Lac est soumis à l'arrêté n°1253-2008/PS du 2 septembre 2008. Il y est mentionné la mise en place d'un plan comprenant un suivi semestriel de la qualité des eaux du Grand Lac comprenant les engrais, insecticides et autres produits utilisés à la Pépinière.

La liste d'analyses qui a été établie reprend l'ensemble des suivis imposés par les arrêtés n°79-153/SGCG du 3 avril 1979 et l'arrêté du 11 janvier 2007 relatif au programme de prélèvement et d'analyse du contrôle sanitaire pour les eaux fournies par un réseau de distribution, pris en application des articles R.1321-10, R.1321-15 et R.1321-16 du code de la santé publique. Ce choix a été déterminé par le fait que les eaux du Grand Lac sont pompées par le captage du Camp de la Géologie. En plus de ces listes d'analyses, l'ensemble des molécules des produits utilisés à la Pépinière sont prises en compte dans la liste des paramètres suivis.

La ressource en eau a été analysée le 3 juin et le 17 décembre 2019. Les analyses sont présentées en Annexe II et les dépassements enregistrés au cours des suivis précédents sont présentés au tableau 6.

рΗ

Tableau 6 : Dépassements relevés lors des suivis de la ressource en eau

	:017	/2017	\leftarrow \mid \leftarrow \mid		019		Groupe de qualité A1	
Paramètre	06/06/201	30/11/2	21/06/2	22/11/201	03/06/201	17/12/20	Valeur guide	Valeur limite impérative
Coliformes totaux (UFC/100ml)	1	86	51	115	25	219	50 UFC/100ml	-
Substances extractibles au chloroforme (SEC)	2	0.2	<0.1	<0.1	<0.1	<0.1	0.1mg/L	-
pH	7.25	7.75	7	6	7.2	7.4	6.5-8.5	-

Les analyses de la ressource en eau pour le captage de la pépinière concernent, en plus du suivi de la qualité de la ressource, le suivi des produits utilisés à la pépinière.

Les substances extractibles au chloroforme sont inférieures à la limite de quantification en 2018 et en 2019.

CONCLUSION

Les captages permanents en fonctionnement à la date de ce document sont :

- le captage du lac de barrage de Yaté;
- le captage de la Pépinière ;
- le captage du Camp de la Géologie ;
- la captage du BSKN

Les volumes d'eau pompés au niveau du Lac de Yaté sont conformes à 100%, en données journalières en 2019, à l'arrêté n°70-2007/PS du 12 février 2007. La qualité de la ressource pour le captage du Lac de Yaté a été échantillonnée le 3 juin et le 17 décembre 2019.

Les volumes d'eau consommés par la Pépinière sont conformes à 100% à l'arrêté 551-2014/ARR/DDR du 2 avril 2014.

Les volumes d'eau pompés pour les besoins du Camp de la Géologie sont conformes à 100% à l'arrêté n°710-2013/ARR/DDR du 10 juin 2013.

Les analyses de la ressource en eau du Grand Lac, alimentant la pépinière et le camp de la Géologie, ont été réalisées le 3 juin 2019 et le 17 décembre 2019.

Les volumes d'eau pompés au niveau du BSKN sont conformes à 100% à l'arrêté n°2417-2017-ARR/DDR du 8 septembre 2017.

Les volumes pompés lors des campagnes d'exploration sont conformes à 100% aux arrêtés mentionnés dans le texte.

