

Rapport technique 2017 : Estimation de la qualité des milieux dans le Grand Sud pour l'année 2016 - *Des données de suivis aux scores environnementaux*

Rapport technique

Version finale
Novembre 2017

Table des matières

1	Int	rodu	ction4	
	1.1	Obje	ectif, contenu et destinataires du rapport technique	4
	1.2	Rôle	e du Comité technique n°2 (COTEC 2)	4
2	Rap	pel	de la méthode générale4	
	2.1	Les	données à disposition	4
	2.2	Zon	e d'étude	4
	2.3	Plag	ge temporelle du diagnostic	5
	2.4	Prin	cipes généraux : Estimation de l'état de santé des milieux dans le grand sud	5
	2.4	.1	Une réflexion scindée en 3 milieux	5
	2.4	.2	Une approche géographique par zone au sein de chaque milieu	6
	2.4	.3	Une attribution de score par zone	6
	2.4	.4	Des paramètres suivis aux scores annuels	6
3	Mil	lieu n	narin9	
	3.1	Rap	pel des zones, des stations de suivi en milieu marin et synthèse de la méthode utilisée	9
	3.1	.1	Stations de suivi physico-chimique dans les zones	9
	3.1	.2	Stations de suivi biologique dans les zones	10
	3.1 réfe		Tableau de synthèse : Attribution des notes par paramètre, détail des métriques lels utilisés pour le diagnostic	
	3.2	Rési	ultats : Notes par paramètre et notes finales par zone	12
	3.2	.1	Paramètres contribuant à l'état chimique du milieu marin	12
	3.2	.2	Paramètres contribuant à l'état écologique du milieu marin	35
	3.3 le sco	•	thèse des scores écologiques et chimiques en milieu marin : Affectation des paramètres of mique ou écologique	
4	Mil	lieu E	au douce59	
	4.1	Rap	pel des caractéristiques des zones et des stations de suivis	59
	4.1	.1	Eaux de surface : les creeks et dolines	59
	4.1	.2	Eaux souterraines	63
	4.1 attr		Tableau de synthèse des paramètres suivis, de la méthode et des métriques utilisés pune note.	•
	4.2	Rési	ultats : Scores par paramètre et scores finaux par zone	66
	4.2	.1	Paramètres contribuant à l'état chimique des eaux douces	66
	4.2	.2	Paramètres contribuant à l'état écologique des eaux douces	98
	4.3 dans l	•	thèse des scores écologiques et chimiques en milieu eau douce: Affectation des paramè re chimique ou écologique	
5	Mil	lieu T	Ferrestre	

	5.1	Rap	pel des caractéristiques des zones et des stations de suivis	150
	5.1.	1	Suivis disponibles et fréquence de suivi	150
	5.1.	2	Affectation des stations de suivi dans les zones	151
	5.1.	3	Résultats par compartiment de mesures : scores par paramètre et scores finaux par zone	.152
	5.1.	4	Suivis non intégrables au diagnostic, actions de gestions, compensation et sensibilisation	168
	5.2	Synt	thèse des suivis en milieu terrestre	177
6	Bib	liogr	aphie :	
	6.1	Mili	eu marin	178
	6.2	Eau	x douces	179
	6.3	Mili	eu terrestre	179
7	Anr	nexe	s181	
			Mesures de suivi des communautés de macro-invertébrés dans les eaux douces non intég	
	condit	ionne	Extrait du tableau des limites et référence de qualité des eaux à l'exclusion des é ées en Annexe I de l'arrêté du 11 janvier 2007 (G : valeur guide ; I : valeur limite impérat	ive).
	métro les cri	polita itères	Valeurs seuils nationales par défaut pour les eaux souterraines, en annexe II de la circu aine du 23 octobre 2012 relative à l'application de l'arrêté du 17 décembre 2008 établis d'évaluation et les modalités de détermination de l'état des eaux souterraines et significatives et durables de dégradation de l'état chimique des eaux souterraines	sant des
	d'eau	desti	: Tableau des limites de qualité des eaux douces superficielles utilisées pour la produc née à la consommation humaine en annexe III de l'arrêté du 11 janvier 2007 (G : valeur gu nite impérative).	iide ;

1 Introduction

1.1 Objectif, contenu et destinataires du rapport technique

La note technique présente les résultats de l'estimation de la qualité des milieux dans le grand Sud. L'objectif de ce document est de présenter dans le détail les étapes de qualification et d'agrégation des informations environnementales depuis la donnée brute jusqu'aux scores finaux. Les résultats sont présentés pour chacun des trois milieux : marins, terrestre et d'eaux douces. Ce rapport technique est à destination d'un public averti et il est soumis à validation au comité technique N°2 (COTEC 2).

Les choix méthodologiques sur lesquels s'appuient la qualification et l'agrégation des informations environnementales sont détaillés dans le document « Méthode de diagnostic ».

1.2 Rôle du Comité technique n°2 (COTEC 2)

Le comité technique est composé de membres acteurs de l'environnement, directement impliqués dans les suivis réalisés sur la zone d'étude (bureaux d'études, gestionnaires et industriels), également par des membres du conseil scientifique experts dans les thématiques abordées. Ces personnes qualifiées se réunissent depuis 2014 et sont conviées à apporter leurs remarques et suggestions sur l'interprétation des résultats faite par l'Observatoire et issue de l'analyse des suivis dans les différents milieux. La prochaine réunion du COTEC 2 est prévue de se tenir en Septembre 2016.

2 Rappel de la méthode générale

Ci-après, un rappel général sur la méthode et les grandes règles d'attribution des scores communes aux 3 milieux. La méthode détaillée est décrite dans un document d'une centaine de pages intitulé « Méthode de diagnostic ». Pour tout besoin de consulter les détails de la méthode de diagnostic mise en œuvre, nous invitons donc les lecteurs à se rapporter au document sus-cité.

2.1 Les données à disposition

Le diagnostic de l'état de santé des milieux dans le Grand sud, s'appuie sur des rapports d'expertise de suivis environnementaux (Plus de détail dans le document « Note de présentation générale » dans la partie -Matière et outils à disposition- L'information environnementale.)

2.2 Zone d'étude

La zone d'étude sur laquelle est dressée le diagnostic de l'état de santé des milieux peut être réajusté chaque année en regard des nouvelles informations de suivis disponibles mais il est globalement admis que ce périmètre se concentre autour de la zone d'influence du complexe industriel et minier de Vale NC. Pour ce diagnostic la zone d'étude s'étend de la rivière Fausse Yaté au Nord, à l'île des pins au Sud-Est. La limite Ouest est représentée par L'île Ouen (Figure 1).

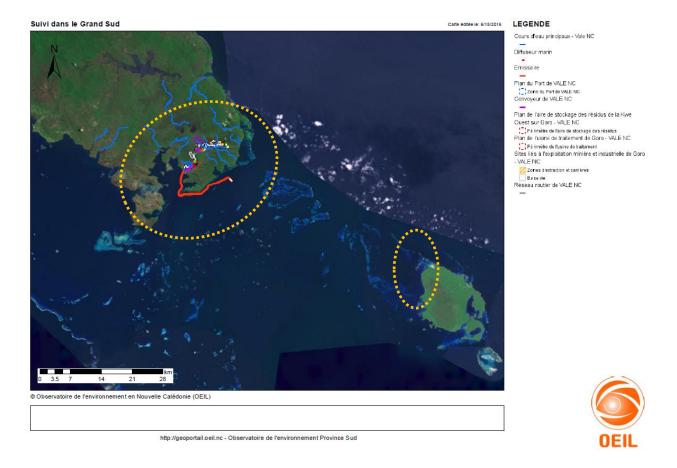


Figure 1: Carte générale de l'emprise géographique du diagnostic de l'état de santé des milieux marins, d'eaux douces et terrestres dans le Grand Sud de la Nouvelle-Calédonie et complexe minier et industriel de Vale NC. La zone d'étude est délimitée en pointillé jaune.

2.3 Plage temporelle du diagnostic

La plage temporelle du diagnostic de l'état de santé des milieux dans le grand Sud comprend comme données les plus récentes, les données de l'année n-1 (n correspondant à l'année en cours. Les derniers résultats de suivis considérés en 2017 concernent donc 2016).

Le diagnostic dressé en 2017, s'appuient donc sur les mesures effectuées en 2016.

Quelques exceptions : si aucun suivi n'a été effectué l'année n-1 (soit à cause de problèmes techniques, soit parce que la périodicité du suivi est supérieure à l'année), il est convenu que le diagnostic s'appuie sur les dernières données disponibles (cf. CR COTEC 1-2015).

2.4 Principes généraux : Estimation de l'état de santé des milieux dans le grand sud

2.4.1 Une réflexion scindée en 3 milieux

La réflexion autour de l'appréciation de l'état de santé des milieux dans le grand sud est basée sur un découpage en 3 milieux : le milieu marin, le milieu eau douce et le milieu terrestre.

2.4.2 Une approche géographique par zone au sein de chaque milieu

Au sein de chaque milieu, des zones sont délimitées sur des critères de degré d'exposition aux perturbations industrielles et minières (ex : distance aux sources de polluants atmosphériques et exposition au vent) et d'homogénéité du fonctionnement écologique (ex : continuum forestier).

2.4.3 Une attribution de score par zone

L'objectif principal de la communication de l'OEIL étant d'atteindre la cible grand public par des messages simples, il est convenu d'attribuer des scores sur l'état écologique et chimique de ces grandes zones.

Définition des termes inspirés de la Directive Cadre sur l'Eau (DCE) (validés au cours du COTEC 1-Juillet 2016):

<u>Etat chimique</u>: L'état chimique rend compte du niveau de perturbation du milieu sur la base des concentrations en polluants mesurés. Il s'appuie donc sur des paramètres traduisant de la manière la plus directe possible les perturbations anthropiques.

<u>Etat écologique</u>: l'état écologique est l'appréciation de la structure et du fonctionnement des écosystèmes. Il est établi à partir de critères appelés éléments de qualité qui peuvent être de nature biologique (flore et/ou faune), physicochimiques dès lors que les paramètres considérés essentiels pour le développement et le maintien des communautés biologiques (température, nutriments, minéraux ...) ou géomorphologiques (habitat ou encore débit pour les milieux aquatiques).

Remarque: Il est important de noter qu'à l'heure actuelle, nous ne disposons pas de suffisamment de suivis avec des protocoles standardisés et d'indicateurs écologiques reconnus pour arriver à ce niveau d'agrégation en milieu terrestre. En milieu terrestre l'agrégation des données aboutie donc uniquement à l'attribution de notes (voir ci-dessous pour la définition d'une note) par zone et par type de suivi (i.e. suivi oiseau).

2.4.4 Des paramètres suivis aux scores annuels

2.4.4.1 Bilan des étapes de diagnostic

Une première métrique par station de suivi est calculée, le plus souvent c'est la moyenne annuelle des valeurs d'un paramètre considéré sur une station. Cette métrique est ensuite comparée à un référentiel : valeur seuil, référence temporelle et spatiale et une note est alors attribuée au paramètre pour la station. Les notes par stations sont ensuite agrégées pour obtenir une note par zone. Les notes par zones par paramètres subissent ensuite des agrégations thématiques (agrégation des notes de paramètres chimiques d'une part et des paramètres écologiques d'autre part) pour aboutir à un score chimique et un score écologique par zone Figure 2.

Note et Score : Le score constitue le stade ultime de l'agrégation des notes évaluées par état (chimique ou écologique) et par zone. **Il correspond donc au diagnostic final**.

Pour les paramètres concourant à définir l'état écologique les notes et les scores sont donnés sur une échelle à 5 niveaux : Très Bon, Bon, Moyen, Médiocre, Mauvais et Inconnu.

La définition de ces 5 niveaux est la suivante (définitions inspiré de (Beliaeff, Bouvet, Fernandez, David, & Laugier, 2011) et validées au cours du COTEC 1 de Juillet 2016) :

Très bon : Conditions naturelles hors d'impact.

Bon: Proche des conditions naturelles, impact faible (avéré ou soupçonné).

Moyen: Impact modéré.

Médiocre : Milieu très impacté.

Mauvais: Milieu fortement impacté ou situation quasi-irréversible.

Inconnu: Impossibilité de conclure.

Pour les paramètres concourant à l'état chimique, trois niveaux de note ou score sont considérés :

Bon : Proche des conditions naturelles, impact faible (avéré ou soupçonné).

Mauvais : Milieu fortement impacté. Inconnu : Impossibilité de conclure.

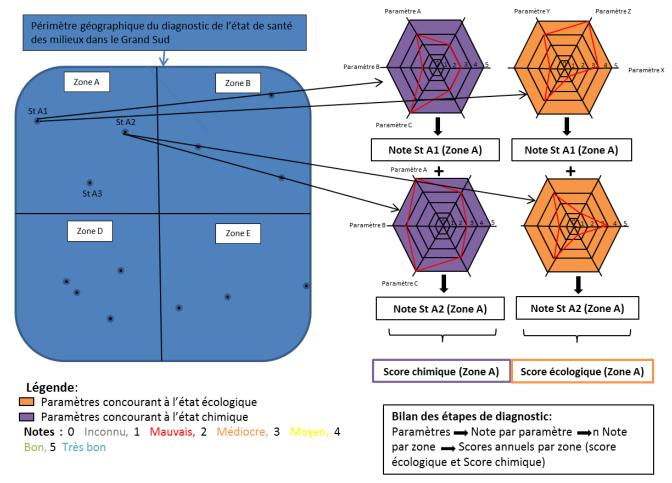


Figure 2: Schéma explicatif de l'agrégation des données : des paramètres par station aux scores écologiques et chimiques. Exemple pour une zone (nommée A) parmi les X zones considérées pour le diagnostic de qualité des milieux sur les 3 milieux (marin, terrestre et eaux douces).

2.4.4.2 Règles respectées lors de l'agrégation

A chaque étape du diagnostic des agrégations de paramètres sont effectuées et respectent les règles suivantes :

- Le principe de conservation de la note du critère le plus déclassant.

- Un poids plus important est donné aux notes issues des suivis biologiques par rapport aux notes issues de la physicochimie ou de l'hydro morphologie.
- L'avis d'expert intervient en complément de ces règles, pour ajuster les notes en regard de son expertise.

2.4.4.3 Cas particulier des données manquantes

Lorsqu'il manque simplement quelques prélèvements ou données au cours d'une année:

Il a été acté lors du COTEC 1 de juillet 2016, que trois méthodes seront employées lors de l'absence de données pour permettre une comparaison et une interprétation fiable des données :

M1: Considérer la moyenne semestrielle comme la moyenne annuelle

M2: Comparaison semestrielle uniquement sur les semestres où il ne manque aucunes données

M3: Intégration de valeurs 2012 à saisons équivalentes

Pour les suivis à fréquence inférieur à l'année ou interrompu momentanément :

Il a été acté lors du COTEC 1 de juillet 2016, que les dernières données disponibles seront utilisées et représentées dans la publication de l'OEIL magazine avec un astérisque, dans la mesure du possible.

3 Milieu marin

Pour le détail de la méthode utilisée en milieu marin pour établir le diagnostic de l'état du milieu à partir des différents suivis voir le document *Méthode de diagnostic*.

3.1 Rappel des zones, des stations de suivi en milieu marin et synthèse de la méthode utilisée.

3.1.1 Stations de suivi physico-chimique dans les zones

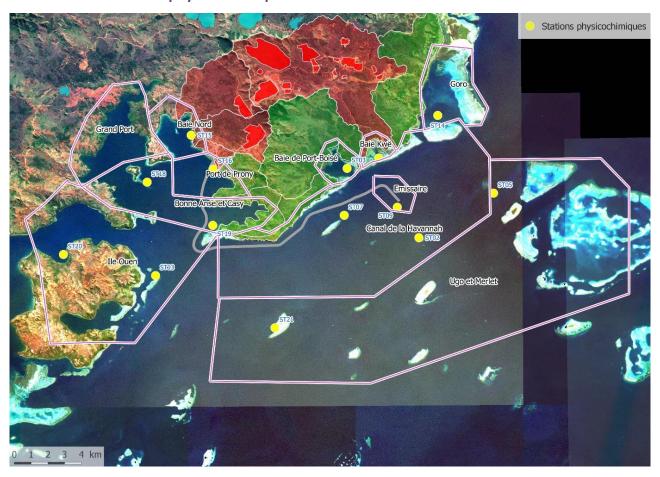


Figure 3 : Position des stations de suivi de la physico-chimie. (Source : Melanopus et Dexen 2015)

Stations et fréquence de suivi :

Des mesures de différents éléments sont effectuées à partir de prélèvements d'eaux à 3 profondeurs (surface, mi-profondeur et fond) effectués sur 14 stations, réparties dans 10 zones (Tableau 1). La fréquence de prélèvement est semestrielle, excepté pour les stations ST15 et ST16 qui sont échantillonnées trimestriellement.

Tableau 1 : Affectation des 17 stations de prélèvement d'eau et d'évaluation de la structure de la colonne d'eau dans les zones, champ d'exposition aux perturbations industrielles et stations de références.

Stations de r	éférence			Statio	ns de suivi						
Zone	Station	Mes	ures	Zone	Station	Mes	ures				
Baie de Port Boisé	ST03*			Baie Kwé	ST06*						
Bonne Anse et Casy	ST18°			Baie Nord	ST15°						
Bollile Alise et Casy	ST19"			Port de Prony	ST16"						
Ugo et Merlet	ST05'				ST09'						
ogo et ivieriet	ST21			Emissaire	ST60-SW						
Canal de la Havannah	ST02			Lillissaire	ST60-NE						
Cariai de la Havaillian	ST07			ST06-KW1							
Goro	ST14			* • ! " . pairo	do stations	. do c	uivi				
lle Ouen	ST13			*, °, ', " : paires de stations de suivi avec leurs stations de référence							
lie Odeli	ST20			avec leurs stations de referen							
Degré d'influence p à l'activité industriell			Champ p Champ m Champ lo	roche odéré							
Mesures effectué	Ses :		physico-chin physico-chir								

3.1.2 Stations de suivi biologique dans les zones

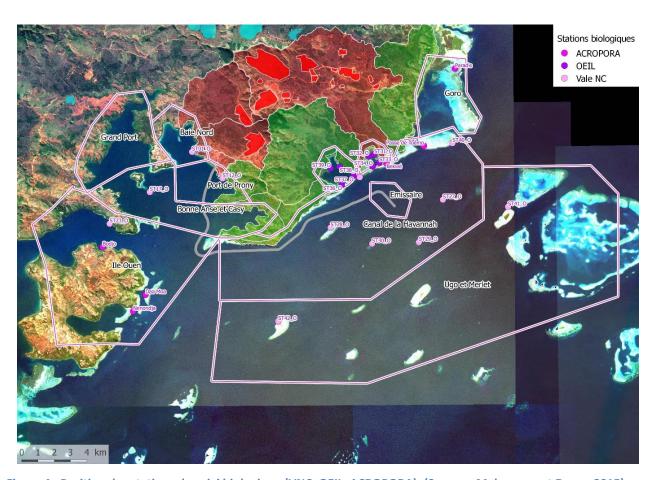


Figure 4 : Position des stations de suivi biologique (VNC, OEIL, ACROPORA). (Source : Melanopus et Dexen 2015)

Il existe également 3 stations ACROPORA dans le Nord Ouest de l'île des Pins.

3.1.3 Tableau de synthèse : Attribution des notes par paramètre, détail des métriques et référentiels utilisés pour le diagnostic

Le tableau suivant présente l'ensemble des paramètres utilisés pour le diagnostic du milieu. Il définit également l'état auquel concourt le paramètre suivi (chimique ou écologique) et la métrique calculée pour sa confrontation aux référentiels considérés pour son évaluation.

Tableau 2 : Tableau de synthèse des métriques et des référentiels utilisés par paramètre

Etat chimique	Nature du prélèvement Nature du prélèvement Métrique comparée à la gamme de référence Avaleur seuil Métrique comparée à valeur seuil Chronique des données												
anb	Т	уре	At a sec			prél	èven	nent			Wieti ique comparee	•	
dne			Nom	Symbole		p.c.				gamme de référence	à valeur seuil	chronique des données	
ane			Manganèse	Mn		М				moyenne	médiane 2014-2016	2012-2016	
ane		lés	Nickel	Ni	Е	М	S	Р	В	moyenne	médiane 2014-2016	2012-2016	
anb		mu	Chrome héxavalent	Cr(VI)	Е					moyenne	médiane 2014-2016	2012-2016	
dne		CGU	Chrome	Cr	Е	М	S	Р	В	moyenne	-	2012-2016	
5		ioa	Arsenic	As	Е				В	moyenne	-	2012-2016	
= □		d b	Cadmium	Cd	Е					moyenne	-	2012-2016	
chir		ts o	Cobalt	Co	Е	М	S	Р	В	moyenne	-	2012-2016	
at		nos	Cuivre	Cu	Е				В	moyenne	-	2012-2016	
E		diss	Fer	Fe	Е	М	S	Р	В	moyenne	-	2012-2016	
		×n	Plomb	Pb	Е					moyenne	-	2012-2016	
		léta	Zinc	Zn	Е				В	moyenne	-	2012-2016	
		2	Soufre	S		М		Р		moyenne	-	2012-2016	
			Ratio Ca/Fe	Ca/Fe		М		Р		moyenne	-	2012-2016	
	S	ər	Température	T°	Е					moyenne	-	2012-2016	
	ine	Profil aquatique	Turbidité	Turb.	Е					moyenne	-	2012-2016	
	m Sign	Pro 1 uai	Salinité	Sal.	Е					moyenne	-	2012-2016	
	ċhi	ac	Fluorescence	Fluor.	Е					moyenne	-	2012-2016	
	Paramètres physico-chimiques	М	atière en suspension	MES	Е	М				moyenne	-	2012-2016	
	hys		Particules fines	Pf				Р		moyenne	-	2012-2016	
	s p	ırs	Chlorures	Cl	Е					moyenne	-	2012-2016	
	tre	ajeu	Magnésium	Mg ²⁺	Е					moyenne	-	2012-2016	
	ıı.	Eléments majeurs	Sodium	Na ⁺	Е					moyenne	-	2012-2016	
	are	ints	Calcium	Ca ²⁺	Е	М				moyenne	-	2012-2016	
	ш.	me	Potassium	K ⁺	Е					moyenne	-	2012-2016	
		EIé	Sulfate	SO ₄ ²⁻	Е					moyenne	-	2012-2016	
41			Chlorophylle a	Chl.a	Е					moyenne	percentile 90 2014-2016	2012-2016	
Etat écologique			Nitrites	NO ₂	Е					moyenne	-	2012-2016	
logi		ls itifs	Nitrates	NO ₃	Е					moyenne	-	2012-2016	
éco		Sels nutritifs	Ammonium	NH ₄ ⁺	Е					moyenne	moyenne	2012-2016	
tat		_	Phosphates	PO ₄ 3-	Е					moyenne	moyenne	2012-2016	
Ξ		- 01	Carbone org. Partic.	COP	Е					moyenne	-	2012-2016	
		dne	Azote org. Partic.	NOP	Е					moyenne	-	2012-2016	
		gani	Azote org. Dissout	NOD	Е					moyenne	-	2012-2016	
		org	Azote total	Nt	Е					moyenne	percentile 90 2014-2016	2012-2016	
		ère	Phosphore org. Partic.	POP	Е					moyenne	-	2012-2016	
		Matière organique	Phosphore org. Dissout	POD	Е					moyenne	-	2012-2016	
		2	Phosphore total	Pt	Е					moyenne	percentile 90 2014-2016	2012-2016	
	Ş		Couverture corallienne	%CC					В	moyenne	moyenne	2012-2016	
	dne	uté e	Diversité habitats	Div.H					В	moyenne	moyenne	2012-2016	
	ioti	ommunaut benthique	Diversité spec. Poissons	DSp.P					В	moyenne	moyenne	2012-2016	
	<u>.</u> و	ut h	Densité poissons	Dens. P					В	moyenne	moyenne	2012-2016	
	Param. biotiques	Communauté benthique	Diversité spec. Invert.	DSp. I					В	moyenne	moyenne	2012-2016	
	Pa	O	Densité invertébrés	Dens. I					В	moyenne	moyenne	2012-2016	
	Lége	ende :	Nature du prélèvement .	:	M S P	Mat Sédi Sédi	de m ière e ment ment oleme	en su es de es pro	surfa ofond	ce s	- : pas de valeur seuil disponi	ble	

3.2 Résultats : Notes par paramètre et notes finales par zone.

3.2.1 Paramètres contribuant à l'état chimique du milieu marin

3.2.1.1 Concentration en métaux dissouts

3.2.1.1.1 Concentrations en Manganèse

Dans les eaux de surface

Les concentrations en Manganèse dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. L'évaluation des concentrations en métaux dissouts établie pour le Manganèse par ZONECO/CNRT (2011) doit prendre en compte la typologie des stations selon leur situation dans une zone littorale, côtière ou océanique (Tableau 3).

Tableau 3 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbations des eaux marines selon leur concentration en Manganèse

Grille d	e notation de	référence ZON	IECO :
Situation	Mn (μg/L)	Perturbation	Classe
	< 0,35	Nulle	Bon
Littoral	0,35 - 0,80	Modérée	Moyen
	≥0,80	Forte	Mauvais
	< 0,25	Nulle	Bon
Côtier	0,25 - 0,50	Modérée	Moyen
	≥0,50	Forte	Mauvais
	< 0,10	Nulle	Bon
Océanique	0,10 - 0,20	Modérée	Moyen
	≥0,20	Forte	Mauvais

Tableau 4 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Manganèse dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT (2011) et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Mn (μg/L) - 6	aux de surfa	ce		Iq = 0,0	28 με	g/L	Ì													
Zone	Situation	Station		2012		2013		2014		2015		2016		Med	Med 2014-16 ≤	Médiane 2016 →	Pas de hausse	Score 2015	Score 2016	Score 2016
Zone	Situation	Station	Ν	Moy	Ν	Moy	Ν	Moy	Ν	Moy	N	Moy	Méd	2014-16	station ref. ?	classe ZONECO?	temporelle?	3001E 2015	par station	par zone
Goro		ST14	6	0,127	9	0,119	6	0,154	6	0,164	6	0,137	0,149	0,149		Bon	Bon	Bon	Bon	Bon
Ile Ouen		ST13	6	0,216	9	0,114	5	0,138	6	0,206	6	0,129	0,128	0,143		Bon	Bon	Bon	Bon	Bon
lie Ouen		ST20	6	0,284	9	0,179	6	0,275	6	0,188	6	0,135	0,116	0,170		Bon	Bon	Bon	Bon	DUII
Baie Port Boisé		ST03*	6	0,248	13	0,274	6	0,173	6	0,250	6	0,153	0,121	0,179		Bon	Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	6	0,194	12	0,429	6	0,294	6	0,311	6	0,211	0,118	0,238	Mauvais	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	6	0,274	9	0,163	6	0,204	6	0,190	6	0,247	0,249	0,224		Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	6	0,248	9	0,164	6	0,174	6	0,278	6	0,228	0,275	0,180		Bon	Bon	Bon	Bon	DUII
Baie Nord		ST15°	15	0,530	17	0,323	12	0,597	6	0,447	6	0,246	0,239	0,406	Mauvais	Bon	Bon	Moyen	Bon	Bon
Port de Prony		ST16"	14	0,283	20	0,268	10	0,267	6	0,272	6	0,157	0,201	0,234	Mauvais	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	7	0,087	12	0,121	4	0,065	6	0,116	5	0,039	0,037	0,042		Bon	Bon	Bon	Bon	Bon
Callal Havaillali	Cotier	ST07	6	0,095	12	0,166	4	0,078	6	0,115	6	0,071	0,050	0,063		Bon	Bon	Bon	Bon	DUII
Line at Mariet	Cotier	ST21	6	0,106	8	0,081	6	0,100	5	0,138	6	0,067	0,066	0,082		Bon	Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	6	0,093	9	0,064	4	0,053	6	0,055	6	0,054	0,050	0,050		Bon	Bon	Bon	Bon	ьоп
Emissaire	Cotier	ST09'	6	0,109	11	0,094	5	0,060	6	0,107	6	0,046	0,041	0,046	Bon	Bon	Bon	Bon	Bon	Bon

En regard de la médiane des concentrations en Manganèse calculée sur les 3 dernières années (2014, 2015 et 2016), 3 des 4 stations de suivi semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives. Cependant, toutes les valeurs moyennes annuelles mesurées en 2016 correspondent à un bon état chimique d'après la grille de référence de ZONECO/CNRT, et aucune évolution négative n'est observée, y compris dans la station ST15 (classée « Moyen » pour 2015) qui retrouve des concentrations en Manganèse satisfaisantes, d'où son reclassement cette année.

• Dans les flux de particules

Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRTpour la composition géochimique de la matière en suspension issue des pièges à sédiments (Beliaeff et al., 2011). Nous nous basons donc sur les interprétations des consultants experts en charge du suivi, qui s'appuient sur la comparaison avec des valeurs de références (2006-2007), mesurées avant la mise en activité de l'usine de Vale (2009) et avant la montée en puissance de la production de minerai (à partir de 2010) dans le cadre de la convention IRD/Goro-Ni n° 1230 sur « l'État de référence » des densités de flux verticaux de particules déterminées pour le Canal de la Havannah, la Rade Nord et la Baie Kwé en 2007 (Fernandez et al., 2007). Ils se basent également sur l'évolution de la chronique de données des 3 dernières années.

Tableau 5 : Tableau de valeurs indiquant l'évolution de la concentration semestrielle moyenne en Manganèse dans 3 stations de mesure des flux particulaires, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées lors d'un état de référence antérieur à la mise en activité de l'usine de Vale NC, permettant l'attribution d'un score final par station pour l'année 2016

Mn (mg/kg) -	flux de partic	ıles															
Zone	Station	Saison	ref. 2007		2012		2013		2014		2015		2016	Moy 2016 ≤ ref.	Pas de hausse	Score 2016 par	
Zone	Station	3415011	rei. 2007	N	Moy	Ν	Moy	Ν	Moy	N	Moy	N	Moy	2007 ?	temporelle?	station	
Baie Kwé	ST06-KW1	Chaude	577	12	822,2	12	1122,8	12	471,1	12	735,2	12	722,6	Mauvais	Bon	Moyen	
bale Kwe	2100-KW1	Fraiche	5//	12	840,1	12	1687,8	12	885	12	940,4	12	974,2	Mauvais	Bon	Moyen	
Canal Havannah	ST60 - NE	Chaude	125	12	253,8	9	262,4	12	195,4	12	328,7	10	143,2	Bon	Bon	Bon	
(émissaire)	3100 - NE	Fraiche	125	4	188,8	12	379,1	12	204,3	12	298,3	10	250,5	Mauvais	Bon	BUII	
Daia Naud	CT1 F	Chaude 1949 Fraiche	1040					12	2368,25	9	3787,73	8	1860,5	Bon	Bon	Bon	
Baie Nord	ST15				1949					5	1881,2	7	2148	12	1980,6	Bon	Bon

En Baie Kwé et dans le canal de la Havannah, les précédentes campagnes avaient mis en évidence une augmentation des valeurs moyennes des densités de flux en métaux depuis l'état de référence pour la période 2011-2013 et une baisse en 2014, puis une ré-augmentation en 2015. En 2016, les concentrations moyennes en Manganèse restent stables par rapport à l'année précédente, mais sont toujours supérieures aux concentrations mesurées en 2007, en particulier en station ST06-KW1, qui obtient donc un score « Moyen » cette année pour ce paramètre. Dans la Baie Nord, les concentrations en Manganèse enregistrées en 2016 en saison chaude et en saison fraiche sont équivalentes à celles mesurées en 2007, il n'y a donc pas de perturbation nouvelle détectée sur cette station.

• Dans les sédiments de surface

Les prélèvements de sédiment par benne sont effectués tous les 3 ans sur les 12 stations de suivis. Pour la composition géochimique nous disposons de 4 campagnes de données complète (2006, 2009, 2012, 2015), sur 5 stations (ST03, ST06, ST15, ST16 et ST18), pour le Manganèse. Le score attribué cette année se base donc sur les données déjà présentées l'année dernière, qui prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 6).

Tableau 6 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des sédiments marins selon leur concentration en Manganèse

Grille de n	otation de
référence	ZONECO:
Mn (mg/kg)	Classe
< 1580	Très bon
1580 - 1750	Bon
> 1750	Moyen
>>> 1750	Mauvais
2,00	

Tableau 7 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne en Manganèse dans 12 stations de mesure des sédiments marins de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Mn (mg/kg) - sé	diments de sı	urface															
Zone	Situation	Station		2005		2006		2009		2012		2015	Moy 2015 ≤	Moy 2015 →	Pas de hausse	Score 2015 par	Score 2015 par
zone	Situation	Station	N	Moy	station ref. ?	classe ZONECO?	temporelle?	station	zone								
Goro		ST14	1	222							1	168		Très bon	Bon	Bon	Bon
lle Ouen		ST13	1	635							1	232		Très bon	Bon	Bon	Bon
lie Ouell		ST20									1	830		Très bon		Bon	BUII
Baie Port Boisé		ST03*	2	165	1	279	1	491	1	695	1	434		Très bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	2	489	1	658	1	667	1	677	1	818	Mauvais	Très bon	Mauvais	Moyen	Moyen
Bonne Anse et Casy		ST19"									1	549		Très bon		Bon	Moyen
Bonne Anse et Casy		ST18°	1	325							1	2120		Moyen	Mauvais	Moyen	ivioyen
Baie Nord		ST15°	2	2140	1	2485	1	2645	1	2083	1	2616	Mauvais	Mauvais	Bon	Médiocre	Médiocre
Port de Prony		ST16"	2	574	1	735	1	809	1	840	1	958	Mauvais	Très bon	Mauvais	Bon	Bon
Canal Havannah	Océanique	ST02	1	38							1	102		Très bon	Bon	Bon	Bon
Cariai Havannan	Cotier	ST07	2	164							1	228		Très bon	Bon	Bon	БОП
Ugo et Merlet	Cotier	ST21									1	116		Très bon		Bon	Bon

La station ST03 (Port boisé) peut être considérée comme une station témoin pour ST06 (Baie Kwé), comme réaffirmé dans le rapport de révision des plans de suivis en milieu marin (G Bouvet & Guillemot, 2015). En 2015, les concentrations en Manganèse mesurées en Baie Kwé sont plus importantes qu'en Baie de Port Boisé (d'un facteur 1,9), ce qui n'était pas le cas en 2012. Au vu de l'augmentation des concentrations en Manganèse mesurée dans les sédiments de surfaces sur ST06 entre 2006 et 2015, nous décidons de déclasser la station en « Moyen », bien que le guide ZONECO/CNRT estime « Bonne » la qualité du milieu.

Les stations ST18 et ST19 (Bonne Anse et Casy) peuvent être considérées comme stations témoin respectivement pour ST15 (Baie Nord) et ST16 (Port de Prony). Les concentrations observées en 2015 en station ST15 et ST16 sont supérieures aux concentrations observées dans leurs stations de référence.

En Baie Nord, étant donné que les concentrations ont augmenté en 2015 par rapport à la précédente campagne et qu'elles dépassent le seuil de qualité « Mauvais » du milieu, le score « Médiocre » est conservé pour cette année.

Au vu de la forte augmentation des concentrations en Manganèse mesurée dans les sédiments de surfaces sur ST18 entre 2006 et 2015, pour atteindre un état qualifié de « Moyen » selon le guide ZONECO/CNRT, nous décidons de déclasser la station en « Moyen ».

Dans les sédiments profonds (carottage)

Les prélèvements de sédiment par carottage sont effectués tous les ans sur la station de suivi au droit du port (ST16). Le score attribué cette année prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 6) et l'évolution temporelle de la chronique des données.

Tableau 8 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne par horizon (moyenne des horizons 0 à 4 cm) en Manganèse dans les carottes de sédiments de la station de mesure des sédiments marins profonds au droit du Port de Prony, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT, permettant l'attribution d'un score final pour l'année 2016.

Mn (mg/kg) - sé	diments prof	onds (moyeni	ne ho	orizons 0-	4 cm)										
Zone	Station	Phase		2012		2013		2014		2015		2016	Moy 2015 →	Pas de hausse	Score 2015	Score 2016
Zone	Station	Filase	z	Moy	Z	Moy	Z	Moy	2	Moy	Ν	Moy	classe	temporelle?	3C01E 2013	3core 2010
Port de Prony	ST16	Ox + A-S + Red. + Rés.	16	797	16	863,4	16	854,23	16	717,7	16	796,6	Très bon	Bon	Très bon	Très bon

Les teneurs en Manganèse dans les sédiments profonds restent relativement stables depuis 2012 sur la station ST16, avec une valeur correspondant à un état « Très bon » d'après le guide ZONECO/CNRT.

3.2.1.1.2 Concentrations en Nickel

• Dans les eaux de surface

Les concentrations en Nickel dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Selon leur situation littorale, côtière ou océanique, l'évaluation des concentrations en métaux dissouts s'appuie sur la grille établie pour le Nickel dans le guide ZONECO/CNRT (Tableau 9).

Tableau 9 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des eaux marines selon leur concentration en Nickel

Grille d	e notation de	référence ZON	IECO :
Situation	Ni (μg/L)	Perturbation	Classe
	< 0,40	Nulle	Bon
Littoral	0,40 - 0,75	Modérée	Moyen
	≥ 0,75	Forte	Mauvais
	< 0,30	Nulle	Bon
Côtier	0,30 - 0,50	Modérée	Moyen
	≥ 0,50	Forte	Mauvais
	< 0,15	Nulle	Bon
Océanique	0,15 - 0,20	Modérée	Moyen
	≥0,20	Forte	Mauvais

Tableau 10 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Nickel dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Ni (μg/L) - e	aux de surfac	e		Iq = 0,0	28 με	g/L	ĺ													
Zone	Situation	Station		2012		2013		2014		2015		2016		Med	Med 2014-16 ≤	Médiane 2016 →	Pas de hausse	Score 2015	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	Z	Moy	N	Moy	N	Moy	Méd	2014-16	station ref. ?	classe ZONECO ?	temporelle?	3COTE 2013	par station	par zone
Goro		ST14	6	0,140	8	0,183	6	0,163	6	0,181	6	0,165	0,169	0,164		Bon	Bon	Bon	Bon	Bon
lle Ouen		ST13	6	0,201	8	0,221	6	0,151	6	0,286	6	0,168	0,161	0,168		Bon	Bon	Bon	Bon	Bon
lie Ouell		ST20	6	0,278	9	0,275	6	0,268	6	0,397	6	0,193	0,177	0,238		Bon	Bon	Bon	Bon	БОП
Baie Port Boisé		ST03*	6	0,265	13	0,574	7	0,410	5	0,209	6	0,326	0,236	0,273		Bon	Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	6	0,161	12	0,616	6	0,291	6	0,300	6	0,257	0,147	0,196	Bon	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	6	0,279	9	0,392	6	0,282	6	0,249	6	0,264	0,267	0,267		Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	6	0,291	9	0,341	6	0,272	6	0,343	6	0,313	0,313	0,286		Bon	Bon	Bon	Bon	DUII
Baie Nord		ST15°	15	0,372	20	0,385	11	0,607	6	0,372	6	0,291	0,304	0,358	Mauvais	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	14	0,304	19	0,289	9	0,292	6	0,294	6	0,226	0,242	0,260	Bon	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	7	0,091	12	0,197	5	0,104	6	0,109	5	0,070	0,067	0,075		Bon	Bon	Bon	Bon	Bon
Canal Havannan	Cotier	ST07	6	0,123	12	0,195	6	0,106	6	0,193	6	0,092	0,094	0,110		Bon	Bon	Bon	Bon	БОП
Ugo et Merlet	Cotier	ST21	6	0,125	8	0,114	5	0,136	5	0,145	6	0,112	0,108	0,139		Bon	Bon	Bon	Bon	Bon
ogo et ivieriet	Océanique	ST05'	6	0,087	8	0,084	4	0,093	6	0,085	6	0,083	0,083	0,086		Bon	Bon	Bon	Bon	BUII
Emissaire	Cotier	ST09'	6	0,126	11	0,163	5	0,081	6	0,130	6	0,084	0,074	0,084	Bon	Bon	Bon	Bon	Bon	Bon

En regard de la médiane des concentrations en Nickel calculée sur les 3 dernières années (2014, 2015 et 2016), seule la station de suivi ST15 semble refléter un milieu modérément perturbé par rapport à sa station de référence ST18. Cependant, les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations correspondent à un bon état chimique d'après la grille de référence de ZONECO/CNRT, et aucune évolution négative n'est observée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

• Dans les flux de particules

Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour la composition géochimique de la matière en suspension issue des pièges à sédiments (Beliaeff et al., 2011). Nous nous basons donc sur les interprétations des consultants experts en charge du suivi, qui s'appuient sur la comparaison avec des valeurs de références (2006-2007), mesurées avant la mise en activité de l'usine de Vale (2009) et avant la montée en puissance de la production de minerai (à partir de 2010) dans le cadre de la convention IRD/Goro-Ni n° 1230 sur « l'État de référence » des densités de flux verticaux de particules déterminées

pour le Canal de la Havannah, la Rade Nord et la Baie Kwé en 2007 (Fernandez et al., 2007). Ils se basent également sur l'évolution de la chronique de données des 3 dernières années.

Tableau 11 : Tableau de valeurs indiquant l'évolution de la concentration semestrielle moyenne en Nickel dans 3 stations de mesure des flux particulaires, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées lors d'un état de référence antérieur à la mise en activité de l'usine de Vale NC, permettant l'attribution d'un score final par station pour l'année 2016

Ni (mg/kg) - f	lux de partic	ules]													
_	G:	C-!	,		2012		2013		2014		2015		2016	Moy 2016 ≤	Pas de hausse	Score 2016
Zone	Station	Saison	ref. 2007	N	Moy	ref. 2007 ?	temporelle?	par station								
Deie Kuuf	CTOC KINIA	Chaude	1142	12	1885,3	12	2258,4	12	588,1	12	1562,4	12	1770	Mauvais	Mauvais	Médiocre
Baie Kwé	ST06-KW1	Fraiche	1142	12	1828,7	12	3539,8	12	1999,3	12	1882,3	12	2148,4	Mauvais	Mauvais	iviediocre
Canal Havannah	ST60 - NE	Chaude	162	12	422,5	9	477,8	12	321,8	12	506,2	10	251,7	Mauvais	Bon	Moyen
(émissaire)	3100 - NE	Fraiche	162	4	344,5	12	566,1	12	386,2	12	416,4	10	365,2	Mauvais	Bon	ivioyen
Baie Nord	ST15	Chaude	2742					12	3926,9	9	5034,9	8	2338,75	Bon	Bon	Moyen
Bare Nord	2112	Fraiche	2/42					5	2797,8	7	3010,3	12	3101	Mauvais	Mauvais	Woyen

En Baie Kwé et dans le canal de la Havannah, les précédentes campagnes avaient mis en évidence une augmentation des valeurs moyennes des densités de flux en métaux depuis l'état de référence pour la période 2011-2013 et une baisse en 2014, puis une ré-augmentation en 2015. En 2016, les concentrations moyennes en Nickel subissent une nouvelle augmentation sur ST06-KW1, qui obtient donc un score « Médiocre » pour ce paramètre. Sur ST60-NE, une nouvelle diminution de la concentration en Nickel est observée mais les moyennes saisonnières restent supérieures aux concentrations mesurées en 2007, le score reste donc « Moyen » cette année pour ce paramètre.

Dans la Baie Nord, les concentrations en Nickel enregistrées en 2016 en saison chaude sont inférieures à celles mesurées en 2007, mais en saison fraiche elles sont supérieures à la période de référence avec une concentration qui continue à augmenter, le score de ST15 reste donc « Moyen » cette année pour ce paramètre.

• Dans les sédiments de surface

Les prélèvements de sédiment par benne sont effectués tous les 3 ans sur les 12 stations de suivis. Pour la composition géochimique nous disposons de 4 campagnes de données complète (2006, 2009, 2012, 2015), sur 5 stations (ST03, ST06, ST15, ST16 et ST18), pour le Nickel. Le score attribué cette année se base donc sur les données déjà présentées l'année dernière, qui prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 12).

Tableau 12 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des sédiments marins selon leur concentration en Nickel

Grille de not	tation de
référence Z	ONECO:
Ni (mg/kg)	Classe
< 1800	Très bon
1800 - 2830	Bon
> 2830	Moyen
>>> 2830	Mauvais

Tableau 13 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne en Nickel dans 12 stations de mesure des sédiments marins de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2015

Ni (mg/kg) - séc	diments de su	rface															
Zone	Situation	Station		2005		2006		2009		2012		2015	Moy 2015 ≤	Moy 2015 →	Pas de hausse	Score 2015	Score 2015
Zone	Situation	Station	N	Moy	Z	Moy	7	Moy	N	Moy	N	Moy	station ref. ?	classe ZONECO?	temporelle?	par station	par zone
Goro		ST14	1	906							1	425		Très bon	Bon	Bon	Bon
lle Ouen		ST13	2	1838							1	574		Très bon	Bon	Bon	Bon
lie Ouen		ST20									1	2129		Bon		Bon	BOII
Baie Port Boisé		ST03*	1	520	1	520	1	705	1	1654	1	1013		Très bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	2	829	1	1116	1	1043	1	1603	1	2370	Mauvais	Bon	Mauvais	Moyen	Moyen
Bonne Anse et Casy		ST19"									1	1282		Très bon		Bon	Moyen
boilile Alise et Casy		ST18°	1	569	1	570	0		1	735	1	3776		Moyen	Mauvais	Moyen	Woyen
Baie Nord		ST15°	2	3537	1	4107	1	3010	1	3740	1	4157	Mauvais	Mauvais	Bon	Médiocre	Médiocre
Port de Prony		ST16"	2	986	1	1262	1	845	1	1381	1	1459	Mauvais	Très bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	1	21							1	208		Très bon	Bon	Bon	Bon
Callal Havaillali	Cotier	ST07	2	272							1	511		Très bon	Bon	Bon	BUII
Ugo et Merlet	Cotier	ST21									1	277		Très bon		Bon	Bon

En 2015, les concentrations en Nickel mesurées en Baie Kwé sont plus importantes qu'en Baie de Port Boisé (d'un facteur 2,3), ce qui n'était pas le cas en 2012. Au vu de l'augmentation des concentrations en Nickel mesurée dans les sédiments de surfaces sur ST06 entre 2006 et 2015, nous décidons de déclasser la station en « Moyen », bien que le guide ZONECO/CNRT estime « Bonne » la qualité du milieu.

Les concentrations observées en 2015 en station ST15 et ST16 sont également supérieures aux concentrations observées dans leurs stations de référence. En Baie Nord, étant donné que les concentrations ont augmenté en 2015 par rapport à la précédente campagne et qu'elles dépassent le seuil de qualité « Mauvais » du milieu, le score « Médiocre » est conservé pour cette année.

Au vu de la forte augmentation des concentrations en Nickel mesurée dans les sédiments de surfaces sur ST18 entre 2006 et 2015, pour atteindre un état qualifié de « Moyen » selon le guide ZONECO/CNRT, nous décidons de déclasser la station en « Moyen ».

• Dans les sédiments profonds (carottage)

Les prélèvements de sédiment par carottage sont effectués tous les ans sur la station de suivi au droit du port (ST16). Le score attribué cette année prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 12) et l'évolution temporelle de la chronique des données.

Tableau 14 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne par horizon (moyenne des horizons 0 à 4 cm) en Nickel dans les carottes de sédiments de la station de mesure des sédiments marins profonds au droit du Port de Prony, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT, permettant l'attribution d'un score final pour l'année 2016.

Ni (mg/kg) - séd	liments profe	nds (moyenn	e ho	rizons 0-	4 cm)										
Zone	Station	Phase		2012		2013		2014		2015		2016	Moy 2015 →	Pas de hausse	Score 2015	Score 2016
Zone	Station	Pilase	Z	Moy	Z	Moy	2	Moy	Z	Moy	Z	Moy	classe	temporelle?	Score 2015	Score 2016
Port de Prony	ST16	Ox + A-S +	16	1181,95	16	1058,58	16	1375,88	16	1032,28	16	1434,16	Très bon	Bon	Très bon	Très bon
-		Red. + Rés.														

Les teneurs en Nickel dans les sédiments profonds restent relativement stables depuis 2012 sur la station ST16, avec une valeur correspondant à un état « Très bon » d'après le guide ZONECO/CNRT.

3.2.1.1.3 Concentrations en Chrome hexavalent

• Dans les eaux de surface

Les concentrations en Chrome hexavalent dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Selon leur situation littorale, côtière ou océanique, l'évaluation des concentrations en métaux dissouts nécessite de tenir en compte le niveau de dilution des apports terrigènes, établi pour le Chrome hexavalent par ZONECO/CNRT (Tableau 15).

Tableau 15 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des eaux marines selon leur concentration en Chrome VI

Grille d	le notation de	référence ZON	IECO:
Situation	Cr VI (μg/L)	Perturbation	Classe
	< 0,25	Nulle	Bon
Littoral	0,25 - 0,60	Modérée	Moyen
	≥0,60	Forte	Mauvais
	< 0,20	Nulle	Bon
Côtier	0,20 - 0,30	Modérée	Moyen
	≥0,30	Forte	Mauvais
	< 0,15	Nulle	Bon
Océanique	0,15 - 0,20	Modérée	Moyen
	≥0,20	Forte	Mauvais

Tableau 16: Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Chrome VI dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Cr VI (μg/L) -	eaux de surfa	ice		Iq = 0,0	28 με	g/L														
Zone	Cituation	Station		2012		2013		2014		2015		2016		Med	Med 2014-16 ≤	Médiane 2016 →	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	2014-16	station ref. ?	classe ZONECO?	temporelle?	2015	par station	par zone
Goro		ST14	7	0,154	9	0,121	6	0,115	6	0,126	6	0,138	0,122	0,122		Bon	Bon	Bon	Bon	Bon
lle Ouen		ST13	6	0,127	9	0,163	6	0,104	6	0,137	5	0,126	0,122	0,117		Bon	Bon	Bon	Bon	Bon
lie Ouen		ST20	6	0,128	9	0,180	6	0,158	6	0,149	6	0,130	0,127	0,137		Bon	Bon	Bon	Bon	воп
Baie Port Boisé]	ST03*	6	0,135	10	0,237	6	0,196	6	0,147	5	0,177	0,136	0,136		Bon	Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	8	0,129	9	0,300	6	0,178	6	0,174	6	0,164	0,124	0,133	Bon	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	6	0,140	9	0,222	5	0,134	6	0,163	6	0,174	0,178	0,151		Bon	Bon	Bon	Bon	Bon
boilile Alise et Casy		ST18°	6	0,130	9	0,246	5	0,215	6	0,168	6	0,180	0,148	0,144		Bon	Bon	Bon	Bon	DUII
Baie Nord		ST15°	14	0,256	20	0,247	15	0,206	6	0,184	6	0,173	0,159	0,158	Mauvais	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	13	0,253	20	0,241	15	0,157	6	0,180	6	0,177	0,178	0,156	Mauvais	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	8	0,093	9	0,104	6	0,112	6	0,127	5	0,113	0,111	0,115		Bon	Bon	Bon	Bon	Bon
Canai navannan	Cotier	ST07	6	0,103	9	0,105	6	0,115	6	0,107	6	0,121	0,120	0,120		Bon	Bon	Bon	Bon	DUII
Ugo et Merlet	Cotier	ST21	6	0,107	9	0,113	6	0,108	6	0,103	6	0,121	0,123	0,119		Bon	Bon	Bon	Bon	Bon
ogo et ivieriet	Océanique	ST05	6	0,109	9	0,110	6	0,113	6	0,122	6	0,108	0,108	0,114		Bon	Bon	Bon	Bon	BOII
Emissaire	Cotier	ST09'	6	0,108	9	0,108	6	0,112	6	0,106	6	0,113	0,113	0,113	Bon	Bon	Bon	Bon	Bon	Bon

En regard de la médiane des concentrations en Chrome VI calculée sur les 3 dernières années (2014, 2015 et 2016), seules les stations de suivi ST15 et ST16 semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives ST18 et ST19. Cependant, les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations correspondent à un bon état chimique d'après la grille de référence de ZONECO/CNRT, et aucune évolution négative n'est observée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

3.2.1.1.4 Concentrations en Chrome

• Dans les eaux de surface

Les concentrations en Chrome dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Chrome dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 17 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Chrome dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Cr (μg/L) - e	aux de surfac	e		Iq = 0,0	28 μ	g/L												
Zone	Situation	Station		2012		2013		2014		2015		2016	;	Moy 2016 ≤	Pas de hausse	Score 2015	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref. ?	temporelle?	3C016 2013	par station	par zone
Goro		ST14	0		3	0,162	6	0,142	6	0,170	3	0,211	0,176		Bon	Bon	Bon	Bon
lle Ouen		ST13	0		3	0,277	6	0,141	6	0,166	3	0,151	0,153		Bon	Bon	Bon	Bon
lie Odell		ST20	0		3	0,482	6	0,179	6	0,182	3	0,176	0,173		Bon	Bon	Bon	BUII
Baie Port Boisé		ST03*	0		2	0,164	6	0,249	6	0,188	3	0,215	0,162		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	0		3	0,666	5	0,178	6	0,221	3	0,241	0,281	Mauvais	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	0		2	1,172	6	0,173	6	0,196	3	0,225	0,240		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	0		3	0,487	6	0,246	6	0,214	3	0,217	0,166		Bon	Bon	Bon	DUII
Baie Nord		ST15°	0		14	0,298	13	0,388	6	0,213	6	0,220	0,193	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	0		15	0,289	14	0,184	6	0,214	3	0,230	0,246	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	0		3	0,195	6	0,144	6	0,146	3	0,155	0,155		Bon	Bon	Bon	Bon
Canai navannan	Cotier	ST07	0		3	0,177	6	0,148	6	0,175	3	0,141	0,138		Bon	Bon	Bon	DUII
Line of Maniet	Cotier	ST21	0		1	0,357	6	0,136	6	0,169	3	0,149	0,154		Bon	Bon	Bon	0
Ugo et Merlet	Océanique	ST05'	0		3	0,182	6	0,136	6	0,149	3	0,150	0,144		Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	0		3	0,143	6	0,156	6	0,164	3	0,181	0,144	Mauvais	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Chrome, seule les stations de suivi ST06 et ST09 semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives ST03 et ST05. Cependant, les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent comparables et aucune évolution négative n'est observée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

Dans les flux de particules

Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour la composition géochimique de la matière en suspension issue des pièges à sédiments (Beliaeff et al., 2011). Nous nous basons donc sur les interprétations des consultants experts en charge du suivi, qui s'appuient sur la comparaison avec des valeurs de références (2006-2007), mesurées avant la mise en activité de l'usine de Vale (2009) et avant la montée en puissance de la production de minerai (à partir de 2010) dans le cadre de la convention IRD/Goro-Ni n° 1230 sur « l'État de référence » des densités de flux verticaux de particules déterminées pour le Canal de la Havannah, la Rade Nord et la Baie Kwé en 2007 (Fernandez et al., 2007). Ils se basent également sur l'évolution de la chronique de données des 3 dernières années.

Tableau 18 : Tableau de valeurs indiquant l'évolution de la concentration semestrielle moyenne en Chrome dans 3 stations de mesure des flux particulaires, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées lors d'un état de référence antérieur à la mise en activité de l'usine de Vale NC, permettant l'attribution d'un score final par station pour l'année 2016

Cr (mg/kg) - f	lux de particu	les														
7000	Ctation	Saison	£ 2007		2012		2013		2014		2015		2016	Moy 2016 ≤	Pas de hausse	Score 2016
Zone	Station	3013011	ref. 2007	N	Moy	N	Moy	N	Moy	N	Moy	7	Moy	ref. 2007?	temporelle?	par station
Baie Kwé	CTOC KVA/1	Chaude	2667	12	3413,6	12	4633,8	12	1259,25	12	3007,2	12	3084,8	Mauvais	Bon	Moyen
Bale Kwe	ST06-KW1	Fraiche	2007	12	3874,0	12	7111,4	12	3829,2	12	4126,2	12	3082,6	Mauvais	Bon	Moyen
Canal Havannah	ST60 - NE	Fraiche Chaude	393	12	661,5	9	833,8	12	568,8	12	848,1	10	460,6	Bon	Bon	Bon
(émissaire)	3100 - INE	-raiche	393	4	566,3	12	960,3	12	725,0	12	701,6	10	439,4	Bon	Bon	DOII
Baie Nord	ST15	Chaude	8500					12	13796	9	14203	8	6056,5	Bon	Bon	Bon
bale Noru	3113	Fraiche	8300					5	8110,6	7	8016,3	12	5681,7	Bon	Bon	DOII

En Baie Kwé et dans le canal de la Havannah, les précédentes campagnes avaient mis en évidence une augmentation des valeurs moyennes des densités de flux en métaux depuis l'état de référence pour la période 2011-2013 et une baisse en 2014, puis une ré-augmentation en 2015. En 2016, les concentrations moyennes en Chrome restent stables par rapport à l'année précédente en station ST06-KW1, mais sont toujours supérieures aux concentrations mesurées en 2007, la Baie Kwé obtient donc un score « Moyen » cette année pour ce paramètre. Dans la Baie Nord et le Canal de la Havannah, les concentrations en Chrome enregistrées en 2016 en saison chaude et en saison fraiche ont nettement diminué par rapport à l'année précédente, et sont inférieures à celles mesurées en 2007 en ST15, la perturbation des apports terrigènes n'y est donc plus détectable.

• Dans les sédiments de surface

Les prélèvements de sédiment par benne sont effectués tous les 3 ans sur les 12 stations de suivis. Pour la composition géochimique nous disposons de 4 campagnes de données complète (2006, 2009, 2012, 2015) sur 5 stations (ST03, ST06, ST15, ST16 et ST18) pour le Chrome. Le score attribué cette année se base donc sur les données déjà présentées l'année dernière, qui prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 19).

Tableau 19 : Grille de notation de référence selon ZONECO pour l'évaluation du niveau de perturbation des sédiments marins selon leur concentration en Chrome

Grille de no	tation de
référence Z	ONECO:
Cr (mg/kg)	Classe
< 5300	Très bon
5300 - 11300	Bon
> 11300	Moyen
>>> 11300	Mauvais

Tableau 20 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne en Chrome dans 12 stations de mesure des sédiments marins de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2015

Cr (mg/kg) - séc	diments de su	rface															
Zone	Situation	Station		2005		2006		2009		2012		2015	Moy 2015 ≤	Moy 2015 →	Pas de hausse	Score 2015	Score 2015
Zone	Situation	Station	N	Moy	z	Moy	N	Moy	Z	Moy	Z	Moy	station ref. ?	classe ZONECO ?	temporelle?	par station	par zone
Goro		ST14	1	1904							1	1099		Très bon	Bon	Bon	Bon
lle Ouen		ST13	2	1256							1	1372		Très bon	Bon	Bon	Bon
lie Odeli		ST20									1	4553		Très bon		Bon	BUII
Baie Port Boisé		ST03*	1	1173	1	1173	1	1212	1	3012	1	2250		Très bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	2	2471	1	3326	1	1891	1	2928	1	5510	Mauvais	Bon	Mauvais	Moyen	Moyen
Bonne Anse et Casy		ST19"									1	2944		Très bon		Bon	Moyen
Buille Alise et Casy		ST18°	1	1662	1	1663	0		1	1584	1	6162		Bon	Mauvais	Moyen	Woyen
Baie Nord		ST15°	2	14276	1	16575	1	9060	1	13227	1	14543	Mauvais	Mauvais	Bon	Médiocre	Médiocre
Port de Prony		ST16"	2	3155	1	4040	1	1593	1	3180	1	3496	Mauvais	Très bon	Bon	Bon	Bon
Canal Hayannah	Océanique	ST02	1	48							1	387		Très bon	Bon	Bon	Bon
Canal Havannah	Cotier	ST07	2	790							1	1018		Très bon	Bon	Bon	DUII
Ugo et Merlet	Cotier	ST21									1	625		Très bon		Bon	Bon

En 2015, les concentrations en Chrome mesurées en Baie Kwé sont plus importantes qu'en Baie de Port Boisé (d'un facteur 2,4), ce qui n'était pas le cas en 2012. Au vu de l'augmentation des concentrations en Chrome mesurée dans les sédiments de surfaces sur ST06 entre 2006 et 2015, nous décidons de déclasser la station en « Moyen », bien que le guide ZONECO/CNRT estime « Bonne » la qualité du milieu.

Les concentrations observées en 2015 en station ST15 et ST16 sont également supérieures aux concentrations observées dans leurs stations de référence. En Baie Nord, étant donné que les concentrations ont augmenté en 2015 par rapport à la précédente campagne et qu'elles dépassent le seuil de qualité « Mauvais » du milieu, le score « Médiocre » est conservé pour cette année. Au niveau du Port de Prony, la concentration en Chrome dans les sédiments correspond toujours à un état « Très Bon » du milieu, la station n'est donc pas déclassée.

Au vu de la forte augmentation des concentrations en Chrome mesurée dans les sédiments de surfaces sur ST18 entre 2006 et 2015, nous décidons de déclasser la station en « Moyen ».

• Dans les sédiments profonds (carottage)

Les prélèvements de sédiment par carottage sont effectués tous les ans sur la station de suivi au droit du port (ST16). Le score attribué cette année prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 19) et l'évolution temporelle de la chronique des données.

Tableau 21 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne par horizon (moyenne des horizons 0 à 4 cm) en Chrome dans les carottes de sédiments de la station de mesure des sédiments marins profonds au droit du Port de Prony, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT, permettant l'attribution d'un score final pour l'année 2016.

Cr (mg/kg) - séd	liments profo	nds (moyenn	e ho	rizons 0-	4 cm)										
70.00	Station	Phase		2012		2013		2014		2015		2016	Moy 2015 →	Pas de hausse	Score 2015	Score 2016
Zone	Station	Phase	N	Moy	N	Moy	Ν	Moy	Z	Moy	N	Moy	classe	temporelle?	Score 2015	Score 2016
Port de Prony	ST16	Ox + A-S + Red. + Rés.	16	2327,9	16	3233,93	16	3288,18	16	2785,65	16	3213,83	Très bon	Bon	Très bon	Très bon

Les teneurs en Chrome dans les sédiments profonds restent relativement stables depuis 2012 sur la station ST16, avec une valeur correspondant à un état « Très bon » d'après le guide ZONECO/CNRT.

3.2.1.1.5 Concentrations en Arsenic

Dans les eaux de surface

Les concentrations en Arsenic dans les eaux de surface sont mesurées au niveau de 4 statiosn de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Arsenic dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 22 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Arsenic dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

As (μg/L) - e	aux de surfac	e		Iq = 1	1 μg/													
Zone	Situation	Station		2012		2013		2014		2015		2016	;	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	Ν	Moy	N	Moy	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone
Goro		ST14	3	1,230	8	1,488	3	1,667	6	2,067	6	1,806	1,667		Bon	Bon	Bon	Bon
lle Ouen		ST13	3	1,210	9	1,434	4	1,530	6	1,683	6	1,700	1,650		Mauvais	Bon	Bon	Bon
lie Ouen		ST20	3	1,157	9	1,371	3	2,000	6	1,617	6	1,028	1,050		Bon	Bon	Bon	DON
Baie Port Boisé		ST03*	3	1,223	10	1,429	6	1,177	6	2,417	6	1,479	1,467		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	2	1,185	8	1,376	3	1,667	6	1,767	6	1,283	1,100	Bon	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	3	1,167	9	1,393	4	1,040	6	1,667	6	1,272	1,400		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	3	1,100	9	1,334	5	1,410	6	2,217	6	1,300	1,250		Bon	Bon	Bon	DON
Baie Nord		ST15°	3	1,087	12	1,428	12	1,250	6	2,233	6	1,717	1,617	Mauvais	Bon	Bon	Bon	Bon
Port de Prony		ST16"	3	1,147	12	1,458	15	1,469	6	2,167	6	1,719	1,734	Mauvais	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	4	1,395	6	1,410	4	1,575	6	1,783	5	1,800	1,800		Mauvais	Bon	Bon	Bon
Canai navannan	Cotier	ST07	3	1,233	9	1,489	3	2,333	6	1,867	6	1,439	1,400		Bon	Bon	Bon	DOII
Ilea et Manlet	Cotier	ST21	3	1,230	9	1,453	3	1,667	6	2,017	6	1,257	1,200		Bon	Bon	Bon	0
Ugo et Merlet	Océanique	ST05'	3	1,183	9	1,450	5	1,616	6	2,067	6	2,317	2,300		Mauvais	Bon	Bon	Bon
Emissaire	Cotier	ST09'	2	1,250	7	1,511	4	1,250	6	1,883	6	1,867	1,850	Bon	Mauvais	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Arsenic, seules les stations de suivi ST15 et ST16 semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives ST18 et ST19. Cependant, une évolution négative est observée dans 4 autres stations, y compris celles situées dans des zones océaniques. Il s'agirait donc probablement des conséquences de variations naturelles dues à l'influence du volcanisme Vanuatais (Commentaire Guénolé Bouvet 2016) plutôt que d'un impact anthropique localisé issu de l'activité minière et industrielle. Le score reste donc « Bon » pour l'ensemble du réseau cette année.

3.2.1.1.6 Concentrations en Cadmium

Dans les eaux de surface

Les concentrations en Cadmium dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Cadmium dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

En regard de la moyenne 2016 des concentrations en Cadmium calculée sur les 3 dernières années (2014, 2015 et 2016), aucune station de suivi ne semble refléter de dégradation du milieu d'après la comparaison à leurs stations de référence respectives. De plus, les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent inférieures au seuil de détection et aucune évolution négative n'est observée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

Tableau 23 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Arsenic dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Cd (μg/L) - e	aux de surfac	e		Iq = 0,0)25 μ	g/L		Iq = 0,	2 μg/	L L		Iq = 0,02	μg/L					
Zone	Situation	Station		2012		2013		2014		2015		2016	5	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone
Goro		ST14	6	0,020	6	0,200	6	0,020	6	0,025	6	0,025	0,025		Bon	Bon	Bon	Bon
lla Ouan		ST13	6	0,020	6	0,200	6	0,020	6	0,025	6	0,025	0,025		Bon	Bon	Bon	Bon
lle Ouen		ST20	6	0,020	3	0,200	6	0,020	6	0,025	6	0,025	0,025		Bon	Bon	Bon	БОП
Baie Port Boisé		ST03*	5	0,020	6	0,200	4	0,020	6	0,025	6	0,025	0,025		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	4	0,020	6	0,200	4	0,020	6	0,025	6	0,025	0,025	Bon	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	6	0,020	6	0,200	4	0,020	6	0,025	6	0,025	0,025		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	6	0,020	6	0,200	5	0,020	6	0,025	6	0,025	0,025		Bon	Bon	Bon	БОП
Baie Nord		ST15°	4	0,020	6	0,200	4	0,020	6	0,025	6	0,025	0,025	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	6	0,020	6	0,200	6	0,020	6	0,025	6	0,025	0,025	Bon	Bon	Bon	Bon	Bon
Canal Hayannah	Océanique	ST02	6	0,020	6	0,200	5	0,020	6	0,025	6	0,025	0,025		Bon	Bon	Bon	Bon
Canal Havannah	Cotier	ST07	6	0,020	6	0,200	4	0,020	6	0,025	6	0,025	0,025		Bon	Bon	Bon	БОП
Liga at Mariat	Cotier	ST21	6	0,020	3	0,200	6	0,020	5	0,025	5	0,025	0,025		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	6	0,020	6	0,200	6	0,020	6	0,025	6	0,025	0,025		Bon	Bon	Bon	БОП
Emissaire	Cotier	ST09'	6	0,020	4	0,200	6	0,020	6	0,025	6	0,025	0,025	Bon	Bon	Bon	Bon	Bon

3.2.1.1.7 Concentrations en Cobalt

• Dans les eaux de surface

Les concentrations en Cobalt dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Cobalt dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 24 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Cobalt dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Co (μg/L) - ε	aux de surfac	e		Iq = 0,0	27 μ	g/L		Iq = 0,0	12 μο	g/L								
Zone	Situation	Station		2012		2013		2014		2015		2016	5	Moy 2016 ≤	Pas de hausse	Score 2015	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	Ν	Moy	Ν	Moy	N	Moy	Méd	station ref.?	temporelle?	3001E 2013	par station	par zone
Goro		ST14	5	0,013	6	0,019	5	0,013	6	0,027	6	0,021	0,023		Bon	Bon	Bon	Bon
lle Ouen		ST13	6	0,082	8	0,015	4	0,015	6	0,029	6	0,022	0,022		Bon	Bon	Bon	Bon
lie Odeli		ST20	6	0,036	8	0,027	3	0,028	6	0,038	6	0,028	0,028		Bon	Bon	Bon	BUII
Baie Port Boisé		ST03*	6	0,034	11	0,034	6	0,045	6	0,036	6	0,056	0,031		Mauvais	Bon	Moyen	Moyen
Baie Kwé	Littoral	ST06*	6	0,020	8	0,040	4	0,032	6	0,044	6	0,043	0,027	Bon	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	4	0,027	9	0,022	6	0,030	6	0,030	6	0,037	0,039		Mauvais	Bon	Moyen	Moyen
Bonne Anse et Casy		ST18°	4	0,034	7	0,025	2	0,019	6	0,036	6	0,044	0,044		Mauvais	Bon	Moyen	woyen
Baie Nord		ST15°	12	0,069	13	0,049	10	0,080	6	0,050	6	0,047	0,054	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	11	0,046	12	0,042	11	0,039	6	0,036	6	0,034	0,036	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	6	0,012	6	0,012	4	0,016	6	0,027	5	0,027	0,027		Bon	Bon	Bon	Bon
Canai navannan	Cotier	ST07	7	0,014	9	0,014	4	0,012	6	0,027	6	0,027	0,027		Bon	Bon	Bon	DUII
Liga at Maylat	Cotier	ST21	8	0,012	6	0,012	4	0,012	5	0,027	6	0,027	0,027		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	6	0,012	4	0,012	4	0,012	6	0,027	6	0,027	0,027		Bon	Bon	Bon	DUII
Emissaire	Cotier	ST09'	6	0,012	6	0,012	4	0,012	6	0,027	6	0,027	0,027	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Cobalt, aucune station de suivi ne semble refléter de dégradation du milieu d'après la comparaison à leurs stations de référence respectives. Cependant, une évolution négative est observée dans 3 stations en Baie de Port Boisé et dans la zone de Bonne Anse et Casy: <u>ST03</u> présente ainsi une hausse temporelle constante depuis 2012, et enregistre la plus haute moyenne du réseau de suivi cette année et pour l'ensemble de la chronique des données. <u>ST18</u> et <u>ST19</u> sont également en hausse depuis plusieurs années et présentent en 2016 leur plus haute moyenne enregistrée depuis 2012. Ces trois stations obtiennent donc un score « Moyen » cette année pour ce paramètre, tandis que le score reste « Bon » pour le reste du réseau cette année.

• Dans les flux de particules

Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour la composition géochimique de la matière en suspension issue des pièges à sédiments (Beliaeff et al., 2011). Nous nous basons donc sur les interprétations des consultants experts en charge du suivi, qui s'appuient sur la comparaison avec des valeurs de références (2006-2007), mesurées avant la mise en activité de l'usine de Vale (2009) et avant la montée en puissance de la production de minerai (à partir de 2010) dans le cadre de la convention IRD/Goro-Ni n° 1230 sur « l'État de référence » des densités de flux verticaux de particules déterminées pour le Canal de la Havannah, la Rade Nord et la Baie Kwé en 2007 (Fernandez et al., 2007). Ils se basent également sur l'évolution de la chronique de données des 3 dernières années.

Tableau 25 : Tableau de valeurs indiquant l'évolution de la concentration semestrielle moyenne en Cobalt dans 3 stations de mesure des flux particulaires, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées lors d'un état de référence antérieur à la mise en activité de l'usine de Vale NC, permettant l'attribution d'un score final par station pour l'année 2016

Co (mg/kg) - 1	lux de particu	ıles	Ī													
Zone	Station	Saison	ref. 2007		2012		2013		2014		2015		2016	Moy 2016 ≤	Pas de hausse	Score 2016
Zone	Station	SdiSOII	Tel. 2007	N	Moy	N	Moy	7	Moy	N	Moy	N	Moy	ref. 2007?	temporelle?	par station
Baie Kwé	ST06-KW1	Chaude	- 58 -	12	101,4	12	126,5	12	46,1	12	82,8	12	86,25	Mauvais	Bon	Moyen
bale Kwe	3100-KW1	Fraiche	36	12	105,8	12	214,9	12	115,3	12	107,5	12	108,7	Mauvais	Bon	Woyen
Canal Havannah	ST60 - NE	Chaude	12	12	25,6	9	21,3	12	19,6	12	31,56	10	17,1	Mauvais	Bon	Mayran
(émissaire)	3100 - INE	Fraiche	12	4	29,0	12	37,4	12	24,8	12	25,6	10	25,9	Mauvais	Bon	Moyen
Baie Nord	ST15	Chaude	208					12	294,6	9	440,3	8	177,6	Bon	Bon	Dan
bale Noru	3113	Fraiche	208					5	264,6	7	228,3	12	194,5	Bon	Bon	Bon

En Baie Kwé et dans le canal de la Havannah, les précédentes campagnes avaient mis en évidence une augmentation des valeurs moyennes des densités de flux en métaux depuis l'état de référence pour la période 2011-2013 et une baisse en 2014, puis une ré-augmentation en 2015. En 2016, les concentrations moyennes en Cobalt restent globalement stables par rapport à l'année précédente en stations ST06-KW1 et ST60-NE, mais sont toujours supérieures aux concentrations mesurées en 2007, elles obtiennent donc un score « Moyen » cette année pour ce paramètre. Dans la Baie Nord, les concentrations en Cobalt enregistrées en 2016 en saison chaude et en saison fraiche ont nettement diminué par rapport à l'année précédente, et sont inférieures à celles mesurées en 2007, la perturbation des apports terrigènes n'y est donc plus détectable.

• Dans les sédiments de surface

Les prélèvements de sédiment par benne sont effectués tous les 3 ans sur les 12 stations de suivis. Pour la composition géochimique nous disposons de 4 campagnes de données complète (2006, 2009, 2012, 2015) sur 5 stations (ST03, ST06, ST15, ST16 et ST18) pour le Cobalt. Le score attribué cette année se base donc sur les données déjà présentées l'année dernière, qui prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 26).

Tableau 26 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des sédiments marins selon leur concentration en Cobalt

Grille de no	
Co (mg/kg)	Classe
< 170	Très bon
170 - 185	Bon
> 185	Moyen
>>> 185	Mauvais

Tableau 27 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne en Cobalt dans 12 stations de mesure des sédiments marins de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2015

Co (mg/kg) - séd	diments de su	ırface	1														
Zone	Situation	Station		2005		2006		2009		2012		2015	Moy 2015 ≤	Moy 2015 →	Pas de hausse	Score 2015	Score 2015
Zone	Situation	Station	N	Moy	station ref. ?	classe ZONECO?	temporelle?	par station	par zone								
Goro		ST14	1	37							1	21,3		Très bon	Bon	Bon	Bon
lle Ouen		ST13	2	124							1	30		Très bon	Bon	Bon	Bon
lie Odeli		ST20									1	141		Très bon		Bon	BUII
Baie Port Boisé		ST03*	1	38	1	38	1	79	1	89	1	65,8		Très bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	2	50	1	67	1	79	1	87	1	115	Mauvais	Très bon	Mauvais	Moyen	Moyen
Bonne Anse et Casy		ST19"									1	75,6		Très bon		Bon	Moyen
Buille Alise et Casy		ST18°	1	33	1	33	0		1	48	1	154		Très bon	Mauvais	Moyen	Woyen
Baie Nord		ST15°	3	249	1	275	1	257	1	274	1	321	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais
Port de Prony		ST16"	2	85	1	85	1	89	1	95	1	93	Mauvais	Très bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02		,						,	1	3,4		Très bon		Bon	Bon
Callal Havaillidii	Cotier	ST07	2	27						,	1	27,2		Très bon	Bon	Bon	BOII
Ugo et Merlet	Cotier	ST21									1	2,3		Très bon		Bon	Bon

En 2015, les concentrations en Cobalt mesurées en Baie Kwé sont plus importantes qu'en Baie de Port Boisé (d'un facteur 1,7), ce qui n'était pas le cas en 2012. Au vu de l'augmentation des concentrations en Cobalt mesurée dans les sédiments de surfaces sur ST06 entre 2006 et 2015, nous décidons de déclasser la station en « Moyen », bien que le guide ZONECO/CNRT estime « Bonne » la qualité du milieu.

Les concentrations observées en 2015 en station ST15 et ST16 sont également supérieures aux concentrations observées dans leurs stations de référence. En Baie Nord, étant donné que les concentrations ont fortement augmenté en 2015 par rapport à la précédente campagne et qu'elles dépassent le seuil de qualité « Mauvais » du milieu, le score « Mauvais » est attribué pour cette année. Au niveau du Port de Prony, la concentration en Cobalt dans les sédiments correspond toujours à un état « Très Bon » du milieu, la station n'est donc pas déclassée.

Au vu de la forte augmentation des concentrations en Cobalt mesurée dans les sédiments de surfaces sur ST18 entre 2006 et 2015, nous décidons de déclasser la station en « Moyen ».

• Dans les sédiments profonds (carottage)

Les prélèvements de sédiment par carottage sont effectués tous les ans sur la station de suivi au droit du port (ST16). Le score attribué cette année prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 26) et l'évolution temporelle de la chronique des données.

Tableau 28 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne par horizon (moyenne des horizons 0 à 4 cm) en Cobalt dans les carottes de sédiments de la station de mesure des sédiments marins profonds au droit du Port de Prony, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT, permettant l'attribution d'un score final pour l'année 2016.

L	Co (mg/kg) - séc	diments profe	onds (moyenr	e ho	rizons 0-	4 cm	1)										
ſ	Zone	Station	Phase		2012		2013		2014		2015		2016	Moy 2015 →	Pas de hausse	Score 2015	Score 2016
L	Zone	Station	Pilase	Z	Moy	N	Moy	N	Moy	N	Moy	N	Moy	classe	temporelle?	3C016 2013	3C016 2016
	Port de Prony	ST16	Ox + A-S + Red. + Rés.	16	82,93	16	92,87	16	98,76	16	92,83	16	103,7	Très bon	Bon	Très bon	Très bon

Les teneurs en Cobalt dans les sédiments profonds restent relativement stables depuis 2012 sur la station ST16, avec une valeur correspondant à un état « Très bon » d'après le guide ZONECO/CNRT.

3.2.1.1.8 Concentrations en Cuivre

• Dans les eaux de surface

Les concentrations en Cuivre dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Cuivre dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 29 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Cuivre dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Cu (μg/L) - ε	aux de surfa	e		Iq = 0,0	25 μ	g/L	lq:	= 0,015 μ	g/L	Iq=	0,01	5 et 0,25	μg/L	Ì				
Zone	Situation	Station		2012		2013		2014		2015		2016	5	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone
Goro		ST14	7	0,155	11	0,110	2	0,095	6	0,025	6	0,029	0,025		Bon	Bon	Bon	Bon
lle Ouen		ST13	6	0,197	8	0,122	4	0,015	6	0,039	6	0,067	0,025		Mauvais	Bon	Bon	Bon
lie Ouen		ST20	7	0,260	9	0,114	6	0,068	6	0,034	6	0,025	0,025		Bon	Bon	Bon	DUII
Baie Port Boisé		ST03*	8	0,103	10	0,095	3	0,036	6	0,025	6	0,130	0,025		Mauvais	Bon	Moyen	Moyen
Baie Kwé	Littoral	ST06*	7	0,170	8	0,113	4	0,019	6	0,025	6	0,024	0,025	Bon	Bon	Bon	Bon	Bon
Donna Ansa at Casu		ST19"	6	0,212	10	0,122	4	0,019	6	0,065	6	0,034	0,034		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	7	0,228	8	0,174	4	0,037	6	0,025	6	0,061	0,030		Mauvais	Bon	Bon	DUII
Baie Nord		ST15°	13	0,146	14	0,120	7	0,063	6	0,041	6	0,068	0,025	Mauvais	Bon	Bon	Bon	Bon
Port de Prony		ST16"	14	0,096	16	0,093	11	0,038	6	0,031	6	0,035	0,030	Bon	Bon	Bon	Bon	Bon
Canal Havenanah	Océanique	ST02	7	0,118	10	0,106	5	0,017	6	0,029	6	0,033	0,025		Bon	Bon	Bon	Bon
Canal Havannah	Cotier	ST07	8	0,103	10	0,107	5	0,019	5	0,025	6	0,085	0,025		Mauvais	Bon	Bon	воп
Line of Morlet	Cotier	ST21	7	0,120	10	0,101	4	0,023	5	0,025	6	0,027	0,025		Bon	Bon	Bon	Dou.
Ugo et Merlet	Océanique	ST05'	8	0,133	8	0,106	4	0,015	6	0,025	6	0,025	0,025		Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	8	0,204	10	0,103	4	0,023	6	0,025	6	0,025	0,025	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Cuivre calculée sur les 3 dernières années (2014, 2015 et 2016), seule la station de suivi de Baie Nord semble refléter une dégradation modérée du milieu d'après la comparaison aux valeurs de sa station de référence ST18, sans toutefois présenter d'évolution négative marquée au cours de la chronique de données. Une évolution négative est toutefois observée dans 4 autres

stations, dont <u>ST03</u> qui présente une hausse temporelle importante (liée à une seule valeur de 0.688µg/L sur les eaux de surface) et enregistre la plus haute moyenne du réseau de suivi cette année, un score « Moyen » lui est donc attribué cette année. Le score reste « Bon » pour le reste du réseau cette année.

3.2.1.1.9 <u>Concentrations en Fer</u>

Dans les eaux de surface

Les concentrations en Fer dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Fer dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 30 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Fer dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Fe (μg/L) - 6	aux de surfac	e		Iq = 0,0	68 µ	g/L		Iq = 0,0	11 μο	g/L								
Zone	Situation	Station		2012		2013		2014		2015		2016	5	Moy 2016 ≤	Pas de hausse	Score 2015	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref. ?	temporelle?	3C01E 2013	par station	par zone
Goro		ST14	5	0,079	7	0,056	6	0,122	6	0,110	6	0,086	0,079		Bon	Bon	Bon	Bon
lla Ouan		ST13	6	0,056	7	0,032	5	0,088	6	0,211	6	0,085	0,068		Bon	Bon	Bon	Bon
lle Ouen		ST20	3	0,117	6	0,024	5	0,127	6	0,076	6	0,087	0,068		Bon	Bon	Bon	DUII
Baie Port Boisé		ST03*	6	0,042	9	0,026	4	0,038	6	0,081	6	0,068	0,068		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	6	0,065	9	0,056	6	0,126	6	0,114	6	0,081	0,068	Mauvais	Bon	Bon	Bon	Bon
Danna Ansa et Casu		ST19"	3	0,103	6	0,142	5	0,068	6	0,074	6	0,077	0,078		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	4	0,107	5	0,049	5	0,043	6	0,087	6	0,079	0,068		Bon	Bon	Bon	БОП
Baie Nord		ST15°	3	0,053	6	0,045	9	0,062	6	0,081	6	0,068	0,068	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	2	0,055	4	0,049	11	0,058	6	0,076	6	0,062	0,068	Bon	Bon	Bon	Bon	Bon
Canalillananah	Océanique	ST02	5	0,030	8	0,024	5	0,018	6	0,086	6	0,068	0,068		Bon	Bon	Bon	0
Canal Havannah	Cotier	ST07	3	0,033	6	0,024	5	0,025	6	0,092	6	0,106	0,068		Mauvais	Bon	Bon	Bon
Liga at Mariat	Cotier	ST21	6	0,036	8	0,031	3	0,054	5	0,143	6	0,074	0,068		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	6	0,028	9	0,047	6	0,037	6	0,069	6	0,068	0,068		Bon	Bon	Bon	ьоп
Emissaire	Cotier	ST09'	6	0,095	9	0,042	4	0,023	6	0,087	6	0,068	0,068	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Fer, seule la station de suivi ST06 semble refléter un milieu modérément perturbé par rapport à sa station de référence ST03. Cependant, les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent comparables et l'évolution négative de la moyenne annuelle détectée en ST07 reste due à une valeur élevée unique, le score reste donc « Bon » pour l'ensemble du réseau cette année.

• Dans les flux de particules

Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour la composition géochimique de la matière en suspension issue des pièges à sédiments (Beliaeff et al., 2011). Nous nous basons donc sur les interprétations des consultants experts en charge du suivi, qui s'appuient sur la comparaison avec des valeurs de références (2006-2007), mesurées avant la mise en activité de l'usine de Vale (2009) et avant la montée en puissance de la production de minerai (à partir de 2010) dans le cadre de la convention IRD/Goro-Ni n° 1230 sur « l'État de référence » des densités de flux verticaux de particules déterminées

pour le Canal de la Havannah, la Rade Nord et la Baie Kwé en 2007 (Fernandez et al., 2007). Ils se basent également sur l'évolution de la chronique de données des 3 dernières années.

Tableau 31 : Tableau de valeurs indiquant l'évolution de la concentration semestrielle moyenne en Fer dans 3 stations de mesure des flux particulaires, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées lors d'un état de référence antérieur à la mise en activité de l'usine de Vale NC, permettant l'attribution d'un score final par station pour l'année 2016

Fe (mg/kg) - f	lux de particu	iles														
Zone	Station	C-:	ref. 2007		2012		2013		2014		2015		2016	Moy 2016 ≤	Pas de hausse	Score 2016
Zone	Station	Saison	rei. 2007	Z	Moy	Z	Moy	Z	Moy	z	Moy	N	Moy	ref. 2007?	temporelle?	par station
Baie Kwé	ST06-KW1	Chaude	68940	12	103323	12	123394	12	31190	12	85407	12	116993	Mauvais	Bon	Moven
Dale KWe	3100-KW1	Fraiche	08940	12	111616	12	189732	12	132978	12	101619	12	136205	Mauvais	Bon	Moyen
Canal Havannah	ST60 - NE	Chaude	11760	12	20959	9	26131	12	17740	12	28754	10	17288	Mauvais	Bon	Mayon
(émissaire)	3160 - INE	Fraiche	11700	4	18347	12	34045	12	25695	12	22628	10	22735	Mauvais	Bon	Moyen
Baie Nord	ST15	Chaude	205660					12	245119	9	290374	8	198270	Bon	Bon	Dan
bale Noru	3113	Fraiche	203000					5	217647	7	177465	12	170877	Bon	Bon	Bon

En Baie Kwé et dans le canal de la Havannah, les précédentes campagnes avaient mis en évidence une augmentation des valeurs moyennes des densités de flux en métaux depuis l'état de référence pour la période 2011-2013 et une baisse en 2014, puis une ré-augmentation en 2015. En 2016, les concentrations moyennes en Fer restent globalement stables par rapport à l'année précédente en station ST60-NE, et augmentent en ST06-KW1. Ces moyennes étant toujours supérieures aux concentrations mesurées en 2007, un score « Moyen » leur est attribué cette année pour ce paramètre. Dans la Baie Nord, les concentrations en Fer enregistrées en 2016 en saison chaude et en saison fraiche ont nettement diminué par rapport à l'année précédente, et sont inférieures à celles mesurées en 2007, la perturbation des apports terrigènes n'y est donc plus détectable.

• Dans les sédiments de surface

Les prélèvements de sédiment par benne sont effectués tous les 3 ans sur les 12 stations de suivis. Pour la composition géochimique nous disposons de 4 campagnes de données complète (2006, 2009, 2012, 2015) sur 5 stations (ST03, ST06, ST15, ST16 et ST18) pour le Fer. Le score attribué cette année se base donc sur les données déjà présentées l'année dernière, qui prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 32).

Tableau 32 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des sédiments marins selon leur concentration en Fer

Grille de nota	ation de
référence ZO	NECO:
Fe (mg/kg)	Classe
< 120000	Très bon
120000 - 270000	Bon
> 270000	Moyen
>>> 270000	Mauvais

Tableau 33 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne en Fer dans 12 stations de mesure des sédiments marins de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2015

Fe (mg/kg) - sé	diments de su	ırface	1														
Zone	Situation	Station		2005		2006		2009		2012		2015	Moy 2015 ≤	Moy 2015 →	Pas de hausse		Score 2015
Zone	Situation	Station	N	Moy	Ν	Moy	Ν	Moy	N	Moy	N	Moy	station ref.?	classe ZONECO ?	temporelle?	par station	par zone
Goro		ST14	1	50900							1	24383		Très bon	Bon	Bon	Bon
lle Ouen		ST13	2	97718							1	31625		Très bon	Bon	Bon	Bon
lie Odell		ST20									1	114640		Très bon		Bon	BUII
Baie Port Boisé		ST03*	1	46300	1	46300	1	30320	1	87739	1	57557		Très bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	2	83600	1	112500	1	60064	1	85755	1	137848	Mauvais	Bon	Mauvais	Moyen	Moyen
Bonne Anse et Casy		ST19"									1	73119		Très bon		Bon	Moyen
Buille Alise et Casy		ST18°	2	43605	1	43609	0		1	44309	1	222127		Bon	Mauvais	Moyen	Woyen
Baie Nord		ST15°	2	381520	1	381539	1	229638	1	252686	1	319170	Mauvais	Moyen	Bon	Moyen	Moyen
Port de Prony		ST16"	2	112200	1	112201	1	52238	1	86582	1	101011	Mauvais	Très bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02									1	12695		Très bon		Bon	Bon
Canai navalillali	Cotier	ST07	2	42392							1	30193		Très bon	Bon	Bon	BOII
Ugo et Merlet	Cotier	ST21									1	16095		Très bon		Bon	Bon

En 2015, les concentrations en Fer mesurées en Baie Kwé sont plus importantes qu'en Baie de Port Boisé (d'un facteur 2.4), ce qui n'était pas le cas en 2012. Au vu de l'augmentation des concentrations en Fer mesurée dans les sédiments de surfaces sur ST06 entre 2006 et 2015, nous décidons de déclasser la station en « Moyen », bien que le guide ZONECO/CNRT estime « Bonne » la qualité du milieu.

Les concentrations observées en 2015 en station ST15 et ST16 sont également supérieures aux concentrations observées dans leurs stations de référence. En Baie Nord, étant donné que les concentrations ont fortement augmenté en 2015 par rapport à la précédente campagne et qu'elles dépassent le seuil de qualité « Moyen » du milieu, le score « Moyen » est attribué pour cette année. Au niveau du Port de Prony, la concentration en Fer dans les sédiments correspond toujours à un état « Très Bon » du milieu, la station n'est donc pas déclassée.

Au vu de la forte augmentation des concentrations en Fer mesurée dans les sédiments de surfaces sur ST18 entre 2006 et 2015, nous décidons de déclasser la station en « Moyen ».

• Dans les sédiments profonds (carottage)

Les prélèvements de sédiment par carottage sont effectués tous les ans sur la station de suivi au droit du port (ST16). Le score attribué cette année prend en compte la comparaison aux valeurs seuils du guide de référence ZONECO/CNRT (Tableau 32) et l'évolution temporelle de la chronique des données.

Tableau 34 : Tableau de valeurs indiquant l'évolution de la concentration totale annuelle moyenne par horizon (moyenne des horizons 0 à 4 cm) en Fe dans les carottes de sédiments de la station de mesure des sédiments marins profonds au droit du Port de Prony, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT, permettant l'attribution d'un score final pour l'année 2016.

Fe (mg/kg) - séd	liments profe	nds (moyenn	e ho	rizons 0-	4 cm)										
Zone	Station	Phase		2012		2013		2014		2015		2016	Moy 2015 →	Pas de hausse	Score 2015	Score 2016
zone	Station	Phase	N	Moy	Ν	Moy	N	Moy	N	Moy	N	Moy	classe	temporelle?	Score 2015	Score 2016
Port de Prony	ST16	Ox + A-S + Red. + Rés.	16	73892,6	16	75987,7	16	77998,7	16	98526,5	16	76618,8	Très bon	Bon	Très bon	Très bon

Les teneurs en Fer dans les sédiments profonds restent relativement stables depuis 2012 sur la station ST16, avec une valeur correspondant à un état « Très bon » d'après le guide ZONECO/CNRT.

3.2.1.1.10 Concentrations en Plomb

• Dans les eaux de surface

Les concentrations en Plomb dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Plomb dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 35 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Plomb dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Pb (μg/L) - 6	aux de surfac	e	I	q = 0,1 e	t 0,0:	L μg/L	- 1	q = 0,1 et	0,15	μg/L		lq = 0,2 μ	ıg/L	Iq = 0,1 (et 0,5 μg/L	Iq = 0,24	et 0,5 μg/L	
Zone	Situation	Station		2012		2013		2014		2015		2016	;	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone
Goro		ST14	6	0,500	6	0,200	6	0,307	6	0,125	6	0,100	0,100		Bon	Bon	Bon	Bon
lle Ouen		ST13	5	0,500	6	0,200	6	0,300	6	0,125	6	0,134	0,100		Bon	Bon	Bon	Bon
ile Odell		ST20	4	0,500	4	0,200	6	0,315	6	0,125	6	0,109	0,100		Bon	Bon	Bon	BUII
Baie Port Boisé		ST03*	5	0,500	6	0,217	6	0,300	6	0,125	6	0,100	0,100		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	4	0,500	6	0,200	6	0,300	6	0,125	6	0,100	0,100	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	5	0,448	7	0,206	6	0,300	6	0,125	6	0,090	0,100		Bon	Bon	Bon	Bon
Boilile Alise et Casy		ST18°	5	0,500	6	0,200	6	0,300	6	0,125	6	0,100	0,100		Bon	Bon	Bon	BUII
Baie Nord		ST15°	5	0,500	6	0,200	6	0,300	6	0,125	6	0,100	0,100	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	5	0,500	6	0,200	6	0,309	6	0,125	6	0,100	0,100	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	4	0,500	6	0,200	6	0,300	6	0,125	6	0,089	0,100		Bon	Bon	Bon	Bon
Callal Havaillali	Cotier	ST07	6	0,500	6	0,200	6	0,300	6	0,125	6	0,100	0,100		Bon	Bon	Bon	BUII
Line of Morlet	Cotier	ST21	5	0,500	4	0,200	6	0,300	5	0,130	6	0,090	0,100		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	5	0,500	6	0,200	6	0,300	6	0,125	6	0,081	0,100		Bon	Bon	Bon	BUII
Emissaire	Cotier	ST09'	5	0,500	5	0,200	6	0,300	6	0,125	6	0,097	0,100	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Plomb, aucune station de suivi ne semble refléter de dégradation du milieu d'après la comparaison à leurs stations de référence respectives. Les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent comparables et aucune évolution négative de la moyenne annuelle n'est détectée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

3.2.1.1.11 Concentrations en Zinc

• Dans les eaux de surface

Les concentrations en Zinc dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Zinc dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 36 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Zinc dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Zn (μg/L) - e	aux de surfac	e		Iq = 1	l μg/	Ĺ	lq	= 0,015 e	t 0,0	12 μg/L	Iq	= 1 et 0,	02 μg/L					
Zone	Situation	Station		2012		2013		2014		2015		2016	5	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	Ν	Moy	Ν	Moy	Ν	Moy	Ν	Moy	Méd	station ref.?	temporelle?	2015	par station	par zone
Goro		ST14	5	0,545	7	0,220	6	0,108	6	1,000	6	1,038	1,000		Mauvais	Bon	Bon	Bon
lle Ouen		ST13	5	0,365	7	0,231	6	0,101	5	1,000	6	1,753	1,000		Mauvais	Bon	Bon	Bon
lie Ouell		ST20	5	0,278	7	0,270	4	0,287	6	1,000	6	1,164	1,000		Mauvais	Bon	Bon	DOII
Baie Port Boisé		ST03*	3	0,303	6	0,169	5	0,167	6	1,000	6	1,000	1,000		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	6	0,346	9	0,282	5	0,149	6	1,000	6	1,000	1,000	Bon	Bon	Bon	Bon	Bon
Donna Ansa at Casu		ST19"	3	0,393	6	0,226	5	0,164	6	1,000	6	0,949	1,000		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	5	0,172	8	0,137	6	0,206	6	1,000	6	1,000	1,000		Bon	Bon	Bon	DUII
Baie Nord		ST15°	11	0,709	12	0,218	11	0,361	6	1,000	6	1,228	1,000	Mauvais	Mauvais	Bon	Bon	Bon
Port de Prony		ST16"	11	0,517	18	0,218	12	0,654	6	1,000	6	1,484	1,000	Mauvais	Mauvais	Bon	Bon	Bon
Canal Hayannah	Océanique	ST02	5	0,317	7	0,449	6	0,108	6	1,000	6	1,000	1,000		Bon	Bon	Bon	Bon
Canal Havannah	Cotier	ST07	5	0,209	8	0,291	6	0,118	5	1,000	6	1,000	1,000		Bon	Bon	Bon	DUII
Line of Morlet	Cotier	ST21	5	0,340	6	0,218	5	0,138	5	1,000	6	1,000	1,000		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	5	0,221	8	0,310	6	0,076	6	1,000	6	1,000	1,000		Bon	Bon	Bon	ьоп
Emissaire	Cotier	ST09'	6	0,379	9	0,356	4	0,118	6	1,000	6	1,000	1,000	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Zinc, seules les stations de suivi ST15 et ST16 semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives ST18 et ST19. Une évolution négative est observée dans 5 stations au total, les moyennes apparaissant artificiellement élevées depuis 2015 en raison d'un changement de seuil de détection. La médiane annuelle restant inférieure à ce seuil de détection pour l'ensemble du réseau de suivi cette année, le score reste « Bon » cette année pour ce paramètre.

