Campagne de surveillance n°3 de la population de *Lacertoides pardalis* (Scincidae) de la mine A1

Contrôle de réussite du transfert de spécimens dans un nouveau site de relâche

- Commune du Mont-Dore (province Sud) -

Rapport d'expertise réalisé pour le Service Préservation de l'Environnement de VALE Nouvelle-Calédonie

Remerciements

Ces derniers s'adressent à,

Stéphane McCoy, Responsable du Service Préservation de l'Environnement de VALE Nouvelle-Calédonie SAS, pour nous avoir accordé sa confiance dans la conduite de cette campagne de surveillance,

Anaïs Bouteiller, chargée d'études faune/flore, de l'équipe Conservation de la Faune Terrestre, du Service Préservation de l'Environnement — Direction HSE de VALE Nouvelle-Calédonie SAS, pour son aide précieuse concernant la réalisation de la campagne de terrain,

Lionel Bures, collaborateur au cours de cette campagne herpétologique,

l'ensemble du personnel de l'équipe Conservation Faune & Flore de VALE Nouvelle-Calédonie.

Photo de couverture : Lacertoides pardalis femelle (LP1) recapturée sur le site C.

Photo : S. Astrongatt.

Sommaire

I.	Introduction	. 3
	adre de l'étude et objectif général	
II.	Sites de surveillance et typologie des habitats	5
III.	Informations concernant le scinque Lacertoides pardalis	5
IV.	Méthodologie de recherche	6
٧.	Effort de recherche et conditions météorologiques	7
VI.	Résultats de la campagne de surveillance	9
VII.	Bilan général de la campagne de surveillance n°3	L4
VIII.	Conclusion/Discussion	L6
IX.	Références bibliographiques	18

I. Introduction

Cadre de l'étude et objectif général

Le scinque-léopard de Nouvelle-Calédonie, *Lacertoides pardalis*, est une **espèce spécialisée**, inféodée à un type d'habitat particulier, possédant un spectre alimentaire original.

Actuellement, cette grande espèce de lézard a une aire de répartition connue et limitée à cinq localités¹ du Grand Sud et une nouvellement découverte sur Thio (côte Est)².

Plus récemment, cette espèce a été enregistrée sur d'autres sites au niveau de la chaîne Kwa Néie (Sadlier *et al.*, 2015, Lagrange *et al.*, 2015), et sur les chaînes Kwé Nord (Sadlier *et al.*, 2014) au cours d'études associées au développement du projet Lucy sur le bassin versant de la Kwé Ouest, anciennement appelé KO4.

En raison de son aire de distribution relativement restreinte, et sa préférence pour des habitats dans une zone sujette à de fortes menaces d'origine anthropique (activités minières) et à la présence d'espèces animales introduites envahissantes (fourmis, chats et rats, principalement), *Lacertoides pardalis* est classée dans la catégorie « Vulnérable » (VU), selon les critères de l'Union internationale pour la conservation de la nature (UICN, 2017).

Dans le cadre du projet d'ouverture d'une carrière de péridotite (CP-A1) située sur la crête séparant les bassins KO5 et KO4, une opération de capture et de transfert³ de *Lacertoides pardalis* a été entreprise en octobre 2015 par le bureau d'études Cygnet Surveys & Consultancy (Sadlier *et al.*, 2015). Au total, dix-sept spécimens de *Lacertoides pardalis* ont été déplacés intentionnellement du site de la carrière CP-A1 au nouveau site d'accueil de la mine A1. Cette opération de transfert de spécimens a initié un programme de suivi de cette population de scinque-léopard, dont l'objectif principal est de s'assurer de la réussite du processus de « transfert » sur une période prolongée, et d'améliorer nos connaissances scientifiques sur la structure et la dynamique de population de cette espèce.

Avant d'être relâchés dans leur nouvel habitat, chaque individu a été préalablement mesuré, pesé, sexé (si possible), marqué, et photographié, en vue d'une identification ultérieure au cours des futures campagnes de suivi post-lâcher. La méthode d'analyse de données, favorisée concernant les spécimens collectés, est la méthode dite de « Capture-Marquage-Recapture ». Cette méthode se base sur l'identification individuelle des animaux suivis sur le terrain. L'amputation d'un doigt chez ces animaux, selon un code d'identification unique à chaque spécimen, a été le type de marquage privilégié, afin de

¹ En effet, cinq populations de *Lacertoides pardalis* sont connues sur les monts Kwa Neie et Ka Yé Wagwé, sur la chaîne de la Kwé Nord, au sein de la réserve de la Montagne des Sources, et à la Rivière Blanche (Parc Provinciale de la Rivière Bleue).

² Un spécimen de *L. pardalis* photographié en juin 2014 sur une concession minière près du lieu dit « Les Pétroglyphes », à Thio (côte Est), représente la population la plus occidentale de ce taxon, connue à ce jour.

³ Le transfert est le déplacement, par l'homme, d'organismes vivants d'un site pour les relâcher dans un autre (UICN, 2012).

pouvoir distinguer et reconnaître chaque animal au cours du temps. Ce type de marquage durable, bien que considéré par certain comme barbare, ne modifie pas leur capacité de déplacement, ni leur succès reproducteur.

Avant ce projet de translocation d'espèces animales, treize sites de prospection ont été réalisés sur la mine A1 (étude préparatoire – octobre 2015), afin de connaître, si possible, la densité de population de *Lacertoides pardalis* présente sur cette ancienne mine (des études antérieures ont permis de détecter quelques spécimens de *L. pardalis*, confirmant l'existence d'une population réduite de ce taxon sur A1). Ces sites de recherche ont été choisis en fonction des nombreux affleurements rocheux représentant des habitats propices à la présence de ce taxon. Une observation rapide des populations de fourmis introduites à caractère envahissant a également été entreprise, afin de cibler les meilleurs sites de transfert. Des populations de fourmi folle jaune, *Anoplolepis gracilipes*, sont disséminées sur le périmètre d'étude de la mine A1, avec des tailles de population estimées faibles, tout comme la population réduite de rats enregistrée⁴. <u>Un seul individu de *Lacertoides pardalis* a été capturé au cours de cette étude préparatoire,</u> et ce dernier a été relâché sur son lieu de capture (point C3) après avoir été marqué.