ANNEXE I : RESUTATS D'ANALYSES DE LA RESSOURCE EN EAU DU LAC DE YATE - PRELEVEMENT DU 3 JUIN ET DU 17 DECEMBRE 2019

IDEX Selon NF EN Colifornes totaux UFC/100ml 1 240 260	Méthodes	Paramètres	Unités	Limite de Quantification	03/06/2019	17/12/2019
IBCX 3890-1		Coliformes totaux	UFC/100ml		240	260
ISO 9308-3 Escreencia Corumn I Curumn I Curumn	ISO 7899-1	Entérocoques	UFC/100mL	1	<1	<1
ISO 0.949		Escherichia coli	UFC/100ml	1	1	<1
NF EN ISO 17993 Acenaphylene* μg/L 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.00 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005				présence dans 5L	5L	
NF EN ISO 17993 Anthracène* μg/L 0,01 <0.01 <0.01 <0.01 NF EN ISO 17993 Benzo(a)anthracène* μg/L 0,005 <0.005 <0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(a)pyène(3.4)* μg/L 0,005 <0.005 <0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(ghi, piènyène(1.12)* μg/L 0,005 <0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(ghi, piènyène(1.12)* μg/L 0,005 <0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(ghi, piènyène(1.12)* μg/L 0,005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(ghi, piènyène(1.12)* μg/L 0,001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0						
NF EN ISO 17993 Benzo(a)phreno(3-d)* μg/L 0.001 <0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Benzo(a)phreno(3-d)* μg/L 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005						
NF EN ISO 17993 Benzo(a)pyréne(3.4)* μg/L 0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(a)pyréné(1.12)* μg/L 0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(a)pyréné(1.12)* μg/L 0.005 <0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(a)pyréné(1.12)* μg/L 0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(a)pyréné(1.12)* μg/L 0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Fluoranthène* μg/L 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.						
NF EN ISO 17993 Benzo(ph)plor/ehre(1.12)" µg/L 0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(ph)plor/ehre(1.12)" µg/L 0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Benzo(k)fluoranthene(1.1.12)" µg/L 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0						
NF EN ISO 17993 Benzo(gh,lipényéne(1,12)* μg/L 0.005 <0.005 <0.005 NF EN ISO 17993 Chrysène* μg/L 0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01						
NF EN ISO 17993 Benzo(k]fluoranthéne(11,12)" µg/L 0.005 <0.005 <0.005 <0.005 NF EN ISO 17993 Dibenzo(a-h)anthracène" µg/L 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Dibenzo(a-h)anthracène" µg/L 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01						
NF EN ISO 17993 Chrysène" μg/L 0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Fluoranthène" μg/L 0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Fluoranthène" μg/L 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Fluoranthène" μg/L 0.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01			ug/L			
