

Surveillance symptomologique de la flore endémique sur 27 stations d'observation situées aux alentours de l'usine de Vale Nouvelle-Calédonie :

Janvier 2015 à Décembre 2015

Vale Nouvelle-Calédonie Juin 2016

SOMMAIRE

1.	Contexte	1
2.	Protocole de surveillance symptomologique de la flore	1
;	2.1 Objectifs et indicateurs	1
;	2.2 Localisation des stations d'observation	4
;	2.3 Méthode de suivi	5
	2.3.1 Mesure de la concentration en SO2 de l'air	5
	2.3.2 Suivi des symptômes foliaires	6
	2.3.3 Echantillonnage trimestriel et analyse chimique foliaire	10
3.	Présentation des résultats	11
:	3.1 Campagne d'échantillonnage passif de la concentration en SO2 de l'air	11
	3.1.1 Campagnes d'échantillonnages et durée d'exposition des échantillonneurs	11
	3.1.2 Valeurs de référence et commentaires sur les résultats des essais	11
	3.1.3 Résultat des mesures de SO2 de l'air	12
:	3.2 Activité de l'usine	14
:	3.3 Suivi mensuel des symptômes foliaires	16
	3.3.1 Mise en évidence des stations d'observation avec symptômes	16
	3.3.2 Expertise des symptômes sur le terrain	19
:	3.4 Suivi complémentaire trimestriel par transect	23
	3.5 Résultat des analyses chimiques foliaires trimestrielles	24
	3.5.1 Concentration en soufre foliaire	17
:	3.6 Synthèse des résultats issus de l'étude VEGUSINE	25
:	3.7 Synthèse des résultats des études de fumigation	27
	3.7.1 Comparaison des concentrations en soufre foliaire relevées lors de l'étude	_
	et dans le cadre des suivis symptomologique pour Alphitonia neocaledonica	
6.	Conclusion:	
7.	Perspectives	
8.	Références bibliographiques	
Λ	moves	22

TABLEAUX

l'ableau 1: Objectifs du protocole de surveillance et indicateurs de suivi	3
Tableau 2: Descriptif des 29 stations d'observation	5
Tableau 3: Tableau récapitulatif présentant la méthodologie et les appareils mis en œuvre pour	
réalisation des essais présentés (Bureau Véritas, 2012)	
Tableau 4: Présentation des espèces suivies par station d'observation	
Tableau 5 : Date de début et de fin des différentes campagnes d'échantillonnage	11
Tableau 6: Valeurs de références définies par l'arrêté d'autorisation sur les installations classée	S
pour la protection de l'environnement n°1467-2008/P S du 9 Octobre 2008	12
Tableau 7: Date des incidents recensés entre janvier 2015 et décembre 2015	
Tableau 8: Résultats du suivi symptomologique de 2015	
Tableau 6. Nesultats du sulvi symptomorogique de 2015	10
EICHDEC	
FIGURES	
Figure 1 : Localisation des 29 stations d'observation	
Figure 2 : Localisation des 19 stations de suivi mensuel des symptômes foliaires	6
Figure 3: Localisation des stations pour le suivi trimestriel complémentaire par transect	8
Figure 4 : Illustration des cinq classes de degré de sévérité des symptômes pour Codia spatulata	
Figure 5: Illustration des cinq classes de degré de sévérité des symptômes pour Tristaniopsis gui	llainii
Figure 6: Illustration des cinq classes de degré de sévérité des symptômes pour Styphelia panche	eri.10
Figure 7: Concentrations moyennes annuelles en SO2 de l'air par station	13
Figure 8 : Représentation spatiale des concentrations moyennes annuelles en SO2 de l'air mesul	rées
par station entre janvier et décembre 2015.	
Figure 9 : Profil des teneurs moyennes mensuelles relevées pour les différentes campagnes entr	
janvier 2013 et Décembre 2015	
•	
Figure 10: Période de fonctionnement des différentes unités.	
Figure 11: Représentation spatiale des stations d'observation avec apparition de symptômes en	
janvier 2015 et décembre 2015	17
Figure 12: Evolution du nombre d'espèces indicatrices avec apparition de symptômes selon la	
distance au complexe industriel entre 2013 et 2015	19
Figure 13: Apparition de necroses brunes et début de floraison sur Alphitonia neocaledonica	20
Figure 14 : Nécroses relevées sur des jeunes feuilles sur Styphelia sp	20
Figure 15 : Apparition de nécroses sur les jeunes feuilles de Garcinia neglecta	
Figure 16 : Apparition de nécroses marquées sur Tristaniopsis guillainii.	
Figure 17: Apparition d'une chlorose diffuse sur Tristaniopsis guillainii	
, ,	
Figure 18 : Augmentation de la chlorose diffuse en septembre 2015	
Figure 19 : Production de belles jeunes feuilles malgré la présence de symptômes	
Figure 20 : Comparaison de chloroses marquées apparues en 2015 sur Tristaniopsis guillainii sur	· la
station « moyenne » et de chloroses marginales diffuses sur <i>Tristaniopsis</i> sur la station la plus	
éloignéeéloignée	20
Figure 21 : Présence de symptômes marqués de chlorose ou de nécrose sur <i>Tristaniopsis guillain</i>	nii .21
Figure 22: Individus de <i>Codia spatulata</i> présentant de belles jeunes feuilles et des chloroses	
Figure 23: Individu de <i>Styphelia sp.</i> Ayant produit de belles jeunes feuilles	
Figure 24: Individu de <i>Garcinia neglecta</i> avec nécroses apicales marquées	
Figure 25 : Belle reprise de l'individu en Mars 2015.	21
Figure 26 ; Figure 27 : Symptômes de brunissement de la cuticule lié aux dépôts de cendres sur	
Styphelia	22