Cette opération de transfert (ou translocation) d'individus sauvages, vers une population existante de lézards de la même espèce, est un **projet pionnier** en Nouvelle-Calédonie. Des projets similaires ont déjà été mis en œuvre en Nouvelle-Zélande, avec la translocation de deux espèces de scinques classées « En danger » (EN) pour *Oligosoma otagense* et « Vulnérable » (VU) pour *Oligosoma grande* (Germano, 2007 ; Houghton, 2001 ; Patterson, 1992 ; Roughton, 2005 ; McCoy et al., 2014; Whitmore et al., 2011). Ces espèces ont une écologie et une morphométrie similaires à *Lacertoides pardalis*, dépendant également de la présence de zones d'affleurements rocheux pour y trouver abris et nourriture. Leur comportement craintif est comparable à celui de *Lacertoides pardalis*. Ces programmes de transfert/renforcement⁵ ont été un succès puisqu'ils ont permis d'**établir de nouvelles populations**, et de renforcer des populations déjà existantes.

Les résultats issus de ces enquêtes cycliques de suivi post-lâcher permettent de mesurer la réussite ou l'échec de ce transfert de spécimens, en évaluant, si possible, la survie des spécimens transférés, ainsi que leur dissémination dans leur nouvel habitat. Ce retour d'informations, concernant également les aspects biotiques (évolution des ressources trophiques et des populations d'espèces envahissantes) et abiotiques (fragmentation des habitats, qualité des sites d'abris et de fourragement, changement climatique, pollution atmosphérique, etc.) pourraient garantir ou non le maintien (ou la modification) de ce

⁴ Présence détectée sur les pièges collants, technique de piégeage privilégiée pour réaliser ces campagnes pré et post-lâcher (voir la méthodologie page 7).

⁵ Le renforcement est le déplacement intentionnel d'un organisme pour le relâcher dans une population existante de ses congénères (UICN, 2012).

programme de gestion. En effet, il est possible d'abandonner ce projet de manière justifiée si le transfert ne se déroule pas comme prévu - stratégie de sortie (UICN, 2012).

II. Sites de surveillance et typologie des habitats

La zone d'étude correspond approximativement à trois sites de surveillance répartis sur la mine A1, établie en partie basse du mont Kwa Neie. Cette ancienne mine, dite « orpheline », fait l'objet d'un programme de restauration sur une partie de sa surface (par l'équipe revégétalisation de VALE NC). Une investigation partielle de ses habitats a permis la première détection de l'espèce Lacertoides pardalis (un seul spécimen) en décembre 2008 sur la mine A1 (Sadlier, 2009). Ces trois sites (A, B et C)⁶ sont composés de maquis lignoherbacé dont les nombreux affleurements rocheux péridotitiques représentent l'habitat et sites d'abris préférentiels de Lacertoides pardalis. Ces unités d'échantillonnages sont séparées dans l'espace afin d'être considérées comme plus ou moins indépendantes. Quatre stations de relâche ont été choisies préférentiellement en octobre 2015 sur la mine A1 : A5, B5, C1 et C2. La multiplication des sites pour les lâchers augmente les chances de trouver un habitat propice et d'éviter les perturbations localisées (UICN, 2012).

Ces stations de relâche ont été choisies pour leur proximité avec de nombreux blocs de péridotite et un tapis végétal relativement homogène, favorisant cachettes et déplacements migratoires des nouveaux arrivants transférés issus de la carrière CP-A1. Chaque station a été initialement géo-localisée et marquée (ruban de signalisation) afin d'être retrouvée rapidement au cours des futures campagnes de surveillance.

La carte de la page 8 indique également le point de capture et de relâche de l'unique *Lacertoides pardalis* femelle enregistrée sur A1, en octobre 2015 (site C3).

III. Informations concernant le scinque Lacertoides pardalis

Lacertoides pardalis est un scinque endémique à la province Sud de la Nouvelle-Calédonie, de grande taille, et caractérisé par de petites écailles sur tout le corps (suggérant vraisemblablement une grande flexibilité - Ross Sadlier, comm. pers.). La taille maximale du corps des adultes est de 140 mm (de la pointe du museau au cloaque), et une queue longue mesurant environ 200-250% de la longueur du corps (Bauer et Sadlier, 2000). Ce lézard présente un patron d'ocelles pâles, gris-olive à centre noir, obscurcis antérieurement. La surface ventrale est blanche avec un patron de marques réticulées étroites sur toute sa surface. La partie dorsale de la queue présente un patron régulier de larges bandes sombres alternées avec d'étroites bandes pâles (Bauer et Sadlier, 2000). Pas de dimorphisme sexuel existant. Cette espèce a été décrite pour la première fois en 1997, à partir de deux spécimens en provenance d'un unique site de récolte, dans l'extrême sud de la Grande Terre

⁶ Un quatrième site, compris entre les sites B et C a été nommé, de par sa position, B/C (voir le fichier Excel et les données SIG).

(Sadlier et al., 2014). Depuis la description originale, les observations qui ont été faites indiquent une nette **préférence pour les habitats rocheux**. Ces habitats peuvent prendre la forme d'affleurements rocheux de péridotite comportant des crevasses, ou autres aménagements artificiels tels que les tranchées des routes présentant de larges rochers dans la matrice du sol, et de façon prédominante dans les formations végétales constituées d'arbustes ou d'arbrisseaux dans les maquis ligno-herbacés avec couvert végétal de carex dense. Ce type d'habitats rocheux se trouve fréquemment à proximité des lignes de crêtes.

