

SUIVI DES TAUX D'ACCUMULATION ET EVOLUTION GEOCHIMIQUE DES SEDIMENTS EN BAIE DU PRONY, BAIE KWE ET A L'ILE OUEN

CAMPAGNE TRIENNALE 2017

Rapport triennal

Décembre 2017

Photos de couverture AEL : Interface eau/sédiment des carottes St06, St13, St15 et St16.......

CONTRAT DE CONSULTANCE AEL-LEA

Suivi des taux d'accumulation et évolution géochimique des sédiments en Baie du Prony, Baie Kwé et à l'Ile Ouen Campagne triennale 2017

Kumar-Roiné S., Moreton B., Laurent A., Kaplan H., Pluchino S., Fernandez JM.

Nombre de pages : 63

		Ref AEL			Ref Client		
Identification	138-VI-17-P PO E98145 /0001						
Titre complet		des taux d'accumulation et é (wé et a l'Ile Ouen. Campagn	•	•	diments en Baie du Prony,		
Auteurs	Kuma	r-Roiné S., Moreton B., Laure	ent A., Kapl	an H., Fernandez J	M.		
Résumé	Le programme de travail ici présenté a été défini en accord avec les arrêtés ICPE-2008 relatifs à l'autorisation d'exploitation des installations industrielles et portuaires. Ce document rend compte de l'étude de géochronologie et de suivi géochimique annuel des impacts sur les sédiments. Les sédiments montrent des évolutions de la plupart des paramètres étudiés, du bas vers le haut de la carotte : (i) le pourcentage de fraction pélitique ; (ii) la teneur en carbonates ; (iii) les concentrations totales en métaux. Ainsi, il a été mis en évidence que l'influence terrigène est plus intense en St15 et minimale en St13. Contrairement à la campagne 2013, les influences terrigènes bien que présentes, semblent montrer une tendance à l'atténuation dans les tous premiers centimètres des dépôts sédimentaires respectifs. Toutefois, tant les concentrations en métaux que les spectrométries gamma sont du même ordre de grandeur pour chacune des carottes respectives par rapport aux valeurs mesurée depuis 2007. De même, les taux de d'accumulation ne semblent pas avoir varié de manière notable depuis 2010, voire 2007.						
		APPRO	BATION				
FONCTION		NOMS		VISA	DATE		
Rédacteur		Fernandez J.M.		JMFA	28/12/2017		
Vérificateur 1		Moreton B.		вм	03/01/2018		
Vérificateur 2	Pousse C.			СР	04/01/2018		
Approbateur		Fernandez J.M.		JMFA	04/01/2018		
		EVOL	JTION				
VERSION		DESCRIPTION DI	S MISES A	JOUR	DATE		
V1.0		Rappo	rt final		08/01/2018		
V1.1		Rapport final simplifié		10/01/2018			
		COPIE - D	IFFUSION				
NOM	ORGANISME						
Casalis Céline		Vale-NC	/Départem	ent Environneme	nt marin		

Ce rapport est cité comme suit : Fernandez JM, Kumar-Roiné S et Pousse C, 2018. Suivi des taux d'accumulation et évolution géochimique des sédiments en Baie du Prony, Baie Kwé et lle Ouen. Campagne 2017. Contrat AEL/Vale-NC E98145, 63p.

TABLE DES MATIERES

I.	OBJECTIFS					
II.						
III.						
Α	A. Site d'etude					
В	3. ECHANTILLONNAGE	10				
IV.	RESULTATS	11				
Α	A. CARACTERISTIQUES PHYSIQUE DES CAROTTES	11				
В	• • • • • • • • • • • • • • • • • • • •					
C						
D	D. COMPOSITION GEOCHIMIQUE DES SEDIMENTS					
Ε.	TAUX DE SEDIMENTATION	27				
v	CONCLUSION	22				

I. INTRODUCTION

Le programme de travail ici présenté a été défini en accord avec les arrêtés ICPE 2007 et 2008 relatifs à l'autorisation d'exploitation des installations industrielles et portuaires de la Province Sud.

Cette étude donne suite :

- d'une part à la définition de « l'Etat de référence » des taux d'accumulation des sédiments, déterminés en 2007 dans la Baie du Prony (Rades du Nord et du Nord-est) et au niveau du front d'exploitation minière en Baie Kwé (Fernandez et al., 2007) et en 2009 au large de l'Ile Ouen (Fernandez et al., 2009) ; et
- d'autre part, elle assure la continuité du suivi depuis 2010 pour la Rade du Nord (St15), la Baie Kwé (St06) et l'Ile Ouen (St13) (Dolbecq et al., 2011) et depuis 2011 pour le Port de commerce de Vale-NC (St16) (Fernandez et al., 2012).

L'étude consiste à estimer l'évolution des taux d'accumulation sédimentaire récents, notamment à St06 et St15, 2 aires concernées par des prismes prodeltaïques des embouchures respectives des Creek de la Rade Nord et de la Kwé. Cette estimation permet ensuite de dater la chronologie des événements sédimentaires et, dans la mesure du possible, de restituer les événements sédimentaires dans le contexte de la mise en exploitation de l'usine de Vale-NC.

II. OBJECTIFS

L'objectif du programme ici présenté est de déterminer l'évolution des taux d'accumulation des sédiments récents. Les taux sont obtenus par la datation des horizons sédimentaires grâce, d'une part, au Plomb-210 (²¹⁰Pb), un radio-isotope naturellement présent dans les sédiments et d'autre part, aux profils de concentrations de certains traceurs stables (métaux du cortège latéritique).

Note: Tracer les événements sédimentaires avec une relative précision nécessite de travailler avec plusieurs marqueurs radioactifs en même temps. Le Césium-137 (137Cs), un isotope artificiel dont l'utilité n'est plus à démontrer, est généralement utilisé pour vérifier et compléter la chronologie calculée avec le 210Pb. Toutefois, la radioactivité du 137Cs, étant trop faible dans les sédiments de l'hémisphère sud pour être exploitable. Des traceurs stables comme Co, Cr, Fe, Mn et Ni, voire Ca (traceur de l'influence marine), peuvent contribuer à préciser les taux d'accumulation.

Ce document présente les résultats d'analyse de la campagne de prélèvement triennale qui s'est déroulée le 04 mai 2017 pour les stations St06, St15 et St16, situées dans la zone d'influence de l'usine Vale-NC, ainsi qu'à la station St13 située au large de l'Ile Ouen.

III. METHODOLOGIE

La méthodologie détaillée des différentes étapes de prélèvement, traitement et d'analyse est décrite dans l'Annexe 1.

<u>Rappel</u>: La méthodologie déployée dans le cadre de cette étude a été spécifiquement développée pour les milieux lagunaires tropicaux et les techniques ont été validées par des publications scientifiques à comité de lecture. En outre, pour répondre spécifiquement aux objectifs annoncés, il a été nécessaire de mettre en œuvre des techniques de carottage adaptées pour les faibles profondeurs et pour individualiser les couches sédimentaires d'épaisseur centimétrique.

A. SITE D'ETUDE

Les stations prélevées sont les suivantes (Tableau 1 ; Erreur ! Source du renvoi introuvable.) :

- Zone d'influence de la mine (\$t06): Il s'agit d'une station localisée dans le chenal d'accès à l'embouchure de la rivière Kwé. Elle permet d'assurer le suivi de la sédimentation induite dans la baie, comme conséquence de l'érosion naturelle à laquelle s'ajoutent les effets de l'exploitation du bassin minier;
- Zone d'influence de l'usine de valorisation du minerai (St15 et St16) : Il s'agit de stations situées au droit, respectivement, du Creek de la Rade Nord dont le bassin versant jouxte le site de l'usine et du port de commerce de Vale-NC. Ces stations permettent un suivi des taux de sédimentation induit par le site industriel ;
- Zone hors périmètre de l'influence directe du complexe minier (St13): Il s'agit d'une station éloignée, localisée au large de l'Ile Ouen. Les influences sont majoritairement océaniques. Cette station a été intégrée dans le réseau du présent suivi en 2009 (Fernandez et al., 2009).

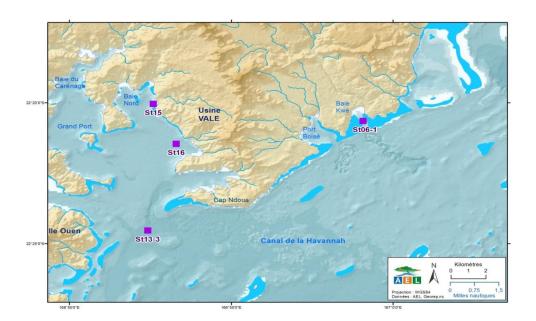


Figure 1: Localisation géographique des stations de prélèvement du suivi des taux d'accumulation et évolution géochimique des sédiments dans la zone d'influence de l'usine de Vale-NC (St06-1, St15 et St16) et au large de l'Ile Ouen (St13-3).

Tableau 1 : Localisation des stations de prélèvement (référentiel WGS-84) et les dimensions des carottes extraites.

Localisation	Station	Coordonnées au ré	éférentiel WGS-84	Profondeur	Longueur carotte	
Localisation	Station	Longitude	Latitude	(m)	(cm)	
Baie Kwé	St06	166°59.077	22°20.643	27	24	
Ile Ouen	St13	166°52.204	22°24.611	60	12	
Data da Danas	St15	166°52.590	22°20.037	24	28	
Baie du Prony	St16	166°53.300	22°21.455.	42	19	

B. ECHANTILLONNAGE

Les opérations de terrain ont été réalisées sur les 4 stations le 04 mai 2017 à bord du Slavko.

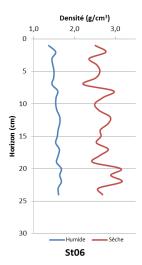
Les carottages ont été effectués sur les stations prédéfinies dans le cahier des charges, sauf pour la station St13. En effet, le prélèvement, après plusieurs tentatives, a dû être décalé de 0,0784 minute vers de sud et de 0,2168 minute vers l'ouest par rapport aux coordonnées initiales.

Le travail de terrain a consisté à extraire des carottes sédimentaires avec un « *carottier–tube* » afin d'être en mesure d'échantillonner des horizons nécessaires aux études géochronologique et géochimique.

Dès le retour au laboratoire, les 4 carottes de longueurs comprises entre 12 et 28 cm ont pu être traitées (Tableau 1). Maintenue à la verticale dès leur extraction du plancher marin, chaque carotte a été découpée intégralement en différents horizons d'épaisseur centimétrique. Les échantillons ont ensuite été conditionnés dans des sachets en vinyle à usage unique et conservés au frais (4°C) jusqu'à la phase de traitement pour les différentes analyses.

IV. RESULTATS

A. CARACTERISTIQUES PHYSIQUE DES CAROTTES


Les valeurs des paramètres physiques (teneurs en eau, densités humide et sèche) sont regroupées dans l'Annexe 2.

1. Baie Kwé (St06)

Les valeurs des densités sont relativement homogènes le long de la carotte (Figure 2). En particulier, la densité humide est particulièrement constante puisque les valeurs extrêmes ne vont que de 1,37 à 1,68 g/cm³ avec une moyenne de 1,56 \pm 0,08 g/cm³. En ce qui concerne la densité sèche, même si la moyenne et l'écart-type (2,67 \pm 0,23 g/cm³) montrent que peu de variations affectent ces dépôts, les valeurs extrêmes (2,22 et 3,16 g/cm³) sont significatives et suggèrent qu'une légère variation de leur nature entre les couches anciennes et couches récentes est plausible. Cette évolution semble se produire en 3 étapes successives correspondant aux couches 20-24 cm, 8-20 cm et 0-8 cm. Les variations mesurées tracent les différents régimes de sédimentation rythmés par les régimes du creek Kwé.

Les teneurs en eau et la porosité des sédiments diminuent progressivement des couches récentes vers les plus anciennes, évolution qui reflète le tassement progressif des dépôts.

Comparativement aux campagnes précédentes (2010¹ et 2013)², toutes ces grandeurs sont comparables et ne dénotent d'aucune modification substantielle des apports.

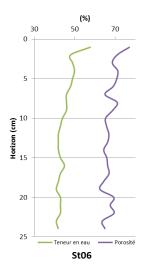


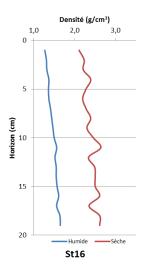
Figure 2 : Représentation graphique des densités sèche et humide ainsi que de la teneur en eau des sédiments de la carotte St06.

PO XXXX Page 11/63 Contrat client XXXX

_

¹ Dolbecq M, Legrand H, Breau L, Fernandez JM, 2011. Suivi des taux d'accumulation dans la rade Nord (Baie du Prony, la baie Kwé et l'Ile Ouen. Contrat AEL/Vale-NC n° E20532, 56p.

² Achard R., Fernandez JM, Moreton B, Le Grand H, 2014. Suivi station St06, St13, St15 et St16: Taux d'accumulation et évolution géochimique des sédiments au droit du port de commerce (Baie du Prony). Contrat AEL/Vale-NC n° C3052, 70p.


2. Port de commerce (St16)

Les sédiments de cette carotte se caractérisent par des densités humide et sèche qui augmentent entre l'interface eau/sédiment et les couches plus anciennes (Figure 3). Ainsi, les densités humides et sèches passent très progressivement de 1,27 à 1,65 g/cm³ et de 2,11 à 2,61 g/cm³, respectivement.

Parallèlement, les teneurs en eau et la porosité diminuent de 64 à 38% et de 78 à 61%, respectivement entre les couches récentes et les plus anciennes.

La carotte St16 est prélevée à une profondeur relativement importante (environ 40 m) en dehors de toute influence directe d'émissaire naturel. Cette particularité explique l'évolution progressive des paramètres physiques mesurés des suites de la continuité supposée des phénomènes de sédimentation.

Comparativement aux campagnes précédentes (2011³ et 2013²), toutes les valeurs mesurées sont, respectivement, du même ordre de grandeur et ne permettent pas de distinguer une modification substantielle des apports dans un passé récent.

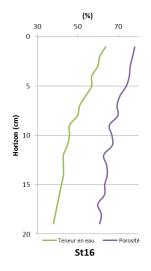
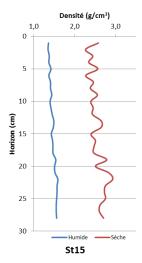


Figure 3 : Représentation graphique des densités sèche et humide ainsi que de la teneur en eau des sédiments de la carotte St16.

3. Rade du Nord (St15)

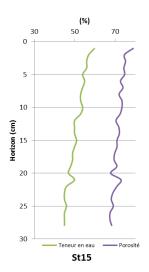

Les densités humide et sèche de cette carotte suivent des évolutions verticales comparables à celles de la station St16, avec cependant des valeurs légèrement plus fortes, 1,35-1,59 et 2,27-2,93 g/cm³, respectivement; ces écarts reflètent une évolution dans la nature des apports. La station St15 étant localisée au pied du talus prodeltaïque du Creek de la Rade Nord, le pourcentage de particules carbonatées est donc probablement moins important et leur dépôt irrégulier.

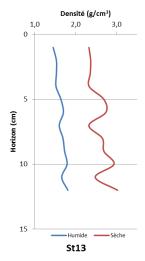
En ce qui concerne les teneurs en eau et la porosité, elles varient de 60 à 45% et de 79 à 67%, respectivement, entre le premier et le dernier niveau de la carotte.

Comparativement aux campagnes précédentes (2010 et 2013), toutes les valeurs mesurées sont, respectivement, du même ordre de grandeur et ne permettent pas de distinguer une modification substantielle des apports dans un passé récent.

_

Fernandez JM, Moreton B, Le Grand H, Creuzil J, 2012. Suivi station St16: Taux d'accumulation et évolution géochimique des sédiments au droit du port de commerce (Baie du Prony) – 2012-. Contrat AEL/Vale-NC n° E29928, 35p.




Figure 4 : Représentation graphique des densités sèche et humide ainsi que de la teneur en eau des sédiments de la carotte St15.

4. Ile Ouen (St13)

Les profils de densités humides et sèches montrent globalement une augmentation des valeurs entre les couches récentes et les plus anciennes de la carotte. Toutefois, cette évolution est moins régulière que celles observées pour les sédiments des 3 autres carottes. En effet, si la densité humide passe de 1,45 à 1,81 g/cm³ avec une certaine continuité, la densité sèche, qui augmente avec le niveau d'enfouissement de 2,33 à 3,02 g/cm³, montre des variations importantes. Ces variations sont probablement le reflet d'apports de natures différentes.

De la même manière, des fluctuations pour les teneurs en eau et la porosité sont observées le long de la carotte, 48 à 35% et de 68 à 56%, respectivement. Ces teneurs en eau sont les plus faibles enregistrées parmi les 4 carottes et suggèrent que la granulométrie des sédiments est de nature plus grossière.

Pour cette carotte aussi, comparativement aux campagnes précédentes (2010¹ et 2013²), toutes les valeurs mesurées sont, respectivement, du même ordre de grandeur et ne permettent pas vraiment de distinguer de modifications substantielles des apports dans un passé récent.

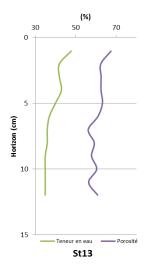


Figure 5 : Représentation graphique des densités sèche et humide ainsi que de la teneur en eau des sédiments de la carotte St13.

B. Granulometrie des particules

Les valeurs des paramètres granulométriques (composition en pélites, distribution des populations de particules) sont regroupées dans l'Annexe 2.

1. Port de commerce (St16)

En termes de populations granulométriques, les sédiments de cette carotte sont très fins et remarquablement homogènes tout le long de la vingtaine de centimètres qui constituent le prélèvement (Figure 6 et Figure 8). En effet, la fraction pélitique (\emptyset <41 µm) représente 95 ± 1 %.

Cette observation est confortée par la répartition des populations de particules, puisque les 5 classes granulométriques mesurées dans les 4 horizons sédimentaires ne montrent des variances que de 3% au maximum. Le mode principal ($66 \pm 1\%$) correspond à la classe 2,0-20 μ m des silts moyens à fins. La population la moins représentée est celle des sables fins (\emptyset >63 μ m) avec moins de 1%.