NF EN ISO 17993 Dibenzo(a-h)anthraceher' μg/L 0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Fluoranthène' μg/L 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Fluoranthène' μg/L 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005						
NF EN ISO 17993				,		
NF EN ISO 17993 Indenot(12, 3c-d)pyréne* μg/L 0,01 <0.01 <0.05 <0.005 <0.005 NF EN ISO 17993 Indenot(12, 3c-d)pyréne* μg/L 0,005 <0.005 <0.005 <0.005 NF EN ISO 17993 Naphtalène* μg/L 0,050 <0.05 <0.05 <0.05 NF EN ISO 17993 Phénanthrène* μg/L 0,01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01						
NF EN ISO 17993 Indenof1,2.3-c,d)pyréne* μg/L 0.005 <0.005 <0.005 NF EN ISO 17993 Naphtalène* μg/L 0.01 <0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Phénanthrène* μg/L 0.01 <0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Pyrène* μg/L 0.01 <0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Somme des 16 HAP* μg/L 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	NF EN ISO 17993	Fluorène*			<0.01	<0.01
NF EN ISO 17993 Phénanthréne* µg/L 0.01 <0.01 <0.01 NF EN ISO 17993 Pyrène* µg/L 0.01 <0.01 <0.01 <0.01 NF EN ISO 17993 Somme des 16 HAP* µg/L 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025		Indéno(1,2,3-c,d)pyrène*		0,005	< 0.005	< 0.005
NF EN ISO 17993 Pyrène* µg/L 0.01 <0.01 <0.01 NF EN ISO 17993 Somme des 16 HAP* µg/L 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05		Naphtalène*	μg/L	0,050	< 0.050	< 0.05
NF EN ISO 17993 Somme des 16 HAP*						
ISO 16265 Agents de surface anioniques* mg LSA/I 0,05 <0.05 <0.05 <0.05						
NF EN ISO 17294-2						
EPA 10023 Ammonium						
NF EN ISO 17294-2				·		
NF EN 25663						
NF EN ISO 17294-2 Baryum μg/l 1 <1 <1 <1 NF EN ISO 17294-2 Bore μg/l 1 3.26 7.93						
NF EN ISO 17294-2 Bore						
NF EN ISO 17294-2 Cadmium						
NF EN ISO 11885						
NF ISO EN 9963-1 Carbonates mg/L 3 <3 <3 <3 EPA 10129 Carbone organique total (COT) mg C/L 0,3 0,467 <0.3 NF EN ISO 10304-1 Chlorures dissous mg C/L 0,125 6,19 5,94 NF EN ISO 17294-2 Chrome μg/l 1 4.8 5.53 NF EN 1SO 17294-2 Chrome μg/l 1 4.8 5.53 NF EN 1SO 7887 Couleur apparente mg/L Pt 5 8 13 NF EN ISO 17294-2 Cuivre μg/l 1 <1 <1 <1 <1 <1 <1 <1						
EPA 10129 Carbone organique total (COT) mg C/L 0,3 0.467 <0.3 NF EN ISO 10304-1 Chlorures dissous mg C/L 0.125 6.19 5.94 NF EN ISO 17294-2 Chrome μg/l 1 4.8 5.53 NF EN 27888 Conductivité μS/cm 1 71.6 116 NF EN ISO 7887 Couleur apparente mg/L Pt 5 8 13 NF EN ISO 17294-2 Cuivre μg/l 1 <1						
NF EN ISO 10304-1 Chlorures dissous mg Cl/L 0.125 6.19 5.94						
NF EN ISO 17294-2 Chrome						
NF EN ISO 7887 Couleur apparente mg/L Pt 5 8 13 NF EN ISO 17294-2 Cuivre μg/l 1 <1 <1 NF EN ISO 14403 (distillation) NF EN 1899-1 Demande biochimique en oxygène (DBO5) Demande chimique en oxygène (DCO) ISO 15705:2002 Demande chimique en oxygène (DCO) mg/L 3 <3 5 NF T90-003 Dureté totale (TH) °F 0,2 3.2 4.1 NF EN ISO 17294-2 Fer dissous μg/l 1 13.7 5 NF EN ISO 10304-1 Fluorures dissous mg F/L 0.1 <0.1 <0.1 NF EN ISO 19377-2 Hydrocarbures totaux * mg/L 0.1 <0.1 <0.1 <0.1 NF EN ISO 11885 Magnésium mg Mg/L 0.1 8.61 6.91 NF EN ISO 17294-2 Matières en suspension (MES) mg/L 2 <2 <2 <2 NF EN ISO 17294-2 Mercure μg/l 0.015 <0.015 <0.015 NF EN ISO 17294-2 Mercure μg/l 0.015 <0.015 <0.015 NF EN ISO 17294-2 Nickel μg/l 1 3.5 1.68 NF EN ISO 10304-1 Nitrites dissous mg NOZ/L 0,05 <0.05 <0.05 NF EN ISO 10304-1 Nitrites dissous mg/L 0,1 8.5 8.06 NF EN ISO 10304-1 Nitrites dissous (O2) mg/L 0,1 8.5 8.06 NF EN 25814 Oxygène dissous (O2) mg/L 0,1 7.55 7.8 NF EN 6878 Phosphore total mg P2O5/L 0,09 <0.09 <0.09	NF EN ISO 17294-2	Chrome		1	4.8	5.53
NF EN ISO 14403		Conductivité				116
NF EN ISO 14403 (distillation) Cyanures totaux* mg/L 0.01 <0.010 <0.01 NF EN 1899-1 Demande biochimique en oxygène (DBO5) mg O2/L 2 <2						
NF EN 1899-1 Demande biochimique en oxygène (DBO5) mg O2/L 2 <2 4		Cuivre	μg/l	1	<1	<1
NF EN 1899-1 Oxygène (DBO5) mg O2/L 2 <2 4		,	mg/L	0.01	<0.010	<0.01
NF T90-003	NF EN 1899-1	oxygène (DBO5)	mg O2/L	2	<2	4
NF EN ISO 17294-2 Fer dissous μg/l 1 13.7 5 NF EN ISO 10304-1 Fluorures dissous mg F/L 0.1 <0.1		(DCO))		<3	5
NF EN ISO 10304-1 Fluorures dissous mg F/L 0.1 <0.1 <0.1 NF EN ISO 9377-2 Hydrocarbures totaux * mg/L 0.1 <0.1			•	0,2		
NF EN ISO 9377-2 Hydrocarbures totaux * mg/L 0.1 <0.1 <0.1 NF EN ISO 14402 Indice phénol * mg C6H5OH/I 0,01 <0.01				·		
NF EN ISO 14402 Indice phénol * mg C6H5OH/I 0,01 <0.01 <0.01 NF EN ISO 11885 Magnésium mg Mg/L 0.1 8.61 6.91 NF EN ISO 17294-2 Manganèse μg/I 1 <1						
NF EN ISO 11885 Magnésium mg Mg/L 0.1 8.61 6.91 NF EN ISO 17294-2 Manganèse μg/l 1 <1			mg/L			
NF EN ISO 17294-2 Manganèse μg/l 1 <1 <1 NF EN 872 Matières en suspension (MES) mg/L 2 <2						
NF EN 872 Matières en suspension (MES) mg/L 2 <2 <2 NF EN ISO 17294-2 Mercure μg/l 0.015 <0.015						
NF EN ISO 17294-2 Mercure μg/l 0.015 <0.015 <0.015 NF EN ISO 17294-2 Nickel μg/l 1 3.5 1.68 NF EN ISO 10304-1 Nitrites dissous mg NO2/L 0,05 <0.05	NE EN 15U 17294-2					
NF EN ISO 17294-2 Nickel µg/l 1 3.5 1.68 NF EN ISO 10304-1 Nitrites dissous mg NO2/L 0,05 <0.05						
NF EN ISO 10304-1 Nitrites dissous mg NO2/L 0,05 <0.05 <0.05 Méthode interne Odeur TON 1 <1						
Méthode interne Odeur TON 1 <1 <1 NF EN 25814 Taux de saturation en oxygène dissous (O2) % 1 91 98.2 NF EN 25814 Oxygène dissous (O2) mg/L 0,1 8.5 8.06 NF T90-008 pH Unités pH 0,1 7.55 7.8 NF EN 6878 Phosphore total mg P2O5/L 0,09 <0.09						
NF EN 25814 Taux de saturation en oxygène dissous (O2) % 1 91 98.2 NF EN 25814 Oxygène dissous (O2) mg/L 0,1 8.5 8.06 NF T90-008 pH Unités pH 0,1 7.55 7.8 NF EN 6878 Phosphore total mg P2O5/L 0,09 <0.09						
NF EN 25814 Oxygène dissous (O2) mg/L 0,1 8.5 8.06 NF T90-008 pH Unités pH 0,1 7.55 7.8 NF EN 6878 Phosphore total mg P2O5/L 0,09 <0.09		Taux de saturation en oxygène	-			
NF T90-008 pH Unités pH 0,1 7.55 7.8 NF EN 6878 Phosphore total mg P205/L 0,09 <0.09	NF FN 25814		ma/l	0.1	8.5	8.06
NF EN 6878 Phosphore total mg P2O5/L 0,09 <0.09 <0.09						
				·		