La capture d'une dizaine d'individus (des juvéniles, mais également des spécimens adultes de grandes tailles) ont permis de fournir des informations sur la biologie et l'écologie de cette espèce, en particulier, une **reproduction vivipare** ⁷ et un régime alimentaire généraliste, reposant sur la prédation d'invertébrés, mais également sur d'autres espèces de reptiles, et de façon plus inattendue, avec une **frugivorie importante** ⁸. *L. pardalis* pourrait jouer un rôle important pour la dissémination de certaines espèces de maquis, voire de lisières forestières (Sadlier *et al.*, 2014). Le scinque-léopard est l'un des scinques les plus craintifs de Nouvelle-Calédonie, et n'a été dérangé ou observé en activité qu'à cinq reprises uniquement et toujours sur ou à proximité de sites d'abris ou sous des roches. La majorité des autres enregistrements ont été réalisés à partir d'individus capturés par des pièges collants, stratégiquement placés au niveau de crevasses dans et sous les rochers de péridotite. Leurs abris sont formés par des terriers naturels ou partiellement excavés dans le sol sous les roches, par d'étroites crevasses dans les affleurements rocheux ou encore par des superpositions de roches.

De nouvelles études sur l'écologie et la biologie de cette espèce sont toutefois nécessaires, notamment pour mieux comprendre le déplacement et la migration des individus au sein, et entre les différentes zones d'habitats adaptés, afin d'assurer une meilleure gestion de ses populations.

IV. Méthodologie de recherche

L'effort de recherche a été principalement réalisé par la méthode dite des pièges collants (Trapper® Max). L'utilisation de ces pièges comme méthode d'échantillonnage des communautés de lézards est une technique récente en herpétologie (Ribeiro-Junior et al., 2006). C'est un moyen efficace, facile à déployer et relativement peu coûteux. Les expériences précédentes ont montré que des pièges collants stratégiquement placés à l'intérieur ou à côté des zones d'abris (crevasses et fissures), dans les affleurements de péridotite, permettaient la capture de *Lacertoides pardalis* (Sadlier et al., 2014: Sadlier et al., 2015). Cette méthode est, à ce jour, la seule méthode éprouvée et efficace pour la capture

⁷ Une des rares espèces de scinques de Nouvelle-Calédonie à se reproduire de cette manière.

⁸ En effet, l'examen de leur estomac a révélé un régime alimentaire omnivore.

des individus de cette espèce. Une recherche à vue a également été réalisée (avec des jumelles), mais sans succès⁹.

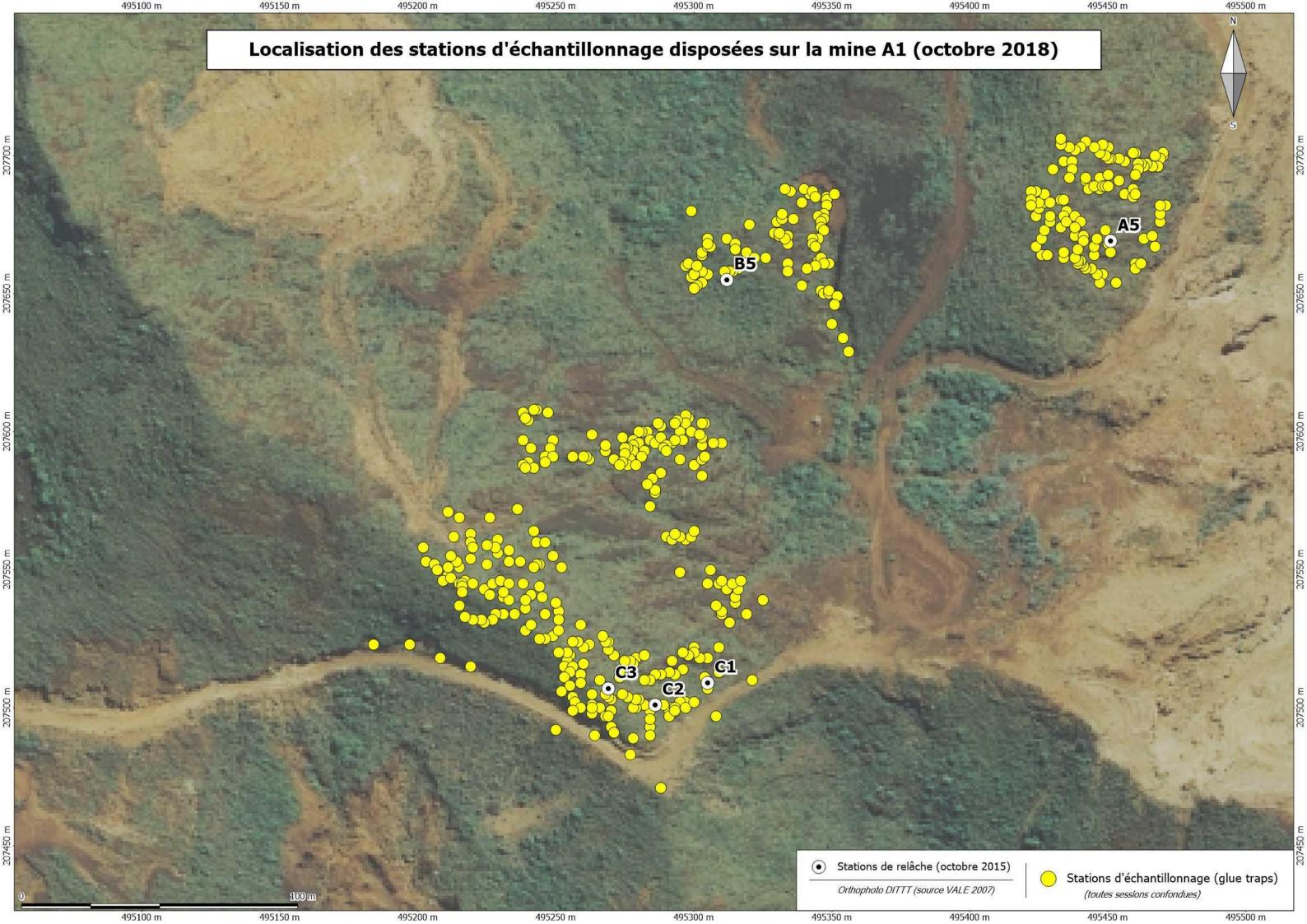
L'avantage de cette méthode concerne particulièrement la capture des espèces discrètes fouisseuses, qui sont des espèces difficilement observables sur le terrain. Cette méthode a permis la découverte de nombreuses espèces de scincidés ces dernières années.