Figure 28 ; Figure 29 : Accumulation d'eau sur le limbe d'une feuille de Codia spatulata en forme de	
coupelle et présence de vieux symptômes de brunissement liés aux dépôts de cendres22	
Figure 30 : Evolution de symptômes de brunissement lié à des dépôts de cendres sur <i>Codia spatulata</i>	
au niveau de la station PS 10 en Septembre, octobre puis novembre 201522	
Figure 31: Symptômes naturels de brunissement de la cuticule sur Solmsia calophylla23	
Figure 32 : Symptômes naturels de chloroses marquées entre les nervures sur Arillastrum	
gummiferum vers CPKE23	
Figure 33 : Symptômes naturels de chlorose marginale sur <i>Arillastrum gummiferum</i> 23	
Figure 34 : Evolution du pourcentage d'individus ne présentant aucun symptôme ou des symptômes	
de type léger ou fort23	
Figure 35: Evolution des concentrations moyennes en soufre foliaire entre mai 2012 et octobre	
201524	
Figure 36: Localisation des 27 massifs forestiers d'intérêt prioritaire autour de l'usine de VALE NC25	
Figure 37: Evolution de la végétation entre mai 2015 et janvier 201626	
Figure 38: Concentration moyenne de dioxyde de soufre par chambre	
Figure 39: Teneur foliaire en soufre d'Alphitonia neocaledonica exposée à différentes concentrations	
de SO2 dans la cadre de l'étude fumigation 428	
Figure 40 : Symptôme de nécrose observé sur <i>Alphitonia</i> dans le cadre de l'étude de fumigation 28	
Figure 41 : Evolution de la teneur en soufre foliaire d'Alphitonia sur les sites impactés et les sites	
indemnes de symptôme entre mai 2012 et decembre 201521	

1. Contexte

En décembre 2010 un phénomène de dépérissement d'arbres a été observé dans une forêt adjacente à la limite Ouest des installations industrielles de l'usine Vale Nouvelle-Calédonie (VNC). La zone concernée est une formation rivulaire située le long du cours supérieur du creek de la Baie Nord. L'étendue de la zone affectée a été évaluée à 55 hectares. Plusieurs espèces étaient concernées avec un dépérissement plus prononcé de la population de chênes gommes (*Arillastrum gummiferum*).