3.2.1.1.12 <u>Concentrations en Soufre</u>

• Dans les flux de particules

Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour la composition géochimique de la matière en suspension issue des pièges à sédiments (Beliaeff et al., 2011). Nous nous basons donc sur les interprétations des consultants experts en charge du suivi, qui s'appuient sur la comparaison avec des valeurs de références (2006-2007), mesurées avant la mise en activité de l'usine de Vale (2009) et avant la montée en puissance de la production de minerai (à partir de 2010) dans le cadre de la convention IRD/Goro-Ni n° 1230 sur « l'État de référence » des densités de flux verticaux de particules déterminées pour le Canal de la Havannah, la Rade Nord et la Baie Kwé en 2007 (Fernandez et al., 2007). Ils se basent également sur l'évolution de la chronique de données des 3 dernières années.

Tableau 37 : Tableau de valeurs indiquant l'évolution de la concentration semestrielle moyenne en Soufre dans 2 stations de mesure des flux particulaires, permettant l'attribution d'un score final par station pour l'année 2016

S (mg/kg) - fl	ux de particu	les												
Zone	Station	Saison		2012		2013		2014		2015		2016	Pas de hausse	Score 2016
Zone	Station	3d15011	Z	Moy	Z	Moy	N	Moy	Z	Moy	Ν	Moy	temporelle?	par station
Canal Havannah	ST60 - NE	Chaude	4	2888	4	3125	10	3900,0	8	2887	10	2639	Bon	Don
(émissaire)	3100 - INE	Fraiche	2	3000,0	1	2811,0	8	2805,0	0		10	2746	Bon	Bon
Baie Nord	ST15	Chaude					12	11117,7	9	78349	8	91451	Bon	D
Bale Nord	2112	Fraiche					5	87180,4	7	85568	12	60636	Bon	Bon

En Baie Nord et dans le canal de la Havannah, une tendance globale à la baisse est observée depuis 2014, le score « Bon » est donc attribué à ces deux stations cette année pour la teneur en soufre dans les flux particulaires marins.

• Dans les sédiments profonds

Des prélèvements de sédiment profond sont effectués annuellement par carottage en station ST16 située au droit du Port. Pour le Soufre, le guide ZONECO/CNRT ne contient pas de valeur seuil (Beliaeff et al., 2011). En 2015, une lecture des horizons des plus profondes vers la surface permettant d'avoir une vision de l'évolution du paramètre dans le temps avait mis en évidence une augmentation de la teneur en soufre dans les sédiments profonds depuis 2013. En 2016, la teneur en soufre dans les horizons supérieurs a encore augmenté, d'où l'attribution d'un score « Mauvais » à la station ST16 sur la base de ce paramètre.

Tableau 38 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne dans le premier horizon (0 à 1 cm) en S lixiviable et échangeable dans les carottes de sédiments de la station de mesure des sédiments marins profonds au droit du Port de Prony, permettant l'attribution d'un score final pour l'année 2016.

	S (n	ng/kg) - sédimer	nts profonds	(horizon 0-1	cm)	•			
Zone	Station	Function	2013	2014	2015	2016	Pas de hausse	Score	Score
Zone	Station	Fraction	Moy	Moy	Moy	Moy	temporelle?	2015	2016
Port de	ST16	échangeable	1586	1892	1875	2491	Mauvais	Mauvais	Mauvais
Prony	3110	lixiviable	1511	1688	1801	1877	Mauvais	Mauvais	Mauvais

3.2.1.1.13 Ratios Ca/Fe

Dans les flux de particules

Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour la composition géochimique de la matière en suspension issue des pièges à sédiments (Beliaeff et al., 2011). Nous nous basons donc sur les interprétations des consultants experts en charge du suivi, qui s'appuient sur la comparaison avec des valeurs de références (2006-2007), mesurées avant la mise en activité de l'usine de Vale (2009) et avant la montée en puissance de la production de minerai (à partir de 2010) dans le cadre de la convention IRD/Goro-Ni n° 1230 sur « l'État de référence » des densités de flux verticaux de particules déterminées pour le Canal de la Havannah, la Rade Nord et la Baie Kwé en 2007 (Fernandez et al., 2007). Ils se basent également sur l'évolution de la chronique de données des 3 dernières années.

Tableau 39 : Tableau de valeurs indiquant l'évolution des ratios de concentration semestrielle moyenne en Ca/Fe dans 3 stations de mesure des flux particulaires, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées lors d'un état de référence antérieur à la mise en activité de l'usine de Vale NC, permettant l'attribution d'un score final par station pour l'année 2016

ratio Ca/Fe - f	lux de partic	ıles																
Zone	Station	Saison	ref.	2007	20	12	20	13	20	14	20	15	20	16	Moy 2016 ≥	Evolution	Score 2015	Score 2016
Zone	Station	Saison	Moy	σ	ref. 2007?	temporelle?	par station	par station										
Baie Kwé	ST06-KW1	Chaude	3,85	0,51	2,32	0,18	1,95	0,33	10,65	3,18	3,18	0,94	2,32	0,53	Mauvais	Mauvais	Marray	Moyen
bale Kwe	3100-6001	Fraiche	3,83	0,51	2,40	0,31	0,98	0,46	1,85	0,27	1,70	0,40	1,68	0,48	Mauvais	Mauvais	Moyen	ivioyen
Canal Havannah	ST60 - NE	Chaude	20.00	6.70	14,30	2,40	11,80	1,00	17,20	1,80	11,70	2,20	19,80	1,20	Mauvais	Bon	Marray	Marra
(émissaire)	3100 - INE	Fraiche	26,80	6,70	19,00	2,70	8,60	2,30	12,50	1,70	15,20	1,70	12,50	2,40	Mauvais	Mauvais	Moyen	Moyen
Baie Nord	ST15	Chaude	0.20	0.00					0,08	0,14	0,27	0,11	0,46	0,05	Bon	Bon	Marray	Marray
Date NOTO	3115	Fraiche	0,30	0,00					0,37	0,02	0,48	0,04	0,46	0,32	Bon	Bon	Moyen	Moyen

En Baie Kwé, entre les différentes campagnes conduites à St06-KW1, à l'exception de la campagne de janvier-mars 2014, l'évolution à la baisse des moyennes du ratio Ca/Fe permet de conclure à une influence terrigène grandissante depuis la campagne de l'état de référence en 2007. De même dans le canal de la Havannah, entre les différentes campagnes conduites à St60-NE, les évolutions du ratio Ca/Fe moyen permettent de constater que l'influence terrigène a augmenté à cette station depuis la campagne de l'état de référence en 2007 ; le ratio minimal ayant été relevé lors de la campagne de juillet-août 2013. Depuis, les valeurs démontrent une influence terrigène élevée et constante. En l'absence d'évolution notable depuis 2015, un score « Moyen » est donc conservé pour ces 2 stations sur la base des ratios Ca/Fe.

Dans la Baie Nord, entre les différentes campagnes conduites à St15, la stabilité des ratios Ca/Fe moyens permet de constater que la forte influence terrigène persiste à cette station, à un niveau toutefois équivalent à celui relevé antérieurement à la mise en activité de l'usine de Vale NC (lors de la campagne de 2007), de ce fait un score « Moyen » est attribué à cette station.

Dans les sédiments profonds

Des prélèvements de sédiment profond sont effectués annuellement par carottage en station ST16 située au droit du Port. Pour les ratios, le guide ZONECO/CNRT ne contient pas de valeur seuil (Beliaeff et al., 2011).

Tableau 40 : Tableau de valeurs indiquant l'évolution du ratio de concentrations Ca/Fe par horizon (horizons 0 à 4 cm) dans les carottes de sédiments de la station de mesure des sédiments marins profonds au droit du Port de Prony, permettant l'attribution d'un score final pour l'année 2016.

ratio (Ca/Fe - sédim	ents profo	nds (hor	izons 0-4	cm)												
7	Station	Hariaga	20	010	20	12	20)13	20)14	20	15	20	16	Evolution	C 2015	Score 2016
Zone	Station	Horizon	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	temporelle?	Score 2015	Score 2016
		0-1 cm	1	7,23	1	3,03	1	1,38	1	2,59	1	1,71	1	3,23	Bon		
Dort do Drany	ST16	1-2 cm	1	5,70	1	2,97	1	1,32	1	2,64	1	1,66	1	2,83	Bon	Marian	Mayon
Port de Prony	3110	2-3 cm	1	5,90	1	2,67	1	1,31	1	2,55	1	1,85	1	3,1	Bon	Moyen	Moyen
		3-4 cm	1	6,22	1	2,62	1	1,29	1	2,76	1	1,84	1	3,17	Bon		

En 2016, les ratios Ca/Fe des horizons superficiels des carottes prélevées au droit du Port ont augmentés par rapport aux années précédentes, et en particulier par rapport à 2015 qui connaissait les valeurs les plus faibles de la chronique. La concentration en Calcium étant stable au cours du temps de manière générale en milieu marin, une augmentation du rapport Ca/Fe reflète la réduction du Fer dans le milieu et donc une diminution des apports terrigènes. Ces ratios demeurent toutefois plus faibles qu'en 2010, la station du Port reste donc classée en état « Moyen » pour 2016 sur la base de ce paramètre.

3.2.1.1.14 Bilan sur la concentration en métaux dissouts

• Dans les eaux de surface

Tableau 41 : Tableau récapitulatif des scores 2016 basés sur la concentration annuelle moyenne en métaux dissouts dans 14 stations de mesure des eaux marines de surface

Bilan mét	taux disouts - eaux	de surface													
Zone	Situation	Station	Mn	Ni	Cr VI	Cr	As	Cd	Co	Cu	Fe	Pb	Zn	Score 2015 par zone	Score 2016 par zone
Goro		ST14	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
lle Ouen		ST13	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
lie Ouell		ST20	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	DOII	DUII
Baie Port		ST03*	Bon	Bon	Bon	Bon	Bon	Bon	Moyen	Moyen	Bon	Bon	Bon	Bon	Moyen
Baie Kwé	Littoral	ST06*	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Bonne Anse		ST19"	Bon	Bon	Bon	Bon	Bon	Bon	Moyen	Bon	Bon	Bon	Bon	Bon	Moyen
et Casy		ST18°	Bon	Bon	Bon	Bon	Bon	Bon	Moyen	Bon	Bon	Bon	Bon	БОП	ivioyen
Baie Nord		ST15°	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Moyen	Bon
Port de Prony		ST16"	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Canal	Océanique	ST02	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Havannah	Cotier	ST07	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	БОП	БОП
Line at Maulat	Cotier	ST21	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	БОП	БОП
Emissaire	Cotier	ST09'	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon

• Dans les flux de particules

Tableau 42 : Tableau récapitulatif des scores 2016 basés sur la concentration annuelle moyenne en métaux dissouts dans 3 stations de mesure des flux particulaires

Bilan métaux -	flux de particules									
Zone	Station	Mn	Ni	Cr	Co	Fe	s	Ca/Fe	Score 2015	Score 2016
Baie Kwé	ST06-KW1	Moyen	Médiocre	Moyen	Moyen	Moyen		Moyen	Moyen	Moyen
Canai	ST60 - NE	Bon	Moyen	Bon	Moyen	Moyen	Bon	Moyen	Moyen	Moyen
Baie Nord	ST15	Bon	Moyen	Bon	Bon	Bon	Bon	Médiocre	Médiocre	Médiocre

• Dans les sédiments de surface

Tableau 43 : Tableau récapitulatif des scores 2015 basés sur la concentration annuelle moyenne en métaux dissouts dans 14 stations de mesure des sédiments de surface

Bilan métau	x disouts - sédimen	ts de surface						
Zone	Situation	Station	Mn	Ni	Cr	Co	Fe	Score 2015 par zone
Goro		ST14	Bon	Bon	Bon	Bon	Bon	Bon
lle Ouen		ST13	Bon	Bon	Bon	Bon	Bon	Bon
ne Ouen		ST20	Bon	Bon	Bon	Bon	Bon	BUII
Baie Port		ST03*	Bon	Bon	Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	Moyen	Moyen	Moyen	Moyen	Moyen	Moyen
Bonne Anse		ST19"	Bon	Bon	Bon	Bon	Bon	0.600000
et Casy		ST18°	Moyen	Moyen	Moyen	Moyen	Moyen	Moyen
Baie Nord		ST15°	Médiocre	Médiocre	Médiocre	Mauvais	Moyen	Médiocre
Port de Prony		ST16"	Bon	Bon	Bon	Bon	Bon	Bon
Canal	Océanique	ST02	Bon	Bon	Bon	Bon	Bon	Pon
Havannah	Cotier	ST07	Bon	Bon	Bon	Bon	Bon	Bon
Ugo et Merlet	Cotier	ST21	Bon	Bon	Bon	Bon	Bon	Bon

3.2.2 Paramètres contribuant à l'état écologique du milieu marin

3.2.2.1 **Profil aquatique**

Rappel: Les mesures de température, salinité, fluorescence et turbidité sont nécessaires pour déterminer la stratification verticale des masses d'eau et ont pour objectif principal de détecter toute modification importante des principales caractéristiques en lien ou non avec l'activité minière. En milieux côtier et estuarien, la salinité est un traceur des apports d'eaux douces. La turbidité est définie comme étant la «réduction de transparence d'un liquide due à la présence de substances non dissoutes » (Aminot et Kérouel, 2004); elle est le reflet de la charge particulaire dans l'eau. En milieux côtier et estuarien, la turbidité peut indiquer l'existence d'apports en particules provenant des rivières, d'une remise en suspension de dépôts sédimentaires ainsi que de blooms planctoniques. La fluorescence permet d'estimer la concentration en pigments chlorophylliens et donc de quantifier globalement la biomasse phytoplanctonique. Cette mesure fournit une bonne indication du statut trophique du milieu.

Les notes 2016 sont basées sur l'interprétation des résultats et les conclusions des rapports semestriels d'AFL

Comme l'année précédente, toutes les variations observées seraient la conséquence de cycles naturels, notamment des apports terrigènes et d'eaux douces issus des Creek de la baie de Prony, de la Kwé, de Port Boisé, et du Port de Goro. Le score « Bon » est donc maintenu pour toutes les stations cette année.

3.2.2.2 Matière en suspension

Rappel: La mesure des matières en suspension (MES) est importante dans les milieux côtiers et estuariens car elle reflète à la fois l'importance des apports continentaux et la remise en suspension de sédiments sous l'influence des conditions météorologiques (vent, pluie...). Les MES influencent également la production primaire: une charge particulaire élevée peut en effet modifier l'importance de la couche euphotique (Aminot et Kérouel 2004). En milieux côtier et estuarien, ces valeurs peuvent varier de 0,5 à 5 mg/l (Aminot et Kérouel 2004). (Le Grand et al., 2014).

• Dans les eaux de surface

Les concentrations en MES dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en MES dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 44 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en MES dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

MES (mg/L) -	eaux de surfa	ace	Ì															
Zone	Situation	Station		2012		2013		2014		2015		2016	5	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref.?	temporelle?	2015	par station	par zone
Goro		ST14	3	0,30	6	0,98	5	0,26	6	0,29	6	0,72	0,49		Mauvais	Bon	Moyen	Moyen
lle Ouen		ST13	3	0,30	5	0,61	5	0,35	6	0,42	6	0,52	0,55		Bon	Bon	Bon	Bon
lie Ouen		ST20	3	0,31	6	1,36	6	0,41	6	0,58	6	0,42	0,40		Bon	Bon	Bon	DUII
Baie Port Boisé		ST03*	3	0,28	5	0,32	5	0,59	6	0,45	6	0,59	0,55		Mauvais	Bon	Moyen	Moyen
Baie Kwé	Littoral	ST06*	3	0,32	5	0,46	6	0,61	6	0,45	6	0,88	0,58	Mauvais	Mauvais	Bon	Moyen	Moyen
Danna Ansa at Casu		ST19"	2	0,22	6	1,65	6	0,27	6	0,29	6	0,39	0,37		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	2	0,28	5	0,46	6	0,25	6	0,28	6	0,25	0,25		Bon	Bon	Bon	DUII
Baie Nord		ST15°	15	0,53	15	0,79	10	0,50	6	0,39	6	0,33	0,29	Mauvais	Bon	Bon	Bon	Bon
Port de Prony		ST16"	15	0,55	15	0,81	12	0,43	6	0,24	6	0,47	0,34	Mauvais	Bon	Bon	Bon	Bon
Canal Havanaah	Océanique	ST02	3	0,24	5	0,55	5	0,39	6	0,38	6	0,47	0,47		Bon	Bon	Bon	D
Canal Havannah	Cotier	ST07	3	0,43	6	0,40	5	0,32	6	0,33	6	0,39	0,31		Bon	Bon	Bon	Bon
Ligo et Meriet	Cotier	ST21	3	0,23	6	0,84	6	0,34	6	0,28	6	0,56	0,45		Bon	Bon	Bon	Pou
Ugo et Merlet	Océanique	ST05'	3	0,24	6	0,49	5	0,20	6	0,20	6	0,40	0,38		Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	2	0,25	5	0,33	5	0,21	6	0,21	6	0,30	0,30	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en MES, 3 des 4 stations de suivi semblent refléter une dégradation modérée du milieu d'après la comparaison aux valeurs de leurs stations de référence respectives, sans toutefois présenter d'évolution négative marquée au cours de la chronique de données, à l'exception de <u>ST06</u> en Baie Kwé. Cette station, notée « Moyen » en 2014, avait été reclassée en 2015 mais présente cette année une teneur en MES encore plus élevée, d'où son nouveau déclassement en « Moyen ». C'est aussi le cas de <u>ST03</u>, qui retrouve en 2016 une moyenne similaire à celle de 2014 et qui lui avait valu un score « Moyen ». Une évolution négative est également observée sur la station <u>ST14</u> de Goro, qui présente une forte augmentation par rapport aux 2 années précédentes, le score « Moyen » lui est donc attribué cette année, tandis que le score reste « Bon » pour le reste du réseau.

• Dans les flux de particules

Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les flux de matière en suspension (Beliaeff, Bouvet, Fernandez, David, & Laugier, 2011). Nous nous basons donc sur les interprétations des consultants experts en charge du suivi (AEL), qui s'appuient sur la comparaison avec des valeurs de références (2006-2007), mesurées avant la mise en activité de l'usine de Vale (2009) et avant la montée en puissance de la production de minerai (à partir de 2010) dans le cadre de la convention IRD/Goro-Ni n° 1230 sur « l'État de référence » des densités de flux verticaux de particules déterminées pour le Canal de la Havannah, la Rade Nord et la Baie Kwé en 2007 (Fernandez et al., 2007). Ils se basent également sur l'évolution de la chronique de données des 3 dernières années.

Tableau 45 : Tableau de valeurs indiquant l'évolution des densités semestrielle moyenne en MES dans 3 stations de mesure des flux particulaires, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées lors d'un état de référence antérieur à la mise en activité de l'usine de Vale NC, permettant l'attribution d'un score final par station pour l'année 2016

MES (g/m²/j) -	flux de partic	ules															
Zone	Station	Saison	ref. 2007		2012		2013		2014		2015		2016	Moy 2016 ≤	Pas de hausse	Score	Score 2016
Zone	Station	Saison	161. 2007	N	Moy	ref. 2007?	temporelle?	2015	par station								
Baie Kwé	ST06-KW1	Chaude	28,3	0		12	46,48	12	60,71	12	66,26	12	28,67	Bon	Bon	Moven	Bon
Bale Kwe	2100-KW1	Fraiche	28,3	12	26,40	12	58,05	12	11,85	12	38,84	12	18,48	Bon	Bon	woyen	DON
Canal Havannah	ST60 - NE	Chaude	17,1	0		12	12,57	12	7,44	12	15,97	12	17,25	Bon	Mauvais	Moyen	Moyen
(émissaire)	3100 - NE	Fraiche	17,1	12	4,10	12	5,85	12	8,13	12	9,88	12	11,17	Bon	Mauvais	ivioyeii	Wioyell
Baie Nord	ST15	Chaude	1.7				•	12	22,15	12	2,78	12	8,83	Mauvais	Bon	Bon	Moyen
Bale Noru	3113	Fraiche	1,7					12	0,92	12	1,31	12	2,22	Mauvais	Mauvais	BUII	woyen

En Baie Kwé, depuis 2007, une tendance à l'augmentation était observée et semble s'être inversée depuis la campagne d'octobre-novembre 2015, pour retrouver des valeurs équivalentes à celles de leur état de référence mesuré avant la mise en activité de l'usine de Vale NC. Cette station, dont l'état était encore estimé « Moyen » en 2015, est ainsi reclassée cette année par l'attribution d'un score « Bon ».

Dans le Canal de la Havannah, les densités moyennes de flux de MES sont restées variables entre les différentes campagnes, avec des valeurs restant inférieures ou égales à celles enregistrées en 2007, mais présentant une hausse régulière depuis 2012 en saison fraiche et depuis 2014 en saison chaude. Le score « Moyen » attribué en 2015 reste donc inchangé cette année.

En Baie Nord, une variabilité est aussi observée entre les différentes campagnes et semble indiquer une hausse régulière depuis 2014, les valeurs obtenues lors en saison fraiche et en saison chaude cette année dépassant celles enregistrées en 2007. De ce fait, un score « Moyen » est attribué à la station ST15 pour 2016. Il est à noter que la valeur moyenne exceptionnelle de janvier-mars 2014 est à mettre en lien avec les précipitations, elles aussi exceptionnelles (920,2 mm), de cette campagne.

3.2.2.3 **Concentration en éléments majeurs**

3.2.2.3.1 <u>Concentrations en Calcium</u>

• Dans les eaux de surface

Les concentrations en Calcium dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Calcium dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 46 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Calcium dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Ca2+ (mg/L) -	eaux de surf	ace	1															
Zone	Situation	Station		2012		2013		2014		2015		2016	i	Moy 2016 ≤	Evolution	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	Ν	Moy	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone
Goro		ST14	3	542,0	6	500,8	6	441,5	6	423,2	6	404,2	406,5		Bon	Bon	Bon	Bon
Ilo Ouen		ST13	3	488,7	6	500,5	6	436,3	6	427,3	6	442,0	433,3		Bon	Bon	Bon	Bon
lle Ouen		ST20	3	570,0	6	502,5	6	428,3	6	421,5	3	441,7	439,9		Bon	Bon	Bon	DOII
Baie Port Boisé		ST03*	3	528,0	6	478,8	6	435,0	6	429,8	6	419,1	421,0		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	3	465,3	6	469,3	6	430,3	6	421,3	6	418,6	422,5	Bon	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	3	563,0	6	493,2	6	440,5	6	425,0	6	424,3	427,8		Bon	Bon	Bon	Ban
Bonne Anse et Casy		ST18°	3	556,0	6	492,5	6	440,8	6	419,5	6	428,0	431,2		Bon	Bon	Bon	Bon
Baie Nord		ST15°	3	577,0	6	494,5	6	437,7	6	417,2	6	426,2	430,1	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	3	553,3	6	499,8	6	442,0	6	415,2	6	430,4	431,7	Bon	Bon	Bon	Bon	Bon
Canal Havenarah	Océanique	ST02	3	465,0	6	477,7	6	439,0	6	425,2	3	427,7	427,4		Bon	Bon	Bon	Bon
Canal Havannah	Cotier	ST07	3	493,3	6	480,8	6	434,2	6	427,0	3	417,4	417,9		Bon	Bon	Bon	DUII
Liga at Mariat	Cotier	ST21	3	561,7	6	481,8	6	443,2	6	423,7	3	438,5	432,1		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	3	493,0	6	481,3	6	436,8	6	424,2	6	426,3	416,2		Bon	Bon	Bon	ьоп
Emissaire	Cotier	ST09'	3	440,0	6	487,2	6	441,2	6	431,3	6	414,3	418,1	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Calcium, aucune station de suivi ne semble refléter de dégradation du milieu d'après la comparaison à leurs stations de référence respectives. Globalement une tendance à la diminution progressive est observée dans toutes les stations, ce phénomène étant généralisé il est probablement dû à des variations naturelles non attribuables à une perturbation d'origine minière ou industrielle. Les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent comparables et aucune évolution négative de la moyenne annuelle n'est détectée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

• Dans les flux de particules

Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les flux de matière en suspension (Beliaeff, Bouvet, Fernandez, David, & Laugier, 2011). Nous nous basons donc sur les interprétations des consultants experts en charge du suivi (AEL), qui s'appuient sur la comparaison avec des valeurs de références (2006-2007), mesurées avant la mise en activité de l'usine de Vale (2009) et avant la montée en puissance de la production de minerai (à partir de 2010) dans le cadre de la convention IRD/Goro-Ni n° 1230 sur « l'État de référence » des densités de flux verticaux de particules déterminées pour le Canal de la Havannah, la Rade Nord et la Baie Kwé en 2007 (Fernandez et al., 2007). Ils se basent également sur l'évolution de la chronique de données des 3 dernières années.

Tableau 47 : Tableau de valeurs indiquant l'évolution de la concentration semestrielle moyenne en Calcium dans 3 stations de mesure des flux particulaires, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées lors d'un état de référence antérieur à la mise en activité de l'usine de Vale NC, permettant l'attribution d'un score final par station pour l'année 2016

Ca (mg/kg) - f	lux de particu	iles														
7000	Station	Saison	ref. 2007		2012		2013		2014		2015		2016	Moy 2016 ≤	Pas de hausse	Score 2016
Zone	Station	3015011	ret. 2007	Z	Moy	Ν	Moy	Z	Moy	z	Moy	N	Moy	ref. 2007?	temporelle?	par station
Baie Kwé	ST06-KW1	Chaude	290310	12	239104	12	236752	12	308430	12	271510	12	260620	Bon	Bon	Pon
Bale Kwe	2106-KW1	Fraiche	290310	12	264386	12	164585	12	242857	12	165560	12	219412	Bon	Bon	Bon
Canal Havannah	ST60 - NE	Chaude	337350	12	293756	9	306914	12	302211	12	325637	10	342288	Bon	Bon	Pon
(émissaire)	3100 - NE	Fraiche	33/350	4	345918	12	278795	12	311085	12	340369	10	279965	Bon	Bon	Bon
Daio Nove	CT1 F	Chaude	61870					12	11118	9	78349	8	91451	Bon	Bon	Pon
Baie Nord	ST15	Fraiche	018/0					5	87180	7	85569	12	16898	Bon	Bon	Bon

En Baie Kwé, en Baie Nord et dans le canal de la Havannah, les teneurs en Calcium restent globalement stables au cours des différentes campagnes et restent comparables à leur état de référence enregistré en 2007. Le score « Bon » est donc maintenu pour ces 3 stations cette année.

3.2.2.3.2 Concentrations en Chlorure

• Dans les eaux de surface

Les concentrations en Chlorure dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Chlorure dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 48 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Chlorure dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

CI- (mg/L) - 0	eaux de surfa	ce																
Zone	Situation	Station		2012		2013		2014		2015		2016	i	Moy 2016 ≤	Evolution	Score	Score 2016	Score 2016
Zone	Situation	Station	Ν	Moy	N	Moy	N	Moy	Ν	Moy	Ν	Moy	Méd	station ref.?	temporelle?	2015	par station	par zone
Goro		ST14	3	19585	6	18162	6	19517	6	18728	6	19233	19464		Bon	Bon	Bon	Bon
lle Ouen		ST13	3	19845	6	19914	6	19810	6	19022	6	19233	19117		Bon	Bon	Bon	Bon
lie Odeli		ST20	3	19129	6	18096	6	19813	6	19365	6	19464	19812		Bon	Bon	Bon	BOII
Baie Port Boisé		ST03*	3	20485	6	17510	6	19428	6	19440	6	19194	19117		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	3	19578	6	16583	6	20021	6	18886	6	19464	19464	Bon	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	3	20821	6	18435	6	19514	6	19023	6	19233	19117		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	3	20683	6	17659	6	19285	6	19603	6	19233	19117		Bon	Bon	Bon	DOII
Baie Nord		ST15°	3	19649	6	20628	6	19779	6	19407	6	19310	19117	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	3	20166	6	21578	6	20946	6	19477	6	19194	19117	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	3	19906	6	18610	6	19455	6	19229	6	19464	19464		Bon	Bon	Bon	Bon
Callal Havaillali	Cotier	ST07	3	19508	6	18369	6	19860	6	18834	6	19464	19464		Bon	Bon	Bon	DOII
Ugo et Merlet	Cotier	ST21	3	21250	6	17182	6	19646	6	18889	6	19233	19233		Bon	Bon	Bon	Bon
ogo et ivieriet	Océanique	ST05'	3	20782	6	17566	6	19611	6	19309	6	19348	19117		Bon	Bon	Bon	BUII
Emissaire	Cotier	ST09'	3	19967	6	16957	6	19425	6	18672	6	19464	19464	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Chlorure, aucune station de suivi ne semble refléter de dégradation du milieu d'après la comparaison à leurs stations de référence respectives. Les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent comparables et aucune évolution négative de la moyenne annuelle n'est détectée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

3.2.2.3.3 <u>Concentrations en Magnésium</u>

• Dans les eaux de surface

Les concentrations en Magnésium dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Magnésium dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 49 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Magnésium dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Mg2+ (mg/L)	eaux de surf	ace	1															
Zone	Situation	Station		2012		2013		2014		2015		2016	i	Moy 2016 ≤	Evolution	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone								
Goro		ST14	0		6	1555	6	1414	6	1350	6	1361	1365		Bon	Bon	Bon	Bon
lla Ouan		ST13	0		6	1577	6	1396	6	1359	6	1458	1441		Bon	Bon	Bon	Bon
lle Ouen		ST20	3	1835	6	1564	6	1372	6	1345	6	1382	1441		Bon	Bon	Bon	БОП
Baie Port Boisé		ST03*	0		6	1511	6	1388	6	1368	6	1400			Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	0		6	1490	6	1376	6	1340	6	1392	1389	Bon	Bon	Bon	Bon	Bon
D		ST19"	3	1824	6	1535	6	1413	6	1357	6	1419	1428		Bon	Bon	Bon	0
Bonne Anse et Casy		ST18°	3	1787	6	1530	6	1417	6	1342	6	1430	1440		Bon	Bon	Bon	Bon
Baie Nord		ST15°	0		6	1542	6	1406	6	1336	6	1422	1430	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	0		6	1563	6	1417	6	1332	6	1437	1434	Bon	Bon	Bon	Bon	Bon
Canal Havanah	Océanique	ST02	0		6	1506	6	1403	6	1350	6	1377	1382		Bon	Bon	Bon	0
Canal Havannah	Cotier	ST07	0		6	1538	6	1387	6	1362	6	1400	1405		Bon	Bon	Bon	Bon
Llan at Marlet	Cotier	ST21	3	1813	6	1514	6	1420	6	1352	6	1416	1426		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	0		6	1527	6	1399	6	1353	6	1384	1396		Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	0		6	1554	6	1411	6	1373	6	1386	1401	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Magnésium, aucune station de suivi ne semble refléter de dégradation du milieu d'après la comparaison à leurs stations de référence respectives. Globalement une tendance à la diminution progressive est observée dans toutes les stations jusqu'en 2015 et s'inverse cette année dans toutes les zones étudiées ; ce phénomène étant généralisé il est probablement dû à des variations naturelles non attribuables à une perturbation d'origine minière ou industrielle. Les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent comparables et aucune évolution négative de la moyenne annuelle n'est détectée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

3.2.2.3.4 <u>Concentrations en Sodium</u>

• Dans les eaux de surface

Les concentrations en Sodium dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Sodium dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 50 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Sodium dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Na+ (mg/L) -	eaux de surfa	ice	1															
Zone	Situation	Station		2012		2013		2014		2015		2016	1	Moy 2016 ≤	Evolution	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone								
Goro		ST14	3	13634	6	14301	6	12658	6	11941	6	12435	12309		Bon	Bon	Bon	Bon
Ilo Ouen		ST13	3	13367	6	14252	6	12798	6	11973	6	13364	13145		Bon	Bon	Bon	Bon
Ile Ouen		ST20	3	13944	6	14311	6	12275	6	11833	6	12570	11811		Bon	Bon	Bon	BUII
Baie Port Boisé		ST03*	3	13244	6	13689	6	12597	6	12102	6	12837	12753		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	3	13377	6	13426	6	12533	6	11832	6	12574	12437	Bon	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	3	13902	6	14205	6	12811	6	11987	6	12957	12650		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	3	13827	6	14204	6	12736	6	11760	6	13047	12932		Bon	Bon	Bon	DUII
Baie Nord		ST15°	3	13898	6	14173	6	12856	6	11742	6	12911	12622	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	3	13919	6	14349	6	12740	6	11712	6	13050	12813	Bon	Bon	Bon	Bon	Bon
Caralllananah	Océanique	ST02	3	13427	6	14029	6	12775	6	11897	6	12606	12558		Bon	Bon	Bon	0
Canal Havannah	Cotier	ST07	3	13256	6	14117	6	12613	6	12053	6	12837	12817		Bon	Bon	Bon	Bon
11t NAl-t	Cotier	ST21	3	13829	6	14165	6	12793	6	11994	6	12946	12912		Bon	Bon	Bon	0
Ugo et Merlet	Océanique	ST05'	3	13307	6	14129	6	12854	6	11932	6	12618	12507		Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	3	13482	6	13968	6	12973	6	12176	6	12708	12585	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Sodium, aucune station de suivi ne semble refléter de dégradation du milieu d'après la comparaison à leurs stations de référence respectives. Globalement une tendance à la diminution progressive est observée dans toutes les stations jusqu'en 2015 et s'inverse cette année dans toutes les zones étudiées ; ce phénomène étant généralisé il est probablement dû à des variations naturelles non attribuables à une perturbation d'origine minière ou industrielle. Les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent comparables et aucune évolution négative de la moyenne annuelle n'est détectée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

3.2.2.3.5 Concentrations en Potassium

• Dans les eaux de surface

Les concentrations en Potassium dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Potassium dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 51 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Potassium dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

K+ (mg/L) -	eaux de surfa	ce																
Zone	Situation	Station		2012		2013		2014		2015		2016		Moy 2016 ≤	Evolution	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone								
Goro		ST14	3	521,3	6	416,7	6	386,8	6	502,5	6	517,1	513,1		Bon	Bon	Bon	Bon
lle Ouen		ST13	3	469,0	6	423,7	6	387,2	6	507,8	6	565,2	552,9		Bon	Bon	Bon	Bon
ile Odell		ST20	3	551,0	6	418,0	6	374,5	6	501,2	6	525,9	473,5		Bon	Bon	Bon	BUII
Baie Port Boisé		ST03*	3	506,0	6	407,2	6	384,5	6	509,3	6	534,7	531,2		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	3	443,3	6	397,0	6	381,7	6	497,3	6	514,3	494,3	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	3	549,0	6	410,7	6	388,2	6	503,8	6	542,3	525,8		Bon	Bon	Bon	Bon
Buille Alise et Casy		ST18°	3	535,0	6	409,5	6	385,3	6	497,0	6	545,3	538,0		Bon	Bon	Bon	BUII
Baie Nord		ST15°	3	559,0	6	412,2	6	387,7	6	496,8	6	537,9	525,2	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	3	530,7	6	418,7	6	390,2	6	495,2	6	546,6	537,6	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	3	444,7	6	407,3	6	389,8	6	502,5	6	525,1	524,1		Bon	Bon	Bon	Bon
Callal Havaillali	Cotier	ST07	3	477,3	6	412,5	6	383,5	6	504,0	6	534,4	532,8		Bon	Bon	Bon	BUII
Ugo et Merlet	Cotier	ST21	3	548,0	6	407,5	6	385,8	6	501,5	6	537,6	536,3		Bon	Bon	Bon	Bon
ogo et ivieriet	Océanique	ST05'	3	474,7	6	411,2	6	385,8	6	502,2	6	522,4	519,6		Bon	Bon	Bon	BOII
Emissaire	Cotier	ST09'	3	423,0	6	416,2	6	387,8	6	508,5	6	528,7	523,5	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Potassium, aucune station de suivi ne semble refléter de dégradation du milieu d'après la comparaison à leurs stations de référence respectives. Globalement une tendance à l'augmentation progressive est observée dans toutes les stations depuis 2014 et se poursuit cette année dans toutes les zones étudiées ; ce phénomène étant généralisé il est probablement dû à des variations naturelles non attribuables à une perturbation d'origine minière ou industrielle. Les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent comparables et aucune évolution négative de la moyenne annuelle n'est détectée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

3.2.2.3.6 Concentrations en Sulfate

• Dans les eaux de surface

Les concentrations en Sulfate dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Sulfate dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

En regard de la moyenne 2016 des concentrations en Sulfate, aucune station de suivi ne semble refléter de dégradation du milieu d'après la comparaison à leurs stations de référence respectives. Globalement une tendance à l'augmentation progressive est observée dans toutes les stations depuis 2013, et s'inverse cette année dans toutes les zones étudiées (à l'exception de ST14 qui avait enregistrée une valeur faible en 2015, mais reste comparable au reste du réseau de suivi cette année) ; ce phénomène étant généralisé il est probablement dû à des variations naturelles non attribuables à une perturbation d'origine minière ou industrielle. Les valeurs moyennes annuelles mesurées en 2016 sur toutes les stations restent comparables et aucune évolution négative de la moyenne annuelle n'est détectée, le score reste donc « Bon » pour l'ensemble du réseau cette année.

Tableau 52 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Sulfate dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

SO42- (mg/L)	- eaux de surf	ace																
Zone	Situation	Station		2012		2013		2014		2015		2016	;	Moy 2016 ≤	Evolution	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone								
Goro		ST14	3	2687	6	2319	6	2839	6	2623	6	2787	2725		Bon	Bon	Bon	Bon
lle Ouen		ST13	3	2633	6	2491	6	2902	6	2949	6	2804	2805		Bon	Bon	Bon	Bon
lie Ouen		ST20	3	2633	6	2883	6	2853	6	3076	6	2687	2745		Bon	Bon	Bon	DUII
Baie Port Boisé		ST03*	3	2742	6	2177	6	2647	6	3032	6	2752	2747		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	3	2583	6	2025	6	2728	6	3038	6	2718	2857	Bon	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	3	2655	6	2366	6	2893	6	3015	6	2674	2697		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	3	2557	6	2222	6	2804	6	3028	6	2700	2732		Bon	Bon	Bon	DUII
Baie Nord		ST15°	3	2709	6	2528	6	2836	6	2982	6	2811	2894	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	3	2619	6	2559	6	2968	6	3003	6	2745	2775	Bon	Bon	Bon	Bon	Bon
Canal Havanah	Océanique	ST02	3	2627	6	2260	6	2623	6	2900	6	2819	2812		Bon	Bon	Bon	0
Canal Havannah	Cotier	ST07	3	2585	6	2303	6	2711	6	3309	6	2830	2750		Bon	Bon	Bon	Bon
11 NA	Cotier	ST21	3	2731	6	2122	6	2820	6	2956	6	2736	2731		Bon	Bon	Bon	0
Ugo et Merlet	Océanique	ST05'	3	2623	6	2217	6	2679	6	3062	6	2809	2780		Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	3	2648	6	2129	6	2808	6	3161	6	2797	2777	Bon	Bon	Bon	Bon	Bon

3.2.2.3.7 Bilan des concentrations en éléments majeurs

Tableau 53 : Tableau récapitulatifs des scores 2016 basés sur la concentration annuelle moyenne en éléments majeurs dans 14 stations de mesure des eaux marines de surface

Bilan élém	ents majeurs - eau	x de surface								
Zone	Situation	Station	Ca2+	CI-	Mg2+	Na+	K+	SO42-	Score 2015 par zone	Score 2016 par zone
Goro		ST14	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
lle Ouen		ST13	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
lie Odeli		ST20	Bon	Bon	Bon	Bon	Bon	Bon	BOII	BOII
Baie Port		ST03*	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Bonne Anse		ST19"	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
et Casy		ST18°	Bon	Bon	Bon	Bon	Bon	Bon	DOII	BUII
Baie Nord		ST15°	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Port de Prony]	ST16"	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Canal	Océanique	ST02	Bon	Bon	Bon	Bon	Bon	Bon	Don	Pan
Havannah	Cotier	ST07	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Ligo of Moriot	Cotier	ST21	Bon	Bon	Bon	Bon	Bon	Bon	Don	Rom
Ugo et Merlet	Océanique	ST05'	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon

3.2.2.4 Concentration en Chlorophylle a

Rappel: La chlorophylle a est indispensable à la photosynthèse des algues, son dosage permet donc d'estimer la biomasse phyto-planctonique et, de ce fait, le niveau trophique (oligotrophie/eutrophie) du milieu (Fichez et al. 2005. (Le Grand et al., 2014).

Les concentrations en Chlorophylle a dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Selon leur situation littorale, côtière ou océanique, l'évaluation des concentrations en Chlorophylle a nécessité de tenir en compte le niveau de dilution des apports terrigènes, établi pour la Chlorophylle a par ZONECO (Tableau 54).

Tableau 54 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des eaux marines selon leur concentration en Chlorophylle a

Grille de not	tation de référen	ce ZONECO :
Situation	Chl. a (μg/L)	Classe
	< 1,5	Bon
Littoral	1,5 - 5,0	Moyen
	≥5,0	Mauvais
	< 1,0	Bon
Côtier	1,0 - 2,0	Moyen
	≥ 2,0	Mauvais
	< 0,3	Bon
Océanique	0,3 - 0,5	Moyen
	≥0,5	Mauvais

Tableau 55 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Chlorophylle a dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Chlorophylle a (με	g/L) - eaux de	surface	ĺ																	
Zono	Cituation	Station		2012		2013		2014		2015		2016	;	Per90	Moy 2016 ≤	Per90 2014-16 →	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	z	Moy	z	Moy	N	Moy	N	Moy	N	Moy	Méd	2014-16	station ref. ?	classe ZONECO ?	temporelle?	2015	par station	par zone
Goro		ST14	6	0,315	6	0,477	5	0,348	6	0,383	6	0,494	0,440	0,546		Bon	Bon	Bon	Bon	Bon
lle Ouen		ST13	5	0,264	4	0,537	6	0,267	6	0,343	6	0,340	0,263	0,611		Bon	Bon	Bon	Bon	0
lie Ouen		ST20	6	0,297	5	0,562	6	0,295	6	0,400	6	0,342	0,265	0,539		Bon	Bon	Bon	Bon	Bon
Baie Port Boisé		ST03*	5	0,434	6	0,420	4	0,287	6	0,490	6	0,377	0,290	0,592		Bon	Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	6	0,510	5	0,560	6	0,247	6	0,370	6	0,399	0,409	0,530	Mauvais	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	6	0,440	5	0,542	6	0,549	5	0,300	6	0,248	0,261	0,662		Bon	Bon	Bon	Bon	Bon
boilile Alise et Casy		ST18°	6	0,350	6	0,922	6	0,286	6	0,387	6	0,193	0,203	0,443		Bon	Bon	Bon	Bon	BUII
Baie Nord		ST15°	5	0,374	6	0,488	5	0,661	6	0,517	6	0,246	0,255	0,696	Mauvais	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	6	0,270	4	0,515	6	0,395	6	0,417	6	0,431	0,346	0,581	Mauvais	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	6	0,323	5	0,500	5	0,268	6	0,408	6	0,267	0,275	0,430		Moyen	Bon	Bon	Bon	Bon
Callal Havaillali	Cotier	ST07	6	0,390	5	0,476	5	0,378	6	0,430	6	0,276	0,277	0,560		Bon	Bon	Bon	Bon	воп
Ligo et Merlet	Cotier	ST21	6	0,355	6	0,423	5	0,516	6	0,468	6	0,303	0,321	0,664		Bon	Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	6	0,387	5	0,480	5	0,321	6	0,385	6	0,212	0,224	0,420		Moyen	Bon	Bon	Bon	БОП
Emissaire	Cotier	ST09'	6	0,337	5	0,382	6	0,381	6	0,405	6	0,292	0,314	0,546	Mauvais	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Chlorophylle a, les 4 stations de suivi semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives. Cependant, toutes les valeurs de percentile 90 mesurées sur 3 ans (2014 à 2016) correspondent à un bon état du milieu d'après la grille de référence de ZONECO/CNRT, à l'exception des 2 stations océaniques ST02 et ST05 qui reflètent un état « Moyen » en raison des fortes valeurs enregistrées en 2015, probablement la conséquence d'un phénomène naturel d'upwelling côtier. Aucune évolution négative n'étant toutefois observée, toutes les stations conservent un score « Bon » cette année.

3.2.2.5 *Concentration en sels nutritifs*

3.2.2.5.1 Concentrations en Nitrite et Nitrate

Rappel: L'ion nitrate (NO₃) est la forme oxydée stable de l'azote en solution aqueuse. Les ions nitrates entrent dans le cycle de l'azote comme support principal de la croissance du phytoplancton qui, une fois dégradé par les bactéries, restitue au système l'azote sous forme minérale (à savoir le NO₃). La vitesse de régénération peut être parfois différente de la vitesse d'utilisation, il en résulte des concentrations en nitrates variables qui peuvent être un facteur influençant la croissance du phytoplancton. (Le Grand et al., 2014).

Les concentrations en Nitrite et Nitrate dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en Nitrite et Nitrate dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 56: Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Nitrite et Nitrate dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

NO2 + NO3 (μmol	/L) - eaux de	surface		Iq = 0,02	2 μm	ol/L		Iq = 0,05	μт	ol/L								
Zone	Situation	Station		2012		2013		2014		2015		2016	i	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone
Goro		ST14	3	0,046	6	0,539	6	0,262	6	0,330	3	0,146	0,184		Bon	Bon	Bon	Bon
lle Ouen		ST13	4	0,020	3	0,327	5	0,304	6	0,095	3	0,149	0,136		Bon	Bon	Bon	Bon
lie Ouell		ST20	5	0,035	5	0,140	6	0,481	6	0,191	3	0,064	0,057		Bon	Bon	Bon	BUII
Baie Port Boisé		ST03*	4	0,028	5	0,418	5	0,277	6	0,058	3	0,174	0,203		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	5	0,093	6	0,758	3	0,361	6	0,152	3	0,154	0,138	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	6	0,033	3	0,301	5	0,193	6	0,057	3	0,120	0,116		Bon	Bon	Bon	Bon
Boilile Alise et Casy		ST18°	5	0,036	4	0,316	3	0,327	6	0,060	3	0,094	0,050		Bon	Bon	Bon	BUII
Baie Nord		ST15°	4	0,026	6	0,257	5	0,257	6	0,070	6	0,065	0,050	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	6	0,035	5	0,215	5	0,085	6	0,085	3	0,052	0,050	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	5	0,132	6	0,475	4	0,254	6	0,250	5	0,280	0,275		Bon	Bon	Bon	Bon
Canai navannan	Cotier	ST07	6	0,023	5	0,301	5	0,227	6	0,061	3	0,276	0,282		Bon	Bon	Bon	DUII
Ligo at Mariat	Cotier	ST21	5	0,040	5	0,414	5	0,171	6	0,107	3	0,252	0,244		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	5	0,058	6	0,344	6	0,254	6	0,288	3	0,259	0,255		Bon	Bon	Bon	DUII
Emissaire	Cotier	ST09'	6	0,021	5	0,129	6	0,224	6	0,200	3	0,130	0,079	Bon	Bon	Bon	Bon	Bon

Les concentrations de NO3+NO2 sont très variables entre les zones d'étude et parfois même au sein d'une zone entre 2 stations. Aucune perturbation de concentration en NO2+NO3 n'a toutefois été décelée entre stations témoins et stations de suivis cette année. Globalement les tendances d'évolution temporelle montrent soit une stabilité des concentrations en NO2+NO3, soit une diminution des concentrations sur les 3 dernières années. Le score « Bon » est donc maintenu pour l'ensemble des stations du réseau de suivi.

3.2.2.5.2 Concentrations en Ammonium

Rappel: Dans le milieu marin, la forme prépondérante de l'azote ammoniacal est l'ammonium (NH₄₊). Naturellement, il provient des excrétions animales et de la dégradation bactérienne des composés organiques azotés. Dans les régions tropicales, les teneurs sont généralement très faibles, de l'ordre de quelques dizaines de nanomoles par litre. (Le Grand et al., 2014).

Les concentrations en Ammonium dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Selon leur situation littorale, côtière ou océanique, l'évaluation des concentrations en Ammonium nécessite de tenir en compte le niveau de dilution des apports terrigènes, établi pour l'Amonium par ZONECO/CNRT (Tableau 57).

Tableau 57 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des eaux marines selon leur concentration en Ammonium

Grille de n	otation de référen	ice ZONECO:
Situation	NH4+ (μmol/L)	Classe
	< 0,5	Bon
Littoral	0,5 - 1,0	Moyen
	≥ 1,0	Mauvais
	< 0,3	Bon
Côtier	0,3 - 0,7	Moyen
	≥0,7	Mauvais
	< 0,2	Bon
Océanique	0,2 - 0,5	Moyen
	≥0,5	Mauvais

Tableau 58 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Ammonium dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

NH4+ (µmol/L)	- eaux de sui	face		Iq = 0,02	2 μm	ol/L	Ĭ												
Zone	Situation	Station		2012		2013		2014		2015		2016		Moy 2016 ≤	Moy 2016 →	Pas de hausse	Score	Score 2016 par	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref. ?	classe ZONECO?	temporelle?	2015	station	par zone
Goro		ST14	5	0,064	6	0,096	5	0,053	6	0,109	6	0,099	0,085		Bon	Bon	Bon	Bon	Bon
Ile Ouen		ST13	5	0,102	6	0,178	6	0,082	6	0,142	6	0,144	0,125		Bon	Bon	Bon	Bon	0
lie Oueri		ST20	2	0,078	5	0,052	5	0,073	6	0,067	6	0,108	0,077		Bon	Mauvais	Bon	Bon	Bon
Baie Port Boisé		ST03*	3	0,111	5	0,126	6	0,075	6	0,148	6	0,263	0,108		Bon	Mauvais	Bon	Moyen	Moyen
Baie Kwé	Littoral	ST06*	6	0,100	6	0,136	6	0,106	6	0,124	6	0,115	0,086	Bon	Bon	Bon	Bon	Bon	Bon
Donno Anco et Casu		ST19"	4	0,056	6	0,095	2	0,093	6	0,076	6	0,070	0,049		Bon	Bon	Bon	Bon	0
Bonne Anse et Casy		ST18°	5	0,079	5	0,128	3	0,062	6	0,082	6	0,070	0,045		Bon	Bon	Bon	Bon	Bon
Baie Nord		ST15°	4	0,025	4	0,194	4	0,141	6	0,096	6	0,067	0,045	Bon	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	3	0,123	4	0,176	5	0,249	3	0,046	6	0,130	0,069	Mauvais	Bon	Bon	Bon	Moyen	Moyen
Caralliananah	Océanique	ST02	5	0,047	5	0,076	3	0,068	6	0,159	6	0,088	0,083		Bon	Bon	Bon	Bon	0
Canal Havannah	Cotier	ST07	5	0,063	6	0,101	5	0,061	6	0,083	6	0,095	0,081		Bon	Mauvais	Bon	Bon	Bon
II NAI	Cotier	ST21	4	0,049	6	0,143	4	0,043	6	0,112	6	0,172	0,171		Bon	Mauvais	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	3	0,057	4	0,082	5	0,050	6	0,073	6	0,150	0,130		Bon	Mauvais	Bon	Bon	воп
Emissaire	Cotier	ST09'	6	0,069	4	0,237	4	0,060	6	0,079	6	0,072	0,057	Bon	Bon	Bon	Bon	Bon	Bon

Les concentrations Ammonium sont très variables entre les zones d'étude. Quelques stations présentent une augmentation depuis 2014, mais restent sous le seuil de référence préconisé par ZONECO/CNRT. Les valeurs relevées à <u>ST03</u> sont les plus élevées du réseau de suivi cette année et de la chronique de donnée depuis 2012, reflétant le potentiel impact des installations hôtelières sur la côte, la présence de NH4 dans l'eau traduisant un processus de dégradation incomplet de la matière organique. Un score « Moyen » lui

est donc attribué cette année. De même, les valeurs relevées à <u>ST16</u> sont très variables dans le temps et la moyenne élevée cette année reflète le potentiel impact des installations portuaires, d'où un déclassement en « Moyen » pour l'année 2016.

3.2.2.5.3 <u>Concentrations en Phosphate</u>

Rappel: Dans l'eau de mer, le phosphore dissous est essentiellement présent sous forme d'ions orthophosphates (PO_4^{2-}). Les teneurs sont généralement très faibles en surface et augmentent avec la profondeur au-dessous de la zone euphotique (la zone euphotique correspond à la hauteur d'eau qui est pénétrée par la lumière). En milieu côtier, une augmentation des concentrations est un signe d'influence terrigène. (Le Grand et al., 2014).

Les concentrations en Phosphate dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Selon leur situation littorale, côtière ou océanique, l'évaluation des concentrations en Phosphate nécessite de tenir en compte le niveau de dilution des apports terrigènes, établi pour le Phosphate par ZONECO/CNRT (Tableau 59).

Tableau 59 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des eaux marines selon leur concentration en Phosphate

Grille de n	otation de référen	ice ZONECO:
Situation	PO4 (μmol/L)	Classe
	< 0,5	Bon
Littoral	0,5 - 2,0	Moyen
	≥ 2,0	Mauvais
	< 0,3	Bon
Côtier	0,3 - 1,0	Moyen
	≥ 1,0	Mauvais
	< 0,1	Bon
Océanique	0,1 - 0,2	Moyen
	≥0,2	Mauvais

Tableau 60 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Phosphate dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

PO4 (µmol/L)	- eaux de sur	face		Iq = 0,01	Lμmo	ol/L		1q = 0.05	μт	ol/L									
Zone	Situation	Station		2012		2013		2014		2015		2016		Moy 2016 ≤	Moy 2016 →	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	N	Moy	z	Moy	N	Moy	z	Moy	Méd	station ref. ?	classe ZONECO?	temporelle?	2015	par station	par zone
Goro		ST14	4	0,025	5	0,049	4	0,010	6	0,063	6	0,069	0,060		Bon	Bon	Bon	Bon	Bon
Ile Ouen		ST13	5	0,043	4	0,039	4	0,061	6	0,084	6	0,053	0,050		Bon	Bon	Moyen	Bon	0
lie Ouen		ST20	6	0,066	4	0,032	4	0,010	6	0,081	6	0,054	0,050		Bon	Bon	Bon	Bon	Bon
Baie Port Boisé		ST03*	3	0,035	3	0,053	4	0,025	6	0,061	6	0,055	0,050		Bon	Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	5	0,038	4	0,078	5	0,010	6	0,055	6	0,064	0,058	Mauvais	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	5	0,044	5	0,050	4	0,055	6	0,076	6	0,050	0,050		Bon	Bon	Bon	Bon	Bon
Boilile Alise et Casy		ST18°	4	0,041	3	0,085	5	0,043	6	0,080	6	0,058	0,050		Bon	Bon	Bon	Bon	BUII
Baie Nord		ST15°	4	0,043	4	0,040	6	0,051	6	0,086	6	0,055	0,050	Bon	Bon	Bon	Moyen	Bon	Bon
Port de Prony		ST16"	5	0,028	4	0,038	4	0,122	6	0,071	6	0,064	0,050	Mauvais	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	4	0,027	5	0,060	4	0,021	6	0,076	6	0,067	0,060		Bon	Bon	Bon	Bon	Bon
Canai Havannan	Cotier	ST07	5	0,014	5	0,047	4	0,052	6	0,056	6	0,077	0,071		Bon	Bon	Bon	Bon	воп
Ugo et Merlet	Cotier	ST21	4	0,041	1	0,0,15	3	0,058	6	0,058	6	0,078	0,076		Bon	Bon	Bon	Bon	Bon
ogo et ivieriet	Océanique	ST05'	5	0,033	6	0,044	4	0,010	6	0,067	6	0,074	0,070		Bon	Bon	Bon	Bon	DOII
Emissaire	Cotier	ST09'	4	0,022	4	0,041	4	0,022	6	0,058	6	0,076	0,065	Bon	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Phosphate, les stations de suivi ST06 et ST16 semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives, toutefois les valeurs médianes faibles montrent qu'aucune dégradation effective n'est avérée sur ces stations. Par ailleurs, toutes les moyennes annuelles correspondent à un bon état du milieu d'après la grille de référence de ZONECO/CNRT, et aucune évolution négative n'est observée, toutes les stations obtiennent un score « Bon » cette année, y compris ST13 et ST15 qui présentaient des valeurs légèrement plus élevées que le reste du réseau de suivi en 2015 mais enregistrent de nouveau des valeurs proches du seuil de détection cette année, elles sont donc reclassées.

<u>Remarque</u>: Une augmentation artificielle des moyennes est observée sur l'ensemble des stations en raison d'un changement du seuil de détection de 0,002 à 0,005 en 2015.

3.2.2.6 *Matière organique*

Rappel: La contribution naturelle de l'azote et du phosphore organique provient de la dégradation de matière de nature biogénique, qu'elle soit d'origine océanique (bactéries, phytoplancton, zooplancton, macro-organismes pélagiques...) ou terrestre (bactéries, débris végétaux,...) voire éolienne (bactéries, pollens, ...) D'une manière générale, la concentration en composés organiques dissous est très faible, particulièrement dans l'océan ouvert.

3.2.2.6.1 Concentrations en Carbone organique particulaire

Les concentrations en COP dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en COP dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 61 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en COP dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

COP (µmol/L)	- eaux de surf	face																
Zone	Situation	Station		2012		2013		2014		2015		2016	5	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	Z	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref.?	temporelle?	2015	par station	par zone
Goro		ST14	0		3	29,65	6	15,57	6	7,23	6	10,83	10,99		Bon	Bon	Bon	Bon
lle Ouen		ST13	0		3	14,58	5	16,20	6	14,13	6	9,95	9,82		Bon	Bon	Bon	Bon
lie Ouell		ST20	0		3	12,73	6	12,68	6	12,04	6	12,96	10,71		Bon	Bon	Bon	BOII
Baie Port Boisé		ST03*	0		3	10,97	6	12,58	6	9,24	6	10,53	9,55		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	0		3	11,12	6	12,37	6	8,81	6	13,38	8,74	Mauvais	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	0		3	15,82	6	14,12	5	8,32	6	7,39	7,43		Bon	Bon	Bon	Bon
Boilile Alise et Casy		ST18°	0		3	10,85	6	8,88	6	9,25	4	7,37	7,78		Bon	Bon	Bon	BOII
Baie Nord		ST15°	0		3	12,10	6	16,75	6	7,09	6	6,05	5,63	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	0		3	10,91	6	17,10	6	8,47	6	7,63	6,90	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	0		3	12,02	6	9,10	6	7,16	6	9,31	7,80		Bon	Bon	Bon	Bon
Canai navannan	Cotier	ST07	0		3	10,77	6	12,23	6	7,39	6	6,38	5,71		Bon	Bon	Bon	DON
Ligo at Mariat	Cotier	ST21	0		3	13,73	6	10,18	6	10,57	6	6,66	6,84		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	0		3	11,51	6	13,35	6	6,49	6	5,17	6,10		Bon	Bon	Bon	DON
Emissaire	Cotier	ST09'	0		3	10,40	6	12,57	6	6,31	6	4,43	4,33	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en COP, seule la station de suivi ST06 semble refléter un milieu modérément perturbé par rapport à sa station de référence ST03, toutefois ses valeurs médianes faibles montrent qu'aucune dégradation effective n'est avérée sur cette station. Par ailleurs, aucune évolution négative n'est observée, toutes les stations conservent un score « Bon » cette année.

3.2.2.6.2 <u>Concentrations en Azote organique particulaire</u>

Les concentrations en NOP dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en NOP dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 62 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en NOP dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

NOP (µmol/L)	- eaux de sur	face																
Zone	Situation	Station		2012		2013		2014		2015		2016	5	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zonc	Situation	Station	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone								
Goro		ST14	6	0,97	3	0,74	5	0,96	6	0,58	6	0,80	0,87		Bon	Bon	Bon	Bon
lle Ouen		ST13	6	0,91	6	0,76	5	1,24	6	0,98	6	1,11	1,05		Bon	Bon	Bon	Bon
lie Odeli		ST20	4	0,80	6	0,93	6	0,89	6	0,98	6	1,10	1,19		Bon	Bon	Bon	BUII
Baie Port Boisé		ST03*	5	0,96	5	1,01	6	1,02	6	0,79	6	0,99	1,01		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	3	0,76	6	0,76	5	0,74	6	0,65	6	0,92	0,80	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	6	0,92	4	1,04	5	1,24	6	0,80	6	1,18	0,99		Bon	Bon	Bon	Bon
Boiline Alise et Casy		ST18°	6	0,95	5	1,14	6	0,99	6	1,07	4	1,17	1,05		Bon	Bon	Bon	BUII
Baie Nord		ST15°	4	1,11	4	1,26	5	1,37	5	0,97	6	1,02	0,97	Bon	Bon	Moyen	Bon	Bon
Port de Prony		ST16"	6	0,84	4	0,86	3	1,00	6	0,88	6	1,00	0,95	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	3	0,91	6	0,63	6	0,76	6	0,68	6	0,59	0,60		Bon	Bon	Bon	Bon
Canal navannan	Cotier	ST07	3	0,69	5	0,78	4	0,79	6	0,66	6	0,68	0,69		Bon	Bon	Bon	DUII
Ligo at Mariet	Cotier	ST21	4	1,05	6	0,67	5	1,01	6	0,80	6	0,67	0,67		Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	5	0,87	5	0,56	5	0,86	6	0,56	6	0,63	0,65		Bon	Bon	Bon	ьип
Emissaire	Cotier	ST09'	4	0,90	6	0,79	6	1,04	6	0,59	6	0,67	0,67	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en NOP, aucune station de suivi ne semble refléter de dégradation du milieu par comparaison avec les valeurs mesurées en stations de référence. Par ailleurs, aucune évolution négative n'est observée, toutes les stations conservent un score « Bon » cette année.

La station ST15 en Baie Nord avait été classée en « Moyen » pour l'année 2014 en raison d'une augmentation des NOP entre 2013 et 2014. Depuis 2015 les moyennes annuelles sont considérées comme stables et restent inférieures aux valeurs de sa station de référence ST18, cela justifie son reclassement par l'attribution d'un score « Bon ».

3.2.2.6.3 Concentrations en Azote organique dissout

Les concentrations en NOD dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en NOD dans l'eau de

mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 63 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en NOD dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

NOD (μmol/L)	- eaux de sur	face																
Zone	Situation	Station		2012		2013		2014		2015		2016	i	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	Méd	station ref. ?	temporelle?	2015	par station	par zone								
Goro		ST14	4	2,83	5	2,94	6	5,15	6	4,37	6	10,57	10,07		Mauvais	Bon	Moyen	Moyen
lle Ouen		ST13	4	4,12	6	2,71	6	5,93	6	3,93	6	4,70	4,86		Bon	Bon	Bon	Bon
lie Ouell		ST20	6	3,78	6	2,95	6	5,78	6	3,93	6	6,43	5,85		Bon	Bon	Bon	BUII
Baie Port Boisé		ST03*	5	3,77	6	2,75	6	4,91	6	4,05	6	6,33	5,25		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	6	2,71	4	3,27	6	5,32	6	4,45	6	4,23	4,26	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	6	3,72	6	2,89	6	5,90	6	3,67	6	4,30	4,06		Bon	Bon	Bon	Bon
buille Alise et Casy		ST18°	6	3,65	6	3,02	5	5,38	6	4,26	4	4,60	4,69		Bon	Bon	Bon	BUII
Baie Nord		ST15°	4	3,03	6	2,85	6	5,83	5	5,34	6	5,06	4,78	Mauvais	Bon	Moyen	Moyen	Moyen
Port de Prony		ST16"	6	3,45	6	2,97	6	6,33	6	4,57	6	9,05	6,09	Mauvais	Mauvais	Bon	Moyen	Moyen
Canal Hayannah	Océanique	ST02	6	3,38	5	2,86	6	4,91	6	4,20	6	9,23	9,08		Mauvais	Bon	Bon	Bon
Canal Havannah	Cotier	ST07	6	3,80	6	2,88	6	4,95	6	4,20	6	3,80	3,79		Bon	Bon	Bon	DUII
Ligo at Mariat	Cotier	ST21	5	3,31	5	2,85	6	5,35	6	4,73	6	10,14	10,91		Mauvais	Bon	Bon	Pour
Ugo et Merlet	Océanique	ST05'	5	3,28	6	2,90	6	5,19	6	4,29	6	6,88	3,86		Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	6	3,57	6	3,08	6	5,18	6	4,59	6	5,99	4,24	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en NOP, les stations <u>ST15</u> et <u>ST16</u> semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives. ST15 avait été classée en état « Moyen » pour 2014 en raison d'une augmentation des NOD entre 2013 et 2014. Depuis 2015 les moyennes annuelles sont considérées comme stables mais conservent un écart aux valeurs de sa station de référence ST18, le score « Moyen » est donc maintenu cette année.

Par ailleurs, ST16 au droit du Port, <u>ST14</u> à Goro, <u>ST02</u> dans le canal de la Havannah et <u>ST21</u> dans la zone d'Ugo et Merlet présentent toutes une forte hausse des teneurs en NOD: leur moyenne annuelle a globalement doublé par rapport à 2015 et triplé depuis 2012, enregistrant à elles 4 les valeurs les plus élevées du réseau de suivi et de la chronique de donnée depuis 2012. Le phénomène d'augmentation des concentrations des NOD est particulièrement accentué dans les zones sous influence océanique et dans lesquelles une perturbation anthropique semble peu probable. Un phénomène d'up welling côtier, déjà décrit les années précédentes, semble être l'origine des augmentations observées sur différents marqueurs de l'enrichissement des eaux marines. Un score « Moyen » est donc attribué uniquement aux stations sous influence littorale présentant une perturbation inexpliquée pour ce paramètre, tandis que le reste du réseau de suivi maintient un score « Bon ».

3.2.2.6.4 Concentrations en Azote total

Les concentrations en Azote total dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Selon leur situation littorale, côtière ou océanique, l'évaluation des concentrations en Azote total nécessite de tenir en compte le niveau de dilution des apports terrigènes, établi pour le Nt par ZONECO/CNRT (Tableau 64).

Tableau 64 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des eaux marines selon leur concentration en Azote total

Grille de not	ation de référer	nce ZONECO:
Situation	Nt (μmol/L)	Classe
	< 20	Bon
Littoral	20 - 50	Moyen
	≥ 50	Mauvais
	< 5	Bon
Côtier	5 - 10	Moyen
	≥ 10	Mauvais
	< 1,5	Bon
Océanique	1,5 - 3	Moyen
	≥3	Mauvais

Tableau 65 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Azote total dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Nt (μmol/L) -	eaux de surf	ace	Ì																	
Zone	Situation	Station	N	2012 Moy	N	2013 Moy	N	2014 Moy	N	2015 Moy	N	2016 Moy	Méd	Per90 2014-16	Moy 2016 ≤ station	Per90 2014-16 → classe	Pas de hausse temporelle ?	Score 2015	Score 2016 par station	
Goro		ST14	6	4,55	6	4,19	3	6,74	6	5,39	3	5,96	5,73	6,93		Bon	Bon	Bon	Bon	Bon
U- 0		ST13	6	5,20	6	3,93	3	7,21	6	5,13	3	5,60	5,39	7,18		Bon	Bon	Bon	Bon	
Ile Ouen		ST20	6	4,80	6	4,05	3	7,22	6	5,14	3	5,62	5,22	7,34		Bon	Bon	Bon	Bon	Bon
Baie Port Boisé		ST03*	6	4,86	6	4,25	3	6,07	6	5,02	3	7,30	7,63	7,49		Bon	Mauvais	Bon	Moyen	Moyen
Baie Kwé	Littoral	ST06*	6	4,11	6	4,25	3	6,26	6	5,37	3	5,43	5,63	6,53	Bon	Bon	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	6	4,71	6	4,20	3	8,40	6	4,58	3	5,13	4,83	8,04		Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	6	4,67	6	4,46	3	7,13	6	5,44	3	5,31	5,24	6,96		Bon	Bon	Bon	Bon	БОП
Baie Nord		ST15°	6	4,51	6	4,45	3	7,25	6	6,45	3	4,81	4,91	7,12	Bon	Bon	Bon	Moyen	Bon	Bon
Port de Prony		ST16"	6	4,40	6	4,19	3	8,20	6	5,61	3	5,23	5,10	7,55	Bon	Bon	Bon	Bon	Bon	Bon
Canal Havener	Océanique	ST02	6	4,50	6	3,79	3	6,63	6	5,29	3	4,91	5,10	6,69		Mauvais	Bon	Bon	Bon	0
Canal Havannah	Cotier	ST07	6	4,80	6	4,05	3	6,18	6	4,97	3	4,26	4,21	6,57		Moyen	Bon	Bon	Bon	Bon
II Manlat	Cotier	ST21	6	4,28	6	3,69	3	6,81	6	5,74	3	6,21	4,60	8,13		Moyen	Bon	Bon	Bon	Bon
Ugo et Merlet	Océanique	ST05'	6	4,19	6	3,94	3	6,89	6	5,22	3	4,41	4,33	6,97		Mauvais	Bon	Bon	Bon	БОП
Emissaire	Cotier	ST09'	6	4,62	6	4,15	3	6,14	6	5,45	3	4,51	4,21	6,37	Bon	Moyen	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Nt, aucune station de suivi ne semble refléter de dégradation du milieu par comparaison avec les valeurs mesurées en stations de référence. Seule la station ST03 située en Baie de Port Boisé présente une tendance à la dégradation avec une augmentation de sa concentration annuelle en Nt par rapport à l'année 2015. Elle présente par ailleurs la concentration annuelle la plus importante du réseau en 2016, un score « Moyen » lui est donc attribué. Toutes les stations conservent un score « Bon » cette année.

De plus, toutes les valeurs de percentile 90 mesurées sur 3 ans (2014 à 2016) correspondent à un bon état du milieu d'après la grille de référence de ZONECO/CNRT, à l'exception des 2 stations océaniques ST02 et ST05 qui reflètent un état « Mauvais » et des 3 stations côtières ST07, ST21 et ST09 qui reflètent un état « Moyen », en raison d'une tendance globale à l'augmentation sur toutes les stations, l'état général reflétant donc des variations naturelles d'autant plus accentuées dans le lagon et en situation proche du récif barrière, et non une perturbation anthropique.

En 2015, ST15 avait obtenu un score « Moyen » en raison de sa moyenne élevée et de l'écart aux valeurs de sa station de référence ST18, ce qui n'est plus le cas en 2016, cela justifie son reclassement par l'attribution d'un score « Bon ».

3.2.2.6.5 Concentrations en Phosphore organique particulaire

Les concentrations en POP dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en POP dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 66 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en POP dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

POP (µmol/L)	- eaux de sur	face	ĺ															
Zone	Situation	Station		2012		2013		2014		2015		2016	i	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	Z	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Méd	station ref.?	temporelle?	2015	par station	par zone
Goro		ST14	5	0,056	5	0,097	6	0,049	6	0,045	6	0,066	0,065		Bon	Bon	Bon	Bon
lle Ouen		ST13	6	0,063	4	0,083	3	0,052	6	0,081	6	0,088	0,081		Bon	Bon	Bon	Bon
lie Ouen		ST20	5	0,076	5	0,086	5	0,047	6	0,073	6	0,090	0,011		Bon	Bon	Bon	DUII
Baie Port Boisé		ST03*	5	0,066	6	0,118	1	0,027	6	0,072	6	0,082	0,081		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	4	0,077	5	0,079	5	0,059	6	0,055	6	0,073	0,069	Bon	Bon	Bon	Bon	Bon
Danna Ansa at Casu		ST19"	6	0,058	5	0,126	4	0,060	6	0,084	6	0,074	0,048		Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST18°	6	0,055	6	0,100	5	0,041	6	0,085	6	0,078	0,068		Bon	Bon	Bon	DUII
Baie Nord		ST15°	5	0,086	5	0,100	6	0,073	5	0,070	6	0,074	0,068	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	6	0,060	6	0,084	4	0,060	6	0,079	6	0,081	0,071	Mauvais	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	5	0,048	5	0,059	4	0,046	6	0,051	6	0,051	0,052		Bon	Bon	Bon	Bon
Canal navannan	Cotier	ST07	6	0,090	6	0,089	4	0,044	6	0,041	6	0,048	0,048		Bon	Bon	Bon	DUII
	Cotier	ST21	5	0,070	4	0,084	3	0,047	6	0,066	6	0,059	0,055		Bon	Bon	Bon	0
Ugo et Merlet	Océanique	ST05'	3	0,050	4	0,070	5	0,035	6	0,039	6	0,042	0,039		Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	5	0,062	5	0,075	4	0,054	6	0,056	6	0,052	0,051	Mauvais	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en POP, seules les stations de suivi ST16 et ST19 semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives, toutefois aucune évolution négative n'est observée, toutes les stations conservent un score « Bon » cette année.

3.2.2.6.6 <u>Concentrations en Phosphore organique dissout</u>

Les concentrations en POD dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Il n'existe pas de valeurs seuils dans le guide ZONECO/CNRT pour les concentrations en POD dans l'eau de mer, l'évaluation de la qualité du milieu est donc basée sur une comparaison des valeurs enregistrées dans les stations de suivi avec celles mesurées dans leurs stations de référence, ainsi que sur l'évolution de la chronique des données depuis 2012.

Tableau 67 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en POD dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

POD (μmol/L)	- eaux de sur	face																
Zone	Situation	Station		2012		2013		2014		2015		2016	6	Moy 2016 ≤	Pas de hausse	Score	Score 2016	Score 2016
Zone	Situation	Station	N	Moy	Méd	station ref.?	temporelle?	2015	par station	par zone								
Goro		ST14	5	0,178	4	0,153	6	0,210	3	0,190	6	0,160	0,155		Bon	Bon	Bon	Bon
lle Ouen		ST13	5	0,146	6	0,229	6	0,217	3	0,103	6	0,064	0,068		Bon	Bon	Bon	Bon
lie Ouen		ST20	5	0,116	5	0,290	6	0,272	3	0,153	6	0,085	0,071		Bon	Bon	Bon	DUII
Baie Port Boisé		ST03*	6	0,188	5	0,214	6	0,183	3	0,520	6	0,127	0,114		Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	4	0,182	6	0,194	6	0,227	6	0,083	6	0,075	0,068	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	6	0,191	4	0,324	6	0,239	6	0,078	3	0,108	0,104		Bon	Bon	Bon	Bon
boilile Alise et Casy		ST18°	6	0,156	6	0,324	6	0,219	3	0,114	6	0,089	0,095		Bon	Bon	Bon	BUII
Baie Nord		ST15°	6	0,147	5	0,262	6	0,203	2	0,089	6	0,115	0,134	Mauvais	Bon	Bon	Bon	Bon
Port de Prony		ST16"	6	0,185	4	0,200	6	0,206	3	0,074	6	0,115	0,122	Mauvais	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	5	0,178	6	0,249	6	0,207	2	0,129	6	0,140	0,142		Bon	Bon	Bon	Bon
Canai navannan	Cotier	ST07	6	0,193	5	0,233	6	0,205	3	0,117	6	0,093	0,089		Bon	Bon	Bon	DUII
	Cotier	ST21	6	0,183	6	0,244	6	0,210	6	0,130	3	0,157	0,162		Bon	Bon	Bon	0
Ugo et Merlet	Océanique	ST05'	5	0,154	4	0,172	6	0,247	3	0,160	6	0,122	0,117		Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	6	0,206	5	0,144	6	0,268	3	0,120	6	0,090	0,090	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en POD, seules les stations de suivi ST15 et ST16 semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives, toutefois aucune évolution négative n'est observée, toutes les stations conservent un score « Bon » cette année.

3.2.2.6.7 Concentrations en Phosphore total

Les concentrations en Phosphore total dans les eaux de surface sont mesurées au niveau de 4 stations de suivi sous influence directe et 10 stations sous influence nulle ou modérée des activités minières et industrielles. Selon leur situation littorale, côtière ou océanique, l'évaluation des concentrations en Phosphore total nécessite de tenir en compte le niveau de dilution des apports terrigènes, établi pour le Pt par ZONECO/CNRT (Tableau 68).

Tableau 68 : Grille de notation de référence selon ZONECO/CNRT pour l'évaluation du niveau de perturbation des eaux marines selon leur concentration en Phosphore total

Grille de nota	ation de référe	nce ZONECO:
Situation	Pt (μmol/L)	Classe
	< 3	Bon
Littoral	3 - 6	Moyen
	≥6	Mauvais
	< 1	Bon
Côtier	1-2	Moyen
	≥2	Mauvais
	< 0,5	Bon
Océanique	0,5 - 1	Moyen
	≥1	Mauvais

Tableau 69 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en Phosphore total dans 14 stations de mesure des eaux marines de surface, et leur degré de perturbation selon la grille de référence de ZONECO/CNRT et d'après la comparaison des zones de suivi avec les valeurs enregistrées dans leurs stations de référence respectives, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Pt (μmol/L) -	eaux de surfa	ace	1																	
Zone	Situation	Station	N	2012 Mov	N	2013 Mov	N	2014 Mov	N	2015 Mov	N	2016 Mov	Méd	Per90	Moy 2016 ≤ station ref. ?	Per90 2014-16 → classe ZONECO ?	Pas de hausse temporelle?	Score 2015	Score 2016 par station	Score 2016 par zone
Goro		ST14	6	0,295	6	0,275	3	0,308	3	0,230	3	0,311	0,323	0,324	station rei. :	Bon	Bon	Bon	Bon	Bon
lle Ouen		ST13	6	0,285	5	0,335	3	0,344	3	0,187	3	0,230	0,210	0,353		Bon	Bon	Bon	Bon	Bon
lie Ouen		ST20	6	0,295	6	0,419	3	0,301	3	0,220	3	0,229	0,205	0,301		Bon	Bon	Bon	Bon	Воп
Baie Port Boisé		ST03*	6	0,328	6	0,372	3	0,305	3	0,117	м	0,299	0,302	0,323		Bon	Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	6	0,312	6	0,331	3	0,310	3	0,127	3	0,266	0,253	0,309	Bon	Bon	Bon	Bon	Bon	Bon
Bonne Anse et Casy		ST19"	6	0,332	6	0,500	3	0,252	3	0,170	3	0,234	0,227	0,279		Bon	Bon	Bon	Bon	Bon
Boilile Alise et Casy		ST18°	5	0,306	6	0,481	3	0,306	3	0,223	3	0,223	0,276	0,306		Bon	Bon	Bon	Bon	DUII
Baie Nord		ST15°	6	0,322	5	0,395	з	0,321	з	0,180	m	0,243	0,211	0,352	Mauvais	Bon	Bon	Bon	Bon	Bon
Port de Prony		ST16"	6	0,325	6	0,356	3	0,288	3	0,180	3	0,282	0,276	0,350	Mauvais	Bon	Bon	Bon	Bon	Bon
Canal Havannah	Océanique	ST02	6	0,303	5	0,341	3	0,319	3	0,167	М	0,269	0,287	0,321		Bon	Bon	Bon	Bon	Bon
Cariarriavaririari	Cotier	ST07	6	0,342	6	0,374	3	0,315	3	0,157	3	0,239	0,236	0,323		Bon	Bon	Bon	Bon	Don
Ugo et Merlet	Cotier	ST21	6	0,338	5	0,356	3	0,349	3	0,140	3	0,393	0,259	0,444		Bon	Bon	Bon	Bon	Bon
ogo et wieriet	Océanique	ST05'	6	0,297	6	0,318	3	0,312	3	0,197	3	0,262	0,257	0,312		Bon	Bon	Bon	Bon	Doll
Emissaire	Cotier	ST09'	4	0,280	6	0,257	3	0,325	3	0,170	3	0,195	0,231	0,326	Bon	Bon	Bon	Bon	Bon	Bon

En regard de la moyenne 2016 des concentrations en Pt, seules les stations de suivi ST15 et ST16 semblent refléter un milieu modérément perturbé par rapport à leurs stations de référence respectives, toutefois toutes les valeurs de percentile 90 mesurées sur 3 ans (2014 à 2016) correspondent à un bon état du milieu d'après la grille de référence de ZONECO/CNRT. De plus, aucune évolution négative n'est observée, toutes les stations conservent donc un score « Bon » cette année.

3.2.2.6.8 <u>Bilan des concentrations en matière organique</u>

Tableau 70 : Tableau récapitulatifs des scores 2016 basés sur la concentration annuelle moyenne en matière organique dans 14 stations de mesure des eaux marines de surface

Bilan matiè	ere organique - ea	ux de surface									
Zone	Situation	Station	СОР	NOP	NOD	Nt	РОР	POD	Pt	Score 2015 par zone	Score 2016 par zone
Goro		ST14	Bon	Bon	Moyen	Bon	Bon	Bon	Bon	Bon	Bon
lle Ouen		ST13	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
lie Ouell		ST20	Bon	Bon	Bon	Bon	Bon	Bon	Bon	БОП	БОП
Baie Port		ST03*	Bon	Bon	Bon	Moyen	Bon	Bon	Bon	Bon	Bon
Baie Kwé	Littoral	ST06*	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Bonne Anse		ST19"	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
et Casy		ST18°	Bon	Bon	Bon	Bon	Bon	Bon	Bon	ВОП	БОП
Baie Nord		ST15°	Bon	Bon	Moyen	Bon	Bon	Bon	Bon	Moyen	Bon
Port de Prony		ST16"	Bon	Bon	Moyen	Bon	Bon	Bon	Bon	Bon	Bon
Canal	Océanique	ST02	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Do.	g _{au}
Havannah	Cotier	ST07	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Ligo et Mariet	Cotier	ST21	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Pan
Ugo et Merlet	Océanique	ST05'	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon
Emissaire	Cotier	ST09'	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon

3.2.2.7 Paramètres biologiques : suivi des habitats récifaux, des communautés de poissons, de macroinvertébrés et des perturbations par LIT

3.2.2.7.1 Suivi des habitats récifaux par LIT (réseaux Vale NC et OEIL)

Le réseau Vale NC, comprend le suivi annuel sur 12 stations réparties dans 7 zones.

Le réseau OEIL, comprend le suivi sur 8 stations réparties dans 2 zones Baie Kwé et Baie de Port Boisé en 2011, 2013 et 2014. Ce réseau n'a pas été suivi en 2015 et 2016, les résultats et interprétations présentées ci-dessous sont celles issues de la campagne 2014.

L'évaluation de la couverture corallienne se base notamment sur de notation de référence établie par ACROPORA, ainsi que sur l'évolution temporelle de la chronique des données.

<u>Remarque</u>: Le référentiel ACROPORA n'est pas tout à fait adapté aux stations suivis par Vale NC. En effet ACROPORA a choisi initialement volontairement des stations à fort recouvrement corallien. Leur grille d'évaluation est donc basée sur ce postulat de départ. Les stations suivis par Vale NC présentes parfois naturellement de faible recouvrement en corail. Ainsi l'attribution d'une note à la station sur la base de l'appréciation de la grille ACROPORA n'est pas représentative de « l'état de santé » du substrat.

Tableau 71 : Grille de notation de référence selon ACROPORA pour l'évaluation du niveau de perturbation des habitats marins selon leur taux de recouvrement en corail vivant

Grille de notati	on de référence
ACRO	PORA:
% couv. corail	Classe
≥ 40	Fort
21 - 39	Moyen
≤ 20	Faible

Tableau 72 : Tableau de valeurs indiquant l'évolution de la couverture corallienne dans 12 stations de suivi du réseau de Vale NC et 8 stations de suivi du réseau de l'OEIL, et leur degré de perturbation selon la grille de référence de ACROPORA, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Recouvrement cora	amen (%) - Salso	лі спацае	H	2012	_	2012	_	2014	_	2015	_	2016		Forture	·	S 2065	C 20
Zone	Station	Tombant	_	2012	_	2013	_	2014	_	2015		2016	Moy 2016 → ref	Evolution	Score	Score 2016	Score 2016
			N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	ACROPORA ?	temporelle ?	2015	par station	par zone
		Haut	1	38,5	1	45,5	1	44,0	1	48,0	1	34,5	Moyen	Baisse	- > .		_
Ile Ouen	ST23	Milieu	1	22,5	1	33,0	1	35,5	1	28,5	1	31,0	Moyen	Stable	Très bon	Bon	Bon
		Bas	1	10,5	1	8,5	1	7,0	1	6,0	1	5,0	Faible	Baisse			
Pointe Puka	ST35	Haut	1	25,0	1	28,5	1	28,0	1	28,0	1	29,0	Moyen	Stable	Bon	Bon	Bon
		Milieu	1	4,0	1	4,5	1	7,0	1	6,0	1	6,5	Faible	Stable			
Bonne Anse et Casy	ST17	Haut	1	18,5	1	17,0	1	22,5	1	23,5	1	23,5	Moyen	Stable	Bon	Bon	Bon
,		Milieu	1	6,5	1	5,5	1	9,0	1	12,0	1	13,5	Faible	Hausse			
Baie Nord	ST01	Haut	1	62,5	1	51,0	1	63,0	1	60,0	1	41,0	Fort	Baisse	Bon	Bon	Bon
		Milieu	1	30,5	1	24,5	1	41,0	1	36,5	1	36,0	Moyen	Stable			
		Haut	1	8,5	1	6,5	1	6,5	1	4,5	1	8,0	Faible	Hausse			
Port de Prony	ST12	Milieu	1	35,0	1	31,0	1	38,0	1	30,5	1	27,0	Moyen	Baisse	Moyen	Moyen	Moyen
		Bas	1	10,0	1	13,0	1	15,0	1	11,5	1	10,5	Faible	Baisse			
		Haut	1	24,0	1	29,5	1	27,0	1	26,5	1	27,0	Moyen	Stable	_	_	
	ST27	Milieu	1	14,5	1	14,5	1	28,5	1	20,5	1	24,0	Moyen	Hausse	Bon	Bon	
		Bas	1	10,0	1	17,0	1	24,5	1	18,5	1	22,0	Moyen	Hausse			
		Haut	1	24,0	1	27,5	1	33,0	1	26,0	1	21,5	Moyen	Baisse			
	ST28	Milieu	1	25,0	1	25,0	1	33,5	1	29,5	1	24,0	Moyen	Baisse	Bon	Bon	
		Bas	1	1,5	1	1,5	1	2,0	1	2,0	1	1,5	Faible	Stable			
		Haut	1	9,0	1	15,5	1	16,0	1	15,5	1	18,0	Faible	Hausse			
Canal Havannah	ST29	Milieu	1	9,0	1	13,5	1	13,0	1	13,5	1	14,0	Faible	Stable	Bon	Bon	Très bon
		Bas	1	1,0	1	1,5	1	2,5	1	1,5	1	1,5	Faible	Stable			
		Haut	1	19,0	1	28,0	1	26,0	1	24,0	1	29,0	Moyen	Hausse			
	ST30	Milieu	1	19,0	1	26,0	1	28,0	1	21,0	1	30,0	Moyen	Hausse	Bon	Bon	
		Bas	1	9,5	1	10,5	1	12,5	1	10,5	1	9,0	Faible	Baisse			
		Haut	1	26,0	1	25,5	1	38,0	1	37,0	1	34,5	Moyen	Baisse			
	ST40	Milieu	1	22,0	1	27,5	1	26,0	1	26,0	1	32,5	Moyen	Hausse	Bon	Bon	
		Bas	1	4,5	1	7,5	1	5,5	1	6,5	1	7,5	Faible	Hausse			
		Haut	1	39,5	1	51,0	1	50,0	1	44,5	1	45,0	Fort	Stable			
	ST41	Milieu	1	36,5	1	45,5	1	42,0	1	43,0	1	39,0	Moyen	Baisse	Très bon	Très bon	
Ugo et Merlet		Bas	1	6,0	1	9,0	1	12,0	1	10,0	1	9,0	Faible	Baisse			Très bon
	CT42	Haut	1	22,0	1	26,0	1	29,0	1	28,0	1	37,5	Fort	Hausse	T.) - 1	Tube hour	
	ST42	Milieu	1	28,5	1	22,0	1	24,5	1	26,5	1	24,5	Moyen	Stable	Très bon	Très bon	
_				2011		2013		2014					Moy 2014 → ref	Evolution			Score 2014
Zone	Station	Tombant	N	Moy	N	Moy	N	Moy					ACROPORA ?	temporelle?	Score 201	4 par station	par zone
	CT24	Milieu	1	25,0	1	14,0	1	29,6					Moyen	Inconnu			
	ST31	Bas	1	17,9	1	23,1	1	27,8					Moyen	Hausse	'	Bon	
		Haut	1	1,2	1	4,0	1	0,7					Faible	Stable			
	ST32	Milieu	1	3,5	1	0,3	1	5,2					Faible	Stable	M	loyen	
Baie Kwé		Bas	1	10,6	1	8,5	1	3,4					Faible	Baisse	i		Mauvais
		Haut	1	11,0	1	6,6	1	4,5					Faible	Baisse			
	ST33	Milieu	1	39,8	1	18,5	1	26,9					Moyen	Inconnu	Mé	diocre	
		Milieu	1	8,9	1	12,7	1	7,1					Faible	Stable			
	ST34	Bas	1	10,6	1	9,8	1	8,9		pas de d	lonn	ées	Faible	Baisse	M	loyen	
		Haut	1	1,6	1	11,3	1	8,6		ultéri			Faible	Inconnu			
	ST36	Milieu	1	15,8	1	15,6	1	16,4		a.cc.		.5	Faible	Stable		Bon	
	3130	Bas	1	53,8	1	15,0	1	48,1					Fort	Inconnu	· ·	5011	
		Milieu	1	16,4	1	19,1	1						Faible	Stable	 		
	ST37		1		1		1	19,8								Bon	
		Bas	1	1,9	1	2,3	1	2,6					Faible	Stable			Mádina
Dala da Dant Dal-4		11-14			. 1	17,1	1	19,0					Faible	Hausse	I		Médiocre
Baie de Port Boisé	CTOO	Haut	1	16,5	-	46.5	-	24.5					24-	Ct-!!		Pon	
Baie de Port Boisé	ST38	Milieu	1	20,9	1	19,2	1	24,5					Moyen	Stable	1	Bon	
Baie de Port Boisé	ST38	Milieu Bas	1 1	20,9 10,3	1	16,5	1	28,9					Moyen	Inconnu	,	Bon	
Baie de Port Boisé		Milieu Bas Haut	1 1 1	20,9 10,3 2,3	1 1	16,5 9,5	1 1	28,9 3,2					Moyen Faible	Inconnu Stable			
Baie de Port Boisé	ST38	Milieu Bas	1 1 1 1 1	20,9 10,3 2,3 30,9	1 1 1	16,5	1 1 1 1	28,9					Moyen	Inconnu		Bon diocre	

Seule la saison chaude est considérée, de façon à obtenir des résultats comparables avec ceux des stations suivies dans le cadre des programme RORC et ACROPORA qui eux n'effectuent qu'une session d'échantillonnage à la saison chaude.

La quasi-totalité des stations du réseau de Vale NC est classée comme en « Bon » état vis-à-vis de l'évolution du recouvrement corallien, puisqu'aucune importante diminution de recouvrement n'a été observée sur ces 3 dernières années, à l'exception d'un transect de la station ST23 à l'Ile Ouen (les 2 autres transects y enregistrant une couverture corallienne satisfaisante) et d'un transect de la station ST12 au Port de Prony, pour lesquelles le taux de recouvrement est très faible et continue à diminuer. La station du port est donc à nouveau cette année considérée comme dans un état « Moyen » vis-à-vis de l'évolution de la couverture corallienne.

La zone Canal de la Havannah a été considérée comme en « Très bon » état, tout comme l'année dernière et malgré les faibles tendances négatives constatées sur 4 transects sur 3 stations différentes cette année, les taux de recouvrements restant généralement supérieurs aux taux de recouvrements définis en 2012.

En revanche le score « Très bon » n'a pas été conservé cette année pour la station ST23 de l'île Ouen car la diminution de couverture observée sur un transect n'est plus compensée par une augmentation de couverture corallienne sur les autres transects, le score est donc « Bon » pour 2016.

Les stations d'Hugo et Merlet présentent de forts recouvrements coralliens et une communauté soit stable soit en expansion, à l'exception d'une légère tendance à la baisse sur un transect. Le score est donc Très bon pour cette zone qui est hors d'influence industrielle ou minière et qui constitue une zone de référence.

En ce qui concerne les stations du réseau de suivi de l'OEIL, dans les deux baies, Baie Kwé et Baie de Port Boisé, les couvertures coralliennes sont faibles ou moyennes comparativement au référentiel ACROPORA.

En baie de Port-boisé, la tendance semble plutôt à la stabilité sauf en station ST39 où l'évolution est négative sur 2 transects passant de 30,9% de recouvrement à 13% sur l'un et de 42,8% à 13,8% sur l'autre entre 2011 et 2014. Au vu de l'importance de la diminution du recouvrement sur ces 3 années la note est donc « Médiocre » pour la station et la zone.

En baie Kwé, la tendance semble être plus négative qu'en baie de Port Boisé avec une diminution du recouvrement corallien sur les 3 stations. De plus les conclusions du rapport 2014 mettent en exergue un envasement très important en Baie Kwé, cette zone serait encore plus dégradée que la baie de Port Boisé, la note finale est donc « Mauvaise » pour cette zone.

La station ST01 de la Baie Nord présente sur son transect en haut de tombant la plus forte diminution en couverture corallienne du réseau en 2016 (diminution de 60% à 41% de recouvrement corallien). Le pourcentage de recouvrement corallien reste toutefois fort selon le référentiel ACROPORA, et concerne un peuplement corallien à richesse spécifique très importante, comprenant des espèces rares. Ce fort taux de mortalité, qui affecte principalement des massifs de coraux branchus, ne justifie pas de déclassement.

3.2.2.7.2 <u>Suivi des habitats récifaux, des communautés de poissons, des macro-invertébrés et des perturbations par LIT (réseau ACROPORA et RORC)</u>

Ce sont 9 stations dans le Sud, réparties dans 5 zones qui sont suivies annuellement par le réseau ACROPORA, et 2 stations dans le Sud regroupées en 1 zone (Bonne Anse et Casy) qui sont suivies annuellement par le réseau RORC.

Les résultats à disposition cette année sont ceux de 2016 (missions de suivi s'étant déroulées de Décembre 2015 à Février 2016). Cet indicateur est basé sur l'habitat récifal, les poissons, les macro-invertébrés et les perturbations mais également sur la prise en compte de l'évolution de ces éléments, campagne après campagne et de leur appréciation à dire d'expert, résumés dans le tableau suivant.

Tableau 73 : Tableau de valeurs indiquant l'évolution, la densité et la diversité de la couverture corallienne, des communautés de poissons et de macro-invertébrés, ainsi que l'état des perturbations dans 9 stations de suivi du réseau ACROPORA et 2 stations de suivi du réseau RORC, permettant l'attribution d'un score final par station puis par zone pour l'année 2016

Suivi fa	aune marine - saison	chaude	Hab	itat		Poissons		N	acro-invertébr	és		Pressions				
Réseau	Zone	Station	% couv. Corail 2016	Evolution 2012-16	Diversité 2016	Densité 2016	Evolution 2012-16	Diversité 2016	Densité 2016	Evolution 2012-16	Influence terrigène	Influence anthropique	Degré de perturbation	Score 2015	Score 2016 par station	Score 2016 par zone
	Baie Kwé	Bekwé	41	Stable	6	45,8	Hausse	5	5,8	Stable	Forte	Faible	Elevé	Bon	Bon	Bon
	Goro	Paradis	23	Stable	6	102,8	Stable	9	19,3	Hausse	Faible	Faible	Faible	Bon	Bon	Bon
	Canal Havannah	Passe Toémo	57	Hausse	7	23,8	Stable	5	12,5	Stable	Moyenne	Moyenne	Elevé	Très bon	Très bon	Très bon
		Kanga Daa	46	Hausse	5	63,0	Stable	9	13,3	Stable	Nulle	Faible	Moyen	Très bon	Très bon	
ACROPORA	lle des Pins	Daa Kouguié	33	Stable	5	33,3	Hausse	8	208,8	Hausse	Nulle	Faible	Faible	Très bon	Très bon	Très bon
		Daa Yetaii	33	Stable	5	10,0	Stable	9	193,3	Stable	Nulle	Faible	Moyen	Très bon	Très bon	
		Bodjo	66	Hausse	5	26,5	Hausse	5	33	Stable	Forte	Faible	Elevé	Très bon	Très bon	
	lle Ouen	Daa Moa	48	Stable	6	8,8	Baisse	5	34,3	Stable	Moyenne	Moyenne	Elevé	Très bon	Très bon	Très bon
		Nemondja	89	Stable	4	39,8	Stable	5	3,3	Baisse	Faible	Moyenne	Elevé	Très bon	Très bon	
RORC	Pronv	Casy	28	Stable	6	24,7	Stable	6	45,7	Hausse				Bon	Bon	Bon
NORC	FIOLIY	Bonne Anse	63	Hausse	7	48,0	Stable	6	5,5	Stable				Très bon	Très bon	DOII

Dans l'ensemble, ces stations de suivi présentent des communautés stables ou en expansion, ainsi qu'une influence anthropique généralement faible. Toutes ces stations se sont donc vues attribuer un score « Bon » ou « Très bon » pour ce suivi des communautés.

3.2.2.7.3 <u>Suivi UNESCO triennal, des habitats récifaux, des communautés de poissons, des macro-invertébrés et des perturbations dans la zone de la réserve Merlet</u>

Ce sont 24 stations réparties dans le lagon dans la zone corne Sud intégré à la zone Ugo et Merlet qui sont suivies tous les 3 ans par l'UNESCO, et dont les dernières données datent de 2013.