V. Effort de recherche et conditions météorologiques

Cette troisième campagne de surveillance de la population transférée de *Lacertoides* pardalis sur la mine A1 (et par la même occasion, de la population native de cet ancien site minier), a été réalisée du **23 au 31 octobre 2018**, soit au cours d'une période de <u>9 jours</u>.

Cinq sessions de pose de glue traps, réparties sur cinq jours, ont permis de mettre en place un total de **470 pièges collants**. Tous ces pièges n'ont pas été laissés en place le même nombre de jours consécutifs ; le résultat final donne un effort de recherche conséquent de **2740 piège/jour**¹⁰ (PJ).

Au cours de cette étude, il a été décidé de concentrer l'effort de recherche sur un périmètre plus petit que celui réalisé en octobre 2016. En effet, certains pièges avaient été disposés à plus de 200 m des points de relâche de la zone C (Astrongatt, 2016), et aucun animal capturé ne comportaient de marques spécifiques ; ces spécimens appartenaient donc à la population résidente de la mine A1. Ils avaient été relâchés sans avoir été mesurés, pesés, sexés et marqués (pour éviter tout stress inutile à ces animaux).


Les températures relevées au cours des recherches diurnes, de cette fin du mois d'octobre 2018, étaient relativement douce ($\bar{x}=24,4^{\circ}\text{C}$), marquées par une humidité relative moyenne ($\bar{x}=71,7\%$), une nébulosité peu importante ($\bar{x}=39,3\%$) et un vent moyen soutenu ($\bar{x}=3,6$ km/h).

Ces conditions climatiques ont été généralement favorables à l'activité de l'herpétofaune terrestre de la mine A1, bien que d'épais nuages de basses altitudes accompagnés de fortes averses et de rafales de vent aient limité l'activité des lézards de la mine A1, en début de mission (les 23 et 24 octobre). Quelques petites averses éparses ont été également enregistrées durant la période d'investigation.

Il est bon de rappeler que le comportement des lézards est fortement influencé par les conditions météorologiques (Hill et al., 2005).

⁹ Un spécimen adulte avait été observé (et photographié) le 13 octobre 2016 sur un rocher, à l'entrée d'une crevasse.

¹⁰ Un piège/jour représente l'installation d'un piège laissé pendant 24 heures.

VI. Résultats de la campagne de surveillance

Six Lacertoides pardalis ont été enregistrés au cours de cette campagne de suivi, sur les zones C et B/C (zone comprise entre les stations de relâches B et C). Sur ces six spécimens enregistrés, une grosse femelle (probablement gravide) possède la marque unique de <u>l'animal LP1¹¹</u>, capturé et relâché sur C3, en octobre 2015 (Sadlier *et al.*, 2015). Afin de garantir et valider cette recapture, par ce marquage distinctif, réalisé en octobre 2015, selon le code proposé par les experts de Cygnet Surveys & Consultancy, la comparaison de critères spécifiques par **photo-identification** a été décisive¹²(voir les figures 1 et 2 de la page 10).

Bien que la qualité de la photo de la femelle LP1, capturée le 09 octobre 2015, soit de mauvaise qualité, il a été possible de vérifier qu'il s'agissait bien de notre femelle enregistrée le 31 octobre 2018, à <u>trois années d'intervalle</u>.

Cette campagne de surveillance de la population de *Lacertoides pardalis* de la mine A1¹³ a permis également la détection de **sept autres espèces de lézards**, avec cinq espèces de Scincidae (lézards diurnes) et deux espèces de Diplodactylidae (lézards nocturnes) – voir tableau page 15.

Cinquante-quatre scinques (*L. pardalis* compris) et dix-huit geckos ont été enregistrés au cours de cette mission, soit **soixante-douze spécimens au total**.

Cette diversité spécifique de lézards, observée sur la mine A1, est constante au cours des études menées depuis de nombreuses années. Seule l'espèce *Epibator nigrofasciolatus*, observée en janvier 2016, n'a pas été enregistrée. Cette « absence » enregistrée résulte de la <u>répartition spatiale non homogène</u> de certaines espèces dans les sites de prospection, ainsi que de leurs faibles effectifs de populations observés. En effet, **l'inventaire ou le suivi du peuplement de l'herpétofaune n'est guère aisé à entreprendre, car les lézards peuvent être parfois sous-détectés (surtout si les conditions météorologiques ne sont pas optimales, et/ou avec un effort de recherche succinct). Il peut donc en résulter un manque d'information relatif à la présence ou l'absence de certaines espèces sur un site donné.**

La présence de six rats (*Rattus exulans* ou rat polynésien) détectés sur des pièges collants des sites prospectés peut être interprétée comme une très faible densité de population de ces rongeurs (0,22% d'occurrence sur l'ensemble des *glue traps*). Malgré cette densité limitée de ces muridés sur A1, il a été démontré que **les rats sont des prédateurs majeurs des lézards en Nouvelle-Calédonie** (Thibault *et al.*, 2017).