Vale NC a aussitôt engagé une série d'investigations afin d'identifier les causes possibles de ce dépérissement. Les résultats des études initiées en 2011 ont révélé que le dioxyde de soufre atmosphérique émanant de la combustion accidentelle du soufre élémentaire du site industriel de Vale NC serait la cause la plus probable des symptômes de chlorose et nécrose foliaires observés sur plusieurs espèces dans la zone de dépérissement des chênes gommes (Vale, 2011; Murray, 2012). Un travail de caractérisation des symptômes de chlorose, nécrose et déformation des feuilles a été réalisé par le professeur Francis Murray sur une dizaine d'espèces, sur différents sites situés aux alentours des installations industrielles de Vale NC, ainsi dans la zone de dépérissement des chênes gommes. Ces investigations basées sur des observations de terrain ont permis d'établir un guide des symptômes foliaires intégrant un descriptif et des photographies par espèce des symptômes foliaires validés comme étant dus à une exposition aigues et ponctuelle au SO2 atmosphérique.

Conformément à l'arrêté ICPE n°1946-2012/ARR/DIMEN du 5 septembre 2012, Vale NC a mis en œuvre un plan de surveillance spécifique afin de suivre l'état de santé de la flore exposée aux émissions atmosphériques autour de son site industriel. Des espèces indicatrices, dont les symptômes foliaires sont connus et décris dans le guide des symptômes, ont été sélectionnées pour ce suivi. Des modifications ont été apportées au protocole depuis 2012 afin d'optimiser le plan de surveillance et répondre au mieux aux objectifs définis par l'arrêté. En complément, VALE NC a mandaté le professeur Francis Murray de Murdoch University pour la réalisation de quatre études de fumigation de 2013 à 2015 et a mandaté Bluecham pour la mise en place d'un protocole de suivi de l'évolution de la végétation par imagerie satellitaire autour du complexe industriel de VALE NC.

Ce rapport présente un bilan des suivis effectués entre Janvier 2015 et Décembre 2015 sur les stations d'observations, à savoir:

- 1. les résultats du suivi symptomologique mensuel des espèces indicatrices dont les symptômes sont illustrés et décris dans le guide des symptômes (Murray, 2012)
- 2. les résultats du suivi de qualité de l'air par échantillonnage passif (SO2)
- 3. les résultats des analyses chimiques foliaires trimestrielles des espèces indicatrices
- 4. les résultats du suivi symptomologique trimestriel complémentaire par transect
- 5. les résultats du suivi de la végétation par télédétection
- 6. les résultats des études de fumigation

2. Protocole de surveillance symptomologique de la flore

En absence d'étude scientifique sur les effets des émissions atmosphériques sur la végétation de la Nouvelle-Calédonie, Vale NC a fait appel au professeur Francis Murray de l'Université de Murdoch (Australie Occidentale) pour participer à la définition du protocole de surveillance de la flore sur le site industriel (Murray, 2012). Francis Murray est un spécialiste reconnu comme référent par l'OMS (Organisation Mondiale de la Santé) pour suivre les effets phytotoxiques des pollutions atmosphériques industrielles sur les écosystèmes terrestres en Australie.

2.1 Objectifs et indicateurs

Les relations de cause à effet des émissions atmosphériques sur la végétation sont extrêmement complexes. La sévérité de l'impact des gaz sur la végétation peut être influencé par différents facteurs tels que :

- Les conditions météorologiques (intensité lumineuse, humidité, température, force du vent)
- L'exposition selon le relief de la végétation aux polluants
- La complexité structurelle des formations végétales
- Les facteurs physiologiques liés au stade de développement d'une plante
- L'espèce considérée
- Les conditions hydriques et nutritives liées au sol
- La fréquence et la durée d'exposition aux polluants
- La présence d'autres polluants (Bell, 1980; Murray et Wilson, 1987 In Vale, 2011).