Toutefois, l'observation au microscope des 4 fractions grossières (\emptyset >41 μ m) suggère que la proportion de fraction fine (pélites) pour les 2 niveaux les plus récents (0-1 cm et 3-4 cm) est potentiellement un peu plus élevée (Figure 7). En effet, il semble ressortir que la séparation granulométrique à 41 μ m n'a pas été totale, pour ces deux premiers horizons. Ces observations suggèrent donc des proportions sensiblement plus importantes, d'une part, en pélites dans le niveau le plus récent (0-1 cm), et d'autre part, en particules détritiques (carbonates) pour le plus ancien (18-19 cm).

En ce qui concerne la variabilité de la composition en fraction pélitique (\emptyset <41 µm), elle est très faible d'une campagne à l'autre. Toutefois, en 2013, une certaine variabilité est apparue, celle-ci n'étant attribuable qu'à une hétérogénéité possible de la couche sédimentaire autour de la station de prélèvement.

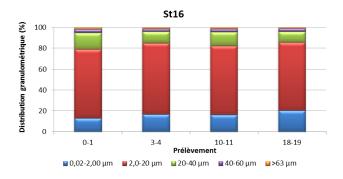
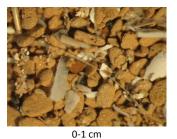



Figure 6: Distribution granulométrique en pourcentage volumique pour les horizons (0-1 cm), (3-4 cm), (10-11 cm) et (18-19 cm) de la carotte St16.

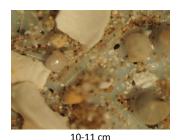


Figure 7 : Observations au microscope optique des fractions \emptyset > 40 μ m des 4 horizons de la carotte St16 (Grossissement x 80).

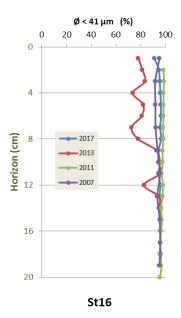


Figure 8 : Evolution du pourcentage en fractions pélitiques (\emptyset <41 μ m) le long des 20 premiers centimètres de la carotte St16 et comparaison des compositions de 2007, 2011, 2013 et 2017.

2. Rade du Nord (St15)

Les populations granulométriques des sédiments de cette carotte sont relativement fines et relativement homogènes, exception faite des 8 derniers centimètres de la carotte qui montrent un léger déficit en fractions pélitiques (Figure 11); celle-ci représente entre 69 (niveau 22-23 cm) et 92% (niveaux 4-5 cm, 8-9 cm, 9-11 et 10-11 cm).

La distribution des populations de particules (Figure 9), montre qu'une certaine hétérogénéité existe entre les niveaux de surface, en particulier, et les niveaux inférieurs ; cette variabilité n'est pas mise en évidence par la composition en pélites.

Le mode principal correspond à la classe 2,0-20 μ m des silts moyens à fins, puisqu'elle représente 43 et 66% des grains. La population la moins représentée est celle des sables fins (2% ; 3-4 cm et 24-25 cm).

<u>Remarque</u>: cette divergence est peut-être la conséquence de l'absence de réplicat pour l'analyse granulométrique qui est réalisée avec des quantités de matière infimes (100 mg). Elle peut donc être liée au degré d'homogénéité de l'échantillon initial.

Comme pour la carotte St16, l'observation au microscope des 4 fractions grossières (\emptyset >41 µm) suggère que la proportion de fraction pélitique (\emptyset <41 µm) pour le niveau le plus récent (0-1 cm) est potentiellement un peu plus élevée que la valeur mesurée (Figure 10). En effet, la présence d'agrégats relativement consolidés semble indiquer que la séparation granulométrique par tamisage humide à 41 µm n'a pas été totale. Ces observations expliqueraient la proportion importante de particules de diamètre supérieur à 41 µm, calculée par la granulométrie laser.

Les deux derniers niveaux de cette carotte montrent des populations de grains très bien individualisés et la quasi-absence de débris carbonatés, mais en revanche, la présence de minéraux noirâtres qui peuvent être assimilés à de la chromite.

En ce qui concerne la variabilité de la composition en fraction pélitique (\emptyset <41 µm), elle est relativement faible d'une campagne à l'autre. Toutefois, une composition quelque peu différente caractérise les derniers centimètres de la carotte 2017. Par ailleurs, en 2013, une variabilité notable est observée, celle-ci n'étant

vraisemblablement attribuable qu'à une hétérogénéité de la couche sédimentaire autour de la station de prélèvement.

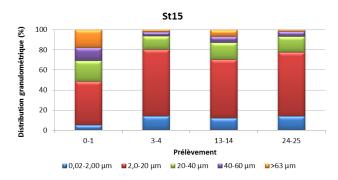
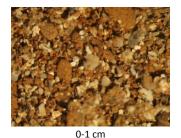
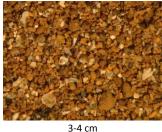




Figure 9: Distribution granulométrique en pourcentage volumique pour les horizons (0-1 cm), (3-4 cm), (13-14 cm) et (24-25 cm) de la carotte St15.

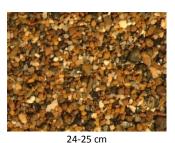


Figure 10 : Observations au microscope optique des fractions \emptyset > 40 μ m des 4 horizons de la carotte St15 (Grossissement x 80).

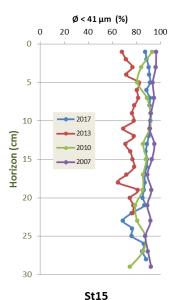


Figure 11 : Evolution du pourcentage en fractions pélitiques (Ø<41 μ m) le long des 30 premiers centimètres de la carotte St15 et comparaison des compositions de 2007, 2010, 2013 et 2017.

3. Ile Ouen (St13)

Les populations granulométriques des sédiments de cette carotte sont relativement grossières mais assez homogènes, puisque la moyenne et l'écart-type se situent à $43 \pm 3\%$; les valeurs extrêmes, 38 et 47% sont mesurées respectivement dans les niveaux 6-7 cm et 0-1 cm (Figure 12). Aucune évolution significative le long de la carotte n'est observée.

La distribution des populations de particules (Figure 12), confirme qu'une certaine homogénéité caractérise les sédiments de cette carotte. Le mode principal reste encore la classe 2,0-20 μ m des silts moyens à fins, bien que la fraction supérieure à 63 μ m soit proportionnellement très proche ; les fractions grossières (Ø>41 μ m) sont

majoritaires puisqu'elles représentent de 40 et 46% des grains. La population la moins représentée est celle des silts fins et argiles (6-7%).

L'observation au microscope des 4 fractions grossières (Ø>41 µm) montre une composition quasiexclusivement constituée de débris coquillers avec une variabilité dans les tailles entre les niveaux de la carotte (Figure 13). Ces observations expliquent les résultats de mesures réalisés par granulométrie laser.

Tous les niveaux de cette carotte montrent des populations de grains très bien individualisés et l'omniprésence de débris carbonatés (coquilles et fragments coraliens).

Inversement aux autres carottes, la variabilité de la composition en fraction pélitique (Ø<41 µm) est très notable d'une campagne à l'autre. Cette variabilité est le reflet de l'hydrodynamisme local qui, entre deux campagnes, transporte les particules sédimentaires ; les carottages s'effectuent alors sur des substrats qui sont en perpétuel remaniement.

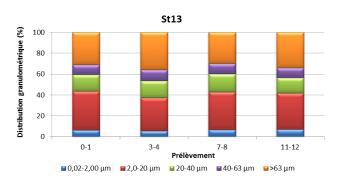


Figure 12: Distribution granulométrique en pourcentage volumique pour les horizons (0-1 cm), (3-4 cm), (7-8 cm), (11-12 cm) de la carotte St13.

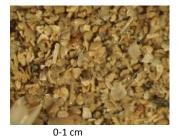


Figure 13 : Observations au microscope optique des fractions \emptyset > 40 μ m des 4 horizons de la carotte St13 (Grossissement x 80).

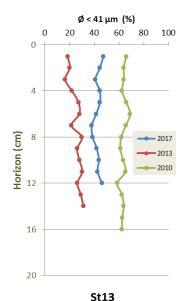


Figure 14 : Evolution du pourcentage en fractions pélitiques (Ø<41 μ m) le long des 15 premiers centimètres de la carotte St13 et comparaison des compositions de 2010, 2013 et 2017.

4. Baie Kwé (St06)

Les populations de particules fines (\emptyset <41 µm) des sédiments de cette carotte sont importantes et très homogènes (65 ± 2%), la valeur la plus forte étant mesurée dans l'horizon de surface (72%), le plus petit en bas de la carotte (63%). Aucune réelle évolution le long de la carotte n'est observée (Figure 17).

La distribution des populations de particules (Figure 15), traduit parfaitement l'homogénéité des sédiments de cette carotte, le mode principal restant encore lié à la classe 2,0-20 µm des silts moyens à fins. La population la moins représentée est celle des silts fins et argiles (5-8%).

L'observation au microscope optique des 4 fractions grossières (Ø>41 µm) suggère que ces populations sont fortement composées de débris détritiques carbonatés dont la taille augmente avec l'âge du sédiment.

La variabilité de la composition en fraction pélitique (\emptyset <41 μ m) est très faible d'une campagne à l'autre. Seule la campagne 2010 fournit des résultats sensiblement plus élevés que les autres.

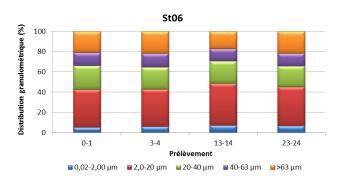


Figure 15: Distribution granulométrique en pourcentage volumique pour les horizons (0-1 cm), (3-4 cm), (13-14 cm) et (23-24 cm) de la carotte St06.

Figure 16 : Observations au microscope optique des fractions \emptyset > 40 μ m des 4 horizons de la carotte St06 (Grossissement x 80).

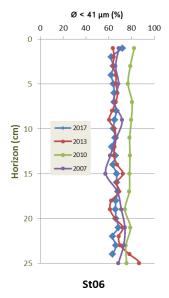


Figure 17 : Evolution du pourcentage en fractions pélitiques (\emptyset <41 µm) le long des 25 premiers centimètres de la carotte St06 et comparaison temporelle des compositions de 2007, 2010, 2013 et 2017.

C. MINERALOGIE DES SEDIMENTS

Les valeurs des paramètres minéralogiques (composition en phases terrigènes et d'origine marine) sont regroupées dans l'Annexe 2.

1. Port de commerce (St16)

Les sédiments de la carotte St16 sont largement dominés par la présence de phases carbonatées, résultats de l'activité biologique marine et de l'altération mécanique des platiers récifaux (Tableau 2); l'Aragonite et la Calcite représentent environ 75% des minéraux, la valeur maximale atteinte est de 77% dans l'horizon 3-4 cm.

Pour la calcite ($CaCO_3$), très peu de variations sont observées le long de la carotte (Figure 18), les teneurs étant de 50 \pm 2%. En termes d'évolution, celles-ci montrent un léger fléchissement, d'environ 5%, qui est uniforme pour toute la carotte par rapport aux deux campagnes antérieures (2011 et 2013). Cette faible différence est attribuable à la variabilité du milieu naturel échantillonné.

Les phases terrigènes, Goethite et Antigorite (serpentine en lamelles), ne constituent que moins de 25% des sédiments.

Tableau 2 : Composition minéralogique des 4 horizons de la carotte St16. Pourcentages en phases biogènes (Aragonite et Calcite) et terrigènes (Goethite et Antigorite).

Phase minérale (%)	Aragonite	Calcite	Goethite	Antigorite
0-1 cm	33,6	42,0	11,3	13,2
3-4 cm	33,4	44,0	9,6	13,0
10-11 cm	36,5	39,4	13,0	11,1
18-19 cm	34,5	40,9	13,3	11,3

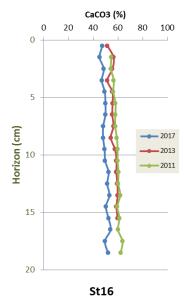


Figure 18 : Teneurs en carbonates de calcium (CaCO₃) dans les sédiments de la carotte St16. Comparaison avec les profils des campagnes 2011 et 2013.

2. Rade du Nord (St15)

A l'inverse de la carotte précédente, les sédiments de la station St15 sont peu carbonatés, l'influence principale, et largement majoritaire, correspond aux phases terrigènes qui représentent entre 67 et 75% du cortège (Tableau 3). Une fluctuation dans la composition minéralogique est notable entre les niveaux de surface et celui du bas de carotte; les 2 niveaux intermédiaires étant moins carbonatés. Cette différence est probablement liée à un changement dans le mode d'alimentation sédimentaire, comme parait l'exprimer également le profil de concentration des carbonates de calcium (CaCO₃), (Figure 19). En effet, il met en évidence une sensible augmentation des teneurs, d'une part dans les horizons les plus anciens (22 à 28 cm), et d'autre part, dans les 3 centimètres les plus récents; dans les niveaux intermédiaires, les teneurs sont équivalentes entre les campagnes 2010 à 2017 (Figure 19).

Note: des traces de Willemseite (silicates de Ni-Mg) sont mesurées dans l'horizon 13-14 cm.

Tableau 3 : Composition minéralogique des 4 horizons de la carotte St15. Pourcentages en phases biogènes (Aragonite et Calcite) et terrigènes (Goethite, Antigorite et Gibbsite).

Phase minérale (%)	Aragonite	Calcite	Goethite	Antigorite	Gibbsite
0-1 cm	19,0	14,1	31,3	10,3	25,3
3-4 cm	12,4	14,4	42,9	9,0	21,3
13-14cm	9,2	15,6	40,2	9,7	25,3
24-25 cm	12,2	19,3	36,2	6,9	25,4

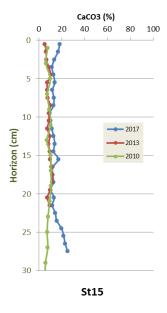


Figure 19 : Teneurs en carbonates de calcium (CaCO₃) dans les sédiments de la carotte St15. Comparaison avec les profils des campagnes 2010 et 2013

3. Ile Ouen (St13)

Les sédiments de cette carotte sont, de loin, les plus carbonatés. En effet, ils sont composés approximativement de 88 à 94% de débris carbonatés dont 50% quasiment d'Aragonite, minéral résultant de l'altération des tests de microorganismes marins. Le profil des teneurs en CaCO3 (Figure 20) met en évidence des fluctuations importantes, notamment entre les niveaux 4-5 cm et 8-9 cm. Par ailleurs, l'ensemble des teneurs 2017 se singularise des autres campagnes (2010 et 2013) par des valeurs plus faibles. Cette autre singularité conforte la nature spatio-temporelle de la variabilité des sédiments à cette station.

Les apports terrigènes (Tableau 4) sont très minoritaires le long de la carotte, avec toutefois, une certaine augmentation perceptible des teneurs en Goethite et Antigorite, entre les couches anciennes (bas de la carotte) et les plus récentes (haut de la carotte).

Note: des traces de Willemseite (silicates de Ni-Mq) sont mesurées dans l'horizon 7-8 cm.

Tableau 4 : Composition minéralogique des 4 horizons de la carotte St13. Pourcentages en phases biogènes (Aragonite et Calcite) et terrigènes (Goethite et Antigorite).

Phase minérale (%)	Aragonite	Calcite	Goethite	Antigorite
0-1 cm	45,9	42,0	4,7	7,3
3-4 cm	49,5	40,0	4,8	5,7
7-8cm	50,8	43,6	0,0	3,9
11-12 cm	50,6	42,5	2,9	4,0

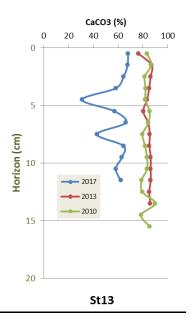


Figure 20 : Teneurs en carbonates de calcium (CaCO₃) dans les sédiments de la carotte St13. Comparaison avec les profils des campagnes 2010 et 2013

4. Baie Kwé (St06)

La carotte extraite à la station St06 (Tableau 5) montre que les sédiments sont très majoritairement carbonatés (77 à 83%) avec une prédominance de débris composés d'Aragonite (41 à 47 %). Le profil en $CaCO_3$ (Figure 21) met en évidence une variabilité sensible, les teneurs sont de l'ordre de 50 \pm 4%, avec des valeurs extrêmes comprises entre 41% (11-12 cm) et 64% (14-15 cm) qui reflètent la mise en place d'épisodes sédimentaires plus riches en apports terrigènes.

En termes d'évolution, les teneurs mesurées en carbonates sont inférieures de 15 à 20% par rapport à celles de 2013 (Figure 21) ; les teneurs mesurées en 2010 sont, quant à elles, intermédiaires. Ce type de profils suggère que les différences temporelles observées sont liées à la variabilité naturelle liée avec le site de prélèvement.

Les phases terrigènes sont essentiellement représentées par de la goethite (14 à 19%). Paradoxalement, l'Antigorite n'est pas observée dans la couche la plus récente de la carotte (0-1 cm).

Tableau 5 : Composition minéralogique des 4 horizons de la carotte St06. Pourcentages en phases biogènes (Aragonite et Calcite) et terrigènes (Goethite et Antigorite).

Phase minérale (%)	Aragonite	Calcite	Goethite	Antigorite
0-1 cm	42,8	37,9	19,3	0,0
3-4 cm	43,7	36,7	15,5	4,1
13-14 cm	46,8	36,4	14,0	2,8
23-24 cm	41,1	37,6	17,3	4,1

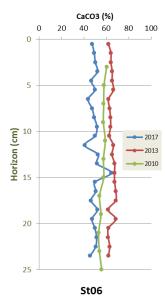


Figure 21 : Teneurs en carbonates de calcium (CaCO₃) dans les sédiments de la carotte St06. Comparaison avec les profils des campagnes 2010 et 2013

D. COMPOSITION GEOCHIMIQUE DES SEDIMENTS

Les valeurs des paramètres géochimiques (Ca, Co, Cr, Fe, Mn et Ni) sont regroupées dans l'Annexe 2.