NF EN ISO 17294-2 Sélénium μg/l 1 <1	<1 13.8 3 <0.1 2.46 <1 <0.04 <0.02 <0.02 <0.02
NF EN ISO 11885 Sodium mg Na/L 0.1 4.19 Gravimétrie Substances extractibles au chloroforme SEC* mg/L 0,1 0.6 NF EN ISO 10304-1 Sulfates dissous mg SO4/L 0.1 1.97 NF EN ISO 17294-2 Zinc μg/l 1 <1	3 <0.1 2.46 <1 <0.04 <0.02 <0.02 <0.02
Gravimétrie Substances extractibles au chloroforme SEC* mg/L 0,1 0.6 NF EN ISO 10304-1 Sulfates dissous mg SO4/L 0.1 1.97 NF EN ISO 17294-2 Zinc μg/l 1 <1	<0.1 2.46 <1 <0.04 <0.02 <0.02 <0.02
Chloroforme SEC* Mg/L 0,1 0.6	2.46 <1 <0.04 <0.02 <0.02 <0.02
NF EN ISO 17294-2 Zinc μg/l 1 <1 LL-GCTSD selon NF EN 12918 Phosalone* μg/L 0.04 <0.040	<1 <0.04 <0.02 <0.02 <0.02
LL-GCTSD selon NF EN 12918 Phosalone* pg/L 0.04 <0.040 Countries Extraction liquide, dérivation et GC-MS Extraction liquide, Extraction liquide, A populational diéthogulate* LL-GCTSD selon NF EN 12918 Phosalone* pg/L 0.04 <0.040 Countries	<0.04 <0.02 <0.02 <0.02
EN 12918 Phosalone* μg/L 0.04 <0.040 Extraction liquide, dérivation et GC-MS Extraction liquide, 4 populatée diéthogulate* μg/L 0.04 <0.040	<0.02 <0.02 <0.02
dérivation et GC-MS Nonyiphenois - <0.10 Extraction liquide, 4 populational diéthographies 4 populational diéthographies	<0.02
	<0.02
derivation et GC-ivi3	
Extraction liquide, dérivation et GC-MS 4-nonylphénol-éthoxylate* μg/L 0.02 <0.02	<0.005
NF EN ISO 11369	
LL-GCMS selon NF EN	<0.01
SPE-LCMSMS selon NF EN ISO 11369 Abamectin* μg/L 0.1 <0.10	<0.10
LL-GCMS selon NF EN	<0.01
NF EN ISO 11369	<0.005
dérivation / HPLC / Aminotriazole (Amitrole)* μg/L 0,1 <0.1	<0.1
SPE-LCMSMS selon Amitraze* μg/L 0.02 <0.02	<0.02
/MSMS (Aminomethylphosphonic Acid)" 19	<0.050
SPE-LCMSMS selon Atrazine* μg/L 0.005 <0.005	<0.005
SPE-LCMSMS selon NF EN ISO 11369 Azoxystrobine* μg/L 0.005 <0.005	<0.005
ID /HPLC /MSMS Brodifacoum* μg/L 0.1 <0.1	<0.1
NF EN ISO 11369	<0.005
NF EN ISO 11369	<0.005
NF EN ISO 11369	<0.005
LL-GCMS selon NF EN ISO 10695 Chlorothalonil* μg/L 0,10 <0.10	<0.10
LL-GCTSD selon NF EN 12918 Chlorpyriphos éthyl* μg/L 0,0050 <0.0050	<0.0050
LL-GCTSD selon NF EN 12918 Chlorpyriphos méthyl* μg/L 0,02 <0.02	<0.02
LL-GCMS selon NF Cyfluthrine* μg/L 0.05 <0.050	<0.050
EN ISO 10695	<0.080
ID /HPLC /MSMS Dazomet* μg/L 0.1 <0.1	<0.1
EN ISO 10695	<0.080
LL-GCTSD selon NF EN 12918 Dichlorvos* μg/L 0,05 <0.05	<0.05
LL-GCMS selon NF EN ISO 10695 Dicofol* μg/L 0.05 <0.050	<0.050
LL-GCMS selon NF EN	<0.01
NF EN ISO 11369	<0.005
SPE /HPLC /MSMS Diquat* μg/L 0.1 <0.100	<0.100
Dégradation / HS /CPG Dithiocarbamates / MS Dithiocarbamates totaux*(Mancozèbe) 2 <2	<2
NF EN ISO 11369	<0.005
LL-GCMS selon NF EN Endosulfan alpha* μg/L 0,020 <0.020	<0.02