Le score écologique, ou état de santé, pour les stations de la corne Sud est directement basé sur les conclusions du rapport 2013 (Wantiez et al., 2014). Ainsi le bilan de santé réalisé en 2013 fait état d'un écosystème en bonne santé. Il n'y a pas d'impact anthropique significatif majeur décelable. L'intégrité s'est maintenue depuis 2006 (état initial du suivi) avec une relative stabilité des communautés et de l'habitat pendant la période. Le score est donc « Très bon » pour cette zone.

3.3 Synthèse des scores écologiques et chimiques en milieu marin : Affectation des paramètres dans le score chimique ou écologique.

Rappel des règles d'agrégations utilisées pour passer des notes aux scores écologique et chimique :

- Le principe de conservation de la note du critère le plus déclassant est appliqué.
- Lors de la détermination du score écologique un poids plus important est donné aux notes issues des suivis biologiques par rapport aux notes issues de la physicochimie ou de l'hydro-morphologie.
- L'avis d'expert intervient en complément de ces règles, pour ajuster les scores. Ainsi plusieurs ajustements ont été opérés :
- 1) La zone Canal de la Havannah considérée en champ lointain vis à vis de l'influence industrielle et minière n'a subi aucune dégradation chimique ou écologique par rapport à l'année dernière. Elle était classée en « Très bon état » en 2014 puis en 2015, nous avons donc décidé de conserver ce classement.
- 2) En Baie Kwé le score écologique est Mauvais tandis qu'aucunes notes ne déclassent autant la zone. Ce choix est basé sur la comparaison avec la baie de Port Boisé qui est classée en Médiocre et pourtant dans un état un peu moins dégradé que la Baie Kwé. La Baie Kwé présente en effet un niveau d'envasement bien supérieur qui mérite l'attribution d'un score écologique Mauvais.

Tableau 74 : Récapitulatif des notes par paramètre et par station et de leur agrégation en scores écologiques et chimiques par zone en 2016 pour le milieu marin.

Suivi en m	llou marin												Eta	at chimiq	ue																					Eta	t écologiqu	e										
Sulvi eli III	ineu maim													Métaux													l aquatiqu		MES			Eléments	majeurs			Chl.a		s nutritif					organiqu				lécifs	Score 2016
Zone	Station		Mn			N	Ni		Cr VI		Cr		- 4	As Co			Co		Cu		Fe			S Ca/Fe	Score 2016	1º lur					Mg ²⁺	Na⁺	Ca ²⁺		SO ₄ ² ·		NO ₂ ⁻⁺ NO ₃	NH ₄ ⁺	PO ₄ 3-	COP	NOP I	NOD	Nt P	OP PO	D Pt	Substra	Etat alaba	par zone
ZONE		E	м 5	P	E	М	S	Р	E	E	М	s	P I	E E	E	М	S	Р	E		l S	Р	E E	м м	F2 25/10	E E	E	E		E	E	E	E M		E		E	E		E	_	_		E E	_	Vale NO	Etat global	,
Goro	ST14	=			=				=	=					=				=	=			= =		_	= =	=	=	¥	=	=	= :	=	=	=	=	=	=	=	=	=	Y	=		=			_
	Paradis																																														=	
	ST13	=			=				=	=									=	=			= =						=	=	=		-		=	_		=	_	=		=			=			
	ST20	=			=				=	=				= =	=				=	=							=	=	=	=	=	= :	=	=	=	=	=	=	=	=	=	=	=		=			
Ile Ouen	ST23		_	+	_					-	_	_	_	_	_	+-		-		_					=	-	+	_		1	_		_	_		-		-		\rightarrow		_	_	_	_	=	4	=
	Bodjo		_		_						_	_	_	_	_						_					\vdash	_	_		\perp			_		_								_				=	
	Daa Moa Nemondia		_	_	_						_	_	_	_		+	-			_	_					\vdash	_	+		+		_	_	_	_			1			_		_	_	_		=	
											_				<u> </u>	_			×									_	Y									_										
	ST03* ST36	=	_		=				=	=	_		-		` `				`	=			= =				=	=	7	=	=	= :	=	=	=	=	=	7	=	=	=	=	7		=	2014	_	
Baie Port Boisé			-	_	-						-+	-	-	-	-	+-	-				-				V		_	+		+				_	+			+			-	-		_	_	2014		
bale Purt Buse	ST38	-	_	_	+		\vdash			\vdash	-+	_	_	+	+	+-	+	-		-	+-		_	-		-	_	+		+	_	-	+	+-	+	+		+		-	-	-	-	_	_	2014		-
	ST39		_	+	1						-	-	_	+	+-	+	+				+						+	+					-	+	+	1		1				-	+			2014		
	ST06*	=			-				=	=					-				=	=			= =				=	=	Y	=	=	= :		=	=	-	=	=	=	=	-	=	=			2024	_	
	ST06-KW1																							=					,				-														_	
	ST31																																									\dashv				2014		
Baie Kwé	ST32																								=																					2014		1
	ST33																																									\neg				2014		1
	ST34																																													2014		1
	Bekwé																																														=	
	ST19"	=			=				=	=					<u> </u>				=	=			= =				=	=	=	=	=	= :	=	=	=	=	=	=		=	=	=	=		=			
Bonne Anse et	ST18*	=			=				=	=					· `				=	=			= =			= =	=	=	=	=	=	= :	=	=	=	=	=	=		=	=	=	=		-			
Casy	ST17																								- >																					=		=
,	Casy																																														=	
	Bonne Anse																											_													_				_		=	
Baie Nord	ST15*	7			=				=	=			-	= =	=				=	=			= =	=	V		=	=	= '>	=	=	= :	= =	=	=	=	=	=	7	=	,	=	7	= =	=			,
	STO1		_								_				_	_				_							_	_				_						-			_	_	_			=	4—	
Port de Prony	ST16" ST12	=	_	=	=			=	=	=			= -	= =	-	_		=	=	=		=	= =	P P	=		=	=	=	=	=	= :	=	=	=	=	=	>	=	=	=	<u>۷</u>	=	= =	=	_		=
	ST02	=							=		_									_			= =					_		=					=	=	=		=	_			_				+	
	ST07	-	_	_	-			_	-		_				=				-	-					-		_	Ŧ		=	-	-		=		+=	-	H	=	-	-	-	-		+-		+	-
	ST27	-	_		_				-	-			_		_				-	_										-	-		_	_	_	-	-	-	-	-		-	-		_	-	_	
Canal	ST28		_	+							_	_	_	_	_	+-	1				_				-	\vdash	+	+		+		_	-		+			1		-		-	+				_	
Havannah	ST29			+							_			+	_	+				-					=	\vdash		+															-	_				=
	ST30										-			_	_	+																	_					1									_	
	ST40																																													=		
	Passe Toemo															L																															=	
	ST21	=			=				=	=				= =	=				=	=							=	=	=	=	=	= :	-	=	=	=	=	=	=	=	=	=	=	= =	=			
	ST05'	=			=				=	=					=				=	=			= =				=	=	=	=	=	= :		=	=	=	=	=	=	=	=	=	=		=			
Ugo et Merlet																									=																					=		=
	ST42																																													=		
	St. UNESCO																																														=	
Emissaire	ST09'	=			=				=	=				= =	=				=	=			= =		-	= =	=	=	=	=	=	= :		=	=	=	=	=	=	=	=	=	=	= =	-	NA	NA	_
	ST60-NE																							=					=				=									\perp				NA	_	
	Kanga Daa												_																									_				\perp					=	
lle des Pins	Daa Kouguié		_		-						-	_		-		-	-	-									-			\perp				-		-		1			_	\dashv	-				=	=
	Daa Yetaii																																														=	
	<u>Légende :</u>			us influe us influe			e VNC				Code co			es :		Très Bon Moy				Ma	diocre uvais éterminé				lassée par i	15 et 2016 apport à 2019 rapport à 2019			Nature du pr	rélèveme		E Eau M Ma			ion		Sédiment Sédiment			otte)								

4 Milieu Eau douce

Le détail de la méthode utilisée en milieu eau douce pour établir le diagnostic de l'état du milieu à partir des différents suivis est décrit dans le document *Méthode de diagnostic*.

4.1 Rappel des caractéristiques des zones et des stations de suivis

4.1.1 Eaux de surface : les creeks et dolines

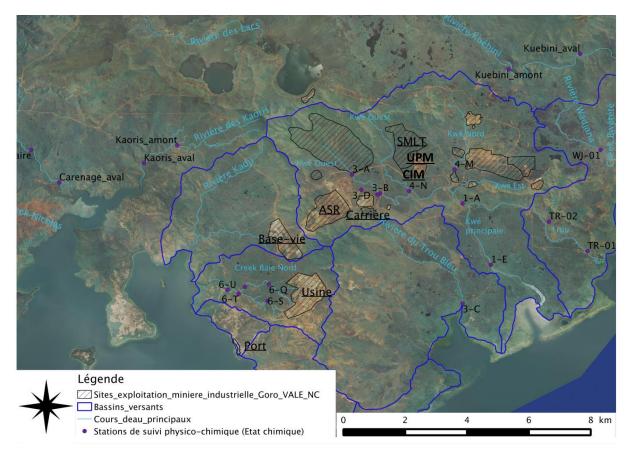


Figure 5 : Répartition des stations de suivis chimiques en milieu lotique (creeks)

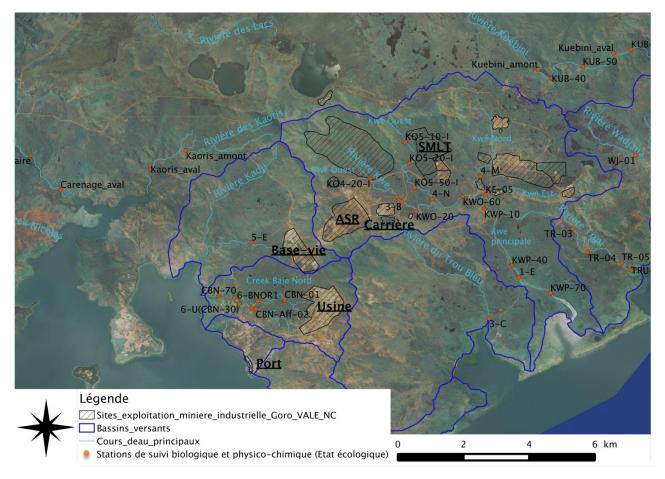


Figure 6 : Répartition des stations de suivis biologiques en milieu lotique (creeks)

Quelques remarques sur le degré de perturbation de différents cours d'eaux (Tableau 1.)

Une liaison entre une verse à stérile et la Trüu, via un bassin endoréique a été avérée en 2015.

La rivière Trou Bleu est considérée hors d'influence, cependant l'étude des écoulements hydrogéologiques a montré l'existence d'un petit bassin endoréique proche de l'aire de stockage des résidus et dont les eaux souterraines s'écoulent vers Port Boisé, la liaison est donc supposée mais non encore avérée.

Sur la Kuébini, la présence d'un ouvrage pour le captage d'eau proche de l'exutoire du bassin versant entrave la remontée des poissons.

Enfin la Wadjana est connue pour la fréquentation des baigneurs et des pollutions organiques ont déjà été observées.

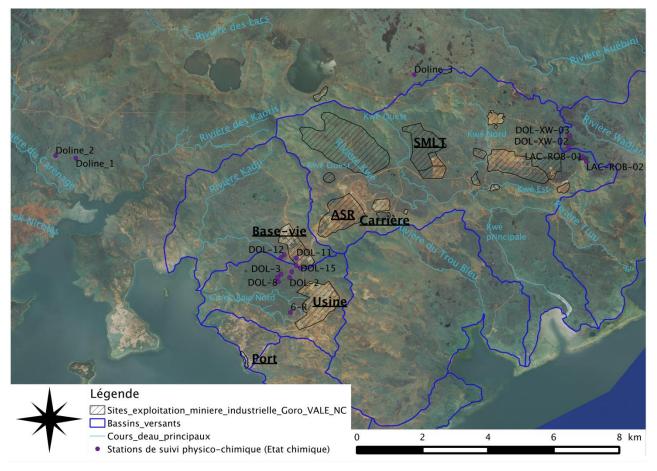


Figure 7 : Répartition des stations de suivis en milieu lentique (dolines)

Tableau 75 : Caractéristiques des stations de référence et des stations de suivi des creeks et dolines : position en amont ou en aval de la rupture de pente du bassin versant (une gamme de référence par position pour les cours d'eau), type de bassin versant, zone hydro-géographique (niveau final d'agrégation des scores environnementaux par paramètre), nom des stations (niveau initial d'attribution des scores environnementaux par paramètre), source d'influence industrielle ou minière à l'origine d'une pression environnementale particulière sur chaque station, et type de paramètres mesurés.

_			Statio	ons de référence						·	Stations de	suivi				
	Position	Type de BV	Zone	Station		Mes	ures		Type de BV	Zone	Station	Influence		Mes	ures	
											3-B ^	ASR				
											3-D ^	ASR				
			Kwe Ouest	3-A ^							3-E ^	ASR				
											4-N ^	UPM-CIM				
											KO4-10 ^	Mine				
			Caránaga	Caránago Amontº												Н
			Carénage	Carénage Amont °							KO4-20-1 ^	Mine				\blacksquare
										Kwe Ouest	KO4-50 ^	Mine				\blacksquare
		Grand									KO5-10-I ^	UPM-CIM				
			Kaoris	Kaoris Amont °							KO5-20-I ^	UPM-CIM				Ш
									Grand		KO5-20-P ^	UPM-CIM				
									Grana		KO5-50-I ^	UPM-CIM				
	Amont		Kuebini	Kueb Amont °							KWO-10 ^	?				
											KWO-20 ^	?				
											KWO-60 ^	?				
			Fausse Yaté	FY Amont °						Kwe Nord	4-M ^	UPM-CIM				
										Kwe Est	KE-05 ^	Mine				
										KWC LSt		Usine				\vdash
S				WAD-40 ^						CPN Amont	6-Q ^					\vdash
e k				WAD-40 ^						CBN Amont	6-5 ^	Usine				
5		Petit	Wadjana								CBN-01 ^	Usine				
듦										Kadji	5-E ^	Base Vie				
d, e				WAD-50 ^					Petit	Trüu Amont	TR-01 ^	Mine				
2									1 Ctit	Trua / iiiione	TR-03 ^	Mine				Ш
Cours d'eau (creeks)		Total stati	ons de référence	en Amont des BV	4	1	3	6	Tot	tal stations de si	uivi en Amont (des BV	9	5	10	7
				3-C ^							1-A ^	UPM-CIM, ASR				
			Trou Bleu	TBL-50 ^							1-E ^	UPM-CIM, ASR				
				TBL-70 ^						Kwe principale	KWP-10 ^	UPM-CIM				
											KWP-40 ^	UPM-CIM				
			Carénage	Carénage Aval °							KWP-70 ^	UPM-CIM				
											6-BNOR1 ^	Usine				Н
			Kaoris	Kaori Aval °					Grand							\vdash
		Grand							Granu		6-T ^	Usine				
				Kueb Aval °							6-U ^	Usine				
	Aval									CBN Aval	CBN-10 ^	Usine				
			Kuebini	KUB-40 ^							CBN-30 ^	Usine				
				KUB-50 ^							CBN-40 ^	Usine				
				KUB-60 ^							CBN-70 ^	Usine				
			5 V-+-	FY Aval °							CBN-AFF-02 ^	Usine				i
			Fausse Yaté	FY Intermédiaire °							TR-02 ^	Mine				
											TR-04 ^	Mine				
		Petit	Wadjana	WAD-70 ^					Petit	Trüu Aval	TR-05 ^	Mine				
											TRU-70 ^	Mine				
		Total stat	ions de référenc	ce en Aval des BV	4	0	4	11	To	otal stations de :		•	6	4	7	9
		- Joseph State				-				l stations at	6-R ^	Usine				
				Doline 1°							DOL-2 ^	Usine				$\vdash\vdash$
		Ca	rénage					\vdash		1						\vdash
				Doline 2°						1	DOL-3 ^	Usine				$\vdash \vdash$
										CBN		Usine				
										1	DOL-8 ^	Usine				igspace
	Oolines	Plaine	e des Lacs	Doline 3°					Grand		DOL-9 ^	Usine				
	Junes						<u></u>			1	DOL-10 ^	Epuration				
				DOL-XW-02 ^				L^{-1}			DOL-15 ^	Base Vie				LΠ
		,.,	adiana	DOL-XW-03 ^							DOL-11 ^	Epuration				
		W	adjana	LAC-ROB-01 ^						Kadji	DOL-12 ^	Base Vie				П
				LAC-ROB-02 ^							DOL-13 ^	Base Vie				H
		Total	stations dolines		3	0	4	0		Total stations d		•	11	0	1	0
lác	ende :	,,,,,,,								u	300 4011				_	
Leg		nfluence par	rannort		Mer	urec	effer	tuées			Type de suivi :					ŀ
					IVIES					curface						l
	u i uctivit	1	e et minière :						e des eaux de		Station réglen					ŀ
		Forte							e des sédime		Station volont					Į
		Modérée							o-Invertébré			éseau de suivi de				l
		Nulle				suivi	i des	Poiss	ons et Crusta	acés	Station ° du ré	seau de suivi de	l'ŒIL	-		Į

Douze stations de référence (sous influence modérée ou nulle de l'activité industrielle et minière) appartiennent au réseau de suivi de l'OEIL. Les mesures physico-chimiques et biotiques y ont été réalisées par le prestataire Bioeko en 2015-2016.

Les 14 autres stations de référence, ainsi que les 50 stations de suivi (sous influence forte de l'activité industrielle et minière) appartiennent au réseau de suivi de Vale NC. Les mesures physico-chimiques et biotiques y ont été réalisées par les équipes de Vale NC et par les prestataires Ecotone, Erbio, Bioeko, BioImpact, et Lab'eau.

4.1.2 Eaux souterraines

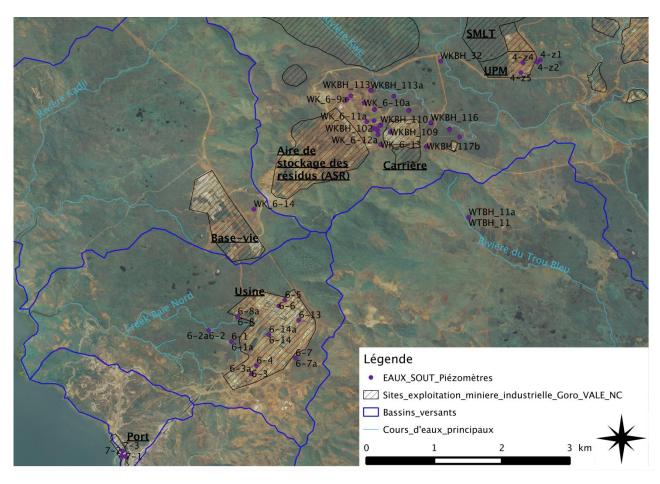


Figure 8: Répartition des stations de suivis des eaux souterraines (Quelques stations sont absentes de la carte)

Les 71 piézomètres répartis à différentes profondeurs de captage sur 40 stations de suivi des eaux souterraines appartiennent au réseau de suivi de Vale NC, qui a réalisé les mesures physico-chimiques en interne. Nous ne disposons pas des informations concernant la profondeur et la couche géologique atteinte (latérites, saprolites et péridotites) pour tous les piézomètres non réglementaires. Seule la répartition spatiale des piézomètres est connue, ceux disposant de préfixes identiques sont implantés de manière très proche spatialement.

Ces piézomètres contrôlent la qualité de l'eau des aquifères sous influence potentielle de 4 types d'activité : l'unité de préparation du minerai (UPM), l'aire de stockage des résidus (ASR), le port (à

proximité de la rétention de fuel lourd et de gasoil), le site industriel et la mine (stockage des hydrocarbures et des acides, transit des déchets, bassins de contrôle et de procédé, etc.)

Tableau 76 : Caractéristiques des stations de suivi des eaux souterraines : zone hydro-géographique (niveau final d'agrégation des scores environnementaux par paramètre), nom des stations (niveau initial d'attribution des scores environnementaux par paramètre), et source d'influence industrielle ou minière à l'origine d'une pression environnementale particulière sur chaque station.

	Stations de s	uivi des eaux s	outerraines (ph	ysico-chimie)	
Zone	Station	Influence	Zone	Station	Influence
	4-z1			WKBH112	
Kwe Nord	4-z1A			WKBH112A	
	4-z1B			WKBH113	
	4-z2			WKBH113A	
	4-z2A	UPM		WKBH114	
	4-z4			WKBH114A	ASR C
	4-z4A		Kwe Ouest	WKBH115	(proximité
	4-z5		kwe Ouest	WKBH115A	rivière)
	4-z5A			WKBH115B	
	WK17	ASR 0		WKBH116	
	WK20	(sources)		WKBH116A	
	WK6-11			WKBH116B	
	WK6-11A			WTBH9	
	WK6-12	ASR A		WKBH32	ASR D
	WK6-12A	(piézomètres	Kadji	WK6-14	(vallées
	WK6-13	d'alerte au	Trou Bleu	WTBH11	,
	WK6-9	pied de la	Trou Bleu	WTBH11A	adjacentes)
	WK6-9A	berme)		7-1	Port
Kwe Ouest	WKBH102	berrile)	Baie de Prony	7-2	(rétention
kwe ouest	WKBH102A			7-3	fuel lourd)
	WKBH103			6-1	
	WK6-10			6-1a	Aval site
	WK6-10A			6-2	indust.
	WKBH109			6-2a	
	WKBH109A			6-3	Aval distrib.
	WKBH110			6-3a	carburant
	WKBH110A			6-4	Aval hydroc.
	WKBH110B	ASR B (zone	CBN	6-5	Aval H2SO4
	WKBH111	tampon)	CBN	6-6	Aval gazole
	WKBH117			6-7	Amont site
	WKBH117A			6-7a	indust.
	WKBH117B			6-8	Aval contôle
	WKBH118			6-8a	Nord
	WKBH118A			6-13	Aval procédé
	WKBH118B		l	6-14	Aval stock.
				6-14a	HCl
<u>Légende :</u>		nce par rappor ustrielle et min Forte Modérée		Profondeur de Station Station A ou a Station B ou b	Supérieure Intermédiaire

Valeurs de référence sur le réseau de suivi

- Pour les eaux souterraines, les mesures effectuées par Vale NC sur le plateau de la plaine des lacs pourraient éventuellement servir à caractériser le fond géochimique de référence des masses d'eau souterraines. Ces données ne sont cependant pas à notre disposition.
- Sur le réseau de suivi des piézomètres dans la zone d'influence de Vale NC, les piézomètres 7-2 au port, WTBH11 et WTBH11A sur Trou Bleu, et 6-7 et 6-7a en amont du site industriel à proximité de la branche nord du Creek Baie Nord, peuvent être considérés comme des piézomètres de référence sous influence nulle ou modérée des activités industrielles et minières.

4.1.3 Tableau de synthèse des paramètres suivis, de la méthode et des métriques utilisés pour attribuer une note.

Le tableau suivant présente l'ensemble des paramètres utilisés pour le diagnostic du milieu. Il définit également l'état auquel concourt le paramètre suivi (chimique ou écologique), et la métrique calculée pour sa confrontation aux référentiels considérés pour son évaluation.

Tableau 77 : Tableau de synthèse des paramètres, de la méthode, des métriques (calculées à l'année) et référentiels utilisés pour attribuer une note.

			Paramètre			Natu	re dı	ı	Métriques et référentiels u Métrique comparée à la	Métrique comparée à valeur seuil	
ŀ	т	vne	Nom	Symbolo	р	rélèv	eme	nt	gamme de référence (eaux de	(eaux de surface et souterraines)	chronique des données
		ype		Symbole	-	_	1	١.,		,	•
			Fer	Fe	С	D	_	N	moyenne et percentile 90	valeur maximale	2012-2016
			Manganèse	Mn	С	D	S	N	moyenne et percentile 90	valeur maximale	2012-2016
			Nickel	Ni	С	D	S	N	moyenne et percentile 90	valeur maximale	2012-2016
		uts	Aluminium	Al				N	-	valeur maximale	2012-2016
a		Métaux dissouts	Arsenic	As				N	-	valeur maximale	2012-2016
ᇹ		dis	Cadmium	Cd			S	N	-	valeur maximale	2012-2016
Etat chimique		äč	Cobalt	Co			S	N	-	-	2012-2016
ţ		۸ét	Chrome	Cr			S	N	-	valeur maximale	2012-2016
Eta		2	Chrome héxavalent	Cr(VI)				N	-	-	2012-2016
			Cuivre	Cu				N	-	valeur maximale	2012-2016
	s		Plomb	Pb			S	N	-	valeur maximale	2012-2016
	Paramètres physico-chimiques		Zinc	Zn			S	N	-	valeur maximale	2012-2016
	je.		Sulfates	SO ₄ ²⁻	С	D		N	moyenne et percentile 90	valeur maximale	2012-2016
	ċhi	Н	ydrocarbures totaux	Ht	С	D		N	-	valeur maximale	2012-2016
	9	lne	Température	Τ°	С	D		N	moyenne et percentile 90	-	2012-2016
	ıγsi	atic	pH	pН	С	D		N	moyenne et percentile 90	valeur maximale	2012-2016
	p s	dng	Conductivité	Cond.	С	D		N	moyenne et percentile 90	valeur maximale	2012-2016
	tre	Profil aquatique	Turbidité	Turb.	c	D			-	valeur maximale	2012-2016
	πè	ro	Demande chim. en ox.	DCO	С	D		N	moyenne et percentile 90	-	2012-2016
	araı		latière en suspension	MES	С	D		.,	moyenne et percentile 90	valeur maximale	2012-2016
	Ä	IV	Chlorures	Cl	С	D		N	moyenne et percentile 90	valeur maximale	2012-2016
		s: s		Mg ²⁺	_			_			2012-2016
		Eléments majeurs	Magnésium		С	D		N	moyenne et percentile 90	valeur maximale	
		ém naje	Sodium	Na ⁺	С	D		N	moyenne et percentile 90	-	2012-2016
		E L	Calcium	Ca ²⁺	С	D		N	moyenne et percentile 90	-	2012-2016
			Potassium	K ⁺	С	D		N	moyenne et percentile 90	-	2012-2016
		S	Nitrites	NO ₂				N	-	-	2012-2016
		Sels nutritifs	Nitrates	NO ₃	С	D		N	moyenne et percentile 90	valeur maximale	2012-2016
		าน	Phosphates	PO ₄ ³⁻	С	D		N	moyenne et percentile 90	-	2012-2016
		at.	Carbone org. total	COt	С	D		N	moyenne et percentile 90	valeur maximale	2012-2016
		Mat.	Azote total	Nt	С	D		N	-	-	2012-2016
		Titre	alcalimétrique complet	TAC	С	D		N	moyenne et percentile 90	-	2012-2016
_			Indice biotique de NC	IBNC11	С				moyenne	-	2012-2016
Etat écologique		-0.	Indice biotique de NC	IBNC15	С				moyenne	-	-
g.		Лас	Indice biosédimentaire	IBS11	С				moyenne	-	2012-2016
8		le N rés	Indice biosédimentaire	IBS15	С				moyenne	_	-
at é		auté de l ertébrés	Abondance des MI	Abdce MI	С	D			moyenne	-	2012-2016
쁊		ver	Richesse spécifique MI	RSp MI	С	D			moyenne	-	2012-2016
		nu.	Densité en MI		С	D			·	-	2012-2016
		Communauté de Macro- Invertébrés		MI/Ha		D			moyenne	- valous maximala	
	s	ප	Equitabilité des MI	Eq. MI	С	_			moyenne	valeur maximale	2012-2016
	ne		Indice EPT	EPT	С	D			moyenne	valeur maximale	2012-2016
	tid	a	Abondance des P	Abdce P	С				moyenne	-	2012-2016
	Paramètres biotiques	Communauté de Poissons	Abondance P endémiq.	Abdce Pe	С				moyenne	-	2012-2016
	res	aut	Richesse spécifique P	RSp P	С				moyenne	-	2012-2016
	nèt	nur	Rich. Spéc. P endémiq.	RSp Pe	С				moyenne	-	2012-2016
	ran	mm Poi	Biomasse en P	Biom. P	С				moyenne	-	2012-2016
	Pa	Ö	Biomasse P endémiq.	Biom. Pe	С				moyenne	-	-
		<u> </u>	Densité en P	P/Ha	С	L		$oxedsymbol{oxed}$	moyenne	-	2012-2016
			Abondance des C	Abdce C	С				moyenne	-	2012-2016
		é de s	Abondance C endémiq.	Abdce Ce	С				moyenne	-	2012-2016
			Richesse spécifique C	RSp C	С				moyenne	-	2012-2016
		Communaut Crustacé	Rich. Spéc. C endémiq.	RSp Ce	С				moyenne	-	2012-2016
		Ĭ Ű	Biomasse en C	Biom. C	С				moyenne	-	2012-2016
		١٥	Biomasse C endémig.	Biom. Ce	С		t		moyenne	-	-
			Densité en C	C/Ha	С				moyenne	-	2012-2016
	Lége	ende :	1		Nati	Eau Eau Séd	de su de su imen	urface urface ts des	ment : des creeks des dolines creeks screeks		

4.2 Résultats : Scores par paramètre et scores finaux par zone

4.2.1 Paramètres contribuant à l'état chimique des eaux douces

4.2.1.1 Concentration en métaux dissouts

4.2.1.1.1 Concentrations en Fer

Les concentrations en Fer dissout sont mesurées dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Fer dissout dans les eaux de surfaces et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,1 mg/L dans la majorité des mesures. Lorsqu'une limite de détection inférieure (0,01 mg/L) a été employée, les valeurs mesurées sont indiquées *en italique* dans les tableaux de synthèse.

Les valeurs seuils pour la concentration en Fer dissout sont définies dans les annexes I et III de l'arrêté métropolitain du 11 janvier 2007, à 0,1 mg/L dans les eaux de surface, et 0,2 mg/L dans les eaux souterraines.

La limite de détection du Fer dissout dans les eaux de surface étant égale à la valeur seuil réglementaire, toute mesure supérieure à la limite de détection correspond à un dépassement de seuil.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant. Aucune doline de référence n'a été mesurée en 2016 pour ce paramètre.

Cinq piézomètres sous influence nulle ou modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 78 : Détermination de la gamme de variations de référence pour le Fer dissout (en mg/L) dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	Fe (mg/	L) - eaux de s	urface		lq = 0,1 m	g/L	lq	= 0,01 mg	g/L
Position	Type	Station	ns de référence	N	moy	moy	Per 10	Per 90	Valeur
Position	de BV	Zone	Station	2016	2016	2016	Per 10	Per 90	seuil
		Kwe Ouest	3-A	5	0,160				
Amont	Grand	Carénage	Carénage Amont	1	0,032	0,090	0,045	0,141	
Amont	Gianu	Kaoris	Kaoris Amont	1	0,095	0,050	0,043	0,141	
		Kuebini	Kueb Amont	1	0,074				0.100
		Trou Bleu	3-C	12	0,100				0,100
Aval	Grand	Carénage	Carénage Aval	1	0,030	0,068	0.041	0.092	
Avai	Granu	Kaoris	Kaori Aval	1	0,074	0,008	0,041	0,092	
		Kuebini	Kueb Aval	1	0,066				

Résultats et analyse

Tableau 79 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Fer dissout (en mg/L) dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Fe (mg	g/L) - eaux de surfa	ce		lq = 0,	1 mg	g/L		Iq = 0,0	1 m	g/L										
Position	Type	Stations de	suivi		2012		2013	•	2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
FUSILIUII	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	Ν	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	valeur seuil ?	temporelle?	2015	par station	par zone
			3-B	14	0,100	25	0,100	12	0,100	32	0,100	24	0,100	0,100	0,100	Inconnu	Bon	Bon	Bon	Bon	
		Kwe Ouest	3-D	2	0,100	13	0,100	4	0,100	22	0,100	14	0,100	0,100	0,100	Inconnu	Bon	Bon	Bon	Bon	Bon
		Aure odest	3-E	2	0,100	2	0,100	2	0,100	1	0,100	3	0,100	0,100	0,100	Inconnu	Bon	Bon	Bon	Bon	50
	Grand		4-N	9	0,100	2	0,100	11	0,100	12	0,133	12	0,100	0,100	0,100	Inconnu	Bon	Bon	Mauvais	Bon	
Amont	Giana	Kwe Nord	4-M	12	0,100	12	0,100	9	0,100	12	0,100	12	0,100	0,100	0,100	Inconnu	Bon	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	0,100	14	0,107	6	0,100	12	0,100	11	0,100	0,100	0,100	Inconnu	Bon	Bon		Bon	Bon
		CBN Amont	6-Q	13	0,115	12	0,100	11	0,109	10	0,100	10	0,100	0,100	0,100	Inconnu	Bon	Bon	Bon	Bon	Bon
		CBIV AIIIOITE	6-S	12	0,100	12	0,100	7	0,100	8	0,100	10	0,100	0,100	0,100	Inconnu	Bon	Bon	Bon	Bon	Don
	Petit	Trüu Amont	TR-02	12	0,100	12	0,100	5	0,100	12	0,100	0						Bon	Bon		
		Kwe principale	1-A	12	0,100	12	0,100	11	0,100	12	0,100	12	0,100	0,100	0,100	Inconnu	Bon	Bon	Bon	Bon	Bon
		kwc pillicipalc	1-E	14	0,880	14	0,091	8	0,100	12	0,100	12	0,100	0,100	0,100	Inconnu	Bon	Bon	Bon	Bon	Don
Aval	Grand		6-BNOR1	4	0,100	5	0,100	4	0,100	4	0,100	4	0,100	0,100	0,100	Inconnu	Bon	Bon	Bon	Bon	
Avai	Giana	CBN Aval	6-T	5	0,084	6	0,073	4	0,100	4	0,100	10	0,100	0,100	0,100	Inconnu	Bon	Bon	Inconnu	Bon	Bon
			6-U	1	0,100	0		1	0,100	1	0,100	1	0,100	0,100	0,100	Inconnu	Bon	Bon	Inconnu	Bon	
		Trüu Aval	TR-01	11	0,100	12	0,100	5	0,100	10	0,100	0						Bon	Bon		
			6-R	12	0,100	12	0,100	10	0,100	13	0,131	12	0,120	0,120	0,300		Mauvais	Bon	Bon	Bon	
			DOL-2	2	0,100	2	0,100	1	0,200	1	0,500	0						Mauvais	Bon		
			DOL-3	2	0,100	1	0,100	1	0,100	0		0						Bon			
		CBN	DOL-4	2	0,100	2	0,100	2	0,100	1	0,100	0						Bon	Bon		Bon
		CDIV	DOL-8	1	0,100	1	0,100	1	0,100	1	0,100	0						Bon	Bon		Don
Dolin	nes		DOL-9	1	0,100	1	0,100	1	0,100	0		0						Bon			
			DOL-10	0		1	0,100	0		0		1	0,200	0,200	0,200		Mauvais	Bon		Bon	
			DOL-15	0		1	0,100	0		0		0									
			DOL-11	2	0,100	1	0,100	1	0,100	0		2	0,100	0,100	0,100		Bon	Bon		Bon	
		Kadji	DOL-12	1	0,100	1	0,100	1	0,100	1	0,100	0						Bon	Bon		Bon
			DOL-13	2	0,100	2	0,100	0		1	0,100	0						Bon	Bon		

Les valeurs ayant permis d'établir les gammes de variations de référence ont été mesurées avec une limite de détection inférieure à celle utilisée pour les mesures aux stations de suivi. Par conséquent, la comparaison des moyennes et percentiles 90 des valeurs de 2016 ne permet pas de déterminer avec certitude d'écart aux valeurs de référence, le score basé sur ce critère est donc « Inconnu » pour les stations concernées.

En l'absence de gamme de référence établie en 2016 pour les eaux de surface des dolines, la comparaison des moyennes et percentiles 90 des valeurs de 2016 aux valeurs de référence est impossible, aucun score n'a donc été attribué sur la base de ce critère pour les stations de dolines.

Les concentrations en Fer dissout ne sont pas connues en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, aucune des stations de suivi des creeks ne présente de dépassement de valeur seuil ni d'augmentation temporelle des concentrations en Fer dissout dans les eaux de surface, un score « Bon » est donc attribué à l'ensemble des stations de suivi des creeks pour ce paramètre. Deux stations de suivi des dolines (6-R et DOL-10) ont dépassé la valeur seuil de potabilité, sans toutefois présenter de nette tendance des concentrations en Fer dissout à augmenter sur la période 2012-2016, leur score reste donc « Bon » cette année.

Tableau 80 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Fer dissout (en mg/L) dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Fe (mg	/L) - eaux souterrai	nes		Iq = 0,	1 mg	g/L		En	bleı	ı:piézo	mèt	tres de	contrôle		Valeur s	euil :	0,200 m	ng/L]	
Source	Stations de			2012		2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
d'influence	Zone	Station	N	Moy	N	Moy	Ν	Moy	N	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	valeur seuil ?	temporelle?	2015	par piézo.	par zone
		4-z1	4	0,100	2	0,100	4	0,100	4		4	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
	Kwe Nord	4-z1A	4	0,100	2	0,100	4	0,100	4		0						Bon	Bon		
		4-z1B 4-z2	4	0,100	2	0,333	4	1,625 0,100	4		4	0.100	0.100	0.100	Don	Don	Mauvais	Mauvais Bon	Don	
UPM		4-22 4-22A	4	0,100	2	0,100	4	0,100		0,100	0	0,100	0,100	0,100	Bon	Bon	Bon Bon	Bon	Bon	Mauvais
0		4-z4	4	0.100	2	0,100	4	0,100	4		5	0,100	0,100	0.100	Bon	Bon	Bon	Bon	Bon	auru.s
		4-z4A	4	0,100	2	0,250	3	0,167	4		0	-,	0,200	0,200			Bon	Bon		
		4-z5	4	0,100	2	0,100	5	0,100	4	0,100	5	0,140	0,200	0,200	Mauvais	Mauvais	Bon	Bon	Mauvais	
		4-z5A	4	0,100	2	0,100	2	0,100	4	0,100	0						Bon	Bon		
ASR 0 (sources)		WK17	51	0,100	52	0,100	48	0,100	75	0,100	52	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
,		WK20	51	0,100	52	0,100	48	0,100	51	0,100	51	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WK6-11	1	0,100	0	0.400	2	0,100	3	0,133	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WK6-11A WK6-12	2	0,100	2	0,100	8	0.100	12	0,100	12	0,100	0,100	0,100	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
ASR A		WK6-12A	2	0,100	2	0,100	8	0,100	12	0,117	12	0,100	0,100	0,100	Mauvais	Mauvais	Bon	Bon	Bon	
(piézomètres		WK6-9	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH102	11	0,100	7	0,100	10	0,100	12	0,100	12	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH102A	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH103	2	0,100	2	0,100	3	0,100	12	0,100	12	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WK6-10	0		1	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WK6-10A	2	0,100	1	0,100	1	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH109	0	0.100	2	0.100	1	0,100	2	0,100	11	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH109A WKBH110	2 10	0,100	7	0,100	11	0,100	12	0,100	12	0,100	0,100	0,100	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
	Kwe Ouest	WKBH110A	0	0,100	0	0,100	0	0,100	2	0,100	11	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
ASR B	inc ouest	WKBH110A	2	0,100	2	0,100	2	0,100	2	0,100	11	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
(zone tampon)		WKBH111	2	0,100	2	0,100	2	0,100	2		2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH117	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH117A	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	Bon
		WKBH117B	2	0,100	2	0,100	2	0,100	1	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	Boli
		WKBH118	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH118A	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH118B	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH112	2	0,300	0	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH112A WKBH113	11	0,100	7	0,100	12	0,100	12	0,100	12	0,100 0,117	0,100 0,100	0,100 0,300	Bon Mauvais	Bon Mauvais	Bon Bon	Bon Bon	Bon Bon	
		WKBH113A	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0.100	0.100	Bon	Bon	Bon	Bon	Bon	
		WKBH114	3	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0.100	Bon	Bon	Bon	Bon	Bon	
ASR C		WKBH114A	1	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
(proximité		WKBH115	0		0		1	0,100	0		2	0,100	0,100	0,100	Bon	Bon	Bon		Bon	
ri vi è re)		WKBH115A	0		0		1	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH115B	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH116	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH116A	2	0,100	2	0,100	2	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH116B WTBH9	2	0,100	1	0,100	0	0,100	2	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		WKBH32	2	0,100	2	0,100	0	0,100	2	0,100	2	0,100	0,100	0,100	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon	
ASR D	Kadji	WK6-14	1	0,100	2	0,100	1	0,100	1	0,100	2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon Bon	
(vallées		WTBH11	2	0,100	2	0,100	2	0,100	2		2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
adjacentes)	Rivière Trou Bleu	WTBH11A	2	0,100	2	0,100	2	0,100	1		2	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		7-1	1	0,100	2	0,100	2	0,100	0		2	0,100	0,100	0,100	Bon	Bon	Bon		Bon	
Port	Baie de Prony	7-2	1	0,100	2	0,100	2	0,100	0		2		0,100	0,100	Bon	Bon	Bon		Bon	Bon
		7-3	1	0,100	2	0,150	2	0,100	0		2	0,100	0,100	0,100	Bon	Bon	Bon		Bon	
		6-1	4	0,100	2	0,100	4	0,100	4		4		0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		6-13	0	0.400	1	0,100	4	0,100	4		4	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		6-14	5	0,100	4	0,100	5 9	0,100	5 10	.,	4 11	0,100	0,100	0,100	Bon	Bon	Bon	Bon Bon	Bon	
		6-14a 6-1a	4	0,150	2	0,100	4	0,100	10	.,	4	0,100	0,100	0,100	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		6-1a 6-2	4	0,100	1	0,100	4	0,100	4	-/	4	0,100	0,100	0,100	Bon	Bon	Bon	Bon Bon	Bon	
		6-2a	4	0,100	2	0,100	4	0,100	4	0,100	4	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
	CC.	6-3	4	0,100	2	0,100	4	0,100	4	0,100	4	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
Usine	CBN	6-3a	4	0,100	2	0,100	3	0,100	3	0,100	3	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	Bon
		6-4	4	0,175	2	0,100	4	0,100	4	0,100	3	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		6-5	5	0,100	2	0,100	5	0,100	4	0,100	4	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		6-6	5	0,100	3	0,100	4	0,100	4	0,100	4	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		6-7	4	0,100	2	0,100	4	0,100	4	0,100	4	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		6-7a	4	0,100	2	0,100	4	0,100	3	0,100	3	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		6-8	5	0,100	2	0,100	3	0,100	4	0,100	4	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	
		6-8a	4	0,100	2	0,100	4	0,100	4	0,100	4	0,100	0,100	0,100	Bon	Bon	Bon	Bon	Bon	

En 2016, les concentrations en Fer dissout ne sont pas connues dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Fer dissout dans les eaux souterraines ont été mesurées en 2016 dans tous les autres piézomètres, dont 3 (4-z5, WK6-12A et WKBH113) présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle, et des valeurs maximales dépassant la valeur seuil réglementaire,

sans toutefois présenter de nette tendance des concentrations en Fer dissout à augmenter sur la période 2012-2016. Seule la moyenne de concentration en Fer dissout mesurée au piézomètre <u>4-z5</u> est suffisamment élevée pour justifier un déclassement, son score est donc « Mauvais » cette année pour ce paramètre.

4.2.1.1.2 Concentrations en Manganèse

Les concentrations en Manganèse dissout sont mesurées dans les eaux de surface des creeks et des dolines, dans les sédiments des creeks, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Manganèse dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L dans la majorité des mesures. Lorsqu'une limite de détection inférieure (0,001 mg/L) a été employée, les valeurs mesurées sont indiquées *en italique* dans les tableaux de synthèse. Les concentrations en Manganèse dans les sédiments sont exprimées en % de matière sèche.

Les valeurs seuils pour la concentration en Manganèse dissout sont définies dans les annexes I et III de l'arrêté métropolitain du 11 janvier 2007, à 0,05 mg/L dans les eaux de surface et les eaux souterraines. Il n'existe pas à ce jour de normes françaises précisant une valeur seuil de concentration en Manganèse dans les sédiments pour la santé des écosystèmes aquatiques.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant. Une gamme de référence 2016 pour le Manganèse dissout dans les eaux de surface des dolines a été établie grâce aux valeurs mesurées dans 3 dolines de référence en 2016.

Quatre stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les sédiments, également réparties selon leur position en amont ou en aval de la rupture de pente du bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 81 : Détermination de la gamme de variations de référence pour le Manganèse dissout (en mg/L) dans (a) les eaux de surface et (b) les sédiments des cours d'eau : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	Mn	(mg/L) - eaux de s	urface	I	q = 0,01 m	ig/L	lq :	= 0,001 m	g/L
Position	Туре	Stations	de référence	N	moy	moy	Per 10	Per 90	Valeur
POSITION	de BV	Zone	Station	2016	2016	2016	PEI 10	PEI 30	seuil
		Kwe Ouest	3-A	5	0,010				
Amont	Grand	Carénage	Carénage Amont	1	0,005	0.009	0.002	0.017	
Amont	Granu	Kaoris	Kaoris Amont	1	0,020	0,009	0,002	0,017	
		Kuebini	Kueb Amont	1	0,001				
		Trou Bleu	3-C	12	0,010				
Aval	Grand	Carénage	Carénage Aval	1	0,001	0,130	0.004	0,353	0,050
Avai	Granu	Kaoris	Kaori Aval	1	0,010	0,130	0,004	0,555	
		Kuebini	Kueb Aval	1	0,500				
		Carénage	Doline 1	1	0,001				
Dolin	nes	Carénage	Doline 2	1	0,005	0,003	0,002	0,005	
		Plaine des Lacs	Doline 3	1	0,004				

1	
а	

	M	n (%) - sédimen							
Position	Type de	Stations of	le référence	N	moy	moy	Per 10	Per 90	
Position	BV	Zone	Station	2016	2016	2016	Per 10	rer 90	
Amont	Grand	Carénage	Carénage Amont	1	0,394	0.350	0,315	0.385	
AIIIOIIL	Granu	Kaoris	Kaoris Amont	1	0,306	0,550		0,363	
Aval	Grand	Carénage	Carénage Aval	1	0,315	0.307	0.201	0.313	
Avai	Granu	Kaoris	Kaori Aval	1	0,299	0,307	0,301	0,313	

Résultats et analyse

Tableau 82 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Manganèse dissout (en mg/L) dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Mn (mg	g/L) - eaux de surfac	e		Iq = 0,0)1 mջ	g/L		Iq = 0,00	01 m	g/L										
Position	Type	Stations de	suivi	2012			2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de	Score 2015	Score 2016	Score 2016
1 03111011	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	valeur seuil?	hausse	3001C 2013	par station	par zone
			3-B	14	0,010	25	0,019	12	0,022	33	0,018	147	0,048	0,050	0,370	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	
		Kwe Ouest	3-D	2	0,010	13	0,185	4	0,028	23	0,026	135	0,075	0,147	0,600	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais
		KWC Odest	3-E	2	0,010	2	0,010	2	0,010	1	0,010	3	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	widdedis
	Grand		4-N	9	0,010	2	0,010	11	0,014	12	0,012	12	0,011	0,010	0,020	Bon	Bon	Bon	Bon	Bon	
Amont	Granu	Kwe Nord	4-M	12	0,014	12	0,020	9	0,013	12	0,014	12	0,013	0,019	0,040	Mauvais	Bon	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	0,010	14	0,010	6	0,010	12	0,010	11	0,010	0,010	0,010	Bon	Bon	Bon		Bon	Bon
		CBN Amont	6-Q	13	0,013	12	0,010	11	0,025	11	0,014	10	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
		CBN AIIIOIIL	6-S	12	0,010	12	0,010	7	0,013	8	0,010	10	0,022	0,022	0,130	Mauvais	Mauvais	Bon	Bon	Bon	BOII
	Petit	Trüu Amont	TR-02	12	0,010	12	0,010	5	0,010	12	0,010	0				Bon	Bon	Bon	Bon		
		Kwe principale	1-A	12	0,010	12	0,010	11	0,017	13	0,013	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
			1-E	14	0,011	13	0,012	8	0,010	12	0,010	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
Aval	Grand	CBN Aval	6-BNOR1	4	0,010	5	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
Avai			6-T	6	0,010	6	0,015	4	0,010	5	0,018	10	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
			6-U	1	0,010	0		1	0,010	2	0,050	1	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	0,010	12	0,010	5	0,010	10	0,010	0				Bon	Bon	Bon	Bon		
			6-R	12	0,029	12	0,018	10	0,023	13	0,318	10	0,283	0,349	1,780	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	
			DOL-2	2	0,010	2	0,010	1	0,010	1	0,020	0						Bon	Bon		
			DOL-3	2	0,015	1	0,010	1	0,010	0		0						Bon			
		CBN	DOL-4	2	0,010	2	0,010	2	0,010	1	0,010	0						Bon	Bon		Mauvais
		CBIN	DOL-8	1	0,010	1	0,010	1	0,010	1	0,010	0						Bon	Bon		ividavais
Dolir	ies		DOL-9	1	0,010	1	0,010	1	0,010	0		0						Bon			
			DOL-10	0		1	0,010	0		0		1	0,030	0,030	0,030	Mauvais	Bon	Mauvais		Bon?	
			DOL-15	0		1	0,010	0		0		0									
			DOL-11	2	0,010	1	0,010	1	0,010	0		2	0,015	0,020	0,019	Mauvais	Bon	Bon		Bon	
		Kadji	DOL-12	1	0,010	1	0,010	1	0,010	1	0,010	0						Bon	Bon		Bon
			DOL-13	2	0,010	2	0,010	0		1	0,010	0						Bon	Bon		

Les valeurs ayant permis d'établir les gammes de variations de référence ont été mesurées avec une limite de détection inférieure à celle utilisée pour les mesures aux stations de suivi. Par conséquent, la comparaison des moyennes et percentiles 90 des valeurs de 2016 ne permet pas toujours de déterminer avec certitude d'écart aux valeurs de référence. Le score basé sur ce critère est donc « Bon » pour les

stations dont les valeurs de concentration en Manganèse produisent un percentile 90 non supérieur à la limite de détection.

Les concentrations en Manganèse dissout ne sont pas connues en 2016 dans 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, 4 stations de suivi des creeks (3-B, 3-D, 4-M, 6-S) et 3 stations de suivi des dolines (6-R, DOL-10, DOL-11) présentaient des valeurs moyennes et percentiles 90 supérieures à celles de leurs gammes de références respectives. Parmi ces stations, seules 3-B, 3-D, 6-S et 6-R présentaient une valeur de concentration maximale en Manganèse supérieure à la valeur seuil réglementaire. L'étude des chroniques temporelles 2012-2016 montre quant à elle des concentrations annuelles en Manganèse en hausse pour 3-B, 3-D, 6-R et DOL-10. Un score final « Mauvais » a donc été attribué à ces 4 stations pour ce paramètre : les stations 3-B et 3-D sur la Kwé Ouest et la doline 6-R dans la zone du Creek Baie Nord (dont l'augmentation des concentrations en Manganèse entamée en 2015 s'est poursuivie en 2016 avant de retrouver des valeurs normales), toutes trois déjà notées « Mauvais » en 2015 pour ce paramètre. Les teneurs élevées en Manganèse dans la doline DOL-10 (dont les précédentes mesures datent de 2013) ne peuvent s'expliquer par l'influence des activités industrielles et minières, le score est donc « Bon ? » pour cette station, indiquant l'importance d'accorder une attention particulière à l'évolution de ce paramètre lors du prochain bilan.

Tableau 83 : Evolution temporelle de la chronique des données 2012-2016 pour les concentrations en Manganèse (en % de matière sèche) dans les sédiments de 10 stations de suivi des creeks. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de cette évolution temporelle.

	Mr	ı (%) - sédiments		1																				
Position	Type	Stations de	suivi		2012	2013		2014		2015		2016				Moy et Per90 2016	Pas de hausse	Score 2015	Score 2016	Score 2016				
Position	de BV	Zone	Station	N	Moy	N	Moy	Z	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	3C016 2015	par station	par zone				
			3-A	9	0,517	11	0,542	6	0,557	10	0,598	6	0,578	0,685	0,690	Mauvais	Bon	Mauvais	Bon					
		Kwe Ouest Kwe Nord	3-B	11	0,397	12	0,429	10	0,412	12	0,328	12	0,232	0,344	0,373	Bon	Bon	Bon	Bon	Bon				
Amont	Crond		4-N	3	0,241	0		3	0,334	4	0,279	4	0,299	0,348	0,372	Bon	Bon	Bon	Bon					
Amont	Grand		4-M	4	0,278	4	0,300	3	0,385	4	0,392	4	0,339	0,412	0,428	Bon	Bon	Bon	Bon	Bon				
		CBN Amont	6-Q	11	0,359	12	0,570	10	0,509	10	0,449	10	0,518	0,657	0,764	Mauvais	Bon	Bon	Bon	Bon				
			6-S	4	0,206	4	0,253	2	0,311	2	0,268	4	0,182	0,286	0,332	Bon	Bon	Bon	Bon	BUII				
	V			Kwa nrincinala	Kwe principale	V adadaalaala	1-A	4	0,330	4	0,298	3	0,306	4	0,338	4	0,314	0,351	0,353	Mauvais	Bon	Bon	Bon	Bon
Aval	Crond	kwe pilikipale	1-E	3	0,383	4	0,338	2	0,358	4	0,336	4	0,352	0,389	0,409	Mauvais	Bon	Bon	Bon	BUII				
Avai	Grand	CDNI AI	6-T	11	0,347	12	0,297	10	0,346	12	0,348	12	0,351	0,428	0,436	Mauvais	Bon	Bon	Bon	0				
		CBN Aval	6-U	11	0,327	12	0,289	10	0,358	12	0,344	12	0,394	0,583	0,626	Mauvais	Bon	Bon	Bon	Bon				

Aucune des stations suivies ne présente de hausse significative pour ce paramètre, le score est donc « Bon » pour l'ensemble des stations contrôlées.

Tableau 84 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Manganèse dissout (en mg/L) dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Mn (mg	/L) - eaux souterrair		lq = 0,01 mg/L					En bleu : piézoi							Valeur seuil :		0,050 mg/L			
Influence	Stations de Zone	suivi Station	_	2012	N	2013	N	2014	_	2015		Mov	2016 Per 90	Max	Moy et Per90 2016	Max 2016 <	Pas de	Score 2015		
	Zone	4-71	N	Moy 0,030	N 2	Moy 0,035	4	Moy 0,030	N	Moy 0,028	N 4	0,030	0,030	0,030	≤ piézo. contrôle ? Mauvais	valeur seuil ? Bon	hausse Bon	Bon	par piézo. Bon	par zone
	Kwe Nord	4-21 4-71A	4	0.010	2	0,033	4	0,010	4	0,028	0	0,030	0,030	0,030	iviauvais	BOII	Bon	Bon	DOII	
		4-z1B	4	0,010	3	0,063	4	0,160	3	0,143	0						Mauvais	Mauvais		
		4-z2	4	0,038	2	0,020	4	0,033	4	0,038	4	0,030	0,037	0,040	Mauvais	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	0,015	2	0,010	4	0,025	4	0,015	0						Bon	Bon		Mauvais
		4-z4	4	0,778	2	0,350	4	0,049	4	0,523	5	0,218	0,380	0,480	Mauvais	Mauvais	Bon	Mauvais	Mauvais	
		4-z4A	4	0,010	2	0,010	3	0,010	4	0,010	0		0.700	0.750			Bon	Bon		
		4-z5 4-z5A	4	0,495	2	0,700	5	0,704	4	0,728	5	0,754	0,760	0,760	Mauvais	Mauvais	Mauvais Bon	Mauvais Bon	Mauvais	
	ł	WK17	51	0,103	52	0,013	50	0,010	76	0,010	52	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
ASR 0 (sources)		WK20	51	0,011	52	0,012	50	0,012	52	0,011	51	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
	1	WK6-11	1	0,010	0		2	0,035	3	0,013	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Ī
		WK6-11A	2	0,060	2	0,030	0		3	0,050	2	0,040	0,040	0,040	Mauvais	Bon	Bon	Bon	Bon	
		WK6-12	2	0,010	2	0,010	11	0,033	12	0,010	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
ASR A		WK6-12A	2	0,020	2	0,015	10	0,026	12	0,010	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
(piézomètres		WK6-9 WK6-9A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon Bon	Bon	
d'alerte)		WKBH102	11	0,010	7	0,010	12	0,010	12	0,010	12	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon	Bon Bon	
		WKBH102A	2	0.010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH102A	2	0,010	2	0,010	4	0,020	12	0,010	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
	1	WK6-10	0		1	0,010	3	0,023	2	0,020	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WK6-10A	2	0,020	1	0,010	1	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH109	0		0		2	0,030	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH109A	2	0,010	2	0,010	2	0,010	2	0,010	11	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
	V O	WKBH110 WKBH110A	10	0,010	7	0,010	13 0	0,013	12	0,010	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
ASR B	Kwe Ouest	WKBH110A WKBH110B	2	0,010	2	0,010	2	0,010	2	0,010	11	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
(zone tampon)		WKBH110B	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
(zone tampon)		WKBH117	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH117A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH117B	2	0,010	2	0,010	2	0,010	1	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH118	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH118A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH118B WKBH112	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon Bon	Bon Bon	ł
		WKBH112 WKBH112A	0	0,015	0	0,010	2	0,010	2	0,010	2	0,010 0,050	0,010 0,074	0,010	Bon Mauvais	Bon Mauvais	Bon Bon	Bon	Mauvais	
		WKBH113	11	0,010	7	0,010	13	0,025	12	0,040	12	0,030	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH113A	2	0.010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH114	3	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
ASR C		WKBH114A	1	0,010	3	0,010	2	0,015	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
(proximité		WKBH115	0		0		1	0,010	0		2	0,010	0,010	0,010	Bon	Bon	Bon		Bon	
rivière)		WKBH115A	0		0		2	0,030	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH115B WKBH116	2	0,050	2	0,050	2	0,050	2	0,050	2	0,040	0,040	0,040	Mauvais	Bon	Bon	Bon	Bon	
		WKBH116 WKBH116A	2	0,015	2	0,020	2	0,030	2	0,010	2	0,010 0,015	0,010 0,019	0,010 0,020	Bon Mauvais	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH116B	2	0,010	2	0,010	2	0,010	2	0,020	2	0,015	0,019	0,020	Mauvais	Bon	Bon	Bon	Bon	
		WTBH9	2	0,010	1	0,010	0	0,010	1	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
ASR D	1	WKBH32	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Ī
(vallées	Ka dji	WK6-14	1	0,010	2	0,010	1	0,010	1	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
adiacentes)	Rivière Trou Bleu	WTBH11	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
,,		WTBH11A	2		2	0,010	2	0,010	1	0,010		0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
Port	Baie de Prony	7-1 7-2	1	0,010	2	0,010	2	0,010	0		2	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	 	Bon Bon	Bon
FUIL	bare de Pibliy	7-2	1	0,010	2	0,015	2	0,015	0		2	0,010	0,010	0,010	Bon	Bon	Bon	 	Bon	BUII
		6-1	4	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-13	0	-,	1	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
[6-14	5	0,014	3	0,010	5	0,010	5	0,012	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-14a	6	0,012	4	0,010	10	0,021	10	0,010	11	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
[6-1a	4	0,013	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
[6-2	4	0,010	1	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
[6-2a 6-3	4	0,010	3	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
Usine	CBN	6-3a	4	0.010	2	0,010	3	0.010	3	0,010	3	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
[6-3a	4	0,010	2	0,010	4	0,010	4	0,010	3	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	-
		6-5	5	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
[6-6	5	0,012	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-7	4	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
								0.040	3	0.040	3		0.040	0,010	Bon	D	Bon	Bon		
		6-7a	4	0,010	2	0,010	4	0,010	-	0,010		0,010	0,010			Bon			Bon	
		6-7a 6-8 6-8a	5	0,010 0,034 0.010	2	0,010 0,020 0,010	3	0,010	4	0,010	4	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon	Bon Bon Bon	Bon Bon Bon	

En 2016, les concentrations en Manganèse dissout ne sont pas connues dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Manganèse dissout dans les eaux souterraines ont été mesurées en 2016 dans tous les autres piézomètres, dont 9 présentent des valeurs annuelles supérieures à celles mesurées dans les stations de contrôle, 3 d'entre elles (4-z4, 4-z5 et WKBH112A) présentant des valeurs maximales dépassant la valeur seuil réglementaire, d'un facteur dix à quinze pour 4-z4 et 4-z5. De plus, les concentrations en Manganèse dissout ont tendance à augmenter sur la période 2012-2016 aux piézomètres 4-z5 et WKBH112A. Un score « Mauvais » a donc été attribué à ces 3 piézomètres pour ce paramètre.

4.2.1.1.3 Concentrations en Nickel

Les concentrations en Nickel dissout sont mesurées dans les eaux de surface des creeks et des dolines, dans les sédiments des creeks, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Nickel dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L dans la majorité des mesures. Lorsqu'une limite de détection supérieure (0,1 mg/L) a été employée, les valeurs mesurées sont indiquées *en italique* dans les tableaux de synthèse. Les concentrations en Nickel dans les sédiments sont exprimées en % de matière sèche.

La réglementation française ne prévoit pas à ce jour de valeur seuil pour la concentration en Nickel dissout dans les eaux de surface et les sédiments. La valeur seuil de concentration en Nickel dissout dans les eaux souterraines est définie à 0,02 mg/L dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant. Aucune doline de référence n'a été mesurée en 2016 pour ce paramètre.

Six stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les sédiments, également réparties selon leur position en amont ou en aval de la rupture de pente du bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 85 : Détermination de la gamme de variations de référence pour le Nickel dissout (en mg/L) dans (a) les eaux de surface et (b) les sédiments : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	Ni (mg/	L) - eaux de	surface	ı	q = 0,01 m	ig/L		
Position	Type de	Station	s de référence	N	moy	moy	Per 10	Per 90
Position	BV	Zone	Station	2016	2016	2016	Per 10	Per 90
		Kwe Ouest	3-A	5	0,024			
Amont	Grand	Carénage	Carénage Amont	1	0,023	0,018	0,012	0,024
Amont	Granu	Kaoris	Kaoris Amont	1	0,012	0,016	0,012	0,024
		Kuebini	Kueb Amont	1	0,013			
		Trou Bleu	3-C	12	0,012			
Aval	Grand	Carénage	Carénage Aval	1	0,015	0.013	0.011	0,014
AVdi	Granu	Kaoris	Kaori Aval	1	0,010	0,013	0,011	0,014
		Kuebini	Kueb Aval	1	0,013			

	Ni (%) - sédime	ents					
Position	Type de	Station	s de référence	N	moy	moy	Dor 10	Per 90
Position	BV	Zone	Station	2016	2016	2016	PEI 10	Pel 50
		Carénage	Carénage Amont	1	0,556			
Amont	Grand	Kaoris	Kaoris Amont	1	0,461	0,454	0,369	0,537
		Kuebini	Kueb Amont	1	0,346			
		Carénage	Carénage Aval	1	0,563			
Aval	Grand	Kaoris	Kaori Aval	1	0,399	0,465	0,406	0,537
		Kuebini	Kueb Aval	1	0,433			

b.

Résultats et analyse

Tableau 86 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 pour les concentrations en Nickel dissout (en mg/L) dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Ni (mg	/L) - eaux de surfa	ice		Iq = 0,0)1 m	g/L	Ιq	= 0,01 e	t 0,1	mg/L									
Position	Туре	Stations de	suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score	Score 2016	Score 2016
Position	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	2015	par station	par zone
			3-B	14	0,018	25	0,020	12	0,033	33	0,022	147	0,079	0,140	0,900	Mauvais	Mauvais	Bon	Mauvais	
		Kwe Ouest	3-D	2	0,010	13	0,038	4	0,015	23	0,019	135	0,094	0,129	2,400	Mauvais	Mauvais	Bon	Mauvais	Mauvais
		Kwe Odest	3-E	2	0,015	2	0,010	2	0,010	1	0,010	3	0,027	0,038	0,040	Mauvais	Bon	Bon	Bon	Widavais
	Grand		4-N	9	0,023	2	0,010	11	0,010	12	0,012	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
Amont	Granu	Kwe Nord	4-M	12	0,022	12	0,021	9	0,021	12	0,018	12	0,019	0,029	0,030	Mauvais	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	0,025	14	0,026	6	0,030	12	0,023	11	0,027	0,030	0,030	Mauvais	Bon		Bon	Bon
		CBN Amont	6-Q	13	0,018	12	0,020	11	0,059	11	0,028	10	0,027	0,031	0,040	Mauvais	Bon	Bon	Bon	Bon
		CBN AIIIOITE	6-S	12	0,013	12	0,013	7	0,021	8	0,015	10	0,014	0,020	0,020	Bon	Bon	Bon	Bon	Don
	Petit	Trüu Amont	TR-02	12	0,031	12	0,032	5	0,030	12	0,028	0					Bon	Bon		
		Kwe principale	1-A	12	0,014	12	0,013	11	0,012	13	0,018	12	0,011	0,010	0,020	Bon	Bon	Bon	Bon	Bon
		kwe pilikipale	1-E	14	0,012	14	0,012	8	0,011	12	0,011	12	0,011	0,010	0,020	Bon	Bon	Bon	Bon	BOII
Aval	Grand		6-BNOR1	4	0,018	5	0,010	4	0,015	4	0,015	4	0,015	0,020	0,020	Mauvais	Bon	Bon	Bon	
Avai		CBN Aval	6-T	6	0,012	6	0,009	4	0,013	5	0,032	10	0,016	0,020	0,020	Mauvais	Bon	Inconnu	Bon	Bon
			6-U	1	0,010	0		1	0,030	2	0,100	1	0,020	0,020	0,020	Mauvais	Bon	Inconnu	Bon	
	Petit	Trüu Aval	TR-01	11	0,018	12	0,021	5	0,016	10	0,017	0					Bon	Bon		
			6-R	12	0,013	12	0,011	10	0,011	13	0,132	10	0,367	0,421	2,500		Mauvais	Bon	Mauvais	
			DOL-2	2	0,010	2	0,010	1	0,010	1	0,010	0					Bon	Bon		
			DOL-3	2	0,015	1	0,010	1	0,010	0		0					Bon			
		CBN	DOL-4	2	0,010	2	0,010	2	0,010	1	0,010	0					Bon	Bon		Mauvais
		CBIN	DOL-8	1	0,010	1	0,010	1	0,010	1	0,010	0					Bon	Bon		Widavais
Doli	nes		DOL-9	1	0,010	1	0,010	1	0,010	0		0					Bon			
			DOL-10	0		1	0,010	0		0		1	0,010	0,010	0,010		Bon		Bon	
			DOL-15	0		1	0,010	0		0		0					Bon			
			DOL-11	2	0,015	1	0,010	1	0,020	0		2	0,015	0,019	0,020		Bon		Bon	
		Ka dji	DOL-12	1	0,010	1	0,010	1	0,010	1	0,010	0					Bon	Bon		Bon
			DOL-13	2	0,010	2	0,010	0		1	0,010	0					Bon	Bon		

Les concentrations en Nickel dissout ne sont pas connues en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, 9 stations de suivi des creeks présentaient des valeurs moyennes et percentiles 90 supérieures à celles de leurs gammes de références respectives. La chronique temporelle 2012-2016 de concentrations annuelles en Nickel ne présente de hausse que pour 2 de ces stations de suivi des creeks, ainsi que pour 1 station de suivi des dolines. Un score final « Mauvais » a donc été attribué à ces 3 stations qui se retrouvent donc déclassées par rapport à 2015 pour ce paramètre : les stations 3-B et 3-D sur la Kwé Ouest, qui ont connu des concentrations élevées en Nickel dissout à plusieurs reprise au cours du 2nd semestre 2016, et la doline 6-R dans la zone du Creek Baie Nord, dont la forte moyenne annuelle s'explique principalement par une très forte concentration en Nickel dissout (2,5 mg/L) en mars 2016.

Tableau 87 : Evolution temporelle de la chronique des données 2012-2016 pour les concentrations en Nickel (en % de matière sèche) dans les sédiments de 10 stations de suivi des creeks. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de cette évolution temporelle.

	Ni	(%) - sédiments																		
Position	Type	Stations de	e suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score 2015	Score 2016	Score 2016
POSITION	de BV	Zone	Station	Ν	Moy	N	Moy	N	Moy	N	Moy	Ν	Moy	Per 90	Max	≤gamme ref.?	temporelle?	3C016 2013	par station	par zone
			3-A	9	0,467	11	0,498	6	0,489	10	0,547	6	0,459	0,503	0,514	Bon	Bon	Bon	Bon	
		Kwe Ouest	3-B	11	0,418	12	0,421	10	0,436	12	0,392	12	0,338	0,406	0,410	Bon	Bon	Bon	Bon	Mauvais
Amont	Grand		4-N	3	0,358	0		3	0,646	4	0,727	4	0,728	0,980	1,067	Mauvais	Mauvais	Mauvais	Mauvais	
Amont	Granu	Kwe Nord	4-M	4	0,396	4	0,437	3	0,769	4	0,651	4	0,681	0,834	0,844	Mauvais	Mauvais	Bon	Mauvais	Mauvais
		CBN Amont	6-Q	11	0,283	12	0,336	10	0,354	10	0,397	10	0,376	0,443	0,504	Bon	Bon	Mauvais	Bon	Bon
			6-S	4	0,204	4	0,241	2	0,272	2	0,255	4	0,219	0,267	0,283	Bon	Bon	Bon	Bon	BUII
		Kwe principale	1-A	4	0,465	4	0,375	3	0,392	4	0,410	4	0,396	0,438	0,438	Bon	Bon	Bon	Bon	Bon
Aval	Grand	kwe pinicipale	1-E	3	0,520	4	0,428	2	0,473	4	0,445	4	0,470	0,513	0,537	Bon	Bon	Bon	Bon	BOII
AVdi	Granu	CBN Aval	6-T	11	0,230	12	0,269	10	0,294	12	0,258	12	0,262	0,303	0,324	Bon	Bon	Bon	Bon	Bon
		CDIN AVdi	6-U	11	0,273	12	0,270	10	0,272	12	0,278	12	0,275	0,299	0,397	Bon	Bon	Bon	Bon	DON

En 2016, 2 stations de suivi des sédiments dans les cours d'eau présentaient des valeurs moyennes et percentiles 90 supérieures à celles de leur gamme de référence. Toutes deux présentent des proportions environ deux fois plus élevées en Nickel dans les sédiments que les autres stations suivies. La chronique

temporelle 2012-2016 de concentrations annuelles en Nickel montre également une hausse pour ces 2 stations. Un score final « Mauvais » leur a donc été attribué pour ce paramètre : la station <u>4-N</u> sur la Kwé Ouest, qui était déjà notée « Mauvais » l'année dernière, et la station <u>4-M</u> sur la Kwé Nord, qui se retrouve déclassée par rapport à 2015 pour ce paramètre.

Tableau 88 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Nickel dissout (en mg/L) dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Ni (mg/	L) - eaux souterra	ines		lq = 0,0)1 m	g/L		En	bleı	ı:piézo	mèt	res de c	ontrôle		Valeur seuil :	0,020 m	ıg/L			
Influence	Stations de			2012		2013		2014		2015	_		2016		Moy et Per90 2016	Max 2016 <	Pas de	Score 2015	Score 2016	Score
	Zone	Station 4-z1	N	Moy 0,010	N	Moy 0,010	N	Moy 0,010	N	Moy 0,010	N	0,010	0,010	0,010	≤ piézo. contrôle ? Bon	valeur seuil ? Bon	hausse Bon	Bon	par piézo. Bon	2016 par
	Kwe Nord	4-21 4-21A	4	0,010	2	0,010	4	0,010	4	0,010	0	0,010	0,010	0,010	BUII	DUII	Bon	Bon	DUII	
		4-z1B	4	0,010	3	0,013	4	0,015	3	0,013	0						Bon	Bon		
		4-z2	4	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	0,010	2	0,010	4	0,010	4	0,010	0						Bon	Bon		Mauvais
		4-z4	4	0,063	2	0,045	4	0,060	4	0,055	5	0,042	0,050	0,050	Mauvais	Mauvais	Bon	Bon	Bon	
		4-z4A 4-z5	4	0,010	2	0,010	5	0,010	4	0,010	5	0,110	0,168	0,220	Mauvais	Mauvais	Bon Mauvais	Bon Bon	Mauvais	
		4-z5A	4	0,028	2	0,010	2	0,010	4	0,010	0	0,110	0,100	0,220	IVIA U VA 13	IVIU U VU IS	Bon	Bon	Widavais	
ASR 0 (sources)		WK17	51	0,016	52	0,010	51	0,017	76	0,023	52	0,082	0,130	0,130	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
ASK 0 (Sources)		WK20	51	0,015	52	0,011	51	0,017	52	0,018	51	0,034	0,040	0,050	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		WK6-11	1	0,110	0		2	0,010	3	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WK6-11A	2	0,010	2	0,010	0 11	0,145	3	0,020	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
ASR A		WK6-12 WK6-12A	2	0,090	2	0,120	10	0,143	12	0,088	12	0,080 0,011	0,110 0,010	0,110	Ma uva is Bon	Mauvais Mauvais	Bon Bon	Bon Bon	Bon Bon	
(piézomètres		WK6-9	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH102	11	0,021	7	0,026	12	0,028	12	0,028	12	0,057	0,090	0,130	Mauvais	Mauvais	Bon	Bon	Bon	
		WKBH102A	2	0,010	2	0,010	2	0,010	2	0,040	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
<u> </u>		WKBH103	0	0,050	2	0,020	2	0,045	12	0,032	12 2	0,077 0,010	0,110	0,120	Mauvais	Mauvais	Mauvais	Bon Bon	Mauvais	
		WK6-10 WK6-10A	2	0,025	1	0,020	1	0,015	2	0,010	2	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon	Bon Bon	
		WKBH109	0	0,023	0	0,010	1	0,010	2	0,015	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH109A	2	0,020	2	0,020	2	0,020	2	0,025	11	0,034	0,050	0,050	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		WKBH110	10	0,011	7	0,019	11	0,010	12	0,010	12	0,019	0,020	0,030	Mauvais	Mauvais	Bon	Bon	Bon	
	Kwe Ouest	WKBH110A	0		0		0		2	0,010	11	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
ASR B		WKBH110B	2	0,010	2	0,010	2	0,010	2	0,010	11	0,012	0,010	0,020	Bon	Mauvais	Bon	Bon	Bon	
(zone tampon)		WKBH111 WKBH117	2	0,030	2	0,025	2	0,030	2	0,025	2	0,030 0,020	0,030 0,020	0,030	Mauvais Bon	Mauvais Mauvais	Bon Bon	Bon Bon	Bon Bon	
		WKBH117A	2	0,015	2	0,015	2	0,020	2	0,020	2	0,025	0,029	0,030	Mauvais	Mauvais	Bon	Bon	Bon	
		WKBH117B	2	0,025	2	0,025	2	0,025	1	0,020	2	0,020	0,020	0,020	Bon	Mauvais	Bon	Bon	Bon	Mauvais
		WKBH118	2	0,010	2	0,010	2	0,010	2	0,015	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH118A	2	0,015	2	0,010	2	0,015	2	0,020	2	0,020	0,020	0,020	Bon	Mauvais	Bon	Bon	Bon	
		WKBH118B	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH112 WKBH112A	0	0,100	0	0,135	2	0,145	2	0,145	2	0,140 0,255	0,140 0,315	0,140	Mauvais Mauvais	Mauvais Mauvais	Bon Mauvais	Bon Bon	Bon Mauvais	
		WKBH112A	11	0,038	7	0,047	12	0,035	12	0,034	12	0,031	0,039	0,040	Mauvais	Mauvais	Bon	Bon	Bon	
		WKBH113A	2	0,010	2	0,015	2	0,010	2	0,010	2	0,015	0,019	0,020	Bon	Mauvais	Bon	Bon	Bon	
		WKBH114	3	0,047	2	0,065	2	0,075	5	0,085	2	0,085	0,089	0,090	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
ASR C		WKBH114A	1	0,010	3	0,010	2	0,015	2	0,010	2	0,015	0,019	0,020	Bon	Mauvais	Bon	Bon	Bon	
(proximité rivière)		WKBH115	0		0		2	0,020	2	0.105	2	0,010	0,010	0,010	Bon	Bon	Bon	0	Bon	
liviele)		WKBH115A WKBH115B	0	0,030	2	0,030	2	0,180	2	0,185	2	0,030 0,010	0,030 0,010	0,030	Mauvais Bon	Mauvais Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH116	2	0,015	2	0,010	1	0,010	2	0,015	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH116A	2	0,010	2	0,010	2	0,020	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH116B	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WTBH9	2	0,175	1	0,190	0		1	0,190	2	0,180	0,180	0,180	Mauvais	Mauvais	Bon	Bon	Mauvais	
ASR D	W. 10	WKBH32	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
(vallées	Ka dji	WK6-14 WTBH11	2	0,030	2	0,025	2	0,030	2	0,030	2	0,040	0,040	0,040	Mauvais Bon	Mauvais Bon	Mauvais Bon	Bon Bon	Mauvais Bon	
adjacentes)	Rivière Trou Bleu	WTBH11A	2	0,010	2	0,010	2	0,010	1	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		7-1	1	0,010	2	0,015	2	0,010	0		2	0,010	0,010	0,010	Bon	Bon	Bon		Bon	
Port	Baie de Prony	7-2	1	0,060	2	0,085	2	0,055	0		2	0,055	0,059	0,060	Mauvais	Mauvais	Bon		Bon	Bon
		7-3	1	0,050	2	0,075	2	0,050	0		2	0,045	0,049	0,050	Mauvais	Mauvais	Bon		Bon	
		6-1	3	0,010	2	0,010	4	0,015	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-13 6-14	5	0,012	3	0,010	5	0,020	5	0,020	4	0,022 0,015	0,027 0,024	0,030	Mauvais Bon	Mauvais Mauvais	Bon Bon	Bon Bon	Bon Bon	
		6-14 6-14a	6	0,012	4	0,010	10	0,018	10	0,012	11	0,013	0,024	0,030	Bon	Mauvais	Bon	Bon	Bon	
		6-1a	4	0,027	2	0,025	_	_	4	0,025	4	0,027	0,030	0,030	Mauvais	Mauvais	Bon	Bon	Bon	
		6-2	4	0,022	1	0,020	4	0,013	4	0,018	4	0,020	0,027	0,030	Mauvais	Mauvais	Bon	Bon	Bon	
		6-2a	4	0,012	2	0,010	4	0,015	4	0,018	4	0,017	0,020	0,020	Bon	Mauvais	Bon	Bon	Bon	
Usine	CBN	6-3	4	0,050	3	0,053	4	0,085	4	0,075	4	0,047	0,060	0,060	Mauvais	Mauvais	Bon	Bon	Bon	Bon
		6-3a	4	0,042	2	0,045	3	0,037	4	0,047	3	0,047	0,050	0,050	Mauvais	Mauvais	Bon	Bon	Bon	
		6-4 6-5	5	0,040	2	0,020	5	0,033	4	0,035	4	0,043	0,048	0,050	Mauvais Mauvais	Mauvais Mauvais	Bon Bon	Bon Bon	Bon Bon	
		6-6	5	0,024	3	0,033	4	0,010	4	0,023	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-7	4	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-7a	4	0,010	2	0,015	4	0,013	3	0,017	3	0,017	0,020	0,020	Bon	Mauvais	Bon	Bon	Bon	
		6-8	5	0,022	2	0,020	3	0,027	4	0,060	4	0,025	0,030	0,030	Mauvais	Mauvais	Bon	Bon	Bon	
		6-8a	4	0,010	2	0,010	4	0,010	4	0,010	4	0,012	0,017	0,020	Bon	Mauvais	Bon	Bon	Bon	

En 2016, les concentrations en Nickel dissout n'ont pas été mesurées dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Nickel dissout dans les eaux souterraines ont été mesurées en 2016 dans tous les autres piézomètres. Beaucoup présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle, dont le piézomètre 7-2 a été exclu pour ce paramètre en raison de ses valeurs élevées. Nombreux sont également les piézomètres pour lesquels la valeur maximale enregistrée en 2016 dépasse la valeur seuil réglementaire. Un score « Mauvais » a donc été attribué aux 9 piézomètres dont les concentrations en Nickel dissout avaient aussi tendance à augmenter sur la période 2012-2016, justifiant leur déclassement par rapport à l'année dernière : le piézomètre 4-z5 sous influence de l'Unité de Préparation du Minerai, les piézomètres WK17, WK20, WKBH103, WKBH109A, WKBH112A, WKBH114 et WTBH9 sous influence de l'aire de stockage des résidus, et WK6-14 situé dans une vallée adjacente à l'ASR dans le bassin versant de la Kadji.

4.2.1.1.4 Concentrations en Aluminium

Les concentrations en Aluminium dissout sont mesurées dans les eaux de surface des creeks, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Aluminium dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L. La valeur seuil de concentration en Aluminium dissout dans les eaux souterraines est définie à 0,2 mg/L dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012.

Résultats et analyse

Les valeurs mesurées restent inférieures aux limites de détection, dans toutes les stations de suivi des cours d'eaux et tous les piézomètres de suivi des eaux souterraines. Un score Bon est donc attribué à chacune des zones pour ce paramètre.

4.2.1.1.5 Concentrations en Arsenic

Les concentrations en Arsenic dissout sont mesurées dans les eaux de surface des creeks, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Arsenic dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,05 ou 0,2 mg/L. La valeur seuil de concentration en Arsenic dissout dans les eaux souterraines est définie à 0,01 mg/L dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012.

Résultats et analyse

Les valeurs mesurées restent inférieures aux limites de détection, dans toutes les stations de suivi des cours d'eaux et tous les piézomètres de suivi des eaux souterraines. Un score Bon est donc attribué à chacune des zones pour ce paramètre. Notons que le niveau des seuils de détection ne permet pas cependant de garantir le non franchissement de la valeur seuil.

4.2.1.1.6 <u>Concentrations en Cadmium</u>

Les concentrations en Cadmium dissout sont mesurées dans les eaux de surface des creeks, dans les sédiments des creeks, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Cadmium dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L. La valeur seuil de concentration en Cadmium dissout dans les eaux souterraines est définie à 0,005 mg/L dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012. La réglementation française ne prévoit pas à ce jour de valeur seuil pour la concentration en Cadmium dissout dans les sédiments.

Résultats et analyse

Bien que la limite de détection utilisée pour mesurer les concentrations en Cadmium soit supérieure à la valeur seuil réglementaire, les valeurs mesurées restent inférieures aux limites de détection dans toutes les stations de suivi des cours d'eaux et tous les piézomètres de suivi des eaux souterraines. Un score Bon est donc attribué à chacune des zones pour ce paramètre.

Tableau 89 : Evolution temporelle de la chronique des données 2012-2016 pour les concentrations en Cadmium (en % de matière sèche) dans les sédiments de 10 stations de suivi des creeks. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone n'a pu être cette année attribué sur la base de cette évolution temporelle, en raison des valeurs suspectes.

	Cd	(%) - sédiments																
Position	Type de	Stations de	e suivi		2012		2013		2014		2015			2016		Score 2015	Score 2016	Score 2016
Position	BV	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	3C016 2013	par station	par zone
			3-A	9	0	11	0	6	0	9	0	6	8,16	21,50	27,00	Stable?	Suspect	
		Kwe Ouest	3-B	11	0	12	0	10	0	12	0	12	9,25	24,60	28,00	Stable?	Suspect	Suspect
Amont	Grand		4-N	3	0	0	0	3	0	4	0	4	18,50	38,20	40,00	Stable?	Suspect	
Amont	Gianu	Kwe Nord	4-M	4	0	4	0	3	0	4	0	4	18,00	37,20	39,00	Stable?	Suspect	Suspect
		CBN Amont	6-Q	11	0	12	0	10	0	10	0	10	11,10	26,30	29,00	Stable?	Suspect	Suspect
		CBN AIIIOIIL	6-S	4	0	4	0	2	0	2	0	4	28,75	40,50	42,00	Stable?	Suspect	Suspect
		Kwe principale	1-A	4	0	4	0	3	0	4	0	4	17,50	36,20	38,00	Stable?	Suspect	Suspect
Aval	Grand	kwe pilikipale	1-E	3	0	4	0	2	0	4	0	4	19,00	39,20	41,00	Stable?	Suspect	Suspect
Avai	Granu	CBN Aval	6-T	12	0,030	12	0	10	0	12	0	12	9,33	23,60	30,00	Stable?	Suspect	Suspect
		CDIN AVdi	6-U	11	0	12	0	10	0	12	0	12	9,42	22,60	31,00	Stable?	Suspect	Juspect

Jusqu'en 2015, le Cadmium n'avait été détecté dans aucune des stations de suivi des sédiments dans les cours d'eau. En 2016, des valeurs anormalement élevées ont été détectées dans toutes les stations depuis le mois de juillet, avec une tendance généralisée à l'augmentation. Une erreur d'unité de ces valeurs est suspectée, ainsi potentiellement qu'une erreur sur la nature du paramètre mesuré ; une vérification du jeu de donnée transmis par Vale NC a donc été réclamée mais aucune explication ne nous a été transmise à ce jour, il est donc impossible d'attribuer une note sur la base de ce paramètre cette année.

4.2.1.1.7 Concentrations en Cobalt

Les concentrations en Cobalt dissout sont mesurées dans les eaux de surface des creeks et des dolines, dans les sédiments des creeks, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Cobalt dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L. La réglementation française ne prévoit pas à ce jour de valeur seuil pour la concentration en Cobalt dissout dans les eaux de surface, les eaux souterraines, ni les sédiments.

En 2016, 4 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les sédiments, réparties selon leur position en amont ou en aval de la rupture de pente du bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 90 : Détermination de la gamme de variations de référence pour le Cobalt dissout (en mg/L) dans (a) les eaux de surface et (b) les sédiments : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau la téritique amont, des versants côtiers aval.

	Co (%) - sédim	ents					
Position	Туре	Station	s de référence	N	moy	moy	Per 10	Dor OO
POSITION	de BV	Zone	Station	2016	2016	2016	Pel 10	Pel 30
		Kaoris	Kaoris Amont	1	0,030			
Amont	Grand	Kuebini	Kueb Amont	1	0,033	0,036	0,030	0,044
		Carénage	Carenage Amon	1	0,046			
		Kaoris	Kaori Aval	1	0,036			
Aval	Grand	Kuebini	Kueb Aval	1	0,032	0,035	0,033	0,037
		Carénage	Carenage Aval	1	0,037			

Résultats et analyse

Les valeurs mesurées restent inférieures aux limites de détection dans toutes les stations de suivi des cours d'eaux pour les eaux de surface. Un score Bon est donc attribué à chacune des zones pour ce paramètre.

Tableau 91 : Evolution temporelle de la chronique des données 2012-2016 pour les concentrations en Cobalt (en % de matière sèche) dans les sédiments de 10 stations de suivi des creeks et comparaison de la moyenne annuelle et du percentile 90 aux gammes de référence 2016. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de cette évolution temporelle.

	Co	(%) - sédiments		1																
Position	Type	Stations de	suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score	Score 2016	Score 2016
Position	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	Z	Moy	z	Moy	Per 90	Max	≤gamme ref.?	temporelle?	2015	par station	par zone
			3-A	9	0,0561	11	0,0580	6	0,0639	10	0,0680	6	0,0589	0,0699	0,0709	Mauvais	Bon	Bon	Bon	
		Kwe Ouest	3-B	11	0,0384	12	0,0438	10	0,0397	12	0,0356	12	0,0272	0,0371	0,0529	Bon	Bon	Bon	Bon	Bon
Amont	Grand		4-N	3	0,0317	0		3	0,0462	4	0,0352	4	0,0429	0,0512	0,0541	Mauvais	Bon	Bon	Bon	
Amont	Granu	Kwe Nord	4-M	4	0,0388	4	0,0453	3	0,0529	4	0,0540	4	0,0521	0,0661	0,0669	Mauvais	Bon	Bon	Bon	Bon
		CBN Amont	6-Q	11	0,0406	12	0,0825	10	0,0670	10	0,0664	10	0,0739	0,1021	0,1260	Mauvais	Mauvais	Bon	Bon ?	Bon
		CBN AIIIOIIL	6-S	4	0,0221	4	0,0341	2	0,0468	2	0,0358	4	0,0222	0,0371	0,0438	Bon	Bon	Bon	Bon	BUII
		Kwe principale	1-A	4	0,0463	4	0,0393	3	0,0407	4	0,0425	4	0,0446	0,0512	0,0523	Mauvais	Bon	Bon	Bon	Bon
Aval	Grand	kwe pilitipale	1-E	3	0,0555	4	0,0443	2	0,0510	4	0,0456	4	0,0510	0,0589	0,0632	Mauvais	Bon	Bon	Bon	BUII
Avai	Grand	CBN Aval	6-T	12	0,0426	12	0,0336	10	0,0474	12	0,0430	12	0,0445	0,0578	0,0604	Mauvais	Bon	Bon	Bon	Bon
		CDIN AVAI	6-U	11	0,0384	12	0,0343	10	0,0454	12	0,0447	12	0,0521	0,0655	0,0929	Mauvais	Mauvais	Bon	Bon ?	БОП

En 2016, 8 stations de suivi des sédiments dans les cours d'eau sur 10 présentaient des valeurs moyennes et percentiles 90 supérieures à celles de leur gamme de référence. La chronique temporelle 2012-2016 de concentrations annuelles en Cobalt révèle également une hausse pour 2 stations. Un score final « Bon ? » leur a donc été attribué : la station 6-Q en amont du Creek Baie Nord, qui présente la plus forte moyenne, et la station 6-U en aval du Creek Baie Nord. Toutes deux atteignent des valeurs maximales de concentration en Cobalt élevées, qui pourrait conduire à un déclassement si la tendance se confirme.

Tableau 92 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle pour les concentrations en Cobalt dissout (en mg/L) dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Co (mg/	L) - eaux souterrai	ines		lq = 0,0		_			_	_	mèt	res de c	ontrôle						
Influence	Stations de		_	2012		2013	_	2014		2015		1	2016		Moy et Per90 2016	Pas de hausse	Score	Score 2016	Score 2016
	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	temporelle?	2015	par piézo.	par zone
	Kwe Nord	4-z1 4-z1A	4	0,010	2	0,010	4	0,010	4	0,010	0	0,010	0,010	0,010	Bon	Bon Mauvais	Bon Bon	Bon	
	KWE NOIU	4-21A 4-21B	4	0,010	3	0,010	4	0,010	3	0,028	0					Bon	Bon		
		4-z2	4	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	0,010	2	0,010	4	0,010	4	0,010	0					Bon	Bon		Mauvais
		4-z4	4	0,053	2	0,025	4	0,033	4	0,033	5	0,014	0,022	0,030	Mauvais	Bon	Bon	Bon	
		4-z4A	4	0,010	2	0,010	3	0,010	4	0,010	0					Bon	Bon		
		4-z5	3	0,030	2	0,045	5	0,044	4	0,048	5	0,068	0,096	0,120	Mauvais	Mauvais	Bon	Mauvais	
	ł	4-z5A WK17	4 51	0,020	2 52	0,010	2 47	0,010	4 75	0,010	0 52	0,010	0,010	0,010	Bon	Bon Bon	Bon Bon	Bon	
ASR 0 (sources)		WK20	51	0,011	52	0,010	48	0,010	51	0,012	51	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
	1	WK6-11	1	0,010	0	0,010	2	0,010	3	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WK6-11A	2	0,010	2	0,010	0		3	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WK6-12	2	0,010	2	0,010	8	0,010	12	0,011	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
ASR A		WK6-12A	2	0,010	2	0,010	8	0,016	12	0,010	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
(piézomètres		WK6-9	2	0,010	3	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH102 WKBH102A	11 2	0,010	7	0,010	11 2	0,010	12 2	0,010	12 2	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH102A	2	0,010	2	0,010	3	0,010	12	0,015	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
	1	WK6-10	0		1	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WK6-10A	2	0,010	1	0,010	1	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH109	0		0		1	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH109A	2	0,010	2	0,010	2	0,010	2	0,010	11	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
	Kuna Ourant	WKBH110	10	0,010	7	0,010	11	0,010	12	0,011	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
ASR B	Kwe Ouest	WKBH110A WKBH110B	2	0,010	2	0,010	2	0,010	2	0,010	11 11	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
(zone tampon)		WKBH110B WKBH111	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
(zone tampon)		WKBH117	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH117A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH117B	2	0,010	2	0,010	2	0,060	1	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon
		WKBH118	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH118A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
	ł	WKBH118B	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH112 WKBH112A	0	0,010	0	0,010	2	0,010	2	0,010	2	0,010 0,025	0,010 0,029	0,010 0,030	Bon Mauvais	Bon Mauvais	Bon Bon	Bon Mauvais	
		WKBH112A	11	0,010	7	0,011	11	0,010	12	0,010	12	0,023	0,029	0,030	Bon	Bon	Bon	Bon	
		WKBH113A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH114	3	0,010	2	0,010	2	0,010	2	0,015	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
ASR C		WKBH114A	1	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
(proximité		WKBH115	0		0		1	0,010	0		2	0,010	0,010	0,010	Bon	Bon		Bon	
rivière)		WKBH115A	0		0		1	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH115B	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WKBH116 WKBH116A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH116B	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		WTBH9	2	0,010	1	0,010	0	2,022	1	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
ASR D		WKBH32	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
(vallées	Ka dji	WK6-14	1	0,010	2	0,010	1	0,010	1	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
adjacentes)	Rivière Trou Ble	WTBH11	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
·		WTBH11A	2	0,010	2	0,010	2	0,010	0	0,010	2	0,010	0,010	0,010	Bon	Bon Bon	Bon	Bon	
Port	Baie de Prony	7-1 7-2	0	0,010	0	0,010	0	0,010	0		2	0,010	0,010	0,010	Bon Bon	DUII		Bon Bon	Bon
		7-2	1	0,010	2	0,010	2	0,010	0		2	0,010	0,010	0,010	Bon	Bon		Bon	
		6-1	4	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-13	0		1	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-14	5	0,010	3	0,010	5	0,010	5	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-14a	6	0,010	4	0,010	9	0,010	10	0,010	11	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-1a	4	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-2 6-2a	4	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		6-2a	4	0,010	3	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
Usine	CBN	6-3a	4	0,010	2	0,010	3	0,010	3	0,010	3	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon
		6-4	4	0,010	2	0,010	4	0,010	4	0,010	3	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-5	5	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-6	5	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-7	4	0,013	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-7a	4	0,010	2	0,010	4	0,010	3	0,010	3	0,010	0,010	0,010	Bon	Bon	Bon	Bon	
		6-8 6-8a	5 4	0,010	2	0,010	3	0,010	4	0,010	4	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		. o ou	-+	U,UIU	- 4	0,010	- 4	0,010	4	0,010	4	U,UIU	U,UIU	U,UIU	5011	DOII	ווטע	DOIL	

En 2016, les concentrations en Cobalt dissout ne sont pas connues dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Cobalt dissout dans les eaux souterraines ont été mesurées en 2016 dans tous les autres piézomètres, dont 3 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Parmi eux, 2 piézomètres montrent également une tendance à augmenter sur la période 2012-2016, d'où leur déclassement par l'attribution d'un score « Mauvais » cette année : le piézomètre 4-z5 sous influence de l'Unité de Préparation du Minerai, et dont la concentration en Cobalt dissout atteint en octobre 2016 la plus forte valeur enregistrée (0.12 mg/L) sur le réseau de suivi cette année, et le piézomètre WKBH112A, sous influence modérée de l'aire de stockage des résidus.

4.2.1.1.8 Concentrations en Chrome

Les concentrations en Chrome dissout sont mesurées dans les eaux de surface et les sédiments des creeks, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Chrome dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L. La valeur seuil de concentration en Chrome dissout dans les eaux souterraines et de surface est définie à 0,05 mg/L dans l'arrêté du 11 janvier 2007 et dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012. La réglementation française ne prévoit pas à ce jour de valeur seuil pour la concentration en Chrome dissout dans les sédiments.

En 2016, 2 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant. Aucune doline de référence n'a été mesurée en 2016 pour ce paramètre.

Tableau 93 : Détermination de la gamme de variations de référence pour le Chrome dissout (en mg/L) dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

(r (mg/L)	- eaux de su	rface	lo	= 0,01 m	g/L		
Position	Type de	Stations of	le référence	N	moy	moy	Per 10	Per 90
Position	BV	Zone	Station	2016	2016	2016	Pel 10	Pel 50
Amont	Grand	Kwe Ouest	3-A	5	0,010	0,010	0,010	0,010
Aval	Grand	Trou Bleu	3-C	12	0,010	0,010	0,010	0,010

Résultats et analyse

Les concentrations en Chrome dissout ne sont pas connues en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, 5 stations de suivi des creeks présentaient des valeurs moyennes et percentiles 90 supérieures à celles de leurs gammes de références respectives. Cela s'explique pour 2 d'entre elles (3-B et 3-E) par un

changement de limite de détection (de 0,01 à 0,1 μ g/L). La chronique temporelle 2012-2016 de concentrations annuelles en Chrome ne présente de hausse avérée que pour une seule de ces stations de suivi des creeks, dont les valeurs maximales relevées cette année sont élevées (elle dépasse le seuil réglementaire de 0.05mg/L) et justifient d'un déclassement. Un score final « Mauvais » a donc été attribué à la station 3-D située sur la Kwé Ouest, l'ensemble des autres stations du réseau de suivi des eaux de surface maintenant un score « Bon ».