¹¹ Premier doigt de la patte gauche, amputé.

¹² En effet, les combats probables menés entre adultes, et également au cours de la période nuptiale entre mâles et femelles, peuvent mutiler certains specimens.

¹³ Pour rappel, cette population est composée par la population résidente de la mine A1 et celle transférée de la carrière CP-A1.

Figure 1: Photo-identification d'un individu femelle adulte (LP1) à trois années d'intervalle, grâce à la disposition des écailles supralabiales 3 et 5 (flèches), du côté latéral gauche de l'animal (photos : Sadlier, 2015 et Astrongatt, 2018).

Figure 2 : Observation du doigt 1 et de ses phalanges terminales amputées, de la patte antérieure gauche de la femelle LP1 (photo de S. Astrongatt, 2018).

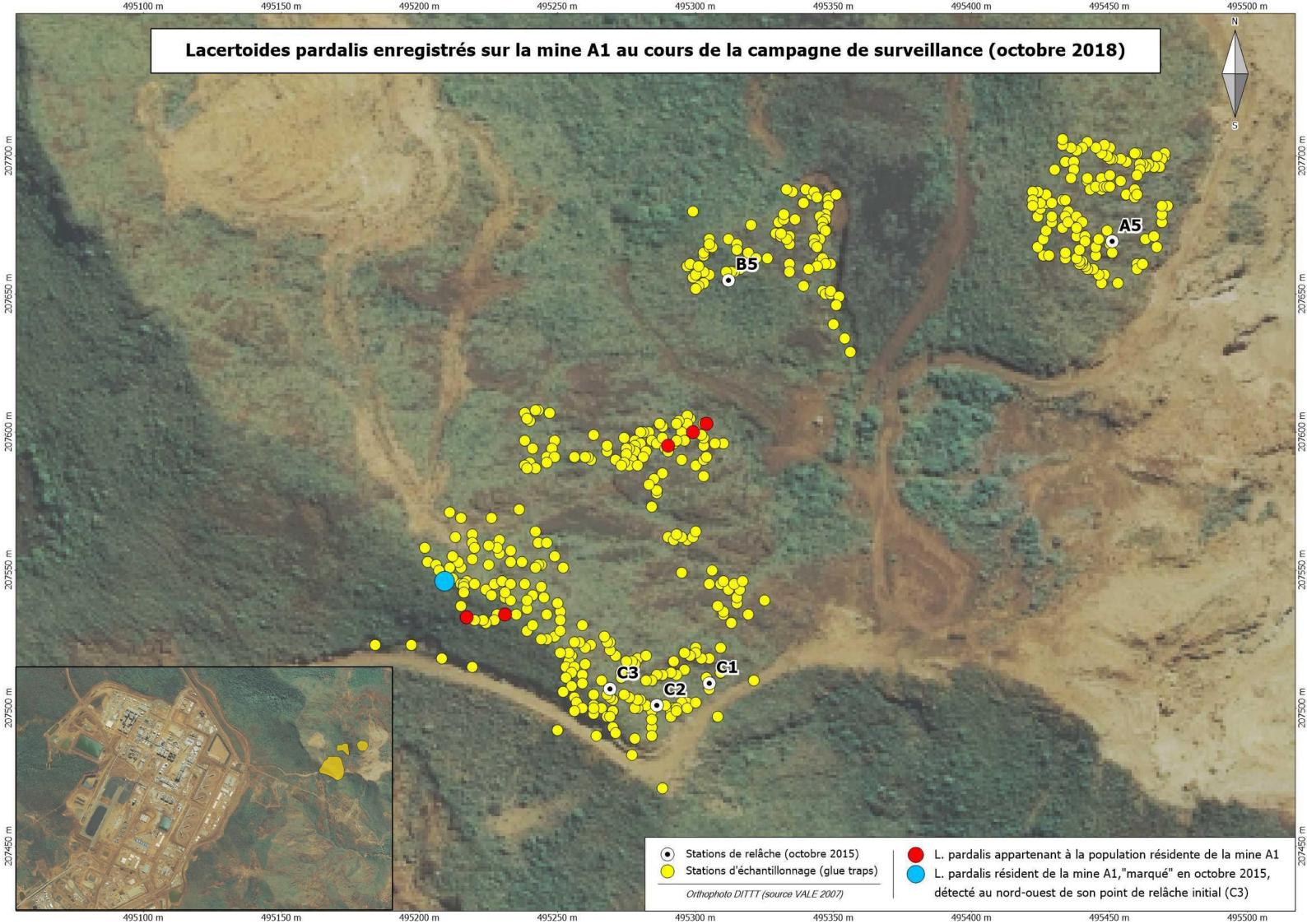


Photo 1: Station de prospection A

Photo 2: Détail d'un bloc de péridotite de la station B (et son habitat de maquis ligno-herbacé dense)

Photo 3: Blocs de péridotite sur maquis ligno-herbacé de la station B/C



Photo 4: Blocs de péridotite de la station C

VII. Bilan général de la campagne de surveillance n°3

La reconnaissance d'un individu (LP1) grâce à la **photo-identification**, via l'analyse d'écailles spécifiques à chaque spécimen ou la disposition et forme des ocelles, permettrait vraisemblablement d'envisager la mise en place de suivis d'individus (Deso, 2018) de manière moins « cruel »¹⁴. Dans notre cas, la forme inhabituelle des écailles supralabiales 3 et 5 ont été déterminantes pour identifier de façon certaine l'individu LP1 capturé sur la mine A1 (site C3) en octobre 2015. De plus, **il est probable de pouvoir utiliser la forme et arrangement des écailles protégeant le tympan**¹⁵ (voir figure 1 page 10) **pour identifier des individus <u>adultes</u> recapturés ultérieurement**.