Méthodes	Paramètres	Unités	Limite de Quantification	03/06/2019	17/12/2019
LL-GCMS selon NF EN ISO 6468	Endosulfan beta*	μg/L	0.01	<0.01	<0.01
SPE-LCMSMS selon NF EN ISO 11369	EPTC*	μg/L	0.05	<0.05	<0.05
HPLC / MS/MS	Foséthyl aluminium*	μg/L	0.1	<0.10	<0.1
SPE /HPLC /MSMS	Glyphosate*	μg/L	0,050	< 0.050	< 0.05
LL-GCMS selon NF EN ISO 6468	HCH Gamma (Lindane)*	μg/L	0.001	<0.001	<0.001
LL-GCMS selon NF EN ISO 6468	Heptachlore époxide (cis + trans)*	μg/L	0.01	<0.010	<0.01
LL-GCMS selon NF EN ISO 6468	Heptachlore*	μg/L	0,005	<0.005	<0.005
NF EN ISO 9963-1	Hydrogénocarbonates	mg/L	6	48.8	48.8
SPE-LCMSMS selon NF EN ISO 11369	loxynil*	μg/L	0.1	<0.1	<0.1
SPE-LCMSMS selon NF EN ISO 11369	Isoproturon*	μg/L	0.005	<0.005	<0.005
LL-GCMS selon NF EN ISO 10695	Lambda-cyhalothrine*	μg/L	0.04	<0.040	<0.04
SPE-LCMSMS selon NF EN ISO 11369	Linuron*	μg/L	0.005	<0.005	<0.005
LL-GCTSD selon NF EN 12918	Malathion*	μg/L	0.05	<0.050	<0.05
LL / CPG /MS	Métaldéhyde*	μg/L	0.02	<0.02	<0.02
SPE-LCMSMS selon NF EN ISO 11369	Méthomyl*	μg/L	0.005	<0.005	<0.005
SPE-LCMSMS selon NF EN ISO 11369	Metribuzine*	μg/L	0.005	<0.005	<0.005
LL-GCTSD selon NF EN 12918	Oxadiazon*	μg/L	0.02	<0.020	<0.02
SPE /HPLC /MSMS	Paraquat*	μg/L	0,100	<0.100	<0.100
SPE-LCMSMS selon NF EN ISO 11369	Parathion éthyl*	μg/L	0.04	<0.04	<0.04
NF EN ISO 6468	Parathion méthyl*	μg/L	0.05	< 0.050	< 0.05
LL-GCMS selon NF EN ISO 10695	Tétradifon*	μg/L	0.05	<0.050	<0.05
ID /HPLC /MSMS	Thiophanate-méthyl*	μg/L	0.05	< 0.05	<0.02
NF EN ISO 9963-1	Titre alcalimétrique complet (TAC)	°F	0,5	4	4
LL-GCTSD selon NF EN 12918	Triadiméfon*	μg/L	0.05	<0.050	<0.05