Tableau 94 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 pour les concentrations en Chrome dissout (en mg/L) dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Cr (mg	/L) - eaux de surfa	ice		Iq = 0,0)1 m	g/L	Ιq	= 0,01 e	t 0,1	mg/L	lo	= 0,01 e	t 0,001 r	ng/L						
Position	Type	Stations de	suivi	•	2012		2013	•••	2014		2015		2	016		Moy et	Pas de hausse	Max 2016 <	Score	Score 2016	Score 2016
POSITION	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	Per90	temporelle?	valeur seuil	2015		
			3-B	14	0,010	25	0,010	12	0,010	33	0,010	147	0,086	0,100	0,100	Mauvais	Bon	Mauvais	Bon	Bon	
		Kwe Ouest	3-D	2	0,020	13	0,030	4	0,030	23	0,019	135	0,103	0,100	0,200	Mauvais	Mauvais	Mauvais	Bon	Mauvais	Mauvais
		kwe odest	3-E	2	0,010	2	0,010	2	0,010	1	0,010	3	0,043	0,084	0,100	Mauvais	Bon	Mauvais	Bon	Bon	ividavais
	Grand		4-N	9	0,010	2	0,010	11	0,010	12	0,010	12	0,013	0,010	0,050	Mauvais	Bon	Bon	Bon	Bon	
Amont	Grand	Kwe Nord	4-M	12	0,010	12	0,010	9	0,014	12	0,017	12	0,018	0,037	0,080	Mauvais	Bon	Mauvais	Bon	Bon	Bon
		Kwe Est	KE-05	12	0,014	14	0,014	6	0,017	12	0,015	11	0,014	0,020	0,030	Mauvais	Bon	Bon		Bon	Bon
		CBN Amont	6-Q	13	0,010	12	0,010	11	0,012	11	0,018	10	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
		CDIV AIIIOITE	6-S	12	0,012	12	0,010	7	0,010	8	0,010	10	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Don
	Petit	Trüu Amont	TR-02	12	0,018	12	0,018	5	0,020	12	0,014	0					Bon	Bon	Bon		
		Kwe principale	1-A	11	0,010	12	0,010	11	0,010	13	0,010	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
		kwe pinicipare	1-E	14	0,010	14	0,010	8	0,010	12	0,010	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Boll
Aval	Grand		6-BNOR1	4	0,010	5	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
Avai		CBN Aval	6-T	6	0,009	6	0,009	4	0,010	5	0,028	10	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
			6-U	1	0,010	0		1	0,010	2	0,100	1	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	0,012	12	0,016	5	0,012	10	0,011	0					Bon	Bon	Bon		
			6-R	12	0,010	12	0,010	10	0,010	13	0,010	10	0,011	0,010	0,020		Bon	Bon	Bon	Bon	
			DOL-2	2	0,010	2	0,010	1	0,010	1	0,010	0					Bon	Bon	Bon		
			DOL-3	2	0,010	1	0,010	1	0,010	0		0					Bon	Bon			
		CBN	DOL-4	2	0,010	2	0,010	2	0,010	1	0,010	0					Bon	Bon	Bon		Bon
		CBIN	DOL-8	1	0,010	1	0,010	1	0,010	1	0,010	0					Bon	Bon	Bon		Boll
Doli	nes		DOL-9	1	0,010	1	0,010	1	0,010	0		0					Bon	Bon			
			DOL-10	0		1	0,010	0		0		1	0,010	0,010	0,010		Bon	Bon		Bon	
			DOL-15	0		1	0,010	0		0		0					Bon	Bon			
			DOL-11	2	0,010	1	0,010	1	0,010	0		2	0,010	0,010	0,010		Bon	Bon		Bon	
		Ka dji	DOL-12	1	0,010	1	0,010	1	0,010	1	0,010	0					Bon	Bon	Bon		Bon
			DOL-13	2	0,010	2	0,010	0		1	0,010	0					Bon	Bon	Bon		

En ce qui concerne la concentration du Chrome dissout dans les sédiments, les valeurs mesurées restent stables au cours du temps dans toutes les stations de suivi des cours d'eaux. Un score « Bon » est donc attribué à chacune des zones pour ce paramètre.

Tableau 95 : Evolution temporelle de la chronique des données 2012-2016 pour les concentrations en Chrome (en % de matière sèche) dans les sédiments de 10 stations de suivi des creeks. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de cette évolution temporelle.

	Cr (%) -	sédiments																
Danisian	Type	Stations de	suivi		2012		2013	•	2014		2015			2016		Caara 2015	Score 2016 par	Score 2016
Position	de BV	Zone	Station	N	Moy	Ν	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	Score 2015	station	par zone
			3-A	9	2,291	11	2,466	6	2,749	10	2,377	6	2,469	2,585	2,641	Bon	Bon	
		Kwe Ouest	3-B	11	2,927	12	2,941	10	2,768	12	2,399	12	2,034	2,855	6,076	Bon	Bon	Bon
Amont	Grand		4-N	3	2,582	0		3	2,427	4	2,406	4	2,015	2,338	2,468	Bon	Bon	
Amont	Granu	Kwe Nord	4-M	4	3,267	4	3,818	3	2,674	4	2,673	4	2,217	2,589	2,807	Bon	Bon	Bon
		CBN Amont	6-Q	11	4,385	12	3,991	10	3,517	10	4,217	10	4,004	4,699	4,748	Bon	Bon	Bon
		CBN AIIIOIIL	6-S	4	3,907	4	5,272	2	5,580	2	6,500	4	3,972	4,261	4,290	Mauvais	Bon	БОП
		Kwe principale	1-A	4	3,190	4	3,444	3	3,351	4	3,060	4	3,407	4,018	4,190	Bon	Bon	Bon
Augl	C	kwe pilikipale	1-E	3	3,150	4	3,595	2	3,509	4	3,299	4	3,436	3,707	3,712	Bon	Bon	БОП
Aval	Grand	CDN Avel	6-T	12	4,523	12	4,771	10	3,602	12	3,721	12	3,693	4,875	4,882	Bon	Bon	Dan
		CBN Aval	6-U	11	4,376	12	4,399	10	3,845	12	4,421	12	4,018	5,564	5,840	Bon	Bon	Bon

En 2016, les concentrations en Chrome dissout n'ont pas été mesurées dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Chrome dissout dans les eaux souterraines ont été mesurées en 2016 dans tous les autres piézomètres, dont 11 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle et dépassant la valeur seuil réglementaire. Parmi eux, 3 piézomètres montrent

également une tendance des concentrations moyennes annuelles à augmenter sur la période 2012-2016, d'où leur déclassement par l'attribution d'un score « Mauvais »: les piézomètres <u>WK6-11A</u> et <u>WK6-9A</u> sous influence directe de l'Aire de Stockage des Résidus, et le piézomètre <u>6-5</u>, sous influence de l'usine, et dont la concentration en Chrome dissout atteint en janvier 2016 la plus forte valeur enregistrée (0.39 mg/L) sur le réseau de suivi cette année.

Tableau 96 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Chrome dissout (en mg/L) dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Cr (mg/	L) - eaux souterra			Iq = 0,0						u : piézo	mètr					ur seuil :	0,05 n			
Influence	Stations de		-	2012	_	2013		2014		2015			016		Moy et	Max 2016 <	Pas de	Score		Score 2016
	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	Per90	valeur seuil ?	hausse	2015	par piézo.	par zone
	Kwe Nord	4-z1 4-z1A	4	0,010	2	0,010	4	0,010	4	0,010	0	0,010	0,010	0,010	Bon	Bon	Bon Bon	Bon Bon	Bon	
	KWC NOIG	4-21A 4-z1B	4	0,010	3	0,010	4	0,010	3	0,010	0						Bon	Bon		
		4-z2	4	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	0,010	2	0,010	4	0,010	4	0,010	0	.,	.,.	-,		-	Bon	Bon		Bon
		4-z4	4	0,010	2	0,010	4	0,010	4	0,010	5	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		4-z4A	4	0,010	2	0,015	3	0,013	4	0,010	0						Bon	Bon		
		4-z5	4	0,010	2	0,010	5	0,010	4	0,010	5	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		4-z5A	4	0,010	2	0,010	2	0,010	4	0,010	0						Bon	Bon		
ASR 0 (sources)		WK17	51	0,010	52	0,010	51	0,010	76	0,012	52	0,021	0,030	0,030	Bon	Bon	Mauvais	Bon	Bon	
		WK20	51	0,015	52	0,016	51	0,018	52	0,022	51	0,027	0,030	0,030	Bon	Bon	Mauvais	Bon	Bon	
		WK6-11 WK6-11A	2	0,060	2	0,015	0	0,015	3	0,020	2	0,015 0,050	0,015 0,050	0,015 0,050	Bon Mauvais	Bon Mauvais	Bon Mauvais	Bon Bon	Bon	
		WK6-11A WK6-12	2	0,013	2	0,013	11	0,010	12	0,037	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Mauvais Bon	
ASR A		WK6-12A	2	0,010	2	0,010	8	0,010	12	0,013	12	0,013	0,020	0,020	Bon	Bon	Bon	Bon	Bon	
(piézomètres		WK6-9	2	0,015	2	0,047	2	0,015	2	0,020	2	0,020	0,020	0,020	Bon	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	0,015	2	0,105	2	0,115	2	0,125	2	0,130	0,138	0,140	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		WKBH102	11	0,010	7	0,011	12	0,012	12	0,016	12	0,020	0,020	0,020	Bon	Bon	Mauvais	Bon	Bon	
		WKBH102A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH103	2	0,010	2	0,010	4	0,010	12	0,011	12	0,020	0,020	0,020	Bon	Bon	Mauvais	Bon	Bon	
		WK6-10	0		1	0,020	2	0,160	2	0,155	2	0,165	0,177	0,180	Mauvais	Mauvais	Bon	Bon	Bon	
		WK6-10A	2	0,025	1	0,040	1	0,020	2	0,075	2	0,055	0,075	0,080	Mauvais	Mauvais	Bon	Bon	Bon	
		WKBH109	0	0.020	0	0.020	2	0,010	2	0,015	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH109A	2	0,020	7	0,020	2	0,020	2	0,025	11	0,022	0,030	0,030	Bon	Bon	Bon	Bon	Bon	
	Kwe Ouest	WKBH110 WKBH110A	10 0	0,010	0	0,016	12 0	0,014	12 2	0,019	12 11	0,021	0,020	0,030	Bon	Bon	Mauvais Bon	Bon	Bon Bon	
ASR B	kwe odest	WKBH110A WKBH110B	2	0,010	2	0,010	2	0,015	2	0,020	11	0,020	0,020	0,020	Bon Bon	Bon Bon	Mauvais	Bon Bon	Bon	
(zone		WKBH111	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
tampon)		WKBH117	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH117A	2	0,020	2	0,015	2	0,010	2	0,015	2	0,020	0,020	0,020	Bon	Bon	Bon	Bon	Bon	_
		WKBH117B	2	0,015	2	0,010	2	0,010	1	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
		WKBH118	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH118A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH118B	2	0,065	2	0,070	2	0,070	2	0,065	2	0,070	0,070	0,070	Mauvais	Mauvais	Bon	Bon	Bon	
		WKBH112	2	0,055	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH112A	0		0		2	0,100	2	0,085	2	0,100	0,108	0,110	Mauvais	Mauvais	Bon	Bon	Bon	
		WKBH113	11	0,067	7	0,047	11	0,032	12	0,030	12	0,030	0,030	0,030	Bon	Bon	Bon	Bon	Bon	
		WKBH113A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
ASR C		WKBH114	3	0,013	2	0,015	2	0,010	2	0,015	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
(proximité		WKBH114A WKBH115	0	0,010	0	0,010	1	0,010	0	0,010	2	0,010	0,010	0,010	Bon Bon	Bon Bon	Bon Bon	Bon	Bon Bon	
rivière)		WKBH115A	0		0		1	0,090	2	0,010	2	0,040	0,040	0,040	Bon	Bon	Bon	Bon	Bon	
ii vicie,		WKBH115A WKBH115B	2	0,020	2	0,020	2	0,020	2	0,030	2	0,010	0,020	0,020	Bon	Bon	Bon	Bon	Bon	
		WKBH116	2	0,010	2	0,010	1	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH116A	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WKBH116B	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		WTBH9	2	0,010	1	0,010	0		1	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
ASR D		WKBH32	2	0,010	2	0,010	2	0,010	2	0,010	2	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
(vallées	Ka dji	WK6-14	1	0,060	2	0,055	1	0,060	1	0,060	2	0,055	0,059	0,060	Mauvais	Mauvais	Bon	Bon	Bon	
	Rivière Trou Blei	WTBH11	2	0,020	2	0,020	2	0,020	2	0,020	2	0,020	0,020	0,020	Bon	Bon	Bon	Bon	Bon	
		WTBH11A	2	0,015	2	0,020	2	0,015	1	0,015	2	0,020	0,020	0,020	Bon	Bon	Bon	Bon	Bon	
Do at	Pain de Pers	7-1	1	0,010	2	0,010	2	0,010	0		2	0,010	0,010	0,010	Bon	Bon	Bon		Bon	Por
Port	Baie de Prony	7-2	0	0.010	0	0.010	0	0.010	0		2	0,040	0,040	0,040	Bon	Bon	Do-		Bon	Bon
		7-3 6-1	4	0,010	2	0,010	2	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Ron	Bon	
		6-13	0	0,010	1	0,010	4	0,010	4	0,010	4	0,010 0,103	0,010 0,107	0,010 0,110	Bon Mauvais	Bon Mauvais	Bon Bon	Bon Bon	Bon Bon	
		6-14	5	0,010	3	0,010	5	0,038	5	0,016	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-14a	6	0,043	4	0,113	9	0,091	10	0,087	11	0,058	0,070	0,080	Mauvais	Mauvais	Bon	Bon	Bon	
		6-1a	4	0,013	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-2	4	0,010	1	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-2a	4	0,015	2	0,010	4	0,010	4	0,010	4	0,013	0,017	0,020	Bon	Bon	Bon	Bon	Bon	
Usine	CBN	6-3	4	0,010	3	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Bon
031116	CON	6-3a	4	0,010	2	0,010	3	0,010	3	0,010	3	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Don
		6-4	4	0,013	2	0,010	4	0,010	4	0,010	3	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-5	5	0,144	2	0,140	4	0,155	4	0,155	4	0,228	0,348	0,390	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		6-6	5	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-7	5	0,034	4	0,035	6	0,035	4	0,030	4	0,030	0,030	0,030	Bon	Bon	Bon	Bon	Bon	
		6-7a	4	0,140	2	0,133	4	0,133	3	0,133	3	0,133	0,140	0,140	Mauvais	Mauvais	Bon	Bon	Bon	
		6-8 6-8a	5 4	0,010	2	0,010	4	0,010	4	0,028	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon Bon	Bon	
		J 00	4	0,033		0,025	4	0,030	4	0,035	4	0,035	0,040	0,040	Bon	Bon	Bon	DON	Bon	

4.2.1.1.9 Concentrations en Chrome hexavalent

Les concentrations en Chrome hexavalent dissout sont mesurées dans les eaux de surface, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Chrome VI dissout dans les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L. La valeur seuil de concentration en Chrome VI dissout dans les eaux souterraines est définie à 0,05 mg/L dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012.

En 2016, seule la station 3-C située hors zone d'influence de l'activité minière et industrielle permet d'établir une gamme de référence pour les eaux de surface pour l'ensemble du réseau de suivi des eaux de surface. Aucune doline de référence n'a été mesurée en 2016 pour ce paramètre.

Tableau 97 : Détermination de la gamme de variations de référence pour le Chrome VI dissout (en mg/L) dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la station située hors zone d'influence de l'activité minière et industrielle.

C	r VI (mg/L)	- eaux de su	ırface	Iq	= 0,01 m	ng/L		
Position	Type de	Stations	de référence	N	moy	moy	Dor 10	Per 90
Position	BV	Zone	Station	2016	2016	2016	PEI 10	PEI 30
Aval	Grand	Trou Bleu	3-C	12	0,010	0,010	0,010	0,010

Résultats et analyse

Les concentrations en Chrome VI dissout ne sont connues en 2016 que dans 9 stations de suivi des creeks et 1 station de suivi des dolines, aucun score n'a donc été attribué aux autres stations du réseau de suivi cette année pour ce paramètre.

En 2016, 4 stations de suivi des creeks présentaient des valeurs moyennes et percentiles 90 supérieures à celles de la station de référence. La chronique temporelle 2012-2016 de concentrations annuelles en Chrome VI ne présente cependant pas de hausse avérée pour ces stations, l'ensemble des stations du réseau de suivi des eaux de surface maintient donc un score « Bon » pour ce paramètre.

Tableau 98 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la station de référence de 2016 pour les concentrations en Chrome VI dissout (en mg/L) dans les eaux de surfaces de 11 stations de suivi des creeks et 1 station de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Cr VI (mg	(/L) - eaux de sur	face		Iq = 0,0)1 m	g/L	lq =	0,01 et	0,00	1 mg/L									
Position	Туре	Stations d	e suivi		2012	:	2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score	Score 2016	Score 2016
Position	de BV	Zone	Station	Ν	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	2015	par station	par zone
		Kwe Ouest	3-B	14	0,104	24	0,010	10	0,012	14	0,012	5	0,012	0,020	0,020	Mauvais	Bon	Bon	Bon	Bon
		kwe odest	4-N	9	0,009	2	0,010	11	0,010	12	0,011	12	0,011	0,010	0,020	Mauvais	Bon	Bon	Bon	BOII
	Grand	Kwe Nord	4-M	12	0,009	12	0,028	9	0,016	12	0,022	12	0,020	0,046	0,090	Mauvais	Bon	Bon	Bon	Bon
Amont	Granu	Kwe Est	KE-05	12	0,016	14	0,013	6	0,013	12	0,022	11	0,015	0,020	0,030	Mauvais	Bon	Bon	Bon	Bon
		CBN Amont	6-Q	13	0,012	12	0,010	11	0,012	11	0,012	10	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon
		CDIV AIIIOIIC	6-S	12	0,012	12	0,010	7	0,010	8	0,010	10	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Don
	Petit	Trüu Amont	TR-02	12	0,022	12	0,019	5	0,018	12	0,024	0					Bon	Bon		
		Kwe principale	1-A	11	0,009	12	0,010	11	0,010	13	0,022	12	0,011	0,010	0,020	Bon	Bon	Bon	Bon	Bon
Aval	Grand	kwe pililupate	1-E	14	0,009	14	0,009	8	0,010	12	0,010	12	0,010	0,010	0,010	Bon	Bon	Bon	Bon	BOII
AVai		CBN Aval	6-T	3	0,005	1	0,005	0		0		6	0,010	0,010	0,010	Bon	Bon		Bon	Bon
	Petit	Trüu Aval	TR-01	11	0,009	12	0,010	5	0,010	10	0,015	0					Bon	Bon		
Doli	nes	CBN	6-R	12	0,009	12	0,010	10	0,010	13	0,010	10	0,010	0,010	0,010		Bon	Bon	Bon	Bon

Tableau 99 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Chrome VI dissout (en mg/L) dans les eaux souterraines de 31 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Cr(VI) (mg	/L) - eaux souteri	raines		Iq = 0,0)1 m	g/L		En	bleı	ı:piézo	mèt	res de d	ontrôle	•	Valeur s	euil :	0,0	5 mg/L		
Influence	Stations d	e suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de	Score 2015	Score 2016	Score 2016
influence	Zone	Station	N	Moy	N	Moy	Ν	Moy	Z	Moy	Ν	Moy	Per 90	Max	≤ piézo. contrôle ?	valeur seuil ?	hausse	Score 2015	par piézo.	par zone
		4-z1	4	0,010	1	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
	Kwe Nord	4-z1A	4	0,085	1	0,060	4	0,068	4	0,078	0						Bon	Bon		
		4-z1B	4	0,010	2	0,010	4	0,013	3	0,010	0						Bon	Bon		
		4-z2	4	0,010	1	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	0,010	1	0,010	4	0,010	4	0,010	0						Bon	Bon		Bon
		4-z4	4	0,010	1	0,010	4	0,010	4	0,010	5	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		4-z4A	4	0,010	1	0,010	3	0,010	4	0,010	0						Bon	Bon		
	Kwe Ouest	4-z5	4	0,010	1	0,010	5	0,010	4	0,010	5	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		4-z5A	4	0,010	1	0,010	2	0,010	4	0,010	0						Bon	Bon		
ASR B	1	WKBH110	0		0		0		0		1	0,020	0,020	0,020	Bon	Bon		Bon	Bon	
		WKBH110A	0		0		0		0		1	0,010	0,010	0,010	Bon	Bon		Bon	Bon	Bon
(zone tampon)		WKBH110B	0		0		0		0		1	0,020	0,020	0,020	Bon	Bon		Bon	Bon	
		7-1	2	0,020	2	0,010	2	0,010	0		3	0,013	0,018	0,020	Bon	Bon	Bon		Bon	
Port	Baie de Prony	7-2	0		0		0		0		2	0,040	0,040	0,040	Bon	Bon			Bon	Bon
		7-3	2	0,030	2	0,020	2	0,010	0		2	0,010	0,010	0,010	Bon	Bon	Bon		Bon	
		6-1	4	0,010	2	0,010	4	0,010	3	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-13	0		1	0,160	4	0,158	4	0,125	4	0,115	0,134	0,140	Mauvais	Mauvais	Bon	Bon	Bon	
		6-14	5	0,010	3	0,023	5	0,036	5	0,032	4	0,035	0,061	0,070	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		6-14a	6	0,042	4	0,055	9	0,093	10	0,091	11	0,059	0,080	0,080	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		6-1a	4	0,010	2	0,010	4	0,010	4	0,010	4	0,018	0,020	0,020	Bon	Bon	Mauvais	Bon	Bon	
		6-2	3	0,010	2	0,010	3	0,010	4	0,013	4	0,015	0,020	0,020	Bon	Bon	Mauvais	Bon	Bon	
		6-2a	4	0,015	2	0,010	3	0,016	3	0,010	4	0,020	0,034	0,040	Bon	Bon	Bon	Bon	Bon	
Usine	CBN	6-3	4	0,010	2	0,010	4	0,010	4	0,018	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	Mauvais
USTITE	CDIN	6-3a	4	0,010	2	0,010	3	0,010	3	0,010	3	0,013	0,018	0,020	Bon	Bon	Bon	Bon	Bon	ividuvais
		6-4	3	0,010	2	0,010	4	0,010	4	0,010	3	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-5	5	0,012	2	0,085	4	0,138	4	0,153	4	0,233	0,353	0,380	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		6-6	5	0,010	2	0,010	4	0,010	4	0,010	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-7	5	0,036	4	0,038	6	0,027	4	0,030	4	0,058	0,107	0,140	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		6-7a	4	0,138	2	0,055	4	0,145	3	0,133	3	0,143	0,148	0,150	Mauvais	Mauvais	Bon	Bon	Bon	
	ĺ	6-8	5	0,010	2	0,010	4	0,010	4	0,028	4	0,010	0,010	0,010	Bon	Bon	Bon	Bon	Bon	
		6-8a	4	0,033	2	0,030	4	0,023	4	0,035	4	0,043	0,047	0,050	Bon	Mauvais	Bon	Bon	Bon	

En 2016, les concentrations en Chrome VI dissout ne sont pas connues dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Chrome VI dissout dans les eaux souterraines ont été mesurées en 2016 dans une partie des piézomètres du réseau de suivi, dont 6 sous influence de l'usine présentent des valeurs annuelles supérieures à celles mesurées au piézomètre de contrôle et dépassent la valeur seuil réglementaire. Parmi eux, 4 piézomètres montrent également une tendance à augmenter sur la période 2012-2016, d'où leur déclassement par l'attribution d'un score « Mauvais » cette année : les piézomètres 6-14, 6-14a, 6-5 (où est mesurée la plus forte concentration en Chrome VI cette année : 0,38 mg/L en janvier 2016) et 6-7 (qui enregistre un pic à 0,14 mg/L de Chrome VI dissout en juillet 2016). A noter que 2 autres piézomètres, 6-13 et 6-7a, présentent depuis plusieurs années des concentrations dépassant la valeur seuil (0.05mg/L) et parmi les plus fortes concentrations de la zone (respectivement en troisième et seconde position en 2016). Devant l'absence de tendance claire, il est cependant suggéré de ne pas déclasser ces piézomètres.

4.2.1.1.10 Concentrations en Cuivre

Les concentrations en Cuivre dissout sont mesurées dans les eaux de surface des creeks ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Cuivre dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L. La valeur seuil de concentration en Cuivre dissout dans les eaux souterraines est définie à 2 mg/L dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012.

Résultats et analyse

Les valeurs mesurées restent inférieures aux limites de détection, dans toutes les stations de suivi des cours d'eaux et tous les piézomètres de suivi des eaux souterraines. Un score Bon est donc attribué à chacune des zones pour ce paramètre.

4.2.1.1.11 Concentrations en Plomb

Les concentrations en Plomb dissout sont mesurées dans les eaux de surface et les sédiments des creeks, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Plomb dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L. La valeur seuil de concentration en Plomb dissout dans les eaux souterraines est définie à 0,01 mg/L dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012.

Résultats et analyse

En 2016, les valeurs mesurées restent inférieures aux limites de détection, dans toutes les stations de suivi des cours d'eaux et tous les piézomètres de suivi des eaux souterraines. Un score « Bon » est donc attribué à chacune des zones pour ce paramètre. Les teneurs en Plomb mesurées dans les sédiments sont également très faibles (toujours inférieures à 0,01 %) sans tendance notable, un score « Bon » est donc attribué à toutes les stations suivies sur la base de ce paramètre.

4.2.1.1.12 Concentrations en Zinc

Les concentrations en Zinc dissout sont mesurées dans les eaux de surface des creeks et des dolines, dans les sédiments des creeks, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Zinc dissout dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,01 mg/L. La valeur seuil de concentration en Zinc dissout dans les eaux souterraines est définie à 5 mg/L dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012.

En 2016, 6 stations situées hors zone d'influence de l'activité minière et industrielle, et réparties selon leur position en amont ou en aval de la rupture de pente du bassin versant, permettent d'établir deux gammes de référence pour les teneurs en Zinc dans les sédiments.

Tableau 100 : Détermination de la gamme de variations de référence pour le Zinc (en % de matière sèche) dans les sédiments : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	Zn (%) - sédime	ents					
Position	Type de	Station	is de référence	N	moy	moy	Per 10	Per 90
POSITION	BV	Zone	Station	2016	2016	2016	rei 10	PEI 30
		Carénage	Carénage Amont	1	0,015			
Amont	Grand	Kaoris	Kaoris Amont	1	0,013	0,014	0,013	0,015
		Kuebini	Kueb Amont	1	0,013			
		Carénage	Carénage Aval	1	0,014			
Aval	Grand	Kaoris	Kaori Aval	1	0,015	0,015	0,014	0,015
		Kuebini	Kueb Aval	1	0,016			

Résultats et analyse

En 2016, les valeurs mesurées dans toutes les stations de suivi des cours d'eaux et tous les piézomètres de suivi des eaux souterraines restent inférieures aux limites de détection. Un score « Bon » est donc attribué à chacune des zones pour ce paramètre.

Tableau 101 : Evolution temporelle de la chronique des données 2012-2016 pour les concentrations en Zinc (en % de matière sèche) dans les sédiments de 10 stations de suivi des creeks. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de cette évolution temporelle.

	Zn (%) - :	sédiments		1																
Position	Туре	Stations de	suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score	Score 2016	Score 2016
Position	de BV	Zone	Station	N	Moy	N	Moy	Ν	Moy	Z	Moy	Z	Moy	Per 90	Max	≤gamme ref.?	temporelle?	2015	par station	par zone
			3-A	9	0,0253	11	0,0296	6	0,0293	10	0,0316	6	0,0320	0,0356	0,0380	Mauvais	Mauvais	Bon	Bon ?	
		Kwe Ouest	3-B	11	0,0253	12	0,0281	10	0,0331	12	0,0225	12	0,0167	0,0248	0,0281	Mauvais	Bon	Bon	Bon	Bon ?
Amont	Grand		4-N	3	0,0209	0		3	0,0267	4	0,0294	4	0,0243	0,0267	0,0278	Mauvais	Mauvais	Bon	Bon ?	
Amont	Granu	Kwe Nord	4-M	4	0,0245	4	0,0275	3	0,0298	4	0,0317	4	0,0220	0,0257	0,0264	Mauvais	Bon	Bon	Bon	Bon
		CBN Amont	6-Q	11	0,0525	12	0,0389	10	0,0408	10	0,0489	10	0,0396	0,0471	0,0584	Mauvais	Mauvais	Bon	Bon?	Bon ?
		CBN AIIIOIIL	6-S	4	0,0189	4	0,0231	2	0,0269	2	0,0322	4	0,0219	0,0248	0,0253	Mauvais	Mauvais	Bon	Bon?	BUIL F
		Kwe principale	1-A	4	0,0260	4	0,0252	3	0,0248	4	0,0273	4	0,0266	0,0280	0,0287	Mauvais	Bon	Bon	Bon	Bon
Aval	Grand	kwe pilikipale	1-E	3	0,0276	4	0,0301	2	0,0279	4	0,0283	4	0,0282	0,0293	0,0294	Mauvais	Bon	Bon	Bon	BUII
Avai	Granu	CBN Aval	6-T	11	0,0277	12	0,0253	10	0,0335	12	0,0298	12	0,0263	0,0334	0,0337	Mauvais	Bon	Bon	Bon	Bon
		CDIN AVAI	6-U	11	0,0270	12	0,0258	10	0,0275	12	0,0321	12	0,0288	0,0333	0,0459	Mauvais	Bon	Bon	Bon	BUII

En 2016, toutes les stations de suivi des sédiments dans les cours d'eau présentaient des valeurs moyennes et percentiles 90 supérieures à celles de leur gamme de référence. La chronique temporelle de concentrations annuelles en Zinc révèle également une tendance à la hausse pour 4 stations. Un score final « Bon ? » leur a donc été attribué (indiquant l'importance d'accorder une attention particulière à l'évolution de ce paramètre pour le prochain bilan) : les stations <u>3-A</u> et <u>4-N</u> en amont de la Kwé Ouest, et les stations <u>6-Q</u> et <u>6-S</u> en amont du Creek Baie Nord.

Notons que les hausses temporelles ne sont pas particulièrement lisibles sur la période 2012-2016 présentée dans le tableau pour les stations 3-B, 6-Q et 6-S. Les hausses temporelles sont intervenues sur des périodes antérieures sur ces stations (2010-2012) et peuvent être constatées par l'exploration des chroniques de données complètes données par les hyperliens.

4.2.1.1.13 Concentrations en Silice

Les concentrations en Silice sont mesurées dans les eaux de surface et dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Silice dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 1 mg/L dans la majorité des mesures. Lorsqu'une limite de détection supérieure (5 mg/L) a été employée, les valeurs mesurées sont indiquées *en italique* dans les tableaux de synthèse.

Il n'existe pas de valeur seuil pour la concentration de cet élément dans les eaux.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle, et réparties selon leur position en amont ou en aval de la rupture de pente du bassin versant, permettent d'établir deux gammes de référence pour les teneurs en Silice dans les eaux de surface.

Tableau 102 : Détermination de la gamme de variations de référence pour la Silice (en mg/L) dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	Si (mg/L) - eaux de surfa	ce		lq = 1 mg	/L		
Position	Type de	Stations d	e référence	N	moy 2016	moy	Per 10	Per 90
Position	BV	Zone	Station	2016	1110y 2016	2016	Per 10	Per 90
		Kwe Ouest	3-A	5	3,0			
Amont	Grand	Carénage	Carénage Amo	1	6,0	4,6	3,4	5,7
AIIIOIIL	Gianu	Kaoris	Kaoris Amont	1	4,4	4,0	3,4	3,7
		Kuebini	Kueb Amont	1	5,0			
		Trou Bleu	3-C	12	3,7			
Aval	Grand	Carénage	Carénage Aval	1	5,0	4,7	4,1	5,1
Avai	Granu	Kaoris	Kaori Aval	1	5,0	-,,	,1	3,1
		Kuebini	Kueb Aval	1	5,1			

Résultats et analyse

En 2016, les valeurs mesurées aux gammes de référence pour 5 stations sur la Kwé. Il s'agit des stations 3-D, 4-M, KE-05, 1-A et 1-E. Sur le Creek Baie Nord, les dépassements des gammes de référence concernent 4 stations : 6-Q, 6-BNOR1, 6-T, 6-U. Les dépassements des gammes de référence restent toutefois faibles puisqu'ils n'excédent pas 2.6 mg/L. Une tendance à l'augmentation est notée sur 4 stations, il s'agit de 3-B, 3-D sur la Kwé et 6-BNOR1 et 6-T sur le creek Baie Nord. Ces augmentations sont cependant artificielles sur 3-B et 3-D car liées à des changements de Limites de quantification sur la Kwé (nombreuses données <Lq de l'ordre de 5 mg/L). Sur le creek baie Nord, les tendances semblent bien correspondre à une hausse des concentrations pour cet éléments cependant les écarts aux gammes de référence restant relativement faibles, il est choisi de ne pas déclasser les stations du creek Baie Nord pour 2016.

Tableau 103 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 pour les concentrations en Silice (en mg/L) dans les eaux de surface de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Si (mg	/L) - eaux de surfa	ce	П	Iq = 1	l mg,	L.													
Position	Type de	Stations	de suivi		2012		2013	- 2	2014	2	2015			2016		Moy et Per90 2016	Pas de hausse	Score 2015	Score 2016 par	Score 2016 par
POSITION	BV	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	3C0IE 2015	station	zone
			3-B	14	2,5	25	2,4	12	2,3	32	2,4	147	4,6	5,0	5,0	Bon	Mauvais	Bon	Bon	
		Kwe Quest	3-D	2	3,0	13	3,1	4	3,0	22	2,4	135	4,8	5,0	6,0	Mauvais	Mauvais	Bon	Bon	Bon
		KWC OUCST	3-E	2	2,0	2	6,0	2	6,0	1	5,0	3	3,7	5,9	6,0	Bon	Bon	Bon	Bon	Don
	Grand		4-N	9	1,5	2	1,0	11	1,6	12	1,2	12	1,1	1,0	2,0	Bon	Bon	Bon	Bon	
Amont	Grana	Kwe Nord	4-M	12	4,9	12	4,5	9	5,4	12	4,2	12	4,8	7,0	8,0	Mauvais	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	4,2	14	4,7	6	4,7	12	4,1	11	5,0	5,0	6,0	Mauvais	Bon	Bon	Bon	Bon
		CBN Amont	6-Q	13	5,5	12	5,7	11	6,2	10	5,9	10	6,3	7,0	7,0	Mauvais	Bon	Bon	Bon	Bon
		CBN AIIIOIIL	6-S	12	1,3	12	2,1	7	6,8	8	5,1	10	4,3	8,1	9,0	Bon	Bon	Bon	Bon	BOII
	Petit	Trüu Amont	TR-01	11	6,4	12	6,5	5	6,6	10	7,0	0					Bon	Bon		
		Kwe principale	1-A	12	4,5	12	4,5	11	5,5	12	4,9	12	5,3	6,9	7,0	Mauvais	Bon	Bon	Bon	Bon
		kwe piinapare	1-E	14	4,6	14	4,5	8	5,3	12	5,0	12	5,6	7,0	7,0	Mauvais	Bon	Bon	Bon	Don
Aval	Grand		6-BNOR1	4	5,7	5	5,2	4	6,0	4	6,2	4	7,3	7,8	9,0	Mauvais	Mauvais	Bon	Bon	
Avai	Grana	CBN Aval	6-T	5	6,1	6	5,2	4	6,2	4	6,8	10	7,0	8,0	9,0	Mauvais	Mauvais	Bon	Bon	Bon
			6-U	1	7,0	0		1	6,0	1	6,0	1	6,0	6,0	6,0	Mauvais	Bon	Bon	Bon	
		Trüu Aval	TR-02	12	6,6	12	6,3	5	7,0	12	7,0	0					Bon	Bon		
			6-R	12	1,0	12	1,0	10	1,0	13	1,1	12	1,6	1,0	7,0		Bon	Bon	Bon	
			DOL-2	2	1,0	2	1,0	1	1,0	1	1,0	0					Bon	Bon		
			DOL-3	2	1,0	1	1,0	1	1,0	0		0					Bon			
		CBN	DOL-4	2	1,0	2	1,0	2	1,0	1	1,0	0					Bon	Bon		Bon
		CDIV	DOL-8	1	2,0	1	2,0	1	1,0	1	1,0	0					Bon	Bon		Don
Dol	ines		DOL-9	1	2,0	1	2,0	1	2,0	0		0					Bon			
			DOL-10	0		1	1,0	0		0		1	1,0				Bon		Bon	
			DOL-15	0		1	1,0	0		0		0								
			DOL-11	2	2,0	1	1,0	1	1,0	0		2	1,5	1,9	2,0		Bon		Bon	
		Kadji	DOL-12	1	1,0	1	1,0	1	1,0	1	1,0	0					Bon	Bon		Bon
			DOL-13	2	1,5	2	2,0	0		1	1,0	0					Bon	Bon		

Tableau 104 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle pour les concentrations en Silice (en mg/L) dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Si (mg/	L) - eaux souterra			lq = 1					_		mètr	es de co		•					
Source d'influence	Stations			2012		2013		2014	_	2015			2016		Moy et Per90 2016	Pas de hausse	Score 2015	Score 2016 par	-
	Zone	Station 4-z1	N	Moy	N 2	Moy 13,5	N	Moy	N	Moy	N 4	Moy 13,5	Per 90 14,0	Max 14,0	≤ piézo. contrôle ? Bon	temporelle ? Bon	Ron	piézo. Bon	zone
	Kwe Nord	4-21 4-21A	4	13,0 4,0	2	4,0	4	13,5 3,5	4	13,7 3,2	0	13,5	14,0	14,0	BOU	Bon	Bon Bon	Bon	
	Mile Hold	4-z1B	4	1,0	3	1,3	4	1,0	3	1,0	0					Bon	Bon		
		4-z2	4	8,0	2	8,0	4	8,0	4	8,3	4	8,3	8,7	9,0	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	2,5	2	1,0	4	1,2	4	1,2	0					Bon	Bon		Bon
		4-z4	4	4,0	2	4,0	4	3,7	4	2,7	5	2,4	3,0	3,0	Bon	Bon	Bon	Bon	
		4-z4A	4	1,0	2	1,0	3	1,0	4	1,0	0					Bon	Bon		
		4-z5	4	4,0	2	5,0	5	4,8	4	5,0	5	4,8	5,0	5,0	Bon	Bon	Bon	Bon	
		4-z5A	4	1,7	2	1,0	2	1,0	4	1,0	0					Bon	Bon		
ASR 0 (sources)		WK17 WK20	51	6,5	52	7,1	48	7,0	75	7,0	52	7,7	8,0	8,0	Bon	Bon	Bon	Bon	
		WK6-11	51	6,5	52	6,8	48	6,7	51	6,9	51	7,0	7,0	8,0	Bon	Bon	Bon	Bon	
		WK6-11A	2	8,0	2	1.0	0	1,0	3	4,3 1,0	2	5,0	5,0	5,0	Bon	Bon	Bon	Bon	
		WK6-12	2	1,0 6,0	2	1,0 3,0	8	5,6	12	4,0	12	1,0 4,8	1,0 7,9	1,0 8,0	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
ASR A		WK6-12A	2	1,0	2	1,0	8	2,0	12	1,0	12	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
(piézomètres		WK6-9	2	7,0	2	7,5	2	7,0	2	7,0	2	7,0	7,0	7,0	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	4,0	2	4,0	2	4,0	2	4,0	2	4,0	4,0	4,0	Bon	Bon	Bon	Bon	
		WKBH102	11	7,1	7	8,4	10	8,6	12	9,2	12	9,5	10,0	10,0	Bon	Mauvais	Bon	Bon	
		WKBH102A	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH103	2	7,0	2	7,0	3	6,5	12	7,6	12	8,0	8,0	8,0	Bon	Bon	Bon	Bon	
		WK6-10	0		1	4,0	2	5,0	2	6,0	2	6,0	6,0	6,0	Bon	Bon	Bon	Bon	
		WK6-10A	2	3,0	1	3,0	1	3,0	2	3,0	2	3,0	3,0	3,0	Bon	Bon	Bon	Bon	
		WKBH109	0		0		2	3,5	2	4,5	2	2,0	2,8	3,0	Bon	Bon	Bon	Bon	
		WKBH109A	2	7,0	2	8,5	2	8,0	2	8,0	11	8,0	8,0	8,0	Bon	Bon	Bon	Bon	
		WKBH110	10	7,3	7	7,3	11	7,6	12	7,7	12	7,9	8,0	8,0	Bon	Bon	Bon	Bon	
ACD D	Kwe Ouest	WKBH110A	0	7.0	0	7.5	0		2	8,0	11	8,0	8,0	8,0	Bon	Bon	Bon	Bon	
ASR B		WKBH110B WKBH111	2	7,0	2	7,5	2	7,5	2	8,0	11	8,0	8,0	8,0	Bon	Bon	Bon	Bon	
(zone tampon)		WKBH117	2	11,0	2	11,0	2	11,0	2	10,0	2	10,0	10,0	10,0	Bon	Bon	Bon	Bon	
		WKBH117A	2	8,5 7,0	2	8,5 7,0	2	8,0 7,0	2	9,0 7,0	2	8,5 7,0	8,9 7,0	9,0 7,0	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH117B	2	7,0	2	7,0	2	7,0	1	7,0	2	7,5	7,0	8,0	Bon	Bon	Bon	Bon	Bon
		WKBH118	2	8,0	2	9,0	2	8,0	2	8,5	2	8,0	8,0	8,0	Bon	Bon	Bon	Bon	
		WKBH118A	2	8,0	2	9,0	2	8,5	2	8,5	2	9,0	9,0	9,0	Bon	Bon	Bon	Bon	
		WKBH118B	2	2,0	2	2,0	2	2,0	2	2,0	2	2,0	2,0	2,0	Bon	Bon	Bon	Bon	
		WKBH112	2	13,0	2	18,0	2	17,5	2	18,0	2	17,5	17,9	18,0	Mauvais	Bon	Bon	Bon	
		WKBH112A	0		0		2	7,0	2	4,5	2	5,5	6,7	7,0	Bon	Bon	Bon	Bon	
		WKBH113	11	7,0	7	7,1	12	7,1	12	7,0	12	7,0	7,0	7,0	Bon	Bon	Bon	Bon	
		WKBH113A	2	2,0	2	2,0	2	2,0	2	2,0	2	2,0	2,0	2,0	Bon	Bon	Bon	Bon	
		WKBH114	3	5,7	2	8,0	2	8,0	2	8,0	2	7,5	7,9	8,0	Bon	Bon	Bon	Bon	
ASR C		WKBH114A	1	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
(proximité		WKBH115	0		0		1	13,0	0		2	11,5	11,9	12,0	Bon	Bon		Bon	
rivière)		WKBH115A WKBH115B	0		0		1	12,0	2	14,0	2	12,5	12,9	13,0	Bon	Bon	Bon	Bon	
		WKBH1156	2	1,0	2	1,0	2	1,0	2	1,0 11,0	2	1,0	1,0	1,0 11,0	Bon	Bon	Bon	Bon	
		WKBH116A	2	13,0 12,0	2	15,0 12,5	2	8,5 12,5	2	13,0	2	11,0 12,5	11,0 12,9	13,0	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH116B	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WTBH9	2	12,5	1	13,0	0	1,0	1	14,0	2	13,0	13,0	13,0	Bon	Bon	Bon	Bon	
405 -		WKBH32	2	1,0	2	1,0	2	1,0	2	1,0	2	1,5	1,9	2,0	Bon	Bon	Bon	Bon	
ASR D	Ka dji	WK6-14	1	8,0	2	8,0	1	8,0	1	8,0	2	8,0	8,0	8,0	Bon	Bon	Bon	Bon	
(vallées		WTBH11	2	8,0	2	8,0	2	8,0	2	8,0	2	8,0	8,0	8,0	Bon	Bon	Bon	Bon	
adjacentes)	Rivière Trou Bleı	WTBH11A	2	8,0	2	8,0	2	8,0	1	8,0	2	8,0	8,0	8,0	Bon	Bon	Bon	Bon	
		7-1	1	8,0	2	2,5	2	7,5	0		2	4,5	4,9	5,0	Bon	Bon		Bon	
Port	Baie de Prony	7-2	0		0		0		0		2	11,5	11,9	12,0	Bon	Bon		Bon	Bon
		7-3	1	18,0	2	16,5	2	16,5	0		2	16,5	16,9	17,0	Bon	Bon		Bon	
		6-1	4	2,5	2	4,5	4	3,5	4	1,7	4	2,0	2,0	2,0	Bon	Bon	Bon	Bon	
		6-13	0	15.2	1	10,0	4	10,0	4	11,0	4	11,0	11,0	11,0	Bon	Bon	Bon	Bon	
		6-14 6-14a	5	15,3	3	16,3	5	13,6	5	13,4	4	16,7	17,0	17,0	Mauvais	Bon	Bon	Bon	
		6-14a 6-1a	4	1,0 9,0	2	1,2 8,5	9	1,4 9,0	10 4	1,1 9,0	11 4	1,0 9,0	1,0 9,0	1,0 9,0	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		6-1a 6-2	4	9,0	1		4	9,0	4	8,5	4	10,0	10,0	10,0	Bon	Bon	Bon	Bon	
		6-2a	4	2,0	2	1,5	4	2,0	4	2,0	4	1,7	2,0	2,0	Bon	Bon	Bon	Bon	
		6-3	4	7,0	2	6,5	4	7,0	4	7,0	4	7,7	8,7	9,0	Bon	Bon	Bon	Bon	
Usine	CBN	6-3a	4	5,0	2	4,0	3	5,0	3	5,0	3	5,0	5,0	5,0	Bon	Bon	Bon	Bon	Bon
		6-4	4	7,0	2	7,0	4	6,0	4	6,0	3	6,0	6,0	6,0	Bon	Bon	Bon	Bon	
		6-5	5	14,8	2	15,0	5	15,7	4	15,2	4	15,5	16,4	17,0	Bon	Bon	Bon	Bon	
i l		6-6	5	1,0	3	1,0	4	1,2	4	1,5	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		6-7	4	13,8	2	13,0	4	12,7	4	14,7	4	14,2	14,7	15,0	Bon	Bon	Bon	Bon	
				/-															
		6-7a	4	6,0	2	5,5	4	6,0	3	6,0	3	6,0	6,0	6,0	Bon	Bon	Bon	Bon	
						5,5 10,5 3,5	3	6,0 11,0 4,0	3 4 4	6,0 10,2 4,0	3 4 4	6,0 10,7 4,0	6,0 11,0 4,0	6,0 11,0 4,0	Bon Bon Bon	Bon Bon Bon	Bon Bon Bon	Bon Bon Bon	

En 2016, les concentrations en Silice ne sont pas connues dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Silice dans les eaux souterraines mesurées en 2016 ne semblent pas présenter d'anomalie majeure. Deux stations, 6-14 et WKBH-112 situées respectivement sous l'influence de l'usine et de l'aire de stockage des résidus présentent des concentrations sensiblement plus hautes que celles des piézomètres de contrôle (écarts de l'ordre de 2.5 à 10 mg/L). La station WKBH-102 présente une tendance à l'augmentation qui doit être surveillée, sa concentration annuelle en 2016 restant toutefois relativement basse (moyenne annuelle de 9,5 mg/L et percentile 90 de 10 mg/L).

4.2.1.1.14 Synthèse des métaux dissouts

- Dans les eaux de surface :

Tableau 105 : Récapitulatif des scores 2016 par paramètre et par station pour les métaux dissouts dans le milieu eaux douces de surfaces des creeks et dolines.

	Type de	Stations												1éta			ques						_
Position	BV	Zone	Station	Influence	Fe	Mn	Mn*	Ni	Ni*	Αl	As	Cd*		Co*	Cr	Cr*	CrVI	Cu	Pb	Pb*	Zn	Zn*	S
			3-A ^	Influence modérée	=	=	7	=	=				=	=	=	=				=	=	3	
			3-B ^	ASR	=	Ξ	=	7	=				=	=	=	=	=			=	=	=	Ļ
			3-D^	ASR	=	Ξ		7					=		7						=		
			3-E ^	ASR	=	=		=					=		=						=	•	Ļ
			4-N ^	UPM-CIM	7	=	=	=	Ξ				=	=	=	=	=			=	=		Ļ
			KO4-10 ^	Mine		-																	ł
			KO4-20-1 ^	Mine																			ł
		Kwe Ouest	KO4-50 ^	Mine		-																	ł
Amont			KO5-10-I ^	UPM-CIM		-																	ł
			KO5-20-I ^	UPM-CIM																			ł
	Grand		KO5-20-P ^	UPM-CIM UPM-CIM		-																	ł
			KWO-10 ^	ASR																			H
			KWO-20 ^	ASR		1																	t
			KWO-60 ^	ASR / UPM-CIM			1				\vdash												t
		Kwe Nord	4-M ^	UPM-CIM	=	=	=	-	N				=	=	-	=	=			=	=	=	t
			KE-05 ^		<u> </u>	F	-	_	<u></u>				_	-	_	-	_			-	_	_	┾
		Kwe Est	1-A ^	Mine UPM-CIM, ASR	=	=	=	=	=				=	=	-	=	=			=	=	=	t
			1-E^	UPM-CIM, ASR	=	=	=	=	=				=	-	Ŧ	=	=			=	=	=	t
Aval		Kwo principalo	KWP-10 ^	UPM-CIM	-	-	-	-	-				-	-	-	-	-			-	-	-	۰
Avai		Kwe principale	KWP-40 ^	UPM-CIM																			t
			KWP-70 ^	UPM-CIM																			t
			6-Q^	Usine	=	=	=	=	7				=	2	=	=	=			=	=	2	t
Amont		CBN Amont	6-S ^	Usine	=	=	=	=	=				=	=	Ŧ	=	=			=	=	- :	t
Amont		CDIV AIIIOIIC	CBN-01 ^	Usine	_	_	-						_			_	_			_	_	÷	t
			6-BNOR1^	Usine	=	=		=					=		-						=		t
			6-T ^	Usine	Ē	=	=		=				=	=	Ŧ	=				=	=	=	t
	Grand		6-U ^	Usine		=	=		=				=	2	-	=				=	=	=	t
	Grana		CBN-10 ^	Usine		_	_		_				_	÷		_				_	_		t
Aval		CBN Aval	CBN-30 ^	Usine																			t
			CBN-40 ^	Usine		1																	t
			CBN-70 ^	Usine		1																	t
			CBN-AFF-02 ^	Usine																			t
Amont	Grand	Kadji	5-E^	Base Vie																			t
	- Crunu		TR-02 ^	Mine		1																	t
Amont		Trüu Amont	TR-03 ^	Mine																			t
			TR-01 ^	Mine		1																	t
	Petit		TR-04 ^	Mine																			t
Aval		Trüu Aval	TR-05 ^	Mine																			t
			TRU-70 ^	Mine																			t
Amont		Kuébini Amont	Kueb Amont	Hors influence	=	=		=															Γ
			Kueb Aval	Hors influence	=	=		=															Г
	Grand		KUB-60 ^	Hors influence																			Г
Aval		Kuébini Aval	KUB-50 ^	Hors influence																			T
			KUB-40 ^	Hors influence																			T
Amont	Grand	Carénage Amont	Carénage Amont	Hors influence	=	=		ш															
Aval	Grand	Carénage Aval	Carénage Aval	Hors influence	=	=		ш															
Amont	Crond	Kaoris Amont	Kaoris Amont	Hors influence	=	=		ı															
Aval	Grand	Kaoris Aval	Kaoris Aval	Hors influence	=	=		ı															
			3-C ^	Hors influence	=	=		=					=		=		=				=		
Aval	Grand	Trou Bleu	TBL-50 ^	Hors influence																			Γ
			TBL-70 ^	Hors influence																			ſ
			WAD-40 ^	Hors influence																			ſ
Aval	Petit	Wadjana	WAD-50 ^	Hors influence																			
			WAD-70 ^	Hors influence																			I
			6-R ^	Usine	=	=		7					=		II		=				=		
			DOL-2 ^	Usine, BV																			Ī
			DOL-3 ^	Usine, BV																			Ī
Doline	Grand	CBN	DOL-4 ^	Usine, BV																			Ι
Donne	Granu	CBIN	DOL-8^	Usine, BV																			
	1		DOL-9^	Usine, BV																			Ĺ
	1		DOL-10 ^	Epuration, BV		?																	
	ļ		DOL-15 ^	Base Vie																			ļ
			DOL-11 ^	Epuration, BV																			ĺ
Doline	Grand	Kadji	DOL-12 ^	Base Vie																			Ĺ
	ļ		DOL-13 ^	Base Vie																			ļ
Doline	Grand	Carénage	Doline 1	Hors influence		=																	Ĺ
			Doline 2	Hors influence		=																	ļ
Doline	Grand	Plaine des lacs	Doline 3	Hors influence		=																	Ĺ
	<u>Légende :</u>		* : paramètre me ^ : station suivie En gras : stations			> ::	core décla surcla	ssen	nent	par r	appo	ort à 2	2015			?	Bon Bon Moye Médi	en			Mau Susi Inde		

- Dans les eaux souterraines :

Tableau 106 : Récapitulatif des scores 2016 par paramètre et par station pour les métaux dissouts dans les eaux souterraines.

								-	Vléta	ux dis	ssout	s				
BV	Zone	Piézomètre	Influence	Fe	Mn	Ni	Αl	As	Cd	Со	Cr	Cr(VI		Pb	Zn	Si
V N I		4-z1		=	=	=	=	=	=	=	=	=	=	=	=	=
Kwe Nord		4-z1A 4-z1B														
		4-z2		=	=	=	=	=	=	=	=	=	=	=	=	=
	UPM CIM	4-z2A	UPM - CIM													
		4-z4		=	=	=	=	=	=	=	=	=	=	=	=	=
		4-z4A 4-z5		K	=	И	=	=	=	И	=	=	=	=	=	=
		4-z5A		_	_		_	_	_		_	_	_	_	_	_
		WK17	ASR 0 (sources)	=	=	K	=	=	=	=	=		=	=	=	=
		WK20 WK6-11	ASINO (Sources)	=	=	K	=	=	=	=	=		=	=	=	=
		WK6-11A		=	=	=	=	=	=	=	=		=	=	=	=
		WK6-12		=	=	=	=	=	=	=	=		=	=	=	=
		WK6-12A	ASR A (piézomètres	=	=	=	=	=	=	=	=		=	=	=	=
		WK6-9	d'alerte au pied de	=	=	=	=	=	=	=	=		=	=	=	=
		WK6-9A WKBH102	la berme)	=	==	=	=	=	=	=	=		=	=	==	=
		WKBH102A		=	=	=	=	=	=	=	=		=	=	=	=
		WKBH103		=	=	K	=	=	=	=	=		=	=	=	=
		WK6-10		=	=	=	=	=	=	=	=		=	=	=	=
		WK6-10A WKBH109		=	=	=	=	=	=	=	=		=	=	=	=
		WKBH109A		=	=	<u>-</u>	=	=	=	=	=		=	=	=	=
		WKBH110		=	=	=	=	=	=	=	=	=	=	=	=	=
Kwe Ouest		WKBH110A	ACD B /2000	=	=	=	=	=	=	=	=	=	=	=	=	=
		WKBH110B WKBH111	ASR B (zone	=	=	=	=	=	=	=	=	=	=	=	=	=
		WKBH117	tampon)	=	=	=	=	=	=	=	=		=	=	=	=
	ASR	WKBH117A		=	=	=	=	=	=	=	=		=	=	=	=
	ASIN	WKBH117B		=	=	=	=	=	=	=	=		=	=	=	=
		WKBH118 WKBH118A		=	-	=	=	=	=	=	=		=	=	=	=
		WKBH118B		=	=	=	=	=	=	=	=		=	=	==	=
		WKBH112		=	=	=	=	=	=	=	=		=	=	=	=
		WKBH112A		ш	7	Z	=	=	=	Z	=		=	=	Ш	=
		WKBH113 WKBH113A		=	=	=	=	=	=	=	=		=	=	=	=
		WKBH114		=	=	<u>-</u>	=	=	=	=	=		=	=	=	=
		WKBH114A	ASR C (proximité	=	=	=	=	=	=	=	=		=	=	=	=
		WKBH115	rivière)													
		WKBH115A WKBH115B	nvicie)	=	=	=	=	=	=	=	=		=	=	=	=
		WKBH115B		=	=	=	=	=	=	=	=		=	=	=	=
		WKBH116A		п	ш	=	=	=	=	=	=		=	=	ш	=
		WKBH116B		=	=	=	=	=	=	=	=		=	=	=	=
		WTBH9 WKBH32		=	=	=	=	=	=	=	=		=	=	=	=
Kadji		WK6-14	ASR D (vallées	=	=		=	=	=	=	=		=	=	=	=
Trou Bleu		WTBH11	adjacentes)	=	=	=	=	=	=	=	=		=	=	=	=
1100 Bleu		WTBH11A		=	=	=	=	=	=	=	=		=	=	=	=
Baie de Prony	PORT	7-1 7-2	Port (rétention fuel													
Date de Prony	POKI	7-2 7-3	lourd)													
		6-1		=	=	=	=	=	=	=	=	=	=	=	=	=
		6-1a	Aval site indust.	=	=	=	=	=	=	=	=	=	=	=	=	=
]		6-2 6-2a		==	=	=	=	=	==	=	=	=	=	=	=	=
		6-3	Aval distrib.	=	=	=	=	=	=	=	=	=	=	=	=	=
		6-3a	carburant	-	-	=	=	=	-	=	=	Ē		=	-	=
		6-4	Aval hydroc.	"	ш	=	=	=	=	=	=	=	=	=	ш	=
CBN	USINE	6-5 6-6	Aval H2SO4 Aval gazole	==	= =	=	=	=	-	=	=	=	=	=	-	=
		6-7		=	=	=	=	=	=	=	=	<u>=</u>	=	=	=	=
		6-7a	Amont site indust.	=	=	=	=	=	=	=	=	Ξ	=	=	=	=
		6-8	Aval contôle Nord	=	=	=	=	=	=	=	=	=	=	=	=	=
]		6-8a 6-13		=	-	=	=	=	-	=	=	=	=	=	= -	=
		6-14	Aval procédé	=	=	=	=	=	=	=	=	=	=	=	=	=
		6-14a	Aval stock. HCl	=	=	=	=	=	=	=	=	k	Ē	=	=	=
	<u>Légende:</u>	🖫 : déclassemen	re en 2015 et 2016 nt par rapport à 2015 nt par rapport à 2015		Code	coul	leur a	les sco	ores :				vais tratio term		ı de r	ner
			Code couleur station	s:				ous in					· VNC			

4.2.1.2 Concentration en Sulfates (SO_4^{2-})

Les concentrations en Sulfates sont mesurées dans les eaux de surface des creeks et dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Sulfates dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,2 mg/L. Les valeurs seuils pour la concentration en Sulfate sont définies dans l'annexe III de l'arrêté métropolitain du 11 janvier 2007 à 250 mg/L dans les eaux de surface, et dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012 à 250 mg/L dans les eaux souterraines. A noter qu'au niveau de la Kwë Ouest, l'arrêté d'exploitation de cet ouvrage prévoit une valeur seuil à respecter pour les Sulfates (150 mg/l).

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant. Une gamme de référence 2016 pour le Sulfate dans les eaux de surface des dolines a été établie grâce aux valeurs mesurées dans 3 dolines de référence en 2016.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 107: Détermination de la gamme de variations de référence pour les Sulfates dans les eaux de surface: calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	SO ₄ 2- (m	ng/L) - eaux de sui	face	I	q = 0,2 m	g/L			
Position	Type de		de référence	N 2016	moy	moy	Per 10	Per 90	Valeur
Position	BV	Zone	Station	IN 2016	2016	2016	Pel 10	Pel 30	seuil
		Kwe Ouest	3-A	5	2,70				
Amont	Grand	Carénage	Carénage Amont	1	4,20	3,175	2,760	3,810	
Amont	Granu	Kaoris	Kaoris Amont	1	2,90	3,173	2,700	3,010	
		Kuebini	Kueb Amont	1	2,90				
		Trou Bleu	3-C	12	2,60				
Aval	Grand	Carénage	Carénage Aval	1	2,60	2,675	2,600	2,810	150
Avai	Granu	Kaoris	Kaori Aval	1	2,90	2,075	2,000	2,010	
		Kuebini	Kueb Aval	1	2,60				
		Carénage	Doline 1	1	2,60				
Dolin	ies	Carénage	Doline 2	1	2,10	2,100	1,700	2,500	
		Plaine des Lacs	Doline 3	1	1,60				

Résultats et analyse

Les concentrations en Sulfates ne sont pas connues en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, toutes les stations de suivi des eaux de surface présentaient des valeurs moyennes et percentiles 90 supérieures à celles de leurs gammes de références respectives. Trois stations de suivi des creeks et une

station de suivi des dolines ont également enregistré cette année des mesures dépassant la valeur seuil réglementaire. De plus, la chronique temporelle 2012-2016 de concentrations annuelles en Sulfate montre une tendance à la hausse pour ces 4 stations, ainsi que pour 5 stations de suivi des creeks n'ayant pas enregistré de dépassement de seuil cette année. Un score final « Mauvais » a donc été attribué à ces 9 stations, ce qui constitue un déclassement pour 4 d'entre elles par rapport à 2015 pour ce paramètre. Les stations dont le score est « Mauvais » cette année sont l'ensemble des stations en amont de la Kwé Ouest (3-B, 3-D, 3-E et 4-N), la station 4-M en amont de la Kwé Nord, les 2 stations de suivi de la branche principale de la Kwé (1-A et 1-E), la station 6-BNOR1 en aval du Creek Baie Nord, et la doline 6-R également sur le bassin versant du Creek Baie Nord. Les valeurs enregistrées en 2016 dans ces stations atteignent des valeurs record traduisant une augmentation exponentielle de l'empreinte des procédés miniers sur le milieu dulçaquicole environnant. Alors que l'origine de l'augmentation des teneurs en sulfate dans le Creek Baie Nord est inconnue, il est probable que les augmentations observées dans la doline 6-R proviennent d'une contamination par l'ancienne cellule à résidus de l'usine pilote ; les drains en dessous de cette cellule récupèreraient des eaux contaminées infiltrées au travers de la membrane.

Tableau 108 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Sulfates (en mg/L) dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	SO ₄ 2- (mg	z/L) - eaux de surf	ace		Iq = 0,	2 mg	/L														
Position	Type de	Stations de	e suivi		2012	2	2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
FUSILIUII	BV	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	valeur seuil?	temporelle?	2015	par station	par zone
			3-B	14	6,71	26	21,74	11	24,09	33	28,51	114	57,67	147,80	286,00	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	
		Kwe Ouest	3-D	2	35,80	13	212,69	4	155,38	22	223,00	121	453,16	746,00	1040,0	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais
		nwe odest	3-E	2	14,85	2	16,65	2	30,15	1	41,00	3	148,47	246,80	270,00	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	77.0.07.0.5
	Grand		4-N	9	8,28	2	40,35	11	23,45	12	26,47	12	54,20	92,15	105,00	Mauvais	Bon	Mauvais	Bon	Mauvais	
Amont	G.u.iu		4-M	12	5,35	12	10,05	9	11,66	12	17,26	12	20,75	56,72	73,00	Mauvais	Bon	Mauvais	Mauvais	Mauvais	Mauvais
			KE-05	12	8,47	13	8,52	6	9,52	12	11,17	11	9,46	10,90	11,40	Mauvais	Bon	Bon		Bon	Bon
		CBN Amont	6-Q	13	18,62	12	17,44	11	14,82	11	16,20	10	19,32	20,57	29,30	Mauvais	Bon	Bon	Bon	Bon	Bon
			6-S	13	6,43	12	4,92	7	4,17	9	7,17	10	6,57	11,32	13,30	Mauvais	Bon	Bon	Bon	Bon	
	Petit	Trüu Amont	TR-02	12	9,21	12	8,98	5	8,26	12	7,58	0						Bon	Bon		
		Kwe principale	1-A	12	5,75	13	8,05	10	9,35	12	11,45	12	16,03	26,95	27,50	Mauvais	Bon	Mauvais	Bon	Mauvais	Mauvais
			1-E	14	5,28	13	7,39	8	9,09	12	10,46	12	15,28	22,66	36,40	Mauvais	Bon	Mauvais	Bon	Mauvais	
Aval	Grand		6-BNOR1	4	10,38	5	9,82	4	8,80	4	8,55	6	13,28	28,81	27,20	Mauvais	Bon	Mauvais	Bon	Mauvais	
			6-T	18	9,01	18	8,16	13	7,25	13	10,35	12	8,27	10,60	17,50	Mauvais	Bon	Bon	Bon	Bon	Mauvais
			6-U	12	9,43	12	9,27	11	8,64	12	7,04	12	7,78	8,86	14,90	Mauvais	Bon	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	3,99	12	4,89	5	3,24	10	4,30	0						Bon	Bon		
			6-R	13	57,99	12	53,67	10	43,39	13	54,07	10	65,82	79,31	173,00	Mauvais	Bon	Mauvais	Mauvais	Mauvais	
			DOL-2	2	2,75	2	3,10	2	2,45	1	3,30	0		-	-			Bon	Bon		
			DOL-3	2	2,10	1	1,50	1	1,70	0		0		-	-			Bon			
		CBN	DOL-4	2	2,25	2	2,70	2	1,85	1	2,20	0						Bon	Bon		Mauvais
D-II			DOL-8	1	1,30	1	1,00	1	1,40	1	1,30	0						Bon	Bon		
Doli	iles		DOL-9 DOL-10	0	3,30	1	0,50	0	2,60	0	-	0	2.40	2.40	3.40	Marria	D	Bon		D	
			DOL-10 DOL-15	0		1	3,80 7,00	0		0	-	0	3,40	3,40	3,40	Mauvais	Bon	Bon		Bon	
			DOL-15 DOL-11	2	23,00	1	29.40	1	24,80	0	-	3	29.90	34.28	35.60	Mauvais	Bon	Bon		Bon	
			DOL-11 DOL-12	1	9,40	1	15,70	1	_	1	15,60	0	29,90	34,28	33,60	ivia uva is	DOII	Bon	Bon	DON	Bon
		,	DOL-12 DOL-13	2	2.80	2	3.70	0	15,10 2.80	1	3.20	0		-	 			Bon	Bon		BOII
		<u> </u>	DΩΓ-13		2,80		3,/0	U	2,80		3,20	U				<u> </u>	<u> </u>	BOIL	воп		

En 2016, les concentrations en Sulfates ne sont pas connues dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Sulfates dans les eaux souterraines ont été mesurées en 2016 dans tous les autres piézomètres, dont la moitié présente des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Toutefois, seuls 5 d'entre eux ont enregistré cette année des dépassements de la valeur seuil réglementaire, dont l'un (7-1) est attribuable à l'infiltration d'eau salée de par sa location au niveau du port. Des tendances générales à l'augmentation des moyennes annuelles en Sulfates dans les eaux souterraines sont cependant observées dans près d'une vingtaine de piézomètres, dont certains pour lesquels un score « Mauvais » avait déjà été attribué l'année dernière, 7 piézomètres supplémentaires étant déclassés sur la base de ce paramètre cette année, tous localisés sous influence de l'Aire de Stockage des Résidus. Il s'agit des piézomètres <u>WKBH110</u>, <u>WKBH110A</u>, <u>WKBH110B</u>, <u>WKBH111</u>, <u>WKBH118A</u>, <u>WKBH118</u>. Une augmentation des concentrations en sulfates traduisant l'extension spatiale de l'influence

de l'aire de stockage des résidus est également enregistrée sur le piézomètre d'alerte <u>WK16-14</u> situé en tête du bassin versant Kadji adjacent à la Kwé Ouest. Si la tendance à l'augmentation en sulfates se confirme un déclassement de cette station devra probablement être effectué lors du prochain diagnostic.

Certains piézomètres dont le score était « Mauvais » l'année dernière n'ont pas de données en 2016, aucune note ne peut donc leur être attribuée. Quatre piézomètres qui avaient enregistré des valeurs élevées en 2015 montrent une amélioration notable cette année, ce qui a permis leur reclassement par l'attribution d'un score « Bon ».

Tableau 109 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Sulfates (en mg/L) dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

SO ₄ 2- (mg	/L) - eaux souterra	ines		Iq = 0,	2 mg	/L		En	ble	u : piézo	mèt	res de c	ontrôle		Valeur se	euil :	150 mg/L et 2	250 mg/L		
Source	Stations de	e suivi	_	2012	_	2013	_	2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
d'influence	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	valeur seuil ?	temporelle ?	2015	par piézo.	par zone
	Kwe Nord	4-z1 4-z1A	4	3,60 7,93	2	1,35 8,55	4	1,50 8,08	4	1,75 7,30	0	1,58	1,96	2,20	Bon	Bon	Bon Bon	Bon Bon	Bon	
		4-z1B	4	87,88	3	81,30	4	92,53	3	69,60	0						Bon	Bon		
		4-z2	4	4,00	2	7,30	4	3,40	4	2,38	4	2,63	3,48	3,90	Mauvais	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	45,20	2	34,70	4	33,18	4	38,83	0						Bon	Bon		Mauvais
		4-z4 4-z4A	5 4	2,68 55,20	2	4,10 54,35	4	5,00 62,13	4	6,65 76,70	5	10,72	15,48	15,80	Mauvais	Bon	Mauvais	Bon	Mauvais	
		4-24A 4-z5	5	20,30	2	17,65	5	4,46	4	4,18	5	3,70	3,88	4,00	Mauvais	Bon	Mauvais Bon	Bon Bon	Bon	
		4-z5A	4	26,83	2	11,10	2	28,50	4	40,95	0	-,	-,	.,			Mauvais	Bon		
ASR 0 (sources)		WK17	54	22,90	52	30,96	48	71,93	79	144,01	48	539,94	863,00	887,00	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	
risit o (sources)		WK20	53	3,69	53	3,50	50	9,85	51	37,54	51	_	168,00	193,00	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		WK6-11 WK6-11A	2	1,70 4,40	2	5,45	0	4,55	3	81,30 4,80	2	9,20 2,45	10,32 2,65	10,60 2,70	Mauvais Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WK6-12	2	12,55	2	7,15	8	17,93	12	22,96	12	37,56	52,98	55,70	Mauvais	Bon	Mauvais	Bon	Mauvais	
ASR A		WK6-12A	2	1,90	2	3,65	8	7,33	12	17,88	12	32,88	42,52	44,40	Mauvais	Bon	Mauvais	Bon	Mauvais	
(piézomètres		WK6-9	2	2,85	2	3,25	2	3,30	2	4,15	2	4,25	4,37	4,40	Mauvais	Bon	Mauvais	Bon	Mauvais	
d'alerte)		WK6-9A WKBH102	11	1,35	7	1,15	2	0,85 39,99	12	1,00	12	1,05	1,09	1,10	Bon	Bon	Bon	Bon Bon	Bon	
		WKBH102 WKBH102A	2	19,50 6,70	2	14,81 7,85	12 2	8,45	2	49,38 9,45	2	168,70 10,50	284,00 11,86	284,00 12,20	Mauvais Mauvais	Mauvais Bon	Mauvais Mauvais	Bon	Mauvais Mauvais	
		WKBH103	2	20,05	2	25,45	3	59,03	12	110,76	13	406,15	614,80	652,00	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		WK6-10	0		1	6,70	2	40,63	2	13,10	2	4,55	4,75	4,80	Mauvais	Bon	Bon	Bon	Bon	
		WK6-10A	2	5,15	1	5,50	1	6,10	2	5,85	2	6,90	7,22	7,30	Mauvais	Bon	Bon	Bon	Bon	
		WKBH109 WKBH109A	2	8,30	2	9,25	2	4,60 11,90	2	7,30 19,35	11	5,45 52,18	9,10 102,40	9,90 105,00	Mauvais Mauvais	Bon Bon	Bon	Bon Bon	Bon Mauvais	
		WKBH109A WKBH110	10	2,74	8	2,76	10	4,81	12	14,98	12	52,74	71,17	78,80	Mauvais	Bon	Mauvais Mauvais	Bon	Mauvais	
	Kwe Ouest	WKBH110A	0		0		0	.,,	2	14,90	11	47,68	62,00	73,20	Mauvais	Bon	Mauvais	Bon	Mauvais	
ASR B		WKBH110B	2	2,50	2	2,65	2	4,15	2	14,85	11	47,45	69,90	70,10	Mauvais	Bon	Mauvais	Bon	Mauvais	
(zone tampon)		WKBH111	2	1,65	2	1,45	2	0,90	2	2,50	2	6,70	7,98	8,30	Mauvais	Bon	Mauvais	Bon	Mauvais	
		WKBH117 WKBH117A	2	2,50 2,85	2	2,45	2	2,45	2	2,45 2,75	2	2,80 2,85	2,96 2,89	3,00 2,90	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH117A WKBH117B	2	2,50	2	2,40	2	2,40	1	2,73	2	2,70	2,78	2,80	Bon	Bon	Bon	Bon	Bon	Mauvais
		WKBH118	2	6,15	2	6,75	2	8,05	2	9,30	2	11,15	11,91	12,10	Mauvais	Bon	Mauvais	Bon	Mauvais	
		WKBH118A	2	5,60	2	7,30	2	8,70	2	10,15	2	12,50	13,30	13,50	Mauvais	Bon	Mauvais	Bon	Mauvais	
		WKBH118B	2	3,95	2	4,20	2	4,40	2	3,85	2	4,35	4,56	4,60	Mauvais	Bon	Bon	Bon	Bon	
		WKBH112 WKBH112A	0	4,20	0	2,00	2	1,70 3,85	2	1,70 2,70	2	2,00	2,08 2,46	2,10 2,50	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH112A	11	1,46	7	1,17	11	1,22	12	1,12	13	1,36	1,56	1,60	Bon	Bon	Bon	Bon	Bon	
		WKBH113A	2	1,00	2	0,95	2	0,95	2	1,25	2	0,90	1,06	1,10	Bon	Bon	Bon	Bon	Bon	
		WKBH114	3	1,80	2	1,55	2	1,70	2	1,45	2	1,60	1,60	1,60	Bon	Bon	Bon	Bon	Bon	
ASR C (proximité		WKBH114A WKBH115	0	3,20	0	2,15	2	2,25	0	3,00	2	2,40	2,80	2,90	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
rivière)		WKBH115A	0		0		1	27,15	2	2,65	2	2,55 1,90	2,59 1,90	2,60 1,90	Bon	Bon	Bon	Bon	Bon	
, i		WKBH115B	2	3,15	2	3,10	2	2,60	2	4,45	2	3,80	3,96	4,00	Mauvais	Bon	Bon	Bon	Bon	
		WKBH116	2	1,75	2	1,60	2	16,00	2	5,55	2	3,60	3,68	3,70	Mauvais	Bon	Bon	Bon	Bon	
		WKBH116A	2	1,40	2	1,20	2	1,35	2	1,65	2	1,60	1,60	1,60	Bon	Bon	Bon	Bon	Bon	
		WKBH116B WTBH9	2	1,40	1	1,75	0	1,80	1	1,70 1,50	2	1,90 1,95	2,14	2,20	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
ACD D		WKBH32	2	2,35	2	2,35	2	2,05	2	1,95	2	1,90	1,90	1,90	Bon	Bon	Bon	Bon	Bon	
ASR D (vallées	Kadji	WK6-14	1	3,30	2	3,25	1	3,90	1	4,30	2	4,80	4,88	4,90	Mauvais	Bon	Bon	Bon	Bon	
adjacentes)	Rivière Trou Bleı	WTBH11	2	2,20	2	2,15	2	2,20	2	2,20	2	2,25	2,29	2,30	Bon	Bon	Bon	Bon	Bon	
		WTBH11A 7-1	0	2,25 2300	2	2,20 1845	0	2,15	0	2,30	2	2,20 2525	2,20 2577	2,20 2590	Bon Mauvais	Bon Mauvais	Bon Mauvais	Bon	Bon Eau salée	
Port	Baie de Prony	7-2	0	2300	0	1045	0		0		2	16,60	16,76	16,80	Mauvais	Bon	1110 0 7013		Bon	Bon
		7-3	1	3,10	2	5,75	2	3,15	0		2	3,60	3,68	3,70	Mauvais	Bon	Bon		Bon	
		6-1	4	2,63	2	2,75	4	3,15	4	3,17	4	2,38	2,54	2,60	Bon	Bon	Bon	Bon	Bon	
		6-13 6-14	6	4,70	3	2,90 1,80	5	2,93 44,08	5	2,15 12,38	4	2,08 1,75	2,10	2,10 2,50	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		6-14a	5	87,00	4	1,80	9	236,55	10	230,50	11	288,36	349,00	378,00	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	
		6-1a	5	2,40	2	2,05	4	1,80	4	2,28	4	2,35	2,40	2,40	Bon	Bon	Bon	Bon	Bon	
		6-2	4	2,95	1	3,00	4	3,08	4	3,28	4	2,73	2,80	2,80	Bon	Bon	Bon	Bon	Bon	
		6-2a	4	4,78	2	4,40	4	4,43	4	4,43	4	4,63	5,21	5,30	Mauvais	Bon	Bon	Bon	Bon	
Usine	CBN	6-3 6-3a	4 5	1,18 2,36	2	1,15 2,35	3	1,45 1,70	3	1,23 2,50	3	1,40 2,53	1,67 2,66	1,70 2,70	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon
		6-3a 6-4	4	2,36	2	1,85	4	1,35	4	0,85	3	1,07	1,10	1,10	Bon	Bon	Bon	Bon	Bon	
		6-5	5	3,08	2	2,55	5	2,38	4	2,90	4	3,00	3,94	4,30	Mauvais	Bon	Bon	Bon	Bon	
		6-6	5	2,80	2	2,60	4	2,60	4	2,98	4	2,22	2,27	2,30	Bon	Bon	Bon	Bon	Bon	
		6-7	4	3,70	2	11,70	6	5,63	4	1,78	4	1,73	1,91	2,00	Bon	Bon	Bon	Bon	Bon	
		6-7a 6-8	5	1,95 21,42	2	2,00 24,50	3	2,46 23,70	4	1,90 17,43	4	2,10 19,05	2,46 20,02	2,60 20,20	Bon Mauvais	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		6-8a	4	22,70	3	22,20	4	20,08	4	20,13	4	19,13	21,89	22,70	Mauvais	Bon	Bon	Bon	Bon	
<u> </u>				,,,		,_0	÷	_0,00	÷	20,23	÷	20,20		,,,	111001015	50	50	20		

4.2.1.3 Concentration en Soufre

Les concentrations en Soufre sont mesurées dans les eaux de surface des creeks et dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Soufre dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,1 mg/L. Aucune valeur seuil n'existe pour cet élément.

En 2016, les concentrations en Soufre ont été mesurées dans 8 stations de cours d'eau permettant d'établir des gammes de référence.

Tableau 110 : Détermination de la gamme de variations de référence pour le soufre dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	S (mg/L)	- eaux de surf	ace		q = 0,1 mg,	/L		
Position	Type de BV	Statio	ns de référence	N 2016	may 2016	moy 2016	Per 10	Per 90
Position	Type de BV	Zone	Station	N 2016	moy 2016	moy 2016	Per 10	Per 90
		Kwe Ouest	3-A	5	1,4			
Amont	Grand	Carénage	Carénage Amont	1	1,2	1,0	0,7	1,3
Amont	Granu	Kaoris	Kaoris Amont	1	0,8	1,0	0,7	1,5
		Kuebini	Kueb Amont	1	0,7			
		Trou Bleu	3-C	12	1,0			
Aval	Grand	Carénage	Carénage Aval	1	0,6	0,8	0,6	0,9
AVai	Gianu	Kaoris	Kaori Aval	1	0,7	0,0	0,0	0,9
		Kuebini	Kueb Aval	1	0,7			

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, 6-7 et 6-7a pour l'usine, WTBH11 et WTBH11A pour l'aire de stockage des résidus et l'UPM), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Résultats et analyse

En 2016, les valeurs mesurées dans les eaux de surface dépassent les gammes de référence établies pour 8 stations sur la Kwé (3-B, 3-D, 3-E, 4-N, 4-M, KE-05, 1-A, 1-E) et 5 stations sur le creek Baie Nord (6-BNOR1, 6-T, 6-U, 6-Q, 6-S). Parmi ces stations, 8 présentent des tendances à l'augmentation des concentrations pour le soufre en 2016. Il s'agit des stations 3-B, 3-D, 3-E, 4-N, 4-M, 1-A, 1-E, et 6-BNOR1 qui sont toutes déclassées, tout comme la station 6-R correspondant à une doline impactée par l'ancienne usine pilote construite sur le bassin versant du creek Baie Nord.

Tableau 111: Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 pour les concentrations en Soufre (en mg/L) dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	S (mg/L) -	eaux de surface			Iq = 0,	1 mg	/L												
Position	Type de BV	Stations	de suivi		2012	•	2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score 2016 par	Score 2016 par
Position	Type de BV	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	station	zone
			3-B	14	2,2	25	7,1	12	7,5	32	9,4	147	26,2	65,0	87,0	Mauvais	Mauvais	Mauvais	
		Kwe Ouest	3-D	2	11,0	13	71,0	4	52,0	22	73,8	135	160,9	256,8	346,0	Mauvais	Mauvais	Mauvais	Mauvais
		KWC Oucst	3-E	2	4,0	2	5,0	2	10,0	1	14,0	3	47,7	52,8	87,0	Mauvais	Mauvais	Mauvais	, maavans
	Grand		4-N	9	2,9	2	13,5	11	7,8	12	8,4	12	17,5	28,9	34,0	Mauvais	Mauvais	Mauvais	
Amont	Grana	Kwe Nord	4-M	12	1,8	12	3,4	9	3,9	12	5,5	12	6,7	19,1	23,0	Mauvais	Mauvais	Mauvais	Mauvais
		Kwe Est	KE-05	12	2,8	14	2,7	6	2,8	12	3,6	11	3,3	4,0	4,0	Mauvais	Mauvais	Bon	Bon
		CBN Amont	6-Q	13	6,0	12	5,3	11	5,0	10	5,3	10	6,8	7,3	10,0	Mauvais	Bon	Bon	Bon
		CDIV AIIIOITE	6-S	12	2,2	12	1,7	7	1,4	8	2,4	10	2,4	4,0	4,0	Mauvais	Bon	Bon	Don
	Petit	Trüu Amont	TR-01	11	1,3	12	1,6	5	1,4	10	1,3	0							
		Kwe principale	1-A	12	2,0	12	2,7	11	3,3	12	3,9	12	5,5	7,9	11,0	Mauvais	Mauvais	Mauvais	Mauvais
		we principale	1-E	14	1,8	14	2,4	8	3,1	12	3,4	12	5,0	6,9	12,0	Mauvais	Mauvais	Mauvais	aava.s
Aval	Grand		6-BNOR1	4	3,5	5	3,2	4	2,7	4	2,7	4	4,2	6,8	8,0	Mauvais	Mauvais	Mauvais	
Avai	Grana	CBN Aval	6-T	5	84,0	6	2,8	4	2,5	4	2,8	10	3,1	4,2	6,0	Mauvais	Bon	Bon	Mauvais
			6-U	1		0		1		1		1							
		Trüu Aval	TR-02	12	3,1	12	2,9	5	2,6	12	2,2	0							
			6-R	12	18,7	12	17,2	10	14,9	13	17,8	12	22,0	26,1	54,0		Bon	Mauvais	
			DOL-2	2	1,0	2	1,0	1	1,0	1	1,0	0							
			DOL-3	2	1,0	1	1,0	1	1,0	0		0							
		CBN	DOL-4	2	1,0	2	1,0	2	1,0	1	1,0	0							Bon
			DOL-8	1	1,0	1	1,0	1	1,0	1	1,0	0							
Dol	ines		DOL-9	1	1,0	1	1,0	1	1,0	0		0							
			DOL-10	0		1	1,0	0		0		1	1,0	1,0	1,0		Bon	Bon	
			DOL-15	0		1	2,0	0		0		0							
			DOL-11	2	7,0	1	9,0	1	9,0	0		2	11,0	11,8	12,0		Bon	Bon	
		Ka dji	DOL-12	1	3,0	1	4,0	1	5,0	1	5,0	0							Bon
			DOL-13	2	1,0	2	1,5	0		1	1,0	0							

En 2016, les concentrations en Soufre ne sont pas connues dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Soufre dans les eaux souterraines ont été mesurées en 2016 dans tous les autres piézomètres, dont 14 présentent des valeurs annuelles supérieures à celles mesurées dans les piézomètres de contrôle. Dix de ces piézomètres étant situés sous l'influence de l'aire de stockage des résidus, un au niveau du port et 3 sous l'influence du site industriel. Les très fortes concentrations au niveau du port semblent expliquées par une intrusion d'eau salée dans la nappe. Pour les deux autres zones concernées, 11 piézomètres affichent une tendance à l'augmentation des concentrations en Soufre justifiant leur déclassement de l'état chimique en Mauvais. Il s'agit des piézomètres WK-17, WK-20, WKBHY102, WKBH103, 6-14 déjà qualifiés en « Mauvais » pour le soufre en 2015, et des piézomètres WK-6A, WKBH109A, WKBH110A, WKBH110B nouvellement déclassés en 2016.

Tableau 112 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle pour les concentrations en Soufre (en mg/L) dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

S (mg/L) - 0	eaux souterraines	-		lq = 0,						u : piézo	mèt								
Source d'influence	Stations		_	2012		2013	_	2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score 2015	Score 2016 par	
	Zone	Station 4-z1	N	Moy 1,2	N	Moy 1,0	N	Moy 1,0	N	Moy 1,0	N	Moy 1,0	Per 90 1,0	Max 1,0	≤ piézo. contrôle ? Bon	temporelle ? Bon	Bon	piézo. Bon	zone
	Kwe Nord	4-21 4-21A	4	2,0	2	3,0	4	3,0	4	2,2	0	1,0	1,0	1,0	BUII	Bon	Bon	DON	
		4-z1B	4	27,7	3	29,0	4	29,7	3	34,3	0					Bon	Mauvais		
		4-z2	4	4,0	2	2,5	4	1,2	4	1,0	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	14,5	2	13,0	4	12,0	4	13,7	0					Bon	Mauvais		Bon
		4-z4	4	1,0	2	1,5	4	1,7	4	2,2	5	3,8	5,6	6,0	Bon	Bon	Bon	Bon	
		4-z4A	4	17,0	2	17,5	3	20,3	4	25,5	0					Mauvais	Mauvais		
		4-z5 4-z5A	4	3,7	2	2,0	5	1,4	4	1,0	5	1,2	1,6	2,0	Bon	Bon	Bon	Bon	
	ł	WK17	4 51	7,0 7,2	52	8,0 10,1	48	9,0 23,7	4	14,0 50,2	0 52	172,6	287,6	298,0	Mauvais	Mauvais Mauvais	Mauvais Mauvais	Mauvais	
ASR 0 (sources)		WK20	51	1,2	52	1.1	48	3,4	51	11,9	51	41,8	56,0	64,0	Mauvais	Mauvais	Mauvais	Mauvais	
	1	WK6-11	1	1,0	0	1,1	2	2,0	3	27,0	2	3,5	3,9	4,0	Bon	Bon	Mauvais	Bon	
		WK6-11A	2	1,5	2	2,0	0		3	1,7	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WK6-12	2	4,0	2	2,5	8	6,4	12	7,2	12	12,2	15,9	17,0	Mauvais	Mauvais	Bon	Mauvais	
ASR A (piézomètres		WK6-12A	2	1,0	2	1,0	8	3,7	12	5,7	12	10,4	13,0	13,0	Mauvais	Mauvais	Bon	Mauvais	
d'alerte)		WK6-9	2	1,0	2	1,0	2	1,0	2	1,0	2	1,5	1,9	2,0	Bon	Bon	Bon	Bon	
,		WK6-9A	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH102	11	6,1	7	4,7	10	12,4	12	16,1	12	56,5	87,9	169,0	Mauvais	Mauvais	Mauvais	Mauvais	
		WKBH102A WKBH103	2	2,5 6.0	2	2,5 8.0	2	3,0 16.5	12	3,5 36.2	2	4,0	4,0	4,0	Bon	Bon	Bon	Bon	
	1	WK6-10	0	6,0	1	2,0	2	16,5	2	36,2 4,5	2	143,4 1,5	190,3 1,9	199,0 2,0	Mauvais Bon	Mauvais Bon	Mauvais Bon	Mauvais Bon	
		WK6-10A	2	2,0	1	2,0	1	1,0	2	2,0	2	2,0	2,0	2,0	Bon	Bon	Bon	Bon	
		WKBH109	0	2,0	0	2,0	2	3,0	2	3,0	2	2,0	2,8	3,0	Bon	Bon	Bon	Bon	
	ĺ	WKBH109A	2	3,0	2	3,5	2	4,0	2	6,0	11	17,4	33,0	34,0	Mauvais	Mauvais	Bon	Mauvais	
	ĺ	WKBH110	10	1,0	7	1,0	11	3,1	12	4,8	12	17,0	22,9	25,0	Mauvais	Mauvais	Bon	Mauvais	
	Kwe Ouest	WKBH110A	0		0		0		2	4,5	11	15,2	20,0	23,0	Mauvais	Mauvais	Bon	Mauvais	
ASR B (zone		WKBH110B	2	1,0	2	1,5	2	1,5	2	4,5	11	15,4	20,0	23,0	Mauvais	WK17	Bon	Mauvais	
tampon)		WKBH111	2	1,0	2	1,0	2	1,0	2	1,0	2	2,5	2,9	3,0	Bon	Bon	Bon	Bon	
		WKBH117	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH117A	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	Mauvais
		WKBH117B WKBH118	2	1,0 2,0	2	1,0 2,0	2	1,0 3,0	2	1,0 3,5	2	1,0 4,5	1,0 4,9	1,0 5,0	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH118A	2	2,0	2	2,5	2	3,0	2	3,5	2	4,5	4,9	5,0	Bon	Bon	Bon	Bon	
		WKBH118B	2	1.0	2	1.0	2	2.0	2	1.5	2	1.5	1.9	2.0	Bon	Bon	Bon	Bon	
	1	WKBH112	2	1,5	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH112A	0		0		2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH113	11	1,0	7	1,0	12	1,6	12	1,0	12	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH113A	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH114	3	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
ASR C (proximité		WKBH114A	1	2,0	2	1,0	2	1,0	2	1,5	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
rivière)		WKBH115	0		0		1	1,0	0		2	1,0	1,0	1,0	Bon	Bon		Bon	
		WKBH115A WKBH115B	2	1,0	2	1,0	2	8,0 1,0	2	1,0 1,5	2	1,0	1,0 1,0	1,0	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH116	2	1,0	2	1,0	2	5,5	2	2,5	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH116A	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH116B	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WTBH9	2	1,0	1	1,0	0	1,0	1	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WKBH32	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
ASR D (vallées	Kadji	WK6-14	1	1,0	2	1,0	1	1,0	1	2,0	2	1,5	1,9	2,0	Bon	Bon	Bon	Bon	
adjacentes)	Rivière Trou Ble	WTBH11	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		WTBH11A	2	1,0	2	1,0	2	1,0	2	1,0	2	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
Port	Baie de Prony	7-1 7-2	0	686,0	0	769,0	0	616,0	0		2	842,0	859,6	864,0	Mauvais	Bon		Eau mer?	Bon
PUIL	bale de Plony	7-3	1	1,0	2	2,0	2	1.0	0		2	5,5 1.5	5,9 1,9	6,0 2.0	Bon Bon	Bon Bon		Bon Bon	DUII
		6-1	4	1,0	2	1,0	4	1,0	4	1,0	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
	ĺ	6-13	0	1,0	1	1,0	4	1,2	4	1,0	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		6-14	5	1,8	3	1,0	5	14,8	5	4,2	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
	ĺ	6-14a	6	23,7	4	62,7	9	76,4	10	76,9	11	93,0	116,0	118,0	Mauvais	Mauvais	Mauvais	Mauvais	
	ĺ	6-1a	4	1,0	2	1,0	4	1,0	4	1,0	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
	ĺ	6-2	4	1,0	1	1,0	4	1,0	4	1,3	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		6-2a	4	2,0	2	1,0	4	1,2	4	1,5	4	1,7	2,0	2,0	Bon	Bon	Bon	Bon	
Usine	CBN	6-3	4	1,0	2	1,0	4	1,0	4	1,0	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	Bon
******		6-3a	4	1,0	2	1,0	3	1,0	3	3,0	3	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
	ĺ	6-4	4	1,2	2	1,0	4	1,0	4	1,0	3	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
		6-5	5	1,0	2	1,0	5	1,0	4	1,0	4	1,2	1,7	2,0	Bon	Bon	Bon	Bon	
		6-6	5	1,0	3	1,0	4	1,0	4	1,2	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
	ĺ	6-7 6-7a	4	1,6 1,0	2	3,7 1,0	4	2,3	3	1,0	4	1,0	1,0	1,0	Bon	Bon	Bon	Bon	
	Ī				_		3	1,0	4		3	1,0	1,0	1,0 7,0	Bon Mauvais	Bon	Bon	Bon	
		6-8																	
		6-8 6-8a	5	7,2 7,5	2	8,0 6,0	4	7,7	4	5,7 6,5	4	6,2 6,5	6,7 7,7	8,0	Mauvais	Bon Bon	Bon Bon	Bon Bon	

4.2.1.4 Concentration en Hydrocarbures totaux (Ht)

Les concentrations en Hydrocarbures sont mesurées dans les eaux de surface de quelques creeks et dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Hydrocarbures dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,5 mg/L dans la majorité des mesures. Lorsqu'une limite de détection inférieure (0,05 ou 0,1 mg/L) a été employée, les valeurs mesurées sont indiquées *en italique* dans les tableaux de synthèse.

Les valeurs seuils pour la concentration en Hydrocarbures totaux sont définies dans l'annexe III de l'arrêté métropolitain du 11 janvier 2007 à 0,05 mg/L dans les eaux de surface, et dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012 à 10 mg/L dans les eaux souterraines.

En 2016, les concentrations en Hydrocarbures totaux n'ont été mesurées dans aucune station située hors zone d'influence de l'activité minière et industrielle, aucune gamme de référence n'a donc pu être établie pour les eaux de surface.

Trois piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Résultats et analyse

En 2016, les valeurs mesurées dans toutes les stations de suivi des cours d'eaux restent inférieures aux limites de détection. Un score « Bon » est donc attribué à chacune des zones pour ce paramètre.

Tableau 113 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour les concentrations en Hydrocarbures totaux (en mg/L) dans les eaux souterraines de 28 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Ht (mg/L)	- eaux souterrain	nes	П	q = 0,5 e	t 10	mg/L		En	bleı	ı:piézo	mèt	res de c	ontrôle		Valeur se	uil :		10 mg/L]
Influence	Stations de	suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
illituerice	Zone	Station	N	Moy	N	Moy	Ν	Moy	Ν	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	valeur seuil ?	temporelle?	2015	par piézo.	par zone
		4-z1	6	6,83	1	0,5	4	2,17	5	6,2	3	6,83	10	10	Bon	Bon	Bon	Bon	Bon	
	Kwe Nord	4-z1A	6	6,83	1	0,5	4	0,525	5	8,1	0						Bon	Bon		
		4-z1B	8	186,25	3	618,9	4	662,85	11	39,52	0						Mauvais	Bon		
		4-z2	7	7,28	1	0,5	5	3,02	5	8,1	3	10	10	10	Bon	Bon	Bon	Bon	Bon	
UPM		4-z2A	5	6,83	1	0,5	4	0,675	5	8,1	0						Bon	Bon		Bon
	Kwe Ouest	4-z4	7	7,28	1	0,5	4	0,6	4	7,625	5	8,24	10	10	Bon	Bon	Bon	Bon	Bon	
	KWC Odest	4-z4A	7	7,28	1	0,5	4	0,65	4	7,625	0						Bon	Bon		
		4-z5	5	8,1	1	0,5	4	3,05	4	7,625	3	6,83	10	10	Bon	Bon	Bon	Bon	Bon	
		4-z5A	6	6,83	1	0,5	4	0,825	4	7,625	0						Bon	Bon		
		7-1	4	0,5	2	0,5	3	0,5	3	0,667	4	0,5	0,5	0,5	Bon	Bon	Bon	Mauvais	Bon	
Port	Baie de Prony		4	5,25	2	5,25	4	2,88	4	7,63	4	10	10	10	Bon	Bon		Bon	Bon	Bon
		7-3	4	5,25	2	5,25	4	2,875	4	7,63	4	10	10	10	Bon	Bon	Bon	Bon	Bon	
		6-1	6	6,83	3	3,66	4	3,225	4	10	4	10	10	10	Bon	Bon	Bon	Bon	Bon	
		6-13	0		0		3	0,5	4	7,63	4	5,8	10	10	Mauvais	Bon	Mauvais	Bon	Bon	
		6-14	7	7,28	2	5,25	4	2,875	4	10	4	7,625	10	10	Bon	Bon	Bon	Bon	Bon	
		6-14a	5	6,2	2	5,25	5	4,3	4	10	4	7,725	10	10	Bon	Bon	Bon	Bon	Bon	
		6-1a	4	6,83	2	5,25	4	2,88	4	10	5	10	10	10	Bon	Bon	Bon	Bon	Bon	
		6-2	4	6,83	3	3,67	2	5,25	5	10	5	10	10	10	Bon	Bon	Bon	Bon	Bon	
		6-2a	4	6,83	3	3,67	2	5,25	5	10	5	9,42	10	10	Mauvais	Bon	Mauvais	Bon	Bon	
Usine	CBN	6-3	4	5,93	2	1	4	5,25	4	10	4	7,625	10	10	Bon	Bon	Bon	Bon	Bon	Bon
031110	COTT	6-3a	3	7,63	1	0,5	4	7,36	3	10	3	6,83	10	10	Bon	Bon	Bon	Bon	Bon	20
		6-4	4	4,34	2	5,7	4	6,63	4	10	4	7,65	10	10	Bon	Bon	Bon	Bon	Bon	
		6-5	4	4,3	2	5,25	4	2,88	4	10	4	7,625	10	10	Bon	Bon	Bon	Bon	Bon	
	ĺ	6-6	4	6,2	2	5,25	4	2,88	4	10	4	7,625	10	10	Bon	Bon	Bon	Bon	Bon	
		6-7	5	6,2	4	5,65	6	2,88	8		5	6,28	10	10	Bon	Bon	Bon	Bon	Bon	
		6-7a	4	6,83	2	5,3	4	3,13	3	10	4	5,25	10	10	Bon	Bon	Bon	Bon	Bon	
	ĺ	6-8	4	6,2	2	5,25	4	2,875	4	10	4	7,17	10	10	Mauvais	Bon	Bon	Bon	Bon	
		6-8a	4	6,2	2	5,25	4	2,875	5	10	4	7,625	10	10	Bon	Bon	Bon	Bon	Bon	

En 2016, les concentrations en Hydrocarbures totaux ne sont pas connues dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Les concentrations en Hydrocarbures totaux dans les eaux souterraines ont été mesurées en 2016 dans une partie des piézomètres du réseau de suivi, dont 3 sous influence de l'usine présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle, aucun ne dépassant toutefois la valeur seuil réglementaire. Ces valeurs restent cependant inexactes, en raison des limites de détection hétérogènes (0,5 et 10 mg/L) employées alternativement tout au long de la chronique de données. Pour ces raisons aucune station n'est déclassée. A noter que les piézomètres 6-13 et 6-2a présentent toutefois des valeurs supérieures à la limite de détection pour l'année 2016. Jusqu'ici aucune présence d'hydrocarbures n'avait été caractérisée sur la station 6-13 depuis 2008 et seule une fois la présence d'hydrocarbures avait été détectée en 2011 sur la station 6-2a pour une concentration équivalente à celle retrouvée en 2016 (respectivement 7.6 et 7.1 mg/l).