1. Port de commerce (St16)

Les sédiments de la carotte St16 ne montrent pas, dans l'ensemble, de dispersion importante des concentrations, d'un horizon à l'autre (Figure 22). Pour chacun des 6 éléments, les coefficients de variations vont de 4 à 7%, respectivement pour Mn et Co. En effet, exception faite de quelques fluctuations, notamment pour Cr et Mn, les profils de concentration sont linéaires, sans tendance bien définie entre les couches récentes et les plus anciennes, bien que les concentrations les plus faibles soient observées dans les niveaux de surface.

Les forts coefficients inter-éléments de la matrice de similarités/dissimilarités (Tableau 6) permettent de suggérer que la carotte est probablement constituée par des sédiments provenant d'un même terme source et dont la variabilité dans la composition géochimique est faible.

Si l'on compare les profils de concentrations des deux campagnes précédentes (2011 et 2013; Figure 22), avec le dernier (2017), la tendance à la diminution qui y est observée dans les horizons récents est bien mise en évidence. En effet, pour tous les métaux, exception faite de Fe, les concentrations dans les couches de surface

des campagnes 2011 et 2013, montrent à l'inverse, une légère augmentation, cette évolution étant particulièrement notable pour le Cr.

Note : la campagne 2013 montre des particularités peu explicables en l'état, sinon par la variabilité naturelle du prélèvement (hétérogénéité du plancher sédimentaire).

Figure 22 : Profils de concentration de Ca, Co, Cr, Fe, Mn et Ni dans les sédiments de la carotte St16 pour les campagnes 2011, 2013 et 2017.

	Ca	Co	Cr	Fe	Mn	Ni
Ca	1,00	0,82	0,58	0,82	0,69	0,67
Co		1,00	0,74	0,90	0,62	0,82
Cr			1,00	0,84	0,64	0,89
Fe				1,00	0,64	0,90
Mn					1,00	0,70
Ni						1,00

Tableau 6 : Matrice de similarité/dissimilarité (corrélation de Pearson) pour les concentrations en métaux et calcium dans les sédiments de la carotte St16.

2. Rade du Nord (St15)

Les concentrations mesurées dans les différents horizons de la carotte montrent des variations relativement importantes entre le haut et le bas de la colonne sédimentaire, celles-ci paraissant synchrone pour les éléments métalliques (Figure 23), le calcium évoluant différemment, sans lien apparent. Les profils de

concentration permettent de singulariser, approximativement les 5 premiers centimètres proches de la surface, les 7 derniers et une couche intermédiaire.

Ces horizons se distinguent par :

- une augmentation des concentrations en Ca et une diminution de tous les autres métaux, exception faite de Mn, entre la couche de sub-surface (4-5 cm) et la surface (0-1 cm);
- une diminution des concentrations en Ca et une augmentation de tous les métaux, entre la couche la plus ancienne (27-28 cm) et la couche (21-22 cm) ;
- des concentrations relativement constantes pour chacun de ces paramètres entre les deux couches extrêmes.

Cette distribution particulière des concentrations en métaux et calcium suggère que différents régimes d'apports en matériel particulaire se sont succédés. Le bas de la carotte correspondrait avec une alimentation relativement influencée par les apports marins qui, progressivement, seraient enrichis en particules terrigènes. Enfin, dans les couches actuelles, il semble que le terme source marin reprenne de l'importance au détriment des apports terrigènes.

En termes d'évolution (Figure 23), les carottes 2010 et 2013 montrent des profils plus pauvres en Ca et relativement plus concentrés en métaux, cette observation est particulièrement avérée pour les sédiments de la campagne 2013 et notamment le Cr. En effet, cet élément est mesuré en de très fortes concentrations dans les 10 premiers centimètres de la carotte.

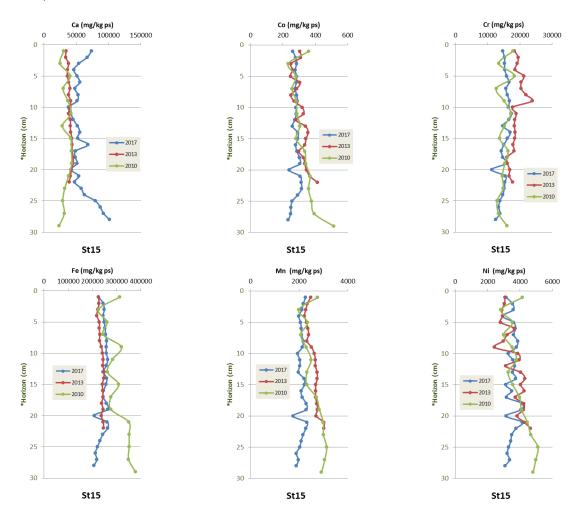


Figure 23: Profils de concentration de Ca, Co, Cr, Fe, Mn et Ni dans les sédiments de la carotte St15 pour les campagnes 2010, 2013 et 2017.

Malgré des coefficients de corrélation assez peu significatifs entre les concentrations de Ca et les éléments métalliques, on peut remarquer une certaine dissimilarité (coefficient négatif) qui traduit l'alternance des influences terrigène et marine (Tableau 7). Les plus forts coefficients inter-éléments (R²=0,80 et 0,87) sont respectivement observés pour les concentrations de Fe/Co et Fe/Cr, ce dernier étant l'expression des concentrations engendrées à l'issue de l'altération des couches latéritiques de surface.

	Ca	Со	Cr	Fe	Mn	Ni
Ca	1,00	-0,55	-0,52	-0,72	-0,23	-0,33
Со		1,00	0,63	0,80	0,79	0,62
Cr			1,00	0,87	0,50	0,47
Fe				1,00	0,65	0,66
Mn					1,00	0,62
Ni						1,00

Tableau 7 : Matrice de similarité/dissimilarité (corrélation de Pearson) pour les concentrations en métaux et calcium dans les sédiments de la carotte St15.

3. Ile Ouen (St13)

Les profils de concentration montrent des variations très importantes qui affectent chacun des 6 éléments analysés (Figure 24). Ces variations sont parfaitement synchrones et concernent indifféremment les métaux latéritiques et le calcium d'origine marine, comme le soulignent les forts coefficients de la matrice de similarité/dissimilarité (Tableau 8); ces évolutions démontrent que seul un terme source gouverne la dynamique sédimentaire à cette station.

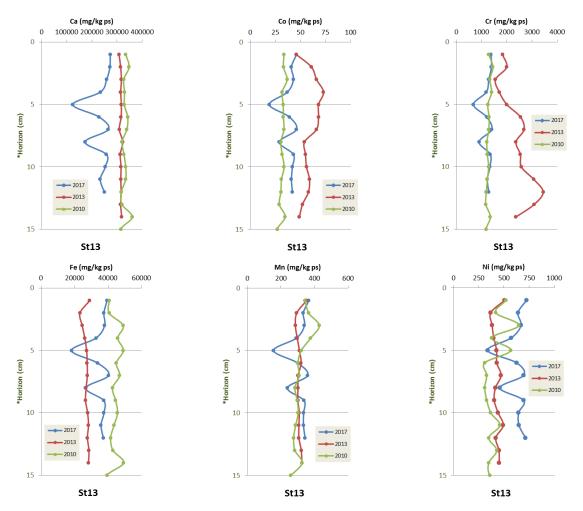


Figure 24: Profils de concentration de Ca, Co, Cr, Fe, Mn et Ni dans les sédiments de la carotte St13 pour les campagnes 2010, 2013 et 2017.

En effet, ces observations suggèrent la mise en place d'un transport latéral de sédiments au gré des courants avec très peu d'apports terrigènes. Par ailleurs, cette hypothèse est confortée par les concentrations en métaux, beaucoup plus faibles dans cette carotte que pour les 3 autres, notamment dans le cas de Fe pour lequel on ne mesure que 30 g/kg contre 100 à 300 g/kg.

La comparaison avec les données historiques (2010 et 2013), confirme l'absence de lien entre les différentes sources terrigènes et marines (Figure 24). En effet, les profils montrent des concentrations très différentes et des évolutions temporelles spécifiques, d'une campagne à l'autre.

	Ca (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Ni (mg/kg)
Ca (mg/kg)	1	0,97	0,99	0,98	0,97	0,95
Co (mg/kg)		1,00	0,98	1,00	0,99	0,98
Cr (mg/kg)			1,00	0,99	0,97	0,96
Fe (mg/kg)				1,00	1,00	0,98
Mn (mg/kg)					1,00	0,98
Ni (mg/kg)						1

Tableau 8 : Matrice de similarité/dissimilarité (corrélation de Pearson) pour les concentrations en métaux et calcium dans les sédiments de la carotte St13.

4. Baie Kwé (St06)

Pour chaque élément, les profils de concentration montrent une variabilité relative des valeurs (Figure 25), les coefficients de variance étant compris entre 6% (Fe et Mn) et 11% (Ni). Par ailleurs, ces fluctuations ne sont pas synchrones et ne permettent pas de mettre en évidence une quelconque tendance temporelle des concentrations. En effet, seules les concentrations de Mn montrent une certaine corrélation avec Co, Cr et Fe (Tableau 9), le calcium ne montrant pas d'anti-corrélation bien marquée, comme attendu. Ces observations suggèrent que la carotte extraite est le résultat de la sédimentation de particules provenant de différents termes sources à dominantes multiples provenant tantôt du creek Kwé, du platier récifal, voire des dépôts de vases remobilisés, au gré des conditions hydro-climatiques.

Note: la campagne 2013 montre des particularités peu explicables en l'état, sinon par la variabilité naturelle du prélèvement (hétérogénéité du plancher sédimentaire). En effet, il faut rappeler que ce site de prélèvement est localisé au fond d'un canyon de relief assez abrupt qui relie l'embouchure du creek et le Canal de la Havannah, des glissements sédimentaires peuvent se produire et modifier ainsi les séquences naturelles de déposition.

	Ca	Co	Cr	Fe	Mn	Ni
Ca	1,00	0,52	0,68	0,64	0,72	0,29
Со		1,00	0,64	0,91	0,86	0,75
Cr			1,00	0,79	0,81	0,29
Fe				1,00	0,97	0,66
Mn					1,00	0,59
Ni						1,00

Tableau 9 : Matrice de similarité/dissimilarité (corrélation de Pearson) pour les concentrations en métaux et calcium dans les sédiments de la carotte St06.

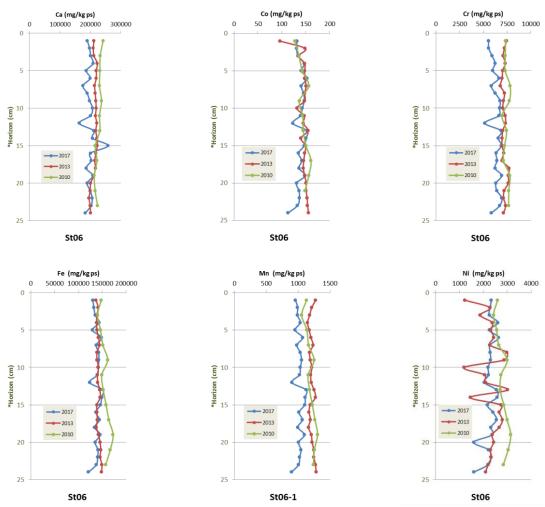


Figure 25 : Profils de concentration de Ca, Co, Cr, Fe, Mn et Ni dans les sédiments de la carotte St06 pour les campagnes 2010, 2013 et 2017.

E. TAUX DE SEDIMENTATION

Pour l'ensemble des carottes St16, St15, St13 et St06 les valeurs des spectrométries gamma des différents radionucléides sont regroupées en Annexe 2.

Note : les valeurs de radioactivité du ¹³⁷Cs sont quasi-systématiquement toutes inférieures aux limites de quantification des spectromètres utilisés. Elles ne permettent donc pas, pour les 4 carottes de dresser des profils de radioactivité de ce radionucléide artificiel, dans l'objectif de conforter la géochronologie calculée avec le « ²¹⁰Pb en excès ».

Note: la technique de datation au ²¹⁰Pb (géochronologie) est basée sur la détermination de la radioactivité du « ²¹⁰Pb en excès » dans les couches sédimentaires. Un des modèles de datation (Constant Initial Concentration = CIC; Robbins et Edgington, 1975) admet pour hypothèse initiale que l'incorporation de ²¹⁰Pb dans les sédiments et le taux de sédimentation sont le résultat de phénomènes constants. Une deuxième modèle (Constant Rate of Supply = CRS; Appleby et Oldfield, 1978) suppose que le flux ²¹⁰Pb dans les sédiments est également constant, mais se différentie par l'apport sédimentaire qui est considéré comme variable. C'est le dernier modèle qui est le

plus souvent applicable dans le cas de géochronologie en milieu côtier. Un troisième type (noté CRS/MV ou CF:CS) considère que tous les phénomènes sont invariants.

1. Port de commerce (St16)

Les niveaux de radioactivité du « ²¹⁰Pb en excès » dans les dépôts de cette carotte s'intègrent aux valeurs déjà obtenues dans le lagon de Nouvelle-Calédonie : elles s'échelonnent de 145,7 ± 14,9 mBq/g en surface, à 22,6 ± 3,0 mBq/g au bas de la carotte. Le flux de « ²¹⁰Pb en excès » à l'interface eau-sédiment est de 0,161 Bq/cm²/an, c'est-à-dire équivalent à celui de 2010 (0,192 Bq/cm²/an). Il faut noter qu'en 2013, la valeur n'était que de 0,028 Bq/cm²/an, probablement en rapport avec des événements pluvieux et/ou sédimentaires de forte ampleur qui ont pu diluer le signal et/ou apporter des particules initialement enfouies (non marquées par le ²¹⁰Pb).

S'agissant d'un radionucléide généré au sein de la roche mère, la radioactivité due au 226 Ra est de 3,0 \pm 0,5 mBq/g et demeure logiquement du même niveau d'une campagne à l'autre depuis 2007.

Les valeurs sont en parfait accord avec les mesures de ²¹⁰Pb et ²²⁶Ra réalisées lors de toutes les campagnes précédentes depuis la définition de l'Etat de référence de 2007.

La représentation semi-logarithmique des mesures du « ²¹⁰Pb en excès » montre une tendance globale à la décroissance de la radioactivité avec la profondeur (Figure 26). Contrairement à la campagne précédente (2013), une seule séquence sédimentaire est discernable. La droite semi-logarithmique de régression (R²=0,962) est robuste et permet de calculer le taux d'accumulation moyen qui est de **0,22 g/cm²/an**. Cette valeur est en accord avec les taux d'accumulation moyens des campagnes 2010 (0,12 g/cm²/an) et 2013 (0,23 g/cm²/an).

Le niveau de radioactivité du ²¹⁰Pb plus élevé dans les tout premiers centimètres de la carottes est probablement la signature de l'épisode pluvieux exceptionnel de juillet 2013 (470 mm/48h) qui a pu drainer l'ensemble des bassins versants qui alimentent la Baie du Prony.

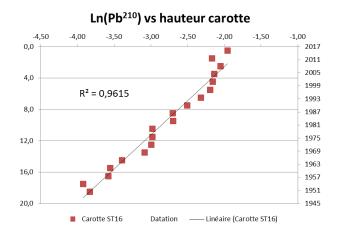


Figure 26 : Profil de la radioactivité du « ²¹⁰Pb en excès » (Bq/g) dans les sédiments de la carotte St16.

2. Rade du Nord (St15)

La radioactivité du « 210 Pb en excès » dans les sédiments estuariens de cette carotte est comprise entre 64,5 ± 8,3 mBq/g dans la couche de surface et 23,0 ± 2,9 mBq/g au bas de la carotte, en parfait accord avec les mesures réalisées antérieurement (45,4 ± 4,5 mBq/g et 29,0 ±3,4 mBq/g, respectivement pour 2013). Le flux de

« ²¹⁰Pb en excès » à l'interface eau-sédiment est de 0,036 Bq/cm²/an, c'est-à-dire équivalent à celui de 2013 (0,041 Bq/cm²/an).

S'agissant d'un radionucléide généré au sein de la roche mère, la radioactivité due au 226 Ra est de 2,8 \pm 0,5 mBq/g et demeure logiquement du même niveau d'une campagne à l'autre.

Ces valeurs sont en parfait accord avec les mesures de ²¹⁰Pb et ²²⁶Ra réalisées lors de toutes les campagnes précédentes depuis la définition de l'Etat de référence de 2007.

La représentation semi-logarithmique des mesures du « ²¹⁰Pb en excès » montre une tendance globale à la décroissance de la radioactivité avec la profondeur (Figure 27). Toutefois, la distribution des valeurs est assez dispersée, notamment dans les couches les plus anciennes de la carotte, traduisant ainsi une sédimentation très irrégulière. Contrairement à la campagne précédente (2013), la carotte ne recoupe pas les niveaux les plus anciens, c'est-à-dire de radioactivité en ²¹⁰Pb faible : une seule séquence sédimentaire est discernable. La droite semi-logarithmique de régression (R²=0,910) est robuste et permet de calculer le taux d'accumulation moyen qui est de **0,57 g/cm²/an**. Cette valeur est relativement proche du taux d'accumulation moyen de la campagne de 2011 (0,36 g/cm²/an), mais plus faible que celui de 2013 (0,89 g/cm²/an).

La dispersion des valeurs de radioactivité du ²¹⁰Pb dans les sédiments anciens souligne l'occurrence d'événements sédimentaires, très irréguliers donnant lieu à des apports d'intensités variables mais significatifs. Entre le début des années 2006 et 2012, des périodes de forte sédimentation sont également visibles. Plus récemment, (2013-2015) l'épisode pluvieux de juillet 2013 (470 mm/48h) semble aussi être enregistré. Actuellement, la tendance qui semble de dégager est un retour à des flux plus faibles.

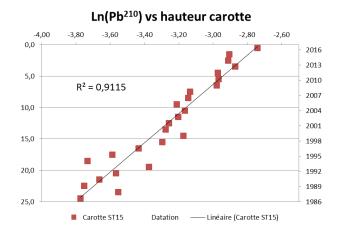


Figure 27 : Profil de la radioactivité du « ²¹⁰Pb en excès » (Bq/g) dans les sédiments de la carotte St15.