Un des deux *Lacertoides pardalis* adultes capturés sur la zone B/C, le 26/10/2018, pourrait être le scinque-léopard détecté le 13/10/2016, sur un bloc rocheux faillé à quelques mètres des stations de capture de ces deux spécimens. Ces informations auraient pu nous renseigner sur <u>l'éventuelle territorialité de cette espèce de scinque à un site d'abri spécifique (bloc de péridotite)</u>.

De par une frugivorie importante au sein de son régime alimentaire omnivore, certaines espèces de Myrtaceae (*Myrtastrum rufopunctatum* et *Uromyrtus ngoyensis*) et Ericaceae (*Cyathopsis albicans*), ont été recherchées, afin de positionner un maximum de pièges collants au voisinage de ces espèces de maquis, dont les fruits ont été détectés dans les contenus stomacaux de *L. pardalis*. Seul *Cyathopsis albicans* a été enregistrée partiellement en fructification. Cette mesure additionnelle relative au succès de capture des *L. pardalis* marqués n'a pas permis d'optimiser les chances de piégeages de ces animaux transférés.

¹⁴ C'est-à-dire sans passer par l'amputation de phalanges.

¹⁵ Ecailles que certains nomment spicules.

Liste de l'herpétofaune terrestre détectée sur les stations d'échantillonnage de la mine A1 (octobre 2018)

Famille	Nom scientifique	Nom commun	Répartition	Statut NC	Protection	UICN
Scincidae	Caledoniscincus austrocaledonicus	Scinque de Litière Commun	NC	End	Р	LC
	Caledoniscincus notialis*		GT-PS	End	Р	NT
	Lacertoides pardalis	Scinque-Léopard	GT-PS	End	Р	VU
	Marmorosphax tricolor	Scinque à Gorge Marbrée	GT	End	Р	LC
	Phasmasaurus tillieri**	Scinque du Maquis de Tillier	GT-PS	End	Р	NT
	Tropidoscincus variabilis	Scinque à Queue en Fouet du Sud	GT-PS	End	Р	LC
	Bavayia geitaina	Bavayia Gracile	GT-PS	End	Р	NT
	Rhacodactylus auriculatus	Gecko Géant Cornu	NC	End	Р	LC

Répartition: indique la distribution régionale de l'espèce sur l'ensemble de la Nouvelle-Calédonie (NC), la Grande Terre (GT) – en province Sud (PS) ou province Nord (PN) - ou à large répartition (LR); **Statut NC**: informe sur le domaine biogéographique de l'espèce – endémique (End), autochtone (Aut) ou introduite (Int) en Nouvelle-Calédonie; **Protection**: indique les espèces protégées, selon le Code de l'environnement de la province Sud (Délibération N° 25-2009/APS, 20 Mars 2009); **UICN**: indique le statut de conservation de l'espèce sur la Liste rouge de l'UICN (source: www.iucnredlist.org. The IUCN Red List of Threatened Species. Version 2018-1).

DONNÉES INSUFFISANTES	PRÉOCCUPATION MINEURE	QUASI- MENACÉ	VULNÉRABLE	EN DANGER	EN DANGER CRITIQUE
DD	LC	NT	VU	EN	CR

Présentation des catégories de l'UICN utilisées à une échelle régionale

^{*} Caledoniscincus notialis a été considérée comme une espèce « Vulnérable (VU) - depuis sa découverte en 2013 - jusqu'à ce qu'elle soit confrontée aux critères de la Liste rouge de l'UICN en décembre 2017. De nouvelles informations concernant ce taxon, comme son aire de distribution et l'abondance des populations observées, a permis un <u>ajustement à la baisse de son statut UICN</u>, avec son classement actuel dans la catégorie « Quasi menacé » (NT), selon l'Union internationale pour la conservation de la nature.

^{**} La révision du genre *Lioscincus* a permis l'émergence de trois nouveaux genres : *Caesoris*, *Epibator* et *Phasmasaurus*. Désormais, l'espèce *tillieri* appartient au genre *Phasmasaurus* (Sadlier et *al.*, 2015).

VIII. Conclusion/Discussion

La capture d'un seul spécimen de *Lacertoides pardalis* est parfois difficile, et demande le plus souvent un effort de recherche conséquent. Six individus ont été enregistrés au cours de ce mois d'octobre 2018, dont un animal possédant le marquage spécifique de la femelle adulte LP1, capturée initialement sur la mine A1 en octobre 2015. La recapture de cette femelle 3 années plus tard, à environ 80 m de son lieu de capture et de relâche (station C3) permet de confirmer la survie des animaux ayant subi l'ablation de quelques phalanges, sans quand cela nuise à leur survie, leur dispersion et même leur reproduction. La femelle LP1, d'un poids initial de 46,7 g (octobre 2015) a été pesée à 69,6 g en octobre 2018. L'apparence de ce spécimen laisse supposer que la femelle LP1 était gravide au moment de sa recapture. Une cicatrice sur le dos (morsure ?), inexistante en 2015, peut laisser suggérer de violents combats territoriaux entre individus adultes, et/ou également, des parades nuptiales précédant l'accouplement, ou le mâle peut mordre avec insistance la femelle.

La détection de ce spécimen à environ 80 m de son lieu de capture/relâche (2015) indique également de vastes déplacements dans son biotope, avec un <u>territoire évoluant</u> <u>hypothétiquement en fonction de ses habitudes alimentaires</u>. Cette hypothèse de déplacement pourrait être confirmée par l'absence, quasi-totale, de recapture de spécimens préalablement enregistrés sur des blocs rocheux géo-référencés¹⁶.

Bien que la biologie de cette espèce soit désormais assez bien documentée, son éthologie est mal connue (comportement de l'espèce), et il n'existe que peu d'informations relatives à la composition de leur groupe, la taille de leur aire de répartition, leurs besoins d'abri et recherche de nourriture, leurs prédateurs et leurs maladies (UICN, 1998). De nouvelles études sur l'écologie et la biologie de cette espèce seraient nécessaires, notamment pour mieux comprendre le <u>déplacement et la migration des individus</u> au sein et entre les différentes zones d'habitats, afin d'assurer une meilleure gestion des populations de cette espèce à l'état sauvage.