4.2.2 Paramètres contribuant à l'état écologique des eaux douces

4.2.2.1 **Profil aquatique**

4.2.2.1.1 <u>Température de l'eau</u>

Les températures sont mesurées dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les températures des eaux de surface et souterraines sont exprimées en °C. La réglementation française ne prévoit pas de valeur seuil pour ce paramètre, étant donné son caractère fortement lié aux conditions climatiques et géomorphologiques locales.

En 2016, 6 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Tableau 114 : Détermination de la gamme de variations de référence pour la température des eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	T (°C)	- eaux de su	rface					
Position	Type de	Station	s de référence	N	moy	moy	Per 10	Per 90
Position	BV	Zone	Station	2016	2016	2016	Per 10	Per 90
		Kwe Ouest	3-A	15	23,43			
Amont	Grand	Carénage	Carénage Amont	2	26,35	24,96	23,76	26,10
		Kaoris	Kaoris Amont	1	25,10			
		Trou Bleu	3-C	5	25,00			
Aval	Grand	Carénage	Carénage Aval	1	24,50	25,06	24,60	25,54
		Kaoris	Kaori Aval	2	25,68			

Résultats et analyse

En 2016, les températures mesurées dans les eaux de surface restent comparables aux valeurs de leurs gammes de référence respectives. De même, les températures mesurées dans piézomètres de suivi des eaux souterraines restent « normales ». Notons par ailleurs que les activités de Vale NC ne sont pas censées générer de perturbations directes sur ce paramètre dans le milieu dulçaquicole. Un score « Bon » est donc attribué à toutes les stations pour ce paramètre.

4.2.2.1.2 pH de l'eau

Le pH est mesuré dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les valeurs seuils pour le pH des eaux douces sont définies dans l'annexe III de l'arrêté métropolitain du 11 janvier 2007 à une fourchette de 5,5 à 9 dans les eaux de surface, et dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012 à une fourchette de 5,5 à 9,5 dans les eaux souterraines. Cette fourchette s'explique par l'influence forte de la géochimie des roches sur le pH des eaux à leur contact ; le contexte géologique local est donc à prendre en compte pour expliquer les variations observées.

En 2016, 5 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 115 : Détermination de la gamme de variations de référence pour le pH des eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	pH -	eaux de sur	face						
Position	Type de	Station	s de référence	N	moy	moy	Per 10	Per 90	Valeur
POSITION	BV	Zone	Station	2016	2016	2016	Pel 10	Pel 50	seuil
Amont	Grand	Kwe Ouest	3-A	24	7,715	7,383	7,117	7,649	
Amont	Grand	Carénage	Carénage Amont	2	7,050	7,363	7,117	7,049	5,5 - 9
		Trou Bleu	3-C	12	7,662				(moy ±
Aval	Grand	Carénage	Carénage Aval	1	7,520	7,381	7,072	7,634	0,5)
		Kaoris	Kaori Aval	1	6,960				

Résultats et analyse

Le pH n'est pas connu en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

Tableau 116 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour le pH dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	pH -	eaux de surface																			
Position	Type	Stations de	e suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas dégradat°	Score	Score 2016	Score 2016
FUSILIUII	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	Ν	Moy	Ν	Moy	Per 90	Max	≤ gamme ref. ?	valeur seuil ?	temporelle?	2015	par station	par zone
			3-B	13	7,711	14	7,737	9	7,930	13	7,742	144	7,819	8,230	8,970	Mauvais	Bon	Bon	Bon	Bon	
		Kwe Ouest	3-D	2	7,505	3	7,677	2	7,365	1	7,660	131	7,495	7,930	8,380	Mauvais	Bon	Bon	Bon	Bon	Bon
		KWC Oucst	3-E	2	7,735	2	7,845	2	7,975	1	7,890	3	7,340	7,498	7,540	Bon	Bon	Bon	Bon	Bon	Don
	Grand		4-N	8	8,050	2	7,025	10	8,005	12	7,973	12	7,705	8,546	8,870	Mauvais	Bon	Bon	Bon	Bon	
Amont	Grana	Kwe Nord	4-M	11	7,793	11	7,729	10	8,038	12	7,917	12	7,678	8,362	8,530	Mauvais	Bon	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	7,617	12	7,420	6	7,710	12	7,582	11	7,711	8,170	8,340	Mauvais	Bon	Bon		Bon	Bon
		CBN Amont	6-Q	51	7,685	57	7,710	51	7,500	51	7,648	45	7,750	8,214	9,250	Mauvais	Mauvais	Bon	Bon	Bon	Bon
			6-S	12	7,373	12	7,744	6	7,768	8	7,884	10	8,053	8,992	10,000	Mauvais	Mauvais	Mauvais	Bon	Bon	
	Petit	Trüu Amont	TR-02	12	7,516	10	-/	5	7,522	12	7,577	0						Bon	Bon		
		Kwe principale	1-A	53	7,778	58		43	7,627	57	7,703	54	7,953	8,448	9,060	Mauvais	Mauvais	Bon	Bon	Bon	Bon
			1-E	14	7,562	12	7,768	8	7,670	11	7,889	12	8,079	8,928	9,160	Mauvais	Mauvais	Mauvais	Bon	Bon	
Aval	Grand		6-BNOR1	4	8,137	5	7,820	4	7,652	4	7,560	4	8,040	8,390	8,570	Mauvais	Bon	Bon	Bon	Bon	
		CBN Aval	6-T	19	8,103	17	7,777	12	7,937	13	7,735	12	8,113	8,967	9,210	Mauvais	Mauvais	Bon	Bon	Bon	Bon
			6-U	12	8,113	12	7,872	9	8,070	12	7,939	12	8,240	8,885	9,690	Mauvais	Mauvais	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	7,679	10		5	7,636	10	7,758	0						Bon	Bon		
			6-R	12	7,053	13		9	7,763	15	6,688	11	6,249	7,160	7,570		Bon	Bon	Bon	Bon	
			DOL-2	2	6,020	2	7,700	2	8,520	1	8,820	0						Bon	Bon		
			DOL-3	2	6,395	1	5,900	1	8,860	0		0						Bon			
		CBN	DOL-4	2	6,215	2	7,360	2	8,860	1	8,630	0						Bon	Bon		Bon
			DOL-8	1	6,540	1	5,780	1	8,160	1	8,780	0						Bon	Bon		
Doli	nes		DOL-9	1	7,230	1	6,510	1	8,870	0		0						Bon			
	Dolines		DOL-10	0		1	5,600	0		0		1	7,020	7,020	7,020		Bon	Bon		Bon	
			DOL-15	0		1	5,400	0		0		0									
			DOL-11	2	6,660	1	6,100	1	6,730	0		2	6,010	6,074	6,090		Bon	Bon		Bon	
		Ka dji	DOL-12	1	6,330	1	6,040	1	7,550	1	8,820	0						Bon	Bon		Bon
			DOL-13	2	7,375	2	7,310	1	8,240	1	9,030	0						Mauvais	Bon		

En 2016, la majorité des stations de suivi des eaux de surface présentait des valeurs moyennes et percentiles 90 plus basiques que celles de leurs gammes de références respectives, qui correspondent à un pH neutre. Six stations de suivi des creeks ont également enregistré cette année des mesures dépassant la valeur extrême de la fourchette réglementaire, soit un pH > 9. Ces fortes valeurs sont certainement dues en partie à la nature du sol ultra-basique que ces rivières traversent. Toutefois, la chronique temporelle 2012-2016 de pH des eaux de surface montre une tendance à la hausse pour 2 stations : 6-S en amont du Creek Baie Nord, ainsi que la station 1-E, en aval du bassin versant de la Kwé. Cette observation pourrait s'expliquer par une altération anormale des sols en raison de l'érosion accrue par l'activité minière ou bien par des rejets industriels, cependant on note un phénomène de basification relativement similaire sur le cours d'eau Wadjana situé hors d'influence : WJ-01.

Devant la difficulté à identifier avec certitude une perturbation du pH il est choisi de ne pas déclasser pour 2016. Une attention particulière devra cependant être portée sur l'évolution de ce paramètre.

Tableau 117 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour le pH des eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

pH -	eaux souterraines	,			_				bleı	ı : piézo	mèt	res de c	ontrôle		Valeur se	uil :	5,5 - 9,5 (mc	y ± 0,5)]	
Source	Stations de			2012	-	2013		2014	_	2015		_	2016		Moy et Per90 2016	Max 2016 <	Pas dégradat°	Score	Score 2016	Score 2016
d'influence	Zone	Station 4-z1	N	Moy 8,445	N 2	Moy 8,510	N	Moy 8,002	N	7,660	N 4	Moy	Per 90	Max	≤ piézo. contrôle ?	valeur seuil ?	temporelle ?	2015 Bon	par piézo.	par zone
	Kwe Nord	4-21 4-21A	1	5,800	1	5,840	4	6,435	4	6,592	0	7,870	8,368	8,380	Bon	Bon	Bon Bon	Bon	Bon Bon	
		4-z1B	4	5,992	1	6,220	4	6,307	4	6,290	0						Bon	Bon	Bon	
		4-z2	4	8,410	2	8,300	4	7,947	4	7,762	4	8,137	8,364	8,370	Bon	Bon	Bon	Bon	Bon	
UPM		4-z2A	1	6,200	1	5,930	4	6,272	4	7,160	0						Bon	Bon	Bon	Bon
		4-z4 4-z4A	1	6,547 5,700	2	6,510 5,690	4	6,162 5,787	4	6,405 5,975	5	6,152	6,422	6,610	Bon	Bon	Bon	Bon	Bon	
		4-z4A 4-z5	4	6,327	2	6,530	4	6,400	4	6,382	5	6,536	6,810	6,970	Bon	Bon	Bon Bon	Bon Bon	Bon Bon	
		4-z5A	1	5,300	1	5,140	2	5,340	4	5,395	0	0,550	0,010	0,570	5011	5011	Bon	Bon	Bon	
ASR 0 (sources)		WK17	54	7,447	53	7,971	48	7,710	51	7,482	51	7,745	8,120	8,610	Bon	Bon	Bon	Bon	Bon	
ASK 0 (sources)		WK20	51	7,467	54	7,556	48	7,542	51	7,391	51	7,457	7,800	8,310	Bon	Bon	Bon	Bon	Bon	
		WK6-11	1	7,070	0	4.500	2	4,885	3	7,110	2	8,765	8,809	8,820	Bon	Bon	Mauvais	Bon	Bon	
		WK6-11A WK6-12	2	4,655 6,465	2	4,500 5,715	7	6,248	3 12	6,317 5,808	12	4,990 6,061	5,118 6,670	5,150 6,700	Mauvais Bon	Mauvais Bon	Bon Bon	Bon Bon	Bon Bon	
ASR A		WK6-12A	2	5,015	2	5,125	7	5,438	12	5,345	12	5,508	5,884	5,930	Mauvais	Bon	Bon	Bon	Bon	
(piézomètres		WK6-9	2	8,485	2	8,015	2	8,030	2	7,315	2	7,620	8,076	8,190	Bon	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	6,550	2	6,820	2	6,340	2	7,180	2	7,080	7,128	7,140	Bon	Bon	Bon	Bon	Bon	
		WKBH102	11	7,237	7	7,291	11	7,383	12	7,322	12	7,450	7,769	7,820	Bon	Bon	Bon	Bon	Bon	
		WKBH102A WKBH103	2	5,780	2	6,655	2	5,775	2	6,475	2	6,015	6,243	6,300	Mauvais	Bon	Bon	Bon	Bon	
		WK6-10	0	7,320	0	7,435	0	7,217	12 2	7,253 8,605	12 2	7,450 8,790	7,598 8,974	7,630 9,020	Bon Mauvais	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WK6-10A	2	6,195	2	6,100	2	5,975	2	5,875	2	6,180	6,228	6,240	Bon	Bon	Bon	Bon	Bon	
		WKBH109	0		0		1	9,800	1	9,600	2	9,860	9,884	9,890	Mauvais	Mauvais	Bon	Bon	Bon	
		WKBH109A	2	7,275	2	7,340	2	7,080	2	7,300	11	7,290	7,530	7,600	Bon	Bon	Bon	Bon	Bon	
		WKBH110	10	7,663	7	7,626	10	7,498	12	7,463	12	7,498	7,734	7,740	Bon	Bon	Bon	Bon	Bon	
ASR B	Kwe Ouest	WKBH110A WKBH110B	0	7 675	2	7.760	2	7,430 7,490	2	7,660 7,500	11	7,701	8,050	8,080 7,900	Bon	Bon	Bon	Bon	Bon	
(zone tampon)		WKBH110B WKBH111	2	7,675 7,640	1	7,760	2	7,490	2	7,500	11 2	7,604 7,420	7,900 7,492	7,510	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
(20110-1011)		WKBH117	2	7,149	2	7,030	2	7,985	2	6,920	2	7,060	7,148	7,170	Bon	Bon	Bon	Bon	Bon	
		WKBH117A	2	6,860	2	6,885	2	6,860	2	6,750	2	6,895	6,931	6,940	Bon	Bon	Bon	Bon	Bon	Bon
		WKBH117B	2	6,920	2	6,900	2	6,860	1	6,920	2	6,905	6,949	6,960	Bon	Bon	Bon	Bon	Bon	Don
		WKBH118	2	7,975	2	8,080	2	6,945	2	7,255	2	7,775	7,915	7,950	Bon	Bon	Bon	Bon	Bon	
		WKBH118A WKBH118B	2	7,635 5,950	2	7,390 5,440	2	7,270 5,920	2	6,940 5,490	2	7,360 5,935	7,432 5,947	7,450 5,950	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH113B	2	6,840	2	7,035	2	7,125	2	6,965	2	7,265	7,269	7,267	Bon	Bon	Bon	Bon	Bon	
		WKBH112A	0	0,010	0	.,	2	6,780	2	5,995	2	5,665	5,765	5,790	Bon	Bon	Mauvais	Bon	Bon	
		WKBH113	11	7,373	7	7,264	12	7,228	12	6,825	12	7,041	7,529	7,550	Bon	Bon	Bon	Bon	Bon	
		WKBH113A	2	6,110	2	6,150	2	5,580	2	5,790	2	6,095	6,339	6,400	Bon	Bon	Bon	Bon	Bon	
450.6		WKBH114	2	7,020	2	7,110	2	6,850	2	6,705	2	6,705	6,789	6,810	Bon	Bon	Bon	Bon	Bon	
ASR C (proximité		WKBH114A WKBH115	0	4,555	0	4,588	1	4,960 8,300	0	4,455	2	4,545 8,655	4,629 8,683	4,650 8,690	Mauvais	Mauvais	Bon	Bon	Bon	
rivière)		WKBH115A	0		0		0	0,300	2	6,720	2	6,610	6,810	6,860	Bon Bon	Bon Bon	Bon Bon	Bon	Bon Bon	
		WKBH115B	2	5,100	2	4,805	2	4,840	2	4,625	2	4,920	5,192	5,260	Mauvais	Mauvais	Bon	Bon	Bon	
		WKBH116	2	7,810	2	7,735	1	9,030	2	8,760	2	7,470	7,758	7,830	Bon	Bon	Bon	Bon	Bon	
		WKBH116A	2	7,500	2	7,530	2	7,065	2	7,495	2	7,000	7,208	7,260	Bon	Bon	Bon	Bon	Bon	
		WKBH116B	2	5,400	2	5,375	2	5,780	2	5,340	2	5,050	5,250	5,300	Bon	Bon	Bon	Bon	Bon	
		WTBH9 WKBH32	2	6,830 9,830	2	6,830 9,825	2	9,305	2	6,640 9,020	2	6,645 9,045	6,657 9,481	6,660 9,590	Bon Mauvais	Bon Mauvais	Bon Bon	Bon Bon	Bon Bon	
ASR D	Kadji	WK6-14	1	7,650	2	7,495	1	7,480	1	6,260	2	7,570	7,706	7,740	Bon	Bon	Bon	Bon	Bon	
(vallées		WTBH11	2	8,165	2	7,640	2	7,310	2	7,725	2	8,125	8,145	8,150	Bon	Bon	Bon	Bon	Bon	
adjacentes)	Rivière Trou Bleu	WTBH11A	2	7,070	2	7,305	2	7,175	1	6,900	2	7,130	7,138	7,140	Bon	Bon	Bon	Bon	Bon	
I		7-1	3	7,720	3	7,760	4	7,915	5	7,800	4	7,915	8,007	8,040	Bon	Bon	Bon	Bon	Bon	
Port	Baie de Prony	7-2 7-3	0	7 073	0	6.022	0	C 477	0	7 200	4	7,212	7,397	7,430	Bon	Bon	D.c	D	Bon	Bon
		7-3 6-1	3	7,073 8,773	2	6,933 8,035	4	6,477 8,420	5 4	7,388 9,075	4	6,745 9,060	6,938 9,326	6,950 9,380	Bon Mauvais	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		6-13	0	0,773	1	7,340	4	7,042	4	7,390	4	7,617	7,741	7,780	Bon	Bon	Bon	Bon	Bon	
		6-14	5	7,242	3	7,403	4	7,575	4	7,585	4	7,720	7,867	7,900	Bon	Bon	Bon	Bon	Bon	
		6-14a	5	5,756	4	5,925	8	6,117	11	6,203	11	6,074	6,500	7,570	Bon	Bon	Bon	Bon	Bon	
		6-1a	3	6,403	2	6,375	4	6,755	4	7,032	4	6,672	6,905	6,950	Bon	Bon	Bon	Bon	Bon	
		6-2	4	7,335	2	6,580	4	6,865	4	7,137	4	6,995	7,328	7,340	Bon	Bon	Bon	Bon	Bon	
		6-2a 6-3	4	6,032 6,360	2	5,335 6,155	4	5,582 6,470	4	6,182 6,795	4	6,077 6,960	6,486 7,344	6,720 7,590	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
Usine	CBN	6-3a	3	6,270	2	6,290	4	6,324	3	6,733	3	6,447	6,602	6,630	Bon	Bon	Bon	Bon	Bon	Bon
		6-4	4	6,940	2	6,540	4	6,985	4	7,040	3	7,080	7,186	7,230	Bon	Bon	Bon	Bon	Bon	
		6-5	5	7,634	2	7,535	4	7,397	4	7,352	4	7,525	7,625	7,640	Bon	Bon	Bon	Bon	Bon	
		6-6	5	8,834	2	9,215	4	9,022	4	9,090	4	8,865	9,303	9,360	Bon	Bon	Bon	Bon	Bon	
		6-7	7	7,601	5	6,838	8	7,314	9	7,395	4	7,472	7,723	7,840	Bon	Bon	Bon	Bon	Bon	
		6-7a	4	6,832	2	4,460	4	6,537	3	6,823	3	6,207	6,338	6,340	Bon	Bon	Bon	Bon	Bon	
		6-8 6-8a	5	7,148 6,265	2	6,705 5,960	4	6,797 6,220	4	6,792 6,285	4	6,895 6,242	6,949 6,321	6,970	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		- 00	ب	0,203		5,500	<u> </u>	0,220	_	0,203		0,242	0,321	0,330	5011	5011	5011	DOII	DON	

En 2016, le pH n'ets pas connu dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

Le pH des eaux souterraines a été mesuré en 2016 dans tous les autres piézomètres, dont 9 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Toutefois, seuls 5 d'entre eux ont enregistré cette année des pH hors de la fourchette réglementaire (3 piézomètres très acides au pH < 5

et 2 piézomètres très basiques au pH > 9,5), mais ces valeurs ne montrent pas de tendance générale à la dégradation. Un score « Bon » a donc été maintenu pour tous les piézomètres du réseau de suivi sur la base de ce paramètre.

4.2.2.1.3 Conductivité

La conductivité est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

<u>Limites de détection, valeurs seuil et gamme de variations de référence :</u>

Les valeurs seuils pour la conductivité des eaux douces sont définies dans les annexes I et III de l'arrêté métropolitain du 11 janvier 2007 à 1000 μ S/cm dans les eaux de surface et les eaux souterraines. Cette fourchette s'explique par l'influence forte de la géochimie des roches sur le pH des eaux à leur contact ; le contexte géologique local est donc à prendre en compte pour expliquer les variations observées.

En 2016, 6 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 118 : Détermination de la gamme de variations de référence pour la conductivité des eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

(ond. (μS	/cm) - eaux (de surface						
Position	Type de	Station	s de référence	N	moy	moy	Per 10	Per 90	Valeur
Position	BV	Zone	Station	2016	2016	2016	Pel 10	Pel 50	seuil
		Kwe Ouest	3-A	26	70,677				
Amont	Grand	Carénage	Carénage Amont	2	53,600	57,059	48,240	67,262	
		Kaoris	Kaoris Amont	1	46,900				1000
		Trou Bleu	3-C	12	85,858				1000
Aval	Grand	Carénage	Carénage Aval	1	50,500	67,869	53,850	82,136	
		Kaoris	Kaori Aval	2	67,250				

Résultats et analyse

La conductivité n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, toutes les stations de suivi des eaux de surface présentaient des valeurs moyennes et percentiles 90 plus élevés que celles de leurs gammes de références respectives. Deux stations de suivi des creeks ont également enregistré cette année des mesures dépassant la valeur seuil réglementaire. De plus, la chronique temporelle 2012-2016 de conductivité annuelle des eaux de surface montre une tendance à la hausse de façon exponentielle pour 5 stations de suivi des creeks et 1 doline, de façon similaire à

l'évolution observée pour les concentrations en Sulfates dans ces stations. Un score final « Mauvais » leur a donc été attribué, ce qui constitue pour 3 d'entre elles un déclassement par rapport à 2015 pour ce paramètre. Les stations pour lesquelles le score de conductivité est « Mauvais » cette année sont l'ensemble des stations situées en amont des branches Ouest (3-B, 3-D, 3-E et 4-N) et Nord (4-M) de la Kwé, ainsi que la doline 6-R sur le bassin versant du Creek Baie Nord.

Tableau 119 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour la conductivité dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Cond. (µ	S/cm) - eaux de surf	ace																		
Position	Type	Stations de	suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
FUSILIUII	de BV	Zone	Station	Ν	Moy	N	Moy	N	Moy	Z	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	valeur seuil ?	temporelle?	2015	par station	par zone
			3-B	14	82,35	17	122,18	18	155,12	42	138,72	147	255,74	493,20	1140,00	Mauvais	Mauvais	Mauvais	Bon	Mauvais	
		Kwe Ouest	3-D	2	203,50	2	302,50	5	501,20	21	598,24	133	982,58	1492,00	1980,00	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais
		we ouest	3-E	2	104,00	2	138,00	3	145,93	2	241,00	3	385,33	597,60	642,00	Mauvais	Bon	Mauvais	Mauvais	Mauvais	111001013
	Grand		4-N	9	74,26	4	158,00	19	130,91	24	129,90	12	185,33	266,20	325,00	Mauvais	Bon	Mauvais	Bon	Mauvais	
Amont	Grana	Kwe Nord	4-M	12	95,95	15	101,72	17	130,65	23	141,67	12	143,39	217,50	238,00	Mauvais	Bon	Mauvais	Bon	Mauvais	Mauvais
		Kwe Est	KE-05	13	111,37	15	111,71	12	117,50	24	130,55	12	130,00	154,60	191,00	Mauvais	Bon	Bon		Bon	Bon
		CBN Amont	6-Q	51	192,71	60	162,08	60	174,75	61	180,43	47	182,19	195,00	454,00	Mauvais	Bon	Bon	Bon	Bon	Bon
		CDITTUITOTT	6-S	13	79,52	14	76,44	11	116,00	15	118,45	_	112,76	154,10	182,00	Mauvais	Bon	Bon	Bon	Bon	20
	Petit	Trüu Amont	TR-02		142,08	14	119,89	10	129,30	22	132,41	0						Bon	Bon		igsquare
		Kwe principale	1-A	_	103,72	61	98,21	52	120,60	68	124,29	54	132,64	171,40	236,00	Mauvais	Bon	Bon	Bon	Bon	Bon
			1-E	13	98,91	15	101,99	14	118,14	22	120,73	12		142,90		Mauvais	Bon	Bon	Bon	Bon	
Aval	Grand		6-BNOR1	4	152,75	5	129,80	7	148,71	4	143,88	4	167,75	203,40	222,00	Mauvais	Bon	Bon	Bon	Bon	
		CBN Aval	6-T	_	146,56	20	126,92	22	152,95	26	,	12	150,42	157,70	187,00	Mauvais	Bon	Bon	Bon	Bon	Bon
			6-U	13	139,62	15	127,73	17	143,71	24	144,46	13	148,39	164,00	168,00	Mauvais	Bon	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	_	121,50	15	114,98	10	118,47	19	123,37	0						Bon	Bon		
			6-R	13	180,92	16	169,25	16	158,46	26	194,46	12	200,75	198,60	464,00		Bon	Mauvais	Mauvais	Mauvais	
			DOL-2	2	116,00	2	51,00	4	64,63	2	55,90	0						Bon			
			DOL-3	2	90,65	1	70,40	2	43,40	0		0						Bon			
		CBN	DOL-4	2	54,80	2	51,30	4	55,75	2	58,80	0						Bon			Mauvais
			DOL-8	1	79,00	1	45,40	2	52,45	2	59,80	0						Bon			
Doli	nes		DOL-9	1	76,50	1	65,40	2	63,40	0		0						Bon			
			DOL-10	0		1	50,00	0		0		1	47,80	47,80	47,80		Bon	Bon		Bon	
			DOL-15	0		1	70,70	0		0		0									
			DOL-11	2	216,50	1	140,00	2	147,50	0		2	173,50	197,10	203,00		Bon	Bon		Bon	
		Kadji	DOL-12	1	97,50	1	89,50	2	97,90	2	113,50	0						Bon	Mauvais		Bon
			DOL-13	2	96,25	2	63,00	2	91,30	2	66,40	0						Bon	Bon		

En 2016, la conductivité n'est pas connue dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

La conductivité dans les eaux souterraines a été mesurée en 2016 dans tous les autres piézomètres, dont 5 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Toutefois, seuls 2 d'entre eux ont enregistré cette année des dépassements de la valeur seuil réglementaire. Des tendances générales à l'augmentation des moyennes annuelles de conductivité des eaux souterraines sont cependant observées dans plus d'une dizaine de piézomètres, dont 5 pour lesquels un score « Mauvais » avait déjà été attribué l'année dernière. L'un d'entre eux (WK6-11) a été reclassé cette année en raison d'un baisse remarquable de conductivité mesurée par rapport à 2015, tandis qu'un piézomètre supplémentaire (WKBH102) est déclassé sur la base de ce paramètre cette année, en raison de la forte augmentation de ses valeurs depuis plusieurs années et dépassant 900 µS/cm en novembre 2016. Les quatre piézomètres dont le score est maintenu « Mauvais » cette année sont sous influence de l'Aire de Stockage des Résidus (WK17, WK20, WKBH103) et de l'usine (6-14a).

Tableau 120 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour la conductivité des eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Cond. (µ	S/cm) - eaux de surl	ace						En	ble	u : piézo	mèt	tres de c	ontrôle		Valeur sei	uil :	1000	j	Ī	
Source	Stations de	suivi		2012		2013	_	2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
d'influence	Zone	Station 4-z1	N	Moy 151,20	N	Moy 151,33	N	Moy 149,63	N 8	Moy 156,75	N	Moy	Per 90 154,80	Max 156,00	≤ piézo. contrôle ?	valeur seuil ?	temporelle ? Bon	2015 Bon	par piézo. Bon	par zone
	Kwe Nord	4-21 4-21A	5	78,12	1	86,70	8	81,43	8	80,71	0	147,60	154,80	156,00	Bon	Bon	Bon	Bon	Bon	
		4-z1B	5	308,20	1	467,00	8	313,25	6	372,83	0						Bon	Bon	Bon	
		4-z2	5	136,60	3	145,67	8	141,88	8	145,83	4	133,00	139,00	139,00	Bon	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	209,75	1	166,00	8	178,13	8	183,00	0						Bon	Bon	Bon	Bon
		4-z4	5	103,66	3	104,60	7	102,21	7	104,24	6	104,60	123,50	129,00	Bon	Bon	Bon	Bon	Bon	
		4-z4A 4-z5	5	170,80 125,64	3	228,00 117,67	7	210,71 124,71	7	266,71 128,00	6	107.72	117,50	120,00	Bon	Bon	Bon Bon	Bon Bon	Bon Bon	
		4-25 4-25A	4	127,68	1	138,00	3	167,67	8	220,75	0	107,73	117,50	120,00	Воп	Bon	Bon	Bon	Bon	
468.07		WK17	55	187,33	63	208,38	87	206,38	123	463,83	51	1068,26	1530,00	1640,00	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	
ASR 0 (sources)		WK20	52	125,19	65	111,45	87	137,39	97	203,81	51	375,37	464,00	520,00	Mauvais	Bon	Mauvais	Mauvais	Mauvais	
		WK6-11	1	104,00	0		3	96,70	6	296,83	3	123,33	127,60	129,00	Bon	Bon	Bon	Mauvais	Bon	
		WK6-11A	2	78,70	3	72,20	0		6	66,02	3	55,23	56,16	56,50	Bon	Bon	Bon	Bon	Bon	
ASR A		WK6-12	2	153,20	3	117,23	12 12	207,00 196,58	23	231,04	12	242,42	274,80	284,00	Bon	Bon	Mauvais	Bon Bon	Bon Bon	
(piézomètres		WK6-12A WK6-9	3	78,75 137,00	4	100,20 99,50	3	116,50	4	228,41 135,00	2	254,00 130,00	279,60 131,60	281,00 132,00	Bon Bon	Bon Bon	Mauvais Bon	Bon	Bon	
d'alerte)		WK6-9A	3	66,00	3	57,87	3	59,50	4	68,83	2	68,25	68,69	68,80	Bon	Bon	Bon	Bon	Bon	
		WKBH102	12	174,83	7	142,86	19	197,37	23	227,04	14	433,57	586,10	927,00	Mauvais	Bon	Mauvais	Bon	Mauvais	
		WKBH102A	3	86,33	3	107,23	3	94,50	4	126,25	2	102,75	106,95	108,00	Bon	Bon	Bon	Bon	Bon	
ļ		WKBH103	2	179,50	3	179,00	4	231,75	23	377,39	13	835,46	1154,00	1210,00	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	
		WK6-10	0	100.00	0	00.20	0	06.03	4	190,75	2	152,50	156,10	157,00	Bon	Bon	Bon	Bon	Bon	
		WK6-10A WKBH109	0	109,00	3	98,20	3	96,93 87,30	3	99,80 125,13	2	93,35 108,10	94,67 120,82	95,00 124,00	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH109 WKBH109A	2	165,50	4	162,00	3	167,67	4	210,00	11	251,73	304,00	317,00	Bon	Bon	Mauvais	Bon	Bon	
		WKBH110			10	117,70	18	124,65	23	149,04	12	217,00	240,20	249,00	Bon	Bon	Mauvais	Bon	Bon	
	Kwe Ouest	WKBH110A	0	·	0		1	136,00	4	154,25	11	202,82	230,00	243,00	Bon	Bon	Mauvais	Bon	Bon	
ASR B		WKBH110B	2	126,50	2	117,25	3	133,40	4	154,50	11	208,27	228,00	241,00	Bon	Bon	Mauvais	Bon	Bon	
(zone tampon)		WKBH111	2	132,50	2	121,50	3	127,33	4	132,00	2	133,50	133,90	134,00	Bon	Bon	Bon	Bon	Bon	
		WKBH117	2	136,50	2	118,50	2	115,45	4	131,75	3	124,00	128,60	130,00	Bon	Bon	Bon	Bon	Bon	
		WKBH117A WKBH117B	2	124,00 125,50	2	109,00 109,50	2	105,10 109,95	2	119,75 120,50	3	112,67 121,00	115,40 122,00	116,00 122,00	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon
		WKBH117B	2	154,00	2	127,50	2	143,00	4	159,75	3	155,33	156,80	157,00	Bon	Bon	Bon	Bon	Bon	
		WKBH118A	2	147,00	2	124,50	2	138,00	4	158,00	3	155,00	157,40	158,00	Bon	Bon	Bon	Bon	Bon	
		WKBH118B	2	74,20	2	67,10	2	67,25	4	74,50	3	68,13	69,68	70,20	Bon	Bon	Bon	Bon	Bon	
		WKBH112	2	154,00	3	149,67	3	173,67	4	162,00	2	165,50	169,90	171,00	Bon	Bon	Bon	Bon	Bon	
		WKBH112A	0		0		3	103,00	4	89,65	2	80,15	83,31	84,10	Bon	Bon	Bon	Bon	Bon	
		WKBH113	12	92,63	9	87,92	21	92,27	23	94,46 57,23	12	90,35	91,50	116,00	Bon	Bon	Bon	Bon	Bon	
		WKBH113A WKBH114	2	56,00 115,00	2	54,53 105,60	2	50,90 99,35	4	112,75	2	54,35 106,50	55,43 107,70	55,70 108,00	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
ASR C		WKBH114A	2	58,95	2	49,60	2	52,45	4	59,60	2	53,50	53,82	53,90	Bon	Bon	Bon	Bon	Bon	
(proximité		WKBH115	0		0		1	131,00	0		2	145,00	147,40	148,00	Bon	Bon	Bon		Bon	
rivière)		WKBH115A	0		0		0		4	137,75	2	123,00	126,20	127,00	Bon	Bon	Bon	Bon	Bon	
		WKBH115B	2	61,55	2	51,95	2	62,00	4	63,38	2	57,70	59,14	59,50	Bon	Bon	Bon	Bon	Bon	
		WKBH116	2	152,50	2	127,50	1	158,00	4	152,00	2	149,50	149,90	150,00	Bon	Bon	Bon	Bon	Bon	
		WKBH116A WKBH116B	2	141,50 52,30	2	116,50 46,35	2	133,00 47,10	4	140,25 49,25	2	137,00 49,65	137,80 50,65	138,00 50,90	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WTBH9	2	146,50	1	119,00	0	47,10	2	146,50	2	140,00	141,60	142,00	Bon	Bon	Bon	Bon	Bon	
ACD D		WKBH32	2	191,00	2	146,00	2	162,00	4	192,75	3	168,00	170,00	170,00	Bon	Bon	Bon	Bon	Bon	
ASR D (vallées	Kadji	WK6-14	2	155,50	2	153,50	2	170,00	2	141,50	2	174,50	179,70	181,00	Bon	Bon	Bon	Bon	Bon	
adjacentes)	Rivière Trou Bleu	WTBH11	2	134,00	2	109,50	2	120,50	4	134,50	3	125,33	127,80	128,00	Bon	Bon	Bon	Bon	Bon	
, ,		WTBH11A	2	121,50	2	111,00	2	119,00	2	121,50	3	116,00	116,80	117,00	Bon	Bon	Bon	Bon	Bon	
Port	Baie de Prony	7-1 7-2	4	35,50 232,00	4	19,53 206,50	5	16,76 181,60	5	34,76 253,00	4	44,75 258,25	49,91 351,90	52,10 405,00	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon
. 510	Sale actionly	7-2	3	182,67	4	204,50	5	170,60	5	167,60	4	217,25	300,20	338,00	Bon	Bon	Bon	Bon	Bon	2311
		6-1	6	250,17	3	233,33	7	229,57	8	286,00	4	290,25	326,20	334,00	Bon	Bon	Bon	Bon	Bon	
		6-13	0		2	146,00	7	132,86	8	141,13	5	129,80	136,00	136,00	Bon	Bon	Bon	Bon	Bon	
		6-14	7	217,86	4	177,75	9	235,44	8	210,63	5	199,80	228,60	243,00	Bon	Bon	Bon	Bon	Bon	
		6-14a	6	273,83	7	583,14	14	650,36	21	594,95	14	669,93	784,80	788,00	Mauvais	Bon	Mauvais	Mauvais	Mauvais	
		6-1a	5	152,80 137.00	3	158,33 135.33	7	155,14 123.71	7	161,88	4	163,50 140.25	178,40 161.90	188,00 176.00	Bon Bon	Bon	Bon Bon	Bon Bon	Bon Bon	
		6-2a	6	78,72	3	135,33 88,13	8	76,78	8	85,04	4	84,48	87,51	89,40	Bon	Bon	Bon	Bon	Bon	
	ar · ·	6-3	7	101,79	3	104,30	6	101,40	7	108,57	4	120,75	143,60	158,00	Bon	Bon	Bon	Bon	Bon	
Usine	CBN	6-3a	3	111,67	3	112,20	6	117,58	6	121,50	3	112,67	115,00	115,00	Bon	Bon	Bon	Bon	Bon	Bon
		6-4	6	139,17	3	99,83	7	95,16	8	96,23	3	93,10	94,76	95,30	Bon	Bon	Bon	Bon	Bon	
		6-5			3	173,00	7	180,00	8	191,75	4	186,50	203,20	208,00	Bon	Bon	Bon	Bon	Bon	
		6-6	7	203,00	3	182,67	7	195,14	8	221,00	4	226,00	253,30	256,00	Bon	Bon	Bon	Bon	Bon	
		6-7	5	166,40	3	183,67	7	159,57	7	186,71	4	180,50	183,20	185,00	Bon	Bon	Bon	Bon	Bon	
		6-7a 6-8	5 6	106,66 250,83	2	121,70 237,50	7	115,67 250,86	8	106,40 236,38	5	103,20 240,00	106,80 245,40	108,00 249,00	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		6-8a	5	175,80	3	168,00	7	175,14	8	177,75	5	168,80	174,20	177,00	Bon	Bon	Bon	Bon	Bon	
				,			÷	J, _ T		, , ,								- 200		

4.2.2.1.4 <u>Turbidité</u>

La turbidité est mesurée dans les eaux de surface des creeks et des dolines.

Limites de détection, valeurs seuil et gamme de variations de référence :

La turbidité des eaux de surface et souterraines est exprimée en NTU. La réglementation française ne prévoit pas de valeur seuil pour ce paramètre ; à titre indicatif, une limite à 15 NTU avec une variation maximale de 33 % d'écart à la moyenne est préconisée dans la réglementation Australienne et Néo-Zélandaise pour la protection des écosystèmes d'eau douce.

En 2016, la turbidité n'a été mesurée que dans une seule station de référence : la station 3-C, située sur la rivière Trou Bleu en aval d'un grand bassin versant. Ses valeurs moyennes et percentiles tiennent donc lieu de gamme de référence pour l'ensemble des stations de suivi.

Tableau 121 : Détermination de la gamme de variations de référence pour la turbidité des eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 dans une station située hors zone d'influence de l'activité minière et industrielle.

Τι	Turb. (NTU) - eaux de surface					Valeur seuil				
Docition	Туре	Stations	de référence	N	moy	moy	Dor 10	Per 90		
Position	de BV	Stations Zone	Station	2016	2016	2016	Per 10	Per 90		
		Trou Bleu	3-C	11	1,173	1,173	0,600	2,000		

Résultats et analyse

Tableau 122 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour la turbidité des eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

To	ırb. (NTL	J) - eaux de surl	ace																	
Position	Туре	Stations de	suivi	- 2	2012	- 2	2013		2014	:	2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score 2016	Score 2016
Position	de BV	Zone	Station	N	Moy	Per 90	Max	≤ gamme ref. ?	valeur seuil	temporelle?	par station	par zone								
			3-B	12	4,42	13	2,15	7	4,57	12	3,08	118	2,94	5,66	10,00	Mauvais	Bon	Bon	Bon	
		Kwe Ouest	3-D	1	1,00	1	1,00	1	5,00	1	2,00	106	3,27	5,45	8,20	Mauvais	Bon	Mauvais	Bon	Bon
		kwe odest	3-E	1	1,00	1	1,00	1	2,00	1	1,00	4	2,73	6,10	8,20	Mauvais	Bon	Mauvais	Bon	DOII
	Grand		4-N	8	5,75	2	1,00	10	59,20	12	4,67	12	5,43	10,50	21,00	Mauvais	Mauvais	Bon	Bon	
Amont	Grana	Kwe Nord	4-M	11	5,73	11	4,82	9	6,25	9	10,56	12	6,61	11,55	11,80	Mauvais	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	7,50	11	2,36	6	6,75	345	10,55	352	6,92	6,69	1222,90	Mauvais	Mauvais	Bon	Bon	Bon
		CBN Amont	6-Q	47	13,02	50	7,12	39	3,82	44	5,20	43	7,13	11,46	44,50	Mauvais	Mauvais	Bon	Bon	Bon
		CDIVAMONE	6-S	11	5,00	12	3,00	6	2,50	6	3,67	10	2,26	3,93	6,00	Mauvais	Bon	Bon	Bon	Don
	Petit	Trüu Amont	TR-02	11	17,55	10	6,40	5	3,60	12	4,42	0						Bon		
		Kwe principale	1-A	418	22,83	330	27,42	395	23,34	252	14,83	235	25,60	125,17	266,63	Mauvais	Mauvais	Bon	Bon	Bon
		twe principare	1-E	11	5,27	12	5,17	8	3,57	9	2,89	11	2,15	3,50	3,50	Mauvais	Bon	Bon	Bon	Don
Aval	Grand		6-BNOR1	4	3,25	4	3,25	2	3,00	3	3,33	4	2,93	4,80	6,00	Mauvais	Bon	Bon	Bon	
Avai		CBN Aval	6-T	16	3,94	14	2,57	9	2,22	10	3,60	12	3,35	5,70	6,00	Mauvais	Bon	Bon	Bon	Bon
			6-U	12	5,17	11	2,73	8	3,00	10	3,00	11	3,00	5,30	6,00	Mauvais	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	10	4,00	9	4,67	5	2,20	9	2,89	0						Bon		
			6-R	12	3,50	13	2,92	6	3,00	12	5,75	10	4,06	7,19	12,50		Bon	Bon	Bon	
			DOL-2	2	4,50	1	3,00	1	19,00	1	3,00	0						Bon		
			DOL-3	2	2,00	1	2,00	0		0		0						Bon		
		CBN	DOL-4	2	3,00	1	1,00	1	9,00	1	2,00	0						Bon		Bon
		CDIV	DOL-8	1	4,00	1	2,00	0		1	2,00	0						Bon		Don
Dol	ines		DOL-9	1	1,00	1	2,00	0		0		0						Bon		
			DOL-10	0		1	2,00	0		0		1	7,50	7,50	7,50		Bon	Bon	Bon	
			DOL-15	0		1	1,00	0		0		0								
			DOL-11	2	4,50	1	3,00	0		0		2	2,60	3,88	4,20		Bon	Bon	Bon	
		Ka dji	DOL-12	1	1,00	1	3,00	0		1	2,00	0						Bon		Bon
			DOL-13	2	3,00	1	2,00	0		1	5,00	0						Bon		

La turbidité n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, toutes les stations de suivi des eaux de surface présentaient des valeurs moyennes et percentiles 90 plus élevées que celles de la station de référence. Deux d'entre elles présentent une tendance de la turbidité annuelle moyenne à augmenter sur la chronique temporelle 2012-2016, tout en maintenant des

valeurs relativement basses. En revanche, 4 stations de suivi des creeks ont également enregistré cette année des mesures dépassant la valeur seuil préconisée dans la règlementation australienne et néozélandaise, leur valeurs maximales atteignant une turbidité jusqu'à 80 fois plus élevée. Un score final « Mauvais » a donc été attribué aux 3 stations présentant les valeurs maximales les plus fortes (KE-05 en amont de la Kwé Est, 6-Q en amont du Creek Baie Nord et 1-A en aval de la branche principale de la Kwé), ce qui constitue un déclassement par rapport à 2015 pour ce paramètre.

4.2.2.1.5 <u>Demande Chimique en Oxygène</u>

La Demande Chimique en Oxygène (DCO) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

La DCO des eaux de surface et souterraines est exprimée en mg/L, avec une limite de détection de 10 mg/L dans la majorité des mesures. La valeur seuil pour la DCO des eaux douces est définie dans l'annexe III de l'arrêté métropolitain du 11 janvier 2007 à 30 mg/L dans les eaux de surface, tandis que la réglementation de la DCO des eaux souterraines s'appuie sur une valeur seuil établie par Vale NC à 100 mg/L.

En 2016, 6 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Trois piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 123 : Détermination de la gamme de variations de référence pour la DCO des eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	CO (mg/L)	- eaux de surface	lo	= 1 mg/	L.				
Position	Type de	Stations de réfé	rence	N 2016	moy	moy	Per 10	Per 90	Valeur
Position	BV	Zone	Statio	N 2016	2016	2016	Per 10	Per 90	seuil
		Carénage	Carén	1	3,00				
Amont	Grand	Kaoris	Kaoris	1	3,00	3,33	3,00	3,80	
		Kuebini	Kueb /	1	4,00				30
		Carénage	Carén	1	3,00				30
Aval	Grand	Kaoris	Kaori /	1	4,00	3,33	3,00	3,80	
		Kuebini	Kueb /	1	3,00				

Résultats et analyse

En 2016, les valeurs de DCO mesurées dans les stations de suivi des cours d'eaux dépassent rarement la limite de détection et restent toutes inférieures à la valeur seuil réglementaire. Il en est de même pour tous les piézomètres de suivi des eaux souterraines, à l'exception du piézomètre 7-1 situé au niveau du port et dont les fortes valeurs traduisent une infiltration d'eau de mer. Un score « Bon » est donc attribué à chacune des zones pour ce paramètre.

4.2.2.1.6 Synthèse du profil aquatique

- Dans les eaux de surface :

Tableau 124 : Récapitulatif des scores 2016 par paramètre et par station pour le profil aquatique dans le milieu eaux douces de surfaces des creeks et dolines.

		Stations	de suivi		Etat écologique Paramètres physico-chimiques						
Desit'	Type de			ludle	. urai		il aquat		. 4003		
Position	BV	Zone	Station	Influence	T°	рН		Turb.	DCO		
			3-A ^	Influence modérée	=	=	=				
			3-B^	ASR	=	=	И				
			3-D^	ASR	=	=	=				
			3-E ^ 4-N ^	ASR UPM-CIM	=	=	=				
			KO4-10 ^	Mine	=	=	И				
			KO4-20-1 ^	Mine	-						
		Kwe Ouest	KO4-50 ^	Mine							
Amont		Kille Guest	KO5-10-I ^	UPM-CIM							
7			KO5-20-I ^	UPM-CIM							
			KO5-20-P ^	UPM-CIM							
	Grand		KO5-50-I ^	UPM-CIM							
			KWO-10 ^	ASR							
			KWO-20 ^	ASR							
			KWO-60 ^	ASR / UPM-CIM							
		Kwe Nord	4-M ^	UPM-CIM	=	=	И				
	Kwe Est		KE-05 ^	Mine							
			1-A ^	UPM-CIM, ASR	=	=	=				
			1-E ^	UPM-CIM, ASR	=	=	=				
Aval		Kwe principale	KWP-10 ^	UPM-CIM							
			KWP-40 ^	UPM-CIM							
			KWP-70 ^	UPM-CIM							
			6-Q ^	Usine	=	=	=				
Amont		CBN Amont	6-S ^	Usine	=	=	=				
			CBN-01 ^	Usine							
		ĺ	6-BNOR1 ^	Usine	=	=	-				
	Crand	ĺ	6-T^	Usine	=	=	-				
	Grand	ĺ	6-U ^ CBN-10 ^	Usine Usine	=	=	=				
Aval		CBN Aval	CBN-30 ^	Usine							
			CBN-40 ^	Usine							
			CBN-70 ^	Usine							
			CBN-AFF-02 ^	Usine							
Amont	Grand	Kadji	5-E^	Base Vie							
			TR-02 ^	Mine							
Amont		Trüu Amont	TR-03 ^	Mine							
	D-414		TR-01 ^	Mine							
Augl	Petit	Terius Assal	TR-04 ^	Mine							
Aval		Trüu Aval	TR-05 ^	Mine							
			TRU-70 ^	Mine							
Amont		Kuébini Amont	Kueb Amont	Hors influence	=	=	=				
			Kueb Aval	Hors influence	=	=	=				
Aval	Grand	Kuébini Aval	KUB-60 ^	Hors influence							
Avui		Kucbilii Avai	KUB-50 ^	Hors influence							
			KUB-40 ^	Hors influence							
Amont	Grand	Carénage Amont	Carénage Amont	Hors influence	=	=	=				
Aval		Carénage Aval	Carénage Aval	Hors influence	=	=	=				
Amont	Grand	Kaoris Amont	Kaoris Amont	Hors influence	=	=	=				
Aval		Kaoris Aval	Kaoris Aval	Hors influence	=	=	-				
Avel	Grand	Troughton	3-C ^ TBL-50 ^	Hors influence		=	=				
Aval	Grand	Trou Bleu	TBL-50 ^	Hors influence							
		 		Hors influence							
Aval	Petit	Wadiana	WAD-40 ^ WAD-50 ^	Hors influence Hors influence							
Avdi	reut	Wadjana	WAD-50^	Hors influence							
			6-R^	Usine		-	-				
		ĺ	DOL-2 ^	Usine, BV							
		ĺ	DOL-3 ^	Usine, BV							
		1	DOL-4 ^	Usine, BV							
Doline	Grand	CBN	DOL-8 ^	Usine, BV							
		ĺ	DOL-9 ^	Usine, BV							
		ĺ	DOL-10 ^	Epuration, BV							
		ĺ	DOL-15 ^	Base Vie							
		Î	DOL-11 ^	Epuration, BV							
Doline	Grand	Kadji	DOL-12 ^	Base Vie							
			DOL-13 ^	Base Vie							
Doline	Grand	Caránago	Doline 1	Hors influence	=	=	=				
Donne	Granu	Carénage	Doline 2	Hors influence	=	=	=				
Doline	Grand	Plaine des lacs	Doline 3	Hors influence	=	=	=				
	<u>Légende :</u> * : paramè	tre mesuré sur séd	→: surclassemen	e en 2015 et 2016 t par rapport à 2015 t par rapport à 2015			Bon Mauva Indéte	ais erminé			
	^ : station	suivie par Vale NC tations réglementai				Statio	n sous n sous à modé	influer	ice		

- Dans les eaux souterraines :

Tableau 125 : Récapitulatif des scores 2016 par paramètre et par station pour le profil aquatique dans les eaux souterraines.

D) /	7	Diásamitam	Influ		Profil ac		
BV	Zone	Piézomètre	Influence	T°	pН	Cond.	DCO
,		4-z1		=	=	=	=
Kwe Nord		4-z1A					
		4-z1B					
		4-z2	11004 6104	=	=	=	=
	UPM CIM	4-z2A	UPM - CIM				
		4-z4		=	=	=	=
		4-z4A					
		4-z5		=	=	=	=
		4-z5A					
		WK17	ASR 0 (sources)	=	=	ע	
		WK20	` '	=	=	И	
		WK6-11		=	=	=	
		WK6-11A WK6-12		=	=	=	
		WK6-12A	ASR A (piézomètres	=	=	=	
		WK6-9	d'alerte au pied de	=	=	=	
		WK6-9A WKBH102	la berme)	=	=	=	
		WKBH102A		-	=	=	
		WKBH103		=	=	И	
		WK6-10		=	=	=	
		WK6-10A WKBH109		=	=	=	
		WKBH109A		=	=	=	
		WKBH110		=	=	=	
		WKBH110A		=	=	=	
Kwe Ouest		WKBH110B WKBH111	ASR B (zone	=	=	=	
		WKBH117	tampon)	-	=	=	
		WKBH117A		=	=	=	
		WKBH117B		=	=	=	
	ASR	WKBH118		=	=	=	
	-	WKBH118A		=	=	=	
		WKBH118B		=	=	=	
		WKBH112		=	=	=	
		WKBH112A		=	=	=	
		WKBH113		=	=	=	
		WKBH113A		=	=	=	
		WKBH114		=	=	=	
		WKBH114A	ACD C /ii+-i	=	=	=	
		WKBH115	ASR C (proximité				
		WKBH115A	rivière)	=	=	=	
		WKBH115B		=	=	=	
		WKBH116		=	=	=	
		WKBH116A		=	=	=	
		WKBH116B		=	=	=	
		WTBH9		п	=	=	
		WKBH32		=	=	=	
Kadji		WK6-14	ASR D (vallées	=	=	=	
		WTBH11	adjacentes)	=	=	=	
Trou Bleu		WTBH11A	·	=	=	=	
		7-1	D	=	=	=	=
Baie de Prony	PORT	7-2	Port (rétention fuel	ш	=	=	
		7-3	lourd)	=	=	=	=
		6-1		=	=	=	=
		6-1a	A al aite	=	=	=	=
		6-2	Aval site indust.	=	=	=	=
		6-2a		=	=	=	=
		6-3	Aval distrib.	=	=	=	=
		6-3a	carburant	=	=	=	=
		6-4	Aval hydroc.	=	=	=	=
CBN	USINE	6-5	Aval H2SO4	=	=	=	=
CDIN	OSINE	6-6	Aval gazole	=	=	=	=
		6-7	Amont site indust.	=	=	=	=
		6-7a	Amont site moust.	=	=	=	=
		6-8	Aval contôle Nord	=	=	=	=
		6-8a	a. contoic Noiu	=	=	=	=
		6-13	Aval procédé	П	=	=	=
		6-14	Aval stock. HCl	=	=	=	=
	🕥 : déclasser	6-14a laire en 2015 et 2 nent par rapport	2016 à 2015	=	Bon Mauva Infiltra Indéte	ition ea	= u de m
		ment par rapport			Stati	n sous ir on sous odérée	influe

4.2.2.2 Matières en suspensions

Le flux de Matières en suspension (MES) est mesuré dans les eaux de surface des creeks et des dolines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Le flux de MES dans les eaux de surface est exprimée en mg/L, avec une limite de détection de 5 mg/L dans la majorité des mesures. Lorsqu'une limite de détection supérieure (1 mg/L) a été employée, les valeurs mesurées sont indiquées *en italique* dans le tableau de synthèse.

La valeur seuil pour la MES dans les eaux douces est définie dans l'annexe III de l'arrêté métropolitain du 11 janvier 2007 à 25 mg/L dans les eaux de surface.

En 2016, 2 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Tableau 126 : Détermination de la gamme de variations de référence pour la MES des eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

M	ES (mg/l	.) - eaux de s	urface	V	/aleur se	uil	2	25
Position	Type	Stations of	le référence	N	moy	moy	Per 10	Per 90
Position	de BV	Zone	Station	2016	2016	2016	Pel 10	Pel 30
Amont	Grand	Kwe Ouest	3-A	7	5,00	5,00	5,00	5,00
Aval	Grand	Trou Bleu	3-C	12	5,00	5,00	5,00	5,00

Résultats et analyse

La MES n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, 5 stations de suivi des eaux de surface présentaient des valeurs moyennes et percentiles 90 plus élevées que celles de leurs gammes de référence. Trois d'entre elles ont enregistré cette année des mesures dépassant la valeur seuil réglementaire, et présentent également une tendance de la concentration annuelle moyenne en MES à augmenter sur la chronique temporelle 2012-2016. Ces flux importants de matières en suspension sont relevés dans les mêmes stations que celles présentant cette année des valeurs de turbidité élevées, les deux paramètres étant liés. Un score final « Mauvais » a été attribué aux 2 stations, qui présentent les valeurs maximales les plus fortes en 2016 (KE-05 en amont de la Kwé Est et 1-A sur la branche principale de la Kwé).

Tableau 127 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour le flux de matière en suspension dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

M	IES (mg/	L) - eaux de sur	ace		Iq = 5	mg,	/L		lq = 1	mg/	'L										
Position	Туре	Stations d	e suivi		2012		2013		2014	•	2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
FOSILIOII	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	Ν	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	valeur seuil ?	temporelle?	2015	par station	par zone
			3-B	14	5,43	23	5,60	10	5,09	14	5,00	6	5,00	5,00	5,00	Bon	Bon	Bon	Bon	Bon	
		Kwe Ouest	3-D	0		0		0		0		3	5,00	5,00	5,00	Bon	Bon			Bon	Bon
		KWC Oucst	3-E	0		0		0		0		2	5,00	5,00	5,00	Bon	Bon			Bon	Don
	Grand		4-N	9	5,00	12		11	15,64	12	5,00	12	5,16	5,18	6,70	Bon	Bon	Bon	Bon	Bon	
Amont	Grana	Kwe Nord	4-M	12	5,00	12	7,83	9	526,67	12	5,12	12	6,11	8,49	13,00	Mauvais	Bon	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	5,73	14	5,00	6	5,00	12	11,17	21	28,69	47,54	144,60	Mauvais	Mauvais	Mauvais		Mauvais	Mauvais
		CBN Amont	6-Q	12	8,57	12	5,78	10	5,00	12	6,62	46	9,12	14,23	35,00	Mauvais	Mauvais	Mauvais	Bon	Bon	Bon
			6-S	12	5,00	11	5,00	7	5,00	8	5,00	10	5,00	5,00	5,00	Bon	Bon	Bon	Bon	Bon	
	Petit	Trüu Amont	TR-02	12	5,46	11	5,00	5	5,00	12	5,00	0						Bon	Bon		
		Kwe principale	1-A	12	11,72	12	23,34	9	15,31	12	9,53	43	27,66	38,50	155,21	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais
			1-E	14	5,03	12	4,75	8	5,00	12	5,00	12	5,00	5,00	5,00	Bon	Bon	Bon	Bon	Bon	
Aval	Grand		6-BNOR1	4	5,00	5	5,00	4	5,00	4	5,00	4	5,00	5,00	5,00	Bon	Bon	Bon	Bon	Bon	
		CBN Aval	6-T	18	4,83	16	4,92	13	5,00	13	5,00	12	5,00	5,00	5,00	Bon	Bon	Bon	Bon	Bon	Bon
			6-U	12	15,09	12	14,58	11	15,58	12	,	12	14,67	15,40	15,40	Mauvais	Bon	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	5,00	12	5,00	5	5,00	10	/	0						Bon	Bon		
			6-R	12	5,14	11	5,00	10	5,17	13	5,85	10	5,34	5,34	8,40		Bon	Bon	Bon	Bon	
			DOL-2	2	5,00	2	5,00	2	5,00	1	5,00	0						Bon	Bon		
			DOL-3	2	5,00	1	5,00	1	5,00	0		0						Bon			
		CBN	DOL-4	2	5,25	2	5,00	1	92,50	1	5,00	0						Bon	Bon		Bon
			DOL-8	1	5,00	1	5,00	1	5,00	1	5,00	0						Bon	Bon		
Doli	nes		DOL-9	1	5,00	1	5,00	1	5,00	0		0		<u> </u>			_	Bon			
			DOL-10	0		1	5,00	0		0		1	5,00	5,00	5,00		Bon	Bon		Bon	
			DOL-15	0		1	5,00	0		0		0						Bon		_	
			DOL-11	2	9,50	1	12,00	1	5,00	0		2	5,00	5,00	5,00		Bon	Bon		Bon	
		Ka dji	DOL-12	1	5,00	1	5,00	1	5,00	1	11,00	0						Bon	Bon		Bon
			DOL-13	2	5,00	2	11,00	1	5,00	1	5,00	0		<u> </u>		<u> </u>		Bon	Bon		

4.2.2.3 *Eléments majeurs*

4.2.2.3.1 <u>Ions chlorures</u>

La concentration en ions chlorures (Cl⁻) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Chlorures dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,1 mg/L. Les valeurs seuils pour la concentration en Chlorures sont définies dans l'annexe III de l'arrêté métropolitain du 11 janvier 2007 à 200 mg/L dans les eaux de surface, et dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012 à 250 mg/L dans les eaux souterraines.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 128 : Détermination de la gamme de variations de référence pour la concentration en ions chlorures dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	Cl ⁻ (mg/	L) - eaux de	surface		q = 0,1 m	g/L			
Position	Type de	Station	s de référence	N	moy	moy	Per 10	Per 90	Valeur
Position	BV	Zone	Station	2016	2016	2016	Per 10	Per 90	seuil
		Kwe Ouest	3-A	4	9,550				
Amont	Grand	Carénage	Carénage Amont	1	9,900	10,238	9,655	10,770	
Amont	Grand	Kaoris	Kaoris Amont	1	10,800	10,238	9,055	10,770	
		Kuebini	Kueb Amont	1	10,700				200
		Trou Bleu	3-C	11	11,354				200
Aval	Grand	Carénage	Carénage Aval	1	9,400	10,239	9.430	11,158	
Avai	Granu	Kaoris	Kaori Aval	1	10,700	10,239	3,430	11,156	
		Kuebini	Kueb Aval	1	9,500				

Résultats et analyse

Tableau 129 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour la concentration en ions chlorures dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Cl (mg/	/L) - eaux de surfa	ce		lq = 0,	1 mg	g/L	Ĺ													
Position	Type	Stations de	e suivi		2012	•	2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
POSITION	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	valeur seuil ?	temporelle?	2015	par station	par zone
			3-B	14	9,743	20	10,510	10	10,670	13	10,823	6	10,400	11,150	11,200	Mauvais	Bon	Bon		Bon	
		Kwe Ouest	3-D	2	12,650	2	15,000	2	20,000	1	10,000	3	33,200	39,920	40,000	Mauvais	Bon	Mauvais		Mauvais	Mauvais
		kwe odest	3-E	2	10,450	2	13,550	2	11,250	1	20,000	2	14,200	18,840	20,000	Mauvais	Bon	Bon		Bon	ividuvais
	Grand		4-N	9	10,740	1	7,200	11	13,390	12	14,025	12	14,383	16,270	16,900	Mauvais	Bon	Bon		Bon	
Amont	Grana	Kwe Nord	4-M	12	9,475	11	9,510	9	9,900	12	12,283	12	10,420	14,280	15,000	Mauvais	Bon	Bon		Bon	Bon
		Kwe Est	KE-05	12	11,542	12	11,250	6	11,333	12	11,525	11	11,064	11,600	12,100	Mauvais	Bon	Bon		Bon	Bon
			6-Q	13	17,633	10	16,530	10	22,430	10	17,130	10	17,460	18,800	19,700	Mauvais	Bon	Bon		Bon	Bon
		CBN AIIIOITE	6-S	12	14,083	12	14,067	7	14,671	8	15,575	10	13,970	14,760	15,300	Mauvais	Bon	Bon		Bon	Boli
	Petit	Trüu Amont	TR-02	12	11,583	12	11,400	5	11,040	12	11,333	0						Bon			
		Kwe principale	1-A	12	9,675	12	9,400	10	10,110	12	10,258	12	9,675	10,570	10,600	Bon	Bon	Bon		Bon	Bon
		kwe pililupale	1-E	14	9,760	13	9,761	8	9,975	12	10,258	12	9,950	10,780	10,800	Bon	Bon	Bon		Bon	DOII
Aval	Grand		6-BNOR1	4	15,075	5	15,840	4	15,750	4	14,725	4	15,400	17,150	17,600	Mauvais	Bon	Bon		Bon	
Avai		CBN Aval	6-T	18	14,929	18	14,178	13	15,277	13	14,754	12	14,750	15,390	16,500	Mauvais	Bon	Bon		Bon	Bon
			6-U	12	15,092	12	14,575	11	15,582	12	14,683	12	14,667	15,400	16,000	Mauvais	Bon	Bon		Bon	
	Petit	Trüu Aval	TR-01	11	12,745	12	12,208	5	10,320	10	11,820	0						Bon			
			6-R	12	11,540	10	11,190	10	10,960	13	13,192	10	13,280	15,360	16,800			Bon	Bon	Bon	
			DOL-2	2	11,800	2	12,400	1	10,300	1	12,000	0						Bon	Bon		
			DOL-3	2	9,450	1	10,900	1	9,200	0		0						Bon			
		CBN	DOL-4	2	12,050	2	13,000	2	10,850	1	12,200	0						Bon	Bon		Bon
		CDIV	DOL-8	1	18,800	1	10,800	1	10,400	1	11,100	0						Bon	Bon		Don
Doli	nes		DOL-9	1	12,500	1	5,000	1	10,600	0		0						Bon			
			DOL-10	0		1	13,400	0		0		1	10,100	10,100	10,100			Bon		Bon	
			DOL-15	0		1	16,900	0		0		0									
			DOL-11	2	13,900	1	18,900	1	14,900	0		2	16,850	18,970	19,500			Bon		Bon	
		Ka dji	DOL-12	1	17,600	1	16,000	1	14,500	1	16,200	0						Bon	Bon		Bon
			DOL-13	2	10,250	2	12,850	0		1	12,400	0						Bon	Bon		

La concentration en ions Chlorures n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, la majorité des stations de suivi des eaux de surface présente des valeurs moyennes et percentiles 90 plus élevées que celles de leurs gammes de référence respectives, toutefois aucune ne dépasse la valeur seuil réglementaire. Seule la station 3-D en amont de la Kwé Ouest présente une tendance de la concentration annuelle moyenne en ions Chlorures à augmenter sur la chronique temporelle 2012-2016. Un score final « Mauvais » lui a donc été attribué, tandis qu'un score « Bon » a été octroyé au reste des stations du réseau de suivi des creeks et dolines sur la base de ce paramètre.

Tableau 130 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour la concentration en ions chlorures dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Cl (mg/L) - eaux souterrai	nes		lq = 0,:	1 m	g/L		En	bleı	ı: piézo	mèt	res de c	ontrôle		Valeur se	uil :	250 mg	/L	1	
Source	Stations de	suivi	_	2012		2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
d'influence	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	valeur seuil ?	temporelle ?	2015	par piézo.	par zone
	Kwe Nord	4-z1 4-z1A	4	11,300 12,425	2	10,850 13,500	4	10,225 12.625	4	10,475 12,400	3	9,033	9,580	9,700	Bon	Bon	Bon Bon	Bon Bon	Bon Bon	ŀ
	KWC NOIG	4-z1B	4	24.150	2	20.000	4	20.000	3	20.000	0		<u> </u>				Bon	Bon	Bon	1
		4-z2	4	9,500	2	11,550	4	9,850	4	11,125	4	8,775	9,110	9,200	Bon	Bon	Bon	Bon	Bon	1
UPM		4-z2A	4	25,550	0		4	19,975	4	22,350	0						Bon	Bon	Bon	Bon
		4-z4	0	14,325	1	14,700	4	15,400	4	,	5	14,920	16,620	16,900	Bon	Bon	Bon	Bon	Bon	
		4-z4A	4	23,575	1	20,000	3	20,000	4	/	0						Bon	Bon	Bon	
		4-z5 4-z5A	4	14,625	1	13,000	5	15,740	4	,	5	10,880	11,320	11,600	Bon	Bon	Bon	Bon	Bon	
		4-25A WK17	51	16,975 13,055	51	20,000 11,416	47	21,500 13,725	51	17,625 16,980	28	11,318	11,460	19,200	Bon	Bon	Bon Bon	Bon Bon	Bon Bon	
ASR 0 (sources)		WK20	22	11,514	52	11,410	48	11,383	51	11,415	1	14,600	14,600	14,600	Bon	Bon	Bon	Bon	Bon	1
		WK6-11	1	8,200	0	11,011	2	14,800	3	9,430	2	8,600	8,600	8,600	Bon	Bon	Bon	Bon	Bon	1
		WK6-11A	2	15,250	2	16,650	0		3	12,067	2	11,600	11,840	11,900	Bon	Bon	Bon	Bon	Bon	1
		WK6-12	2	18,000	2	26,500	9	22,011	12	25,633	12	23,175	28,110		Mauvais	Bon	Mauvais	Bon	Mauvais	
ASR A		WK6-12A	2	18,250	2	26,550	10	28,083	12	31,317	12	30,542	33,840	34,600	Mauvais	Bon	Mauvais	Bon	Mauvais	
(piézomètres		WK6-9	2	10,050	2	10,750	2	9,800	2	9,350	2	9,850	9,970	10,000	Bon	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A WKBH102	2 11	10,300 12,350	2	11,100 12,886	11	10,650 12,981	12	10,050 12,133	12	10,500 15,975	10,500 19,400	10,500	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH102 WKBH102A	2	19,450	2	15,750	2	19,050	2	19,850	2	20.500	20,980	21,100	Bon	Bon	Bon	Bon	Bon	ŀ
		WKBH102A	2	12,800	2	17,300	3	14.733	12		12	27,460	36,410		Mauvais	Bon	Mauvais	Bon	Mauvais	
		WK6-10	0	12,000	1	16,600	2	16,600	2	9,500	2	8,950	8,990	9,000	Bon	Bon	Bon	Bon	Bon	
		WK6-10A	2	13,700	1	13,900	1	14,500	2	12,450	2	10,950	11,230	11,300	Bon	Bon	Bon	Bon	Bon	
		WKBH109	0		0		1	11,400	2	12,550	2	10,350	10,390	10,400	Bon	Bon	Bon	Bon	Bon	
		WKBH109A	2	13,150	2	13,650	2	13,250	2	14,400	11	14,445	16,600		Mauvais	Bon	Mauvais	Bon	Mauvais	
		WKBH110	10	10,360	7	11,500	11	11,110	12		12	11,120	11,870		Bon	Bon	Bon	Bon	Bon	
ASR B	Kwe Ouest	WKBH110A WKBH110B	2	9,800	2	11,500	2	11 750	2	11,350 11,250	11 11	11,190 11,230	11,900 12,200	12,300 12,400	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
(zone tampon)		WKBH110B WKBH111	2	9,700	2	11,000	2	11,750 9,800	2	9,950	2	9,500	9,660	9,700	Bon	Bon	Bon	Bon	Bon	
(zone tampon)		WKBH117	2	10,650	2	11,100	2	10,100	2	10,000	2	9,650	9,690	9,700	Bon	Bon	Bon	Bon	Bon	
		WKBH117A	2	10,600	2	11,050	2	10,100	2	9,700	2	9,450	9,650	9,700	Bon	Bon	Bon	Bon	Bon	_
		WKBH117B	2	10,700	2	10,750	2	9,700	1	10,100	2	10,150	10,350	10,400	Bon	Bon	Bon	Bon	Bon	Bon
		WKBH118	2	11,700	2	12,350	2	11,500	2	11,000	2	11,950	12,150	12,200	Bon	Bon	Bon	Bon	Bon]
		WKBH118A	2	11,450	2	12,250	2	11,550	2	10,700	2	11,950	12,150	12,200	Bon	Bon	Bon	Bon	Bon	
		WKBH118B	2	10,350	2	11,300	2	10,600	2	9,200	2	10,200	10,200	10,200	Bon	Bon	Bon	Bon	Bon	
		WKBH112	2	10,750	2	11,050	2	9,900	2	9,350	2	9,850	9,970	10,000	Bon	Bon	Bon	Bon	Bon	
		WKBH112A WKBH113	10	8,740	7	9,786	12	13,000 9,542	12	12,700 9,583	12	11,900 8,617	12,140 8,990	12,200 9,300	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH113A	2	10,200	2	11,400	2	10,200	2	10,200	2	9,750	9,870	9,900	Bon	Bon	Bon	Bon	Bon	
		WKBH114	3	9,330	2	10,350	2	9,550	2	8,850	2	9,150	9,270	9,300	Bon	Bon	Bon	Bon	Bon	1
ASR C		WKBH114A	1	11,600	2	10,000	2	10,200	2	9,950	2	9,600	9,760	9,800	Bon	Bon	Bon	Bon	Bon	1
(proximité		WKBH115	0		0		1	9,800	0		2	9,100	9,100	9,100	Bon	Bon	Bon		Bon	1
rivière)		WKBH115A	0		0		1	10,000	2		2	9,850	9,970	10,000	Bon	Bon	Bon	Bon	Bon	
		WKBH115B		11,000	2	,	2			11,200	2	10,150	10,190		Bon	Bon	Bon	Bon	Bon	
		WKBH116	2	9,850	2	.,	2			10,000	2	9,050	9,170	9,200	Bon	Bon	Bon	Bon	Bon	
		WKBH116A WKBH116B	2	10,300	2	-,	2			10,650	2	9,750 9,300	9,790	9,800	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WTBH9	2	10,400	1	-,	0	9,930	1		2	9,650	9,770	9,800	Bon	Bon	Bon	Bon	Bon	
ACD D		WKBH32	2	9,700	2	/	2	9,700	2	- /	2	9,000	9,080	9,100	Bon	Bon	Bon	Bon	Bon	
ASR D	Kadji	WK6-14	1		2	,	1	10,200		11,000	2	10,750	11,030	11,100	Bon	Bon	Bon	Bon	Bon	
(vallées adiacentes)	Rivière Trou Bleu	WTBH11		11,200	2	,	2		2	10,700	2	10,000	10,000		Bon	Bon	Bon	Bon	Bon	
aujacentes)	cic iioa biet	WTBH11A		11,350	2					11,500	2	10,050	10,170		Bon	Bon	Bon	Bon	Bon	
D	n-:- d	7-1		14,200	2	15,950	2	12,350	0		1	20,000	20,000	20,000	Mauvais	Bon	Bon		Bon	
Port	Baie de Prony	7-2 7-3	0	17,100	2	14,200	2	15,750	0		2	15,900 16,850	16,540 17,290		Bon Mauvais	Bon Bon	Bon		Bon Bon	Bon
		6-1		14,675	2	12,050	4	15,750		12,500	4	13,400	14,150		Bon	Bon	Bon	Bon	Bon	
		6-13	0	17,073	1	_	4	11,300		11,925	4	11,025	11,280		Bon	Bon	Bon	Bon	Bon	
		6-14	6	9,430	3	_	5	8,578		15,950	4	11,525	11,800		Bon	Bon	Bon	Bon	Bon	
		6-14a		33,250	3		9	37,778		35,787	11	27,636	28,900		Mauvais	Bon	Bon	Bon	Bon	
		6-1a		14,675	2	15,150	4	15,125		14,925	4	14,325	14,700		Bon	Bon	Bon	Bon	Bon	
		6-2		12,050	2		4	12,300		13,100	4	11,975	12,270		Bon	Bon	Bon	Bon	Bon	
		6-2a		13,575	2		4	12,925		13,400	4	14,375	14,950		Bon	Bon	Bon	Bon	Bon	
Usine	CBN	6-3 6-3a		16,350 19,075	2	18,500 20,500	3	18,350 19,600		12,200 21,800	3	16,975 21,400	18,050 21,680		Mauvais Mauvais	Bon Bon	Mauvais Mauvais	Bon Bon	Mauvais Mauvais	Bon
		6-4	4	14,950	2	16,750	4	15,675		15,475	3	14,567	14,940	15,000	Bon	Bon	Bon	Bon	Bon	
		6-5	5	13,000	2	13,800	4	12,450		13,250	4	12,775	13,440	13,500	Bon	Bon	Bon	Bon	Bon	
		6-6	5	12,520	1	12,500	4	10,700		11,575	4	11,375	11,580	11,700	Bon	Bon	Bon	Bon	Bon	
		6-7	5	13,180	4	13,700	6	13,550	4		4	11,800	12,150	12,300	Bon	Bon	Bon	Bon	Bon	
		6-7a	4	12,850	2	14,200	4	12,075	3	,	3	11,867	12,120	12,200	Bon	Bon	Bon	Bon	Bon	
		6-8	5	23,880	2	20,800	4	20,000		18,950	4	17,975	18,640	18,700	Mauvais	Bon	Bon	Bon	Bon	
1		6-8a	4	17,325	2	17,650	4	15,350	4	16,550	4	15,700	16,860	17,100	Mauvais	Bon	Bon	Bon	Bon	

En 2016, la concentration en ions chlorures n'est pas connue dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

La concentration en ions chlorures dans les eaux souterraines a été mesurée en 2016 dans tous les autres piézomètres, dont 11 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle, sans jamais dépasser pour autant la valeur seuil réglementaire. Des tendances générales à l'augmentation des concentrations moyennes annuelles en ions chlorure sont cependant observées dans 6 de ces piézomètres, justifiant de leur déclassement. Un score « Mauvais » a ainsi été attribué à 4

piézomètres sous influence de l'Aire de Stockage des Résidus (<u>WK6-12</u>, <u>WK6-12A</u>, <u>WKBH103</u> et <u>WKBH109A</u>), ainsi qu'à 2 piézomètres sous influence de l'usine (<u>6-3</u> et <u>6-3a</u>).

4.2.2.3.2 <u>Ions magnésium</u>

La concentration en ions magnésium (Mg²⁺) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en ions Magnésium dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,1 mg/L. La réglementation française n'inclut pas à ce jour de valeurs seuils pour la concentration en magnésium dans les eaux douces.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 131: Détermination de la gamme de variations de référence pour la concentration en ions magnésium dans les eaux de surface: calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	Mg ²⁺ (m	g/L) - eaux d	e surface	lo	= 0,1 m	g/L		
Position	Туре	Stations	s de référence	N	moy	moy	Per 10	Per 90
Position	de BV	Zone	Station	2016	2016	2016	PEI 10	PEI 30
		Kwe Ouest	3-A	5	5,5			
Amont	Grand	Carénage	Carénage Amont	1	10,5	7,50	F 96	9,54
Amont	Granu	Kaoris	Kaoris Amont	1	6,7	7,50	5,86	9,54
		Kuebini	Kueb Amont	1	7,3			
		Trou Bleu	3-C	12	5,758			
Aval	Grand	Carénage	Carénage Aval	1	9,6	7,56	6,22	9,00
AVdi	Gianu	Kaoris	Kaori Aval	1	7,3	7,50	0,22	3,00
		Kuebini	Kueb Aval	1	7,6			

Résultats et analyse

La concentration en ions magnésium n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, toutes les stations de suivi des eaux de surface des creeks présentent des valeurs moyennes et percentiles 90 plus élevées que celles de leurs gammes de référence respectives, et la majorité d'entre elles enregistre également une tendance à la hausse sur la chronique de données 2012-2016. Ce paramètre constituant un indicateur de l'altération des terrains ultrabasiques, il semble mettre en évidence une intensification du phénomène d'érosion des sols avoisinant les rivières impactées, il peut également

traduire l'influence de certains rejets dans le milieu. Un score final « Mauvais » a donc été attribué à 11 stations de suivi des creeks : toutes les stations situées aussi bien en amont (<u>3-B</u>, <u>3-D</u>, <u>3-E</u>, <u>4-N</u>, <u>4-M</u>, <u>KE-05</u>) qu'en aval (<u>1-A</u>, <u>1-E</u>) des différentes branches de la rivière Kwé, ainsi que certaines stations en amont (<u>6-Q</u>) et en aval (<u>6-BNOR1</u>, <u>6-T</u>) du Creek Baie Nord.

Les stations de suivi des dolines en revanche ne présentent aucune évolution remarquable des concentrations en Magnésium au cours du temps, un score « Bon » est donc attribué aux trois dolines contrôlées en 2016.

Tableau 132 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 pour la concentration en ions magnésium dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Mg ²⁺ (m	g/L) - eaux de surf	ace		Iq = 0,	1 mg	g/L													
Position	Type	Stations de	suivi		2012	•	2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score	Score 2016	Score 2016
POSITION	de BV	Zone	Station	N	Moy	N	Moy	Ν	Moy	N	Moy	Ν	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	2015	par station	par zone
			3-B	14	6,521	25	10,220	12	10,008	33	11,294	145	23,325	53,200	71,000	Mauvais	Mauvais	Bon	Mauvais	
		Kwe Ouest	3-D	2	16,950	13	60,708	4	46,100	23	61,522	113	122,15	183,39	266,00	Mauvais	Mauvais	Bon	Mauvais	Mauvais
		KWC Ouest	3-E	2	8,000	2	14,350	2	18,900	1	19,200	3	43,230	69,920	76,000	Mauvais	Mauvais	Bon	Mauvais	waavas
	Grand		4-N	9	5,334	2	15,000	11	10,082	12	10,208	12	16,825	24,800	30,000	Mauvais	Mauvais	Bon	Mauvais	
Amont	Granu	Kwe Nord	4-M	12	8,867	11	10,067	9	12,078	12	11,683	12	13,383	19,760	21,400	Mauvais	Mauvais	Bon	Mauvais	Mauvais
		Kwe Est	KE-05	12	9,720	14	9,586	6	10,617	12	12,242	11	11,182	11,800	12,200	Mauvais	Mauvais		Mauvais	Mauvais
		CBN Amont	6-Q	13	13,192	12	13,317	11	14,320	11	14,027	10	15,140	16,280	17,000	Mauvais	Mauvais	Bon	Mauvais	Mauvais
		CBN AIIIOIIL	6-S	12	3,825	12	4,208	7	10,100	8	8,475	10	7,650	12,320	12,500	Mauvais	Bon	Bon	Bon	widavais
	Petit	Trüu Amont	TR-02	12	12,242	12	11,760	5	12,360	12	11,920	0					Bon	Bon		
		Kwe principale	1-A	12	8,558	12	9,133	10	10,873		10,577	12	12,400	13,940	15,400	Mauvais	Mauvais	Bon	Mauvais	Mauvais
		Kwe pimerpare	1-E	14	8,385	14	8,536	8	10,712	12	10,617	12	12,358	14,330	16,200	Mauvais	Mauvais	Bon	Mauvais	waaras
Aval	Grand		6-BNOR1	4	11,975	5	10,960	4	11,700	4	12,500	4	14,175	14,640	14,700	Mauvais	Mauvais	Bon	Mauvais	
Avui		CBN Aval	6-T	8	10,855	5	10,860	4	11,375	5	11,820	10	12,860	13,760	14,300	Mauvais	Mauvais	Bon	Mauvais	Mauvais
			6-U	1	11,700	0		1	14,000	2	10,500	1	12,700	12,700	12,700	Mauvais	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	10,045	12	10,467	5	10,020	10	10,900	0					Bon	Bon		
			6-R	12	5,450	12	5,170	10	4,750	13	4,723	10	5,450	6,350	8,600		Bon	Bon	Bon	
			DOL-2	2	1,650	2	1,600	1	1,600	1	1,600	0					Bon	Bon		
			DOL-3	2	1,600	1	2,200	1	2,200	0		0					Bon			
		CBN	DOL-4	2	1,700	2	1,800	2	1,750	1	1,700	0					Bon	Bon		Bon
		CDIV	DOL-8	1	2,500	1	2,400	1	2,600	1	2,700	0					Bon	Bon		Don
Doli	nes		DOL-9	1	4,700	1	4,900	1	4,100	0		0					Bon			
			DOL-10	0		1	1,700	0		0		1	1,600	1,600	1,600		Bon		Bon	
			DOL-15	0		1	3,800	0		0		0								
			DOL-11	2	11,000	1	9,900	1	9,900	0		2	11,200	12,400	12,700		Bon		Bon	
		Ka d ji	DOL-12	1	4,700	1	5,500	1	6,000	1	6,000	0					Bon	Bon		Bon
			DOL-13	2	2,900	2	2,450	0		1	2,500	0					Bon	Bon		

En 2016, la concentration en ions magnésium n'est pas connue dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

La concentration en ions magnésium dans les eaux souterraines a été mesurée en 2016 dans tous les autres piézomètres, dont 18 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Des tendances générales à l'augmentation des concentrations moyennes annuelles en ions magnésium sont observées dans 12 de ces piézomètres, justifiant leur déclassement. Un score « Mauvais » a ainsi été attribué à 11 piézomètres sous influence de l'Aire de Stockage des Résidus (WK17, WK20, WK6-12, WK6-12A, WKBH102, WKBH103, WKBH109A, WKBH110A, WKBH110A, WKBH110B, WK6-14), ainsi qu'au piézomètre 6-14a sous influence de l'usine.

Tableau 133 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle pour la concentration en ions magnésium dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Mg ²⁺ (mg/	/L) - eaux souterra	ines		Iq = 0,	1 mg	g/L		En	ble	u : piézo	mètr	es de c	ontrôle		Ì				
Source	Stations de	suivi	-	2012		2013	_	2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score	Score 2016	
d'influence	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	temporelle?	2015	par piézo.	par zone
	Kwe Nord	4-z1 4-z1A	4	16,275 4,400	1	16,600 4,500	4	16,625 4,225	4	16,300 3,675	0	16,675	16,870	16,900	Bon	Bon Bon	Bon Bon	Bon	
	Mic Hold	4-z1B	4	20,225	3	22,033	4	21,650	3	23,600	0					Bon	Bon		
		4-z2	4	14,875	2	15,150	4	15,000	4	14,525	4	14,700	15,180	15,300	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	18,000	2	14,300	4	13,625	4	14,175	0					Bon	Bon		Bon
		4-z4	4	6,675	2	7,400	4	6,925	4	5,900	5	6,480	8,420	8,900	Bon	Bon	Bon	Bon	
		4-z4A 4-z5	4	13,950 10,700	2	16,050 10,950	5	18,270 9,780	4	21,450 9,800	5	9,200	9,580	9,700	Bon	Bon Bon	Bon Bon	Bon	
		4-25 4-z5A	4	7,850	2	7,200	2	7,800	4	11,825	0	9,200	3,360	9,700	ВОП	Bon	Bon	BUII	
ACD 0 ()		WK17	51	18,170	52	23,060	50	32,596	76	52,326	52	153,44	233,80	248,00	Mauvais	Mauvais	Bon	Mauvais	
ASR 0 (sources)		WK20	51	11,560	52	11,685	51	13,131	52	19,819	51	43,463	55,200	59,600	Mauvais	Mauvais	Bon	Mauvais	
		WK6-11	1	9,100	0		2	3,200	3	16,333	2	10,400	10,560	10,600	Bon	Bon	Bon	Bon	
		WK6-11A WK6-12	2	2,950 12,750	2	3,100	11	19,018	3 12	2,633 21,708	2	2,350	2,390	2,400 28,800	Bon	Bon	Bon	Bon	
ASR A		WK6-12 WK6-12A	2	4,300	2	11,800 8,900	10	16,310	12	20,767	12 12	24,867 24,425	28,340 27,180	27,400	Mauvais Mauvais	Mauvais Mauvais	Bon Bon	Mauvais Mauvais	
(piézomètres		WK6-9	2	12,100	3	9,733	2	12,250	2	12,400	2	12,550	12,590	12,600	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	4,200	2	4,300	2	4,350	2	4,550	2	4,750	4,790	4,800	Bon	Bon	Bon	Bon	
		WKBH102	11	17,145	7	15,400	12	21,841	12	23,350	12	54,950	79,300	79,400	Mauvais	Mauvais	Bon	Mauvais	
		WKBH102A	2	4,400	2	4,500	2	5,150	2	5,300	2	5,500	5,900	6,000	Bon	Bon	Bon	Bon	
		WKBH103 WK6-10	0	17,350	1	9,200	3	29,150 12,733	12 2	41,200 13,650	12 2	112,87 13,600	169,50 13,680	177,00 13,700	Mauvais Bon	Mauvais Mauvais	Bon Bon	Mauvais Bon	
		WK6-10A	2	7,700	1	7,700	1	7,600	2	7,450	2	7,200	7,440	7,500	Bon	Bon	Bon	Bon	
		WKBH109	0		0		1	2,650	2	10,550	2	1,300	1,780	1,900	Bon	Bon	Bon	Bon	
		WKBH109A	2	15,950	2	18,450	2	17,450	2	21,750	11	29,054	40,400	42,400	Mauvais	Mauvais	Bon	Mauvais	
		WKBH110	10	11,770	7	11,200	12	12,525	12	14,717	12	23,750	28,060	29,800	Mauvais	Mauvais	Bon	Mauvais	
ASR B	Kwe Ouest	WKBH110A	0	12.000	0	11.050	0	12 250	2	14,700	11	22,400	25,400	27,800	Mauvais	Mauvais	Bon	Mauvais	
(zone tampon)		WKBH110B WKBH111	2	12,000 12,800	2	11,950 12,900	2	12,250 13,150	2	14,700 13,150	11 2	22,545 13,050	26,000 13,170	28,000 13,200	Mauvais Bon	Mauvais Bon	Bon Bon	Mauvais Bon	
(====,		WKBH117	2	13,150	2	13,000	2	12,450	2	12,750	2	13,050	13,490	13,600	Bon	Bon	Bon	Bon	
		WKBH117A	2	11,200	2	11,300	2	11,100	2	11,100	2	11,100	11,180	11,200	Bon	Bon	Bon	Bon	Mauvais
		WKBH117B	2	11,850	2	11,700	2	11,650	1	11,300	2	12,650	12,690	12,700	Bon	Bon	Bon	Bon	iviuuvuis
		WKBH118	2	12,350	2	13,550	2	14,000	2	14,600	2	14,700	15,180	15,300	Bon	Bon	Bon	Bon	
		WKBH118A WKBH118B	2	13,450 4,350	2	14,900 4,650	2	14,600 4,900	2	14,850 4,800	2	15,300 4,600	15,380 4,600	15,400 4,600	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH112	2	16,400	2	19,000	2	19,150	2	19,100	2	18,800	18,960	19,000	Mauvais	Bon	Bon	Bon	
		WKBH112A	0		0	,	2	7,250	2	4,350	2	4,650	6,050	6,400	Bon	Bon	Bon	Bon	
		WKBH113	11	8,273	7	8,443	12	8,192	12	8,325	12	8,108	8,300	8,300	Bon	Bon	Bon	Bon	
		WKBH113A	2	2,850	2	3,050	2	2,850	2	2,850	2	3,000	3,000	3,000	Bon	Bon	Bon	Bon	
ACD C		WKBH114	3	7,767	2	11,200	2	10,700	2	10,800	2	10,350	10,550	10,600	Bon	Bon	Bon	Bon	
ASR C (proximité		WKBH114A WKBH115	0	0,900	0	1,100	1	0,900 14,000	0	0,950	2	1,000 12,600	1,080 13,000	1,100 13,100	Bon Bon	Bon Bon	Bon	Bon Bon	
rivière)		WKBH115A	0		0		2	13,950	2	13,850	2	12,050	12,250	12,300	Bon	Bon	Bon	Bon	
,		WKBH115B	2	1,600	2	1,650	2	1,650	2	2,550	2	2,000	2,080	2,100	Bon	Bon	Bon	Bon	
		WKBH116	2	14,800	2	17,250	2	8,400	2	11,750	2	12,550	12,830	12,900	Bon	Bon	Bon	Bon	
		WKBH116A	2	13,950	2	13,950	2	13,950	2	14,200	2	13,400	13,800	13,900	Bon	Bon	Bon	Bon	
		WKBH116B WTBH9	2	2,350 14,300	1	2,200 14,400	0	2,200	2	2,150 15,600	2	2,300 14,550	2,460 14,590	2,500 14,600	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH32	2	20,600	2	20,000	2	21,900	2	20,850	2	18,050	18,410	18,500	Bon	Bon	Bon	Bon	
ASR D	Kadji	WK6-14	1	16,400	2	16,200	1	16,100	1	17,300	2	19,200	19,680	19,800	Mauvais	Mauvais	Bon	Mauvais	
(vallées adjacentes)	Rivière Trou Bleu	WTBH11	2	12,700	2	11,750	2	11,550	2	12,800	2	12,500	12,336	12,700	Bon	Bon	Bon	Bon	
,/		WTBH11A	2	10,850	2	11,900	2	11,600	1	10,800	2	10,650	10,690	10,700	Bon	Bon	Bon	Bon	
Port	Baie de Prony	7-1 7-2	0	9,600	0	10,730	0	8,830	0		2	11,100 11,100	11,340 11,420	11,400 11,500	Bon Bon	Bon		Bon Bon	Bon
FUIL	Date de Fluily	7-2	1	12,100	2	11,400	2	9,350	0		2	9,800	9,960	10,000	Bon	Bon		Bon	DOII
		6-1	4	29,250		25,300	4			29,850	4		30,820		Mauvais	Bon	Bon	Bon	
		6-13	0			13,200	4				4				Bon	Bon	Bon	Bon	
		6-14	6	19,800	3	19,333	5	28,700	5	19,100	4	19,400	20,140	20,200	Mauvais	Bon	Bon	Bon	
		6-14a	6	25,367	4	60,600	10	66,740	10	66,300	11	76,073	93,000	93,800	Mauvais	Mauvais	Bon	Mauvais	
		6-1a 6-2	4	14,725 11,525	2	14,300 12,800	4	14,350 11,375	4	14,700 10,325	4	15,325 12,250	15,400 12,370	15,400 12,400	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		6-2a	4	4,575	2	4,350	4	4,550	4	4,550	4	4,975	5,610	6,000	Bon	Bon	Bon	Bon	
Heima	CDM	6-3	4	6,600	2	6,550	4	6,675	4	7,100	4	7,875	8,360	8,600	Bon	Bon	Bon	Bon	Per
Usine	CBN	6-3a	4	5,700	2	5,750	3	6,200	3	7,630	3	6,700	6,840	6,900	Bon	Bon	Bon	Bon	Bon
		6-4	4	5,650	2	5,550	4	5,575	4	6,000	3	6,167	6,280	6,300	Bon	Bon	Bon	Bon	
		6-5	5	19,220	2	19,750	4	19,625	4	19,625	4	20,350	20,620	20,800	Mauvais	Bon	Bon	Bon	
		6-6 6-7	5	21,300 16,740	4	20,650 15,750	6	21,375 13,850	4	16,375 18,575	4	21,200 18,450	21,600 18,670	21,600 18,700	Mauvais Bon	Bon Bon	Bon Bon	Bon Bon	
		6-7a	4	7,925	2	7,450	4	7,900	3	6,367	3	7,700	7,980	8,100	Bon	Bon	Bon	Bon	
		6-8	5	24,180	2	25,100	4	24,950	4	21,825	4	24,200	24,540	24,600	Mauvais	Bon	Bon	Bon	
		6-8a	4	13,750	2	12,800	4	13,850	4	13,800	4	14,000			Bon	Bon	Bon	Bon	

4.2.2.3.3 <u>Ions sodium</u>

La concentration en ions sodium (Na⁺) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en ions sodium dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 1 mg/L. La réglementation française n'inclut pas à ce jour de valeurs seuils pour la concentration en sodium dans les eaux douces.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 134 : Détermination de la gamme de variations de référence pour la concentration en ions sodium dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	Na⁺ (mૄ	g/L) - eaux d	e surface		lq = 1 mg	/L		
Position	Туре	Station	s de référence	N	moy	moy	Per 10	Per 90
Position	de BV	Zone	Station	2016	2016	2016	Per 10	Per 90
		Kwe Ouest	3-A	4	5,000			
Amont	Cuand	Carénage	Carénage Amont	1	5,100	F 4F0	E 020	F 970
Amont	Grand	Kaoris	Kaoris Amont	1	5,800	5,450	5,030	5,870
		Kuebini	Kueb Amont	1	5,900			
		Trou Bleu	3-C	12	6,583			
Aval	Cuand	Carénage	Carénage Aval	1	5,200	F 671	5.060	C 270
Avai	Grand	Kaoris	Kaori Aval	1	5,900	5,671	5,000	6,378
		Kuebini	Kueb Aval	1	5,000			

Résultats et analyse

Tableau 135 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 pour la concentration en ions sodium dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Na ⁺ (ms	g/L) - eaux de surf	ace		lq = 1	mg,	/L													
Position	Туре	Stations de	suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score 2015	Score	Score 2016
FOSILIOII	de BV	Zone	Station	Ν	Moy	Ν	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	3COI E 2013	2016 par	par zone
			3-B	14	5,000	25	5,000	12	5,083	33	5,545	145	5,765	7,000	10,000	Mauvais	Bon	Bon	Bon	
		Kwe Ouest	3-D	2	6,500	11	7,385	4	8,250	23	9,174	113	8,531	11,000	17,000	Mauvais	Bon	Bon	Bon	Bon
		mire odest	3-E	2	4,500	2	6,000	2	6,500	1	6,000	2	7,000	8,800	9,000	Mauvais	Bon	Bon	Bon	20
	Grand		4-N	9	4,444	2	5,000	11	5,364	12	5,333	12	5,333	6,000	8,000	Bon	Bon	Bon	Bon	
Amont	Grana	Kwe Nord	4-M	12	4,917	12	5,000	9	5,000	12	5,167	12	5,167	5,900	6,000	Bon	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	5,417	12	5,428	6	5,000	12	5,333	11	5,727	6,000	6,000	Mauvais	Bon		Bon	Bon
		CBN Amont	6-Q	13	8,461	12	8,667	11	11,454	11	8,273	10	9,900	11,000	11,000	Mauvais	Bon	Bon	Bon	Bon
		CDIV AIIIOITE	6-S	12	6,500	12	6,083	7	6,857	8	7,500	10	7,000	8,000	8,000	Mauvais	Bon	Bon	Bon	Don
	Petit	Trüu Amont	TR-02	12	6,083	12	6,167	5	6,000	12	6,250	0					Bon	Bon		
		Kwe principale	1-A	12	5,000	12	4,917	11	5,100	13	5,080	12	5,083	5,000	6,000	Bon	Bon	Bon	Bon	Bon
		nac pinicipare	1-E	14	5,076	13	5,135	8	5,000	12	5,083	12	5,417	6,000	6,000	Bon	Bon	Bon	Bon	20
Aval	Grand		6-BNOR1	4	7,750	5	7,600	4	7,500	4	7,500	4	8,500	9,700	10,000	Mauvais	Bon	Bon	Bon	
Avai		CBN Aval	6-T	7	7,537	6	6,250	4	7,500	5	7,600	10	8,000	8,100	9,000	Mauvais	Bon	Bon	Bon	Bon
			6-U	1	7,000	0		1	9,000	2	7,000	1	8,000	8,000	8,000	Mauvais	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	7,000	12	6,750	5	6,600	10	6,500	0					Bon	Bon		
			6-R	12	6,083	12	5,667	10	5,400	13	6,846	10	7,400	8,100	9,000		Bon	Bon	Bon	
			DOL-2	2	5,500	2	5,500	1	5,000	1	5,000	0					Bon	Bon		
			DOL-3	2	4,500	1	5,000	1	5,000	0		0					Bon			
		CBN	DOL-4	2	6,000	2	6,000	2	5,000	1	5,000	0					Bon	Bon		Bon
		0511	DOL-8	1	5,000	1	5,000	1	5,000	1	5,000	0					Bon	Bon		20
Dolin	nes		DOL-9	1	6,000	1	6,000	1	5,000	0		0					Bon			
			DOL-10	0		1	6,000	0		0		1	5,000	5,000	5,000		Bon		Bon	
			DOL-15	0		1	6,000	0		0		0								
			DOL-11	2	12,500	1	9,000	1	8,000	0		2	11,500	15,100	16,000		Bon		Bon	
		Ka d ji	DOL-12	1	7,000	1	6,000	1	6,000	1	6,000	0					Bon	Bon		Bon
			DOL-13	2	5,000	2	5,500	0		1	6,000	0					Bon	Bon		

La concentration en ions sodium n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, 9 stations de suivi des eaux de surface présentent des valeurs moyennes et percentiles 90 plus élevées que celles de leurs gammes de référence respectives, mais aucune n'enregistre de tendance à la hausse sur la chronique de données 2012-2016. Un score final « Bon » a donc été attribué à l'ensemble du réseau de suivi des eaux de surface des creeks et des dolines pour ce paramètre.