3. Ile Ouen (St13)

A proximité de l'Ile Ouen, la radioactivité du « ^{210}Pb en excès » dans les sédiments de la carotte est comprise entre 149,0 ± 12,1 mBq/g dans la couche de surface et $104 \pm 9,4$ mBq/g au bas de la carotte, en parfait accord avec les mesures réalisées antérieurement (131,0 mBq/g et 91,0 mBq/g, respectivement pour 2013). Le flux de « ^{210}Pb en excès » à l'interface eau-sédiment est de 0,139 Bq/cm²/an, c'est-à-dire équivalent à celui de 2013.

S'agissant d'un radionucléide généré au sein de la roche mère, la radioactivité due au 226 Ra est de 2,3 \pm 0,3 mBq/g demeure logiquement du même niveau d'une campagne à l'autre.

Ces valeurs sont en parfait accord avec les mesures de ²¹⁰Pb et ²²⁶Ra réalisées lors de toutes les campagnes précédentes depuis la définition de l'Etat de référence de 2007.

La représentation semi-logarithmique des mesures du « ²¹⁰Pb en excès » montre une tendance globale à la décroissance de la radioactivité avec la profondeur (Figure 28). Toutefois, la distribution des valeurs est assez dispersée dans toute la carotte. Cette dispersion traduit la mise en place d'une sédimentation très irrégulière. La droite semi-logarithmique de régression (R²=0,784) n'est hautement significative mais permet, à l'inverse de la carotte 2013, d'estimer le taux d'accumulation moyen qui est de **0,13 g/cm²/an**. Cette valeur élevée, conjointement au caractère récent du phénomène, ce que traduit la faible décroissance de la radioactivité du ²¹⁰Pb le long de la carotte et la forte hydrodynamique locale, suggèrent qu'il s'agit plus de transport par le fond (charriage) que de sédimentation directe.

Actuellement, la tendance qui semble de dégager est un retour à des flux plus faibles.

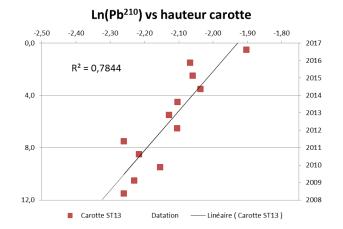


Figure 28 : Profil de la radioactivité du « ²¹⁰Pb en excès » (Bq/g) dans les sédiments de la carotte St13.

4. Baie Kwé (St06)

Au droit de l'embouchure de la Kwé, la radioactivité du « ^{210}Pb en excès » dans les sédiments de la carotte est comprise entre 141,9 ± 12,4 mBq/g dans la couche de surface et 73,1 ± 6,4 mBq/g au bas de la carotte ; ces valeurs sont en parfaite concordance avec les mesures réalisées antérieurement (124,8 mBq/g en 2013). Le flux de « ^{210}Pb en excès » à l'interface eau-sédiment est de 0,161 Bq/cm²/an, c'est-à-dire équivalent à celui de 2013 (0,208 Bq/cm²/an).

S'agissant d'un radionucléide généré au sein de la roche mère, la radioactivité due au 226 Ra est de 2,4 \pm 0,5 mBq/g demeure logiquement du même niveau d'une campagne à l'autre.

Ces valeurs sont en parfait accord avec les mesures de ²¹⁰Pb et ²²⁶Ra réalisées lors de toutes les campagnes précédentes depuis la définition de l'Etat de référence de 2007.

La représentation semi-logarithmique des mesures du « ²¹⁰Pb en excès » montre une tendance globale à la décroissance de la radioactivité avec la profondeur (Figure 29). Toutefois, la distribution des valeurs très dispersée dans toute la carotte, permet d'obtenir qu'une droite semi-logarithmique de régression (R²=0,835) faible. Toutefois, il est possible d'estimer le taux d'accumulation moyen qui est de **1,22 g/cm²/an**. Cette valeur élevée, est identique à celle de 2013 (1,23 g/cm²/an). Les taux d'accumulation conjointement au caractère récent du phénomène traduit par la faible décroissance de la radioactivité du ²¹⁰Pb le long de la carotte, suggèrent qu'il s'agit d'une sédimentation rythmée.

Les flux sédimentaires sont globalement irréguliers augmenté depuis la fin des années 90, une forte période d'augmentation des flux apparait au début des années 2000 ainsi que dans les sédiments les plus récents 2011-2015). Durant cette période de forts épisodes pluvieux, comme celui de juillet 2013 (470 mm/48h) peut avoir

joué un rôle dans l'augmentation des taux d'accumulation. Actuellement, la tendance qui semble se dégager est un retour à des flux plus faibles.

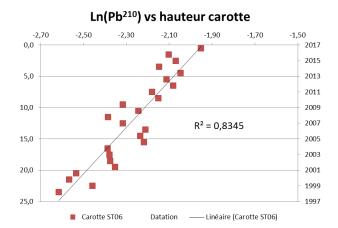


Figure 29 : Profil de la radioactivité du « ²¹⁰Pb en excès » (Bq/g) dans les sédiments de la carotte St06.

V. CONCLUSION

<u>Note</u>: La tendance des flux massiques (taux de sédimentation) à l'augmentation, comme constaté dans les 4 carottes, est aujourd'hui un phénomène observé à travers le monde. Ainsi de nombreux auteurs publient des articles montrant que depuis le début du siècle, et notamment le milieu des années 50, les quantités de matériel terrigène est en nette progression (e.g. Sanchez-Cabeza et al, 2000; Arman Lubis A, 2006; De Souza et al, 2012).

Port du port de commerce (St16).

Les sédiments du port de commerce (St16) montrent une relativement grande homogénéité. Les paramètres physiques (densité, %W, ...) suggèrent que la sédimentation est continue. Cette hypothèse est relayée par les résultats de la granulométrie des populations de particules qui montrent que les sédiments sont majoritairement constitués de particules fines argilo-silteuses remarquablement triées; une sensible augmentation de leur proportion est observée dans les premiers centimètres de la carotte.

En raison de l'absence de creeks à proximité immédiate, les sédiments sont constitués à plus de 75% de carbonates (tests d'organismes marins) et présentent peu de contrastes en termes de concentration en métaux, ce qui tend à renforcer l'hypothèse d'une influence terrigène très partielle.

Cette homogénéité relative est également exprimée par le profil de radioactivité du ²¹⁰Pb qui est représentatif d'une sédimentation continue. Toutefois, celle-ci semble avoir augmenté considérablement entre les années 1980 et 2000, ensuite les flux massiques semblent se stabiliser, malgré quelques fluctuations dues à des épisodes climatiques notamment.

Creek de la Rade Nord (St15)

Les paramètres physiques (densité, %W, ...) montrent que les sédiments de la carotte St15 résultent de l'empilement d'une succession de couches sédimentaires dont la nature terrigène peu varier temporellement. En effet, si l'étude des populations de particules montre que leur composition est relativement homogène en silts fins, une distinction peut être observée dans les tous derniers centimètres de la carotte avec la présence de minéraux lourds (chromites ?). Par ailleurs, les tous premiers centimètres de surface et les derniers voient la contribution en particules carbonatées augmenter.

En raison de la proximité immédiate du Creek de la Rade Nord, cette influence terrigène s'étend à toute la carotte puisque près de 70% des particules sont constituées de Goethite et d'Antigorite.

Enfin, la relative hétérogénéité des sédiments se manifeste également par les teneurs en métaux qui montrent des variations entre les couches récentes et plus anciennes de la carotte ; le profil de radioactivité du ²¹⁰Pb contribuant à cette démonstration. L'hypothèse de variabilité temporelle des flux massiques est mise en évidence et permet de distinguer 3 ensembles, malgré leur progression discontinue tout le long de la carotte. Actuellement, l'augmentation des flux massiques semble se stabiliser pour cette station.

Off-shore Ile Ouen (St13)

Du point de vue des paramètres physiques (densité, %W, ...), les profils respectifs sont sensiblement plus irréguliers que les 3 autres. Les faibles valeurs de teneurs en eau et de porosité sont caractéristiques de dépôts constitués de populations de particules relativement grossières ; les sédiments de la station St13 étant très majoritairement composés de silts moyens (minoritaires pour les 3 autres carottes). Toutefois, les populations de particules semblent résulter d'un trie hydrodynamique notable et sont constituées quasi-exclusivement (90%) de carbonates (tests d'organismes marins). On notera une très légère empreinte terrigène dans les tous premiers centimètres de la carotte.

Les profils de concentration des métaux et du calcium dans les sédiments montrent une très forte variabilité; les variations étant synchrones pour tous les éléments, elles suggèrent l'existence d'un terme source unique (ou dominant) peu influencé par les apports terrigènes. Par ailleurs, une variabilité très importante d'une campagne à l'autre est aussi constatée pour tous les paramètres, ce qui suggère un transport des particules sous l'action de conditions hydrodynamiques changeantes dans le temps

Les profils de flux de masse montrent, à l'évidence, une augmentation temporelle continue des valeurs qui sont en progression constante depuis les années 60. Actuellement, un fléchissement semble apparaître.

Baie Kwé (St16)

Pour la carotte St16, les résultats d'analyse des paramètres physiques (densité, %W,...) suggèrent que les dépôts sont le résultat d'une succession d'événements hydro-climatiques qui ont généré des apports de nature variable dans le temps. Toutefois, cette variation n'implique ni la taille des particules, ni leurs proportions puisque celles-ci montrent une grande homogénéité dans toutes les couches. D'autre part, ces particules sont constituées d'une fraction carbonatée très importante (débris coquillers jusqu'à 80%), dont les proportions augmentent encore sensiblement avec la profondeur.

Paradoxalement, les profils de concentration des métaux latéritiques montrent des fluctuations modérées et sans réel lien, les unes avec les autres. Cette distribution suggère que plusieurs termes sources peuvent concourir à la sédimentation, alimentant de manière alternée en particules à dominantes carbonatée et/ou terrigènes. Cette diversité est sans doute reflétée par le profil de radioactivité du ²¹⁰Pb qui montre une grande dispersion des valeurs.

Les flux massiques augmentent progressivement jusqu'en 2005, puis au-delà, l'accroissement devient plus irrégulier. Comme pour les autres sites, les dépôts récents correspondent avec une diminution des flux massiques.

REFERENCES

Appleby PG et Oldfield F, 1978. The assessment of Pb-210 data from sites with varying sediment accumulation rates. Hydrobiologia 103, pp29-35.

Arman Lubis A, 2006. Constant rate of supply (CRS) model for determining the sediment accumulation rates in the coastal area using ²¹⁰Pb. Journal of Coastal Development, 10(1), pp9-18.

CCB, 2009 : Convention pour la conservation de la biodiversité (CCB, 2009).

De Souza VLB, Rodrigues KRG, Pedroza EH, de Melo R.T, de Lima VL, Hazin CA, de Almeida MGO, do Nascimento RK, 2012. Sedimentation rate and ²¹⁰Pb sediment dating at Apipucos reservoir, Recife, Brazil. Sustainability, 4, pp2419-2429.

Dolbecq M, Le Grand H, Breau L., Fernandez JM, 2011. Suivi des taux d'accumulation dans la Rade du Nord (Baie du Prony), la Baie Kwé et l'Ile Ouen (Nouvelle-Calédonie). Contrat AEL/Vale-NC n° E20532, 55p.

Fernandez JM, Chevillon C, Dolbecq M, Legendre R, Belhandouz A, Lamoureux JP, 2007. Etat de référence : Distribution superficielle des sédiments, flux sédimentaires et taux d'accumulation dans la Baie du Prony (Rades Nord et Nord-est) et dans la Baie Kwé. Contrat IRD/Goro-Ni n° 1230, 55p.

Fernandez JM, Le Grand H, Moreton B, Dolbecq M, 2010. Suivi sedimentologique triennal 2009: Distribution des métaux dans les sédiments de surface et taux d'accumulation en St133 (Ile Ouen). Contrat IRD/Vale-INCO n° 2285, 44p.

Fernandez JM, Moreton B, Le Grand H, Creuzil J, 2012. Suivi station St16 : Taux d'accumulation et évolution géochimique des sédiments au droit du port de commerce (Baie du Prony) . Contrat AEL/Vale-NC n° E29928, 35p.

Robbins JA et Edgington DN, 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim. Cosmochim. Acta. 39, pp285-304.

Sanchez-Cabeza A, Ani-Ragolta I, Masqué P, 2000. Some considerations of the 210Pb constant rate of supply (CRS) dating model. Limnol.Oceanogr. 45(4), pp990-995.

LISTE DES FIGURES

IGURE 1: LOCALISATION GEOGRAPHIQUE DES STATIONS DE PRELEVEMENT DU SUIVI DES TAUX D'ACCUMULATION ET EVOLUTION	
GEOCHIMIQUE DES SEDIMENTS DANS LA ZONE D'INFLUENCE DE L'USINE DE VALE-NC (ST06-1, ST15 ET ST16) ET AU LARGE DE L'ÎLE OUEN (ST13-3)	
igure 2 : Representation graphique des densites seche et humide ainsi que de la teneur en eau des sediments de la carotte St06.	
IGURE 3 : REPRESENTATION GRAPHIQUE DES DENSITES SECHE ET HUMIDE AINSI QUE DE LA TENEUR EN EAU DES SEDIMENTS DE LA	
CAROTTE ST16	
IGURE 5 : REPRESENTATION GRAPHIQUE DES DENSITES SECHE ET HUMIDE AINSI QUE DE LA TENEUR EN EAU DES SEDIMENTS DE LA CAROTTE ST13.	13
IGURE 6 : DISTRIBUTION GRANULOMETRIQUE EN POURCENTAGE VOLUMIQUE POUR LES HORIZONS (0-1 CM), (3-4 CM), (10-11 CM ET (18-19 CM) DE LA CAROTTE ST16.	
IGURE 7 : OBSERVATIONS AU MICROSCOPE OPTIQUE DES FRACTIONS \emptyset > 40 μ M DES 4 HORIZONS DE LA CAROTTE ST16 (GROSSISSEMENT X 80)	14
igure 8 : Evolution du pourcentage en fractions pelitiques (\emptyset <41 μ m) le long des 20 premiers centimetres de la carotte St16 et comparaison des compositions de 2007, 2011, 2013 et 2017.	15
IGURE 9 : DISTRIBUTION GRANULOMETRIQUE EN POURCENTAGE VOLUMIQUE POUR LES HORIZONS (0-1 CM), (3-4 CM), (13-14 CM ET (24-25 CM) DE LA CAROTTE ST15	⁄ 1)
igure 10 : Observations au microscope optique des fractions $\varnothing > 40~\mu m$ des 4 horizons de la carotte St15 (Grossissement x 80)	
igure 11 : Evolution du pourcentage en fractions pelitiques (\emptyset <41 μ m) le long des 30 premiers centimetres de la carotte St15 et comparaison des compositions de 2007, 2010, 2013 et 2017.	
igure 12 : Distribution granulometrique en pourcentage volumique pour les horizons (0-1 cm), (3-4 cm), (7-8 cm) (11-12 cm) de la carotte St13),
igure 13 : Observations au microscope optique des fractions \emptyset > 40 μ m des 4 horizons de la carotte St13 (Grossissement x 80)	
igure 14 : Evolution du pourcentage en fractions pelitiques (\emptyset <41 μ m) le long des 15 premiers centimetres de la carotte St13 et comparaison des compositions de 2010, 2013 et 2017	
igure 15 : Distribution granulometrique en pourcentage volumique pour les horizons (0-1 cm), (3-4 cm), (13-14 cm) et (23-24 cm) de la carotte St06	
igure 16 : Observations au microscope optique des fractions Ø > 40 μm des 4 horizons de la carotte St06 (Grossissement x 80)	
igure 17 : Evolution du pourcentage en fractions pelitiques (\emptyset <41 μ m) le long des 25 premiers centimetres de la carotte St06 et comparaison temporelle des compositions de 2007, 2010, 2013 et 2017	
igure 18 : Teneurs en carbonates de calcium (CaCO $_3$) dans les sediments de la carotte St 16 . Comparaison avec les profils des campagnes 2011 et 2013	
igure 19 : Teneurs en carbonates de calcium (CaCO $_3$) dans les sediments de la carotte St 15 . Comparaison avec les profils des campagnes 2010 et 2013	
igure 20 : Teneurs en carbonates de calcium (CaCO ₃) dans les sediments de la carotte St13. Comparaison avec les PROFILS DES CAMPAGNES 2010 ET 2013	
igure 21 : Teneurs en carbonates de calcium (CaCO $_3$) dans les sediments de la carotte St 06 . Comparaison avec les	21

FIGURE 22: PROFILS DE CONCENTRATION DE CA, CO, CR, FE, MN ET NI DANS LES SEDIMENTS DE LA CAROTTE ST16 POUR LES	
CAMPAGNES 2011, 2013 ET 2017	23
FIGURE 23: PROFILS DE CONCENTRATION DE CA, CO, CR, FE, MN ET NI DANS LES SEDIMENTS DE LA CAROTTE ST15 POUR LES	
CAMPAGNES 2010, 2013 ET 2017	24
FIGURE 24 : PROFILS DE CONCENTRATION DE CA, CO, CR, FE, MN ET NI DANS LES SEDIMENTS DE LA CAROTTE ST13 POUR LES	
CAMPAGNES 2010, 2013 ET 2017	25
FIGURE 25 : PROFILS DE CONCENTRATION DE CA, CO, CR, FE, MN ET NI DANS LES SEDIMENTS DE LA CAROTTE ST06 POUR LES	
CAMPAGNES 2010, 2013 ET 2017	27
FIGURE 26 : PROFIL DE LA RADIOACTIVITE DU « ²¹⁰ PB EN EXCES » (BQ/G) DANS LES SEDIMENTS DE LA CAROTTE ST16	28
FIGURE 27 : PROFIL DE LA RADIOACTIVITE DU « ²¹⁰ PB EN EXCES » (BQ/G) DANS LES SEDIMENTS DE LA CAROTTE ST15	29
FIGURE 28 : PROFIL DE LA RADIOACTIVITE DU « ²¹⁰ PB EN EXCES » (BQ/G) DANS LES SEDIMENTS DE LA CAROTTE ST13	30
FIGURE 29 : PROFIL DE LA RADIOACTIVITE DU « ²¹⁰ PB EN EXCES » (BQ/G) DANS LES SEDIMENTS DE LA CAROTTE ST06	31