ANNEXE II : RESUTATS D'ANALYSES DE LA RESSOURCE EN EAU DU GRAND LAC - PRELEVEMENT DU 3 JUIN ET DU 17 DECEMBRE 2019

Méthodes	Paramètres	Unité 2019	LQ 2019	03/06/2019	17/12/2019
IDEXX selon NF EN ISO 9308-3	Coliformes totaux	UFC/100ml	1	25	219
IDEXX selon NF EN ISO 7899-1	Entérocoques	UFC/100mL	1	<1	6
IDEXX selon NF EN ISO 9308-3	Escherichia coli	UFC/100ml	1	<1	<1
ISO 6340	Salmonelles**	0	absence ou présence dans 5L	absence dans 5L	absence dans 5L
NF ISO 11423-1	1,2,4-triméthylbenzène (pseudocumène)*	μg/l	1	<1	<1
ISO 16265	Ägents de surface anioniques*	mg LSA/I	0,05	<0.05	<0.05
Méthode interne colorimétrie	Agents de surface cationiques*	mg/L	0.2	<0.2	<0.2
NF EN ISO 17294-2	Aluminium	μg/l	1	1.62	1.38
EPA 10023	Ammonium	mg NH4/L	0,025	< 0.025	< 0.025
NF EN ISO 17294-2	Arsenic	μg/l	1	<1	<1
NF EN 25663	Azote kjeldahl	mg N/L	1	<1	<1
NF EN ISO 17294-2	Baryum	μg/l	1	<1	<1
NF EN ISO 17294-2	Bore	μg/l	1	4.38	12.2
NF EN ISO 17294-2	Cadmium	μg/l	1	<1	<1
NF EN ISO 11885	Calcium	mg Ca/l	0.1	<0.1	<0.1
NF ISO EN 9963-1	Carbonates	mg/L	3	<3	<3
EPA 10129	Carbone organique total (COT)	mg C/L	0,3	<0.3	<0.3
NF EN ISO 10304-1	Chlorures dissous	mg Cl/L	0.125	8.77	11.2
NF EN ISO 17294-2	Chrome	μg/l	1	1.27	<1
NF EN 27888	Conductivité	μS/cm	1	54	73.6
NF EN ISO 7887	Couleur apparente	mg/L Pt	5	9	11
NF EN ISO 17294-2	Cuivre	μg/l	1	1.74	1.51
NF EN ISO 14403 (distillation)	Cyanures totaux*	mg/L	0.01	<0.010	<0.010
NF EN 1899-1	Demande biochimique en oxygène (DBO5)	mg O2/L	2	<2	2
ISO 15705:2002	Demande chimique en oxygène (DCO)	mg/L	3	<3	37
Injection directe / CPG / FID	Diéthylène Glycol*	mg/l	20	<20	<20
NF T90-003	Dureté totale (TH)	°F	0,2	1.6	2
Méthode interne HPLC / LS	EDTA	0	1	<1	<1
Calcul	Equilibre calco- carbonique	0	0	Eau très agressive	11
NF ISO 11423-1	Ethylbenzène*	μg/l	0.2	<0.2	<1
NF EN ISO 17294-2	Fer dissous	μg/l	1	11.2	9.75
NF EN ISO 10304-1	Fluorures dissous	mg F/L	0.1	<0.1	<0.1
NF EN ISO 9377-2	Hydrocarbures totaux*	mg/L	0.1	<0.1	<0.1
NF EN ISO 9963-1	Hydrogénocarbonates	mg/L	6	24.4	21.4
NF EN ISO 11369	Imidaclopride	μg/L	0.005	<0.005	<0.005
NF EN ISO 14402	Indice phénol*	mg C6H5OH/I	0,01	<0.01	<0.01
NF EN ISO 11885	Magnésium	mg Mg/L	0.1	4.49	3.05
LL-GCTSD selon NF EN 12918	malathion*	μg/L	0.05	<0.050	<0.050
Dégradation / HS/GC/MS	Mancozeb*	μg/L	2	<2	<2
NF EN ISO 17294-2	Manganèse	μg/l	1	<1	<1
NF EN 872	Matières en suspension (MES)	mg/L	2	<2	<2
NF EN ISO 17294-2	Mercure	μg/l	0.015	<0.015	<0.015
NF ISO 11423-1	méta+para-xylène*	μg/L	0.013	<0.2	<0.2
NF EN ISO 17294-2	Nickel	μg/l	1	2.36	2.23
NF EN ISO 10304-1	Nitrates dissous	mg NO3/L	0,05	0.08	<0.05
NF EN ISO 10304-1	Nitrites dissous	mg NO2/L	0,05	<0.05	<0.05
Méthode interne	Odeur	TON	1	<1	<1
NF ISO 11423-1	ortho+méta+para xylène*	1011	<u> </u>		` '
55 11720 1			1	l .	1

Méthodes	Paramètres	Unité 2019	LQ 2019	03/06/2019	17/12/2019
NF ISO 11423-1	ortho-xylène*	μg/L	0.2	<0.2	<0.2
NF EN 25814	Taux de saturation en oxygène dissous*	%	1	92	98.9
NF EN 25814	Oxygène dissous*	mg/L	0,1	8.45	8.22
NF T90-008	рН	Unités pH	0,1	7.2	7.4
NF EN 6878	Phosphore total*	mg P2O5/L	0,09	< 0.09	< 0.09
NF EN ISO 17294-2	Plomb*	μg/l	1	<1	<1
Méthode interne HPLC / MS / MS	Propamocarbe hydrochloride*	μg/L	0.1	<0.1	<0.1
NF EN ISO 17294-2	Sélénium	μg/l	1	<1	<1
EPA 8185	Silice	mg SiO2/L	1	3.95	3.2
NF EN ISO 11885	Sodium	mg Na/L	0.1	5.85	4.77
Gravimétrie	Substances extractibles au chloroforme SEC*	mg/L	0,1	<0.1	<0.1
NF EN ISO 10304-1	Sulfates dissous	mg SO4/L	0.1	1.87	2.6
NF EN ISO 9963-1	Titre alcalimétrique complet (TAC)	°F	0,5	2	1.75
NF EN ISO 17294-2	Zinc	ua/l	1	1.79	2.66