Tableau 136 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle pour la concentration en ion sodium dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Na ⁺ (mg	/L) - eaux souterra			lq = 1	_					u : piézo	mèt				Valeur s	1	200 mg	g/L		
Source	Stations de		_	2012	_	2013	_	2014	_	2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
d'influence	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	valeur seuil ?	temporelle?	2015	par piézo.	par zone
	Kwe Nord	4-z1 4-z1A	4	5,250 5,750	1	5,000 6,000	4	5,000 6,000	4	5,000 6,000	0	5,500	6,000	6,000	Bon	Bon	Bon Bon	Bon Bon	Bon	
	KWC NOIG	4-21A 4-21B	4	7,250	3	7,000	4	7,250	3	8,000	0			1			Bon	Bon		
		4-z2	4	5,250	2	5,500	4	5,250	4	5,250	4	5,500	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	7,750	0	6,500	4	6,750	4	7,250	0						Bon	Bon		Bon
		4-z4	4	8,250	2	8,000	4	7,750	4	8,000	5	8,800	9,600	10,000	Bon	Bon	Bon	Bon	Bon	
		4-z4A	4	15,250	1	12,500	3	11,000	4	_	0						Bon	Bon		
		4-z5	4	6,000	1	5,000	5	5,600	4	5,750	5	5,800	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
	l	4-z5A	4	6,500	1	9,000	2	9,000	4	12,000	0						Mauvais	Bon		
ASR 0 (sources)		WK17	51	6,059	52	6,596	50	7,540	75	•	52	14,192	17,000	18,000	Mauvais	Bon	Mauvais	Bon	Mauvais	
	1	WK20 WK6-11	51 1	6,098 5,000	0	5,923	50 2	6,040 5,000	52 3	6,308 23,000	51 2	7,725 7,500	8,000 7,900	9,000 8,000	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WK6-11A	2	5,500	2	5,500	0	3,000	3	5,330	2	5,000	5,000	5,000	Bon	Bon	Bon	Bon	Bon	
		WK6-12	2	5,000	2	5,000	9	5,555	12	5,333	12	5,917	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
ASR A		WK6-12A	2	4,000	2	5,000	9	4,889	12	5,000	12	5,667	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
(piézomètres		WK6-9	2	6,000	2	5,667	2	6,000	2	6,000	2	6,000	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	5,500	2	5,000	2	5,000	2	5,000	2	5,000	5,000	5,000	Bon	Bon	Bon	Bon	Bon	
		WKBH102	11	6,091	7	6,000	12	6,667	12	6,917	12	9,083	10,900	14,000	Bon	Bon	Mauvais	Bon	Bon	
		WKBH102A	2	7,500	2	8,000	2	8,000	2	8,500	2	9,000	9,000	9,000	Bon	Bon	Bon	Bon	Bon	
ļ	l	WKBH103	2	6,000	2	7,000	3	7,000	12	_	12	12,167	15,000	15,000	Mauvais	Bon	Mauvais	Bon	Mauvais	
		WK6-10	0	C 000	1	6,000	2	24,500	2	14,500	2	8,500	8,900	9,000	Bon	Bon	Bon	Bon	Bon	
		WK6-10A	2	6,000	1	5,000	1	5,000	2	6,000	2	6,000	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
		WKBH109 WKBH109A	2	6,000	2	7,000	2	6,500 6,500	2	6,500 6,500	11	7,363	18,700 8,000	20,000 8,000	Mauvais Bon	Bon Bon	Mauvais Bon	Bon Bon	Mauvais Bon	
		WKBH1109A	10	6,000	7	5,714	12	6,083	12		12	7,000	7,000	8,000	Bon	Bon	Bon	Bon	Bon	
	Kwe Ouest	WKBH110A	0	0,000	0	3,711	0	0,005	2	6,000	11	7,000	7,000	8,000	Bon	Bon	Bon	Bon	Bon	
ASR B		WKBH110B	2	6,000	2	5,500	2	6,000	2	6,500	11	7,090	8,000	8,000	Bon	Bon	Bon	Bon	Bon	
(zone tampon)		WKBH111	2	5,500	2	6,000	2	6,000	2	6,000	2	6,000	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
		WKBH117	2	6,000	2	5,500	2	5,500	2	5,500	2	6,000	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
		WKBH117A	2	6,000	2	5,500	2	6,000	2	5,500	2	5,000	6,000	6,000	Bon	Bon	Bon	Bon	Bon	Bon
		WKBH117B	2	6,000	2	5,500	2	5,500	1	5,000	2	6,000	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
		WKBH118	2	6,000	2	5,500	2	6,000	2	6,000	2	6,000	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
		WKBH118A	2	6,000	2	6,000	2	6,000	2	6,000	2	6,000	6,000	6,000	Bon	Bon	Bon	Bon Bon	Bon	
	1	WKBH118B WKBH112	2	5,000 7,000	2	5,000 6,000	2	5,000 6,000	2	5,000 6,000	2	5,000 6,000	5,000 6,000	5,000 6,000	Bon Bon	Bon Bon	Bon		Bon	
		WKBH112A	0	7,000	0	6,000	2	6,500	2	5,500	2	5,000	5,000	5,000	Bon	Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH112A	10	5,000	7	5,000	11	5,091	11	5,000	12	5,000	5,000	5,000	Bon	Bon	Bon	Bon	Bon	
		WKBH113A	2	5,500	2	5,500	2	5,000	2	5,000	2	5,000	5,000	5,000	Bon	Bon	Bon	Bon	Bon	
		WKBH114	3	5,000	2	5,000	2	5,000	2	5,000	2	5,000	5,000	5,000	Bon	Bon	Bon	Bon	Bon	
ASR C		WKBH114A	1	5,000	2	4,500	2	4,000	2	5,000	2	5,000	5,000	5,000	Bon	Bon	Bon	Bon	Bon	
(proximité		WKBH115	0		0		1	5,000	0		2	6,000	6,000	6,000	Bon	Bon	Bon		Bon	
rivière)		WKBH115A	0		0		2	12,000	2	6,000	2	5,500	5,900	6,000	Bon	Bon	Bon	Bon	Bon	
		WKBH115B	2	4,500	2	4,500	2	4,500	2	4,000	2	4,000	4,000	4,000	Bon	Bon	Bon	Bon	Bon	
		WKBH116	2	5,500	2	6,500	2	7,500	2	6,500	2	5,500	5,900	6,000	Bon	Bon	Bon	Bon	Bon	
		WKBH116A	2	5,500	2	6,000	2	6,000	2	6,000	2	5,500	5,500	5,500	Bon	Bon	Bon	Bon	Bon	
		WKBH116B WTBH9	2	4,500 5,500	1	4,500 6,000	0	4,500	1	5,000 6,000	2	5,000 6,000	5,000 6,000	5,000 6,000	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
	1	WKBH32	2	6,000	2	6,000	2	5,500	2	5,500	2	5,500	5,900	6,000	Bon	Bon	Bon	Bon	Bon	
ASR D	Ka dji	WK6-14	1	7,000	2	6,000	1	6,000	1	6,000	2	6,000	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
(vallées		WTBH11	2	6,500	2	6,000	2	6,500	2	7,000	2	6,500	6,900	7,000	Bon	Bon	Bon	Bon	Bon	
adjacentes)	Rivière Trou Blei	WTBH11A	2	6,500	2	6,500	2	6,500	1	6,000	2	6,000	6,000	6,000	Bon	Bon	Bon	Bon	Bon	
		7-1	0		2	11,590	2	6,750	0		2	4,607	8,145	9,030	Bon	Bon	Bon		Bon	
Port	Baie de Prony	7-2	0		0		0		0		2	10,500	10,900	11,000	Bon	Bon			Bon	Bon
ļ	ļ	7-3	1	11,000	2	16,000	2	8,500	0		2	8,500	8,900	9,000	Bon	Bon	Bon		Bon	
		6-1	4	8,500	2	8,000	4	8,500	4	8,500	4	8,000	8,000	8,000	Bon	Bon	Bon	Bon	Bon	
		6-13	6	7 500	2	7,000	5	6,750	4	6,500	4	6,250	6,700	7,000	Bon	Bon	Bon	Bon	Bon	
		6-14 6-14a	6	7,500 9,000	3	7,330 8,500	10	7,800 8,200	5 10	7,600 9,200	4 11	7,750 10,000	8,000 11,000	8,000 11,000	Bon Bon	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		6-14a 6-1a	4	7,750	2	7,500	4	8,000	4	8,000	4	8,000	8,000	8,000	Bon	Bon	Bon	Bon	Bon	
		6-2	4	6,750	2	7,000	4	6,250	4	7,000	4	6,750	7,000		Bon	Bon	Bon	Bon	Bon	
		6-2a	4	7,000	2	7,000	4	6,750	4	7,000	4	7,250	7,700	8,000	Bon	Bon	Bon	Bon	Bon	
Heino	CBN	6-3	4	7,750	2	8,000	4	8,000	4		4	8,000	8,700	9,000	Bon	Bon	Bon	Bon	Bon	P.C.
Usine	CBIN	6-3a	4	8,000	2	9,000	3	8,667	3	9,667	3	9,333	9,800	10,000	Bon	Bon	Bon	Bon	Bon	Bon
		6-4	4	12,250	2	13,500	4	9,500	4	8,250	3	8,333	8,800	9,000	Bon	Bon	Bon	Bon	Bon	
		6-5	5	7,000	2	7,000	4	7,500	4	_	4	7,250	7,700	8,000	Bon	Bon	Bon	Bon	Bon	
		6-6	5	7,600	2	7,000	4	7,250	4	_	4	8,250	8,700	9,000	Bon	Bon	Bon	Bon	Bon	
		6-7	5	9,000	4	22,750	6	10,167	4	_	4	8,250	8,700	9,000	Bon	Bon	Bon	Bon	Bon	
		6-7a	4	9,250	2	9,000	4	8,000	3	8,333	3	8,000	8,800	9,000	Bon	Bon	Bon	Bon	Bon	
		6-8 6-8a	5 4	13,000 9,750	2	12,500 8,500	4	11,250 8,250	4	10,250 8,500	4	9,500 8,500	9,000	10,000 9,000	Bon	Bon	Bon	Bon	Bon	
	L	U-0d	4	9,750		6,500	4	6,250	4	8,500	4	8,500	9,000	9,000	Bon	Bon	Bon	Bon	Bon	

En 2016, la concentration en ions sodium n'est pas connue dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

La concentration en ions sodium dans les eaux souterraines a été mesurée en 2016 dans tous les autres piézomètres, dont 3 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle, ainsi qu'une tendance à l'augmentation sur la chronique de données 2012-2016, justifiant de leur déclassement. Un score « Mauvais » a ainsi été attribué à 3 piézomètres sous influence variable de l'Aire de Stockage des Résidus (WK17, WKBH103 et WKBH109). Un score « Bon » reste octroyé cette année au reste des piézomètres de suivi des eaux souterraines pour ce paramètre.

4.2.2.3.4 *Ions calcium*

La concentration en ions calcium (Ca²⁺) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en ions calcium dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 1 mg/L. La réglementation française n'inclut pas à ce jour de valeurs seuils pour la concentration en calcium dans les eaux douces.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 137 : Détermination de la gamme de variations de référence pour la concentration en ions calcium dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	Ca ²⁺ (mg	/L) - eaux de	surface	- 1	q = 0,5 m	g/L		
Position	Type de	Station	s de référence	N	moy	moy	Per 10	Per 90
Position	BV	Zone	Station	2016	2016	2016	Per 10	Per 90
		Kwe Ouest	3-A	5	1,00			
Amont	Grand	Carénage	Carénage Amont	1	0,50	0.65	0.50	0.00
Amont	Granu	Kaoris	Kaoris Amont	1	0,60	0,65	0,50	0,88
		Kuebini	Kueb Amont	1	0,50			
		Trou Bleu	3-C	12	1,00			
Aval	Grand	Carénage	Carénage Aval	1	0,50	0.63	0.50	0.05
Avai	Grand	Kaoris	Kaori Aval	1	0,50	0,63	0,50	0,85
		Kuebini	Kueb Aval	1	0,50			

Résultats et analyse

La concentration en ions calcium n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, 8 stations de suivi des eaux de surface des creeks présentent des valeurs moyennes et percentiles 90 plus élevées que celles de leurs gammes de référence respectives, et 3 d'entre elles enregistrent également une tendance à la hausse sur la chronique de données 2012-2016. Un score final « Mauvais » a donc été attribué à ces 3 stations, situées en amont de la Kwé Ouest (3-B, 3-D et 3-E).

Les stations de suivi des dolines en revanche ne présentent aucune évolution remarquable des concentrations en calcium au cours du temps, un score « Bon » est donc attribué aux trois dolines contrôlées en 2016.

Tableau 138 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 pour la concentration en ions calcium dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	Ca ²⁺ (mg	/L) - eaux de surfa	ace		lq = 1	mg,	/L												
Position	Type de			•	2012		2013		2014		2015		:	2016		Moy et Per90 2016	Pas de hausse	Score 2016	Score 2016
POSITION	BV	Zone	Station	N	Moy	N	Moy	N	Moy	Ν	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	par station	par zone
			3-B	14	1,00	25	1,28	12	1,42	33	1,45	145	3,26	7,90	16,90	Mauvais	Mauvais	Mauvais	
		Kwe Ouest	3-D	2	2,00	13	12,54	4	8,00	23	11,65	112	19,42	32,07	40,00	Mauvais	Mauvais	Mauvais	Mauvais
		kwe odest	3-E	2	1,00	2	1,00	2	1,50	1	1,00	3	3,00	4,60	5,00	Mauvais	Mauvais	Mauvais	ividuvais
	Grand		4-N	9	1,00	2	1,00	11	1,09	12	1,08	12	1,58	3,80	4,00	Mauvais	Bon	Bon	
Amont	Grana	Kwe Nord	4-M	12	1,00	12	1,08	12	1,00	12	1,17	12	1,08	1,00	2,00	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	1,00	12	1,00	6	1,00	12	1,00	11	1,00	1,00	1,00	Bon	Bon	Bon	Bon
		CBN Amont	6-Q	13	3,31	12	2,58	11	2,45	11	2,20	10	2,60	3,30	6,00	Mauvais	Bon	Bon	Bon
		CDIV AIIIOITE	6-S	12	1,17	12	1,00	7	1,00	8	1,75	10	1,40	2,10	3,00	Mauvais	Bon	Bon	Don
	Petit	Trüu Amont	TR-02	12	1,00	12	1,00	5	1,00	12	1,00	0					Bon		
		Kwe principale	1-A	12	1,00	12	1,00	11	1,00	13	0,98	12	1,00	1,00	1,00	Bon	Bon	Bon	Bon
		Kwe pimerpare	1-E	14	0,96	13	0,96	8	1,00	12	1,00	12	1,00	1,00	1,00	Bon	Bon	Bon	Don
Aval	Grand		6-BNOR1	4	1,75	5	1,40	4	1,25	4	1,00	4	1,75	3,10	4,00	Mauvais	Bon	Bon	
71001		CBN Aval	6-T	6	1,81	7	1,47	4	1,00	5	1,04	10	1,30	2,10	3,00	Mauvais	Bon	Bon	Bon
			6-U	1	1,00	0		1	3,00	2	1,00	1	1,00	1,00	1,00	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	1,00	12	1,00	5	1,00	10	1,00	0					Bon		
			6-R	12	17,17	12	17,42	10	15,50	13	15,08	10	18,30	21,50	44,00		Bon	Bon	
			DOL-2	2	1,00	2	1,00	1	1,00	1	1,00	0					Bon		
			DOL-3	2	1,00	1	1,00	1	1,00	0		0					Bon		
		CBN	DOL-4	2	1,00	2	1,00	2	1,00	1	1,00	0					Bon		Bon
		CDIV	DOL-8	1	1,00	1	1,00	1	1,00	1	1,00	0					Bon		Don
Doli	nes		DOL-9	1	1,00	1	1,00	1	1,00	0		0					Bon		
			DOL-10	0		1	1,00	0		0		1	1,00	1,00	1,00		Bon	Bon	
			DOL-15	0		1	1,00	0		0		0					Bon		
			DOL-11	2	3,50	1	4,00	1	3,00	0		2	3,50	3,90	4,00		Bon	Bon	
		Ka dji	DOL-12	1	1,00	1	1,00	1	2,00	1	1,00	0					Bon		Bon
			DOL-13	2	1,00	2	1,00	0		1	1,00	0					Bon		

En 2016, la concentration en ions calcium n'est pas connue dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

La concentration en ions calcium dans les eaux souterraines a été mesurée en 2016 dans tous les autres piézomètres, dont 14 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Seuls 5 d'entre eux montrent également une tendance à l'augmentation sur la chronique de données 2012-2016, justifiant de leur déclassement. Un score « Mauvais » a ainsi été attribué à 4 piézomètres sous influence variable de l'Aire de Stockage des Résidus (WK17, WK20, WKBH102 et WKBH103), ainsi qu'au piézomètre 6-14a sous influence de l'usine. Les concentrations en calcium d'environ 300 mg/L enregistrées au piézomètre 7-1 situé au niveau du port sont attribuables à l'infiltration d'eau salée. Un score « Bon » reste octroyé cette année au reste des piézomètres de suivi des eaux souterraines pour ce paramètre.

Tableau 139 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle pour la concentration en ion calcium dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Ca ²⁺ (mg/	L) - eaux souterra			lq = 1				Iq = 0,						En bleu	: piézomètres de c	ontrôle			
Source	Stations de		_	2012		2013	-	2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score 2015	Score 2016	Score 2016
d'influence	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	temporelle ?		par piézo.	par zone
	Kwe Nord	4-z1	4	1,75	1	1,00	4	1,00	4	1,00	3	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
	KWE NOIU	4-z1A 4-z1B	4	1,75 15,75	3	2,00 19,00	4	2,00 17,25	3	1,75 20,67	0					Bon Bon	Bon Mauvais		
		4-z2	4	1,00	2	1,00	4	1,00	4	1,00	4	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	4,25	2	2,50	4	2,75	4	2,75	0	_,	_,	_,		Bon	Bon		Bon
		4-z4	4	1,25	2	1,00	4	1,00	4	1,00	5	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		4-z4A	4	2,00	1	2,00	3	2,00	4	2,25	0					Bon	Bon		
		4-z5	4	2,00	1	1,00	5	1,00	4	1,00	5	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		4-z5A	4	4,00	1	5,00	2	4,00	4	6,00	0					Bon	Mauvais		
ASR 0 (sources)		WK17	51	1,08	52	1,31	50	2,25	75	3,35	52	9,14	14,00	16,00	Mauvais	Mauvais	Bon	Mauvais	
		WK20	51	1,04	52 0	1,02	50	0,97	52	1,05	51	2,45	3,00	4,00	Mauvais	Mauvais	Bon	Mauvais	
		WK6-11 WK6-11A	2	1,00	2	1,00	0	1,00	3	5,33 1,00	2	2,00 1,00	2,00 1,00	2,00 1,00	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WK6-12	2	1,50	2	1,50	11	1,27	12	1,67	12	1,67	2,00	2,00	Bon	Bon	Bon	Bon	
ASR A		WK6-12A	2	1,00	2	1,00	10	1,13	12	1,08	12	1,17	1,90	2,00	Bon	Bon	Bon	Bon	
(piézomètres		WK6-9	2	1,50	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	1,00	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		WKBH102	11	1,00	7	1,00	12	1,41	12	1,00	12	2,83	4,00	8,00	Mauvais	Mauvais	Bon	Mauvais	
		WKBH102A	2	1,00	2	1,00	2	1,00	2	1,50	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		WKBH103	2	1,00	2	1,00	3	1,70	12	2,33	12	6,00	9,00	10,00	Mauvais	Mauvais	Bon	Mauvais	
		WK6-10	0	1.00	1	1,00	3	3,63	2	2,00	2	2,50	2,90	3,00	Mauvais	Bon	Bon	Bon	
		WK6-10A WKBH109	0	1,00	0	1,00	2	1,00 3,65	2	1,00 2,00	2	1,00 2,50	1,00 2,90	1,00 3,00	Bon Mauvais	Bon Bon	Bon Bon	Bon Bon	
		WKBH109 WKBH109A	2	1,00	2	1,00	2	1,00	2	1,00	11	1,18	2,00	2,00	Bon	Bon	Bon	Bon	
		WKBH109A	10	1,00	7	1,00	12	1,00	12	1,00	12	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
	Kwe Ouest	WKBH110A	0		0	_,	0		2	1,00	11	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
ASR B		WKBH110B	2	1,00	2	1,00	2	1,00	2	1,00	11	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
(zone tampon)		WKBH111	2	1,00	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		WKBH117	2	1,00	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		WKBH117A	2	1,00	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	Bon
		WKBH117B	2	1,00	2	1,00	2	1,00	1	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	20
		WKBH118	2	1,00	2	3,50	2	3,00	2	2,50	2	3,00	3,00	3,00	Mauvais	Bon	Bon	Bon	
		WKBH118A	2	1,50	2	1,50	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		WKBH118B WKBH112	2	1,00 1,50	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon Bon	Bon Bon	Bon Bon	Bon	
		WKBH112A	0	1,30	0	1,00	2	3,50	2	3,50	2	3,00	3,80	4,00	Mauvais	Bon	Bon	Bon Bon	
		WKBH113	10	1,00	7	1,00	12	0,98	11	1,00	12	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		WKBH113A	2	1,00	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		WKBH114	3	1,00	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
ASR C		WKBH114A	1	2,00	2	1,00	2	1,50	2	2,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
(proximité		WKBH115	0		0		1	2,00	0		2	3,00	3,00	3,00	Mauvais	Bon		Bon	
rivière)		WKBH115A	0		0		2	8,70	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		WKBH115B	2	2,50	2	2,00	2	2,00	2	2,00	2	1,50	1,90	2,00	Bon	Bon	Bon	Bon	
		WKBH116	2	2,00	2	2,00	2	10,55	2	7,50	2	4,50	4,90	5,00	Mauvais	Bon	Mauvais	Bon	
		WKBH116A	2	1,00	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		WKBH116B WTBH9	2	1,00	1	1,00	0	1,00	1	1,00	2	1,00	1,00	1,00	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH32	2	1,00	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
ASR D	Kadji	WK6-14	1	1,00	2	1,00	1	1,00	1	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
(vallées		WTBH11	2	1,00	2	1,00	2	1,00	2	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
adjacentes)	Rivière Trou Blei	WTBH11A	2	1,00	2	1,00	2	1,00	1	1,00	2	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		7-1	1	306	2	343	2	282	0		2	347	353	354	Bon	Bon		Eau mer	
Port	Baie de Prony	7-2	0		0		0		0		2	1,50	1,90	2,00	Bon			Bon	Bon
		7-3	1	9,00	2	7,00	2	7,00	0		2	6,50	6,90	7,00	Mauvais	Bon		Bon	
		6-1	4	1,00	2	1,00	4	1,00	4	1,25	4	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		6-13	6	1 00	2	1,00	4	1,25	5	1,00	4	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		6-14 6-14a	6	1,83 5,67	4	1,00 9,50	5 10	3,00 10,36	10	1,60 10,60	11	1,25 12,00	1,70 14,00	2,00 14,00	Bon Mauvais	Bon Mauvais	Bon Mauvais	Bon Mauvais	
		6-14a 6-1a	4	1,00	2	1,00	4	1,00	4	1,00	4	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		6-14	4	1,00	2	1,00	4	1,00	4	1,00	4	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		6-2a	4	1,00	2	1,00	4	1,00	4	1,00	4	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
Heima	CDAL	6-3	4	1,00	2	1,00	4	1,00	4	1,00	4	1,00	1,00	1,00	Bon	Bon	Bon	Bon	Per-
Usine	CBN	6-3a	4	3,00	2	2,50	3	2,33	3	3,33	3	2,00	2,00	2,00	Bon	Bon	Bon	Bon	Bon
		6-4	4	1,25	2	1,00	4	1,00	4	1,00	3	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		6-5	5	1,00	2	1,00	4	1,00	4	1,00	4	1,25	1,70	2,00	Bon	Bon	Bon	Bon	
		6-6	5	1,80	2	1,00	4	1,25	4	2,50	4	1,50	2,00	2,00	Bon	Bon	Bon	Bon	
		6-7	5	1,20	4	2,50	6	1,50	4	2,75	4	2,00	2,00	2,00	Bon	Bon	Bon	Bon	
		6-7a	4	1,00	2	1,00	4	1,00	3	1,33	3	1,00	1,00	1,00	Bon	Bon	Bon	Bon	
		6-83	5	1,80	2	2,00	4	2,00	4	2,00	4	2,00	2,00	2,00	Bon	Bon	Bon	Bon	
		6-8a	4	3,00	2	2,50	4	2,25	4	2,50	4	2,50	3,00	3,00	Mauvais	Bon	Bon	Bon	

4.2.2.3.5 Ions potassium

La concentration en ions potassium (K⁺) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en ions potassium dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,1 mg/L. La réglementation française ne prévoit pas à ce jour de valeurs seuils pour la concentration en potassium dans les eaux douces.

En 2016, 2 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 140 : Détermination de la gamme de variations de référence pour la concentration en ions potassium dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

ı	K [†] (mg/L)	- eaux de su	rface					
Position	Type de	Stations of	le référence	N	moy	moy	Da :: 10	Per 90
Position	BV	Zone	Station	2016	2016	2016	Per 10	Per 90
Amont	Grand	Kwe Ouest	3-A	5	0,30	0,30	0,50	0,70
Aval	Grand	Trou Bleu	3-C	12	0,20	0,20	0,30	0,40

Résultats et analyse

La concentration en ions potassium n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, 2 stations de suivi des eaux de surface des creeks présentent des valeurs moyennes et percentiles 90 plus élevées que celles de leurs gammes de référence respectives, et enregistrent également une tendance à la hausse sur la chronique de données 2012-2016. Un score final « Mauvais » a donc été attribué à ces 2 stations (3-B et 3-D), situées en amont de la Kwé Ouest.

Les stations de suivi des dolines en revanche ne présentent aucune évolution remarquable des concentrations en calcium au cours du temps, un score « Bon » est donc attribué aux trois dolines contrôlées en 2016.

Tableau 141 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 pour la concentration en ions potassium dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	K ⁺ (mg	/L) - eaux de surfa	ice		Iq = 0,	1 mg	g/L												
Position	Type	Stations de	suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score 2016	Score 2016
POSITION	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	Ν	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	par station	par zone
			3-B	14	0,22	25	0,33	12	0,19	33	0,25	145	1,13	1,00	15,00	Mauvais	Mauvais	Mauvais	
		Kwe Ouest	3-D	2	0,40	13	0,39	4	0,38	23	0,79	113	1,12	1,00	9,00	Mauvais	Mauvais	Mauvais	Mauvais
		RWC Oucst	3-E	2	0,25	2	0,20	2	0,25	1	0,20	3	0,30	0,38	0,40	Bon	Bon	Bon	Madvais
	Grand		4-N	9	0,31	2	0,45	11	0,42	12	0,50	12	0,70	0,88	1,30	Mauvais	Bon	Bon	
Amont	Giuna	Kwe Nord	4-M	12	0,19	12	0,21	12	0,19	12	0,28	12	0,24	0,48	0,50	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	0,22	12	0,21	6	0,20	12	0,25	11	0,22	0,30	0,30	Bon	Bon	Bon	Bon
		CBN Amont	6-Q	13	0,42	12	0,34	11	0,42	11	0,40	10	0,36	0,50	0,50	Bon	Bon	Bon	Bon
		CDIV AIIIOITE	6-S	12	0,26	12	0,20	7	0,20	8	0,20	10	0,25	0,31	0,40	Bon	Bon	Bon	Boli
	Petit	Trüu Amont	TR-02	12	0,23	12	0,21	5	0,22	12	0,23	0					Bon		
		Kwe principale	1-A	12	0,21	12	0,18	11	0,19	13	0,28	12	0,23	0,30	0,30	Bon	Bon	Bon	Bon
		kwe pilikipale	1-E	14	0,20	14	0,20	8	0,23	12	0,23	12	0,23	0,30	0,30	Bon	Bon	Bon	Boli
Aval	Grand		6-BNOR1	4	0,28	5	0,26	4	0,20	4	0,25	4	0,28	0,37	0,40	Bon	Bon	Bon	
Avai		CBN Aval	6-T	6	0,27	7	0,22	4	0,20	5	0,38	10	0,25	0,31	0,40	Bon	Bon	Bon	Bon
			6-U	1	0,30	0		1	0,30	2	1,00	1	0,20	0,20	0,20	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	0,22	12	0,23	5	0,24	10	0,24	0					Bon		
			6-R	12	0,37	12	0,23	10	0,25	13	0,30	10	0,25	0,40	0,40		Bon	Bon	
			DOL-2	2	0,45	2	0,20	1	0,20	1	0,20	0					Bon		
			DOL-3	2	0,15	1	0,20	1	0,10	0		0					Bon		
		CBN	DOL-4	2	0,25	2	0,20	2	0,15	1	0,20	0					Bon		Bon
		CBIN	DOL-8	1	0,20	1	0,30	1	0,20	1	0,20	0					Bon		BOII
Doli	nes		DOL-9	1	0,20	1	0,20	1	0,20	0		0					Bon		
			DOL-10	0		1	0,10	0		0		1	0,40	0,40	0,40		Bon	Bon	
			DOL-15	0	Ť	1	0,30	0		0		0							
			DOL-11	2	1,75	1	1,00	1	1,00	0		2	1,25	0,53	1,60		Bon	Bon	
		Kadji	DOL-12	1	0,90	1	0,50	1	0,60	1	1,30	0					Bon		Bon
			DOL-13	2	0,30	2	0,25	0		1	0,30	0					Bon		

En 2016, la concentration en ions potassium n'est pas connue dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

La concentration en ions potassium dans les eaux souterraines a été mesurée en 2016 dans tous les autres piézomètres, dont 11 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Trois d'entre elles montrent également une tendance à l'augmentation sur la chronique de données 2012-2016, justifiant de leur déclassement. Un score « Mauvais » a ainsi été attribué à 3 piézomètres sous influence variable de l'Aire de Stockage des Résidus (WK17, WK6-11 et WKBH109). Un score « Bon » reste octroyé cette année au reste des piézomètres de suivi des eaux souterraines pour ce paramètre.

Tableau 142 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle pour la concentration en ion potassium dans les eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

K ⁺ (mg/	L) - eaux souterrai	ines		Iq = 0,	.1 mg	g/L		En	ble	ı : piézo	mèt	res de o	ontrôle						
Source	Stations de		_	2012		2013		2014	_	2015			2016		Moy et Per90 2016	Pas de hausse	Score 2015	Score 2016	Score 2016
d'influence	Zone	Station	N	Moy	Per 90	Max	≤ piézo. contrôle ?	temporelle?		par piézo.	par zone								
	Kwe Nord	4-z1 4-z1A	4	0,23	1	0,10	4	0,15	4	0,18	0	0,18	0,20	0,20	Bon	Bon	Bon Bon	Bon Bon	
	KWC NOIG	4-21A 4-21B	4	1,25	3	0,00	4	0,93	3	1,13	0					Bon	Bon	Bon	
		4-z2	4	0,20	2	0,20	4	0,18	4	0,20	4	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
UPM		4-z2A	4	0,80	2	0,65	4	0,63	4	0,88	0					Bon	Bon	Bon	Bon
		4-z4	4	1,00	2	0,95	4	1,00	4	1,20	5	1,14	1,26	1,30	Mauvais	Bon	Bon	Bon	
		4-z4A	4	1,48	1	1,35	3	1,23	4	1,35	0					Bon	Bon	Bon	
		4-z5 4-z5A	4	0,58	1	0,15	5	0,20	4	0,23	5	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
		4-25A WK17	51	1,18 0,30	1 52	1,45 0,29	2 50	1,50 0,34	76	2,35 0,43	0 52	0,62	0,70	1,00	Mauvais	Bon Mauvais	Bon Bon	Bon	
ASR 0 (sources)		WK20	51	0,30	52	0,29	50	0,34	52	0,43	51	0,32	0,40	0,50	Bon	Bon	Bon	Mauvais Bon	
		WK6-11	1	0,20	0	-,	2	0,45	3	4,17	2	1,10	1,26	1,30	Mauvais	Mauvais	Bon	Mauvais	
		WK6-11A	2	0,70	2	0,50	0		3	0,27	2	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
		WK6-12	2	0,30	2	0,30	11	0,58	12	0,27	12	0,31	0,39	0,40	Bon	Bon	Bon	Bon	
ASR A		WK6-12A	2	0,30	2	0,30	10	0,37	12	0,27	12	0,31	0,30	0,40	Bon	Bon	Bon	Bon	
(piézomètres		WK6-9	2	0,45	2	0,30	2	0,30	2	0,40	2	0,30	0,30	0,30	Bon	Bon	Bon	Bon	
d'alerte)		WK6-9A WKBH102	2 11	0,20	7	0,25	11	0,20	2 12	0,25	2 12	0,20	0,20	0,20	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH102 WKBH102A	2	0,40	2	0,40	2	0,24	2	0,55	2	0,55	0,59	0,60	Bon	Bon	Bon	Bon	
		WKBH103	2	0,20	2	0,30	3	0,30	12	0,38	12	0,54	0,60	0,60	Bon	Bon	Bon	Bon	
		WK6-10	0		1	1,00	3	5,10	2	2,60	2	1,20	1,52	1,60	Mauvais	Bon	Bon	Bon	
		WK6-10A	2	1,00	1	0,80	1	0,60	2	0,70	2	0,55	0,59	0,60	Bon	Bon	Bon	Bon	
		WKBH109	0		0		2	0,75	2	0,60	2	1,15	1,51	1,60	Mauvais	Mauvais	Bon	Mauvais	
		WKBH109A	2	0,30	2	0,30	2	0,30	2	0,40	11	0,37	0,40	0,40	Bon	Bon	Bon	Bon	
	Kwe Ouest	WKBH110	10	0,22	7	0,20	12	0,27	12	0,23	12	0,26	0,30	0,30	Bon	Bon	Bon	Bon	
ASR B	kwe ouest	WKBH110A WKBH110B	2	0,20	2	0,25	2	0,20	2	0,25 0,25	11	0,27	0,30	0,30	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
(zone tampon)		WKBH110B	2	0,20	2	0,23	2	0,20	2	0,25	2	0,27	0,30	0,30	Bon	Bon	Bon	Bon	
(20110 00111)		WKBH117	2	0,20	2	0,20	2	0,20	2	0,20	2	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
		WKBH117A	2	0,30	2	0,20	2	0,20	2	0,25	2	0,20	0,20	0,20	Bon	Bon	Bon	Bon	Bon
		WKBH117B	2	0,20	2	0,15	2	0,20	1	0,10	2	0,20	0,20	0,20	Bon	Bon	Bon	Bon	БОП
		WKBH118	2	0,50	2	0,45	2	0,40	2	0,50	2	0,50	0,50	0,50	Mauvais	Bon	Bon	Bon	
		WKBH118A	2	0,50	2	0,45	2	0,40	2	0,50	2	0,50	0,50	0,50	Mauvais	Bon	Bon	Bon	
-		WKBH118B WKBH112	2	0,40	2	0,40	2	0,35	2	0,35	2	0,30	0,30	0,30	Bon	Bon	Bon	Bon Bon	
		WKBH112 WKBH112A	0	0,25	0	0,20	2	0,20	2	0,25	2	0,20	0,20	0,20	Bon Bon	Bon Bon	Bon Bon	Bon	
		WKBH113	10	0,15	7	0,19	11	0,10	11	0,13	12	0,13	0,20	0,20	Bon	Bon	Bon	Bon	
		WKBH113A	2	0,20	2	0,25	2	0,30	2	0,35	2	0,30	0,30	0,30	Bon	Bon	Bon	Bon	
		WKBH114	3	0,17	2	0,15	2	0,10	2	0,20	2	0,10	0,10	0,10	Bon	Bon	Bon	Bon	
ASR C		WKBH114A	1	0,30	2	0,20	2	0,20	2	0,25	2	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
(proximité		WKBH115	0		0		1	0,30	0		2	0,30	0,30	0,30	Bon	Bon		Bon	
rivière)		WKBH115A	0	0.40	0	0.25	2	0,90	2	0,40	2	0,25	0,29	0,30	Bon	Bon	Bon	Bon	
		WKBH115B WKBH116	2	0,40	2	0,35	2	0,30	2	0,35 0,75	2	0,30	0,30	0,30	Bon Bon	Bon Bon	Bon Bon	Bon Bon	
		WKBH116A	2	0,30	2	0,25	2	0,30	2	0,40	2	0,30	0,30	0,30	Bon	Bon	Bon	Bon	
		WKBH116B	2	0,20	2	0,15	2	0,20	2	0,20	2	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
		WTBH9	2	0,20	1	0,20	0		1	0,40	2	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
ASR D		WKBH32	2	0,45	2	1,00	2	0,20	2	0,35	2	0,30	0,30	0,30	Bon	Bon	Bon	Bon	
(vallées	Kadji	WK6-14	1	0,50	2	0,25	1	0,20	1	0,20	2	0,30	0,30	0,30	Bon	Bon	Bon	Bon	
	Rivière Trou Bleı	WTBH11 WTBH11A	2	0,20	2	0,20	2	0,20	2	0,25	2	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
		W1BH11A 7-1	1	0,20	2	0,20	2	0,20	0	0,20	2	0,20 0,52	0,20 0,58	0,20 0,59	Bon Mauvais	Bon Bon	Bon	Bon Bon	
Port	Baie de Prony	7-1	0	0,33	0	0,40	0	0,20	0		2	0,32	0,29	0,39	Bon	DOII		Bon	Bon
		7-3	1	0,10	2	0,40	2	0,20	0		2	0,20	0,28	0,30	Bon	Bon		Bon	
		6-1	4	0,43	2	0,45	4	0,33	4	0,30	4	0,30	0,37	0,40	Bon	Bon	Bon	Bon	
		6-13	0		1	0,20	4	0,18	4	0,23	4	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
		6-14	6	0,35	3	0,27	5	0,34	5	0,40	4	0,28	0,30	0,30	Bon	Bon	Bon	Bon	
		6-14a	6	0,97	4	0,78	10	0,77	10	0,81	11	0,92	1,10	1,40	Mauvais	Bon	Bon	Bon	
		6-1a 6-2	4	0,20	2	0,50	4	0,20	4	0,23 0,25	4	0,23	0,27	0,30	Bon	Bon	Bon	Bon Bon	
		6-2a	4	0,25	2	0,20	4	0,18	4	0,25	4	0,20	0,20	0,20	Bon Bon	Bon Bon	Bon Bon	Bon	
1		6-3	4	0,28	2	0,20	4	0,23	4	0,25	4	0,25	0,34	0,30	Bon	Bon	Bon	Bon	
Usine	CBN	6-3a	4	0,30	2	0,50	3	0,30	3	0,30	3	0,30	0,30	0,30	Bon	Bon	Bon	Bon	Bon
		6-4	4	0,33	2	0,30	4	0,23	4	0,25	3	0,20	0,20	0,20	Bon	Bon	Bon	Bon	
		6-5	5	0,35	2	0,20	4	0,23	4	0,25	4	0,28	0,37	0,40	Bon	Bon	Bon	Bon	
		6-6	5	0,28	2	0,15	4	0,20	4	0,35	4	0,23	0,27	0,30	Bon	Bon	Bon	Bon	
		6-7	5	0,34	4	0,90	6	0,62	4	0,35	4	0,33	0,37	0,40	Bon	Bon	Bon	Bon	
		6-7a 6-8	5	0,40	2	0,45	4	0,33	4	0,43	4	0,40	0,40 0,47	0,40	Bon Mauvais	Bon	Bon Bon	Bon Bon	
		6-8a	4	0,52	2	0,50	4	0,48	4	0,58	4	0,43 0,58	0,47	0,50 0,70	Mauvais	Bon Bon	Bon Bon	Bon	
		- 00	т.	0,05		0,30		0,33	_+	0,00	_	0,30	0,07	0,70	IVIO UVO IS	DUII	DOII	DOLL	

4.2.2.3.6 Synthèse des éléments majeurs

- Dans les eaux de surface :

Tableau 143 : Récapitulatif des scores 2016 par paramètre et par station pour les éléments majeurs dans le milieu eaux douces de surfaces des creeks et dolines.

-	_	Stations	de suivi		Para	nètres			iques
Position	Type de	Zone	Station	Influence	<u> </u>		ents m		
	BV		3-A ^	Influence modérée	Cl	Mg ²⁺	Na [†]	Ca ²⁺	K ⁺
			3-B^	ASR		- -	=		
			3-D^	ASR		7	=		
			3-E ^	ASR		7	=		
			4-N ^	UPM-CIM		И	=		
			KO4-10 ^	Mine					
			KO4-20-I ^	Mine					
		Kwe Ouest	KO4-50 ^	Mine					
Amont			KO5-10-I ^	UPM-CIM					
			KO5-20-I ^	UPM-CIM					
	Grand		KO5-20-P ^	UPM-CIM					
	Granu		KO5-50-I ^	UPM-CIM					
			KWO-10 ^	ASR					
			KWO-20 ^	ASR					
			KWO-60 ^	ASR / UPM-CIM					
		Kwe Nord	4-M ^	UPM-CIM		И	=		
		Kwe Est	KE-05 ^	Mine					
			1-A ^	UPM-CIM, ASR		. И	=		
			1-E ^	UPM-CIM, ASR		И	=		
Aval		Kwe principale	KWP-10 ^	UPM-CIM					
			KWP-40 ^	UPM-CIM					
			KWP-70 ^	UPM-CIM					
Amont		CBN Amont	6-Q ^ 6-S ^	Usine Usine		=	=		
MINUIT		CON AIIIONT	CBN-01 ^	Usine					
			6-BNOR1^	Usine		И	=		
			6-T^	Usine		R	=		
	Grand		6-U ^	Usine		=	=		
	G.aa		CBN-10 ^	Usine					
Aval		CBN Aval	CBN-30 ^	Usine					
			CBN-40 ^	Usine					
			CBN-70 ^	Usine					
			CBN-AFF-02 ^	Usine					
Amont	Grand	Kadji	5-E ^	Base Vie					
Amont		Trüu Amont	TR-02 ^	Mine					
Amont		ITUU AIIIOIIL	TR-03 ^	Mine					
	Petit		TR-01 ^	Mine					
Aval		Trüu Aval	TR-04 ^	Mine					
			TR-05 ^	Mine					
			TRU-70 ^	Mine	_				
Amont		Kuébini Amont	Kueb Amont	Hors influence		=	=		
			Kueb Aval	Hors influence		=	=		
Aval	Grand	Kuébini Aval	KUB-60 ^	Hors influence					
			KUB-50 ^	Hors influence Hors influence					
Amont		Carénage Amont	Carénage Amont	Hors influence		=	=		
Aval	Grand	Carénage Aval	Carénage Aval	Hors influence			=		
Amont	_	Kaoris Amont	Kaoris Amont	Hors influence			=		
Aval	Grand	Kaoris Aval	Kaoris Aval	Hors influence		=	=		
			3-C^	Hors influence		=	=		
Aval	Grand	Trou Bleu	TBL-50 ^	Hors influence					
			TBL-70 ^	Hors influence					
			WAD-40 ^	Hors influence					
Aval	Petit	Wadjana	WAD-50 ^	Hors influence					
			WAD-70 ^	Hors influence					
			6-R ^	Usine	=	=	=		
			DOL-2 ^	Usine, BV					
			DOL-3 ^	Usine, BV					
Doline	Grand	CBN	DOL-4 ^	Usine, BV					
		55.,	DOL-8 ^	Usine, BV					
			DOL-9 ^	Usine, BV					
			DOL-10 ^	Epuration, BV					
			DOL-15 ^	Base Vie					
D-II.		W- !!!	DOL-11 ^	Epuration, BV					
Doline	Grand	Kadji	DOL-12 ^	Base Vie					
			DOL-13 ^	Base Vie					
Doline	Grand	Carénage	Doline 1	Hors influence					
Doline	Grand	Plaine des lacs	Doline 2 Doline 3	Hors influence Hors influence					
	<u>Légende :</u>	tre mesuré sur sédi	= : score similaire > : déclassement > : surclassemen				Bon Mauva Indéte	ais erminé	
	^: station	suivie par Vale NC ations réglementai					n sous	influen influen	ice

- Dans les eaux souterraines :

Tableau 144 : Récapitulatif des scores 2016 par paramètre et par station pour les éléments majeurs dans les eaux souterraines.

						nts maj	eurs					
BV	Zone	Piézomètre	Influence	CI ⁻	Mg ²⁺	Na⁺	Ca ²⁺	K ⁺				
		4-z1		=	=	=	=					
Kwe Nord		4-z1A										
		4-z1B										
	UPM CIM	4-z2	UPM - CIM	=	=	=	=					
	OPIVI CIIVI	4-z2A	UPIVI - CIIVI	=	=	=	=					
		4-z4 4-z4A		-	-	-	-					
		4-z4A 4-z5		=	=	=	=					
		4-z5A				_	_					
		WK17		=	И	И	K					
		WK20	ASR 0 (sources)	=		=	<u>-</u>					
		WK6-11		=	=	=	=					
		WK6-11A		=	=	=	=					
		WK6-12	ASR A (piézomètres	7	И	=	=					
		WK6-12A WK6-9	d'alerte au pied de	=	=	=	=					
		WK6-9A	la berme)	=	=	=	=					
		WKBH102	, ,	=	И	=	K					
		WKBH102A WKBH103		=	=	=	=					
		WK6-10		-	=	=	=					
		WK6-10A		=	=	=	=					
		WKBH109 WKBH109A		=	=	И	=					
		WKBH110		=	N N	=	=					
		WKBH110A		=	N R	=	=					
Kwe Ouest		WKBH110B	ASR B (zone	=	И	=	=					
		WKBH111	tampon)	=	=	=	=					
		WKBH117	:apoii)		=	=	=					
		WKBH117A WKBH117B		=	=	=	=					
	ACD	WKBH117B		-	-	=	-					
	ASR	WKBH118A		=	=	=	=					
		WKBH118B		=	=	=	=					
		WKBH112		=	=	=	=					
		WKBH112A		-	=	=	=					
		WKBH113		=	=	=	=					
		WKBH113A		=	=	=	=					
		WKBH114		=	=	=	=					
		WKBH114A		=	=	=	=					
		WKBH115	ASR C (proximité									
		WKBH115A	rivière)	=	=	=	=					
		WKBH115B		=	=	=	=					
		WKBH116		=	=	=	7					
		WKBH116A		=	=	=	=					
		WKBH116B		ıı	=	=	=					
		WTBH9		=	=	=	=					
		WKBH32		=	=	=	=					
Kadji		WK6-14	ASR D (vallées	II	K	=	=					
Trou Bleu		WTBH11	adjacentes)	ш	=	=	=					
Hou Bleu		WTBH11A		=	=	=	=					
		7-1	Port (rétention fuel									
Baie de Prony	PORT	7-2	lourd)									
		7-3	iouiuj									
		6-1		=	=	=	=					
		6-1a	Aval site indust.	=	=	=	=					
		6-2		=	=	=	=					
		6-2a		=	=	=	=					
		6-3	Aval distrib.	71	=	=	=					
		6-3a	carburant	7	=	=	=					
		6-4	Aval hydroc.	=	=	=	=					
CBN	USINE	6-5	Aval H2SO4	=	=	=	=					
		6-6	Aval gazole	=	=	=	=					
		6-7	Amont site indust.	=	=	=	=					
		6-7a		=	=	=	=					
		6-8	Aval contôle Nord	=	=	=	=					
		6-8a	Aval procédé	=	=	=	=					
		6-13	Avai procede		=							
			Aval stock. HCl									
6-14 6-14a Aval stock. HCl = = = = = = = = = = = = = = = = = = =												
	ゝ: déclasser	laire en 2015 et 2 ment par rapport ment par rapport	à 2015		Indéte	rminé	u de m					
					Statio	on sous	influer de VNC	nce				

4.2.2.4 Sels nutritifs

4.2.2.4.1 Nitrites

La concentration en nitrites (NO₂) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en nitrites dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection variant de 0,01 à 2,5 mg/L. La valeur seuil pour la concentration en nitrite est définie dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012 à 0,5 mg/L dans les eaux souterraines.

En 2016, 2 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 145 : Détermination de la gamme de variations de référence pour la concentration en nitrites dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

ı	NO ₂ (mg/	/L) - eaux de	surface					
Position	Type	Stations	de référence	N	moy	moy	Per 10	Per 90
Position	de BV	Zone	Station	2016	2016	2016	Per 10	Per 90
Amont	Grand	Kwe Ouest	3-A	4	0,10	0,10	0,10	0,10
Aval	Grand	Trou Bleu	3-C	11	0,10	0,10	0,10	0,10

Résultats et analyse

Les valeurs mesurées restent inférieures aux limites de détection, dans toutes les stations de suivi des cours d'eaux et tous les piézomètres de suivi des eaux souterraines. Un score « Bon » est donc attribué à chacune des zones pour ce paramètre.

4.2.2.4.2 <u>Nitrates</u>

La concentration en nitrates (NO₃) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en nitrates dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,1 mg/L. Les valeurs seuils pour la concentration en nitrate sont définies dans l'annexe III de l'arrêté métropolitain du 11 janvier 2007 à 50 mg/L dans les eaux de surface, et dans l'annexe II de la circulaire métropolitaine du 23 octobre 2012 à 50 mg/L dans les eaux souterraines.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 146: Détermination de la gamme de variations de référence pour les nitrates dans les eaux de surface: calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	NO₃ (mg	g/L) - eaux de	e surface	I	q = 0,1 m	ıg/L			
Position	Type	Station	s de référence	N	moy	moy	Per 10	Per 90	Valeur
Position	de BV	Zone	Station	2016	2016	2016	Per 10	Per 90	seuil
		Kwe Ouest	3-A	5	0,36				
	C	Carénage	Carénage Amont	1	0,20	0.24	0.20	0.21	
Amont	Grand	Kaoris	Kaoris Amont	1	0,20	0,24	0,20	0,31	
		Kuebini	Kueb Amont	1	0,20				50
		Trou Bleu	3-C	11	0,41				50
Aval	C	Carénage	Carénage Aval	1	0,30	0.20	0.22	0.20	
Avai	Grand	Kaoris	Kaori Aval	1	0,20	0,30	0,23	0,38	
		Kuebini	Kueb Aval	1	0,30				

Résultats et analyse

Tableau 147 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 et comparaison des valeurs maximales avec la valeur seuil réglementaire pour la concentration en nitrates dans les eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

	NO ₃ (m	g/L) - eaux de surf	ace	Г	Iq = 0,	1 mg	/L	ı													
Position	Type	Stations de	suivi		2012	2	2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
Position	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	valeur seuil ?	temporelle?	2015	par station	par zone
			3-B	14	1,85	23	1,80	9	1,83	13	1,20	7	1,81	3,48	5,10	Mauvais	Bon	Bon	Moyen	Bon	
		Kwe Ouest	3-D	2	11,65	0		0		0		3	13,87	17,94	18,10	Mauvais	Bon	Mauvais		Mauvais	Mauvais
		kwe odest	3-E	2	1,55	2	3,85	1	3,20	0		3	4,67	6,84	7,10	Mauvais	Bon	Mauvais		Mauvais	ividuvais
	Grand		4-N	9	0,89	1	0,40	10	1,31	11	1,51	11	1,85	2,90	2,90	Mauvais	Bon	Bon	Moyen	Bon	
Amont	Grana	Kwe Nord	4-M	12	0,57	11	0,60	8	0,64	11	0,92	12	1,12	1,57	2,80	Mauvais	Bon	Bon	Moyen	Bon	Bon
		Kwe Est	KE-05	12	0,73	12	0,71	6	0,70	12	0,81	11	1,03	1,10	1,20	Mauvais	Bon	Bon		Bon	Bon
		CBN Amont	6-Q	12	1,00	10	1,00	9	1,44	9	1,06	10	1,25	1,41	1,50	Mauvais	Bon	Bon	Bon	Bon	Bon
			6-S	12	0,60	12	0,56	7	0,61	8	0,53	10	0,74	0,91	1,00	Mauvais	Bon	Bon	Bon	Bon	50.7
	Petit	Trüu Amont	TR-02	12	0,72	12	0,40	5	0,44	12	0,43	0						Bon	Bon		
		Kwe principale	1-A	12	0,99	12	0,95	10	0,81	12	0,90	12	1,03	1,20	1,30	Mauvais	Bon	Bon	Bon	Bon	Bon
		we principate	1-E	14	0,79	13	0,82	8	0,84	12	0,93	12	0,99	1,19	1,20	Mauvais	Bon	Bon	Bon	Bon	50.7
Aval	Grand		6-BNOR1	4	0,45	5	0,66	4	0,30	4	0,70	4	0,80	0,94	1,00	Mauvais	Bon	Bon	Bon	Bon	
			6-T	18	0,44	18	0,44	13	0,39	13	0,61	12	0,83	0,99	1,00	Mauvais	Bon	Bon	Bon	Bon	Bon
			6-U	12	0,43	12	0,41	11	0,42	12	0,58	12	0,80	0,90	1,10	Mauvais	Bon	Bon	Bon	Bon	
	Petit	Trüu Aval	TR-01	11	0,27	12	0,28	5	0,24	10	0,30	0						Bon	Bon		
			6-R	12	0,68	9	0,83	8	0,28	13	0,34	10	2,18	3,12	13,20		Bon	Bon	Bon	Bon	
			DOL-2	2	0,20	2	0,20	1	0,20	1	0,20	0						Bon	Bon		4
			DOL-3	2	0,85	1	0,20	1	0,20	0		0						Bon			4
		CBN	DOL-4	2	0,20	2	0,20	2	0,20	1	0,20	0						Bon	Bon		Bon
			DOL-8	1	0,20	1	0,20	1	0,20	1	0,20	0						Bon	Bon		4
Dolir	nes		DOL-9	1	0,60	1	0,20	1	0,90	0		0						Bon			
			DOL-10	0		1	0,20	0		0		1	0,70	0,70	0,70		Bon	Bon		Bon	
			DOL-15	0	44.05	1	1,30	0	4.70	0		0	40.55	47.00	40.00			Bon			
		17 111	DOL-11	2	11,95	1	6,20	1	1,70	0	2.00	2	12,55	17,39	18,60		Bon	Bon		Mauvais	
		Kadji	DOL-12	1	3,50	1	2,80	1	6,40	1	2,00	0						Bon	Bon		Bon
			DOL-13	2	1,45	2	1,70	1	1,60	1	0,20	0		1				Bon	Bon		

La concentration en nitrates n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, toutes les stations de suivi des eaux de surface des creeks présentent des valeurs moyennes et percentiles 90 plus élevées que celles de leurs gammes de référence respectives, mais n'enregistrent pas de dépassement de la valeur seuil réglementaire. Toutefois, les stations 3-D et 3-E situées en amont de la Kwé Ouest montrent également une tendance à la hausse sur la chronique de données 2012-2016, et des valeurs maximales 20 à 60 fois plus élevées que les percentiles 90 de leur gamme de référence en 2016, ce qui justifie leur déclassement. Un score final « Mauvais » leur a donc été attribué cette année.

Pour les dolines, la station <u>DOL-11</u> sous l'influence de la base-vie et de ses équipements d'épuration des eaux, présente une concentration annuelle particulièrement élevée (seconde moyenne annuelle la plus forte du réseau de suivi des eaux superficielles en 2016). Elle est déclassée en état « mauvais ». Les autres dolines sont maintenues dans un état « bon » pour ce paramètre.

Tableau 148 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour la concentration en nitrates dans les eaux souterraines de 69 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Price Nord	NO ₃ (mg/	/L) - eaux souterra			lq = 0,							mèt	res de	contrôle		Valeur se		50 mg/			
March Not						_		_													
UPM 4:15	d'influence	Zone				_															par zone
UPM 4-21		Kwe Nord				_							0,23	0,27	0,50	Boll	DOII			Don	
UPMA						0															
Color Colo					0,20	2	0,20	4	0,23		0,20	4	0,38	0,47	0,50	Bon	Bon	Bon	Bon	Bon	
ASR O (Sources) ASR O	UPM					_		-													Bon
ASR 0 (sources) ASR 0						_	0,40	-	0,53				1,30	2,00	2,20	Mauvais	Bon			Bon	
ASIA O Louries ASIA O Louries							0.20		0.20				0.22	0.26	0.20	D	D			D	
Miles							0,20						0,22	0,26	0,30	BOU	BOU			BOU	
Mile					_		7 79	_	_			_	7 90	7 90	7 90	Mauvais	Bon			Ron	
Wischest 1 2 1,70 0 0 1 2,00 3 2,13 2 3,00 1,30 Mauvaits Bon	ASR 0 (sources)											_									
ASR A (nel-cometes) d'silerte)			WK6-11	1	0,70	0		2	1,60	3	2,13	2			1,30	Mauvais	Bon	Bon	Bon	Bon	
ASR A (pletsometres) d'alerte) Wis-12A 2 2 300 2 10.10 5 27.76 0 44.38 12 4.08 87.91 48.20 Maywais 600 Mon Maywais Mon Bon 600 Non 60						_				•					2,00	Mauvais	Bon	Bon		Bon	
Secondaries															,						
### Ash 2 0.50 2 0.50 2 0.50 2 0.50 2 0.50 2 0.50 2 0.50 2 0.50 2 0.50 2 0.50 2 0.50 2 0.50 2 0.50 0.50																					
Websited 1 5,27 7 0,06 5 3,12 11 3,09 12 3,89 6,00 2,00 Masuals Bon Bo																					
Web-1802A 2 1,55 2 2,55 2 1,35	d'alerte)			_				_			, .				-,						
WX81103 2 575 1 7,40 1 6,40 1 6,65 12 9,68 13,07 33,20 Masurals Bon Bon Bon Bon Bon Bon Bon Bon WX81104 D 1 1,00 1 2,00 2 2,80 2 75 0,79 0,79 2,00 Bon Bon Bon Bon Bon Bon Bon WX811074 D 1 1,00 1 2,00 2 2,80 2 0,20 2,00 2,00 2,00 Bon Bon Bon Bon Bon Bon Bon Bon WX811074 D 3,25 2 3,55 2 3,50 2 3,55 1 1,508 5,80 6,70 Masurals Bon Bo					-,	_		_	_		-,										
Web-100				_		_		1													
West 100				-	-,	÷		1	-,	_									0011		
West 100 0 0 0 1 0,00 2 2,80 2 0,20				_	1,40	_				_		_									
Michight 10 250 7 2,27 11 2,72 12 2,16 12 2,28 2,79 2,70 Mauvais Bon B																					
ASR B (cone tampon)						_			_			_									
ASR Cone tampon Wish Hinds 2 2,40 2 2,55 2 2,25 2 2,25 3 2,20 2 2,35 1,38 1,39 1,40 Mawusis 8 on 8					2,50	_	2,27		2,22	_		_									
Visine tampon Visine Vis	ACD D	Kwe Ouest				_				-		_									
Wish						_				_	_,										
Wish	(zone tampon)											_									
Wishelf 12 0.70 2 0.70 2 0.70 2 0.70 1 0.70 2 0.70												_									
WKBH118A Z 2,30 Z 2,15 Z 2,20 Z 1.99 Z 2,35 Z 2,77 Z 2.00 Mauvais Bon Bo			WKBH117B																		Bon
WKSH1128 2 1,00 2 1,25 2 1,40 2 1,10 2 1,20 1,20 1,20 Mauvais Bon Bon Bon Bon Bon Bon Bon Bon WKSH112 0 0 0 2 2,15 2 2,15 2						2				2		2									
WK8H112			WKBH118A	2	2,30	2	2,15	2	2,20	2	1,90	2	2,35	2,47	2,50	Mauvais	Bon	Bon	Bon	Bon	
ASR C (proximité rivière) ASR C (proximité rivière) ASR D (vallées adjacentes) Trou Bleu WR8H113A 2 0,00 1 0,01 1,00 1,00 1 1,10 0 0 1,10 2,00 2,0				2		2		2		2		2				Mauvais	Bon	Bon	Bon	Bon	
ASR C (proximite rivière) ASR C (proximité rivière) WKBH113					1,75		1,65					_									
ASR C (proximité rivière) ASR C (proximité rivière) ASR D (Vallées adjacentes) Port Baie de Prony Trou Bleu WRH112 1 2,025 2 2,055 1 2,055 2 0,055 2 0,055 0,00 0,00 Bon						-															
ASR C (proximité rivère) WKBH114												_									
ASR C (proximité rivère) MKBH115A 1 1,30 2 1,30 2 1,25 2 1,45 2 1,85 2,05 2,10 Mauvais Bon Bo																					
Post Michies Wightish Michies Wightish Michies Michi	ASR C																				
WKBH115A 0	(proximité				1,50		1,50				1,10								50.1		
WKBH116B 2 1,85 2 1,90 2 1,95 2 2,30 2 2,30 2 2,30 2,30 2,30 Mauvais Bon											2,05						Bon		Bon		
WKBH116A 2 0,70 2 0,65 2 0,70 2 0,95 2 1,05 1,09 1,10 Bon Bo	,		WKBH115B	2	1,85	2	1,90	2	1,95	2	2,30	2	2,30	2,30	2,30	Mauvais	Bon	Bon	Bon	Bon	
WKBH116B 2 1,25 2 1,10 2 1,20 2 1,25 2 1,50 1,50 1,50 Mauvais Bon				_								_									
MTBH9						2		_		_											
ASR D (vallées adjacentes) NKBH32 2 0,20 2 0,30 2 0,20 2 0,35 2 0,50 0,70						2		_	1,20	_											
Kadji				_		_			0.20	_		_									
Note Port Baie de Prony Port Baie de Prony Port Baie de Prony Port Baie de Prony Port Port Baie de Prony Port		Kadii				_		1													
Port Baie de Prony Protection Protec	,					2	-,	2	,		,	2			-,						
Bale de Profit Forman Fo	adjacentes)	irou Bleu		2		2		2				2									
CBN	Port	Baje de Pronv		-		-						_					Bon				Bon
CBN	1010	Sale de Holly					-,														Don
Here the first state of the firs			-		0,60						0.05										
Usine G-14a					1.00	_															
Usine CBN							1,/3		1,53												
Usine Usine CBN 6-2							1.90		1.88												
Usine CBN						_						_									
Usine Usine 6-3						2						_									
6-3a 4 1,75 2 1,55 3 1,57 3 1,90 3 1,98 2,00 Mauvais Bon Bon Bon Bon Bon G-4 4 0,55 2 0,70 4 0,90 4 0,65 3 0,83 0,83 0,88 0,90 Bon	Heino	CDVI		4		2		4		4		4									Ron
6-5 5 0,88 2 1,00 4 0,98 4 1,28 4 1,20 1,27 1,30 Mauvais Bon Bon Bon Bon Bon G-6-6 5 0,46 1 0,40 2 0,50 3 0,50 4 0,70 0,70 0,70 Bon	USINE	CDIN																			DOII
6-6 5 0,46 1 0,40 2 0,50 3 0,50 4 0,70 0,70 0,70 Bon																					
6-7 5 0,58 3 0,63 6 0,62 4 0,70 4 0,88 0,90 0,90 Bon																					
6-7a						_		_		•											
6-8 5 2,06 1 1,90 0 1 1,50 4 2,53 2,78 2,90 Mauvais Bon Bon Bon Bon																					
									0,90												
I 16-88 4 3.00 2 3.25 4 2.95 4 3.15 4 3.18 4.11 4.50 Mauvais Bon			6-8a	4	3,00	2	3,25	4	2,95	4	3,15	4	3,18	4,11	4,50	Mauvais	Bon	Bon	Bon	Bon	

En 2016, la concentration en nitrates n'est pas connue dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

La concentration en nitrates dans les eaux souterraines a été mesurée en 2016 dans 64 autres piézomètres, dont la majorité présente des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Neuf d'entre elles montrent également une tendance à l'augmentation sur la chronique de données 2012-2016, mais aucune n'enregistre de dépassement de la valeur seuil réglementaire. Toutefois, 3 piézomètres d'alerte situés à proximité de l'Aire de Stockage des Résidus présentent en 2016 des valeurs maximales avoisinant la valeur seuil de 50 mg/L laissant présager d'un dépassement imminent. Un score « Mauvais » avait déjà été attribué à 2 de ces piézomètres (WK6-12 et WK6-12A) en 2015, le piézomètre WKBH103 est également déclassé cette année. Un score « Bon » reste octroyé au reste des piézomètres de suivi des eaux souterraines pour ce paramètre.

4.2.2.4.3 Phosphates

La concentration en phosphates (PO₄) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en phosphate dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection variant de 0,2 à 5 mg/L. La réglementation française n'inclut pas à ce jour de valeurs seuils pour la concentration en phosphate dans les eaux douces.

En 2016, 8 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (7-2 pour le port, WTBH11 et WTBH11A pour l'aire de stockage des résidus, 6-7 et 6-7a pour l'usine), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 149 : Détermination de la gamme de variations de référence pour la concentration en phosphates dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	PO ₄ (mg	g/L) - eaux de	e surface	I	q = 0,2 m	g/L		
Position	Туре	Station	s de référence	N	moy	moy	Per 10	Per 90
Position	de BV	Zone	Station	2016	2016	2016	PEI 10	PEI 30
		Kwe Ouest	3-A	4	0,20			
Amont	Grand	Carénage	Carénage Amont	1	0,20	0,25	0,20	0,30
Amont	Granu	Kaoris	Kaoris Amont	1	0,30	0,25	0,20	0,30
		Kuebini	Kueb Amont	1	0,30			
		Trou Bleu	3-C	11	0,20			
Aval	Cuand	Carénage	Carénage Aval	1	0,20	0.22	0.20	0.27
Avai	Grand	Kaoris	Kaori Aval	1	0,30	0,23	0,20	0,27
		Kuebini	Kueb Aval	1	0,20			

Résultats et analyse

Les valeurs mesurées restent inférieures aux limites de détection, dans toutes les stations de suivi des cours d'eaux et tous les piézomètres de suivi des eaux souterraines, qui obtiennent donc un score « Bon ».

4.2.2.4.4 Synthèse des sels nutritifs

- Dans les eaux de surface :

Tableau 150 : Récapitulatif des scores 2016 par paramètre et par station pour les sels nutritifs dans le milieu eaux douces de surfaces des creeks et dolines.

tion		Stations	de suivi	1	_	s nutri	
	Type de	Zone	Station	Influence	NO ₂	NO ₃	PO ₄ 3-
	BV	-	3-A ^			7	=
			3-A ^	Influence modérée ASR		_	=
			3-D^	ASR			-
			3-E ^	ASR		71	=
			4-N ^	UPM-CIM			
			KO4-10 ^	Mine			
			KO4-20-I ^	Mine			
		Kwe Ouest	KO4-50 ^	Mine			
ont			KO5-10-I ^	UPM-CIM			
			KO5-20-I ^	UPM-CIM			
	Grand		KO5-20-P ^	UPM-CIM			
	Granu		KO5-50-I ^	UPM-CIM			
			KWO-10 ^	ASR			
			KWO-20 ^	ASR / LIDNA CINA		_	
		Koo Nand	KWO-60 ^	ASR / UPM-CIM		7	=
		Kwe Nord	4-M ^	UPM-CIM			
		Kwe Est	KE-05 ^	Mine		=	=
			1-A ^ 1-E ^	UPM-CIM, ASR		=	=
al		Kwe principals	I-E // KWP-10 /	UPM-CIM, ASR UPM-CIM			
al		Kwe principale	KWP-10 ^	UPM-CIM			
			KWP-70 ^	UPM-CIM		=	=
			6-Q^	Usine		=	=
ont		CBN Amont	6-S ^	Usine			
			CBN-01 ^	Usine		=	=
			6-BNOR1 ^	Usine		=	=
			6-T ^	Usine		ı	=
	Grand		6-U ^	Usine			
al		CBN Aval	CBN-10 ^	Usine			
aı		CDIV AVai	CBN-30 ^	Usine			
			CBN-40 ^	Usine			
			CBN-70 ^	Usine			
			CBN-AFF-02 ^	Usine			
ont	Grand	Kadji	5-E ^	Base Vie			
ont		Trüu Amont	TR-02 ^	Mine	-		
			TR-03 ^	Mine	-		
	Petit		TR-01 ^	Mine			
al		Trüu Aval	TR-04 ^ TR-05 ^	Mine Mine			
			TRU-70 ^	Mine	_	=	=
ont		Kuébini Amont	Kueb Amont	Hors influence		=	=
JIIC		Ruconn Amone	Kueb Aval	Hors influence			
	Grand		KUB-60 ^	Hors influence			
al		Kuébini Aval	KUB-50 ^	Hors influence			
			KUB-40 ^	Hors influence		=	=
ont	Grand	Carénage Amont	Carénage Amont			=	=
al	Gidilu	Carénage Aval	Carénage Aval	Hors influence		=	=
ont	Grand	Kaoris Amont	Kaoris Amont	Hors influence		=	=
al	C. dilu	Kaoris Aval	Kaoris Aval	Hors influence		=	=
			3-C ^	Hors influence			<u> </u>
al	Grand	Trou Bleu	TBL-50 ^	Hors influence			
			TBL-70 ^	Hors influence	-		
	Do+!+	Madiana	WAD-40 ^ WAD-50 ^	Hors influence			
al .	Petit	Wadjana	WAD-50 ^	Hors influence		_	
al							
al				Hors influence			
al			6-R ^	Usine			
al			6-R ^ DOL-2 ^	Usine Usine, BV			
			6-R ^ DOL-2 ^ DOL-3 ^	Usine Usine, BV Usine, BV			
al	Grand	CBN	6-R ^ DOL-2 ^ DOL-3 ^ DOL-4 ^	Usine Usine, BV Usine, BV Usine, BV			
	Grand	CBN	6-R ^ DOL-2 ^ DOL-3 ^	Usine Usine, BV Usine, BV			
	Grand	CBN	6-R ^ DOL-2 ^ DOL-3 ^ DOL-4 ^ DOL-8 ^ DOL-9 ^	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV			
	Grand	CBN	6-R ^ DOL-2 ^ DOL-3 ^ DOL-4 ^ DOL-8 ^	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV			
	Grand	CBN	6-R ^ DOL-2 ^ DOL-3 ^ DOL-4 ^ DOL-8 ^ DOL-9 ^ DOL-10 ^ DOL-15 ^	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV Base Vie			
	Grand	CBN Kadji	6-R ^ DOL-2 ^ DOL-3 ^ DOL-4 ^ DOL-8 ^ DOL-9 ^ DOL-10 ^	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV			
ine			6-R ^ DOL-2 ^ DOL-3 ^ DOL-4 ^ DOL-8 ^ DOL-9 ^ DOL-10 ^ DOL-15 ^ DOL-11 ^	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV Base Vie Epuration, BV			
ine	Grand	Kadji	6-R ^ DOL-2 ^ DOL-3 ^ DOL-4 ^ DOL-8 ^ DOL-10 ^ DOL-15 ^ DOL-11 ^ DOL-12 ^	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV Base Vie Epuration, BV Base Vie			
ine ine			6-R^ DOL-2 ^ DOL-3 ^ DOL-4 ^ DOL-8 ^ DOL-9 ^ DOL-10 ^ DOL-11 ^ DOL-11 ^ DOL-12 ^ DOL-13 ^	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV Base Vie Epuration, BV Base Vie Base Vie			
ine	Grand	Kadji	6-R^ DOL-2 ^ DOL-3 ^ DOL-4 ^ DOL-8 ^ DOL-10 ^ DOL-15 ^ DOL-11 ^ DOL-12 ^ DOL-13 ^ DOL-13 ^	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV Base Vie Epuration, BV Base Vie Base Vie Hors influence			
ine ine ne	Grand Grand Grand	Kadji Carénage Plaine des lacs	6-R^ DOL-2 ^ DOL-3 ^ DOL-4 ^ DOL-8 ^ DOL-9 ^ DOL-10 ^ DOL-11 ^ DOL-12 ^ DOL-13 ^ DOL-13 ^ DOL-13 ^ DOL-16 - DOL-16 - DOL-17 DOL-17 ^ DOL-18 ^ DOL-18 ^ DOL-19 ^ DOL-1	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV Epuration, BV Base Vie Epuration, BV Base Vie Hors influence Hors influence			
ine ine ne	Grand Grand	Kadji Carénage Plaine des lacs	6-R^ DOL-2^ DOL-3^ DOL-3^ DOL-4^ DOL-8^ DOL-9^ DOL-10^ DOL-15^ DOL-11^ DOL-12^ DOL-13^ Doline 1 Doline 2 Doline 3	Usine Usine, BV Epuration, BV Base Vie Epuration, BV Base Vie Hors influence Hors influence e en 2015 et 2016		Bon	
ine ine ne	Grand Grand Grand	Kadji Carénage Plaine des lacs	6-R^ DOL-2^ DOL-3^ DOL-4^ DOL-8^ DOL-9^ DOL-10^ DOL-15^ DOL-11^ DOL-12 ^ DOL-13 ^ DOline 1 Doline 2 Doline 3 =: score similaire >: déclassement	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV Base Vie Epuration, BV Base Vie Hors influence Hors influence Hors influence en 2015 et 2016 Epuration, BV		Mauva	
ine ine ne	Grand Grand Grand Légende :	Kadji Carénage Plaine des lacs	6-R^ DOL-2^ DOL-3^ DOL-4^ DOL-8^ DOL-9^ DOL-10^ DOL-15^ DOL-11^ DOL-12^ DOL-13^ DOL-13^ DOL-13^ SOL-13^ SOL-13	Usine Usine, BV Epuration, BV Base Vie Epuration, BV Base Vie Hors influence Hors influence e en 2015 et 2016		Mauva	ais
ine ine ine	Grand Grand Grand Légende:	Kadji Carénage Plaine des lacs	6-R^ DOL-2^ DOL-3^ DOL-4^ DOL-8^ DOL-9^ DOL-10^ DOL-15^ DOL-11^ DOL-12^ DOL-13^ DOL-13^ DOL-13^ SOL-13^ SOL-13	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV Base Vie Epuration, BV Base Vie Hors influence Hors influence Hors influence en 2015 et 2016 Epuration, BV		Mauva Indéte	erminé
ine ne ne	Grand Grand Légende: *: paramè ^: station	Kadji Carénage Plaine des lacs	6-R^ DOL-2^ DOL-3^ DOL-3^ DOL-4^ DOL-8^ DOL-9^ DOL-10^ DOL-15^ DOL-11^ DOL-12^ DOL-13^ Doline 1 Doline 2 Doline 3 =: score similaire >: déclassement >: surclassement	Usine Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Usine, BV Epuration, BV Base Vie Epuration, BV Base Vie Hors influence Hors influence Hors influence en 2015 et 2016 Epuration, BV		Mauva Indéte Statio	

- Dans les eaux souterraines :

Tableau 151: Récapitulatif des scores 2016 par paramètre et par station pour les sels nutritifs dans les eaux souterraines.

	ı		ı	Se	ls nutri		
BV	Zone	Piézomètre	Influence	NO ₂	NO ₃	PO ₄ ³⁻	
Kwa Nard		4-z1			=	=	
Kwe Nord		4-z1A 4-z1B					
		4-z2			=	=	
	UPM CIM	4-z2A	UPM - CIM				
		4-z4			=	=	
		4-z4A					
		4-z5			=	=	
		4-z5A			_	_	
		WK17 WK20	ASR 0 (sources)		=	=	
		WK6-11			=	=	
		WK6-11A			=	=	
		WK6-12	ASR A (piézomètres		=	=	
		WK6-12A WK6-9	d'alerte au pied de		=	=	
		WK6-9A	la berme)		=	=	
		WKBH102 WKBH102A			=	=	
		WKBH103			- k	=	
		WK6-10			=	=	
		WK6-10A WKBH109			=	=	
		WKBH109A			=	=	
		WKBH110 WKBH110A			=	=	
Kwa Ouast		WKBH110A WKBH110B			=	=	
Kwe Ouest		WKBH111	ASR B (zone		=	=	
		WKBH117	tampon)		=	=	
		WKBH117A			=	=	
		WKBH117B			=	=	
	ASR	WKBH118			=	=	
		WKBH118A WKBH118B			=	=	
		WKBH112			=	=	
		WKBH112A			=	=	
		WKBH113			=	=	
		WKBH113A			=	=	
		WKBH114			=	=	
		WKBH114A	ASR C (proximité		=	=	
		WKBH115	rivière)				
		WKBH115A	,		=	=	
		WKBH115B			=	=	
		WKBH116 WKBH116A			=	=	
		WKBH116A WKBH116B			=	=	
		WTBH9			=	=	
		WKBH32			=	=	
Kadji		WK6-14	ASR D (vallées		=	=	
T Dl		WTBH11	adjacentes)		=	=	
Trou Bleu		WTBH11A			=	=	
		7-1	Port (rétention fuel				
Baie de Prony	PORT	7-2	lourd)				
		7-3					
		6-1			=	=	
		6-1a	Aval site indust.		=	=	
		6-2			=	=	
		6-2a 6-3	Aval distrib.		=	=	
		6-3a	carburant		=	=	
		6-4	Aval hydroc.		=	=	
CBN	USINE	6-5	Aval H2SO4		=	=	
CDIN	OSHIE	6-6	Aval gazole		=	=	
		6-7	Amont site indust.		=	=	
		6-7a			=	=	
		6-8	Aval contôle Nord		=	=	
		6-8a	Aval procédé		=	=	
		6-13 6-14	Aval procédé		=	=	
		6-14 6-14a	Aval stock. HCl		=	=	
	ゝ: déclasser	laire en 2015 et 2 nent par rapport ment par rapport	à 2015		Bon Mauva Infiltra Indéte	tion eau	ı de mer
		Statio		fluence			

4.2.2.5 *Matière organique*

4.2.2.5.1 <u>Carbone organique total</u>

La concentration en carbone organique total (COt) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en COt dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,3 mg/L. La valeur seuil pour la concentration en COt est définie dans l'annexe I de l'arrêté métropolitain du 11 janvier 2007 à 2 mg/L dans les eaux souterraines.

En 2016, 6 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Deux piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (WTBH11 et WTBH11A pour l'aire de stockage des résidus), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 152 : Détermination de la gamme de variations de référence pour la concentration en Carbone Organique total dans les eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

(Ot (mg	/L) - eaux d	e surface					
Position	Type	Station	s de référence	N	moy	moy	Do# 10	Per 90
Position	de BV	Zone	Station	2016	2016	2016	Per 10	Per 90
		Carénage	Carénage Amont	1	4,70			
Amont	Grand	Kaoris	Kaoris Amont	1	0,50	1,90	0,50	3,86
		Kuebini	Kueb Amont	1	0,50			
		Carénage	Carénage Aval	1	0,50			
Aval	Grand	Kaoris	Kaori Aval	1	0,50	1,10	0,50	1,94
		Kuebini	Kueb Aval	1	2,30			

Résultats et analyse

Les concentrations en COt ne sont mesurées que dans 5 stations de suivi des creeks et 1 station de suivi des dolines en 2016. Leurs valeurs restent inférieures aux gammes de référence et ne montrent pas d'évolution particulière, un score « Bon » est donc attribué à l'ensemble du réseau de suivi des eaux de surface pour ce paramètre.

Tableau 153 : Evolution temporelle de la chronique des données 2012-2016, comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle, et comparaison des valeurs maximales avec la valeur seuil réglementaire pour la concentration en Carbone Organique total dans les eaux souterraines de 41 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

COt (mg/	L) - eaux souterr	aines		Iq = 0,	,3 mg	g/L		En	bleı	ı:piézo	mèt	es de o	contrôle		Valeur se	euil :	2 mg/l		Ì	
Source	Stations d	e suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Max 2016 <	Pas de hausse	Score	Score 2016	Score 2016
d'influence	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	valeur seuil ?	temporelle?	2015	par piézo.	par zone
ASR 0 (sources)		WK17	13	0,89	40	0,97	47	0,43	49	1,41	0						Mauvais	Bon		
ASK 0 (sources)		WK20	15	1,03	40	0,92	47	0,37	46	1,10	0						Mauvais	Bon		
		WK6-11	0		0		1	0,70	3	1,63	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
		WK6-11A	0		2	2,75	0		1	0,30	0						Bon	Bon		
		WK6-12	0		1	0,90	8	0,35	8	1,08	7	0,56	0,66	0,90	Mauvais	Bon	Bon	Bon	Bon	
ASR A		WK6-12A	0		1	1,10	3	0,50	3	4,63	0						Mauvais	Mauvais		
(piézomètres		WK6-9	0		1	0,30	1	0,30	0		0						Bon			
d'alerte)		WK6-9A	1	0,30	1	0,90	2	0,55	0		0						Bon			
		WKBH102	3	0,60	4	0,30	11	1,77	12	1,77	7	0,51	0,54	0,60	Mauvais	Bon	Bon	Bon	Bon	
		WKBH102A	0		1	0,30	1	0,30	1	0,50	0						Bon	Bon		
		WKBH103	0		1	1,00	3	0,30	7	2,24	6	0,65	0,95	1,30	Mauvais	Bon	Bon	Mauvais	Bon	
		WK6-10	0		0		1	0,90	0		1	0,80	0,80	0,80	Mauvais	Bon	Bon		Bon	
		WK6-10A	0		1	0,30	1	1,20	0		0						Mauvais			
		WKBH109	0		0		1	0,60	2	0,40	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
		WKBH109A	0		1	0,30	2	0,30	2	1,15	5	0,80	1,25	1,60	Mauvais	Bon	Bon	Bon	Bon	
		WKBH110	2	0,75	4	0,33	10	2,92	12	1,97	7	0,61	0,82	1,30	Mauvais	Bon	Bon	Bon	Bon	
		WKBH110A	0		0		0		1	0,30	3	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
ASR B		WKBH110B	0		1	0,30	1	0,30	2	0,40	2	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
(zone tampon)	Kwe Ouest	WKBH111	0		1	13,50	2	0,30	1	0,50	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
	kwe odest	WKBH117	0		1	0,30	2	0,30	2	0,40	0						Bon	Bon		
		WKBH117A	0		1	0,30	1	0,30	1	0,30	0						Bon	Bon		Bon
		WKBH117B	0		1	0,30	1	0,30	1	0,60	0						Bon	Bon		
		WKBH118	0		1	0,30	2	0,30	2	0,40	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
		WKBH118A	0		1	0,30	2	0,35	2	0,40	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
		WKBH118B	0		1	0,50	2	0,95	1	0,30	0						Bon	Bon		
		WKBH112	0		1	0,30	2	0,30	2	1,00	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
		WKBH112A	0		0		1	3,00	1	2,50	0						Mauvais	Mauvais		
		WKBH113	3	0,87	4	0,33	12	0,54	12	1,16	2	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
		WKBH113A	0		1	0,30	2	0,30	2	0,45	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
ASR C		WKBH114	0		1	0,30	2	0,30	1	0,50	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
(proximité		WKBH114A	0		1	0,70	1	1,00	0		0						Mauvais			
rivière)		WKBH115	0		0		1	0,30	0		1	0,50	0,50	0,50	Bon	Bon	Bon		Bon	
liviele)		WKBH115A	0		0		0		1	0,30	0							Bon		
		WKBH115B	0		1	0,30	0		1	0,30	0						Bon	Bon		
1		WKBH116	0		1	0,30	1	1,40	1	0,50	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
1		WKBH116A	0		1	0,30	2	0,30	1	0,60	1	0,50	0,50	0,50	Bon	Bon	Bon	Bon	Bon	
		WKBH116B	0		1	0,30	1	7,30	0		0						Mauvais			
ASR D		WKBH32	0		1	1,00	2	0,30	1	0,60	0						Bon	Bon		
(vallées	Ka dji	WK6-14	0		1	0,30	1	0,30	0		0						Bon			
adjacentes)	Trou Bleu	WTBH11	0		1	0,40	1	0,30	1	0,50	0						Bon	Bon		
aujacentes)	nou bieu	WTBH11A	0		1	0,50	2	0,55	0		1	0,50	0,50	0,50	Bon	Bon	Bon		Bon	

La concentration en COt dans les eaux souterraines a été mesurée en 2016 dans 21 piézomètres, dont 6 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Toutefois, aucune ne montre également de tendance à l'augmentation sur la chronique de données 2012-2016, ni de dépassement de la valeur seuil réglementaire. Un score « Bon » est donc attribué à l'ensemble du réseau de suivi des eaux souterraines cette année, y compris pour le piézomètre WKBH103 dont les valeurs ont suffisamment diminué par rapport à 2015 pour justifier d'un reclassement en « Bon ».

4.2.2.5.2 Azote total

La concentration en azote total (Nt) est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

Les concentrations en Nt dans les eaux de surface et les eaux souterraines sont exprimées en mg/L, avec une limite de détection de 0,1 mg/L. La réglementation française n'inclut pas à ce jour de valeurs seuils pour la concentration en azote total dans les eaux douces.

Les concentrations en azote total n'ont été mesurées dans aucune station de référence en 2016, et il n'existe actuellement pas de valeur seuil réglementaire applicable à la qualité des eaux de surface ou des eaux souterraines pour ce paramètre. Pour les eaux de surface, le score final par station est donc attribué uniquement sur la base de l'évolution temporelle des données dans les stations de suivi pour lesquelles une chronique temporelle de teneur en azote total est disponible.

Résultats et analyse

Les concentrations en Nt ne sont mesurées que dans 5 stations de suivi des creeks et 1 station de suivi des dolines en 2016. La chronique de données 2012-2016 n'indique pas de hausse des valeurs dans les stations contrôlées, un score « Bon » est donc attribué à l'ensemble du réseau de suivi des eaux de surface pour ce paramètre.

Tableau 154 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle pour la concentration en Azote total dans les eaux souterraines de 40 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

Nt (mg/L) - eaux souterra	aines		Iq = 0,	1 mg	g/L		Iq = 0,0	05 m	g/L				En l	oleu : piézomèt	res de contrôle		
Source	Stations of	le suivi		2012		2013		2014		2015			2016		Moy et Per90	Pas de hausse	Score 2016	Score 2016
d'influence	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	2016 ≤ piézo.	temporelle?	par piézo.	par zone
160.07		WK17	3	0,93	32	1,40	39	1,35	47	1,28	0					Bon		
ASR 0 (sources)		WK20	0		32	0,74	39	0,63	43	0,74	0					Bon		
		WK6-11	1	9,20	0		1	0,50	3	0,67	1	0,50	0,50	0,50	Bon	Bon	Bon	
		WK6-11A	2	33,05	2	0,60	0		1	0,50	0					Bon		
		WK6-12	2	6,00	1	3,20	5	5,20	10	6,99	6	7,15	11,15	11,20	Mauvais	Mauvais	Mauvais	
ASR A		WK6-12A	2	10,55	1	2,60	3	3,93	5	10,50	0					Mauvais		
(piézomètres		WK6-9	2	1,65	1	0,30	1	0,50	1	0,60	0					Bon		
d'alerte)		WK6-9A	2	5,55	1	0,50	1	0,50	1	3,50	0					Mauvais		
		WKBH102	2	0,95	2	0,65	8	0,76	10	0,73	6	0,95	1,25	1,50	Mauvais	Bon	Bon	
		WKBH102A	2	0,50	1	0,40	1	0,50	1	1,30	0					Mauvais		
		WKBH103	2	12,60	1	1,20	1	1,30	8	1,40	5	1,60	1,76	1,80	Mauvais	Bon	Bon	
		WK6-10	0		0		0		1	0,50	1	0,50	0,50	0,50	Bon	Bon	Bon	
		WK6-10A	2	8,05	1	0,40	1	0,50	1	3,10	0					Mauvais		
		WKBH109	0		0		0		2	4,80	1	0,50	0,50	0,50	Bon	Bon	Bon	
		WKBH109A	2	1,40	1	0,80	1	0,60	2	3,80	6	1,72	1,85	1,90	Mauvais	Bon	Bon	
		WKBH110	1	0,50	2	0,40	8	0,51	12	0,61	6	0,67	0,75	0,80	Mauvais	Bon	Bon	
		WKBH110A	0		0		0		1	2,20	3	0,73	0,78	0,80	Mauvais	Bon	Bon	
ASR B		WKBH110B	2	11,20	1	0,40	1	0,50	2	0,65	2	0,70	0,70	0,70	Mauvais	Bon	Bon	
(zone tampon)	Kwe Ouest	WKBH111	2	0,85	1	0,50	1	0,50	1	0,50	1	0,50	0,50	0,50	Bon	Bon	Bon	
		WKBH117	0		0		0		1	0,50	0							Bon
		WKBH117A	0		0		0		1	3,90	0							20
		WKBH117B	0		0		0		1	9,40	0							
		WKBH118	0		0		0		2	0,50	1	0,80	0,80	0,80	Mauvais	Bon	Bon	
		WKBH118A	0		0		0		2	0,50	1	0,80	0,80	0,80	Mauvais	Bon	Bon	
		WKBH118B	0		0		0		1	0,50	0							
		WKBH112	2	2,00	1	0,40	1	0,50	2	0,50	1	0,50	0,50	0,50	Bon	Bon	Bon	
		WKBH112A	0		0		1	0,60	1	11,30	0					Mauvais		
		WKBH113	2	0,70	2	0,05	9	0,51	12	0,75	1	0,50	0,50	0,50	Bon	Bon	Bon	
		WKBH113A	2	0,50	1	0,05	1	0,50	2	2,40	1	0,50	0,50	0,50	Bon	Bon	Bon	
ASR C		WKBH114	0		0		0		2	0,80	1	0,50	0,50	0,50	Bon	Bon	Bon	
(proximité		WKBH114A	0		0		0		1	9,00	0							
rivière)		WKBH115	0		0		0		0		1	0,50	0,50	0,50	Bon	Bon	Bon	
		WKBH115A	0		0		0		1	0,50	0							
		WKBH115B	0	ļ	0		0	ļ	1	0,50	0				_	_		
		WKBH116	0		0		0	ļ	2	1,25	1	0,50	0,50	0,50	Bon	Bon	Bon	
		WKBH116A	0		0		0	-	2	2,25	1	0,50	0,50	0,50	Bon	Bon	Bon	
ASR D		WKBH32	0		0		0		1	0,50	0		ļ			_		
(vallées	Kadji	WK6-14	1	0,90	1	0,70	1	0,50	0	0.00	0					Bon		
adjacentes)	Trou Bleu	WTBH11	0		0		0		2	0,60	0	0.50	0.50	0.50	2			
, ,		WTBH11A	0		0		0		1	2,40	1	0,50	0,50	0,50	Bon	Bon	Bon	

La concentration en Nt dans les eaux souterraines a été mesurée en 2016 dans 21 piézomètres, dont 9 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle. Parmi eux, seul le piézomètre <u>WK6-12</u> montre également une tendance à l'augmentation sur la chronique de données 2012-2016 et des valeurs maximales élevées (dépassant 11 mg/L en août et novembre 2016, soit plus de 20 fois les valeurs enregistrées dans la majorité des autres piézomètres), un score « Mauvais » lui est donc octroyé cette année. Un score « Bon » est attribué au reste du réseau de suivi des eaux souterraines.

4.2.2.5.3 Synthèse de la matière organique

- Dans les eaux de surface :

Tableau 155 : Récapitulatif des scores 2016 par paramètre et par station pour la matière organique dans le milieu eaux douces de surfaces des creeks et dolines.

		Stations	de suivi		Mat.	org.					
Position	Type de BV	Zone	Station	Influence	COt	Nt					
	DV		3-A ^	Influence modérée	=						
			3-B ^	ASR	=						
			3-D^	ASR	=						
			3-E ^	ASR							
			4-N ^	UPM-CIM							
			KO4-10 ^ KO4-20-I ^	Mine Mine							
		Kwe Ouest	KO4-50 ^	Mine							
Amont		KWC Odest	KO5-10-I ^	UPM-CIM							
74110114			KO5-20-I ^	UPM-CIM							
			KO5-20-P ^	UPM-CIM							
	Grand		KO5-50-I ^	UPM-CIM							
			KWO-10 ^	ASR							
			KWO-20 ^	ASR							
			KWO-60 ^	ASR / UPM-CIM							
		Kwe Nord	4-M ^	UPM-CIM							
		Kwe Est	KE-05 ^	Mine							
			1-A ^	UPM-CIM, ASR							
Aval		Kwe principale	1-E ^ KWP-10 ^	UPM-CIM, ASR UPM-CIM							
Avdi		Kwe pilitipale	KWP-40 ^	UPM-CIM							
		1	KWP-70 ^	UPM-CIM							
			6-Q^	Usine							
Amont		CBN Amont	6-5 ^	Usine							
			CBN-01 ^	Usine	=						
		,	6-BNOR1 ^	Usine	=						
			6-T ^	Usine							
	Grand		6-U ^	Usine							
Aval		CBN Aval	CBN-10 ^	Usine							
			CBN-30 ^	Usine							
			CBN-40 ^	Usine							
			CBN-70 ^ CBN-AFF-02 ^	Usine Usine		-					
Amont	Grand	Kadji	5-E ^	Base Vie							
	Grana		TR-02 ^	Mine							
Amont		Trüu Amont	TR-03 ^	Mine							
	D-414		TR-01 ^	Mine							
Augl	Petit	Teiiu Augl	TR-04 ^	Mine							
Aval		Trüu Aval	TR-05 ^	Mine							
			TRU-70 ^	Mine	=						
Amont		Kuébini Amont	Kueb Amont	Hors influence	=						
			Kueb Aval	Hors influence							
Aval	Grand	Kuébini Aval	KUB-60 ^	Hors influence							
			KUB-50 ^	Hors influence Hors influence	=						
Amont		Carénage Amont	Carénage Amont		=						
Aval	Grand	Carénage Aval	Carénage Aval	Hors influence	=						
Amont	<u>.</u>	Kaoris Amont	Kaoris Amont	Hors influence	=						
Aval	Grand	Kaoris Aval	Kaoris Aval	Hors influence							
			3-C ^	Hors influence							
Aval	Grand	Trou Bleu	TBL-50 ^	Hors influence							
			TBL-70 ^	Hors influence							
			WAD-40 ^	Hors influence							
Aval	Petit	Wadjana	WAD-50 ^	Hors influence							
		1	WAD-70 ^	Hors influence							
			6-R ^ DOL-2 ^	Usine Usine, BV							
		1	DOL-3 ^	Usine, BV							
		1	DOL-4 ^	Usine, BV							
Doline	Grand	CBN	DOL-8 ^	Usine, BV							
		1	DOL-9 ^	Usine, BV							
		1	DOL-10 ^	Epuration, BV							
		<u> </u>	DOL-15 ^	Base Vie							
			DOL-11 ^	Epuration, BV							
Doline	Grand	Kadji	DOL-12 ^	Base Vie							
			DOL-13 ^	Base Vie							
Doline	Grand	Carénage	Doline 1	Hors influence							
			Doline 2	Hors influence							
Doline	Grand	Plaine des lacs	Doline 3	Hors influence							
	lágonda :		- : score similaira	an 2015 at 2016		Bon					
Légende : = : score similaire en 2015 et 2016 Bon ▶ : déclassement par rapport à 2015 Mauvais											
✓ : surclassement par rapport à 2015 Indéterminé											
				c bar rabborra 5013		acternille					
	* : paramè	tre mesure sur sen									
		tre mesuré sur séd suivie par Vale NC	inicites			Station sous in	fluence				
	^ : station					Station sous in Station sous in					

- Dans les eaux souterraines :

Tableau 156 : Récapitulatif des scores 2016 par paramètre et par station pour la matière organique dans les eaux souterraines.