LISTE DES TABLEAUX

Tableau 1: Localisation des stations de prelevement (referentiel WGS-84) et les dimensions des carottes	
EXTRAITES	10
TABLEAU 2 : COMPOSITION MINERALOGIQUE DES 4 HORIZONS DE LA CAROTTE ST16. POURCENTAGES EN PHASES	
BIOGENES (ARAGONITE ET CALCITE) ET TERRIGENES (GOETHITE ET ANTIGORITE)	19
TABLEAU 3 : COMPOSITION MINERALOGIQUE DES 4 HORIZONS DE LA CAROTTE ST15. POURCENTAGES EN PHASES	
BIOGENES (ARAGONITE ET CALCITE) ET TERRIGENES (GOETHITE, ANTIGORITE ET GIBBSITE).	20
TABLEAU 4 : COMPOSITION MINERALOGIQUE DES 4 HORIZONS DE LA CAROTTE ST13. POURCENTAGES EN PHASES	
BIOGENES (ARAGONITE ET CALCITE) ET TERRIGENES (GOETHITE ET ANTIGORITE)	21
TABLEAU 5 : COMPOSITION MINERALOGIQUE DES 4 HORIZONS DE LA CAROTTE ST06. POURCENTAGES EN PHASES	
BIOGENES (ARAGONITE ET CALCITE) ET TERRIGENES (GOETHITE ET ANTIGORITE)	22
Tableau 6 : Matrice de similarite/dissimilarite (correlation de Pearson) pour les concentrations en	
METAUX ET CALCIUM DANS LES SEDIMENTS DE LA CAROTTE ST16	23
Tableau 7: Matrice de similarite/dissimilarite (correlation de Pearson) pour les concentrations en	
METAUX ET CALCIUM DANS LES SEDIMENTS DE LA CAROTTE ST15	25
Tableau 8 : Matrice de similarite/dissimilarite (correlation de Pearson) pour les concentrations en	
METAUX ET CALCIUM DANS LES SEDIMENTS DE LA CAROTTE ST13	26
Tableau 9 : Matrice de similarite/dissimilarite (correlation de Pearson) pour les concentrations en	
METAUX ET CALCIUM DANS LES SEDIMENTS DE LA CAROTTE STO6	26

ANNEXES

Annexe 1 : Methodologie	39
Annexe 2 : Resultats	42

Annexe 1: METHODOLOGIE

Extraction des carottes

Les prélèvements des carottes ont été effectués avec un carottier conçu pour les faibles profondeurs (< 50 m) afin que la mise en œuvre puisse s'effectuer à partir d'une embarcation à faible tirant d'eau. Le carottier est composé de tubes amovibles de 0,60 m ou 1,20 m de longueur pour un diamètre externe de 8 cm. Des tubes en plexiglass ont été utilisés afin de conserver l'intégrité géochimique des sédiments. Par ailleurs, ce type de carottier présente l'avantage d'assurer une très bonne conservation de l'interface « eau-sédiments ».

Après extraction, chaque carotte a été maintenue verticalement jusqu'à son découpage intégral en différents horizons d'une épaisseur égale à 1 cm. Une prise d'essai d'un volume de 10 mL de sédiment a été effectuée à l'aide d'une seringue dans chaque horizon pour les déterminations des densités et de la porosité des sédiments nécessaires au calcul des taux d'accumulation.

Les horizons de carotte échantillonnés ont été conditionnés dans des sachets en vinyle à usage unique (Whirlpack), congelés puis lyophilisés.

Les opérations réalisées sur les différents horizons dans les colonnes sédimentaires St16, St15, St13 et St06 sont les suivantes :

- Détermination de la concentration totale des métaux après attaque des sédiments par fusion alcaline et analyse par spectrométrie d'émission (ICP-OES);
- Détermination des taux d'accumulation par la méthode dite du « ²¹⁰Pb en excès ». Dans cet objectif, la radioactivité des radionucléides naturels ²¹⁰Pb et ²²⁶Ra a été déterminée par « spectrométrie gamma basse énergie » dans chaque horizon de sédiment brut.

Sur seulement 4 horizons sélectionnés après un examen visuel de la carotte, une analyse des populations de grains par granulométrie laser et une détermination de la composition minéralogique par diffraction de rayons X (DRX) ont été conduites.

Tous les échantillons de sédiments destinés au dosage des métaux ont été tamisés par voie humide afin de récupérer les fractions pélitiques (particules de diamètre inférieur à 40 µm); la fraction pélitique étant considérée de longue date, comme la fraction la plus réactive en matière d'échanges géochimiques avec les métaux (Mayer and Fink, 1979; Ackerman, 1980; Deely and Fergusson, 1994; He and Walling, 1996).

Dosage des carbonates

Les teneurs en carbonate sont déterminées par la méthode dite du « calcimètre de Bernard ». Cette méthode consiste en une attaque du sédiment par une solution d'acide chlorhydrique qui génère la formation de CO₂. Le volume de gaz est titré et la concentration en carbonate de calcium est déterminée par relation stœchiométrique.

Granulométrie

L'étude de la distribution des populations de particules fines (silts et argiles) est conduite sur la fraction < 2000 μ m. La distribution de ces populations est réalisée par granulométrie laser (Malvern), après remise en suspension des sédiments, ajout d'agent dispersant (Pyrophosphates de Na/K) et agitation aux ultrasons.

Minéralogie (DRX)

La minéralogie sera déterminée par diffraction de rayons X (DRX) avec un appareillage INEL équipé d'une anticathode Cu. Une fois les différents minéraux identifiés (carbonates, sulfures, oxydes....), leurs proportions relatives seront évaluées en utilisant une procédure de type affinement Rietveld.

Les diffractions semi-quantitatives seront effectuées par AEL à l'UNC (Nouméa).

Dosage de la concentration totale des métaux

L'analyse de la concentration totale des métaux, contenus dans les horizons des différentes carottes, a été conduite par attaque totale des sédiments par fusion alcaline (voir protocole « dosage des métaux dans les phases géochimiques »). Après mise en solution, les métaux Co, Cr, Fe, Mn, Ni et Ca ont été dosés par ICP-OES.

Géochronologie

La datation des horizons sédimentaires nécessaire à l'évaluation des taux d'accumulation, a été obtenue par l'analyse de la radioactivité d'un radio-isotope, le ²¹⁰Pb, naturellement présent dans les sédiments. La technique consiste à déterminer :

- le ²¹⁰Pb « atmosphérique », dit « en excès » qui provient indirectement de la désintégration du ²²²Rn, descendant gazeux du ²²⁶Ra contenu dans les roches qui se dégage dans l'atmosphère. Intégré aux aérosols, en quantités importantes selon un flux supposé constant, le ²¹⁰Pb est d'abord entraîné par les pluies, puis transporté par les rivières jusqu'à la mer, où il va sédimenter avec les particules.
- le ²¹⁰Pb « supporté » qui apparaît au sein même de la roche (ou du sédiment) et qui ne subit donc pas le cycle atmosphérique. Son apport aux sédiments découle de l'érosion des sols et de son transport fluvial vers le bassin de sédimentation.

Le ²¹⁰Pb constitue un excellent outil permettant la datation des carottes sédimentaires sur une échelle de temps de l'ordre de 100 ans (He & Walling, 1996 ; Valette-Silver, 1993).

Dans les couches sédimentaires, la radioactivité du ²¹⁰Pb d'origine atmosphérique décroît de manière exponentielle en fonction du temps à un taux fixé par sa période de demi-vie (T½ = 22,26 ans). A une profondeur donnée sous l'interface eau-sédiment, la radioactivité du ²¹⁰Pb dépend donc de la durée écoulée depuis sa déposition et du taux d'accumulation. La radioactivité propre du ²¹⁰Pb en excès est calculée en soustrayant à la radioactivité totale du ²¹⁰Pb celle du ²¹⁰Pb « *supporté* », mesurée dans les niveaux les plus profonds, où la contribution atmosphérique est négligeable.

L'âge t du sédiment A est alors obtenu selon les équations suivantes (modèles CIC et CRS):

$$t_{CIC} = \frac{1}{\lambda} \ln \left(\frac{^{210}Pb^{0}}{^{210}Pb} \right)_{A}$$

$$t_{CRS} = \frac{1}{\lambda} \cdot \ln \left(\frac{A_{(\infty)}}{A_{(\infty)} - A_{(t)}} \right)$$

Avec

$$\lambda = 3,11.10^{-2} \text{ an}^{-1};$$

 $\binom{2^{10}Pb^0}{A}$ = la radioactivité dans le niveau de surface (h = 0);


```
(^{210}Pb)_A = la radioactivité à la profondeur h; 
 A(\infty) = le flux total de Pb-210; 
 A(t) = le flux de Pb-210 pour l'instant t. 
 Le taux d'accumulation « a » (g.cm<sup>-1</sup>.an<sup>-1</sup>) est alors : a = h/t
```

La radioactivité du ²¹⁰Pb a été déterminée par spectrométrie gamma basse énergie à 46.54 keV. La chaine de mesures utilisée est composée d'un spectromètre ORTEC X et d'un détecteur au béryllium de 80 % de rendement.

Annexe 2: RESULTATS

VARIABLES PHYSICO-CHIMIQUES (Densités, %W)

ST16

Code AEL	Station	Horizon	Prélèvement	Teneur en eau à 50°C (%)	Densité humide (g/cm3)	Densité sèche (g/cm3)	Porosité (%)
D002a1-S-Carotte-065	Carotte ST16	0-1 cm	1	64	1,27	2,11	78
D002a1-S-Carotte-066	Carotte ST16	1-2 cm	2	61	1,31	2,23	77
D002a1-S-Carotte-067	Carotte ST16	2-3 cm	3	60	1,32	2,21	76
D002a1-S-Carotte-068	Carotte ST16	3-4 cm	4	57	1,37	2,39	76
D002a1-S-Carotte-069	Carotte ST16	4-5 cm	5	57	1,36	2,28	74
D002a1-S-Carotte-070	Carotte ST16	5-6 cm	6	54	1,37	2,20	71
D002a1-S-Carotte-071	Carotte ST16	6-7 cm	7	51	1,41	2,28	70
D002a1-S-Carotte-072	Carotte ST16	7-8 cm	8	50	1,44	2,39	70
D002a1-S-Carotte-073	Carotte ST16	8-9 cm	9	46	1,47	2,30	66
D002a1-S-Carotte-074	Carotte ST16	9-10 cm	10	46	1,50	2,46	67
D002a1-S-Carotte-075	Carotte ST16	10-11 cm	11	45	1,56	2,64	67
D002a1-S-Carotte-076	Carotte ST16	11-12 cm	12	43	1,52	2,34	63
D002a1-S-Carotte-077	Carotte ST16	12-13 cm	13	43	1,55	2,49	64
D002a1-S-Carotte-078	Carotte ST16	13-14 cm	14	43	1,55	2,50	65
D002a1-S-Carotte-079	Carotte ST16	14-15 cm	15	42	1,57	2,50	63
D002a1-S-Carotte-080	Carotte ST16	15-16 cm	16	41	1,61	2,61	63
D002a1-S-Carotte-081	Carotte ST16	16-17 cm	17	40	1,56	2,35	60
D002a1-S-Carotte-082	Carotte ST16	17-18 cm	18	39	1,64	2,61	62
D002a1-S-Carotte-083	Carotte ST16	18-19 cm	19	38	1,65	2,61	61
Min				38	1,27	2,11	60
Max				64	1,65	2,64	78
Moyenne				48	1,48	2,39	68
Ecartype				8	0,12	0,16	6
Nombe				23	23	23	23
Intervalle de confiance				3	0,05	0,07	2
CV (%)				17	8	7	9

Code AEL	Station	Horizon	Prélèvement	Teneur en eau à 50°C (%)	Densité humide (g/cm3)	Densité sèche (g/cm3)	Porosité (%)
D002a1-S-Carotte-037	Carotte ST15	0-1 cm	1	60,0	1,36	2,58	79
D002a1-S-Carotte-038	Carotte ST15	1-2 cm	2	57,0	1,35	2,27	75
D002a1-S-Carotte-039	Carotte ST15	2-3 cm	3	56,0	1,38	2,44	75
D002a1-S-Carotte-040	Carotte ST15	3-4 cm	4	56,0	1,37	2,35	74
D002a1-S-Carotte-041	Carotte ST15	4-5 cm	5	54,0	1,42	2,56	75
D002a1-S-Carotte-042	Carotte ST15	5-6 cm	6	55,0	1,37	2,27	73
D002a1-S-Carotte-043	Carotte ST15	6-7 cm	7	54,0	1,41	2,46	74
D002a1-S-Carotte-044	Carotte ST15	7-8 cm	8	53,0	1,41	2,38	72
D002a1-S-Carotte-045	Carotte ST15	8-9 cm	9	53,0	1,44	2,56	73
D002a1-S-Carotte-046	Carotte ST15	9-10 cm	10	54,0	1,40	2,40	73
D002a1-S-Carotte-047	Carotte ST15	10-11 cm	11	53,0	1,42	2,45	73
D002a1-S-Carotte-048	Carotte ST15	11-12 cm	12	50,0	1,45	2,43	70
D002a1-S-Carotte-049	Carotte ST15	12-13 cm	13	50,0	1,49	2,65	72
D002a1-S-Carotte-050	Carotte ST15	13-14 cm	14	50,0	1,48	2,65	72
D002a1-S-Carotte-051	Carotte ST15	14-15 cm	15	51,0	1,43	2,40	71
D002a1-S-Carotte-052	Carotte ST15	15-16 cm	16	50,0	1,46	2,51	71
D002a1-S-Carotte-053	Carotte ST15	16-17 cm	17	49,0	1,47	2,47	70
D002a1-S-Carotte-054	Carotte ST15	17-18 cm	18	49,0	1,47	2,47	70
D002a1-S-Carotte-055	Carotte ST15	18-19 cm	19	48,0	1,54	2,78	71
D002a1-S-Carotte-056	Carotte ST15	19-20 cm	20	47,0	1,51	2,51	68
D002a1-S-Carotte-057	Carotte ST15	20-21 cm	21	50,0	1,52	2,83	73
D002a1-S-Carotte-058	Carotte ST15	21-22 cm	22	46,0	1,59	2,93	71
D002a1-S-Carotte-059	Carotte ST15	22-23 cm	23	45,0	1,57	2,75	69
D002a1-S-Carotte-060	Carotte ST15	23-24 cm	24	45,0	1,57	2,73	68
D002a1-S-Carotte-061	Carotte ST15	24-25 cm	25	46,0	1,56	2,75	69
D002a1-S-Carotte-062	Carotte ST15	25-26 cm	26	45,0	1,55	2,62	68
D002a1-S-Carotte-063	Carotte ST15	26-27 cm	27	45,0	1,55	2,61	67
D002a1-S-Carotte-064	Carotte ST15	27-28 cm	28	45,0	1,56	2,71	68
Min				45	1,35	2,27	67
Max				60	1,59	2,93	79
Moyenne				51	1,47	2,55	72
Ecartype				4	0,07	0,17	3
Nombe				28	28	28	28
Intervalle de confiance				2	0,03	0,06	1
CV (%)				8	5	7	4

Code AEL	Station	Horizon	Prélèvement	Teneur en eau à 50°C (%)	Densité humide (g/cm3)	Densité sèche (g/cm3)	Porosité (%)
D002a1-S-Carotte-001	ST13	0-1 cm	1	48	1,45	2,33	68
D002a1-S-Carotte-002	ST13	1-2 cm	2	42	1,53	2,37	63
D002a1-S-Carotte-003	ST13	2-3 cm	3	42	1,53	2,36	63
D002a1-S-Carotte-004	ST13	3-4 cm	4	43	1,52	2,33	63
D002a1-S-Carotte-005	ST13	4-5 cm	5	40	1,64	2,69	63
D002a1-S-Carotte-006	ST13	5-6 cm	6	37	1,70	2,74	61
D002a1-S-Carotte-007	ST13	6-7 cm	7	36	1,60	2,32	56
D002a1-S-Carotte-008	ST13	7-8 cm	8	36	1,69	2,65	59
D002a1-S-Carotte-009	ST13	8-9 cm	9	35	1,73	2,69	58
D002a1-S-Carotte-010	ST13	9-10 cm	10	35	1,79	2,94	60
D002a1-S-Carotte-011	ST13	10-11 cm	11	35	1,66	2,48	56
D002a1-S-Carotte-012	ST13	11-12 cm	12	35	1,81	3,02	61
Min				35	1,45	2,32	56
Max				48	1,81	3,02	68
Moyenne				39	1,64	2,58	61
Ecartype				4	0,11	0,25	3
Nombe				12	12	12	12
Intervalle de confiance				2	0,06	0,14	2
CV (%)	_			11	7	10	5