Bien que cette campagne de surveillance puisse être considérée en partie, comme réussie, il n'en demeure pas moins de nombreuses questions, toujours sans réponses :

Comment expliquer ce manque d'informations concernant les dix-sept individus transférés (de CP-A1) vers la population originelle de la mine A1 ?

Voici quelques interprétations plausibles relatives à la non-observation de la population transférée de *Lacertoides pardalis* :

• La dispersion des spécimens transférés s'est opérée bien au-delà des sites de relâche, ce qui peut être lié au stress supporté avant ou pendant le processus de lâcher (UICN, 2012), s'accompagnant plausiblement d'une mortalité pour certains individus après leur arrivée sur la mine A1;

¹⁶ Pour exemple, aucun individu n'a été enregistré sur le site 10 de la future carrière CP-A1, bien que douze mois plus tôt, (octobre 2014), trois individus y avaient été capturés (Sadlier *et al.*, 2014).

- Les spécimens relâchés doivent se trouver de nouveaux abris (et territoires) libres de toute compétition intra-spécifique (éventuelles perturbations concernant les relations sociales du groupe résident de la mine A1);
- Une prédation plus importante s'est opérée sur la population déplacée (à cause de la recherche d'un abri et territoire libre de toute concurrence), par des rats, voire même des rapaces, tel l'Autour à ventre blanc, Accipiter haplochrous, présent sur la mine A1;
- La possibilité de trap-dépendance est envisageable, bien que non établie. La trapdépendance est un phénomène lié au fait que des individus déjà capturés n'ont pas la même probabilité d'être recapturés que des individus jamais capturés. C'est par exemple le cas lorsque l'on réalise du piégeage qui peut être traumatisant ; il est dans ce cas plausible qu'un individu qui a été capturé une première fois sera plus difficile à recapturer par la suite qu'un individu « naïf » jamais capturé. Cependant, aucune preuve de trap-dépendance portée à ma connaissance (ainsi qu'à celle de R. Sadlier et G. Swan) a été démontrée concernant une espèce de lézard ;
- La distribution spatiale de *Lacertoides pardalis* sur l'ensemble des sites prospectés est erratique (c'est-à-dire non homogène), d'où la difficulté de capture de quelques spécimens malgré, le plus souvent, un effort de recherche important ;

Il est bon de rappeler que la stratégie du lâcher d'octobre 2015 a été réalisée de manière à éviter tout risque de contact avec des agents pathogènes et autres parasites contagieux (pour rappel, chaque individu a été conservé quelques jours dans un container neuf, de taille adaptée).

Il ne ressort pas de ces campagnes de surveillance une impression d'échec, mais plutôt un défaut de connaissances cruciales concernant la dispersion et capacités de déplacement de cette espèce originale et unique des habitats de maquis rocheux. Des études de radiotélémétrie permettraient d'apporter de nouvelles connaissances sur les déplacements journaliers voire saisonniers des Lacertoides pardalis, leur domaine vital et l'utilisation de leur habitat. Ces données récoltées auraient de grandes implications en termes de conservation. Cette technique d'acquisition d'informations à partir d'un animal équipé d'un émetteur permettrait de le localiser précisément, ainsi que de le suivre dans ses activités de déplacements. Un projet de thèse concernant cette espèce est en préparation actuellement (IRD/Vale Nouvelle-Calédonie).

L'herpétofaune terrestre de Nouvelle-Calédonie représente un fort enjeu patrimonial, renforcé par la récente évaluation du risque d'extinction de ces espèces selon les critères de l'UICN, avec <u>96 espèces considérées comme en danger d'extinction (VU, EN et CR)</u>, parmi les 137 évaluées à ce jour, soit 70% d'espèces menacées, au total (UICN, 2017). Cette composante de la faune est appelée à terme à jouer un rôle de groupe parapluie permettant de protéger au-delà des espèces, les habitats naturels qui les hébergent et par conséquent l'ensemble de la biodiversité associée (De Meringo *et al.*, 2013).

IX. Références bibliographiques

- Astrongatt S., 2016. Campagne de surveillance n°2 de la population de *Lacertoides pardalis* (Scincidae) de la mine A1. Contrôle de réussite du transfert de spécimens sur un site récipient. Rapport d'expertise réalisé pour le Service Préservation de l'Environnement de VALE Nouvelle-Calédonie. 16 p.
- Astrongatt S., 2016. Campagne de surveillance de la population de *Lacertoides pardalis* (Scincidae) de la mine A1. Rapport d'expertise réalisé pour le Service Préservation de l'Environnement de VALE Nouvelle-Calédonie. 18 p.
- Astrongatt S., 2013. Campagne de surveillance de *Lacertoides pardalis* sur le massif du Kwa Neie. Rapport d'expertise réalisé pour le Département Environnement et Relations Communautaires de VALE Nouvelle-Calédonie. 14 p.
- Bauer A.M. & Sadlier R.A., 2000. *The Herpetofauna of New Caledonia*. La Société pour l'Etude des Amphibiens et des Reptiles en collaboration avec l'Institut de Recherche pour le Développement. Ithaca, New York. 310 p.
- Besnard A. & J.M. Salles, 2010. Suivi scientifique d'espèces animales. Aspects méthodologiques essentiels pour l'élaboration de protocoles de suivis. Note méthodologique à l'usage des gestionnaires de sites Natura 2000. Rapport DREAL PACA, pôle Natura 2000. 62 p.
- De Meringo H., Scussel S. et Jourdan H., 2013. Évaluation des ressources trophiques nécessaires au maintien des populations de reptiles forestiers communs sans la région du plateau de Goro Premiers éléments d'écologie trophique. Contrat de collaboration de recherche VALE NC/IRD n°2907. Rendu final (2^{nde} version) Octobre 2013. 42 p.
- Deso Grégory, 2018. Reconnaissance d'un Lézard ocellé (*Timon Lepidus*) à cinq années d'intervalle, grâce à la photo-identification. Association herpétologique de Provence Alpes Méditerranée, F-84100 Orange. *Bull. Soc. Herp. Fr. (2018) 167 : 57-58*.
- Germano, J. 2007. Movements, Home Ranges and Capture effect of the endangered Otago Skink. Journal of Herpetology 41(2).
- Graitson E., 2009. Guide de l'inventaire et du suivi des reptiles en Wallonie. L'Echo des Rainettes, Hors Série 1. 56 p.
- Hill, D., Fasham, M., Tucker, G., Shewry, M., Shaw, P. (2005). *Handbook of biodiversity methods: survey, evaluation and monitoring*, Cambridge University Press.