				Mat	org.	
BV	Zone	Piézomètre	Influence	COt	Nt	
Kwa Nard		4-z1				
Kwe Nord		4-z1A 4-z1B				
		4-z2				
	UPM CIM	4-z2A	UPM - CIM			
		4-z4				
		4-z4A				
		4-z5				
		4-z5A				
		WK17	ASR 0 (sources)			
		WK20	` ′			
		WK6-11 WK6-11A		=		
		WK6-12	ACD A (-: 4 }+	=		
		WK6-12A WK6-9	ASR A (piézomètres d'alerte au pied de			
		WK6-9A	la berme)			
		WKBH102	, , , , , , , , , , , , , , , , , , , ,	=		
		WKBH102A WKBH103		71		
		WK6-10				•
		WK6-10A				
		WKBH109 WKBH109A		=		
		WKBH110		=		
		WKBH110A WKBH110B		=		
Kwe Ouest		WKBH111	ASR B (zone	-		
		WKBH117	tampon)			
		WKBH117A				
		WKBH117B				
	ASR	WKBH118		=		
		WKBH118A WKBH118B		=		
		WKBH118B		-		
		WKBH112A		=		
		WKBH113		=		
		WKBH113A		=		
		WKBH114				
		WKBH114A	ACD C (provimitá			
		WKBH115	ASR C (proximité rivière)			
		WKBH115A	iivicic)			
		WKBH115B				
		WKBH116		=		
		WKBH116A WKBH116B		=		
		WTBH9				
		WKBH32		=		•
Kadji		WK6-14	ASR D (vallées			
		WTBH11	adjacentes)	=		
Trou Bleu		WTBH11A				
		7-1	Port (rétention fuel			
Baie de Prony	PORT	7-2	lourd)			
		7-3	iouiuj			
		6-1				
		6-1a	Aval site indust.			
		6-2				
		6-2a 6-3	Aval distrib.			
		6-3 6-3a	carburant			
		6-4	Aval hydroc.			
CD::		6-5	Aval H2SO4			
CBN	USINE	6-6	Aval gazole			
		6-7	Amont site indust.			
		6-7a	Amont site maust.			
		6-8	Aval contôle Nord			
		6-8a				
		6-13	Aval procédé			
		6-14 6-14a	Aval stock. HCl			
	ゝ: déclasser	laire en 2015 et 2 nent par rapport ment par rapport	à 2015		Bon Mauva Infiltra Indéte	ition eau de mer
		ment par rapport	. 0 2013		Statio	n sous influence de VN on sous influence
					mo	odérée de VNC

4.2.2.6 Titre alcalimétrique complet

L'alcalinité de l'eau ou titre alcalimétrique complet (TAC) correspondant à la concentration en CaCO₃ est mesurée dans les eaux de surface des creeks et des dolines, ainsi que dans les eaux souterraines.

Limites de détection, valeurs seuil et gamme de variations de référence :

L'alcalinité des eaux de surface et des eaux souterraines est exprimée en mg CaCO₃/L, avec une limite de détection de 2 mg CaCO₃/L. La réglementation française n'inclut pas à ce jour de valeurs seuils pour l'alcalinité des eaux douces.

A titre indicatif, une eau est considérée comme douce de 0 à 60 mg $CaCO_3/L$, légèrement dure de 60 à 120 mg $CaCO_3/L$, dure de 120 à 180 mg $CaCO_3/L$, et très dure au-delà de 180 mg $CaCO_3/L$.

En 2016, 2 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Cinq piézomètres sous influence modérée des activités industrielles et minières peuvent être considérés comme piézomètres de contrôle pour les zones d'activités dans lesquelles ils sont implantés (WTBH11 et WTBH11A pour l'aire de stockage des résidus), leurs mesures sont colorées en bleu dans le tableau de valeurs des eaux souterraines.

Tableau 157 : Détermination de la gamme de variations de référence pour l'alcalinité des eaux de surface : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

TAC	(mg/L Ca	CO3) - eaux	de surface					
Position	Type de	Stations	de référence	N	moy	moy	Per 10	Per 90
Position	BV	Zone	Station	2016	2016	2016	Pel 10	Pel 50
Amont	Grand	Kwe Ouest	3-A	5	20,40	20,40	19,40	21,60
Aval	Grand	Trou Bleu	3-C	12	22,17	22,17	3,00	33,80

Résultats et analyse

L'alcalinité n'est pas connue en 2016 dans 2 stations de suivi des creeks et 8 stations de suivi des dolines, aucun score ne leur a donc été attribué cette année.

En 2016, la majorité des stations de suivi des eaux de surface présentait des valeurs moyennes et percentiles 90 plus élevées que celles de leurs gammes de références respectives, qui correspondent à une eau douce. Par ailleurs, la chronique temporelle 2012-2016 d'alcalinité des eaux de surface montre une tendance à la hausse pour la station 3-D, située en amont de la Kwé Ouest, qui est également la seule à être passée d'une eau considérée comme douce à une eau légèrement dure (TAC > 60 mg CaCO₃/L) avec une concentration annuelle de 62,3 mg/l (CaCO3). Un score final « Mauvais » lui a donc été attribué, ce qui constitue un déclassement par rapport à 2015 pour ce paramètre, tandis que le reste du réseau de suivi des eaux de surface conserve cette année un score « Bon ».

Tableau 158 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs de la gamme de référence de 2016 pour l'alcalinité des eaux de surfaces de 15 stations de suivi des creeks et 11 stations de suivi des dolines. Un score binaire 2016 (Bon ou Mauvais) par station puis par zone est attribué sur la base de ces comparaisons.

TAC	(mg Ca	CO3/L) - eaux de s	urface		Iq = 2	mg	/L													
Position	Type	Stations de	suivi		2012		2013		2014		2015			2016		Moy et Per90 2016	Pas de hausse	Score 2015	Score 2016	Score 2016
Position	de BV	Zone	Station	N	Moy	2	Moy	Z	Moy	Ν	Moy	N	Moy	Per 90	Max	≤ gamme ref. ?	temporelle?	3COIE 2013	par station	par zone
			3-B	14	17,93	11	19,64	10	18,40	15	20,67	5	19,60	22,60	23,00	Bon	Bon	Bon	Bon	
		Kwe Ouest	3-D	2	28,00	2	36,50	2	42,50	3	45,67	3	62,33	69,00	69,00	Mauvais	Mauvais	Bon	Mauvais	Mauvais
		KWC OUCST	3-E	2	15,00	2	41,00	2	39,00	1	48,00	3	29,00	42,40	45,00	Mauvais	Bon	Bon	Bon	Maavais
	Grand		4-N	9	9,78	2	14,00	11	12,45	11	11,55	12	11,33	18,50	27,00	Bon	Bon	Bon	Bon	
Amont	Grana	Kwe Nord	4-M	12	29,75	9	32,22	9	42,22	11	29,27	11	33,82	48,00	51,00	Mauvais	Bon	Bon	Bon	Bon
		Kwe Est	KE-05	12	27,58	9	30,67	6	31,00	12	38,67	11	34,64	39,00	39,00	Mauvais	Bon		Bon	Bon
		CBN Amont	6-Q	13	39,00	9	42,22	10	43,70	10	45,50	10	44,30	49,20	51,00	Mauvais	Bon	Bon	Bon	Bon
		CDIV AIIIOIIC	6-S	12	8,00	9	12,11	7	35,14	7	30,86	10	25,20	45,00	45,00	Mauvais	Bon	Bon	Bon	Don
	Petit	Trüu Amont	TR-02	12	39,08	9	39,67	5	40,60	12	43,92	0					Bon	Bon		
		Kwe principale	1-A	12	26,58	9	29,44	10	33,60	12	32,58	12	34,92	43,70	48,00	Mauvais	Bon	Bon	Bon	Bon
	Grand	we principale	1-E	13	26,17	9	28,67	8	33,63	12	33,08	12	35,50	42,90	48,00	Mauvais	Bon	Bon	Bon	20.1
Aval	Grana	CBN Aval	6-BNOR1	4	36,25	4	37,25	4	39,00	4	42,75	4	48,00	54,80	58,00	Mauvais	Bon	Bon	Bon	Bon
		CDITATO	6-T	4	35,25	3	42,33	4	38,00	4	42,00	4	46,25	50,00	50,00	Mauvais	Bon	Bon	Bon	20
	Petit	Trüu Aval	TR-01	11	36,91	9	37,33	5	35,00	10	41,80	0					Bon	Bon		
			6-R	12	7,92	9	7,89	10	9,60	11	5,82	10	2,80	4,00	4,00		Bon		Bon	
			DOL-2	2	2,50	2	2,50	2	4,00	1	2,00	0					Bon			
			DOL-3	2	4,00	1	7,00	1	9,00	0		0					Bon			
		CBN	DOL-4	2	3,50	2	4,50	2	7,00	1	5,00	0					Bon			Bon
		CDIT	DOL-8	1	9,00	1	8,00	1	7,00	1	10,00	0					Bon			20
Doli	nes		DOL-9	1	17,00	1	15,00	1	14,00	0		0					Bon			
			DOL-10	0		1	2,00	0		0		1	4,00	4,00	4,00		Bon		Bon	
			DOL-15	0		1	2,00	0		0		0								
			DOL-11	2	21,50	1	15,00	1	28,00	0		2	16,00	19,20	20,00		Bon		Bon	
	Ka dji	DOL-12	1	5,00	1	5,00	1	13,00	1	11,00	0					Bon			Bon	
			DOL-13	2	7,50	2	6,50	1	3,00	1	6,00	0					Bon			

En 2016, l'alcalinité des eaux souterraines n'est pas connue dans 5 piézomètres sous influence de l'unité de préparation du minerai, aucun score ne leur a donc été attribué cette année.

L'alcalinité a été mesurée en 2016 dans tous les autres piézomètres, dont 2 présentent des valeurs annuelles supérieures à celles mesurées aux piézomètres de contrôle, sans toutefois montrer d'évolution temporelle sur la chronique de données 2012-2016, ce qui indique une dureté naturelle attribuable à la nature du substrat environnant. Les piézomètres WK6-10 et WK6-12A sous influence de l'Aire de Stockage des Résidus présentent en revanche une tendance à l'augmentation depuis plusieurs années. Un score « Mauvais » leurs a donc été attribué, tandis qu'un score « Bon » reste octroyé cette année au reste des piézomètres de suivi des eaux souterraines pour ce paramètre.

Tableau 159 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de la moyenne annuelle et du percentile 90 aux valeurs 2016 des piézomètres de contrôle pour l'alcalinité des eaux souterraines de 70 piézomètres. Un score binaire 2016 (Bon ou Mauvais) par piézomètre puis par zone est attribué sur la base de ces comparaisons.

TAC (mg CaC	O3/L) - eaux sout	erraines		lq = 2	mg	/L		En	bleı	: piézo	mèt	res de c	ontrôle					
Source	Stations de	suivi		2012		2013		2014		2015			2016		-	Pas de hausse	Score 2016	Score 2016
d'influence	Zone	Station	N	Moy	N	Moy	N	Moy	N	Moy	N	Moy	Per 90	Max	≤ piézo. contrôle ?	temporelle?	par piézo.	par zone
		4-z1	4	62,75	2	64,50	4	67,75	4	67,74	4	68,25	72,50	74,00	Bon	Bon	Bon	
	Kwe Nord	4-z1A	4	15,75	1	13,00	4	13,50	4	14,00	0					Bon		
		4-z1B 4-z2	4	27,00 58,50	2	23,50 53,00	4	30,25 57,50	3	34,00 58,25	4	60,75	63,80	65,00	Pon	Bon	Pon	
UPM		4-22 4-22A	4	29,75	1	5,00	4	8,75	4	10,25	0	60,73	03,80	65,00	Bon	Bon Bon	Bon	Bon
01101		4-22A 4-24	4	29,75	2	22,50	4	26,75	4	22,00	5	19,80	23,40	25,00	Bon	Bon	Bon	Don
		4-z4A	4	8,25	2	8,00	3	10,67	4	12,00	0	13,00	23,40	23,00	Don	Bon	Doll	
		4-z5	4	36,25	2	37,00	5	28,80	4	34,00	5	33,40	35,60	36,00	Bon	Bon	Bon	
		4-z5A	4	13,50	1	5,00	2	7,00	4	7,50	0					Bon		
ASR 0 (sources)		WK17	51	45,49	39	52,64	48	54,10	74	54,53	1	47,00	47,00	47,00	Bon	Bon	Bon	
ASK 0 (Sources)		WK20	51	39,24	39	39,87	48	39,71	50	41,40	1	38,00	38,00	38,00	Bon	Bon	Bon	
		WK6-11	1	31,00	0		2	5,50	3	35,67	2	43,00	43,00	43,00	Bon	Bon	Bon	
		WK6-11A	2	7,50	2	2,00	0		3	5,33	2	4,50	5,70	6,00	Bon	Bon	Bon	
		WK6-12	2	40,50	2	11,50	8	25,50	12	21,58	12	24,67	36,70	41,00	Bon	Bon	Bon	
ASR A		WK6-12A	2	3,50	2	3,50	8	7,63	12	9,42	12	9,75	10,90	26,00	Bon	Bon	Bon	
(piézomètres		WK6-9	2	48,00	2	46,50	2	48,00	2	46,00	2	48,50	48,90	49,00	Bon	Bon	Bon	
d'alerte)		WK6-9A	2	17,00	2	16,00	2	16,50	2	17,00	2	17,50	17,90	18,00	Bon	Bon	Bon	
		WKBH102 WKBH102A	11 2	45,18 5,50	7	45,86 5,50	11 2	44,18 6,50	12 2	44,17 6,00	12 2	41,33 6,50	44,90 6,90	47,00 7,00	Bon	Bon	Bon Bon	
		WKBH102A WKBH103	2	45,00	2	48,00	3	49,67	12	51,92	12	50,83	53,00	54,00	Bon Bon	Bon Bon	Bon	
		WK6-10	0	.5,00	1	26,00	2	55,00	2	63,00	2	68,50	75,30	77,00	Bon	Mauvais	Mauvais	
		WK6-10A	2	27,50	1	25,00	1	26,00	2	23,50	2	22,50	22,90	23,00	Bon	Bon	Bon	
		WKBH109	0	,	0		1	20,00	2	38,00	2	30,50	39,70	42,00	Bon	Bon	Bon	
		WKBH109A	2	51,50	2	53,50	2	51,50	2	61,00	11	57,09	60,00	61,00	Bon	Bon	Bon	
		WKBH110	10	43,60	7	42,57	11	44,73	12	45,42	12	45,08	46,90	56,00	Bon	Bon	Bon	
	Kwe Ouest	WKBH110A	0		0		0		2	46,00	11	44,36	48,00	50,00	Bon	Bon	Bon	
ASR B		WKBH110B	2	44,50	2	41,50	2	47,50	2	46,00	11	45,55	47,00	55,00	Bon	Bon	Bon	
(zone tampon)		WKBH111	2	47,50	2	47,00	2	52,00	2	52,00	2	51,00	51,80	52,00	Bon	Bon	Bon	
		WKBH117	1	49,00	2	51,50	2	47,00	2	52,50	2	52,00	53,60	54,00	Bon	Bon	Bon	
		WKBH117A	2	43,00	2	44,00	2	41,50	2	46,50	2	40,00	40,80	41,00	Bon	Bon	Bon	Bon
		WKBH117B	2	43,50	2	43,50	2	43,50	1	45,00	2	45,50	46,70	47,00	Bon	Bon	Bon	
		WKBH118	2	58,00	2	51,00	2	50,50	2	52,50	2	53,50	54,70	55,00	Bon	Bon	Bon	
		WKBH118A WKBH118B	2	51,00 15,50	2	47,00 14,00	2	50,00	2	51,00	2	49,00	49,00	49,00	Bon	Bon	Bon	
		WKBH113B	2	61,50	2	74,50	2	15,50 73,00	2	16,00 76,50	2	16,50 75,00	16,90 79,00	17,00 80,00	Bon Bon	Bon Bon	Bon Bon	
		WKBH112 WKBH112A	0	01,30	0	74,30	2	43,00	2	22,00	2	21,50	25,90	27,00	Bon	Bon	Bon	
		WKBH113	11	33,27	7	33,43	12	33,92	12	33,58	12	33,75	35,00	40,00	Bon	Bon	Bon	
		WKBH113A	2	9,50	2	10,50	2	10,50	2	12,00	2	10,00	10,00	10,00	Bon	Bon	Bon	
		WKBH114	3	23,00	2	41,50	2	42,50	2	44,00	2	41,50	43,50	45,00	Bon	Bon	Bon	
ASR C		WKBH114A	1	2,00	1	2,00	2	2,00	2	2,00	2	2,00	2,00	2,00	Bon	Bon	Bon	
(proximité		WKBH115	0		0		1	56,00	0		2	57,00	57,80	58,00	Bon	Bon	Bon	
rivière)		WKBH115A	0		0		1	67,00	2	52,50	2	45,50	49,90	51,00	Bon	Bon	Bon	
		WKBH115B	2	6,00	2	3,00	2	4,00	2	6,50	2	5,00	5,00	5,00	Bon	Bon	Bon	
		WKBH116	2	63,00	2	61,50	1	54,00	2	60,50	2	58,50	62,10	63,00	Bon	Bon	Bon	
		WKBH116A	2	54,50	2	54,00	2	52,50	2	55,50	2	53,00	54,60	55,00	Bon	Bon	Bon	
		WKBH116B	2	9,00	2	7,00	2	8,00	2	8,50	2	8,50	8,90	9,00	Bon	Bon	Bon	
		WTBH9	2	57,00	2	52,00	2	97.00	2	60,00	2	56,00	57,60	58,00	Bon	Bon	Bon	
ASR D	Ka dii	WKBH32 WK6-14	1	84,00 59,00	2	88,00 60,50	1	87,00 55,00	1	84,00 63,00	2	77,50 73,50	78,70 74,70	79,00 75,00	Bon Bon	Bon Bon	Bon Bon	
(vallées	Kadji	WK6-14 WTBH11	2	49,50	2	48,00	2	52,00	2	53,00	2	49,50	50,70	51,00	Bon	Bon	Bon	
adjacentes)	Rivière Trou Bleu	WTBH11A	2	41,00	2	50,50	2	45,00	2	42,00	2	42,50	44,50	45,00	Bon	Bon	Bon	
		7-1	_	172,50	_	111,50	_	477,50		/	3	142,67	180,40		Mauvais	Bon	Bon	
Port	Baie de Prony	7-2	0		0		0		0		2	32,00	33,60	34,00	Bon		Bon	Bon
	<u> </u>	7-3	2	56,50	2	56,00	2	57,50	0		2	52,00	55,20	56,00	Bon	Bon	Bon	
		6-1	4	115,50	2	107,00	4	98,75	4	125,75	4	120,00	132,10	136,00	Mauvais	Bon	Bon	
		6-13	0		1	54,00	4	51,25	4	53,00	4	51,75	55,90	58,00	Bon	Bon	Bon	
		6-14	6	82,67	3	80,67	5	66,00	5	75,00	4	76,25	84,50	86,00	Bon	Bon	Bon	
		6-14a	6	16,00	4	28,75	9	27,44	10	26,20	11	16,00	18,00	18,00	Bon	Bon	Bon	
		6-1a	6	54,17	4	55,00	4	54,50	4	55,75	4	55,75	59,10	60,00	Bon	Bon	Bon	
		6-2	4	43,00	2	48,00	4	38,75	4	15,50	4	45,50	47,40	48,00	Bon	Bon	Bon	
		6-2a 6-3	4	15,50 23,50	3	15,00 23,33	4	14,50 22,75	4	15,25 23,75	4	13,25 27,25	16,50 31,20	18,00 33,00	Bon Bon	Bon Bon	Bon Bon	
Usine	CBN	6-3a	4	21,50	2	21,00	3	22,75	3	21,00	3	20,67	21,80	22,00	Bon	Bon	Bon	Bon
		6-4	4	28,00	2	29,00	4	23,50	4	24,00	3	22,33	23,80	24,00	Bon	Bon	Bon	
		6-5	5	76,60	2	78,00	4	74,50	4	78,75	4	76,75	82,20	84,00	Bon	Bon	Bon	
		6-6	6	86,33	2	92,00	4	85,00	4	125,00	4	88,50	91,10	92,00	Bon	Bon	Bon	
		6-7	5	67,00	4	56,00	6	59,83	4	87,00	4	76,75	86,00	89,00	Bon	Bon	Bon	
		6-7a	4	34,50	2	34,50	4	33,00	3	34,00	3	31,67	35,20	36,00	Bon	Bon	Bon	
		6-8	5	73,00	2	77,50	4	75,00	4	74,00	4	80,25	82,70	83,00	Bon	Bon	Bon	
1		6-8a	4	36,50	2	37,50	4	33,00	4	39,75	4	40,25	40,70	41,00	Bon	Bon	Bon	

4.2.2.7 Communautés de macro-invertébrés

4.2.2.7.1 Indice Biotique de Nouvelle-Calédonie

L'IBNC est mesuré dans les eaux de surface des creeks, selon la méthode Mary (2011) depuis l'année 2012, et pour la première fois en 2016 selon la méthode révisée Mary (2015).

Limites de détection, valeurs seuil et gamme de variations de référence :

Les classes de qualité des eaux de surface selon la valeur d'IBNC sont définies par le guide méthodologique et technique – Indice biotique de la Nouvelle-Calédonie (IBNC) et Indice Biosédimentaire (IBS) (Mary & Archaimbault, 2011), puis dans sa version révisée en 2015.

En 2016, 7 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

En raison de leurs particularités hydrogéologiques, les milieux lotiques du Grand Sud accueillent une communauté de macro-invertébrés très pauvre, peu abondante et déstructurée. De ce fait, afin d'attribuer un score aux stations de suivi, l'écart entre la moyenne d'IBNC (méthode 2015) de la gamme de référence par rapport à la médiane de la classe « Bon » est calculé puis ajouté au score des stations de suivi, produisant une valeur finale qui est évaluée selon la grille de référence des classes de qualité (méthode 2015).

Tableau 160 : Grille de référence des classes de qualité et détermination de la gamme de variations de référence pour l'IBNC (méthode de 2011) : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	BNC (20	11) - eaux d	e surface	Gı	ille de n	otation d	e référer	ice :	< 3,5	Mauvais
Position	Type	Station	s de référence	N	moy	moy	Per 10	Per 90	< 3,3	ividuvais
FUSITION	de BV	Zone	Station	2016	2016	2016	FEI 10	PEI 30	25 /5	Médiocre
	Amont Grand	Carénage	Carénage Amont	1	6,67				3,3-4,3	Weuldcie
Amont		Kaoris	Kaoris Amont	1	5,90	5,96	5,43	6,52	4,5 - 5,5	Passable
		Kuebini	Kueb Amont	1	5,31				4,3 - 3,3	rassable
		Trou Bleu	3-C	4	5,49				5,5 - 6,5	Bon
Aval	Grand	Carénage	Carénage Aval	1	6,04	5,73	5,43	6,03	3,3 - 6,3	DUII
Avai	Granu	Kaoris	Kaori Aval	1	5,40	3,73	3,43	0,03	> 6,5	Excellent
		Kuebini	Kueb Aval	1	6,00				70,3	LXCellellt

Tableau 161 : Grille de référence des classes de qualité et détermination de la gamme de variations de référence pour l'IBNC (méthode de 2015) : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	IBNC (20	15) - eaux d	e surface	Gı	rille de n	otation d	e référer	ice :	< 4,25	Mauvais
Danisian	Type	Station	s de référence	N	moy	moy	Per 10	D== 00	< 4,25	ividuvais
Position	de BV	Zone	Station	2016	2016	2016	Per 10	Per 90	4,25 - 4,75	Médiocre
	Carén		Carénage Amont	1	5,67				4,25 - 4,75	Mediocre
Amont	Amont Grand	Kaoris	Kaoris Amont	1	5,04	5,25	5,04	5,55	4,75 - 5,30	Passable
		Kuebini	Kueb Amont	1	5,05				4,75 - 5,30	Passable
		Trou Bleu	3-C	4	4,75				5,30 - 5,70	Bon
Aval	Aval Grand	Carénage	Carénage Aval	1	5,45	5.03	4.53	5,46	3,30 - 3,70	BOII
Avai		Kaoris	Kaori Aval	1	4,44	5,05	4,53	3,40	> 5,70	Excellent
		Kuebini	Kueb Aval	1	5,47				> 5,70	excellent

Résultats et analyse

Tableau 162: Evolution temporelle de la chronique des données 2012-2016, re-calcul du score d'IBNC d'après les méthodes 2011 et 2015, et comparaison du nouveau score 2015 aux valeurs de classes de qualité pour 17 stations de suivi des creeks. Un score final 2016 par station puis par zone est attribué sur la base de ces comparaisons.

	IBNC -	eaux de surface								IBN	C (2011)				•		IBNC (2015)					
Position	Type	Stations de	suivi	2012		2013		2014			2015		2016	Recalcul	Pas de baisse	2016		Recalcul	Score 2016	Score 2016		
Position	de BV	Zone	Station	N	Moy	N	Moy	N	Moy	Ν	Moy	Ν	Moy	classe	temporelle?	N	Moy	classe	par station	par zone		
			3-B	1	5,62	3	5,65	М	5,35	2	5,61	1	6,18	6,22	Bon	1	5,29	5,54	Bon			
			4-N	1	4,40	1	4,71	2	4,78	2	4,00	1	4,00	4,04	Bon	1	3,00	3,25	Mauvais			
		Kwe Ouest	KO4-20-I	0		0		0		2	5,30	1	4,67	4,71	Mauvais	1	3,50	3,75	Mauvais	Mauvais		
	Grand	kwe Odest	KO5-10-I	0		0		0		1	5,45	0				1	4,00	4,25	Médiocre	iviauvais		
Amont	Gianu		KO5-20-I	0		0		2	5,36	2	5,18	1	4,60	4,64	Mauvais	1	4,71	4,96	Passable			
Amont			KO5-50-I	0		0		2	4,91	2	3,97	1	4,80	4,84	Bon	1	3,40	3,65	Mauvais			
		Kwe Nord	4-M	1	4,33	1	6,33	2	5,67	2	5,72	1	4,75	4,79	Mauvais	1	4,40	4,65	Médiocre	Médiocre		
		Kwe Est	KE-05	1	4,00	1	6,00	2	4,69	2	4,89	1	5,14	5,18	Bon	1	4,56	4,81	Passable	Passable		
	Petit	Kadji	5-E	1	5,67	1	5,56	2	6,15	2	6,36	1	5,42	5,46	Mauvais	1	4,79	5,04	Passable	Passable		
	retit	Trüu Amont	TR-03	0		0		1	5,00	1	5,11	0			Bon	0						
		Kwe principale	1-A	0		0		0		0		1	5,46	5,73		0				Passable		
		kwe pilikipale	1-E	2	5,42	5	5,75	М	5,19	2	6,03	1	5,00	5,27	Mauvais	1	4,31	4,78	Passable	rassable		
	Grand		6-BNOR1	2	5,02	5	4,66	6	5,02	4	5,63	4	5,57	5,84	Bon	4	4,66	5,13	Passable			
Aval		CBN Aval	6-T	6	4,95	6	4,84	6	5,49	4	5,59	4	5,36	5,63	Bon	4	4,42	4,89	Passable	Passable		
			6-U	1	5,00	2	4,95	4	4,82	2	5,66	1	5,33	5,60	Bon	1	4,29	4,76	Passable			
	Petit	Trüu Aval	TR-04	1	5,56	1	5,40	2	5,38	2	5,50	1	5,56	5,83	Bon	1	4,58	5,05	Passable	Passable		
	retit	ITUU AVdI	TR-05	1	5,75	2	5,04	2	5,47	2	5,71	1	5,44	5,71	Bon	1	4,39	4,86	Passable	rassable		

En italique: IBNC calculés avec un nombre de taxons inférieur à 10

En 2016, les notes IBNC re-calculées traduisent généralement des eaux de qualité passable à mauvaise concernant les pollutions organiques, à l'exception de la station 3-B qui obtient un score « Bon », contrairement aux autres stations de suivi de cette zone dont le score est globalement « Mauvais ». Ces scores sont toutefois à interpréter avec prudence, car le nombre de taxons entrant dans le calcul de l'IBNC est inférieur à 10 pour 7 stations, incluant les 5 dont le score est « Mauvais » ou « Médiocre ».

Cette année encore, les valeurs d'IBNC des stations situées en amont des bassins versants sont généralement plus faibles que celles des stations situées en aval, ce qui n'est pas le cas dans les rivières de référence. Cela pourrait s'expliquer par l'impact organique des perturbations d'origine industrielle et minière, dont les sources sont toutes situées en amont des bassins versant, et dont l'effet diminue avec l'éloignement et l'effet de dilution plus en aval.

4.2.2.7.2 Indice Bio-Sédimentaire

L'IBS est mesuré dans les eaux de surface des creeks, selon la méthode Mary (2011) depuis l'année 2012, et pour la première fois en 2016 selon la méthode révisée Mary (2015).

Limites de détection, valeurs seuil et gamme de variations de référence :

Les classes de qualité des eaux de surface selon la valeur d'IBS sont définies par le guide méthodologique et technique – Indice biotique de la Nouvelle-Calédonie (IBNC) et Indice Biosédimentaire (IBS) (Mary & Archaimbault, 2011), puis dans sa version révisée en 2015.

En 2016, 7 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

En raison de leurs particularités hydrogéologiques, les milieux lotiques du Grand Sud accueillent une communauté de macro-invertébrés très pauvre, peu abondante et déstructurée. De ce fait, afin d'attribuer un score aux stations de suivi, l'écart entre la moyenne d'IBNC (méthode 2015) de la gamme de référence par rapport à la médiane de la classe « Bon » est calculé puis ajouté au score des stations de suivi, produisant une valeur finale qui est évaluée selon la grille de référence des classes de qualité (méthode 2015).

Tableau 163 : Grille de référence des classes de qualité et détermination de la gamme de variations de référence pour l'IBS (méthode de 2011) : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	IBS (201	1) - eaux de	surface	Gi	rille de n	ice :	< 4,25	Mauvais			
Position	Type de	Station	is de référence	N	moy	moy	Per 10	Per 90	< 4,25	iviauvais	
	BV	Zone	Station	2016	2016	2016	Per 10	Per 90	4,25 - 5,00	Médiocre	
	Grand	Carénage	Carénage Amont	1	6,40				4,25 - 5,00	ivieulocie	
Amont		Kaoris	Kaoris Amont	1	5,81	5,68	5,03	6,28	5,00 - 5,75	Passable	
		Kuebini	Kueb Amont	1	4,83				5,00 - 5,75	Passable	
		Trou Bleu	3-C	4	4,50				5,75 - 6,5	Bon	
Accel	C	Carénage	Carénage Aval	1	5,64	F 20	4	F 04	3,73 - 0,3	Bon	
Aval	Grand	Kaoris	Kaori Aval	1	4,73	5,20	4,57	5,84		Free House	
		Kuebini	Kueb Aval	1	5,92				> 6,5	Excellent	

Tableau 164 : Grille de référence des classes de qualité et détermination de la gamme de variations de référence pour l'IBS (méthode de 2015) : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

	IBS (201	5) - eaux de	surface	Gı	rille de n	otation d	< 4,35	Mauvais			
Position	Type de	Station	is de référence	N	moy	moy	Per 10	Per 90	< 4,55	Ividuvais	
FUSILIUII	BV	Zone	Station	2016	2016	2016	rei 10	rei 30	4,35 - 4,90	Médiocre	
		Carénage	Carénage Amont	1	5,81				4,33 - 4,30	ivieulocie	
Amont	Grand	Kaoris	Kaoris Amont	1	5,48	5,47	5,18	5,74	4,90 - 5,45	Passable	
		Kuebini	Kueb Amont	1	5,11				4,30 - 3,43	i assable	
		Trou Bleu	3-C	4	4,19				5,45 - 6,00	Bon	
Aval	Grand	Carénage	Carénage Aval	1	5,13	4.60	4,28	4,97	3,43 - 0,00	BOII	
Avai	Granu	Kaoris	Kaori Aval	1	4,50	4,00	4,20	4,57	> 6.00	Excellent	
		Kuebini	Kueb Aval	1	4,58				70,00	excellent	

Résultats et analyse

Tableau 165 : Evolution temporelle de la chronique des données 2012-2016, re-calcul du score d'IBS d'après les méthodes 2011 et 2015, et comparaison du nouveau score 2015 aux valeurs de classes de qualité pour 17 stations de suivi des creeks. Un score final 2016 par station puis par zone est attribué sur la base de ces comparaisons.

	IBS - e	aux de surface								IBS	(2011)					IBS (2015)					
Position	Type	Stations de	e suivi	2012		2013		2014			2015		2016	Recalcul	Pas de baisse	2016		Recalcul	Score 2016	Score 2016	
FUSILIUII	de BV	Zone	Station	N	Moy	Ν	Moy	2	Moy	N	Moy	7	Moy	classe	temporelle?	2	Moy	classe	par station	par zone	
			3-B	1	5,33	3	5,32	3	4,50	2	4,78	1	5,08	5,53	Bon	1	5,07	5,33	Passable		
			4-N	1	3,80	1	4,57	2	3,68	2	3,88	1	3,50	3,95	Bon	1	2,00	2,26	Mauvais		
		Kwe Ouest	KO4-20-I	0		0		0		2	4,15	1	3,83	4,28	Mauvais	1	3,83	4,09	Mauvais	Mauvais	
	Grand	kwe Odest	KO5-10-I	0		0		0		1	5,45	0				1	2,00	2,26	Mauvais		
Amont	Grand		KO5-20-I	0		0		2	4,83	2	4,41	1	4,75	5,20	Bon	1	3,43	3,69	Mauvais		
Amont			KO5-50-I	0		0		2	3,75	2	4,81	1	5,00	5,45	Bon	1	5,40	5,66	Bon		
		Kwe Nord	4-M	1	4,67	1	5,86	2	4,73	2	4,94	1	4,25	4,70	Bon	1	4,00	4,26	Mauvais	Mauvais	
		Kwe Est	KE-05	1	5,50	1	5,50	2	3,71	2	4,40	1	4,33	4,78	Bon	1	4,22	4,48	Médiocre	Médiocre	
	Petit	Kadji	5-E	1	4,86	1	5,29	2	5,49	2	5,26	1	4,70	5,15	Mauvais	1	4,57	4,83	Médiocre	Médiocre	
	Petit	Trüu Amont	TR-03	0		0		1	4,00	1	4,38	0			Bon	0					
		Kwa principala	1-A	0		0		0		0		1	4,62	5,55		1	4,94	6,07	Bon	Bon	
		Kwe principale	1-E	2	5,00	5	5,28	3	4,27	2	5,18	1	3,78	4,71	Mauvais	1	4,38	5,51	Bon	DOII	
	Grand		6-BNOR1	0		0		0		4	4,76	4	0,00	0,93		4	4,62	5,75	Bon		
Aval		CBN Aval	6-T	1	4,86	0		0		4	4,88	4	4,43	5,36	Bon	4	4,26	5,39	Passable	Passable	
			6-U	0		0		0		4	4,83	1	4,50	5,43		1	3,86	4,99	Passable		
	Petit	Trüu Aval	TR-04	1	5,25	1	4,20	2	4,58	2	5,00	1	4,75	5,68	Bon	1	4,33	5,46	Bon	Pos	
	retit		TR-05	1	5,20	2	3,87	2	4,58	2	5,13	1	4,29	5,22	Bon	1	4,38	5,51	Bon	Bon	

En italique : IBNC calculés avec un nombre de taxons inférieur à 10

En 2016, les notes IBS re-calculées traduisent généralement des eaux de qualité médiocre à mauvaise concernant les pollutions sédimentaires en amont des bassins versants, à l'exception de la station KO5-50-l en amont de la Kwé Ouest qui obtient un score « Bon », contrairement aux autres stations de suivi de cette zone dont le score est globalement « Mauvais ». Tout comme pour l'IBNC, ces scores d'IBS restent à interpréter avec prudence car le nombre de taxons entrant dans leur calcul est inférieur à 10 pour 7 stations, incluant les 5 dont le score est « Mauvais » et une station notée « Médiocre ». Les pollutions sédimentaires ne semblent que peu affecter les stations en aval des rivières, qui obtiennent toutes un score « Bon » ou « Passable » en 2016.

Cette année encore, les valeurs d'IBS des stations situées en amont des bassins versants sont plus faibles que celles des stations situées en aval, ce qui n'est pas le cas dans les rivières de référence. Cela traduit probablement l'impact sédimentaire des perturbations d'origine industrielle et minière, dont les sources sont toutes situées en amont des bassins versant. L'influence de ces activités semble s'estomper plus en aval.

<u>Remarque</u>: La méthode retenue pour la caractérisation de l'état écologique sur la base des macro-invertébrés prévoit la prise en considération des scores d'IBS et IBNC uniquement. Le score de l'indice le plus déclassant est retenu.

Sans qu'elles n'entrent dans le processus de qualification de l'état écologique, d'autres métriques ont été explorées dans le cadre de l'analyse des données. Les résultats de ces analyses sont donnés à titre indicatif en annexe du présent rapport. Ils concernent l'indice ET, l'abondance, la densité, la richesse spécifique et l'équitabilité des communautés des macro-invertébrés.

4.2.2.8 Communautés de poissons

L'abondance, la richesse spécifique, la biomasse et la densité en poissons et poissons endémiques sont mesurées dans les eaux de surface des creeks.

Selon la méthodologie définie, un score « Très Bon », « Bon », « Moyen », « Médiocre » ou « Mauvais » par zone et par paramètre est attribué sur la base de l'interprétation issue du rapport annuel de suivi produit par le prestataire de Vale NC en charge des suivis ichtyologiques et carcinologiques (Ecotone NC - Alliod & Laffont, 2017), décrivant l'état général des communautés ichtyologiques en 2016.

Résultats et analyse

Tableau 166 : Scores basés sur l'évolution temporelle de la chronique des données 2010-2016 et interprétation du rapport annuel Ecotone NC 2017 pour 7 paramètres de suivi des communautés ichtyologiques sur 17 stations de suivi des creeks. Un score final 2016 par zone est attribué sur la base des conclusions du rapport et dans la continuité des diagnostics formulés pour 2015.

Com	nunauté Po	issons - eaux d	e surface	Abon	dance	Abdce spp. endémique		Den	sité	Bion	nasse	Biom. spp.	Endémique:	Richesse	spécifique	Rich. sp. E	ndémiques								
Position	Type de BV	Stations of Zone	de suivi Station	Score Ecotone NC	Evolution temporell e		Evolution temporell e		Evolution temporell e		Evolution temporell e		Evolution temporell e	Score Ecotone NC	Evolution temporell e	Score Ecotone NC	Evolution temporell e	Score Ecotone 2016	Score 2014	Score 2015	Score 2016				
Amont	Grand	Kwe Ouest	KO4-10 KO4-50 KO5-20-P KWO-10 KWO-20 KWO-60	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais Sta	Stable	Mauvais	Bon	Mauvais	Stable	Mauvais	Stable	Mauvais	Bon	Moyen	Stable	Bon	Bon	Moyen	Bon	Bon	Moyen
Aval		(we principale	KP-10 KP-40 KP-70																Médiocre	Médiocre	Moyen				
	Grand	CBN	CBN-10 CBN-30 CBN-40 CBN-70 CBN-AFF-02 CBN-01	Bon	Bon	Mauvais	Bon	Bon	Bon	Bon	Bon	Mauvais	Bon	Bon	Bon	Bon	Bon	Bon	Mauvais	Moyen	Moyen				
		Trou Bleu	TBL-50 TBL-70	Bon	Stable	Bon	Stable	Bon	Stable	Bon	Stable	Bon	Stable	Passable	Stable	Bon	Stable	Bon	NA	inconnu	Bon				
		Kuebini	KUB-40 KUB-50 KUB-60	Mauvais	Stable	Mauvais	Stable	Mauvais	Stable	Mauvais	Stable	Mauvais	Stable	Mauvais	Stable	Mauvais	Stable	Mauvais	Moyen	Moyen	Moyen				
Amont	Petit	Wadjana	WAD-40 WAD-50 WAD-70	Bon	Stable	Bon	Stable	Bon	Stable	Bon	Stable	Bon	Stable	Mauvais	Stable	Bon	Stable	Moyen	NA	inconnu	Bon				
Aval	Petit	Trüu Aval	TR-70	Bon	Stable	Bon	Stable	Bon	Stable	Bon	Stable	Bon	Stable	Passable	Stable	Bon	Stable	Moyen	inconnu	Bon	Bon				

- Rivière Kwé:

Considérant l'effort d'échantillonnage en 2016 et comparativement à d'autres cours d'eau du Grand Sud de la Nouvelle-Calédonie de même typologie, un score « Mauvais » peut être attribué aux valeurs d'effectif, de densité, et de biomasse des poissons recensés dans les stations de la Kwé, tandis que la richesse spécifique mérite un score « Moyen ». Les espèces communes aux cours d'eau calédoniens et tolérantes ou résistantes aux pressions anthropiques dominent le cours d'eau en termes d'effectif et de biomasse, tandis que les espèces rares ou sensibles sont moins bien représentées mais constituent une proportion non négligeable de l'effectif et de la biomasse. En ce qui concerne les espèces de poissons endémiques, un score « Bon » est attribué à leur diversité spécifique et un score « Mauvais » à leur abondance et leur biomasse, probablement en raison des impacts subis par ce cours d'eau et allant dans le sens d'un état écologique fragilisé du milieu. Dans l'ensemble, la faune ichtyologique de la Kwé est moyennement diversifiée. L'état écologique de son écosystème est considéré comme « Moyen » cette année en ce qui concerne les populations ichtyologiques, cet état étant certainement lié à l'altération sédimentaire passée (anciennes mines) et actuelle (site minier de Vale NC) ainsi qu'aux infrastructures présentes sur le bassin versant.

L'évolution temporelle des populations ichtyologiques dans la Kwé montre une stabilité de l'effectif, de la densité, de la richesse spécifique et de la biomasse. L'état écologique de cette rivière qualifié de faible semble se maintenir au cours des années, toutefois l'augmentation significative des espèces rares et sensibles, dont les espèces endémiques, permet de reclasser l'état de ce cours d'eau en « Moyen ».

Sur les stations KO4 et KO5, bien que les auteurs mentionnent les limites de leurs interprétations liée à la variabilité de l'effort d'échantillonnage et à la saisonnalité, les communautés ichtyologiques sont qualifiées de pauvres sur ces zones. Il est possible que l'altération sédimentaire présente en aval sur la branche principale de la Kwé entraine une modification des communautés de poisson originellement présentes en amont, mais l'effet naturel de zonation longitudinale des espèces de poissons explique également en partie ces faibles valeurs.

Le score écologique de ce cours d'eau est donc qualifié de « Moyen » en 2016 pour les communautés piscicoles des branches principales et Ouest.

- Creek Baie Nord:

En 2016, et comparativement à d'autres cours d'eau du Grand Sud de la Nouvelle-Calédonie de même typologie, un score « Bon » peut être attribué aux valeurs d'effectif, de densité, de biomasse, et de richesse spécifique des poissons recensés dans les stations du Creek Baie Nord. Les espèces communes aux cours d'eau calédoniens et tolérantes ou résistantes aux pressions anthropiques dominent le cours d'eau en termes d'effectif et de biomasse, tandis que les espèces rares ou sensibles sont moins bien représentées, mais constituent une proportion importante de l'effectif et de la biomasse. Un score « Bon » peut également être attribué à la diversité des espèces de poissons endémiques, toutefois leur abondance est faible. Dans l'ensemble, la faune ichtyologique du Creek Baie Nord est abondante et bien diversifiée, bien que déséquilibrée par la dominance d'espèces communes. L'état écologique de son écosystème est considéré comme « Bon » cette année en ce qui concerne les populations ichtyologiques.

Concernant l'évolution temporelle des populations ichtyologiques dans le Creek Baie Nord, les données montrent que le processus de recolonisation a été amorcé et reste en cours depuis l'incident de mai 2014 (déversement de solution acide provenant du site industriel dans le cours d'eau) : les effectifs tendent à augmenter depuis juin 2015 mais restent plus faibles qu'avant mai 2014. Une amélioration de l'état écologique s'est opérée, notamment avec la réapparition de l'espèce endémique *S. sarasini*, recensée en 2016 pour la première fois depuis l'incident, et le recensement de 3 espèces jamais observées jusqu'à présent dans ce cours d'eau, dont l'espèce endémique *Microphis cruentus* et deux espèces marines. Cependant, 15 espèces observées avant l'accident de 2014 n'ont pas encore été retrouvées. Parmi elles, trois espèces endémiques: l'*Ophieleotris nov. sp.*, le *Protogobius attiti (En danger selon l'UICN)* et le *Parioglossus neocaledonicus*.

En l'absence du retour à un état pré-accident de la communauté piscicole du cours d'eau et malgré une amélioration sensible de son état, le Creek Baie Nord maintient un état « Moyen » en 2016.

- Rivière Trou Bleu :

A noter que cette rivière n'a pas fait l'objet de suivi en 2015 (suivi biennal).

En 2016, un score « Bon » peut être attribué aux valeurs d'effectif, de densité et de biomasse recensées sur la rivière Trou Bleu, tandis que la richesse spécifique mérite un score « Moyen ». Le cours d'eau est dominé par des espèces communes et tolérantes ou résistantes aux pressions anthropiques, ainsi que par le mulet noir *C. plicatilis*, une espèce qualifiée de rare et sensible. La richesse spécifique et l'abondance en espèces endémiques sont importantes sur la Trou Bleu, ce qui témoigne de l'existence d'habitats écologiques favorables pour ces espèces. La faune ichtyologique sensible et diversifiée de ce cours d'eau lui confère un état écologique « Bon ».

L'évolution temporelle de la communauté ichtyologique semble stable, malgré une tendance à l'augmentation ou la diminution de certaines populations. L'état écologique « Bon » se maintient au cours

du temps dans la Trou Bleu, qu'aucun impact majeur ne semble perturber, et qui conserve depuis 2010 des effectifs et biomasses élevés en espèces rares et sensibles.

Le score écologique de ce cours d'eau est donc qualifié de « Bon » en 2016 pour les communautés piscicoles.

Rivière Kuébini :

En 2016, un score « Mauvais » peut être attribué aux valeurs d'effectif, de densité, de biomasse et de richesse spécifique recensées sur la rivière Kuébini. Les espèces communes aux cours d'eau calédoniens et tolérantes ou résistantes aux pressions anthropiques dominent le cours d'eau en termes d'effectif et de biomasse, tandis que les espèces rares ou sensibles sont moins bien représentées. Un score « Mauvais » peut également être attribué à l'abondance et la richesse spécifique en espèces endémiques. La Kuébini peut être définie dans l'ensemble comme un cours d'eau ayant une faune ichtyologique faiblement riche et peu diversifiée. L'état écologique de son écosystème est « Mauvais » cette année en ce qui concerne les populations ichtyologiques.

Les évolutions temporelles de l'effectif, de la densité et de la richesse spécifique sur le cours d'eau ne révèlent aucune tendance d'évolution notable, dans l'ensemble les valeurs restent stables au cours du temps. L'état écologique des communautés ichtyologiques de la Kuébini maintient un score « Mauvais » depuis 2012 jusqu'à présent ne tend pas à se modifier.

En l'absence d'évolutions particulières des communautés relevée par les auteurs, il est suggéré de maintenir un score identique aux deux précédents diagnostics pour cette rivière « Moyen ».

Rivière Wadjana :

A noter que cette rivière n'a pas fait l'objet de suivi en 2015 (suivi biennal).

En 2016, un score « Bon » peut être attribué aux valeurs d'effectif, de densité et de biomasse recensées sur la rivière Wadjana. Il est cependant possible que ces valeurs soient surévaluées, étant donnés l'effort d'échantillonnage réduit et la rupture de continuité écologique du cours d'eau. La richesse spécifique mérite quant à elle un score « Mauvais ». Les espèces communes aux cours d'eau calédoniens et tolérantes ou résistantes aux pressions anthropiques dominent le cours d'eau en termes d'effectif et de biomasse, mais la population d'espèces rares ou sensibles est importante sur la Wadjana, en particulier celle des espèces endémiques *Sicyopterus sarasini* et *Ophieleotris nov. sp.* De plus, le gobie endémique *Smilosicyopus chloe* et le lutjan *Lutjanus russelli* sont recensés pour la première fois au sein de la Wadjana cette année. Par rapport à d'autres cours d'eau du Grand Sud de même typologie, la faune ichtyologique de la Wadjana apparait en état « Moyen ». Ce bassin versant subit des impacts sédimentaires notoires (végétation primaire absente sur les stations amont, maquis minier dominant, zones d'érosion importantes) sous l'effet perdurant des activités minières passées, contribuant à ce que l'état écologique de son écosystème soit considéré « Moyen ».

Les évolutions temporelles de l'effectif et de la densité semblent stables au cours du temps, l'état écologique des communautés ichtyologiques de la Wadjana maintient un score « Moyen » depuis 2010 jusqu'à présent et ne tend pas à se modifier, notamment en raison de la présence de ruptures naturelles et artificielles à la continuité écologique du cours d'eau (cascade de Goro et captage en amont) qui cantonnent la très grande majorité des espèces au niveau de la station de l'embouchure.

Considérant que l'état des communautés sur ce cours est le résultat d'un contexte d'érosion généralisé à la région et du faciès naturel du cours d'eau, il semble pertinent de conserver un état Bon pour les communautés de ces cours d'eau en 2016.

- Rivière Trüu :

En 2016, et comparativement à d'autres cours d'eau du Grand Sud de la Nouvelle-Calédonie de même typologie, un score « Bon » peut être attribué aux valeurs d'effectif, de densité et de biomasse recensées sur la rivière Trüu. Il est cependant possible que ces valeurs soient surévaluées du fait de l'effort d'échantillonnage réduit et du nourrissage quotidien des poissons par les habitants. A l'inverse, la richesse spécifique mérite un score « Moyen », potentiellement sous-évalué en raison du faible effort d'échantillonnage (une seule station). Les espèces communes aux cours d'eau calédoniens et tolérantes ou résistantes aux pressions anthropiques dominent le cours d'eau en termes d'effectif et de biomasse, tandis que les espèces rares ou sensibles sont moins bien représentées mais constituent une proportion importante de l'effectif et de la biomasse, indiquant la présence de niches écologiques spécifiques d'importance écologique remarquable. En ce qui concerne les espèces de poissons endémiques, un score « Bon » est attribué à leur diversité spécifique, à leur abondance et leur biomasse. La faune ichtyologique de la Trüu apparait moyennement diversifiée, et différents impacts anthropiques présents sur le bassin versant contribuent à ce que l'état écologique de son écosystème soit considéré « Moyen » cette année.

Les évolutions temporelles de l'effectif et de la densité semblent stables au cours du temps, mais les valeurs obtenues cette année sont les plus élevées pour la saison considérée (saison fraiche) et tendent à indiquer une augmentation du peuplement piscicole. L'état écologique des communautés ichtyologiques de la Trüu maintient un score « Moyen » depuis 2012 jusqu'à présent et ne tend pas à se modifier.

L'appréciation des différents descripteurs des communautés piscicoles par les auteurs est comparable à celle effectuée sur Trou bleu qualifié dans un état « Bon », par ailleurs dans une situation relativement stable au niveau des communautés il est suggéré de retenir un état similaire à 2015 soit un état « Bon » pour l'état des communautés piscicoles de ce cours d'eau.

4.3 Synthèse des scores écologiques et chimiques en milieu eau douce: Affectation des paramètres dans le score chimique ou écologique

Rappel des règles d'agrégations utilisées pour passer des notes aux scores écologique et chimique :

- Le principe de conservation de la note du critère le plus déclassant.
- Lors de la détermination du score écologique, un poids plus important est donné aux notes issues des suivis biologiques par rapport aux notes issues de la physicochimie ou de l'hydro-morphologie.
- L'avis d'expert intervient en complément de ces règles, pour ajuster les scores.

En ce qui concerne l'attribution d'un score aux masses d'eau souterraine :

- la note du critère le plus déclassant n'est attribuée que si celle-ci est retrouvée dans au moins 20 % de la surface de la nappe d'eau considérée. A ce titre, les piézomètres disposant du même préfixe sont considérés comme appartenant à la même zone ex : WKBH116, WKBH116A, WKBH116B.
- Un score global intégrant l'analyse de l'ensemble des paramètres physicochimiques concourant à l'état écologique et chimique est déterminé.

Tableau 167 : Récapitulatif des scores par paramètre et par station et de leur agrégation en scores écologiques et chimiques par zone en 2016 pour le milieu eaux douces de surfaces des creeks et dolines.

		Stations	de suivi								Para		chimique hysico-ch		ies										Parar	mètres physic			cologiqu	ue				Paran	mètres biolog	giques
Position	Type de	Zone	Station	Influence							taux						SO ₄ ² ·	s		core 2016		Profil aqua			AFC	Eléments r	najeurs		Sels nut			org. T		oinverté	Poissons	Score 2016
- Controll	BV	Lone		Influence modérée			Ni Ni		As Cd*	Co Co	* Cr	Cr* CrV	'I Cu Pl	b Pb*	Zn Z	n* Si	504	_	ttx	par zone	T°	pH Cond	Turb.	DCO .	c	I Mg ²⁺ Na ¹	Ca ²⁺	K [†] N		, PO ₄		Nt .	IBN	C IBS	- 0.550.15	par zone
			3-A ^	ASR	=	= /	_ = =							=	=	<u>r = </u>	=		-		-	= N			=	V =			7			_	= 7	=		
			3-D ^	ASR	=	=	Z			=	И				=	=	=				=	= =			=	<u> </u>				=			V		1	
			3-E ^	ASR		=	=			=	=				=	=	Ξ				=	= =			=	7 =	_			=	=		=			
			4-N ^ KO4-10 ^	UPM-CIM Mine	7	= =	= =			= =	=	= =		=	=	? =	7		=		=	= 7			=	7 =			7	=			= 7	И	N N	
			KO4-20-1 ^	Mine		+		1	_																_		 			+			71.	ı V	3	-
		Kwe Ouest	KO4-50 ^	Mine																=															R	И
Amont			KO5-10-I ^	UPM-CIM UPM-CIM		-			_					-	ш								-		_			-		4				ת קתת		
			KO5-20-I ^	UPM-CIM		+		+						+	H	+									-			-		+		_		И	K	
	Grand		KO5-50-I ^	UPM-CIM			Ħ																										=	77		
			KWO-10 ^	ASR																															И	
			KWO-60 ^	ASR ASR / UPM-CIM		+	\vdash	+++	_				+	+		_										+	-	+	_	+	+	-	-	_	R R	-
	Ì	Kwe Nord	4-M ^	UPM-CIM	=	= =	= \			= =	=	= =		=	=	= =	=		=	=	=	= \(\(\)			=	<u> </u>			7	=			= 7	עע		עע
		Kwe Est		Mine																													7			=
			1-A ^	UPM-CIM, ASR	=	= =	= =			= =	=	= =		=	=	= =	7				=	= =			Ξ	<u> </u>			=				=			
Aval		Kwe principale	1-E ^ KWP-10 ^	UPM-CIM, ASR UPM-CIM	-						=			=			Z		=	и	-	= =			-				=	-			= <u>N</u> ;	ול ו	7	7
			KWP-40 ^	UPM-CIM																															7	
			KWP-70 ^	UPM-CIM												2															\Box				71	
Amont		CBN Amont	6-Q ^ 6-S ^	Usine Usine	=	= =	= 7	-		= 1	=	= =		=	=	? =	=		=	_	=	= =			=	= =		\pm	=				=		+	=
			CBN-01 ^	Usine																															=	
	ſ		6-BNOR1 ^	Usine	=	= _	=			=	=				=	=	Ā				=	= =			=	<u> </u>			=	_	= [= N;			
	Grand		6-T ^	Usine Usine		= =	-			= =	=			=	=	= =	=		=		=	= =			=	<u> </u>				=	=		= N;			
Aval	Grana	CBN Aval	CBN-10 ^	Usine							_			_						N										1					-	_
Avai		CBN AVai	CBN-30 ^	Usine																71															=	-
			CBN-40 ^ CBN-70 ^	Usine Usine		-										_									_			-		+	+				=	
			CBN-AFF-02 ^	Usine		\top	+	+	_		+	_	$\dagger \dagger$	+	H			_					1		\dashv				+	+	+			_	=	
Amont	Grand	Kadji	5-E ^	Base Vie											Ш																		R	א א	_	K
Amont		Trüu Amont	TR-02 ^	Mine Mine		+	\vdash	+	_		-	-	++	-	\vdash		-	_	_				-		-	+	-	_	_	+	+			_	+	-
	Petit		TR-01 ^	Mine		\top	H		_					_														+		\top					+	
Aval	Petit	Trüu Aval	TR-04 ^	Mine																													71;			ע
			TR-05 ^	Mine Mine		-		-																	_			_		+			, K	ול ו	4	
Amont		Kuébini Amont	Kueb Amont	Hors influence	=	=	=						+	+	\vdash		=			=	=	= =				= =			=	=	=		=	=	_	=
	[Kueb Aval	Hors influence	=	=	=										=				=	= =				= =			-	=	=		=	=	4	
Aval	Grand	Kuébini Aval	KUB-60 ^	Hors influence Hors influence		+	\vdash	+++	_				++	+		_	-		-	=					-			+	_	+	+	-	-	_	=	=
			KUB-40 ^	Hors influence																															=	
Amont	Grand	Carénage Amont	Carénage Amont		_	=	=						\bot		ш	=	=			=	=	= =				= =			=	=	=		=			=
Aval Amont		Carénage Aval Kaoris Amont	Carénage Aval Kaoris Amont	Hors influence Hors influence	=	=	=		_			_	++		\vdash	=	=		_	=	=	= =				= =		-	=	=	=		=	=	_	=
Aval	Grand	Kaoris Aval	Kaoris Aval	Hors influence	=	=	=									=	=			=	=								=	=	=		=	=		=
			3-C ^	Hors influence	=	=	=			=	=	=			=	=	=					= =			=				=	=			= =	=	4	
Aval	Grand	Trou Bleu	TBL-50 ^	Hors influence Hors influence		+		+							+					=								+			+				=	=
			WAD-40 ^	Hors influence																															=	
Aval	Petit	Wadjana	WAD-50 ^	Hors influence			H	H			Ш		$+$ \top					-	\Box						$-\mathbb{F}$	\perp		Ŧ		H	\Box	$-\mathbf{I}$			=	=
			WAD-70 ^ 6-R ^	Hors influence Usine	=	=	V			=	=	=			=	=	=			=		= -			= -				-		+					
			DOL-2 ^	Usine, BV										L														1								
			DOL-3 ^	Usine, BV		4		μĪ	#					1				[\perp		4			H					
Doline	Grand	CBN	DOL-4 ^	Usine, BV Usine. BV	+	+		+		\vdash					\vdash													+		+	++				+	
			DOL-9 ^	Usine, BV						ш			ш		Ш													₫	ᆂ							
			DOL-10 ^	Epuration, BV		?																													4	
			DOL-15 ^	Base Vie Epuration, BV																															-	
Doline	Grand	Kadji	DOL-12 ^	Base Vie																																
			DOL-13 ^	Base Vie	П	T		Ш	T	П																		Ŧ							4	
Doline	Grand	Carénage	Doline 1 Doline 2	Hors influence Hors influence		=	\vdash	+	-	\vdash	+		++	+	\vdash		=			=	=	= =			-			+	-	+	+	-			+	=
Doline	Grand	Plaine des lacs	Doline 3	Hors influence		=								T			=			=	=															=
							at and the f		15 -4 00	16						-1-							Cara:		6	4-1/0/0										
	<u>Légende :</u>		 : parametre me : station suivie 	suré sur sédiments par Vale NC			similair assemer					Pon Pon			Mauv Suspe											e de VNC e nulle à modé	rée de VI	NC								
			En gras : stations				asseme					Moy	yen			erminé																				
												Méd	diocre																							
											_						1 10													_				_		

Tableau 168 : Récapitulatif des scores par paramètre et par piézomètre et de leur agrégation en score final par zone en 2016 pour le milieu eaux douces souterraines.

									Et	at chim	ique					Par	amè	tres ni	vsico-cl	imiques			Et	tat écolo	gique						
							Mét	aux di	issout	s						Hyd. ttx	anne		il aquati			Elém	ents ma	ieurs			Sels nutri	tifs	Mat. org.	1	Score final
BV	Zone	Piézomètre	Influence	Fe Mr	n Ni	Al A					u Pt	b Zn	Si	SO42-	S	Ht	T°		Cond.		CI.	Mg ²⁺		Ca ²⁺	K⁺	NO,		PO ₄ 3·	COt Nt	TAC	par zone
		4-z1		= =			= =				= =			=	=	=	=		=	=	=	=	=	=			=	=			
Kwe Nord		4-z1A 4-z1B	-				_	_	-			_	+		-		-	-			<u> </u>									1	-
		4-z1B 4-z2	+		-	-		-	-	-			-	-	-	-	-	-	-	=	=	-	-	-			=	-			
	UPM CIM	4-z2A	UPM - CIM													_	Ē														=
		4-z4		= =	=	=	= =	=	=	=	= =	=	=	K	=	=	=	=	=	=	=	=	=	=			=	=			
		4-z4A 4-z5		V =	\ \	=		N	=	-			-	=	_	=	-	=	=	=	=	=	=	-			=	=			
		4-z5A	1					_	-			+-	+-		-	-	T -	+-	-		T -	_	_				-	-			
İ		WK17	ASR 0 (sources)	= =	И		= =				= =			=	=		=		И		=	И	И	И			=	=			
		WK20 WK6-11	(,	= =	=	_	=	_			= =			<u> </u>	=		=		=		=	=	=	=			=	=		1	
		WK6-11A	1	= =										=	7		=		=		=	=	-	+=			=			1	
		WK6-12	ACD A (=: (====)	= =	=	=	= =				= =			K	K		=		=		И	И	=	=			=	=	=		
		WK6-12A WK6-9	ASR A (piézomètres d'alerte au pied de	= =			=		_		= =			71	K		=		=		=	=	=	=			=	=			
		WK6-9A	la berme)	= =		=	₩							И	=		H		=		=	=	HĒ	=			=	=		-	
		WKBH102	la bernie)	= =	=		= =	=			= =			И	=		=	=	И		=	K	=	И			=	=	=		
		WKBH102A WKBH103		= =		_	=				= =			71	=		=		=		=	=	=	=			=	=	7		
		WK6-10			_		#						_	=	Ē		HĒ		=		=	=	=	=			=				
		WK6-10A		= =	=	=	= =	=	=			=	=	=	=		=	=	=		=	=	=	=			=	-			
		WKBH109		= =	_	-	= =				= =			=	=		=		=		=	=	И	=			=	=	=		
		WKBH109A WKBH110	-	= =	7	=	=	=	=		= =	=	=	R R	K		=		=		=	<u> </u>	-	=			=	=	=	-	
ve Ouest		WKBH110A	†	= =	+=	_	##	+=	╁┋			+=		K	K		Ē		=		=	<u> </u>	T	=			=	=	=	1	
		WKBH110B	ASR B (zone	= =	=	=	= =	=	=	=	= =	_		И	K		=		=		=	И	=	=			=	=	=		
		WKBH111 WKBH117	tampon)	= =	=	=	= =	=	=		= =	=		R	=		=		=		=	=	=	=			=	=	=		
		WKBH117A	-	= =	+=		₩	_	_					=	=		=		=		=	=	=	=			=	=			
	ASR	WKBH117B		= =	=	=		=	=		= =			=	=		Ē		=		=	=		=			=	-			=
		WKBH118		= =			= =	_			= =			<u>k</u>	=		Ξ		=		=	=	=	=			=	=	=		
		WKBH118A WKBH118B	-	= =			=	_	=		= =	_		=	=		=		=		=	=	=	=			=	=	=		
		WKBH112		= =		_	1		_					=	=		Ē		=		=	=	T	=			=	=	=		
		WKBH112A		= 7	И		= =				= =			=	=		=		=		=	=	=	=			=	=			
		WKBH113 WKBH113A		= =			=				= =			=	=		=		=		=	=	=	=			=	=	=	-	
		WKBH114		= =			₩							=	+=		H		=		=	=	HĒ	=			=	=	=	1	
		WKBH114A	ASR C (proximité	= =			= =				= =			=	=		=		=		=	=	=	=			=	-			
		WKBH115	rivière)										_																		
		WKBH115A WKBH115B		= =	=	=	##	+=	+=			=		=	=		=		=		=	=	=	=			=	=			
		WKBH116		= =										=	=		Ē		=		=	=	=	7			=	=	=		1
		WKBH116A		= =		_	= =		-		= =			=	=		=		=		=	=	=	=			=	=	=		
		WKBH116B WTBH9	-	= =	=	=	= =	=	=		= =	=		=	=		=		=		=	=	=	=			=	=			
		WKBH32		= =	=	=	+=	+=	+=					=	=		Ē		=		=	=	1	1 -			=	-	-		
Kadji		WK6-14	ASR D (vallées	= =			= =	=	=		= =			=	=		=	=	=		=	И	=	=			=	=			
rou Bleu		WTBH11 WTBH11A	adjacentes)	= =		=	=	=	=		= =			=	=		=		=		=	=	=	=			=	=	=		
		7-1	D		+=	=		┿	+=			+-	┿		=	=	Ē	_	=	=	=	=	┿	-			=	_=			
de Prony	PORT	7-2	Port (rétention fuel lourd)													=	Ξ	=	=												=
\longrightarrow		7-3	louru)													=	=		=	=											
		6-1 6-1a	1	= =		=	=	_	_	=	= =	_		=	1=	=	=		=	=	=	=	=	=			=	=			
		6-2	Aval site indust.	= =		_	= =		_					=	=	=	Ē		=	=	=	=	=	=			=	-			
		6-2a	Augl distalle	= =	=	=	= =	=			= =			=	=	=	=		=	=	=	=	=	=			=	=			
		6-3 6-3a	Aval distrib. carburant	= =	=	=] 	+=	=	=	#	=		=	=	=	=		=	=	, В	=	=	=			=	=			
		6-4	Aval hydroc.	= =	=	=		=	=	=				=	=	=	=		=	=	=	=	=	=			=				
CBN	USINE	6-5	Aval H2SO4	= =	_	_	= =	_	_	_	= =	_	_	=	=	=	=	=	=	=	=	=	=	=			=	=			ול
		6-6	Aval gazole	= =	=	=	=	=	=	=	= =	=	=	=	=	=	=	=	=	=	=	=	=	=			=	=			
		6-7a	Amont site indust.	= =	=	=		+=		=			+=	=	=	=	=	+=	=	=	=	=	=	+=			=	=			
		6-8	Aval contôle Nord	= =			= =				= =			=	=	=	=		=	=	=	=	=	=			=	=			
		6-8a 6-13		= =			= =				= =			-	=	=	Ξ		-	=	=	=	=	=			=	=			
		6-13	Aval procédé	= =	=		=				= =			=	=	=	=		=	=	=	=	=	=			=	=			
		6-14a	Aval stock. HCl		=				=	N L				=	=	=	Ē	=	=	Ē	=	И	=	=			=				
	<u>Légende:</u>	ゝ: déclasseme	re en 2015 et 2016 nt par rapport à 2015 ent par rapport à 2015		de coul	eur des	scores	ır		Bon Mauva	is			Infiltra Indétei		eau de mer						Code co	uleur st	ations:				luence de luence mo	VNC odérée de VN	IC	

5 Milieu Terrestre

5.1 Rappel des caractéristiques des zones et des stations de suivis

5.1.1 Suivis disponibles et fréquence de suivi

Le diagnostic environnemental du milieu terrestre s'appuie exclusivement sur l'exploitation des informations extraites des suivis environnementaux de Vale NC.

Tableau 169 : Paramètres suivis en 2016 et leur contribution à l'état écologique ou chimique du milieu terrestre.

			Paramètre			Natu rélèv		
		Туре	Nom	Symbole	5	CICV	eme	ıı
		Indice de	e qualité de l'air	IQA	Α			
		Concentrations	Dioxyde de soufre	SO2	Α			
		en gaz et	Dioxyde d'azote	NO2	Α			
		poussières	Poussières <10 μm	PM10	Α			
			Aluminium	Al		S		
			Arsenic	As	Α			
			Cadmium	Cd	Α	S		
e	es		Chrome	Cr	Α	S		
ng.	igu		Cobalt	Co	Α	S		
ië	him	Teneur en	Cuivre	Cu	Α	S		
Etat chimique)-O	métaux	Fer	Fe		S		
ᇤ	/sic		Manganèse	Mn	Α	S	Fl	
	h		Nickel	Ni	Α	S		
	res		Plomb	Pb	Α	S		
	nèt		Zinc	Zn	Α	S		
	Paramètres physico-chimiques		Mercure	Hg	Α			
	Pē	Capacité d'é	échange cationique	CEC		S		
			Soufre	S		S	FI	
			Azote	N		S	Fl	
		Elements	Calcium	Ca		S	Fl	
		majeurs	Phosphore	Р			Fl	
ank		iliajeurs	Potassium	K			Fl	
ogic			Magnésium	Mg			Fl	
00			Sodium	Na			Fl	
Etat écologique	e		Communautés de f	ourmis				Fa
쁊	ogi	Suivi de la faune	Herpétofaun	e				Fa
	Biologie	terrestre	Lacertoides para					Fa
			Echouages de pé	trels				Fa
						1		
		Compartiments of	le mesures :			Air		
					S		et litio	ère
					Fl	Flore		
					Fa	Faur	ne	
<u> </u>								

5.1.2 Affectation des stations de suivi dans les zones

Pour permettre une visualisation cartographique claire des stations suivis, de leur répartition dans les zones et des différents suivis effectués dans les différentes zones, nous avons regroupé les suivis par type de compartiment.

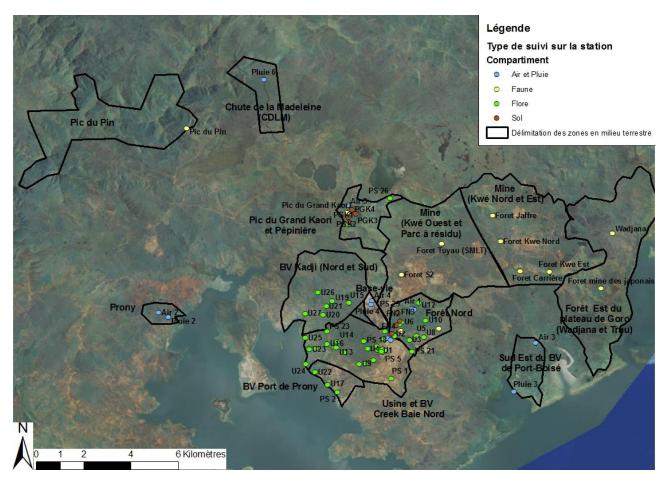


Figure 9 : Représentation cartographique de la répartition des stations par compartiment de l'environnement et par zone.

Il existe 87 stations de suivis en milieu terrestre qui sont réparties dans les zones de la manière suivante (Tableau 2)

Tableau 170 : Caractéristiques des stations de suivi en milieu terrestre (zone, nature des compartiments suivis)

	Stations de référence	•	•				Stations de suivi	•	•	•	
Zone	Station	Com	partin	nents s	suivis	Zone	Station	Com	partim	ents s	uivis
	Pic du Grand Kaori	Α			Fa		Forêt Kwë Est				Fa
	PGK1		S	Fl		Mine (Kwé Nord	Forêt Kwë Nord				Fa
Pic du Grand Kaori et	PGK2		S	Fl		•	Mine_FPP				Fa
	PGK3		S	Fl		et Est)	Forêt Jaffré				Fa
Pépinière	PGK4		S	Fl			Forêt Carrière				Fa
	PS 25			Fl		Mine (Kwé Ouest	Forêt S2				Fa
	PS 26			FI		et parc à résidu)	Forêt Tuyau (SMLT)				Fa
	Forêt Nord (+Col de l'Antenne)	Α			Fa	•	Station épuration (STEP)				Fa
	Forêt Nord (coté Port Boisé)				Fa	Base-vie	Base-vie	Α			Fa
	FN1		S	Fl			PS 16			Fl	
	FN2		S	Fl			Usine	Α			Fa
	FN3		S	FI			Magazin				Fa
	FN4		S	FI			Zone stockage de VRAC				Fa
	PS 19			FI			PS 3			Fl	
	PS 20			FI			PS 4			Fl	i
Forêt Nord	PS 21			Fl			PS 5			Fl	
	PS 29			FI			PS 6			FI	
	U3			FI			PS 7			FI	i
	U8			FI			PS 8			FI	
	U5			FI			PS 9			FI	
	U6			FI			PS 10			FI	
	U10			FI			PS 11			FI	
	U12			FI			PS 12			FI	
	PS 2			FI			PS 13			FI	
BV Port de Prony Nord	Port			FI	Fa		PS 14			FI	
	Port-Boisé	А			га		PS 24			FI	
Sud Est BV Port-Boisé	PS 22	А		FI			PS 1			FI	
	U15			FI		Usine et BV Creek				FI	
	U19			FI		Baie Nord	PS 17			FI	
	U20			FI		bale Noru	PS 18			FI	
BV Kadji (Nord et Sud)	U21			FI			PS 23			FI	
	U26			FI			U1		-	Fl	
	U27			FI			U2		-	FI	
Chuta da la madalaina				FI			U4			Fl	
Chute de la madeleine	Chute de la madeleine PS 27			FI			U7			FI	
(CDLM)		^		FI			U9			FI	
Prony	Prony Village, Zone du Belvédère PS 28	Α					U11			FI	
D D: :) DI	Rivière Bleue - Ouanerou			Fl			U13			FI	
Parc pr. Rivière Bleue					F .					FI	l
Forêt Est du plateau de	Wadjana				Fa		U14 U16				
Goro (Wadjana et Truu)	Forêt mine des japonais				Fa					FI	
Pic du Pin	Pic du Pin				Fa		U17			FI	
14	Developed and the second		1				U18			FI	
<u>Légende :</u>	Degré d'influence par rapport		Forte				U22			FI	
	à l'activité industrielle et minière :		Mode				U23			FI	
			Nulle				U24			Fl	
			1				U25			Fl	
	Compartiments de mesures :	S FI			mie du	Sol et de la litière Faune					

5.1.3 Résultats par compartiment de mesures : scores par paramètre et scores finaux par zone.

5.1.3.1 *Qualité de l'air (Scal'Air, 2017, et Vale NC, 2017).*

Vale NC est tenu d'effectuer un suivi permanent de la qualité de l'air ambiant. Ainsi Scal'Air a placé des stations sur six sites sous influence variable de l'usine et suivies depuis 2008, l'une d'entre elles étant à l'arrêt en 2016 ce sont cinq stations qui ont été suivies cette année (Table).

Tableau 171 : Répartition des stations de suivi de la qualité de l'air et champ d'exposition selon la distance à la source d'émission de SO2 et NO2 et la direction moyenne annuelle des vents.

Zone	Station
Forêt Nord	Forêt Nord
Base Vie	Base Vie
Usine et BV CBN	Usine (Auxiliaire)
Sud Est BV Port Boisé	Port-Boisé
PGK et pépinière	Pic du grand Kaori

La station du Pic du Grand Kaori est une station mobile, mise en place depuis mars 2013. La station Usine (Auxiliaire) est mise en place suite à l'arrêté complémentaire du 5 septembre 2012.

5.1.3.1.1 Concentrations en SO2 dans l'air

Fréquence des suivis et seuils de référence :

Les concentrations en SO2 sont mesurées en continu toute l'année sur quatre stations, et à partir du 8 juillet 2016 sur la station Usine. Par ailleurs, des mesures de qualité de l'air par la méthode des tubes passifs sont assurées au niveau de 29 stations d'observation pour Vale NC par Bureau Veritas afin de mesurer les concentrations mensuelles en SO2 dans l'air. Ces relevés mensuels sont associés à une évaluation mensuelle des symptômes foliaires, afin d'analyser les relations entre les concentrations de SO2 dans l'air et l'apparition ou non de symptômes foliaires (résultats présentés plus bas dans ce rapport, voire partie Suivi Symptomologie 2015).

L'Organisation Mondiale de la Santé (OMS) préconise l'utilisation de valeurs guides relatives aux concentrations en SO2 dans l'air, transposées en droit français par le décret n°2010-1250 du 21 octobre 2010 relatif à la qualité de l'air et l'arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l'air ambiant. En Nouvelle-Calédonie, l'arrêté N°1467-2008-PS du 09/10/2008 relatif à l'exploitation du site de Goro (entreprise VALE NC en 2012) prescrit les mêmes valeurs limites que l'arrêté modifié 11387-2009/ARR/DIMENC relatif à l'exploitation du site industriel de Doniambo (SLN) pour ce qui concerne la santé humaine, ainsi que des valeurs spécifiques à la protection de la végétation et des écosystèmes.

Suite à une étude de fumigation menée pour déterminer la sensibilité de la végétation au dioxyde de soufre, c'est la valeur de référence australienne de 570 µg/m3 qui a été sélectionné pour interpréter les résultats.

Tableau 172 : Guide de référence des valeurs seuils d'émissions de SO2 préconisées par les arrêtés calédoniens relatifs aux Installations Classées pour la Protection de l'Environnement (ICPE) et à la conservation de la végétation et des écosystèmes terrestres

	oncentration en SO2 dans l'environnement en Nou		-
Paramètre	Fréquence	Seuil ICPE	Végétation
	moyenne annuelle	50 μg/m3	20 μg/m3
SO2	moyenne journalière		230 μg/m3
302	moyenne horaire	300 μg/m3	570 μg/m3
	seuil d'alerte horaire	500 μg/m3	

Tableau 173 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en SO2 dans 5 stations de mesure de la qualité de l'air, et leur degré de toxicité envers l'environnement selon les normes en vigueur pour la Nouvelle-Calédonie, permettant l'attribution d'un score final par station/zone pour l'année 2016

SO2 (μg/n	n3) - Air	20	011	20)12	20	013	20)14	20)15			20	16					
Zone	Station	Repr. (%)	Moy. An.	Per98 journ.	Moy. Journ. Max	Moy. Hor. Max	Taux dépass. Hor. (%)			Score 2016 par station										
Forêt Nord	Forêt Nord	81	2	99	2	98	2	98	2	98	2	95	4	36	72	208	0	Bon	Bon	Bon
Base Vie	Base Vie	80	1	99	1	97	1	100	1	99	1	100	1	4	7	13	0	Bon	Bon	Bon
Usine et BV CBN	Usine (Auxiliaire)	59		96	27	94	26	100	33	99	22	99	25	185	343	4794	56	Mauvais	Bon	Mauvais
Sud Est BV Port Boisé	Port-Boisé	0		40	2	96	2	100	1	97	1	77	1	5	30	142	0	Bon	Bon	Bon
PGK et pépinière	Pic du Grand Kaor	0		0		60	1	41		33		49			19	71	0	Bon	Inconnu	Bon

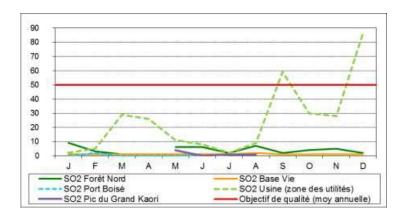


Figure 10 : Graphique indiquant l'évolution de la concentration mensuelle moyenne en SO2 pour l'année 2016 par rapport à l'objectif de qualité dans 5 stations de mesure de la qualité de l'air

En raison de problèmes techniques liés à l'alimentation électrique au cours de l'année 2016 dans la station du Pic du Grand Kaori, le taux de fonctionnement est insuffisant (< 75%) pour permettre le calcul de la moyenne annuelle.

Les concentrations en dioxyde de soufre mesurées à la Base Vie de Vale et à la Forêt Nord restent faibles, comparables aux niveaux observés par la station de Port Boisé hors zone d'influence des activités minières et industrielles, et relativement stables d'une année sur l'autre.

La station Usine connaît en revanche des concentrations beaucoup plus élevées tant pour les valeurs de pointes que pour les niveaux de fond. Au cours de l'année 2016, les mois de septembre et décembre ont fait l'objet des concentrations mensuelles les plus élevées sur l'année, avec respectivement 59 et 87 μ g/m3. La moyenne annuelle est également la plus élevée du réseau du Sud avec 25 μ g/m3 en 2016, dépassant la valeur limite annuelle pour la protection des écosystèmes (20 μ g/m3). Cela est notamment dû à 5 épisodes de pics de pollution au SO2 (le 9 septembre et du 12 au 13 en décembre) pendant lesquels la valeur seuil d'émission moyenne horaire et journalière préconisée pour la protection des écosystèmes a été dépassée sur cette station.

Pour l'année 2015, les résultats des mesures par échantillonnage passif effectuées par Vale NC sur 27 stations entre janvier et décembre 2015 montrent que 12 stations d'observation ont présenté des concentrations moyennes annuelles supérieures à la valeur moyenne annuelle pour la protection de la végétation et des écosystèmes, et ont subi une exposition au SO2 atmosphérique significativement plus élevée que les autres points de suivi. La concentration annuelle moyenne par station la plus élevée était de 43,73 µg/m3. Ces 12 stations sont positionnées sous le vent et au plus près de l'usine, à une distance comprise entre 200 et 1200 m. Ces résultats sont similaires à ceux obtenus en 2013 et 2014 (VALE NC,

2014). D'après le rapport, « les concentrations les plus basses en SO2 ont été enregistrées en juin 2015, période correspondant à l'arrêt des différentes unités dans le cadre de la maintenance annuelle de l'usine. Les campagnes de janvier-février, avril et de novembre-décembre 2015 ont donné lieu aux mesures des concentrations les plus importantes, hors plusieurs incidents opérationnels avec dégagement de SO2 ont été enregistrés durant ces périodes et ont probablement eu une influence majeure sur les concentrations de SO2 présentes dans l'air ambiant. »

5.1.3.1.2 Concentrations en NO2 dans l'air

Fréquence des suivis et seuils de référence :

Les concentrations en NO2 sont mesurées en continu toute l'année sur quatre stations, et à partir du 8 juillet 2016 sur la station Usine.

L'Organisation Mondiale de la Santé (OMS) préconise l'utilisation de valeurs guides relatives aux concentrations en NO2 dans l'air, transposées en droit français par le décret n°2010-1250 du 21 octobre 2010 relatif à la qualité de l'air et l'arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l'air ambiant. En Nouvelle-Calédonie, l'arrêté N°1467-2008-PS du 09/10/2008 relatif à l'exploitation du site de Goro (entreprise VALE NC en 2012) prescrit les mêmes valeurs limites que l'arrêté modifié 11387-2009/ARR/DIMENC relatif à l'exploitation du site industriel de Doniambo (SLN) pour ce qui concerne la santé humaine, ainsi que des valeurs spécifiques à la protection de la végétation et des écosystèmes.

Tableau 174 : Guide de référence des valeurs seuils d'émissions de NO2 préconisées par les arrêtés calédoniens relatifs aux Installations Classées pour la Protection de l'Environnement (ICPE) et à la conservation de la végétation et des écosystèmes terrestres

	oncentration en NO2 dan l'environnement en Nou	•											
Paramètre	Paramètre Fréquence Seuil ICPE Végétation												
	moyenne annuelle	40 μg/m3	30 μg/m3										
NO2	moyenne horaire	200 μg/m3	400 μg/m3										
	seuil d'alerte horaire	400 μg/m3											

Résultats des suivis et analyse

Tableau 175 : Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en NO2 dans 5 stations de mesure de la qualité de l'air, et leur degré de toxicité envers l'environnement selon les normes en vigueur pour la Nouvelle-Calédonie, permettant l'attribution d'un score final par station/zone pour l'année 2016

NO2 (μg/n	n3) - Air	20	011	20	012	2	013	20	014	20	15			20	16					
Zone	Station	Repr. (%)	Moy. An.	Per98 journ.	Moy. Journ. Max	Moy. Hor. Max	Taux dépass. Hor. (%)	Moy 2016 < seuil ?		Score 2016 par station										
Forêt Nord	Forêt Nord	50		98	3	85	1	99	1	99	1	96	1	6	18	32	0	Bon	Bon	Bon
Base Vie	Base Vie	43		99	3	98	3	100	4	97	3	100	2	6	12	45	0	Bon	Bon	Bon
Usine et BV CBN	Usine (Auxiliaire)	38		95	8	14		0		0		49			20	49	0	Bon	Inconnu	Bon
Sud Est BV Port Boisé	Port-Boisé	0		37		99	1	99	1	96	0	74	1	5	9	25	0	Bon	Bon	Bon
PGK et pépinière	Pic du Grand Kaor	0		0		64		43		32		52			1	1	0	Bon	Inconnu	Bon

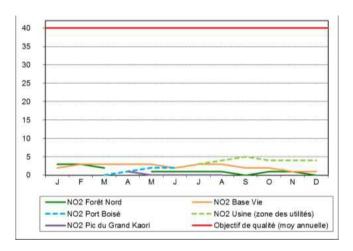


Figure 11 : Graphique indiquant l'évolution de la concentration mensuelle moyenne en NO2 pour l'année 2016 par rapport à l'objectif de qualité dans 5 stations de mesure de la qualité de l'air

En raison de problèmes techniques liés à l'alimentation électrique au cours de l'année 2016 dans la station du Pic du Grand Kaori, le taux de fonctionnement est insuffisant (< 75%) pour permettre le calcul de la moyenne annuelle. Pour le site Usine, l'appareil de mesure de dioxyde d'azote ayant été installé en juillet 2016, le taux de fonctionnement est également insuffisant (<75%) pour pouvoir calculer une moyenne annuelle.

Les sites Usine et Base Vie sont les plus impactés, avec des valeurs restant faibles, et l'objectif de qualité annuel de 40 µg/m3 est largement respecté sur l'ensemble des stations de suivi.

5.1.3.1.3 <u>Concentrations en particules fines (PM10) dans l'air</u>

Fréquence des suivis et seuils de référence :

Les concentrations en PM10 sont mesurées en continu toute l'année sur quatre stations, et à partir du 8 juillet 2016 sur la station Usine.

L'Organisation Mondiale de la Santé (OMS) préconise l'utilisation de valeurs guides relatives aux concentrations en PM10 dans l'air, transposées en droit français par le décret n°2010-1250 du 21 octobre 2010 relatif à la qualité de l'air et l'arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l'air ambiant. En Nouvelle-Calédonie, l'arrêté N°1467-2008-PS du 09/10/2008 relatif à l'exploitation du site de Goro (entreprise VALE NC en 2012) prescrit les mêmes valeurs limites que l'arrêté modifié 11387-2009/ARR/DIMENC relatif à l'exploitation du site industriel de Doniambo (SLN) pour ce qui concerne la santé humaine, ainsi que des valeurs spécifiques à la protection de la végétation et des écosystèmes.

Tableau 176: Guide de référence des valeurs seuils d'émissions de PM10 préconisées par les arrêtés calédoniens relatifs aux Installations Classées pour la Protection de l'Environnement (ICPE) et à la conservation de la végétation et des écosystèmes terrestres

	de concentration en PM1 on de l'environnement er		
Paramètre	Fréquence	Seuil ICPE	Végétation
	moyenne annuelle	20 μg/m3	
PM10	moyenne journalière	50 μg/m3	50 μg/m3
	seuil d'alerte journalière		80 μg/m3

Tableau 177: Tableau de valeurs indiquant l'évolution de la concentration annuelle moyenne en PM10 dans 5 stations de mesure de la qualité de l'air, et leur degré de toxicité envers l'environnement selon les normes en vigueur pour la Nouvelle-Calédonie, permettant l'attribution d'un score final par station/zone pour l'année 2016

PM10 (μg/r	m3) - Air	20)11	20	12	20	013	20)14	20	015			20	16				
Zone	Station	Repr. (%)	Moy. An.	Per98 journ.	Moy. Journ. Max	Taux dépass. journ. (%)	Moy 2016 < seuil ?		Score 2016 par station										
Forêt Nord	Forêt Nord	45		99	13	98	13	98	12	98	14	95	12	28	38	0	Bon	Bon	Bon
Base Vie	Base Vie	47		99	20	99	18	100	19	99	21	100	14	30	34	0	Bon	Bon	Bon
Usine et BV CBN	Usine (Auxiliaire)	0		0		0		0		0		48			49	0	Moyen	Inconnu	Moyen
Sud Est BV Port Boisé	Port-Boisé	0		26		99	14	100	15	97	15	72	11	25	36	0	Bon	Bon	Bon
PGK et pépinière	Pic du Grand Kaor	0		0		59		46		33		47			26	0	Bon	Inconnu	Bon

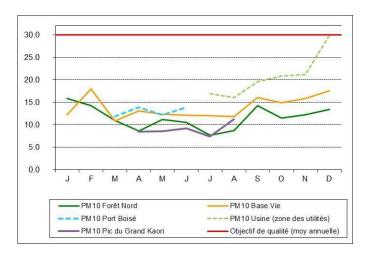


Figure 12 : Graphique indiquant l'évolution de la concentration mensuelle moyenne en PM10 pour l'année 2016 par rapport à l'objectif de qualité dans 5 stations de mesure de la qualité de l'air

En raison de problèmes techniques liés à l'alimentation électrique au cours de l'année 2016 dans la station du Pic du Grand Kaori, le taux de fonctionnement est insuffisant (< 75%) pour permettre le calcul de la moyenne annuelle. Pour le site Usine, l'appareil de mesure des particules fines ayant été installé en juillet 2016, le taux de fonctionnement est également insuffisant (< 75%) pour pouvoir calculer une moyenne annuelle.

Dans le Sud de la Nouvelle-Calédonie, les poussières PM10 peuvent provenir du contexte minier (soulèvement de poussières en fonction des vents, passage de véhicules sur piste), industriel (émission de poussières par les installations de combustion) et de l'érosion naturelle. L'évaluation des niveaux de pollution pour les PM10 se fait aux échelles journalière et annuelle.

Les concentrations en PM10 mesurées en stations Base Vie, Forêt Nord et Port Boisé respectent l'objectif de qualité annuel européen de 30 $\mu g/m3$ ainsi que la valeur guide de l'OMS de 20 $\mu g/m3$ en moyenne annuelle, qui est cependant dépassée en novembre et décembre 2016 sur le site de l'Usine, qui obtient donc un score « Moyen » pour ce paramètre.

5.1.3.1.4 Indice de qualité de l'air (IQA)

L'IQA permet d'évaluer simplement les variations de la qualité de l'air ambiant sur l'année en compilant les résultats des analyses de SO2, NO2 et de quantité de poussières en suspensions (PM10).

Pour chaque station, le pourcentage de jour dans l'année, avec un indice IQA Très bon, Bon, Moyen à Médiocre et Mauvais est calculé (classes selon Scal'air). La classe « Moyen à Médiocre » de Scal'air correspond à la classe « Médiocre » de notre diagnostic (Décision du COTEC 2 de Septembre 2016).

Dans notre diagnostic la note annuelle pour la zone considérée (= la station, car une seule station par zone) correspond à la note IQA journalière la plus déclassante et représentant plus de 10% des valeurs journalières de l'année (Règle définie en 2015, dans la Note technique Terre (Ravary, 2015b)).

Tableau 178: Pourcentage de jour dans l'année 2016, avec un indice de Qualité de l'Air Très bon, Bon, Moyen à Médiocre et Mauvais calculée pour 5 stations de suivis situées dans la zone d'influence de Vale NC.

Ré	partition des scores	de l'indice	de Qualité d	e l'Air		Score 2015	Score 2016
Zone	Station	Très bon	Bon	Médiocre	Mauvais	par station	par station
Forêt Nord	Forêt Nord	69,00%	27,70%	3,30%	0%	Bon	Bon
Base Vie	Base Vie	59,70%	37,00%	3,30%	0%	Médiocre	Bon
Usine et BV CBN	Usine (Auxiliaire)	67,80%	12,50%	13,60%	6,10%	Médiocre	Médiocre
Sud Est BV Port Boisé	Port-Boisé	75,10%	23,70%	1,20%	0%	Bon	Bon
PGK et pépinière	Pic du grand Kaori	92,40%	7,60%	0%	0%	Bon	Très Bon

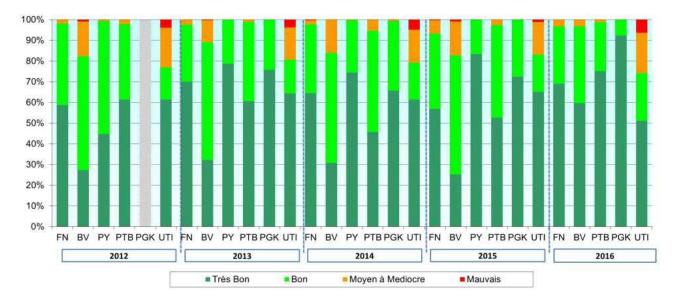


Figure 13: Evolution temporelle de la répartition des scores d'indice de Qualité de l'Air sur 6 stations de suivi (5 en 2016) situées dans la zone d'influence de Vale NC.

En 2016, la station Usine est la plus impactée par la pollution atmosphérique avec 13,6% d'IQA moyens à médiocres et 6,1% d'IQA mauvais, essentiellement liés à la détection de concentrations moyennes à fortes en dioxyde de soufre. Cela s'explique par sa proximité aux sources d'émissions de polluants d'origine industrielle, ainsi que de par sa situation sous les vents dominants vis-à-vis de l'usine. Etant donné la détérioration de la qualité de l'air mesurée à cette station en 2016 par rapport à 2015, elle obtient cette année un score « Mauvais ».

Sur la station de la Base Vie, une nette diminution du taux d'IQA moyens à médiocres (3,3% en 2016 contre 15 % en moyenne sur la période 2012-2015) permet de reclasser cette station par l'attribution d'un score « Bon » cette année.

Les stations de la Forêt Nord, de Port Boisé et du Pic du Grand Kaori affichent un taux d'indices moyens à médiocres faible et stable sur la période 2012-2016, leur score reste donc « Bon » cette année.

5.1.3.1.5 Teneur en métaux dans les particules en suspension (PM10) (As, Cd, Ni, Hq et Pb)

Fréquence des suivis et seuils de référence :

La teneur en métaux contenus dans les PM10 est mesurée de façon ponctuelle, 2 fois par an sur 5 semaines consécutives (en saison sèche et en saison humide), lors de campagnes de prélèvement **sur 2 stations**: Forêt Nord et Base Vie. Le protocole de prélèvement consiste à laisser en place un filtre durant 7 jours, qui est ensuite prélevé puis analysé pour la teneur en 5 métaux (As, Cd, Ni, Hg et Pb).

Dans le but d'éviter, de prévenir ou de réduire les effets nocifs sur la santé humaine et/ou l'environnement, les directives relatives à la réglementation des métaux lourds dans les PM10 fixent pour chacun d'eux une *valeur cible* en moyenne annuelle (

Table).

Tableau 179 : Valeurs cibles définies par des directives et règlementations pour l'Arsenic, le Cadmium, le Nickel et le Plomb.

Directives sources	Métaux	Valeur cibles
	Arsenic	6 ng/m ³
Directive 2004/107/CE	Cadmium	5 ng/m ³
	Nickel	20 ng/m ³
Directive 1999/30/CE	Plomb	0.5 μg/m ³

La réglementation européenne impose un taux de représentativité des mesures d'au moins 14 % de l'année pour que les valeurs puissent être comparées aux valeurs de références annuelles, avec un échantillonnage régulier au cours de l'année. Dans le cas du réseau du Sud, les 14% sont respectés (8 semaines par an minimum). Les résultats de la campagne 2016 ne nous ayant pas été communiqués, ils n'ont pu être intégrés dans le présent rapport. Les résultats de 2015, qui concernaient 4 stations (Forêt Nord, Prony village, Port-Boisé et Base Vie), avaient conduit à l'attribution d'un score « Bon » pour l'ensemble du réseau de suivi pour ce paramètre.