Code AEL	Station	Horizon	Horizon (cm)	Teneur en eau à 50°C (%)	Densité humide (g/cm3)	Densité sèche (g/cm3)	Porosité (%)
D002a1-S-Carotte-013	Carotte ST06	0-1 cm	1	58,0	1,37	2,51	77
D002a1-S-Carotte-014	Carotte ST06	1-2 cm	2	48,0	1,54	2,77	71
D002a1-S-Carotte-015	Carotte ST06	2-3 cm	3	49,0	1,45	2,36	69
D002a1-S-Carotte-016	Carotte ST06	3-4 cm	4	50,0	1,47	2,55	71
D002a1-S-Carotte-017	Carotte ST06	4-5 cm	5	49,0	1,50	2,62	71
D002a1-S-Carotte-018	Carotte ST06	5-6 cm	6	48,0	1,49	2,52	69
D002a1-S-Carotte-019	Carotte ST06	6-7 cm	7	46,0	1,45	2,22	65
D002a1-S-Carotte-020	Carotte ST06	7-8 cm	8	46,0	1,59	2,96	71
D002a1-S-Carotte-021	Carotte ST06	8-9 cm	9	46,0	1,55	2,70	69
D002a1-S-Carotte-022	Carotte ST06	9-10 cm	10	44,0	1,54	2,50	65
D002a1-S-Carotte-023	Carotte ST06	10-11 cm	11	43,0	1,57	2,60	66
D002a1-S-Carotte-024	Carotte ST06	11-12 cm	12	42,0	1,64	2,87	67
D002a1-S-Carotte-025	Carotte ST06	12-13 cm	13	42,0	1,64	2,83	66
D002a1-S-Carotte-026	Carotte ST06	13-14 cm	14	42,0	1,60	2,64	64
D002a1-S-Carotte-027	Carotte ST06	14-15 cm	15	43,0	1,58	2,65	66
D002a1-S-Carotte-028	Carotte ST06	15-16 cm	16	45,0	1,54	2,54	66
D002a1-S-Carotte-029	Carotte ST06	16-17 cm	17	43,0	1,63	2,83	67
D002a1-S-Carotte-030	Carotte ST06	17-18 cm	18	42,0	1,60	2,61	64
D002a1-S-Carotte-031	Carotte ST06	18-19 cm	19	41,0	1,56	2,45	63
D002a1-S-Carotte-032	Carotte ST06	19-20 cm	20	43,0	1,68	3,14	69
D002a1-S-Carotte-033	Carotte ST06	20-21 cm	21	43,0	1,64	2,89	68
D002a1-S-Carotte-034	Carotte ST06	21-22 cm	22	43,0	1,68	3,16	70
D002a1-S-Carotte-035	Carotte ST06	22-23 cm	23	41,0	1,60	2,59	64
D002a1-S-Carotte-036	Carotte ST06	23-24 cm	24	42,0	1,61	2,69	65
Min				41	1,37	2,22	63
Max				58	1,68	3,16	77
Moyenne				45	1,56	2,67	68
Ecartype				4	0,08	0,23	3
Nombe				24	24	24	24
Intervalle de confiance				2	0,03	0,09	1
CV (%)				9	5	8	5

VARIABLES PHYSICO-CHIMIQUES 2 (% Pélites Ø<41μm; %CaCO3)

St16

Code AEL	Station	Horizon	Ca (mg/kg ps)	CaCO3 (mg/kg)	% CaCO3	Ø < 41 μm (%)
D002a1-S-Carotte-065	ST16	0-1 cm	189376	472929	47	91
D002a1-S-Carotte-066	ST16	1-2 cm	180990	451987	45	95
D002a1-S-Carotte-067	ST16	2-3 cm	194462	485630	49	95
D002a1-S-Carotte-068	ST16	3-4 cm	187994	469478	47	96
D002a1-S-Carotte-069	ST16	4-5 cm	197588	493437	49	96
D002a1-S-Carotte-070	ST16	5-6 cm	199781	498914	50	96
D002a1-S-Carotte-071	ST16	6-7 cm	199734	498796	50	96
D002a1-S-Carotte-072	ST16	7-8 cm	192449	480603	48	96
D002a1-S-Carotte-073	ST16	8-9 cm	192167	479899	48	94
D002a1-S-Carotte-074	ST16	9-10 cm	196960	491869	49	96
D002a1-S-Carotte-075	ST16	10-11 cm	199018	497008	50	94
D002a1-S-Carotte-076	ST16	11-12 cm	210018	524479	52	96
D002a1-S-Carotte-077	ST16	12-13 cm	205525	513258	51	95
D002a1-S-Carotte-078	ST16	13-14 cm	212670	531101	53	96
D002a1-S-Carotte-079	ST16	14-15 cm	201359	502854	50	96
D002a1-S-Carotte-080	ST16	15-16 cm	209859	524081	52	96
D002a1-S-Carotte-081	ST16	16-17 cm	216483	540624	54	96
D002a1-S-Carotte-082	ST16	17-18 cm	198269	495138	50	96
D002a1-S-Carotte-083	ST16	18-19 cm	208290	520163	52	96
Min			180990	451987	45	91
Max			216483	540624	54	96
Moyenne			199631	498539	50	95
Ecartype			9174	22910	2	1
Nombe			23	23	23	23
Intervalle de confiance			3749	9363	1	0
CV (%)			5	5	5	1

Code AEL	Station	Horizon	Ca (mg/kg ps)	CaCO3 (mg/kg)	% CaCO3	Ø < 41 μm (%)
D002a1-S-Carotte-037	ST15	0-1 cm	73318	183097	18	88
D002a1-S-Carotte-038	ST15	1-2 cm	66956	167209	17	89
D002a1-S-Carotte-039	ST15	2-3 cm	54158	135249	14	90
D002a1-S-Carotte-040	ST15	3-4 cm	46254	115510	12	91
D002a1-S-Carotte-041	ST15	4-5 cm	50992	127342	1 3	92
D002a1-S-Carotte-042	ST15	5-6 cm	55466	138515	14	89
D002a1-S-Carotte-043	ST15	6-7 cm	47679	119069	12	91
D002a1-S-Carotte-044	ST15	7-8 cm	52608	131378	1 B	91
D002a1-S-Carotte-045	ST15	8-9 cm	51399	128359	1 3	92
D002a1-S-Carotte-046	ST15	9-10 cm	38103	95155	10	92
D002a1-S-Carotte-047	ST15	10-11 cm	41517	103681	10	92
D002a1-S-Carotte-048	ST15	11-12 cm	45412	113408	11	90
D002a1-S-Carotte-049	ST15	12-13 cm	51856	129500	1 3	89
D002a1-S-Carotte-050	ST15	13-14 cm	55396	138341	14	88
D002a1-S-Carotte-051	ST15	14-15 cm	52046	129975	1 B	89
D002a1-S-Carotte-052	ST15	15-16 cm	68294	170551	17	88
D002a1-S-Carotte-053	ST15	16-17 cm	48981	122320	12	87
D002a1-S-Carotte-054	ST15	17-18 cm	48366	120785	12	87
D002a1-S-Carotte-055	ST15	18-19 cm	51142	127717	1 3	86
D002a1-S-Carotte-056	ST15	19-20 cm	41639	103985	10	85
D002a1-S-Carotte-057	ST15	20-21 cm	53648	133975	13	87
D002a1-S-Carotte-058	ST15	21-22 cm	47279	118070	12	76
D002a1-S-Carotte-059	ST15	22-23 cm	57556	143735	14	69
D002a1-S-Carotte-060	ST15	23-24 cm	62708	156601	16	77
D002a1-S-Carotte-061	ST15	24-25 cm	79530	198610	20	76
D002a1-S-Carotte-062	ST15	25-26 cm	87064	217425	22	86
D002a1-S-Carotte-063	ST15	26-27 cm	92209	230274	23	85
D002a1-S-Carotte-064	ST15	27-28 cm	101232	252807	25	88
Min			38103	95155	10	69
Max			101232	252807	25	92
Moyenne			57957	144737	14	87
Ecartype			15761	39359	4	6
Nombe			28	28	28	28
Intervalle de confiance			5838	14579	1	2
CV (%)			27	27	27	6

Code AEL	Station	Horizon	Ca (mg/kg ps)	CaCO3 (mg/kg)	% CaCO3	Ø < 41 μm (%)
D002a1-S-Carotte-001	ST13	0-1 cm	272801	681267	68	47
D002a1-S-Carotte-002	ST13	1-2 cm	271276	677458	68	45
D002a1-S-Carotte-003	ST13	2-3 cm	258489	645525	65	41
D002a1-S-Carotte-004	ST13	3-4 cm	233357	582763	58	45
D002a1-S-Carotte-005	ST13	4-5 cm	123877	309358	31	45
D002a1-S-Carotte-006	ST13	5-6 cm	228806	571398	57	42
D002a1-S-Carotte-007	ST13	6-7 cm	264942	661640	66	38
D002a1-S-Carotte-008	ST13	7-8 cm	172140	429886	43	39
D002a1-S-Carotte-009	ST13	8-9 cm	257836	643895	64	42
D002a1-S-Carotte-010	ST13	9-10 cm	252771	631246	63	44
D002a1-S-Carotte-011	ST13	10-11 cm	233039	581969	58	43
D002a1-S-Carotte-012	ST13	11-12 cm	249381	622780	62	46
Min			123877	309358	31	38
Max			272801	681267	68	47
Moyenne			234893	586599	59	43
Ecartype			44294	110616	11	3
Nombe			12	12	12	12
Intervalle de confiance			25061	62586	6	2
CV (%)			19	19	19	7

Code AEL	Station	Horizon	Ca (mg/kg ps)	CaCO3 (mg/kg)	% CaCO3	Ø < 41 μm (%)
D002a1-S-Carotte-013	ST06	0-1 cm	189667	473656	47	72
D002a1-S-Carotte-014	ST06	1-2 cm	197357	492860	49	62
D002a1-S-Carotte-015	ST06	2-3 cm	200901	501711	50	64
D002a1-S-Carotte-016	ST06	3-4 cm	208977	521879	52	62
D002a1-S-Carotte-017	ST06	4-5 cm	186706	466261	47	64
D002a1-S-Carotte-018	ST06	5-6 cm	199594	498447	50	65
D002a1-S-Carotte-019	ST06	6-7 cm	175427	438094	44	65
D002a1-S-Carotte-020	ST06	7-8 cm	189541	473341	47	67
D002a1-S-Carotte-021	ST06	8-9 cm	197438	493062	49	65
D002a1-S-Carotte-022	ST06	9-10 cm	206948	516812	52	64
D002a1-S-Carotte-023	ST06	10-11 cm	200178	499905	50	66
D002a1-S-Carotte-024	ST06	11-12 cm	163632	408639	41	63
D002a1-S-Carotte-025	ST06	12-13 cm	210933	526764	53	66
D002a1-S-Carotte-026	ST06	13-14 cm	207086	517156	52	64
D002a1-S-Carotte-027	ST06	14-15 cm	257996	644294	64	67
D002a1-S-Carotte-028	ST06	15-16 cm	200006	499476	50	67
D002a1-S-Carotte-029	ST06	16-17 cm	202750	506328	51	68
D002a1-S-Carotte-030	ST06	17-18 cm	186147	464865	46	66
D002a1-S-Carotte-031	ST06	18-19 cm	208150	519814	52	66
D002a1-S-Carotte-032	ST06	19-20 cm	189229	472562	47	66
D002a1-S-Carotte-033	ST06	20-21 cm	199548	498332	50	68
D002a1-S-Carotte-034	ST06	21-22 cm	205631	513523	51	63
D002a1-S-Carotte-035	ST06	22-23 cm	202357	505347	51	66
D002a1-S-Carotte-036	ST06	23-24 cm	182888	456727	46	63
Min			163632	408639	41	62
Max			257996	644294	64	72
Moyenne			198712	496244	50	65
Ecartype			17027	42523	4	2
Nombe			24	24	24	24
Intervalle de confiance			6812	17012	2	1
CV (%)			9	9	9	3

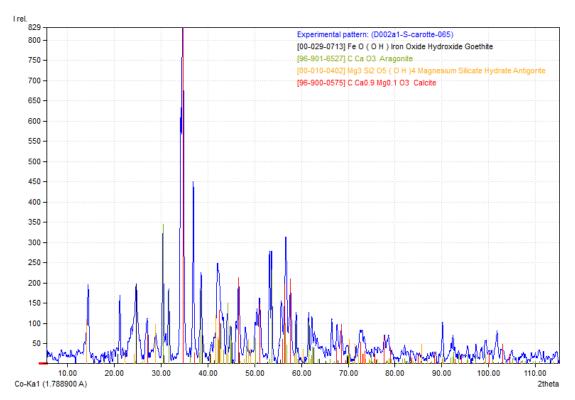
COMPOSITIONS GRANULOMETRIQUE MINERALOGIQUE

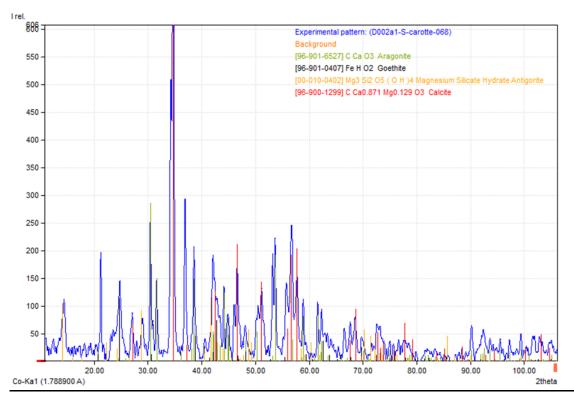
St16

Code AEL	Station	Horizon (cm)		% Classe de taille									
Code ALL	Station	Horizon (cm)	0,02 à 2,00	2,0 à 20	20 à 40	40 à 50	50 à 63	63,0 à 200	200,0 à 2000	Total	>40 μm	40 à 63 μm	>63 μm
D002a1-carotte-065	ST16	0-1	13	66	16	2	1	2	0	100	5	4	2
D002a1-carotte-068	ST16	3-4	17	68	11	2	1	1	0	100	4	3	1
D002a1-carotte-075	ST16	10-11	16	66	13	2	1	1	0	100	4	3	1
D002a1-carotte-083	ST16	18-19	21	65	10	2	1	1	0	100	4	3	1
Min			13	65	10							3	1
Max			21	68	16							4	2
Moyenne			17	66	13							3	1
Ecartype			3	1	3							0	0
Nombre			4	4	4							4	4
ntervalle de confiance			3	1	2							0	0
CV (%)			18	2	20							11	24

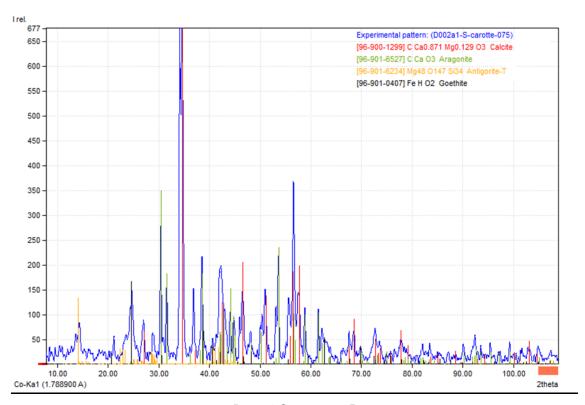
St15

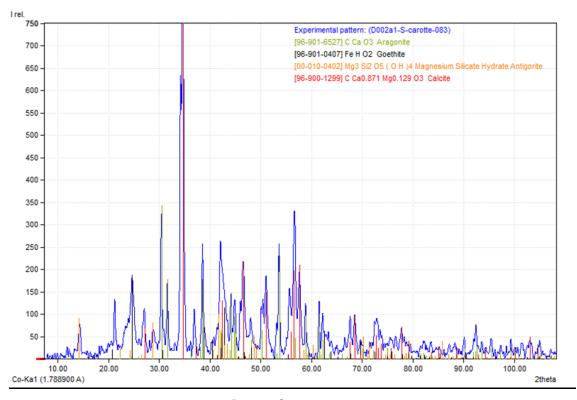
Code AEL	Station	Horizon (cm)					% Class	e de taille					
Code AEL	Station	HOHZOH (CHI)	0,02 à 2,00	2,0 à 20	20 à 40	40 à 50	50 à 63	63,0 à 200	200,0 à 2000	Total	>40 μm	40 à 63 μm	>63 µm
D002a1-carotte-037	ST15	0-1	5	43	21	6	6	18	0	100	31	13	18
D002a1-carotte-040	ST15	3-4	14	66	13	2	2	2	0	100	6	4	2
D002a1-carotte-050	ST15	13-14	12	58	17	3	3	6	1	100	13	6	7
D002a1-carotte-061	ST15	24-25	14	64	16	3	2	2	0	100	7	5	2
Min			5	43	13							4	2
Max			14	66	21							13	18
Moyenne			11	56	17							8	9
Ecartype			5	12	4							5	8
Nombre			3	3	3							3	3
ntervalle de confiance			5	13	4							5	9
CV (%)			44	21	22							60	90


PO XXXX Page 46/63 Contrat client XXXX

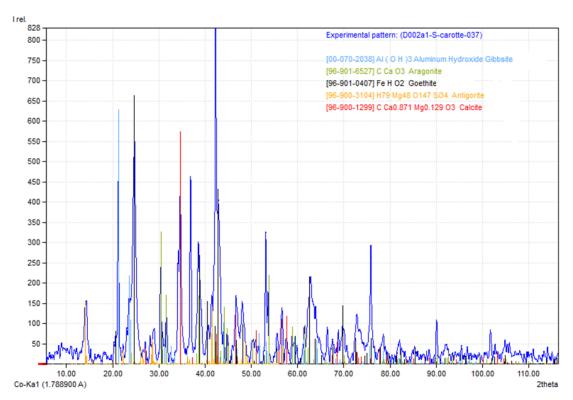

Code AEL	Station	Horizon (cm)		% Classe de taille											
Code AEL	Station	Honzon (cm)	0,02 à 2,00	2,0 à 20	20 à 40	40 à 50	50 à 63	63,0 à 200	200,0 à 2000	Total	>40 µm	40 à 63 μm	>63 μm		
D002a1-carotte-001	ST13	0-1	7	37	16	5	5	23	8	100	40	9	31		
D002a1-carotte-004	ST13	3-4	6	32	16	5	5	26	10	100	46	10	36		
D002a1-carotte-008	ST13	7-8	7	36	17	5	5	22	8	100	40	10	30		
D002a1-carotte-012	ST13	11-12	7	35	15	5	5	24	11	100	43	9	34		
Min			6	32	15							9	30		
Max			7	37	17							10	<i>36</i>		
Moyenne			7	35	16							10	33		
Ecartype			1	2	1							0	3		
Nombre			4	4	4							4	4		
ntervalle de confiance			1	2	1							0	3		
CV (%)			9	7	6							5	8		