- Houghton, C. 2001. The dispersal and metapopulation dynamics of two skink species, Oligosoma grande and Oligosoma otagense at Macraes Flat, Otago. Unpublished MSc Thesis, University of Otago, Dunedin. 160 p.
- Lagrange, A. Ruiz, J-L. & Perroud, A. 2015. Etat initial herpétologique, Projet KO2 Priorité 2 Site de Vale NC. Rapport d'étude société Bota Environnement. 22 p.
- Levêque C. & Mounolou J.C., 2008. Biodiversité. 2ème édition. Dunod, Paris.259 p.
- McCoy, E. D., N. Osman, B. Hauch, A. Emerich & H. R. Mushinsky. 2014. Increasing the chance of successful translocation of a threatened lizard. Animal Conservation 17. 56-64.
- Patterson, G.B. 1992. Development of Otago skink and Grand skink population census and monitoring techniques. Science & Research Internal Report No. 133. Dept of Conservation New Zealand.
- Pittoors Julie, 2009. Etude par radio télémétrie des mouvements, du domaine vital et de l'utilisation de l'habitat par des couleuvres à collier (*Natrix natrix Helvetica*) en zone périurbaine. Implications en termes de conservation. Mémoire de recherche réalisé sous la direction de Michaël Ovidio et d'Emmanuel Sérusiaux. Co-direction : Eric Graitson. Université de Liège (Belgique). 71 p.
- Ribeiro-Junior M.A., Gardner T.A. & Avila-Pires T.S.C., 2006. The effectiveness of glue traps to sample lizards in a tropical rainforest. South American Journal of Herpetology, 1(2), 2006, 131-137.
- Roughton, C. R. 2005. Assessment of methods to monitor Otago skink and Grand skink populations, New Zealand. DOC Research & development Series 211.
- Sadlier R.A., 2012. "Systematics and Conservation of the New Caledonian Lizard Fauna". Conférence à l'Institut de Recherche pour le Développement, Nouméa.
- Sadlier R.A., 2009. Targeted survey for the rare regional endemic lizard *Lacertoides pardalis* at Forêt Nord. Unpublished report by Cygnet Surveys & Consultancy to Vale Inco Nouvelle-Calédonie. 14 p.
- Sadlier, R.A., Swan G., 2015. Project Proposal: Capture 1 Relocation of the Leopard Skink Lacertoides pardalis on the KO4 quarry site. Rapport non publié par Cygnet Surveys & Consultancy pour Vale Nouvelle-Calédonie. 5p.
- Sadlier, R.A., Swan G. & Astrongatt, S., 2015. Translocation du scinque-léopard de Nouvelle-Calédonie *Lacertoides pardalis* sur le site proposé pour le développement de la carrière CP-A1 de Vale Nouvelle-Calédonie. Rapport non publié par Cygnet Surveys & Consultancy pour Vale Nouvelle-Calédonie. 21 p.

- Sadlier, R.A., Swan G. & Astrongatt, S., 2014. An assessment of the lizard fauna on the site of the proposed Vale Nouvelle-Caledonie KO4 quarry. Unpublished report by Cygnet Surveys & Consultancy to Vale Nouvelle-Calédonie. 16 pp..
- Sadlier R. A., Shea G. M., Jourdan H., Whitaker A. H. & Bauer A. M. 2014. The New Caledonian Leopard Skink *Lacertoides pardalis* (Reptilia: Scincidae); a review of the species morphology, distribution, behavior and conservation, *in* Guilbert é., Robillard T., Jourdan H. & Grandcolas P. (eds), *Zoologia Neocaledonica 8. Biodiversity studies in New Caledonia*. Muséum national d'Histoire naturelle, Paris: 31-44 (Mémoires du Muséum national d'Histoire naturelle; 206). ISBN: 978-2-85653-707-7.
- Sadlier R. A. G., Shea, M. & Bauer, A. M., 1997. A new genus and species of lizard (Squamata, Scincidae) from New Caledonia, southwest Pacific. *In*: Najt, J. & Matile, L. (eds), Zoologia Neocaledonica, Vol. 4. Mém. Mus. Natn. Hist. Nat., **171**: 379-385. Paris, ISBN 2-85653-505-4.
- Thibault M., Brescia F., Jourdan H. & Vidal E., 2017. Invasive rodents, an overlooked threat for skinks in a tropical island hotspot of biodiversity. New Zealand Journal of Ecology 41(1): 1-10.
- UICN France, 2011. Guide pratique pour la réalisation de Listes rouges régionales des espèces menacées Méthodologie de l'UICN & démarche d'élaboration. Paris, France.
- UICN, 1998. Lignes directrices de l'UICN relatives aux réintroductions. Préparées par le Groupe de spécialistes de la réintroduction de la Commission de la sauvegarde des espèces de l'UICN. UICN, Gland, Suisse et Cambridge, Royaume-Uni. 20 p.