5.1.3.2 Composition chimique du sol, de la litière et des feuilles (Vale Nouvelle Calédonie, 2016)

Fréquence des suivis :

Depuis 2007, afin d'évaluer l'impact des polluants atmosphériques industriels sur la végétation, des analyses chimiques du sol, de la litière et des feuilles de quatre espèces communes (*Gardenia aubreyii*, *Garcinia neglecta*, *Sparattocyce dioica* et *Xylopia vieillardii*) sont effectuées pour déterminer leurs concentrations respectives en soufre, en azote, en métaux et en éléments majeurs. Les teneurs en soufre et en azote sont des indicateurs de l'exposition de la végétation au SO2 et NOx atmosphériques rejetés par le complexe industriel (unité d'acide et centrale électrique notamment). Les prélèvements sont réalisés au sein de placettes permanentes situées dans les réserves du Pic du Grand Kaori et de la Forêt Nord (quatre placettes dans chacun de ces deux sites, suivies annuellement), ainsi que dans la réserve du Pic du Pin

(deux placettes suivies tous les deux ans). L'évolution au fil des années de ces concentrations peut ainsi être interprétée en fonction de l'intensité des rejets atmosphériques liés à l'activité industrielle.

5.1.3.2.1 <u>Concentrations en Soufre</u>

Dans le sol

Les deux zones suivies (Forêt Nord et Pic du Grand Kaori) présentent une augmentation significative des concentrations en S dans le sol sur la période 2011 à 2015, puis une diminution en 2016.

- Dans la litière

Les deux zones suivies (Forêt Nord et Pic du Grand Kaori) présentent une variabilité significative des concentrations en S dans la litière de 2007 à 2013, avec une tendance à la baisse en 2015. Une tendance similaire est observée au Pic du Pin situé hors zone d'influence de l'activité industrielle et minière, suggérant une cause liée aux cycles biologiques des espèces suivies.

Dans les feuilles des espèces communes

En Forêt Nord, les concentrations en S dans les feuilles de 3 espèces sont relativement stables au cours du temps, les valeurs mesurées en 2016 se situant au niveau inférieur de la fourchette de variation temporelle. Seule l'espèce *Sparattocyce dioica* présente une augmentation significative se poursuivant en 2016.

Au Pic du Grand Kaori, seules deux espèces communes sont suivies. Les concentrations en S dans les feuilles de *Gardenia aubreyii* et *Sparattocyce dioica* présentent une diminution significative sur la période 2012 à 2016, après avoir montré des variations temporelles au cours des années précédentes. Ces variations pourraient correspondre à un cycle naturel du soufre se modifiant selon les activités de décomposition, plutôt qu'à des émissions de source industrielle, des teneurs élevées on en S ayant été enregistrées en 2008 avant la mise en marche des installations industrielles.

5.1.3.2.2 Concentrations en Azote

- Dans le sol

Les deux zones suivies (Forêt Nord et Pic du Grand Kaori) présentent une augmentation significative des concentrations en N dans le sol sur la période 2011 à 2015, puis une diminution en 2016.

Dans la litière

Les deux zones suivies (Forêt Nord et Pic du Grand Kaori) présentent une diminution significative des concentrations en N dans la litière de 2011 à 2015, et une forte augmentation en 2016, les valeurs enregistrées cette année sur plusieurs parcelles étant les plus élevées de la chronique des données depuis 2007. Cela pourrait s'expliquer par des variations cycliques de décomposition.

Dans les feuilles des espèces communes

En Forêt Nord, les concentrations en N dans les feuilles présentent une augmentation significative pour *Garcinia neglecta* et *Sparattocyce dioica*, et une diminution depuis 2011 pour les 2 autres espèces, qui s'inverse en 2016 pour *Xylopia vieillardii*.

Au Pic du Grand Kaori, seules deux espèces communes sont suivies. Les concentrations en N dans les feuilles de *Gardenia aubreyii* et *Sparattocyce dioica* sont restées relativement stables avec une légère tendance à la diminution au cours du temps jusqu'en 2015, et présentent une augmentation significative en 2016.

5.1.3.2.3 Concentrations en métaux et éléments majeurs

La composition chimique en métaux et éléments majeurs des sols, des litières et des feuilles d'espèces communes n'ont pas été analysées par des tests statistiques, cependant une observation des données révèle certaines tendances notables, relevées par les extraits suivants (entre guillemets) du rapport Vale NC 2017.

Ainsi, « une tendance à la diminution du Ca s'observe depuis 2007 dans le sol des deux zones suivies. Les teneurs en Mn des litières de Foret Nord ont diminué de manière générale depuis 2011 par rapport à la période 2007-2010, probablement en raison de la diminution des apports des poussières liée à la circulation routière sur la végétation depuis le goudronnage de la route en fin Octobre 2010. [...]

Toutefois, les teneurs en Mn sont élevées par rapport aux teneurs moyennes des espèces de forêt sur latérite (Jaffré, et al, 1994b). Cette teneur provient des échantillons de feuilles des arbres de *Garcinia neglecta* sur Pic du Pin et Forêt Nord. Les valeurs élevées de Mn [semblent] indiquer que cette espèce accumule le manganèse ou [subit] des dépôts de poussières en provenance du trafic routier de la CR7, ou un labourage des plantations sylvicoles au Pic du Pin. »

5.1.3.2.4 <u>Bilan des concentrations en soufre, azote, métaux et éléments majeurs dans le sol, la litière et les feuilles (Vale NC, 2017)</u>

« Les années 2015 et 2016 ont été caractérisée par l'opération de l'usine et du central électrique de Prony Energie avec les arrêts pour maintenance pour des durées d'un mois en milieu d'année. Les suivis des stations forestières en début 2015 et début 2016 ont donc été primordiaux pour évaluer les impacts des émissions atmosphériques lors de l'opération de routine des installations et les périodes de redémarrage des différentes unités de Vale et Prony Energie dans leur ensemble. La période d'évaluation de Décembre 2015 à Avril 2016 a été souvent interrompue par des intempéries. Ces intempéries ont réduit la durée des interventions sur le terrain à Forêt Nord, Pic du Grand Kaori et Pic du Pin. Le nouveau protocole réduit et simplifié d'échantillonnage appliqué depuis 2012 a permis le suivi des stations forestières pour obtenir une bonne idée de l'état de santé des plantes et de l'évolution chimique sur Foret Nord et Pic du Grand Kaori et Pic du Pin, malgré les mauvaises conditions météorologiques.

Les prélèvements effectués sur les parcelles de Forêt-Nord et du Pic du Grand Kaori ont montré plusieurs variations temporelles dans les valeurs chimiques des sols, des litières et des arbres communs en 2015 et 2016. La première tendance temporelle enregistrée est la diminution significative des teneurs en Azote (N) de la litière de 2010-11 à 2015 suivi d'une augmentation en 2016 dans l'ensemble des stations forestières (Forêt Nord, Pic du Grand Kaori). A l'inverse, les teneurs en N des sols de Forêt Nord et Pic du Grand Kaori [montrent] une diminution significative de 2007 à 2011 suivie d'une augmentation [jusqu'en] 2015 suivie d'une diminution en 2016. Les feuilles de la plupart des espèces ciblées à Forêt Nord et Pic du Grand Kaori

montrent aussi des courbes semblables à la litière ce qui suggère des phénomènes cycliques naturels de décomposition plutôt qu'une accumulation en N des milieux liée aux émissions industriel de NOx.

Les teneurs en soufre de la litière montrent une tendance à augmenter en Forêt Nord et à Pic du Grand Kaori de 2007 à 2011-2013 pour ensuite diminuer avec des valeurs en dessous de la moyenne en 2016. Certaines espèces à Forêt Nord et Pic du Grand Kaori ont aussi des teneurs en S qui varient de manière temporelle. Ces variations sont aléatoires et ne correspondent pas à une augmentation constante associée à une émission industrielle. De plus les valeurs en S sont largement inférieures à celles rencontrées par de la végétation soumise à influence constante des émissions industrielle (Mankovska, 1997). Cependant des effets ponctuels d'émissions épisodiques sur Forêt Nord pourraient être pris en considération compte tenu que Forêt Nord est plus en proximité des sources d'émissions atmosphériques, ce qui pourrait expliquer l'augmentation des teneurs en S de la litière qui sont plus importante qu'aux autres stations forestières plus éloignées.

En conclusion, les résultats de l'étude sur l'état de santé de Forêt Nord ainsi que l'évolution chimique des autres réserves (Pic du Grand Kaori, Pic du Pin) montrent que les formations sont en bonne santé. Les teneurs grandissantes en S notées en 2010 dans la litière et les espèces communes en Forêt Nord ont diminuée en grande partie depuis 2011 pour descendre en dessous des valeurs moyennes en 2016, laissant suggérer des accumulations épisodiques qui peuvent [s'expliquer par] des émissions industrielles moins fréquentes à Forêt Nord avec une meilleur maitrise du complexe industriel. Des prélèvements de litières pour des analyses isotopiques de soufre seront mis en pratique en 2017 sur Forêt Nord pour évaluer les proportions d'apports en S naturel et industriel sur les parcelles permanentes maintenant que cette technologie est disponible dans la région Pacifique. »

Le score des zones Forêt Nord, Pic du Pin et Pic du Grand Kaori reste donc « Bon » cette année pour les teneurs en Souffre, en Azote, en métaux et en éléments majeurs dans le sol, la litière et les feuilles d'espèces communes.

5.1.3.3 Etat de santé de la flore

5.1.3.3.1 Mesure de la fluorimétrie (Vale NC, 2017)

La transformation par les plantes de l'énergie lumineuse en matière végétale produit de la fluorescence qui peut s'observer au niveau des feuilles. Selon l'état de stress de la plante, notamment en raison de carences en éléments nutritifs, l'émission de fluorescence varie. Le diagnostic de la fluorescence foliaire permet donc de déterminer l'état de stress des plantes.

Fréquence des suivis et valeurs seuil :

Chaque année depuis 2007, en saison chaude, une mesure de fluorescence chlorophyllienne a été effectuée sur une feuille par plante quelle que soit l'espèce pour tous les individus présents sur 4 parcelles en Forêt Nord, et sur 4 parcelles au Pic du Grand Kaori. Une valeur numérique instantanée de leur état de vitalité a été enregistrée par mesure de fluorescence chlorophyllienne grâce à un fluorimètre portatif. La valeur numérique d'une plante saine est d'environ 0,8 et diminue en cas de stress (Krauss & Weiss, 1991; Kupper et al, 1996).

Résultats des suivis et analyse

Dans les deux zones suivies, Forêt Nord et Pic du Grand Kaori, les mesures de fluorimétrie des parcelles selon la strate de végétation (arbres, arbustes, juvéniles) présentent dans l'ensemble des strates des

valeurs supérieures à la valeur seuil de santé estimée à 0,79. Cela indique que les systèmes photosynthétiques des plantes montrent une bonne activité depuis 2010. De plus, les valeurs moyennes de sont légèrement plus élevées en 2016 que les années précédentes pour l'ensemble des strates.

Les valeurs de fluorimetrie par espèce dans toutes les strates présentent une légère augmentation de leur activité photosynthétique de 2012 à 2016, à l'exception de la strate plantule au Pic du Grand Kaori. Les valeurs les plus élevées obtenues pour la strate arbres se retrouvent chez les espèces cicatricielles. Les arbres et arbustes de forêt humide à croissance lente, adaptées à la faible luminosité des milieux sombres des sous-bois, présentent généralement des valeurs d'activité photosynthétique inferieures (comprises entre 0,77 et 0,81) aux espèces cicatricielles (comprises entre 0,82 et 0,85).

En raison de l'augmentation générale des niveaux d'activité photosynthétique démontrant l'absence de stress chez les espèces présentes en Forêt Nord et au Pic du Grand Kaori en 2016, le score est jugé « Bon » cette année pour ce paramètre dans les deux zones étudiées.

5.1.3.3.2 Suivi symptomologique 2015 (Vale NC 2016)

Au total, 19 stations réparties sur l'ensemble des sites ont fait l'objet d'un suivi mensuel en 2016. Une station est considérée comme impactée lorsqu'au moins une espèce indicatrice¹ de la station présente des symptômes : décoloration (chlorose), nécrose ou déformation. L'apparition de ces symptômes est une conséquence directe d'une exposition à des concentrations en dioxyde de soufre (SO2) élevées.

Tableau 180 : Bilan des stations impactées par l'apparition de symptômes foliaires en 2015 : un score Mauvais indique la présence de symptômes relevés sur au moins une espèce indicatrice.

Zone	Station	Symptomes foliaires 2015
	PS 1	Bon
	PS 4	Mauvais
	PS 5	Mauvais
	PS 8	Mauvais
	PS 9	Mauvais
	PS 10	Mauvais
Usine et BV Creek	PS 11	Mauvais
Baie Nord	PS 12	Mauvais
	PS 13	Mauvais
	PS 14	Bon
	PS 15	Bon
	PS 18	Mauvais
	PS 23	Mauvais
	PS 24	Bon
Pic du Grand Kaori	PS 25	Bon
et Pépinière	PS 26	Bon
Forêt Nord	PS 21	Bon
	PS 29	Bon
BV Port Prony Nord	PS 2	Bon

Le suivi symptomologique réalisé en 2015 a montré que 8 stations d'observations sur les 19 suivies ont été impactées ponctuellement par l'apparition de symptômes foliaires de chlorose, nécrose et/ou déformation sur au moins une espèce indicatrice suivie, généralement située en lisière de la végétation ou en milieu

-

¹ Ce critère a été modifié par rapport à 2013 où 2 espèces présentant des symptômes étaient nécessaires pour considérer une station comme impactée. Ce changement n'implique en 2014 aucune modification du score écologique.

exposé. Ces 8 stations sont localisées au niveau de la zone de dépérissement délimitée en 2011 et sont situées à une distance comprise entre 200 et 2750 m à l'ouest de l'usine sous l'influence des vents dominants (Figure 11). Ces stations avaient déjà été impactées ponctuellement en 2013 et 2014 (VALE NC, 2014), seule la station PS 15 n'a pas présenté de nouveaux symptômes en 2015.

Les symptômes relevés en 2015 témoignent d'une exposition aiguë et récente au SO2 atmosphérique, ainsi que d'une exposition plus ancienne dans le cas de certaines espèces dont le feuillage peut conserver de vieux symptômes pendant plusieurs mois.

Globalement, les résultats indiquent que le nombre d'espèces présentant des symptômes diminue avec la distance à la source de SO2. La majorité des symptômes observés se traduisent par des nécroses brunes brunes vives ou des chloroses marginales ou internervales bien marquées, et leur apparition en 2015 coïncide avec les périodes pendant lesquelles les concentrations mensuelles en SO2 atmosphérique étaient les plus importantes (janvier-février, avril et octobre-novembre).

Une analyse chimique trimestrielle complémentaire aux suivis symptomologique confirme que depuis mai 2012, la teneur moyenne en Soufre foliaire apparait plus élevée pour les échantillons provenant de sites avec symptômes que des sites sans symptômes, la concentration moyenne en soufre foliaire ayant tendance à augmenter sur les sites avec symptômes depuis 2012.

Les suivis ont également mis en évidence l'apparition ponctuelle de symptômes de brunissement de la cuticule des feuilles liés à des dépôts de cendres, dont l'importance varie selon les espèces en fonction de la phyllotaxie et de la forme des feuilles. Ce type de symptôme reste localisé au niveau de l'apex des feuilles ou sur des feuilles dont la forme de «coupelle» réduit les phénomènes de lessivage et favorise l'accumulation de cendre et d'eau de pluie. Les individus marqués par ces symptômes ne semblent pas affectés, seule la cuticule de la feuille reste marquée de manière superficielle.

Mission express de suivi symptomologique sur 3 sites à proximité de l'Usine (Juin 2015) (Murray, 2015)

Une courte mission a été effectuée en Juin 2015, à la suite de l'observation entre Janvier Mars 2015 de nouveaux symptômes foliaires sur 4 stations à proximité et sous le vent de l'Usine (PS11, PS12 et PS13). Cette mission s'est concentrée sur les 4 sites reconnus comme les plus impactés (PS11, PS12, PS13 et PS 18). Elle a révélé que les symptômes foliaires étaient moins évidents, moins sévères, moins communs et moins récents que les symptômes observés en 2014 et début 2015. Les symptômes ont été en effet observés davantage sur de vielles feuilles. La plupart des jeunes feuilles sont apparues en bonne santé, témoignant d'une exposition récente au SO2 réduite. Le nombre de sites présentant de nouveaux symptômes foliaires en 2015 reste inférieur au nombre de sites qui présentaient de nouveaux symptômes en 2014. Ceci témoigne d'une réduction de la zone de végétation impactée sous le vent de l'Usine.

5.1.3.3.3 <u>Bilan de l'état de santé de la flore (Vale NC 2016)</u>

« L'interprétation des résultats d'investigations reportés dans les précédents rapports (Vale Nouvelle-Calédonie 2011 ; Murray, 2012 ; VALENC, 2013 ; VALENC 2014) et dans l'actuel rapport mettent en cause le dioxyde de soufre atmosphérique comme étant le facteur premier des symptômes observés sur la végétation. [...] Les teneurs en soufre foliaire restent toutefois relativement basses. [...] Malgré l'apparition ponctuelle chaque année de symptômes foliaires, on constate sur l'ensemble des stations dont les plus exposées, une bonne reprise des individus impactés qui ont régulièrement produit un nouveau feuillage en bonne santé quelques mois ou moins après l'apparition des symptômes. Aucun cas de mortalité n'a été relevé sur les individus suivis durant la période de surveillance. [...] Le suivi par télédétection des massifs

forestiers d'intérêt prioritaire conforte les résultats obtenus et indique une forte progression de la végétation sur une grande partie des massifs forestiers depuis mai 2015.»

Perspective:

« L'analyse des résultats issus des suivis symptomologiques engagés depuis 2012 a permis de confirmer l'emprise de la zone impactée localisée entre 200 et 2750 m à l'ouest de l'usine. Un nouveau protocole de suivi symptomologique quadrimestriel a été définit pour 2016 sur un maillage de sites localisés au sein du secteur impacté ainsi qu'en périphérie afin d'affiner l'évaluation de l'évolution spatiotemporelle du phénomène. Ce nouveau protocole de suivi devra permettre de quantifier et de cartographier la distribution du degré de sévérité des symptômes au sein du secteur impacté et de préciser leur évolution dans le temps. Des paramètres de suivi supplémentaires ont été rajoutés au nouveau protocole de suivi tel que la reprise de la végétation, l'état phytosanitaire, l'évaluation des dépôts de poussières et de cendres ainsi que l'évaluation de l'état de santé des lichens. Les analyses chimiques foliaires se concentreront sur deux espèces indicatrices à large répartition jugées sensibles au SO2 atmosphérique, à savoir Arillastrum gummiferum et Garcinia neglecta, afin d'affiner l'analyse des concentrations en soufre foliaire selon la distance au complexe industriel. Enfin, des analyses chimiques supplémentaires seront réalisées pour le sol avec l'analyse du Soufre, du PH et de la conductivité. Les analyses chimiques foliaires et les analyses chimiques du sol porteront également sur les compositions isotopiques du soufre afin de déterminer la part de soufre d'origine industrielle au sein des échantillons. Le réseau de tubes passifs sera réduit à 10 stations dans la zone d'exposition préférentielle. »

5.1.3.3.4 <u>Suivi des Massifs forestiers d'intérêt prioritaire (MFIP)</u>

L'indicateur utilisé pour ce suivi (ISEV) permet d'analyser la tendance d'évolution de la végétation, en intégrant les indices de mesures de l'activité photosynthétique, de stress de la végétation, de couverture foliaire et de structure de la canopée (formule non fournie). Les valeurs de l'ISEV varient de -1 à +1. Une valeur de 0 indique qu'il n'y a eu aucun changement de la dynamique de la végétation. Une valeur d'ISEV de -1 correspond à un défrichement total tandis qu'une valeur de +1 correspond à la revégétalisation d'un sol nu. Chaque massif est composé de Stations Virtuelles de Surveillance (SVS : un individu ou un groupe d'individus) pour lesquelles l'indice ISEV est mesuré. Chaque SVS (leur nombre varie de quelques dizaines à plusieurs milliers selon la taille des massifs) est ensuite classée dans la catégorie « non-impactée », « impactée », ou « très impactée ». Chaque massif est alors caractérisé par les pourcentages relatifs pour ces trois catégories. Pour chaque massif, l'évolution de ce paramètre est analysée en fonction des valeurs témoins prises avant la mise en route de l'usine (2008) et comparée à l'évolution de la végétation d'un massif de référence, le massif U10 situé en Forêt Nord.

Les massifs concernés par ces suivis sont situées dans la réserve de la Forêt Nord (massifs U3, U5, U6, U8, U10 et U12), ainsi que sur le site de l'usine (U1, U2 et U4). En janvier 2016, aucun changement par rapport à 2014 n'est observé.

Tableau 181: Bilan des stations suivies pour les MFIP en 2015.

Zone	Station	ISEV 2015			
Usine et BV Creek	U1	> 41%	7		
Baie Nord	U2	?	Zone		
Bale Nord	U4	> 47%	impactée		
	U3	< 5%			
	U5	< 5%	7		
Forêt Nord	U6	< 5%	Zone très		
Foret Nord	U8	0%	peu impactée		
	U10	< 5%	Ппрастее		
	U12	0%			

En 2016, les résultats indiquent que pour la réserve de la Forêt Nord, deux massifs sont indemnes de surface impactée, les autres massifs n'étant que très légèrement impactés (total des surfaces impactées ou très impactées < 6%). Cette situation n'a pas évolué depuis 2013. En revanche, pour la zone de l'Usine, les massifs suivis présentent d'importantes surfaces impactées, voire très impactées. Cette situation est identique à celle de 2013 et ne révèle donc pas de nouvelle dégradation.

<u>Remarque</u>: BLUECHAM SAS et l'IAC précisent que les zones qualifiées de «non-impactées » ne garantissent pas systématiquement l'absence de symptômes dans la mesure où: la classe non-impactée comprend les SVS dont le pourcentage d'impact est compris entre 0 et 30%; les inspections terrains ont révélé la présence de symptômes de dépérissement dans certaines des zones décrites comme saines par une analyse antérieure réalisée par télédétection (IAC 2015, BLUECHAM SAS 2011).

5.1.3.4 Synthèse des suivis avifaune depuis 2008 (Bota Environnement, 2015) – pas de données disponibles pour les années 2015 et 2016

Depuis 2008 ECCET est en charge du suivi de l'avifaune dans la zone d'influence de Vale NC. En 2015 Bota Environnement a synthétisé les informations issues de ces différentes campagnes de suivis (sur la base des données de 2008 à 2014). Le dernier rapport des suivis de l'avifaune transmis à l'OEIL datant de 2014, aucun score n'est attribué pour ce compartiment de la biodiversité en 2016. Des suivis ont été réalisés en 2015 par ECCET et en 2017 par un nouveau prestataire, les données sont en cours d'analyse et seront prises en compte dans le bilan Grand Sud 2017 (à paraitre en 2018). Les populations d'oiseaux étant malgré tout considérées comme relativement stables dans les massifs forestiers de la région, une description de leur état en 2014 est retranscrite ici à titre indicatif.

5.1.3.4.1 <u>Les espèces menacées</u>

Au cours des 8 campagnes de suivis qui se sont déroulées entre 2008 et 2014, 3 espèces classées au rang de quasi-menacée (NT) selon l'IUCN ont pu être contactées dans différents massifs forestiers autour de Vale NC: La Perruche à Front Rouge, L'Autour à Ventre Blanc et le Notou. Le nombre de contacts avec la Perruche à Front Rouge, a été plus important dans la réserve du Pic du Pin (considérée comme massif de référence) que dans tous les autres massifs forestiers et para-forestiers de la zone d'influence de Vale NC. L'Autour à Ventre Blanc semble privilégier la Forêt Jaffrey parmi tous les autres massifs. En revanche, le Notou a été contacté plus d'une centaine de fois sur chacun des trois massifs forestiers suivant: Port Boisé,

Forêt Nord et Pic du Grand Kaori, loin devant la réserve du Pic du Pin où seulement une petite dizaine de contact a été recensée depuis 2008 (Figure 14 3).

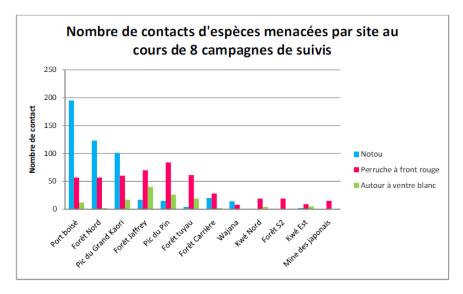


Figure 14 3: Nombre de contacts d'espèces menacées par site au cours de 8 campagnes de suivis qui se sont déroulés de 2008 à 2014. (Source (Bota Environnement, 2015))

Le nombre de contacts cumulés des 12 massifs forestiers, pour ces trois espèces menacées est relativement stable depuis 2008. On remarque tout de même une augmentation du nombre de contact avec la Perruche à Front Rouge depuis 2013 pour atteindre fin 2014 plus de 100 contacts au cours d'une seule campagne (Figure).

Figure 15 : Evolution du nombre de contacts cumulés (12 sites) d'espèces menacées sur la période 2008-2014 (Source (Bota Environnement, 2015))

5.1.3.4.2 <u>Evolution de la diversité spécifique, du nombre de contact par site et endémisme</u>

L'évolution de la diversité spécifique par site depuis 2008 est stable. Le taux d'endémisme moyen sur la période 2008-2014 est de 30%. Toutes les espèces contactées sont protégées au titre du code de l'environnement de la Province Sud.

5.1.4 Suivis non intégrables au diagnostic, actions de gestions, compensation et sensibilisation

Les rapports mentionnés ci-dessous, sont des études qui ne sont pas intégrables directement au diagnostic de l'état de santé des milieux terrestre dans le grand sud. Ils concernent des actions de gestion ou de compensation, le suivi des espèces envahissantes ou d'autres suivis et des études ponctuelles. Les informations révélées pourront faire l'objet d'un encart dans le Hors-série Magazine du Bilan de l'état de santé dans le grand sud pour apporter un éclairage particulier au diagnostic d'état de santé du milieu.

5.1.4.1 Suivis relatifs à la faune

5.1.4.1.1 Suivi de l'Herpétofaune (Astrongatt, 2016)

Fréquence des suivis :

En 2016, le suivi annuel de l'herpétofaune terrestre a été mené dans les réserves naturelles de la Forêt Nord (et site du Col de l'Antenne associé) et du Pic du Grand Kaori, sous influence du site industriel de VALE NC, et dans la forêt « SMLT » (Stock Minerais Long Terme), située aux abords d'une vaste zone de stockage de minerais et d'une verse à stérile. Ces trois sites correspondent à des groupements forestiers denses de basse altitude. Ce suivi est réalisé en forêt SMLT tous les deux ans, en alternance avec la réserve du Pic du Pin, depuis 2014. De par sa position géographique éloignée et isolée du site de VALE, la réserve du Pic du Pin ne devrait pas être impactée directement par d'éventuelles pollutions abiotiques engendrées par le site minier, elle est donc considérée comme site témoin de l'état sanitaire forestier.

Résultats des suivis et analyse

Sur les 17 espèces les plus récurrentes retrouvées au sein des trois réserves Forêt Nord, Pic du Grand Kaori et SMLT, 14 ont été contactées (10 à 12 par site) au cours de la campagne 2016 réalisée du 8 au 18 novembre 2016, soit 11 jours de terrain (8 Scincidae et 6 Diplodactylidae) (

Tabl).

Tableau 182 : Diversité spécifique de lézards détectés par site de surveillance en Forêt Nord, Pic du Grand Kaori et forêt SMLT durant la campagne 2016. (Source : Stéphane Astrongatt)

	Lézards	Statut UICN	Forêt Nord / CA	Pic du grand Kaori	Forêt SMLT
	C. austrocaledonicus	LC	х	X	X
	C.festivus	LC			
Scinques	C. notialis	VU⁴	х	X	X
	G. shonae	VU	х	X	X
	L. nigrofasciolatum	LC		X	X
	L. tillieri	NT			
	M. tricolor	LC	х	X	X
	N. mariei	VU			
	S. aurantiacus	VU		X	
	S. deplanchei	NT	X	X	X
	T. variabilis	LC	x	X	
	B. geitaina	NT			
	B. robusta	NT		ĺ	
	B. cf. sauvagii	DD	х		
	B. septuiclavis	NT	X	X	X
Geckos	E. symmetricus	EN	X	X	X
	R. auriculatus	LC	х		
	R. ciliatus	VU		X	X
	R. leachianus	LC			
	R. sarasinorum	VU	х	X	X
	Total espèces /	Site	11	12	10

NB: *C. festivus* n'est connu, à ce jour, que dans la réserve du Pic du Pin (principalement en lisière des habitats forestiers). *L. tillieri* est un scinque inféodé aux maquis du Sud Calédonien, donc jamais observé au sein des habitats forestiers stricts. *B. robusta* n'a été observé à ce jour qu'au col de l'Antenne (un seul individu juvénile, en décembre 2008).

Pour rappel parmi le cortège d'espèces observées dans les trois réserves forestières, l'ensemble de ces espèces de reptiles (voire parfois même le genre) est endémique à la Nouvelle-Calédonie, voire microendémique. Ainsi nombre d'entre eux présentent des statuts IUCN qui requierent une attention particulière. Onze espèces sont menacées : une espèce est classée « en danger » (EN), six espèces sont classées « vulnérables » (VU) et cinq espèces sont classées « quasi menacées » (NT).

Les résultats issus de cette campagne de surveillance 2016 ont permis la détection de 594 lézards, dont 387 scinques et 207 geckos, ce qui souligne la bonne santé générale de la communauté de l'herpétofaune dans les réserves forestières suivies.

Les scinques semi-fouisseurs rares tels que *Graciliscincus shonae* et *Simiscincus aurantiacus* ont été détectés, toutefois pas *Nannoscincus mariei*. Ce dernier est principalement détecté sous des substrats solides (pierres, bois morts) qui n'ont pas étés prospectés cette années de manière à préserver ces microhabitats (partagés également avec *G. shonae* et *S. aurantiacus*). Aucun *Rhacodactylus leachianus* n'a été identifié avec certitude durant cette campagne 2016 (ce gecko géant difficilement détectable n'ayant été observé qu'entre 0 et 5 individus par an depuis 2009), toutefois une observation fortuite d'un gecko de grande taille (soirée du 16/11/2016) au Pic du grand Kaori, présume de son appartenance possible à l'espèce *leachianus*.

Cette année, *Rhacodactylus ciliatus* (Gecko Géant Crêté), considéré taxon remarquable en raison de son aire de répartition naturellement limitée à quelques sites du sud de la Grande Terre, a été détecté pour la première fois au Pic du grand Kaori et dans la forêt SMLT. Cette dernière n'étant pas classée réserve naturelle, et correspondant à un site anthropisé par les chantiers environnants (pollution particulaire ferralitique rouge visible sur le feuillage/sol), *une attention particulière doit être maintenue sur ce site forestier dégradé*.

Le protocole utilisé pour le suivi de l'herpétofaune n'est standardisé que depuis 2015, il est donc prématuré de comparer les stations de suivies entre elles et dans le temps. Toutefois, quelques similitudes propres aux sites de suivis peuvent être relevées :

- la Forêt Nord, en champs proche des activités industrielles et minières, présente une diversité spécifique « stable »

- le Pic du grand Kaori, situé en champs moyen du complexe industriel de VALE, montre également une diversité stable, mais diffère par rapport à 2015 de par la détection (ou non) des espèces discrètes (semi-fouisseuses ou à effectifs de population faibles)
- la forêt SMLT a été prospectée en 2016 pour la première fois, la prochaine campagne de suivi s'y opèrera en 2018 (alternance annuelle avec la réserve du Pic du Pin)

5.1.4.1.2 <u>Translocation du scinque-léopard de Nouvelle-Calédonie Lacertoides pardalis (Cygnet Surveys & Consultancy, 2015) et campaque de surveillance (Astrongatt, 2016)</u>

Dans le cadre du projet d'implantation de la Carrière à Péridotites A1 (CP-A1), un protocole de translocation du Scinque Léopard de Nouvelle-Calédonie *Lacertoides pardalis* (espèce classée « Vulnérable » par l'UICN) a été élaboré puis mise en œuvre par le cabinet d'expertise Cygnet Surveys & Consultancy dans le cadre d'une mesure d'atténuation imposée par un Arrêté de la province Sud. Cette mission, pionnière en Nouvelle-Calédonie, s'est déroulée du 6 au 16 Octobre 2015, période durant laquelle les spécialistes en herpétologie ont effectué une évaluation préliminaire de l'abondance de *Lacertoides pardalis* sur le « site récepteur » de l'ancienne mine A1 et une évaluation des habitats, une campagne de piégeage sur le site de la Carrière CP-A1 ainsi qu'un transfert vers l'ancienne mine. L'opération a permis de capturer puis de transférer 17 individus de *L. pardalis*. La nature du programme de suivi aura pour objectif de s'assurer de la réussite du processus de translocation, il devra avoir lieu annuellement sur période de 5 ans.

La première campagne de surveillance de la population de *Lacertoides pardalis* a eu lieu en 3 sites prédéfinis (sites A, B et C) de la mine A1 du 18 au 26 janvier 2016 (9 jours). Au total, 480 pièges collants ont été mis en place sur les sites de transfert de la carrière CP-A1, soit un effort final de recherche de 2200 piège/jour (PJ). Trois individus de *L. pardalis* ont été observés, dont un juvénile, une femelle et un mâle sub-adulte, aucun ne comportant de marques spécifiques et appartenant donc à la population résidente de la mine A1 et non à la nouvelle population introduite en octobre 2015. Sept autres espèces de lézards ont également été détectées, pour un total de 62 individus.

La seconde campagne de surveillance s'est déroulée du 3 au 13 Octobre 2016 (10 jours). Au total, 490 pièges collants ont été mis en place pour un effort final de recherche de 2150 PJ. Cette campagne a permis de détecter 4 individus de *L. pardalis* dont 3 sur des zones nouvellement prospectées. Aucun de ces spécimens ne comportait de marques spécifiques et appartenant donc à la population résidente de la mine A1 et non à la nouvelle population introduite en octobre 2015. Sept autres espèces de lézards ont également été détectées, pour un total de 42 individus.

Bien que la biologie de *L. pardalis* soit relativement bien documentée, son éthologie est mal connue, de même que les mécanismes régissant leur dispersion et capacités de déplacement. L'absence d'observation des *L. pardalis* marqués en 2015 pourrait s'expliquer par une dispersion des spécimens transférés bien audelà des sites de relâche, par une distribution spatiale naturellement erratique pour cette espèce, par un phénomène de trap-dépendance (probabilité faible de re-capturer un individu en raison de l'expérience traumatisante, bien que cela n'ait jamais été observé chez une espèce de lézard), ou encore par la nécessité pour les spécimens relâchés de trouver de nouveaux abris (et territoires) libres de toute compétition intraspécifique (possibilité de troubles concernant les relations sociales avec le groupe résident.) Les résultats de ces deux campagnes de surveillance permettent de reconsidérer la pertinence du maintien de ce suivi jusqu'en 2020. Il est désormais demandé de réviser, de rééchelonner ou d'interrompre le programme.

5.1.4.1.3 Suivi des espèces de fourmis exogènes sur les sites anthropisés (Ravary, 2015a, 2016)

Au terme des dernières campagnes de surveillance (novembre 2015 et avril 2016) aucune nouvelle espèce de fourmi exogène envahissante non retrouvée jusque-là sur le territoire, n'a été détectée. La fourmi de feu importée *Solenopsis invicta* ainsi que la fourmi d'Argentine *Linepithema humile* sont donc toujours absentes du territoire.

La présence d'Anoplolepis gracilipes (Fourmi folle jaune-FFJ)et de Wasmannia auropunctata (Fourmi électrique-FE) classées parmi les 100 pires espèces invasives au monde (Lowe, Browne, Boudjelas, & De Poorter, 2004)) est observé chaque année depuis 2008. Cette année (2016) une troisième espèce comprise dans ce classement des pires espèces envahissantes au monde a été nouvellement détecté sur le site du Magazin (Plateforme Q) : Pheidole megacephala (Fourmi à grosse tête). D'abord contrôlée au moment de l'observation de quelques individus en novembre 2015, la deuxième mission de surveillance d'avril 2016 a révélé la présence de l'espèce en forte densité. A notre connaissance, ceci constitue la seconde observation de l'espèce dans la zone qui avait été observée en 2009 puis éradiquée. Cette espèce de fourmi est cependant déjà présente sur le territoire.

5.1.4.1.4 Suivi du Crapaud Buffle/Rainette sur les sites anthropisés (Ravary, 2016)

Le Cabinet BIODICAL a été mandaté pour effectuer une sixième campagne de prospection du crapaud buffle sur les installations industrielles situées à Prony. Le Crapaud Buffle (*Chaunus* marinus, anciennement *Bufo marinus*) est en effet une espèce envahissante majeure.

Au cours du suivi du 19 au 27 octobre 2016, aucun individu adulte, ni ponte ou têtard de crapaud buffle n'a été détecté. Comme lors des précédents suivis, la présence d'adultes et têtards de rainette *Litoria aurea* a cependant été détectée dans la plupart des milieux humides de la zone industrielle. Sa population semble toutefois avoir été impactée par les conditions de sècheresse.

5.1.4.1.5 Actions en faveur des oiseaux marins

Entre 2008 et Juin 2016, un total de 332 oiseaux (Puffin Fouquet, Pétrel de Gould, Pétrel de Tahiti et Phaeton) se sont échoués sur le site de Vale NC, 264 individus ont pu être relâché tandis que 68 sont morts ou ont été confiés à la SCO pour cause de blessure. En moyenne depuis 2008, 70% des individus échoués sont relâchés. Cependant, aucune information sur le taux de survie après relâche n'est disponible. Une importante différence en nombre d'individus total échoués est observée entre années. En 2014 le nombre d'échouages sur l'année n'a pu être exhaustif en raison de problèmes d'accès sur site. (Vale Nouvelle-Calédonie, 2016).

Tableau 183 : Récapitulatif des échouages de Pétrels sur le Site de Vale NC entre 2008 et 2016.

	Individus	Rela	chés	Blessés	s/morts	Individus	Rela	chés	Blessé	s/morts	Individus	Rela	chés	Blessé	s/morts
Echouage de pétrels	échoués	N	%	N	%	échoués	N	%	N	%	échoués	N	%	N	%
site de Vale NC			2008					2009					2010		
Puffin Fouquet	43	25	58%	18	42%	30	29	97%	1	3%	14	10	71%	4	29%
Pétrel de Tahiti						2	1	50%	1	50%	3	1	33%	2	67%
Pétrel de Gould											1	1	100%		
Phaeton															
Non identifié											2	1	50%	1	50%
Total	43	25	58%	18	42%	32	30	94%	2	6%	20	13	65%	7	35%
			2011			2012					2013				
Puffin Fouquet	10	5	50%	5	50%	42	34	81%	8	19%	102	84	82%	18	18%
Pétrel de Tahiti						1			1	100%	1			1	100%
Pétrel de Gould	1	1	100%			5	5	100%			2	2	100%		
Phaeton	1	1	100%												
Non identifié															
Total	12	7	58%	5	42%	48	39	81%	9	19%	105	86	82%	19	18%
			2014					2015				2016			
Puffin Fouguet	3	1	33%	2	67%	68	62	91%	6	9%	4	3	75%	1	25%
Pétrel de Tahiti											1			1	100%
Pétrel de Gould															
Phaeton						1	1	100%							
Non identifié															
Total	3	1	33%	2	67%	69	63	91%	6	9%	5	3	60%	2	40%

En 2007, Vale Nouvelle-Calédonie s'est associé, par un partenariat, à la Société Calédonienne d'Ornithologie (SCO) et sa campagne de sauvetage et sauvegarde des puffins et pétrels du territoire. Ainsi l'entreprise s'est engagée à mener des actions en ce sens :

- Actions de réduction de l'éclairage: la pollution lumineuse étant la principale cause des échouages observés sur le site industrielle de Vale NC plusieurs actions ont été menées, incluant une réorientation de toutes les tours d'éclairages vers le bas, une meilleur gestion de tous les éclairages du site (uniquement la nuit et quand nécessaire), vérification du type d'éclairage utilisé et favorisation de lampes à sodium basse tension
- Actions de sensibilisation au problème des pétrels : l'ensemble des travailleurs du site de Vale NC et sous-traitants sont sensibilisés à la sauvegarde des oiseaux marins menacés (pétrels et puffins), entre autre au moment des inductions faites par le service Hygiène et Sécurité
- Actions de sauvetage des oiseaux échoués : formation par la SCO aux premiers soins à donner aux oiseaux blessés, récupération des oiseaux blessés du site, relâches sur site ou transferts vers SCO

5.1.4.2 Suivis relatifs à l'état de la végétation

5.1.4.2.1 <u>Impact potentiel des poussières sur la végétation environnante de Goro, zone SMLT : Etat des lieux (T0) et mise en place d'un dispositif de suivi (Zongo, L'huillier & Fogliani, 2015)</u>

Ce rapport concerne uniquement la mise en place des parcelles et du protocole de suivi. Aucun résultat n'est encore disponible aujourd'hui. A la date du 10/10/2016 le rapport est terminé et communiqué à la province.

5.1.4.2.2 Espèces végétales rares et protégées : actions de conservation (Vale Nouvelle-calédonie, 2017)

« Un des objectifs de l'équipe conservation du service préservation de Vale NC est d'élaborer des programmes de veille, de suivi et de mise en culture d'espèces rares afin d'assurer la préservation des espèces les plus menacées. Les actions de conservation concernent des espèces rares, menacées et/ou protégées sélectionnées selon une approche double qui prend en compte à la fois des critères internationaux développés par l'IUCN, mais également le statut réglementaire imposé par le code de l'environnement de la Province Sud. »

La campagne de suivi des populations d'espèces rares, menacées et/ou protégées menée en 2016 a mis en évidence :

- Canacomyrica monticola: mortalité d'un individu non mature en septembre 2016, recensement de 5 nouveaux individus (dont 2 matures) en octobre le long du cours d'eau en amont du seul individu mature suivi jusqu'à présent, et de 9 plantules au pied d'un des trois individus matures en Novembre
- Pycnandra gatopensis et Planchonella pronyensis : recensement d'un nouveau peuplement de chaque espèce, respectivement au niveau du creek Pernod et de la baie de Carénage
- Planchonella latihila: suivi sur le Flanc Sud du Parc à résidus révélant des individus en bonne santé entre septembre et décembre, nettoyage des surfaces foliaires des individus juvéniles au vu de leur exposition aux poussières liée aux travaux de mise en place d'un drain de dérivation des eaux de ruissellement sur le flanc Sud du Parc à résidus de la Kwé Ouest. Un individu dont l'identification reste à confirmer a été recensé par l'IRD au niveau de la plaine des Lacs, portant 4 fruits en octobre et 3 fruits immatures et piqués ont été récupérés au pied de l'individu mature en novembre et mis à germer. L'individu mature de Pic du Grand Kaori a permis de récolter 4 fruits en octobre et quatre fruits en novembre dont les graines étaient piquées.
- Saribus jeanneneyi : installation de paniers de protection des fruits le 18 aout sur trois hampes de fruits pour protéger les fruits des roussettes et rongeurs et assurer la récolte de la totalité des fruits. 32 graines ont été comptabilisées dont 2 qui présentaient des traces de morsures

Récolte, production, transplantations et plantations :

Au cours de l'année 2016, 6649,5 g de fruits ont été récoltés ainsi que 151 graines et 75 fruits appartenant à 22 espèces, dont 8 sont protégées par le code de l'environnement et 11 sont classées EN ou CR selon les critères de l'UICN.

En 2016, 1461 individus issus de 10 espèces menacées ont été produits, soit 443 individus de moins qu'en 2015 mais 576 de plus qu'en 2014. Il s'agit de 4 espèces protégées par le code de l'environnement de la Province Sud, une espèce classée EX, trois espèces classées CR, 3 espèces classées EN, une espèce classée VU, une espèce classée en LC et une non évaluée selon les critères de l'UICN (Figure 16, Tableau 4).

Parmi les individus produits en 2016, 235 individus appartenant à 7 espèces rares ont été produits par transplantation, dont 206 ayant été récupérées sur des zones soumises à défrichement, et 9 plantules *Canacomyrica monticola* ayant poussé sous la voute d'un individu adulte mises en phase d'acclimatation à la pépinière en novembre 2016 pour assurer leur survie. De plus, une opération de transplantation de jeunes individus d'Araucaria muelleri a été entamée, avec l'enlèvement le 08 mai de 40 individus inférieurs à 15 cm et leur placement en phase d'acclimatation à la pépinière, qui a révélé un taux de mortalité de 30% après 6 mois. Des opérations de récupération de plantules supplémentaires sont d'ores et déjà envisagées en 2017 durant la saison des pluies, pour transplantation ultérieure à la Wadjana.

En 2016, 1138 individus appartenant à 16 espèces rares, menacées et/ou protégées ont été transférées. Diverses espèces ont permis d'enrichir la bordure de la réserve du pic du Grand Kaori et au niveau du

maquis paraforestier au Nord Est de la Plaine des Lacs, et plusieurs dizaines d'individus de 3 espèces ont été plantées respectivement au lieu-dit « la laverie », sur les berges du Grand Lac, et sur le plateau de Tiebaghi.

Perspectives:

« En 2017, le programme de conservation des espèces rares sera révisé ainsi que la hiérarchisation des espèces rares prioritaires au vu de la planification minière. Il est prévu de poursuivre les opérations de transplantation d'individus d'Araucaria muelleri en collaboration avec les opérateurs miniers, de poursuivre la participation au groupe d'experts RLA chargé de revoir les statuts UICN des espèces rares et de réaliser des plantations d'enrichissement. Une étude de caractérisation de l'état structurel et phytosanitaire des populations d'Araucaria muelleri et de Callitris pancheri sera également engagée en 2017 sur le périmètre autorisé et sur les bassins versant de RAMSAR. »

5.1.4.2.3 Bilan des actions de défrichement et de revégétalisation (Vale Nouvelle-Calédonie, 2017)

En 2016, les actions de défrichement menées par Vale NC dans le grand Sud ont concerné 18,28 Ha. Les actions de revégétalisation comptabilisent cette année 33,4 Ha, soit 206148 plants ma 85 espèces. Pour rappel en 2013, 2014 et 2015 c'est respectivement 11, 15 et 23,7 Ha qui avaient été revégétalisés.

« En 2016, on peut distinguer plusieurs types d'opérations de revégétalisation :

- Les plantations dites « compensatoires » de maquis minier. Elles visent à apporter une compensation aux défrichements opérés par VALE NC dans le cadre de son développement. Le total des surfaces compensatoires est déterminé par la Direction de l'Environnement (DENV) de la Province Sud et inscrit dans des arrêtés provinciaux. Elles doivent se faire en dehors de la zone d'emprise de VALE NC et présenter une densité d'environ 1 plant/m². L'ensemble de ces plantations en 2016 ont effectuées dans la région de la Plaine des Lacs pour un total de 16,7 Ha.
- Les plantations compensatoires d'enrichissement forestier ou d'espèces rares. Ces plantations font également partie des mesures compensatoires inhérentes aux arrêtés provinciaux. Elles répondent à un impact causé lors du développement de VALE NC sur des formations forestières ou sur des espèces rares. Les espèces employées ici seront plutôt des espèces forestières et/ou rares, et les densités de plantation comprises entre 1 plant/ 4m² à 1 plant/ 10m². L'ensemble des plantations effectuées dans ce cadre a concerné un total de 7,1 Ha répartis sur 4 zones affiliées chacune à un programme différent.
- Le programme de réhabilitation de 100 hectares de zones dénudées au sein du Parc Provincial de la Rivière Bleue (PPRB). VALE NC est ici le maitre d'œuvre unique et le maitre d'ouvrage en partenariat avec l'Association Reboisement. En 2016 ce sont 9 Ha qui ont été reboisés.
- Une plantation « évènementielle » lors de la journée « Environnement » VALE NC. »

5.1.4.2.4 <u>Opérations de gestions des espèces envahissantes végétales: Arrachage (Vale Nouvelle-calédonie, 2015) – pas de données disponibles pour l'année 2016</u>

Au terme de l'année 2015, environ 115 m3 de végétaux (dispersés sur environ 22 ha) ont été arrachés au cours de 4 campagnes de contrôle qui se sont déroulées de janvier à décembre 2015 (Tableau).

Tableau 184 : Récapitulatif des travaux de contrôle des Espèces Exogènes Végétales sur le site de Vale NC en 2015.

Date	Nb de personnes	Qui	Durée (jrs)	Principales Espèces	Surface (m²)	Volume (m3)
Janvier- Février	4	Chlorophyl' (supervision VALE NC)	16	Casuarina colina Crassocephalum crepidioides Graminées Mikania micrantha Pluchea odorata Polygala paniculata Solanum torvum	55 000	50
Juillet	4	Chlorophyl' (supervision VALE NC)	15	Casuarina colina Crassocephalum crepidioides Graminées Mikania micrantha Pluchea odorata Polygala paniculata Solanum torvum	55 000	30
Septembre	4	Chlorophyl' (supervision VALE NC)	13	Casuarina colina Crassocephalum crepidioides Graminées Mikania micrantha Pluchea odorata Polygala paniculata Solanum torvum	55 000	20
Décembre- Janvier 4		Chlorophyl' (supervision VALE NC)	10	Casuarina colina Crassocephalum crepidioides Graminées Mikania micrantha Pluchea odorata Polygala paniculata Solanum torvum	55 000	15

Plusieurs zones ont été particulièrement traitées (Figure) :

- Base-vie : Le contour des bâtiments et des zones anthropisées ces zones ont été traitées à l'herbicide (Glyphosate) et les individus les plus grands ont été arrachés.
- Les aménagements paysagers: afin de ne pas compromettre la survie des espèces plantées à des fins paysagères, l'utilisation d'herbicides est formellement interdite. L'élimination des végétaux s'est fait exclusivement par l'arrachage de ces derniers.
- Les drains et décanteurs: en raison de la présence d'eau ou de sa proximité, l'utilisation d'herbicides est formellement interdite. L'élimination des végétaux s'est fait exclusivement par l'arrachage de ces derniers.

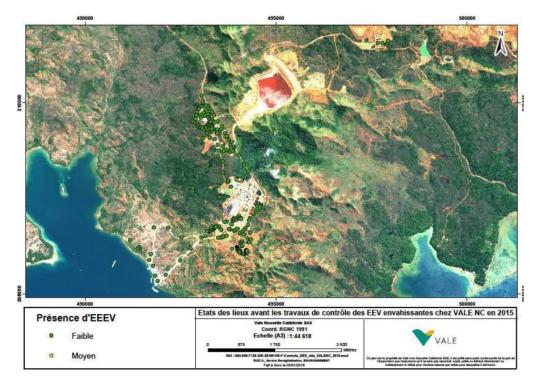


Figure 16 : Zone de contrôle des Espèces Exogènes Végétales sur le site de Vale NC en 2015.

5.2 Synthèse des suivis en milieu terrestre

Lorsque les suivis de l'année 2016 n'ont pas été traités faute de transmission de rapports, les résultats de l'année 2015 ont été repris.

Tableau 185 : Scores par suivi en milieu terrestre en 2016

	Suivis en milieu terrestre			Etat chimique					Etat ecologique					
	Sulvis en mil	ieu terrestre		C	Qualité de l	'air		Chimie sol,		Flore	9		Avifau	ne (2014)
	Zone	Station	SO2	NO2	PM10	Mét./PM10	IQA	litière, feuilles	Fluorimétrie	Symptomo.	Etat de santé	MFIP	IP 2014	Score 2016
		Forêt Kwé Est												
	Kwé Nord	Forêt Kwé Nord												
Mine	et Est	Forêt Jaffré												
iviine		Forêt Carrière												<u>l</u>
	Kwé Ouest	Forêt S2												
	et ASR	Forêt SMLT												
Pic	c du Pin	Pic du Pin						=						
Pic du	Grand Kaori	Pic du Grand Kaori				=	Τ,	=		=				
Foi	rêt Nord	Forêt Nord				=	=	=		=		=		
For	êt Est du	Wadjana												
platea	au de Goro	Mine des Japonais												
Usir	ne et CBN	Usine et CBN				=	"			7		=		
В	ase Vie	Base Vie				=	Υ,							
Po	rt Boisé	Port Boisé				=	=							
	<u>Légende :</u> Code couleur des scor		cores :		Très bon Bon Moyen			Médiocre Mauvais Indéterminé	= : score simila > : zone décla ≥ : zone surcla	ssée par rapp	ort à 2015		Suivi ant 2016	érieur à

Tableau 186 : Synthèse des informations en lien avec l'état de santé du milieu terrestre en 2016.

	Herpétofaune	Translocation L. Pardalis	Fourmis exogènes	Crapaud Buffle	Oiseaux marins	Spp. Végétales rares/protégées	Défrichement, revégétalisation
Chiffres clés	14 espèces de lézards (8 scinques et 6 geckos) observées en 2016, dont 1 espèce en danger (EN) et 5 espèces vulnérables (VU). Le taxon rare Rhacodactylus ciliatus détecté pour la 1ère fois au PGK et en forêt SMLT	17 individus transférés en 2015. 2 campagnes de surveillance en 2016 n'ont détecté aucun des individus transférés. La pertinence du maintien de ce suivi est à revoir.	Aucune nouvelle espèce détectée en 2016. 2 espèces très envahissantes toujours présentes, une 3ème (fourmi grosse tête) détectée depuis 2015 en densité croissante malgré une campagne d'éradication.	Auncun crapaud buffle (adulte, ponte ou tétard) détecté, rainette toujours présente mais sa population souffre de la sècheresse.	Seuls 4 puffins et 1 pétrel échoués en 2016, dont 1 mort et 1 blessé, les 3 autres ont été relachés.	Production 2016: 1461 individus issus de 10 espèces menacées (germination), et 235 individus appartenant à 7 espèces rares (transplantation).	En 2016, 18,28 Ha défrichés, 33,4 Ha revégétalisés. Plaine des Lacs, rives du Grand Lac, versant Nord de la concession VALE NC « INVASION 5 », concession AS2
Sites concernés	Forêt Nord, Pic du Grand Kaori, forêt SMLT		Mine et Usine	Base Vie et Usine	Ensemble des installations du site Vale NC	Pépinière	en bordure du Pic du Grand Kaori, Parc Provincial de la Rivière Bleue, ancien parking Base Vie

6 Bibliographie:

6.1 Milieu marin

Qualité physico-chimique des sédiments marins : suivi réglementaire triennal, campagne 2015 (2016). Fernandez, J.-M., Achard, R., Haddad, L., Pluchino, S., Laurent, A., laboratoire AEL/LEA | Vale NC

Réseau d'Observation des Récifs Coralliens de Nouvelle-Calédonie (RORC) - Campagne de suivi 2015-2016 - Rapport de suivi : bilan 2015-2016 et évolution temporelle (2016). S. Job (Cortex) | Aquarium des lagons Nouvelle-Calédonie | IFRECOR | ŒIL | Province Sud | UNC | Province Nord | CCCE | Pala Dalik

Suivi de l'état des peuplements récifaux et organismes associés en baie de Prony et canal de la Havannah - Mission d'avril 2016 (2016). Aqua Terra | Vale NC

Suivi de l'état des peuplements récifaux et organismes associés en baie de Prony et canal de la Havannah - Mission de novembre 2016 (2017). Aqua Terra | Vale NC

Suivi de la qualité éco-toxicologique (métaux) des eaux de la zone sud du lagon de Nouvelle-Calédonie par transplantation d'espèces bio-indicatrices. Campagne annuelle 2016 - Période d'avril-septembre 2016 (2017). Fernandez, J.-M., Kumar-Roiné, S., Haddad, L., Laurent, A., laboratoire AEL/LEA | Vale NC

Suivi de la qualité physico-chimique de l'eau de mer aux stations St15 et St16. Campagnes de mars à octobre 2016 (2016). Moreton, B., Fernandez, J.-M., Kumar-Roine, S., Kaplan, H., Laurent, A., Hubert, M., laboratoire AEL/LEA | Vale NC

Suivi de la qualité physico-chimique de l'eau de mer de la zone sud du lagon de Nouvelle-Calédonie - 1er semestre 2016 (2016). Kumar-Roine, S., Moreton, B., Fernandez, J.-M., Kaplan, H., Laurent, A., Hubert, M., laboratoire AEL/LEA | Vale NC

Suivi de la qualité physico-chimique de l'eau de mer de la zone sud du lagon de Nouvelle-Calédonie - 2eme semestre 2016 (2016). Kumar-Roine, S., Moreton, B., Fernandez, J.-M., Kaplan, H., Laurent, A., Hubert, M., laboratoire AEL/LEA | Vale NC

Suivi des densités de flux verticaux des particules dans le canal de la Havannah, la baie Kwé et la rade nord de Prony - Campagne 2ème semestre 2016 - Période d'octobre à novembre 2016 (2017). Kumar-Roiné, S., Fernandez, J.-M., Haddad, L., Pluchino, S., Laurent, A., laboratoire AEL/LEA | Vale NC

Suivi des densités de flux verticaux des particules dans le canal de la Havannah, la baie Kwé et la rade nord de Prony : campagne 1er semestre 2016 - Période de mai à septembre 2016 (2016). Fernandez, J.-M., Achard, R., Haddad, L., Pluchino, S., Laurent, A., Hubert, M., laboratoire AEL/LEA | Vale NC

Suivi environnemental - Premier semestre 2016 - MILIEU MARIN (2016). Vale NC | Vale NC

Suivi environnemental - Second semestre 2016 - MILIEU MARIN (2016). Vale NC | Vale NC

Suivi participatif des récifs du Grand Sud – Projet ACROPORA – Campagne 2014-2015 (2016). Cortex | ŒIL | CCCE

Suivi station S16 : évolution géochimique des sédiments au droit du port de commerce dans la baie du Prony - Campagne annuelle 2016 (2016). Fernandez, J.-M., Kumar-Roiné, S., Achard, R., Haddad, L., Kaplan, H., Laurent, A., laboratoire AEL/LEA | Vale NC

6.2 Eaux douces

Indice biotique de Nouvelle-Calédonie (IBNC) et Indice biosédimentaire (IBS) - Guide méthodologique et technique (2016). ETHYCO | CNRT Nickel et son environnement | ŒIL | DAVAR

Projet d'identification de bassins versants de référence - Site de Goro (Kwé et Creek de la Baie Nord) (2013). A2EP | Vale NC

Suivi de la faune ichtyologique et carcinologique dans la zone d'activité de Vale NC - Campagne de janvier 2016 : rivières Baie Nord, Kwé, Kuébini et Truu (2016). Eco Tone | Vale NC

Suivi de la faune ichtyologique et carcinologique dans la zone d'activité de Vale NC - Campagne de mai-juin 2016 : rivières Baie Nord, Kwé, Kuébini, Truu, Wadjana et Trou Bleu (2017). EcoTone | Vale NC

Suivi des macro-invertébrés benthiques dans la zone d'activités de Vale NC - Campagne 1 d'avril 2016 - Milieux lotiques (2016). Erbio | Vale NC

Suivi des macro-invertébrés benthiques dans la zone d'activités de Vale NC – Rapport annuel 2016 - Milieux lotiques (2017). Erbio | Vale NC

Suivi des macro-invertébrés dans la zone d'activités de Vale NC – Rapport annuel 2016 - Milieux lentiques (2017). Erbio | Vale NC

Suivi environnemental - Rapport annuel 2016 - Eaux douces de surface (2016). Vale NC | Vale NC

Suivi environnemental - Rapport annuel 2016 - Eaux souterraines (2017). Vale NC | Vale NC

Suivi environnemental - Rapport semestriel 2016 - Eaux douces de surface (2016). Vale NC | Vale NC

Suivi environnemental - Rapport semestriel 2016 - Eaux souterraines (2016). Vale NC | Vale NC

6.3 Milieu terrestre

Bilan des actions de revégétalisation Vale NC – Année 2016 (2016). Vale NC | Vale NC

Bilan réglementaire des défrichements réalisés en 2016 (2017). Vale NC | Vale NC

Campagne de surveillance 2016 de l'herpétofaune de trois sites forestiers - Note d'observation (2016). Vale NC | Vale NC

Campagne de surveillance de la population de *Lacertoides pardalis* (Scincidae) de la mine A1 - Commune du Mont-Dore (province Sud) (2016). Astrongatt, Stéphane | Vale NC

Campagne de surveillance n°2 de la population de *Lacertoides pardalis* (Scincidae) de la mine A1 - Commune du Mont-Dore (province Sud) (2016). Astrongatt, Stéphane | Vale NC

Données SOS Pétrels 2016 (2016). Vale NC | Vale NC

Espèces rares et protégées dans la zone d'influence des infrastructures industrielles et minières de Vale NC : Bilan 2016 des activités de conservation (2017). Vale NC | Vale NC

La qualité de l'air à Nouméa et dans le sud de la Nouvelle-Calédonie - Bilan 2016 (2017). Scal'Air | Scal'Air

Septième campagne de détection du Crapaud buffle (Chaunus marinus) sur le site industriel de VALE Nouvelle- Calédonie à Prony (2016). Biodical | Vale NC

Suivi de l'avifaune forestière du plateau de Goro et lacustre de la Plaine des Lacs - Rapport saison 2014-2015

(2015). ECCET | Vale NC

Suivi de l'état de santé de la flore des réserves forestières provinciales à proximité de l'usine de Vale Nouvelle-Calédonie - Bilan 2015-2016 (2016). Vale NC | Vale NC

Suivi environnemental - Rapport annuel 2016 - QUALITE DE L'AIR AMBIANT (2016). Vale NC | Vale NC

Suivi environnemental - Rapport semestriel 2016 - QUALITE DE L'AIR AMBIANT (2016). Vale NC | Vale NC

Surveillance des fourmis envahissantes sur les zones à risques du site industriel de VALE NOUVELLE-CALÉDONIE à Prony - Suivi n°15 (avril 2015) (2016). Biodical | Vale NC

Surveillance symptomologique de la flore endémique sur 27 stations d'observation situées aux alentours de l'usine de Vale Nouvelle-Calédonie : 2015 (2017). Vale NC | Vale NC

Synthèse des bilans suivis faune : Oiseaux et reptiles (2015). Bota environnement | Vale NC

Translocation du scinque-léopard de Nouvelle-Calédonie Lacertoides pardalis sur le site proposé pour le développement de la carrière CP-A1 de Vale Nouvelle-Calédonie. (2015). Cygnet Surveys & Consultancy | Vale NC

7 Annexes

Annexe I : Mesures de suivi des communautés de macro-invertébrés dans les eaux douces non intégrées au diagnostic.

Indice ET

L'indice ET (Ephéméroptère et Tricoptère) des macro-invertébrés est mesuré dans les eaux de surface des creeks.

Limites de détection, valeurs seuil et gamme de variations de référence :

La qualité des eaux de surface selon la valeur d'ET est définie par le nombre de taxons appartenant aux Ephéméroptères et Tricoptères capturés lors d'une campagne de prélèvement.

En 2016, 7 stations situées hors zone d'influence de l'activité minière et industrielle permettent d'établir deux gammes de référence pour les eaux de surface : l'une est représentative des cours d'eau situés en amont de la rupture de pente des bassins versants, l'autre est représentative des cours d'eau en aval de la rupture de pente, quel que soit le type de bassin versant.

Tableau 187 : Détermination de la gamme de variations de référence pour l'ET : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

Position	Type de	Station	s de référence	N	moy	moy	Per 10	Per 90
POSITION	BV	Zone	Station	2016	2016	2016	Per 10 Per s	
		Carénage	Carénage Amont	1	12			
Amont	Grand	Kaoris	Kaoris Amont	1	12	10,3	8,0	12,0
		Kuebini	Kueb Amont	1	7			
		Trou Bleu	3-C	4	4			
Aval	Grand	Carénage	Carénage Aval	1	13	8,5	5,2	11,8
Avai	Granu	Kaoris	Kaori Aval	1	8	0,5	3,2	11,0
		Kuebini	Kueb Aval	1	9			

Résultats et analyse

Tableau 188 : Evolution temporelle de la chronique des données 2012-2016 et comparaison de l'indice ET aux gammes de référence pour 17 stations de suivi des creeks. Un score final 2016 par station puis par zone est attribué sur la base de ces comparaisons.

		Indice ET - 6	eaux de sur	face													
Position	Type	Stations de	suivi		2012		2013		2014		2015		2016	Moy 2016 ≥ Per10	Pas de baisse	Score final	Score final
Position	de BV	Zone	Station	Ν	Moy	2	Moy	N	Moy	N	Moy	N	Moy	gamme ref. ?	temporelle?	par station	par zone
			3-B	1	5	3	4,7	3	4,3	2	6,5	1	7	Mauvais	Bon	Passable	
			4-N	1	2	1	2	2	1,5	2	0	1	0	Mauvais	Mauvais	Mauvais	
		Kwe Ouest	KO4-20-I	0		0		0		2	2	1	1	Mauvais	Mauvais	Mauvais	Mauvais
	C 112 11	kwe Ouest	KO5-10-I	0		0		0		1	4	1	1	Mauvais	Mauvais	Mauvais	iviauvais
A	Grand		KO5-20-I	0		0		2	3,5	2	2	1	1	Mauvais	Mauvais	Mauvais	
Amont			KO5-50-I	0		0		2	1	2	5	1	3	Mauvais	Bon	Passable	
		Kwe Nord	4-M	1	2	1	4	2	3	2	6,5	1	3	Mauvais	Bon	Passable	Passable
		Kwe Est	KE-05	1	1	1	3	2	1,5	2	2	1	2	Mauvais	Bon	Passable	Passable
	Petit	Kadji	5-E	1	4	1	3	2	7	2	8,5	1	3	Mauvais	Mauvais	Mauvais	Mauvais
	reut	Trüu Amont	TR-03	0		0		1	1	1	2	0					
		Kwe principale	1-A	0		0		0		0		1	8	Bon		Bon	Bon
		kwe principale	1-E	2	2,5	5	2,2	3	3,7	2	7	1	6	Bon	Bon	Bon	БОП
	Grand		6-BNOR1	2	4,5	5	3	6	4,5	4	6,3	4	6,3	Bon	Bon	Bon	
Aval		CBN Aval	6-T	5	8,0	6	3,5	6	5,5	4	6,3	4	5,5	Bon	Bon	Bon	Passable
			6-U	1	2	2	3	4	4	2	7	1	5	Mauvais	Bon	Passable	
	Dadia	Trüu Aval	TR-04	1	3	1	2	2	3,5	2	5,5	1	6	Bon	Bon	Bon	Passable
	Petit	ITuu Avai	TR-05	1	2	2	1,5	2	5	2	6	1	5	Mauvais	Bon	Passable	Passable

En 2016, l'indice ET mesuré dans les stations situées en amont de bassins versant présentent tous des valeurs inférieures à celles de leur gamme de référence. Alors que l'ET semble rester stable sur la chronique

des données 2012-2016 dans 4 de ces stations, qui obtiennent donc un score « Passable », une dégradation temporelle est détectée dans les 5 autres stations, qui obtiennent donc un score « Mauvais ».

En aval des bassins versants, les valeurs d'ET sont plus élevées et semblent toutes rester stables depuis plusieurs années. Cinq stations possèdent ainsi un ET comparable aux valeurs de la gamme de référence, un score « Bon » leur est donc attribué. Comparativement, le faible nombre de taxons ET détecté dans les stations 6-U en aval du Creek Baie Nord et TR-05 en aval de la Trüu justifie leur score considéré « Passable » cette année.

Tout comme l'IBNC et l'IBS, l'indice ET des stations situées en amont des bassins versants est plus faible que celui des stations situées en aval, ce qui n'est pas le cas dans les rivières de référence. Cela traduit du fort impact des pollutions d'origine industrielle et minière, dont les sources sont toutes situées en amont des bassins versant, et qui tend à disparaitre avec l'éloignement par rapport à ces sources de perturbation.

<u>Autres mesures de la communauté des macro-invertébrés : Abondance, Richesse spécifique, Densité,</u> Equitabilité

Les paramètres relatifs à la communauté des macro-invertébrés (abondance, richesse spécifique, densité et équitabilité) sont mesurés dans les eaux de surface des creeks et dolines.

Cette année, un score par station et par paramètre est attribué sur la base d'une comparaison entre les moyennes annuelles obtenues en station de suivi avec le percentile 10 des stations de référence (de façon à prendre en compte les caractéristiques des populations naturellement pauvres de certaines populations de macro-invertébrés dans le contexte hydrogéologique du Grand Sud, y compris dans les rivières de références hors d'influence de l'activité minière et industrielle). L'interprétation issue du rapport annuel de suivi produit par Erbio est également prise en compte, ce qui permet d'attribuer à chaque station un score final « Bon », « Passable » ou « Mauvais » traduisant de l'état général des communautés de macro-invertébrés en 2016.

Tableau 189 : Détermination de la gamme de variations de référence pour les paramètres de suivi des communautés de macro-invertébrés (a) abondance, (b) densité, (c) richesse spécifique et (d) équitabilité : calcul des Percentiles 10 et 90 et de la Moyenne des valeurs pour 2016 sur la base des stations situées hors zone d'influence de l'activité minière et industrielle. Les gammes de variations sont calculées selon la position de la station par rapport à la rupture de pente qui délimite le plateau latéritique amont, des versants côtiers aval.

Abond	ance Macro	-invertébrés - e	aux de surface					
Position	Type de	Stations de référence		N	moy	moy	Per 10	Per 9
POSITION	BV	Zone	Station	2016	2016	2016	Pel 10	rei 5
		Carénage	Carénage Amont	1	322			
Amont	Grand	Kaoris	Kaoris Amont	1	228	164,63	33,15	293,8
AIIIOIIL	Granu	Kuebini	Kueb Amont	1	107	104,03	33,13	255,0
		Fausse Yaté	FY Amont	2	1,5			
		Trou Bleu	3-C	4	215			
		Carénage	Carénage Aval	1	1857		46,00	1139,0
Aval	Grand	Kaoris	Kaori Aval	1	421	460.33		
Avai	Granu	Kuebini	Kueb Aval	1	177	400,33		
		Fausse Yaté	FY Aval	2	56			
		rausse rate	FY Intermédiaire	2	36			
			DOL-XW-02	1	452			
Dolin		Wadjana	DOL-XW-03	1	610	319,00	100.20	562,60
DOIL	ies	vvaujana	LAC-ROB-01	1	90	319,00	100,20	302,0
			LAC-ROB-02	1	124			

De	nsité Ma							
Position	Type de	Statio	N	moy	moy	Per 10	Per 90	
Position	BV	Zone	Station	2016	2016	2016	Per 10	Per 90
		Carénage	Carénage Amont	1	920,0			
Amont	Grand	Kaoris	Kaoris Amont	1	651,4	625,7	374,9	866,3
		Kuebini	Kueb Amont	1	305,7			
		Trou Bleu	3-C	4	614,3			
Aval	Grand	Carénage	Carénage Aval	1	5305,7	1907.1	538.3	4074.9
Avai	Granu	Kaoris	Kaori Aval	1	1202,9	1907,1	556,5	4074,9
		Kuebini	Kueb Aval	1	505,7			
			DOL-XW-02	1	1808,0			
Doli		Wadjana	DOL-XW-03	1	2440,0	1276.0	400.8	2250.4
DOII	lies	vvaujana	LAC-ROB-01	1	360,0	12/0,0	400,8	2230,4
			LAC-ROB-02	1	496,0			

Equita	bilité M							
Position	Туре	Station	is de référence	N	moy	moy	Per 10	Per 90
Position	de BV	V Zone Station 201		2016	2016	2016	Per 10	Per 90
		Carénage	Carénage Amont	1	0,85			
Amont	Grand	Kaoris	Kaoris Amont	1	0,84	0,84	0,84	0,85
		Kuebini	Kueb Amont	1	0,84			
		Trou Bleu	3-C	4	0,64			
Aval	Grand	Carénage	Carénage Aval	1	0,61	0.67	0.62	0.74
Avai	Granu	Kaoris	Kaori Aval	1	0,68	0,67	0,62	0,74
		Kuebini	Kueb Aval	1	0,76			

	Richesse spécifique Macro-invertébrés - eaux de surface									
Position	Type	Station	s de référence	N	moy	moy	Per 10	Per 90		
rosition	de BV	Zone	Station	2016	2016	2016	16110	1 61 30		
		Carénage	Carénage Amont	1	27					
Amont	Grand	Kaoris	Kaoris Amont	1	25	23,7	20,2	26,6		
		Kuebini	Kueb Amont	1	19					
		Trou Bleu	3-C	4	14,25					
Aval	Grand	Carénage	Carénage Aval	1	31	20,1	14,8	27,4		
Avai	Granu	Kaoris	Kaori Aval	1	16	20,1	14,6	27,4		
		Kuebini	Kueb Aval	1	19					
			DOL-XW-02	1	17					
Dolin	nes		Wadjana	DOL-XW-03	1	16	16,5	14,6	18,4	
Dolli		vvaujana	LAC-ROB-01	1	14	10,5	14,0	10,4		
			LAC-ROB-02	1	19					

Résultats et analyse

Tableau 190 : Scores basés sur l'évolution temporelle de la chronique des données 2012-2016, comparaison des valeurs de classes de qualité, et interprétation du rapport annuel Erbio 2017 pour 4 paramètres de suivi des communautés de macro-invertébrés sur 17 stations de suivi des creeks. Un score final 2016 par station puis par zone est attribué sur la base de ces comparaisons.

Communau	ité Macro-i	nvertébrés - eaux d	le surface	Abonda	nce	Rich	esse spécifique			Densité			Equitabilité			
Position	Type de	Stations de	suivi	Moy 2016 ≥ Per10	Pas de baisse	Moy 2016 ≥	Pas de baisse	Rapport	Moy 2016 ≥	Pas de baisse	Rapport	Moy 2016 ≥	Pas de baisse	Rapport	Score final	Score final
Position	BV	Zone	Station	gamme ref. ?	temporelle?	Per10 gamme	temporelle?	Erbio	Per10 gamme	temporelle?	Erbio	Per10 gamme	temporelle?	Erbio	par station	par zone
			3-B	Bon	Bon	Mauvais	Bon	Passable	Mauvais	Mauvais	Passable	Bon	Bon	Bon	Passable	
			4-N	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Bon	Mauvais	Mauvais	
		Kwe Ouest	KO4-20-I	Bon	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais
	Grand	kwe odest	KO5-10-I	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais				Mauvais	ividuvais
Amont	Grand		KO5-20-I	Mauvais	Mauvais	Mauvais	Mauvais	Passable	Mauvais	Mauvais	Passable	Bon	Bon	Bon	Passable	
Amont			KO5-50-I	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Bon	Bon	Bon	Mauvais	
		Kwe Nord	4-M	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Mauvais	Bon	Bon	Bon	Mauvais	Mauvais
		Kwe Est	KE-05	Bon	Bon	Mauvais	Bon	Mauvais	Mauvais	Mauvais	Mauvais	Bon	Bon	Mauvais	Mauvais	Mauvais
	Petit	Kadji	5-E	Bon	Mauvais	Mauvais	Mauvais	Passable	Mauvais	Mauvais	Mauvais	Bon	Bon	Bon	Mauvais	Mauvais
	Petit	Trüu Amont	TR-03												A sec e	n 2016
		Kwe principale	1-A	Bon		Bon		Passable	Bon		Passable	Bon		Bon	Passable	Passable
		kwe pilitipale	1-E	Bon	Mauvais	Mauvais	Bon	Passable	Mauvais	Mauvais	Mauvais	Bon	Bon	Bon	Passable	russubie
	Grand		6-BNOR1	Bon	Mauvais	Bon	Bon	Bon	Bon	Bon	Bon	Mauvais	Bon	Mauvais	Bon	
Aval		CBN Aval	6-T	Bon	Mauvais	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Bon	Passable	Bon	Passable
			6-U	Bon	Mauvais	Bon	Bon	Passable	Bon	Mauvais	Mauvais	Bon	Bon	Passable	Passable	
	Petit	Trüu Aval	TR-04	Bon	Bon	Mauvais	Bon	Passable	Mauvais	Bon	Passable	Bon	Bon	Bon	Passable	Passable
	Petit	Truu Avai	TR-05	Bon	Bon	Mauvais	Bon	Passable	Bon	Bon	Passable	Bon	Bon	Passable	Passable	Passable

Dans l'ensemble, les communautés de macro-invertébrés suivies dans les stations situées en amont de bassins versant présentent toutes un état « Passable » à « Mauvais ». En aval des bassins versants, les communautés de macro-invertébrés sont moins impactées par les pressions exercées par l'activité minière et industrielle, deux stations en aval du Creek Baie Nord accueillant même des communautés en état « Bon ». L'état de dégradation des communautés de macro-invertébrés dans les stations situées en amont des bassins versants contraste avec la situation observée dans les rivières de référence, pour lesquelles les populations sont généralement plus riches et plus diversifiées en amont qu'en aval des bassins versants. Cela traduit du fort impact des pressions d'origine industrielle et minière, dont les sources sont toutes situées en amont des bassins versant, et qui tend à diminuer avec l'éloignement par rapport à ces sources de perturbation.

Annexe II : Extrait du tableau des limites et référence de qualité des eaux à l'exclusion des eaux conditionnées en Annexe I de l'arrêté du 11 janvier 2007 (G : valeur guide ; I : valeur limite impérative).

ANNEXE I

LIMITES ET RÉFÉRENCES DE QUALITÉ DES EAUX DESTINÉES À LA CONSOMMATION HUMAINE, À L'EXCLUSION DES EAUX CONDITIONNÉES

I. - Limites de qualité des eaux destinées à la consommation humaine

A. - Paramètres microbiologiques

PARAMÈTRES	LIMITES DE QUALITÉ	UNITÉ
Escherichia coli (E. coli)	0	/100 mL
Entérocoques	0	/100 mL

B. - Paramètres chimiques

PARAMÈTRES	LIMITES DE QUALITÉ	UNITÉS	NOTES
Acrylamide.	0,10	μg/L	La limite de qualité se réfère à la concentration résiduelle en monomères dans l'eau, calculée conformément aux spécifications de la migration maximale du polymère correspondant en contact avec l'eau.
Antimoine.	5,0	μg/L	
Arsenic.	10	μg/L	
Baryum.	0,70	mg/L	
Benzène.	1,0	μg/L	
Benzo[a]pyrène.	0,010	μg/L	
Bore.	1,0	mg/L	
Bromates.	10	μg/L	La valeur la plus faible possible inférieure à cette limite doit être visée sans pour autant compromettre la désinfection. La limite de qualité est fixée à 25 μg/L jusqu'au 25 décembre 2008. Toutes les mesures appropriées doivent être prises pour réduire le plus possible la concentration de bromates dans les eaux destinées à la consommation humaine, au cours de la période nécessaire pour se conformer à la limite de qualité de 10 μg/L.
Cadmium.	5,0	μg/L	
Chlorure de vinyle.	0,50	μg/L	La limite de qualité se réfère également à la concentration résiduelle en monomères dans l'eau, calculée conformément aux spécifications de la migration maximale du polymère correspondant en contact avec l'eau.
Chrome.	50	μg/L	
Cuivre.	2,0	mg/L	
Cyanures totaux.	50	μg/L	
1,2-dichloroéthane.	3,0	μg/L	
Epichlorhydrine.	0,10	μg/L	La limite de qualité se réfère à la concentration résiduelle en monomères dans l'eau, calculée conformément aux spécifications de la migration maximale du polymère correspondant en contact avec l'eau.

PARAMÈTRES	LIMITES DE QUALITÉ	UNITÉS	NOTES
Fluorures.	1,50	mg/L	
Hydrocarbures aromatiques polycycliques (HAP).	0,10	μg/L	Pour la somme des composés suivants: benzo[b]fluoranthène, benzo[k]fluoranthène, benzo[ghi]pérylène, indéno[1,2,3-cd]pyrène.
Mercure.	1,0	μg/L	
Total microcystines.	1,0	μg/L	Par « total microcystines », on entend la somme de toutes les microcystines détectées et quantifiées.
Nickel.	20	μg/L	
Nitrates (NO ₃ -).	50	mg/L	La somme de la concentration en nitrates divisée par 50 et de celle en nitrites divisée par 3 doit rester inférieure à 1.
Nitrites (NO ₂ -).	0,50	mg/L	En sortie des installations de traitement, la concentration en nitrites doit être inférieure ou égale à 0,10 mg/L.
Pesticides (par substance individuelle). Aldrine, dieldrine, heptachlore, heptachlorépoxyde (par substance individuelle).	0,10 0,03	μg/L μg/L	Par « pesticides », on entend : - les insecticides organiques; - les herbicides organiques; - les fongicides organiques; - les nématocides organiques; - les acaricides organiques; - les algicides organiques; - les rodenticides organiques; - les produits antimoisissures organiques; - les produits apparentés (notamment les régulateurs de croissance) et leurs métabolites, produits de dégradation et de réaction pertinents.
Total pesticides.	0,50	μg/L	Par « total pesticides », on entend la somme de tous les pesticides individualisés détectés et quantifiés.
Plomb.	10	μg/L	La limite de qualité est fixée à 25 μg/L jusqu'au 25 décembre 2013. Les mesures appropriées pour reduire progressivement la concentration en plomb dans les eaux destinées à la consommation humaine au cours de la période nécessaire pour se conformer à la limite de qualité de 10 μg/L sont précisées aux articles R. 1321-55 et R. 1321-49 (arrêté d'application). Lors de la mise en œuvre des mesures destinées à atteindre cette valeur, la priorité est donnée aux cas où les concentrations en plomb dans les eaux destinées à la consommation humaine sont les plus élevées.
Sélénium.	10	μg/L	
Tétrachloroéthylène et trichloro- éthylène.	10	μg/L	Somme des concentrations des paramètres spécifiés.
Total trihalométhanes (THM).	100	μg/L	La valeur la plus faible possible inférieure à cette valeur doit être visée sans pour autant compromettre la désinfection. Par « total trihalométhanes », on entend la somme de: chloroforme, bromoforme, dibromochlorométhane et bromodichlorométhane. La limite de qualité est fixée à 150 µg/L jusqu'au 25 décembre 2008. Toutes les mesures appropriées doivent être prises pour réduire le plus possible la concentration de THM dans les eaux destinées à la consommation humaine, au cours de la période nécessaire pour se conformer à la limite de qualité.

PARAMÈTRES	LIMITES DE QUALITÉ	UNITÉS	NOTES
Turbidité.	1,0	NFU	La limite de qualité est applicable au point de mise en distribution, pour les eaux visées à l'article R. 1321-37 et pour les eaux d'origine souterraine provenant de milieux fissurés présentant une turbidité périodique importante et supérieure à 2,0 NFU. En cas de mise en œuvre d'un traitement de neutralisation ou de reminéralisation, la limite de qualité s'applique hors augmentation éventuelle de turbidité due au traitement. Pour les installations qui sont d'un débit inférieur à 1 000 m²/j ou qui desservent des unités de distribution de moins de 5 000 habitants, la limite de qualité est fixée à 2,0 NFU jusqu'au 25 décembre 2008. Toutes les mesures appropriées doivent être prises pour réduire le plus possible la turbidité, au cours de la période nécessaire pour se conformer à la limite de qualité de 1,0 NFU.

II. - Références de qualité des eaux destinées à la consommation humaine

A. – Paramètres microbiologiques

PARAMÈTRES	RÉFÉRENCES DE QUALITÉ	UNITÉ	NOTES
Bactéries coliformes.	0	/100 mL	
Bactéries sulfitoréductrices y compris les spores.	0	/100 mL	Ce paramètre doit être mesuré lorsque l'eau est d'origine superficielle ou influencée par une eau d'origine superficielle. En cas de non-respect de cette valeur, une enquête doit être menée sur la distribution d'eau pour s'assurer qu'il n'y a aucun danger potentiel pour la santé humaine résultant de la présence de micro-organismes pathogènes, par exemple <i>Cryptosporidium</i> .
Numération de germes aérobies revivifiables à 22 °C et à 37 °C.			Variation dans un rapport de 10 par rapport à la valeur habituelle.

B. - Paramètres chimiques et organoleptiques

PARAMÈTRES	RÉFÉRENCES DE QUALITÉ	UNITÉS	NOTES
Aluminium total.	200	μg/L	A l'exception des eaux ayant subi un traitement thermique pour la production d'eau chaude pour lesquelles la valeur de 500 μg/L (Al) ne doit pas être dépassée.
Ammonium (NH ₄ +).	0,10	mg/L	S'il est démontré que l'ammonium a une origine naturelle, la valeur à respecter est de 0,50 mg/L pour les eaux souterraines.
Carbone organique total (COT).	2,0 et aucun changement anormal	mg/L	
Oxydabilité au permanganate de potassium mesurée après 10 minutes en milieu acide.	5,0	mg/L O₂	
Chlore libre et total.			Absence d'odeur ou de saveur désagréable et pas de changement anormal.
Chlorites.	0,20	mg/L	Sans compromettre la désinfection, la valeur la plus faible possible doit être visée.
Chlorures.	250	mg/L	Les eaux ne doivent pas être corrosives.
Conductivité.	≥ 180 et ≤ 1 000 ou ≥ 200 et ≤ 1 100	μS/cm à 20 °C μS/cm à 25 °C	Les eaux ne doivent pas être corrosives.

PARAMÈTRES	références de qualité	UNITÉS	NOTES
Couleur.	Acceptable pour les consommateurs et aucun changement anormal notamment une couleur inférieure ou égale à 15	mg/L (Pt)	
Cuivre.	1,0	mg/L	
Equilibre calcocarbonique.	Les eaux doivent être à l'équilibre calcocarbonique ou légèrement incrustantes		
Fer total.	200	μg/L	
Manganèse.	50	μg/L	
Odeur.	Acceptable pour les consommateurs et aucun changement anormal, notamment pas d'odeur détectée pour un taux de dilution de 3 à 25 °C		
pH (concentration en ions hydrogène).	≥ 6,5 et ≤ 9	unités pH	Les eaux ne doivent pas être agressives.
Saveur.	Acceptable pour les consommateurs et aucun changement anormal, notamment pas de saveur détectée pour un taux de dilution de 3 à 25 °C		
Sodium.	200	mg/L	
Sulfates.	250	mg/L	Les eaux ne doivent pas être corrosives.
Température.	25	°C	A l'exception des eaux ayant subi un traitement thermique pour la production d'eau chaude. Cette valeur ne s'applique pas dans les départements d'outre-mer.
Turbidité.	0,5	NFU	La référence de qualité est applicable au point de mise en distribution, pour les eaux visées à l'article R. 1321-37 et pour les eaux d'origine souterraine provenant de milieux fissurés présentant une turbidité périodique importante et supérieure à 2,0 NFU. En cas de mise en œuvre d'un traitement de neutralisation ou de reminéralisation, la référence de qualité s'applique hors augmentation éventuelle de turbidité due au traitement.
	2	NFU	La référence de qualité s'applique aux robinets normalement utilisés pour la consommation humaine.

C. - Paramètres indicateurs de radioactivité

PARAMÈTRES	RÉFÉRENCES DE QUALITÉ	UNITÉS	NOTES
Activité alpha globale.			En cas de valeur supérieure à 0,10 Bq/L, il est procédé à l'analyse des radionucléides spécifiques définis dans l'arrêté mentionné à l'article R. 1321-20.
Activité bêta globale résiduelle.			En cas de valeur supérieure à 1,0 Bq/L, il est procédé à l'analyse des radionucléides spécifiques définis dans l'arrêté mentionné à l'article R. 1321-20.

PARAMÈTRES	RÉFÉRENCES DE QUALITÉ	UNITÉS	NOTES
Dose totale indicative (DTI).	0,10	mSv/an	Le calcul de la DTI est effectué selon les modalités définies à l'article R. 1321-20.
Tritium.	100	Bq/L	La présence de concentrations élevées de tritium dans l'eau peut être le témoin de la présence d'autres radionucléides artificiels. En cas de dépassement de la référence de qualité, il est procédé à l'analyse des radionucléides spécifiques définis dans l'arrêté mentionné à l'article R. 1321-20.

Annexe III : Valeurs seuils nationales par défaut pour les eaux souterraines, en annexe II de la circulaire métropolitaine du 23 octobre 2012 relative à l'application de l'arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines

Code SANDRE du paramètre	Nom du paramètre Valeur seuil ou Norme de qualité			
1481	Acide dichloroacétique	50	μg/L	
1521	Acide nitrilotriacétique	200	μg/L	
1457	Acrylamide	0.1	μg/L	
1103	Aldrine	0.03	μg/L	
1370	Aluminium	200	μg/L	
1335	Ammonium	0.5	mg/L	
1376	Antimoine	5	μg/L	
1369	Arsenic	10	μg/L	
1396	Baryum	700	μg/L	
1114	Benzène	1	μg/L	
1115	Benzo(a)pyrène	0.01	μg/L	
1362	Bore	1000	μg/L	
1751	Bromates	10	μg/L	
1122	Bromoforme	100	μg/L	
1388	Cadmium	5	μg/L	
1752	Chlorates	700	μg/L	
1735	Chlorites	0.2	mg/L	
1135	Chloroforme		mg/l	
1478	Chlorure de cyanogène	70	μg/L	
1753	Chlorure de vinyle	0.5	μg/L	
1337	Chlorures	250	mg/L	
1389	Chrome	50	μg/L	
1371	Chrome hexavalent	50	μg/L	
1304	Conductivité à 20°C	1000	μS/cm	
1303	Conductivité à 25°C	1100	μS/cm	
1392	Cuivre	2000	μg/L	
1084	Cyanures libres	50	μg/L	
1390	Cyanures totaux	50	μg/L	
1479	Dibromo-1,2 chloro-3 propane	1	μg/L	
1738	Dibromoacétonitrile	70	μg/L	
1498	Dibromoéthane-1,2	0.4	μg/L	
1158	Dibromochlorométhane	100	μg/L	

1740	Dichloroacétonitrile	20	μg/L
1165	Dichlorobenzène-1,2	1	mg/L
1166	Dichlorobenzène-1,4	0.3	mg/L
1161	Dichloroéthane-1,2	3	μg/L
1163	Dichloroéthène-1,2	50	μg/L
1167	Dichloromonobromométhane	60	μg/L
1655	Dichloropropane-1,2	40	μg/L
1487	Dichloropropène-1,3	20	μg/L
1834	Dichloropropène-1,3 cis	20	μg/L
1835	Dichloropropène-1,3 trans	20	μg/L
1173	Dieldrine	0.03	μg/L
1580	Dioxane-1,4	50	μg/L
1493	EDTA	600	μg/L
1494	Epichlorohydrine	0.1	μg/L
1497	Ethylbenzène	300	μg/L
1393	Fer	200	μg/L
7073	Flurorure anion	1.5	mg/L
1702	Formaldehyde	900	μg/L
2033	HAP somme(4)	0.1	μg/L
2034	HAP somme(6)	1	μg/L
1197	Heptachlore	0.03	μg/L
1198	Heptachlorépoxyde (Somme)*	0.03	μg/L
1652	Hexachlorobutadiène	0.6	μg/L
7007	Indice hydrocarbure	1	mg/L
1394	Manganèse	50	μg/L
1305	Matières en suspension	25	mg/L
1387	Mercure	1	μg/L
1395	Molybdène	70	μg/L
6321	Monochloramine	3	mg/L
1386	Nickel	20	μg/L
1340	Nitrates	50	mg/L
1339	Nitrites	0.5	mg/L
1315	Oxydabilité au KMnO4 à chaud en milieu acide	5	mg/L O2
	Pesticides et leurs métabolites pertinents (sauf aldrine, dieldrine, heptachlorépoxyde, heptachlore)	0.1	μg/L
1888	Pentachlorobenzène	0.1	μg/L
1235	Pentachlorophénol	9	μg/L
1382	Plomb	10	μg/L
	I		

1302	Potentiel en Hydrogène (pH)	9	
1385	Sélénium	10	μg/L
1375	Sodium	200	mg/L
6278	Somme des microcystines totales*	1	μg/L
2036	Somme des Trihalométhanes (chloroforme, bromoforme, dibromochlorométhane et bromodichlorométhane)	100	μg/L
2963	Somme du tetrachloroéthylène et du trichloroéthylène	10	μg/L
1541	Styrène	20	μg/L
1338	Sulfates	250	mg/L
1301	Température de l'Eau	25	°C
1272	Tétrachloréthène	10	μg/L
1276	Tétrachlorure de carbone	4	μg/L
1278	Toluène	0.7	mg/L
1286	Trichloroéthylène	10	μg/L
1549	Trichlorophénol-2,4,6	200	μg/L
1295	Turbidité Formazine Néphélométrique	1	NFU
1361	Uranium	15	μg/L
1780	Xylène	0.5	mg/L
1383	Zinc	5000	μg/L

Annexe IV: Tableau des limites de qualité des eaux douces superficielles utilisées pour la production d'eau destinée à la consommation humaine en annexe III de l'arrêté du 11 janvier 2007 (G: valeur guide; I: valeur limite impérative).

ANNEXE III

LIMITES DE QUALITÉ DES EAUX DOUCES SUPERFICIELLES UTILISÉES POUR LA PRODUCTION D'EAU DESTINÉE À LA CONSOMMATION HUMAINE, À L'EXCLUSION DES EAUX DE SOURCE CONDITIONNÉES, FIXÉES POUR L'APPLICATION DES DISPOSITIONS PRÉVUES AUX ARTICLES R. 1321-38 À R. 1321-41

Les eaux doivent respecter des valeurs inférieures ou égales aux limites ou être comprises dans les intervalles figurant dans le tableau suivant sauf pour le taux de saturation en oxygène dissous (G : valeur guide ; I : valeur limite impérative).

				GRO	UPE			
GROUPES de paramètres	PARAMÈTRES	A1		A2		A3		UNITÉS
		G	- 1	G	- 1	G	- 1	
Paramètres organoleptiques.	Couleur (Pt).	10	20	50	100	50	200	mg/L
	Odeur (facteur de dilution à 25 °C).	3		10		20		
Paramètres physico- chimiques liés à la	Chlorures (CI-).	200		200		200		mg/L
structure naturelle des eaux.	Conductivité.	1 000		1 000		1 000		μS/cm à 20°C
		ou 1 100		ou 1 100		ou 1 100		μS/cm à 25°C
	Demande biochimique en oxygène (DBO₅) à 20 °C sans nitrification (O₂).	< 3		< 5		< 7		mg/L
	Demande chimique en oxygène (DCO) (O ₂).					30		mg/L
	Matières en suspension.	25						mg/L
	pH.	6,5-8,5		5,5-9		5,5-9		unités pH
	Sulfates (SO ₄ ² -).	150	250	150	250	150	250	mg/L

				GRO	UPE			
GROUPES de paramètres	PARAMÈTRES	Α	\1	А	2	Δ	.3	UNITÉS
		G	- 1	G	- 1	G	ı	
	Taux de saturation en oxygène dissous (O ₂).	> 70		> 50		> 30		%
	Température.	22	25	22	25	22	25	°C
Paramètres concernant les substances indésirables.	Agents de surface réagissant au bleu de méthylène (lauryl-sulfate de sodium).	0,20		0,20		0,50		mg/L
	Ammonium (NH ₄ *).	0,05		1	1,5	2	4	mg/L
	Azote Kjeldhal (N).	1		2		3		mg/L
	Baryum (Ba).		0,1		1		1	mg/L
	Bore (B).	1		1		1		mg/L
	Cuivre (Cu).	0,02	0,05	0,05		1		mg/L
	Fer dissous sur échantillon filtré à 0,45 μm.	0,1	0,3	1	2	1		mg/L
	Fluorures (F-).	0,7/1	1,5	0,7/1,7		0,7/1,7		mg/L
	Hydrocarbures dissous ou émulsionnés.		0,05		0,2	0,5	1	mg/L
	Manganèse (Mn).	0,05		0,1		1		mg/L
	Nitrates (NO ₃ -).	25	50		50		50	mg/L
	Phénols (indice phénol) (C ₆ H ₅ OH).		0,001	0,001	0,005	0,01	0,1	mg/L
	Phosphore total (P ₂ O ₅).	0,4		0,7		0,7		mg/L
	Substances extractibles au chloroforme.	0,1		0,2		0,5		mg/L
	Zinc (Zn).	0,5	3	1	5	1	5	mg/L
Paramètres concernant les substances toxiques.	Arsenic (As).		10		50	50	100	μg/L
	Cadmium (Cd).	1	5	1	5	1	5	μg/L
	Chrome total (Cr).		50		50		50	μg/L
	Cyanures (CN-).		50		50		50	μg/L
	Hydrocarbures aromatiques polycycliques (HAP): Somme des composés suivants: fluoranthène, benzo[b]fluoranthène, benzo[k]fluoranthène, benzo[a]pyrène, benzo[g,h,i]pérylène et indéno[1,2,3-cd]pyrène.		0,2		0,2		1,0	μg/L
	Mercure (Hg).	0,5	1	0,5	1	0,5	1	μg/L
	Plomb (Pb).		10		50		50	μg/L

			GROUPE					
GROUPES de paramètres	PARAMÈTRES	Α	\1	Α	2	А	.3	UNITÉS
		G	- 1	G	- 1	G	- 1	
	Sélénium (Se).		10		10		10	μg/L
Pesticides.	Par substances individuelles, y compris les métabolites.		0,1 (1, 2)		0,1 (1, 2)		2	μg/L
	Total.		0,5 (2)		0,5 (2)		5	μg/L
Paramètres microbiologiques.	Bactéries coliformes.	50		5 000		50 000		/100 mL
	Entérocoques.	20		1 000		10 000		/100 mL
	Escherichia coli.	20		2 000		20 000		/100 mL
	Salmonelles.	Absent dans 5 000 mL		Absent dans 1 000 mL				

Pour l'aldrine, la dieldrine, l'heptachlore et l'heptachlorepoxyde, la limite de qualité est de 0,03 μg/L.
 Ces valeurs ne concernent que les eaux superficielles utilisées directement, sans dilution préalable.
 En cas de dilution, il peut être fait appel à des eaux de qualités différentes, le taux de dilution devant être calculé au cas par cas.