Code AEL	Station	Horizon (cm)					% Class	e de taille					
COUE ALL	Station	Horizon (citi)	0,02 à 2,00	2,0 à 20	20 à 40	40 à 50	50 à 63	63,0 à 200	200,0 à 2000	Total	>40 μm	40 à 63 μm	>63 μm
D002a1-carotte-013	ST06	0-1	5	37	24	7	6	18	3	100	34	13	21
D002a1-carotte-016	ST06	3-4	6	37	22	7	7	19	3	100	35	13	22
D002a1-carotte-026	ST06	13-14	8	41	22	6	6	15	2	100	29	12	17
D002a1-carotte-036	ST06	23-24	7	38	21	6	6	19	3	100	34	13	22
Min			5	37	21							12	17
Max			8	41	24							13	22
Moyenne			7	38	22							13	20
Ecartype			1	2	1							0	2
Nombre			4	4	4							4	4
ntervalle de confiance			1	2	1							0	2
CV (%)			15	5	6							3	11

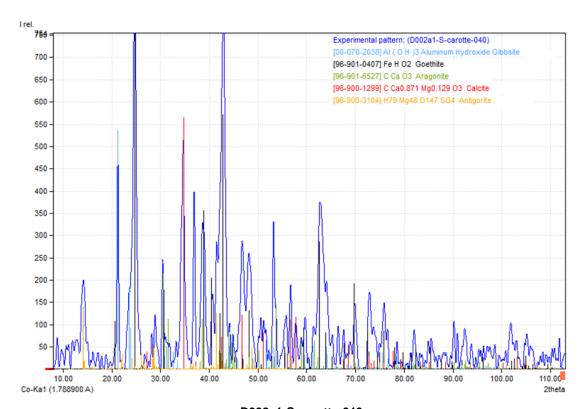

D002a1-S-carotte-065


D002a1-S-carotte-068

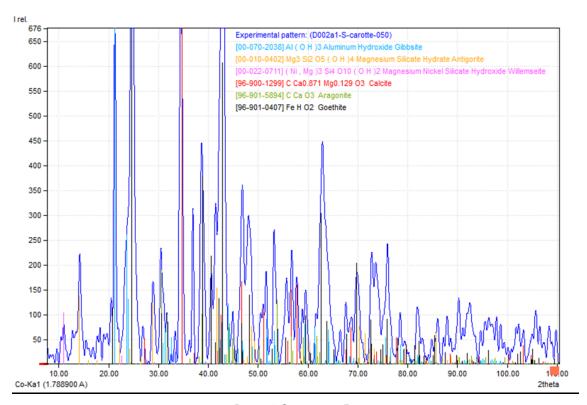
PO XXXX Page 48/63



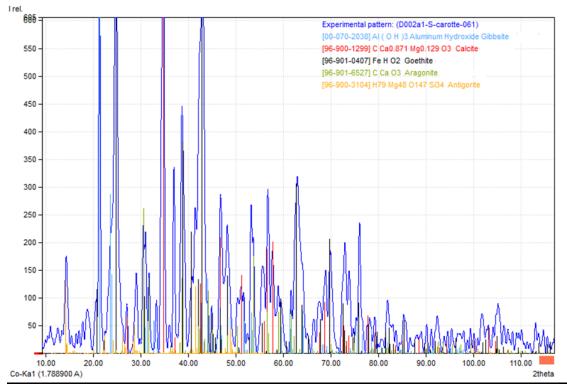
D002a1-S-carotte-075



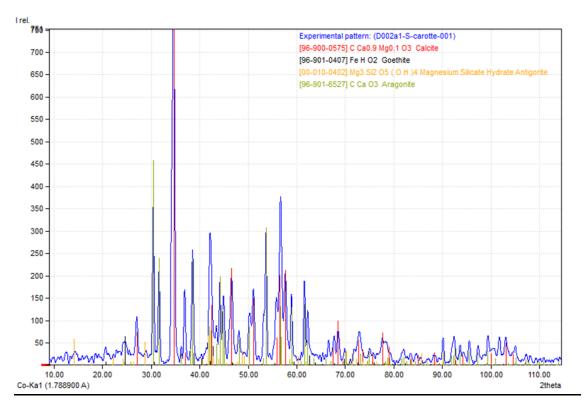
D002a1-S-carotte-083



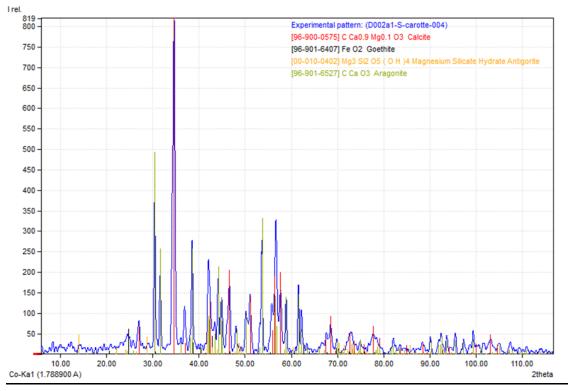
D002a1-S-carotte-037



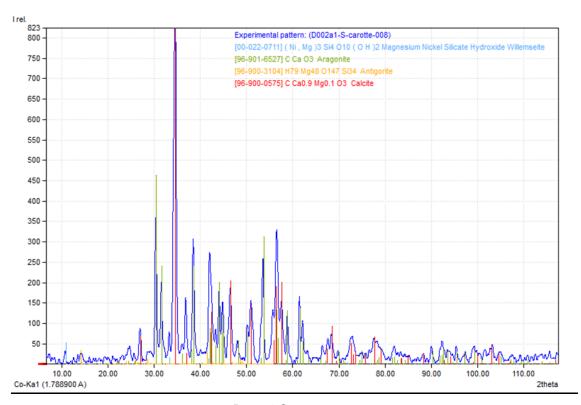
D002a1-S-carotte-040



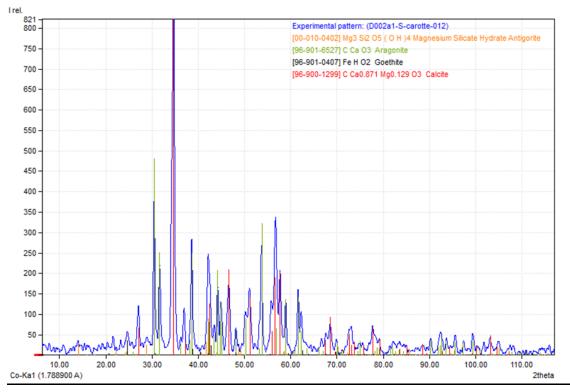
D002a1-S-carotte-050



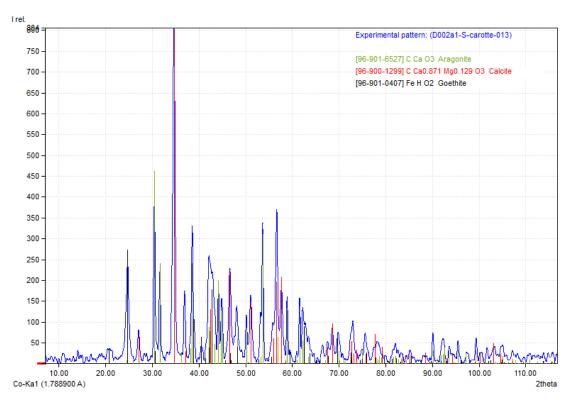
D002a1-S-carotte-061



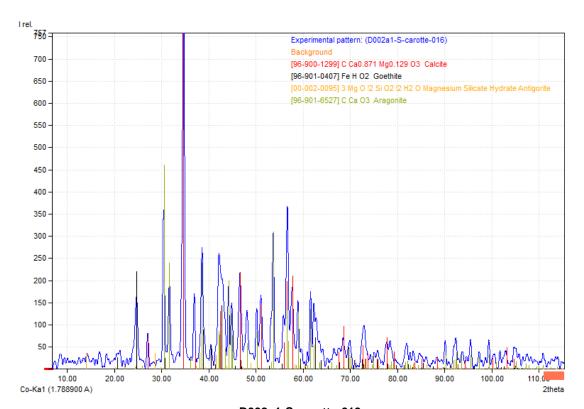
D002a1-S-carotte-001



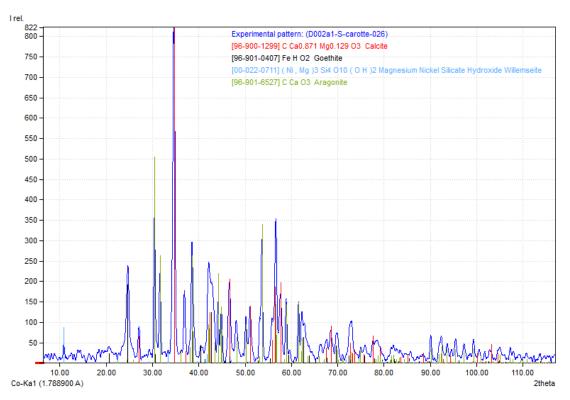
D002a1-S-carotte-004



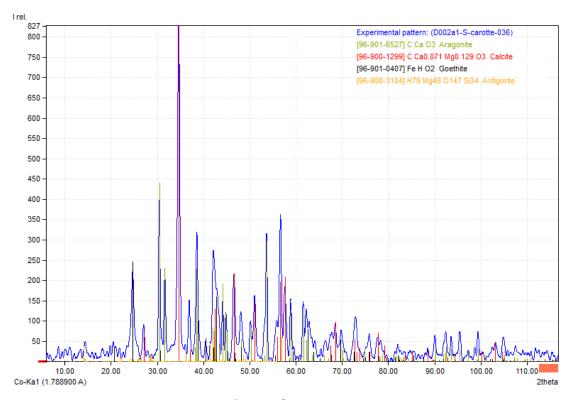
D002a1-S-carotte-008



D002a1-S-carotte-012



D002a1-S-carotte-016



D002a1-S-carotte-013

D002a1-S-carotte-026

D002a1-S-carotte-036

CALCIUM & METAUX TOTAUX DANS LES SEDIMENTS

Code AEL	Station	Horizon	Horizon (cm)	Ca (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Ni (mg/kg)
D002a1-S-Carotte-065	Carotte ST16	0-1 cm	1	189376	99	2886	87084	950	1395
D002a1-S-Carotte-066	Carotte ST16	1-2 cm	2	180990	95	2672	83482	868	1266
D002a1-S-Carotte-067	Carotte ST16	2-3 cm	3	194462	103	2980	90512	895	1372
D002a1-S-Carotte-068	Carotte ST16	3-4 cm	4	187994	100	2836	87561	834	1356
D002a1-S-Carotte-069	Carotte ST16	4-5 cm	5	197588	105	2996	92837	882	1386
D002a1-S-Carotte-070	Carotte ST16	5-6 cm	6	199781	108	3036	95430	898	1522
D002a1-S-Carotte-071	Carotte ST16	6-7 cm	7	199734	108	2990	95788	889	1455
D002a1-S-Carotte-072	Carotte ST16	7-8 cm	8	192449	106	2834	92350	859	1375
D002a1-S-Carotte-073	Carotte ST16	8-9 cm	9	192167	115	3146	94369	883	1450
D002a1-S-Carotte-074	Carotte ST16	9-10 cm	10	196960	115	2988	94946	895	1450
D002a1-S-Carotte-075	Carotte ST16	10-11 cm	11	199018	118	3029	95574	915	1507
D002a1-S-Carotte-076	Carotte ST16	11-12 cm	12	210018	120	3127	100086	961	1561
D002a1-S-Carotte-077	Carotte ST16	12-13 cm	13	205525	115	3071	98732	938	1498
D002a1-S-Carotte-078	Carotte ST16	13-14 cm	14	212670	117	3209	99268	946	1522
D002a1-S-Carotte-079	Carotte ST16	14-15 cm	15	201359	114	2915	93534	896	1464
D002a1-S-Carotte-080	Carotte ST16	15-16 cm	16	209859	118	3097	98479	958	1509
D002a1-S-Carotte-081	Carotte ST16	16-17 cm	17	216483	119	3031	96181	941	1486
D002a1-S-Carotte-082	Carotte ST16	17-18 cm	18	198269	103	2662	88832	861	1278
D002a1-S-Carotte-083	Carotte ST16	18-19 cm	19	208290	113	2837	93035	907	1363
Min				180990	95	2662	83482	834	1266
Max				216483	120	3209	100086	961	1561
Moyenne				199631	110	2965	93583	904	1432
Ecartype				9174	8	149	4481	37	84
Nombe				23	23	23	23	23	23
Intervalle de confiance				3749	3	61	1831	15	34
CV (%)				5	7	5	5	4	6

Code AEL	Station	Horizon	Horizon (cm)	Ca (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Ni (mg/kg)
D002a1-S-Carotte-037	Carotte ST15	0-1 cm	1	73318	261	14645	225197	2267	3156
D002a1-S-Carotte-038	Carotte ST15	1-2 cm	2	66956	278	15185	244027	2171	3533
D002a1-S-Carotte-039	Carotte ST15	2-3 cm	3	54158	284	15241	248703	2109	3591
D002a1-S-Carotte-040	Carotte ST15	3-4 cm	4	46254	275	15308	243905	1986	2923
D002a1-S-Carotte-041	Carotte ST15	4-5 cm	5	50992	284	15845	248803	2059	3615
D002a1-S-Carotte-042	Carotte ST15	5-6 cm	6	55466	282	16625	252102	2086	3725
D002a1-S-Carotte-043	Carotte ST15	6-7 cm	7	47679	275	15684	254155	2097	3619
D002a1-S-Carotte-044	Carotte ST15	7-8 cm	8	52608	285	16057	258005	2167	3863
D002a1-S-Carotte-045	Carotte ST15	8-9 cm	9	51399	289	16768	256567	2130	3774
D002a1-S-Carotte-046	Carotte ST15	9-10 cm	10	38103	281	16475	257460	1943	3287
D002a1-S-Carotte-047	Carotte ST15	10-11 cm	11	41517	282	17384	263194	2031	3564
D002a1-S-Carotte-048	Carotte ST15	11-12 cm	12	45412	273	16582	257121	2028	3675
D002a1-S-Carotte-049	Carotte ST15	12-13 cm	13	51856	258	14656	244488	1964	3545
D002a1-S-Carotte-050	Carotte ST15	13-14 cm	14	55396	292	16968	259325	2198	3750
D002a1-S-Carotte-051	Carotte ST15	14-15 cm	15	52046	292	16122	255478	2223	3121
D002a1-S-Carotte-052	Carotte ST15	15-16 cm	16	68294	279	15049	245934	2083	3508
D002a1-S-Carotte-053	Carotte ST15	16-17 cm	17	48981	286	14225	243892	2128	3175
D002a1-S-Carotte-054	Carotte ST15	17-18 cm	18	48366	301	14703	257834	2292	4145
D002a1-S-Carotte-055	Carotte ST15	18-19 cm	19	51142	305	15676	263386	2288	4062
D002a1-S-Carotte-056	Carotte ST15	19-20 cm	20	41639	239	11269	207290	1751	3148
D002a1-S-Carotte-057	Carotte ST15	20-21 cm	21	53648	307	15494	260172	2313	4163
D002a1-S-Carotte-058	Carotte ST15	21-22 cm	22	47279	312	15359	262436	2270	3758
D002a1-S-Carotte-059	Carotte ST15	22-23 cm	23	57556	316	15146	242510	2160	3494
D002a1-S-Carotte-060	Carotte ST15	23-24 cm	24	62708	291	14701	231331	2079	3443
D002a1-S-Carotte-061	Carotte ST15	24-25 cm	25	79530	257	13761	220693	2023	3309
D002a1-S-Carotte-062	Carotte ST15	25-26 cm	26	87064	249	13413	211630	1879	3212
D002a1-S-Carotte-063	Carotte ST15	26-27 cm	27	92209	248	13791	218504	1969	3361
D002a1-S-Carotte-064	Carotte ST15	27-28 cm	28	101232	233	12450	206099	1882	3079
Min				38103	233	11269	206099	1751	2923
Мах				101232	316	17384	263386	2313	4163
Moyenne				<i>57957</i>	279	15164	244294	2092	3521
Ecartype				15761	21	1372	17605	139	322
Nombe				28	28	28	28	28	28
Intervalle de confiance				5838	8	508	6521	52	119
CV (%)				27	8	9	7	7	9

Code AEL	Station	Horizon	Horizon (cm)	Ca (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Ni (mg/kg)
D002a1-S-Carotte-001	ST13	0-1 cm	1	272801	46	1376	39365	366	724
D002a1-S-Carotte-002	ST13	1-2 cm	2	271276	41	1393	37454	333	640
D002a1-S-Carotte-003	ST13	2-3 cm	3	258489	43	1288	37884	340	670
D002a1-S-Carotte-004	ST13	3-4 cm	4	233357	37	1189	32745	292	574
D002a1-S-Carotte-005	ST13	4-5 cm	5	123877	19	6 80	18125	156	3 38
D002a1-S-Carotte-006	ST13	5-6 cm	6	228806	39	1206	33722	300	627
D002a1-S-Carotte-007	ST13	6-7 cm	7	264942	46	1405	40250	359	696
D002a1-S-Carotte-008	ST13	7-8 cm	8	172140	29	901	26623	238	460
D002a1-S-Carotte-009	ST13	8-9 cm	9	257836	43	1348	37363	337	696
D002a1-S-Carotte-010	ST13	9-10 cm	10	252771	42	1330	37486	335	646
D002a1-S-Carotte-011	ST13	10-11 cm	11	233039	41	1229	35746	334	650
D002a1-S-Carotte-012	ST13	11-12 cm	12	249381	42	1287	37188	344	716
Min				123877	19	680	18125	156	338
Max				272801	46	1405	40250	366	724
Moyenne				234893	39	1219	34496	311	620
Ecartype				44294	8	218	6301	60	114
Nombe				12	12	12	12	12	12
Intervalle de confiance				25061	4	123	3565	34	65
CV (%)				19	20	18	18	19	18

Code AEL	Station	Horizon	Horizon (cm)	Ca (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Ni (mg/kg)
D002a1-S-Carotte-013	Carotte ST06	0-1 cm	1	189667	132	5547	129840	959	2340
D002a1-S-Carotte-014	Carotte ST06	1-2 cm	2	197357	131	5559	132151	992	2290
D002a1-S-Carotte-015	Carotte ST06	2-3 cm	3	200901	134	5903	135054	988	2253
D002a1-S-Carotte-016	Carotte ST06	3-4 cm	4	208977	147	6235	143231	1034	2615
D002a1-S-Carotte-017	Carotte ST06	4-5 cm	5	186706	141	5983	129316	953	2255
D002a1-S-Carotte-018	Carotte ST06	5-6 cm	6	199594	153	6621	148366	1071	2645
D002a1-S-Carotte-019	Carotte ST06	6-7 cm	7	175427	141	5849	137150	981	2281
D002a1-S-Carotte-020	Carotte ST06	7-8 cm	8	189541	146	6248	142271	1033	2291
D002a1-S-Carotte-021	Carotte ST06	8-9 cm	9	197438	147	6758	142676	1053	2306
D002a1-S-Carotte-022	Carotte ST06	9-10 cm	10	206948	143	6697	141288	1035	2199
D002a1-S-Carotte-023	Carotte ST06	10-11 cm	11	200178	139	6620	139456	1020	2217
D002a1-S-Carotte-024	Carotte ST06	11-12 cm	12	163632	123	5160	123202	900	2044
D002a1-S-Carotte-025	Carotte ST06	12-13 cm	13	210933	153	6853	150886	1125	2553
D002a1-S-Carotte-026	Carotte ST06	13-14 cm	14	207086	151	6557	148629	1111	2575
D002a1-S-Carotte-027	Carotte ST06	14-15 cm	15	257996	147	6896	145812	1103	2173
D002a1-S-Carotte-028	Carotte ST06	15-16 cm	16	200006	135	6337	136520	1014	2409
D002a1-S-Carotte-029	Carotte ST06	16-17 cm	17	202750	142	6438	143902	1067	2555
D002a1-S-Carotte-030	Carotte ST06	17-18 cm	18	186147	136	6220	133779	996	2319
D002a1-S-Carotte-031	Carotte ST06	18-19 cm	19	208150	149	6922	145628	1100	2380
D002a1-S-Carotte-032	Carotte ST06	19-20 cm	20	189229	131	6324	134973	1008	1601
D002a1-S-Carotte-033	Carotte ST06	20-21 cm	21	199548	136	6411	140679	1045	2218
D002a1-S-Carotte-034	Carotte ST06	21-22 cm	22	205631	137	6941	140045	1024	2312
D002a1-S-Carotte-035	Carotte ST06	22-23 cm	23	202357	133	6719	137420	1008	2208
D002a1-S-Carotte-036	Carotte ST06	23-24 cm	24	182888	113	5824	120827	895	1600
Min				163632	113	5160	120827	895	1600
Max				257996	153	6941	150886	1125	2645
Moyenne				198712	139	6318	138463	1021	2277
Ecartype				17027	10	485	7679	60	258
Nombe				24	24	24	24	24	24
Intervalle de confiance				6812	4	194	3072	24	103
CV (%)				9	7	8	6	6	11

RADIOACTIVITE DU Pb-210 et Ra-226 DANS LES SEDIMENTS

Code AEL	Station	Horizon	Horizon moyen (cm)	²²⁶ Ra [Bq/kg]	Incertitude [Bq/kg]	²¹⁰ Pb [Bq/kg]	Incertitude [Bq/kg]	Pb-210 excès (Bq/kg)	Incertitude [Bq/kg]	% Erreur	LN Pb-210 excès (Bq/g)	LN Erreur [Bq/g]
D002a1-S-Carotte-065	Carotte ST16	0-1 cm	0,5	4,5	0,8	146	15	141,2	15,0	10,6	-1,958	-0,208
D002a1-S-Carotte-066	Carotte ST16	1-2 cm	1,5	4,0	0,7	118	12	114,4	11,6	10,1	-2,168	-0,220
D002a1-S-Carotte-067	Carotte ST16	2-3 cm	2,5	3,2	0,7	132	13	128,8	13,0	10,1	-2,050	-0,207
D002a1-S-Carotte-068	Carotte ST16	3-4 cm	3,5	2,4	0,6	120	12	117,8	11,9	10,1	-2,139	-0,216
D002a1-S-Carotte-069	Carotte ST16	4-5 cm	4,5	4,7	0,7	121	12	115,9	12,1	10,4	-2,155	-0,225
D002a1-S-Carotte-070	Carotte ST16	5-6 cm	5,5	2,7	0,5	114	11	111,3	10,8	9,7	-2,195	-0,212
D002a1-S-Carotte-071	Carotte ST16	6-7 cm	6,5	2,7	0,6	101	10	98,4	10,5	10,6	-2,318	-0,247
D002a1-S-Carotte-072	Carotte ST16	7-8 cm	7,5	2,1	0,5	84	8	81,8	8,5	10,4	-2,503	-0,260
D002a1-S-Carotte-073	Carotte ST16	8-9 cm	8,5	2,5	0,5	70	7	67,0	7,5	11,2	-2,703	-0,303
D002a1-S-Carotte-074	Carotte ST16	9-10 cm	9,5	3,0	0,7	70	8	67,5	8,4	12,4	-2,696	-0,336
D002a1-S-Carotte-075	Carotte ST16	10-11 cm	10,5	2,6	0,5	53	6	50,8	6,2	12,1	-2,980	-0,361
D002a1-S-Carotte-076	Carotte ST16	11-12 cm	11,5	3,2	0,6	54	7	50,8	6,8	13,4	-2,981	-0,398
D002a1-S-Carotte-077	Carotte ST16	12-13 cm	12,5	2,3	0,4	52	6	50,2	6,0	11,9	-2,992	-0,356
D002a1-S-Carotte-078	Carotte ST16	13-14 cm	13,5	3,2	0,6	49	7	45,7	6,9	15,0	-3,086	-0,464
D002a1-S-Carotte-079	Carotte ST16	14-15 cm	14,5	3,0	0,4	37	5	33,6	4,8	14,2	-3,393	-0,483
D002a1-S-Carotte-080	Carotte ST16	15-16 cm	15,5	2,7	0,4	31	4	28,6	4,4	15,3	-3,554	-0,543
D002a1-S-Carotte-081	Carotte ST16	16-17 cm	16,5	2,6	0,4	31	4	27,9	4,3	15,4	-3,580	-0,551
D002a1-S-Carotte-082	Carotte ST16	17-18 cm	17,5	2,8	0,4	23	3	19,8	3,2	15,9	-3,922	-0,625
D002a1-S-Carotte-083	Carotte ST16	18-19 cm	18,5	2,2	0,3	24	3	21,7	3,0	13,9	-3,831	-0,532
Min						22,6	3,0					
Max						145,7	14,9					
Moyenne				3,0	0,5	75,2	8,1					
Ecartype						40	3,56					
Nombe						23	23					
Intervalle de confiance						17	1,46					
CV (%)						54	44					

Code AEL	Station	Horizon	Horizon moyen (cm)	²²⁶ Ra [Bq/kg]	Incertitude [Bq/kg]	²¹⁰ Pb [Bq/kg]	Incertitude [Bq/kg]	Pb-210 excès (Bq/kg)	Incertitude [Bq/kg]	% Erreur	LN Pb-210 excès (Bq/g)	LN Erreur [Bq/g]
D002a1-S-Carotte-037	Carotte ST15	0-1 cm	0,5	3,1	0,7	68	8	64,5	8,3	12,8	-2,742	-0,351
D002a1-S-Carotte-038	Carotte ST15	1-2 cm	1,5	3,0	0,6	58	7	54,8	6,8	12,3	-2,905	-0,359
D002a1-S-Carotte-039	Carotte ST15	2-3 cm	2,5	3,2	0,6	58	7	54,4	6,5	12,0	-2,912	-0,351
D002a1-S-Carotte-040	Carotte ST15	3-4 cm	3,5	3,1	0,6	60	7	56,6	6,8	11,9	-2,871	-0,343
D002a1-S-Carotte-041	Carotte ST15	4-5 cm	4,5	3,8	0,7	55	7	51,2	7,0	13,6	-2,973	-0,405
D002a1-S-Carotte-042	Carotte ST15	5-6 cm	5,5	4,0	0,7	55	7	51,4	6,9	13,5	-2,967	-0,401
D002a1-S-Carotte-043	Carotte ST15	6-7 cm	6,5	3,0	0,6	54	7	50,8	6,7	13,2	-2,979	-0,393
D002a1-S-Carotte-044	Carotte ST15	7-8 cm	7,5	2,5	0,5	46	6	43,6	5,6	12,9	-3,133	-0,404
D002a1-S-Carotte-045	Carotte ST15	8-9 cm	8,5	2,8	0,5	46	5	43,0	5,3	12,3	-3,146	-0,387
D002a1-S-Carotte-046	Carotte ST15	9-10 cm	9,5	3,2	0,5	43	6	40,3	5,5	13,7	-3,212	-0,441
D002a1-S-Carotte-047	Carotte ST15	10-11 cm	10,5	2,8	0,5	45	5	42,3	5,4	12,9	-3,164	-0,408
D002a1-S-Carotte-048	Carotte ST15	11-12 cm	11,5	3,0	0,6	44	5	40,7	5,2	12,8	-3,202	-0,408
D002a1-S-Carotte-049	Carotte ST15	12-13 cm	12,5	3,3	0,6	42	5	38,5	5,5	14,2	-3,257	-0,463
D002a1-S-Carotte-050	Carotte ST15	13-14 cm	13,5	3,3	0,6	41	5	37,7	5,5	14,5	-3,278	-0,476
D002a1-S-Carotte-051	Carotte ST15	14-15 cm	14,5	2,7	0,6	45	6	41,9	5,6	13,4	-3,173	-0,426
D002a1-S-Carotte-052	Carotte ST15	15-16 cm	15,5	2,1	0,6	39	5	37,0	5,2	13,9	-3,297	-0,460
D002a1-S-Carotte-053	Carotte ST15	16-17 cm	16,5	2,5	0,4	35	4	32,3	4,2	13,1	-3,434	-0,448
D002a1-S-Carotte-054	Carotte ST15	17-18 cm	17,5	2,1	0,3	30	4	27,7	3,6	13,0	-3,587	-0,466
D002a1-S-Carotte-055	Carotte ST15	18-19 cm	18,5	1,9	0,3	26	3	23,9	3,4	14,2	-3,733	-0,531
D002a1-S-Carotte-056	Carotte ST15	19-20 cm	19,5	3,0	0,5	37	5	34,3	4,7	13,8	-3,373	-0,466
D002a1-S-Carotte-057	Carotte ST15	20-21 cm	20,5	1,9	0,5	30	5	28,2	4,6	16,4	-3,567	-0,586
D002a1-S-Carotte-058	Carotte ST15	21-22 cm	21,5	2,3	0,4	28	4	25,7	3,5	13,8	-3,663	-0,506
D002a1-S-Carotte-059	Carotte ST15	22-23 cm	22,5	2,1	0,4	26	4	23,5	3,7	15,9	-3,752	-0,598
D002a1-S-Carotte-060	Carotte ST15	23-24 cm	23,5	3,5	0,7	32	5	28,6	5,2	18,2	-3,553	-0,645
D002a1-S-Carotte-061	Carotte ST15	24-25 cm	24,5	2,3	0,3	25	3	23,0	2,9	12,8	-3,774	-0,484
Min						25	2,93					
Max						68	8,23					
Moyenne				2,8	0,5	43	5,33					
Ecartype						12	1,32					
Nombe						25	25					
Intervalle de confiance						5	0,52					
CV (%)						28	25					

Code AEL	Station	Horizon	Horizon moyen (cm)	²²⁶ Ra [Bq/kg]	Incertitude [Bq/kg]	²¹⁰ Pb [Bq/kg]	Incertitude [Bq/kg]	Pb-210 excès (Bq/kg)	Incertitude [Bq/kg]	% Erreur	LN Pb-210 excès (Bq/g)	LN Erreur [Bq/g]
D002a1-S-Carotte-001	Carotte ST13	0-1 cm	0,5	1,9	0,3	151	12	149,0	12,1	8,1	-1,904	-0,154
D002a1-S-Carotte-002	ST13	1-2 cm	1,5	2,1	0,3	129	11	126,6	10,7	8,5	-2,067	-0,175
D002a1-S-Carotte-003	ST13	2-3 cm	2,5	1,9	0,3	129	11	127,5	10,7	8,4	-2,059	-0,173
D002a1-S-Carotte-004	ST13	3-4 cm	3,5	1,9	0,3	132	10	130,5	9,8	7,5	-2,036	-0,152
D002a1-S-Carotte-005	ST13	4-5 cm	4,5	2,0	0,3	124	10	121,9	9,7	7,9	-2,104	-0,167
D002a1-S-Carotte-006	ST13	5-6 cm	5,5	1,9	0,3	121	10	119,0	9,9	8,3	-2,129	-0,177
D002a1-S-Carotte-007	ST13	6-7 cm	6,5	2,2	0,3	124	10	121,9	10,1	8,3	-2,105	-0,175
D002a1-S-Carotte-008	ST13	7-8 cm	7,5	1,9	0,3	106	9	104,4	8,9	8,5	-2,260	-0,192
D002a1-S-Carotte-009	ST13	8-9 cm	8,5	2,1	0,3	111	9	109,0	9,2	8,5	-2,216	-0,188
D002a1-S-Carotte-010	ST13	9-10 cm	9,5	2,8	0,4	119	10	115,9	9,9	8,5	-2,155	-0,184
D002a1-S-Carotte-011	ST13	10-11 cm	10,5	2,7	0,4	110	9	107,5	9,1	8,5	-2,230	-0,189
D002a1-S-Carotte-012	ST13	11-12 cm	11,5	3,7	0,4	108	9	104,3	9,4	9,0	-2,260	-0,204
Min						106	8,86					
Max						151	12,07					
Moyenne				2,3	0,3	122	9,95					
Ecartype						13	0,88					
Nombe						12	12					
Intervalle de confiance						7	0,50					
CV (%)						10	9					

Code AEL	Station	Horizon	Horizon moyen (cm)	²²⁶ Ra [Bq/kg]	Incertitude [Bq/kg]	²¹⁰ Pb [Bq/kg]	Incertitude [Bq/kg]	Pb-210 excès (Bq/kg)	Incertitude [Bq/kg]	% Erreur	LN Pb-210 excès (Bq/g)	LN Erreur [Bq/g]
D002a1-S-Carotte-013	Carotte ST06	0-1 cm	0,5	2,8	0,6	145	12	141,9	12,4	8,8	-1,953	-0,171
D002a1-S-Carotte-014	Carotte ST06	1-2 cm	1,5	1,9	0,3	124	10	122,2	10,3	8,4	-2,102	-0,177
D002a1-S-Carotte-015	Carotte ST06	2-3 cm	2,5	2,0	0,6	128	12	126,2	12,1	9,6	-2,070	-0,199
D002a1-S-Carotte-016	Carotte ST06	3-4 cm	3,5	3,0	0,6	120	11	116,9	11,4	9,7	-2,147	-0,209
D002a1-S-Carotte-017	Carotte ST06	4-5 cm	4,5	1,9	0,4	131	10	129,2	10,4	8,1	-2,047	-0,165
D002a1-S-Carotte-018	Carotte ST06	5-6 cm	5,5	2,3	0,5	123	11	121,0	10,6	8,8	-2,112	-0,186
D002a1-S-Carotte-019	Carotte ST06	6-7 cm	6,5	2,1	0,5	127	12	124,7	11,8	9,4	-2,082	-0,196
D002a1-S-Carotte-020	Carotte ST06	7-8 cm	7,5	1,9	0,4	115	11	113,0	10,8	9,5	-2,180	-0,208
D002a1-S-Carotte-021	Carotte ST06	8-9 cm	8,5	1,8	0,4	118	10	116,4	10,4	9,0	-2,151	-0,193
D002a1-S-Carotte-022	Carotte ST06	9-10 cm	9,5	2,8	0,5	101	10	98,6	9,6	9,8	-2,317	-0,227
D002a1-S-Carotte-023	Carotte ST06	10-11 cm	10,5	2,7	0,5	109	10	105,9	10,2	9,7	-2,245	-0,217
D002a1-S-Carotte-024	Carotte ST06	11-12 cm	11,5	1,9	0,3	94	8	91,9	7,8	8,5	-2,387	-0,203
D002a1-S-Carotte-025	Carotte ST06	12-13 cm	12,5	6,5	0,8	105	10	98,6	10,4	10,6	-2,317	-0,245
D002a1-S-Carotte-026	Carotte ST06	13-14 cm	13,5	2,6	0,5	112	10	109,6	10,5	9,5	-2,211	-0,211
D002a1-S-Carotte-027	Carotte ST06	14-15 cm	14,5	2,2	0,5	109	10	106,9	10,3	9,6	-2,236	-0,215
D002a1-S-Carotte-028	Carotte ST06	15-16 cm	15,5	2,5	0,5	111	10	108,8	10,3	9,4	-2,218	-0,209
D002a1-S-Carotte-029	Carotte ST06	16-17 cm	16,5	2,1	0,3	94	8	91,8	8,1	8,8	-2,388	-0,211
D002a1-S-Carotte-030	Carotte ST06	17-18 cm	17,5	2,7	0,4	95	8	92,7	8,5	9,1	-2,379	-0,217
D002a1-S-Carotte-031	Carotte ST06	18-19 cm	18,5	2,1	0,3	95	8	92,9	7,9	8,5	-2,376	-0,203
D002a1-S-Carotte-032	Carotte ST06	19-20 cm	19,5	2,9	0,5	98	10	95,0	9,7	10,2	-2,353	-0,241
D002a1-S-Carotte-033	Carotte ST06	20-21 cm	20,5	1,6	0,3	81	7	79,2	6,8	8,5	-2,535	-0,216
D002a1-S-Carotte-034	Carotte ST06	21-22 cm	21,5	1,8	0,3	79	7	76,7	6,6	8,6	-2,567	-0,222
D002a1-S-Carotte-035	Carotte ST06	22-23 cm	22,5	2,0	0,5	88	9	85,6	9,3	10,9	-2,458	-0,267
D002a1-S-Carotte-036	Carotte ST06	23-24 cm	23,5	2,2	0,3	75	6	73,1	6,4	8,8	-2,616	-0,230
Min						75	6,42					
Max						145	12,42					
Moyenne				2,4	0,5	107	9,69					
Ecartype						18	1,69					
Nombe						24	24					
Intervalle de confiance						7	0,68					
CV (%)						17	17					