Malgré les connaissances biologiques et écologiques limitées sur les milieux naturels du Grand Sud et sur les effets des émissions gazeuses sur ces derniers, le protocole peut se baser sur les postulats suivants :

- Le risque d'exposition des formations végétales aux émissions de dioxyde de soufre (SO2) diminue avec l'éloignement des sources d'émissions atmosphériques (centrale électrique, usine d'acide, chaudières, stock de soufre).
- Le dioxyde de soufre de l'air est absorbé par les végétaux et les quantités excédentaires s'accumulent dans les feuilles. Cette quantité excédentaire génère des symptômes de chlorose et de nécrose foliaire qui sont observables.

Ce protocole de surveillance a pour objectifs principaux de détecter précocement tout phénomène de dépérissement lié aux émissions atmosphériques et d'évaluer l'évolution de ce dépérissement dans le temps. Pour répondre à ces objectifs le protocole se concentre sur la détection et le suivi de symptômes foliaires validés comme étant dû à une exposition aigue et ponctuelle au SO2 atmosphérique sur des espèces indicatrices localisées au niveau de 19 stations d'observation.

Les objectifs du protocole de surveillance et les indicateurs de suivi sélectionnés pour y répondre sur chaque station sont présentés dans le Tableau 1.

	Objectifs	Dispositif de suivi	Indicateurs
	Détecter précocement l'apparition de nouveaux symptômes foliaires au niveau des stations d'observation	19 Stations	Teneur de l'air en SO2 Symptômes foliaires Composition chimique foliaire en S
Suivi symptomologique trimestriel	Evaluer l'évolution du dépérissement : - Evolution du nombre d'individus présentants des symptômes - Evolution du degré de sévérité des symptômes	11 transects, 6 stations impactées	Symptômes foliaires

Tableau 1: Objectifs du protocole de surveillance et indicateurs de suivi.

Le protocole de suivi a été développé comme un outil simple d'inspection visuelle de l'état du feuillage des espèces végétales les plus sensibles référencées dans le guide des symptômes (Murray, 2012). Cette surveillance est réalisée de manière mensuelle sur un dispositif de stations situées à différentes distances et orientations par rapport à la source de SO2 atmosphérique afin d'assurer une détection précoce de symptômes foliaires sur les espèces indicatrices, signes précurseurs d'un risque d'impact. Des tubes passifs mesurant les teneurs mensuelles en SO2 de l'air ont été installés au niveau de chaque station. Des analyses chimiques foliaires trimestrielles sont réalisées en complément sur deux espèces indicatrices du guide par station, afin d'indiquer si les espèces évaluées absorbent les polluants atmosphériques. Des améliorations ont été apportées au protocole en 2014 avec une réduction du nombre de stations suivies, une standardisation du nombre d'espèces et du nombre d'individus balisés suivis par stations afin d'optimiser l'évaluation des symptômes pour une même espèce dans le temps.

2.2 Localisation des stations d'observation

29 stations d'observation ont été établies à différentes distances et orientations de vent par rapport à la zone industrielle de l'usine afin de couvrir la zone d'influence de l'ensemble des activités de la société Vale NC (Figure 1).

L'ensemble des stations d'observation sont situées au niveau de pistes accessibles pour pouvoir assurer un suivi mensuel rapide ne dépassant pas trois jours et des interventions ponctuelles en cas de signalement d'émissions notables. Ces conditions d'accès facilitées permettent d'assurer une surveillance optimale et ainsi signaler de manière précoce toute apparition de symptômes. La plupart de stations ont été choisies en lisière de forêt ou de maquis qui sont en général les premiers milieux récepteurs des effets du dioxyde de soufre sur la végétation (Murray, 2003).

On distingue ainsi trois catégories de station d'observation dont la distribution est résumée dans le **Tableau 2**.

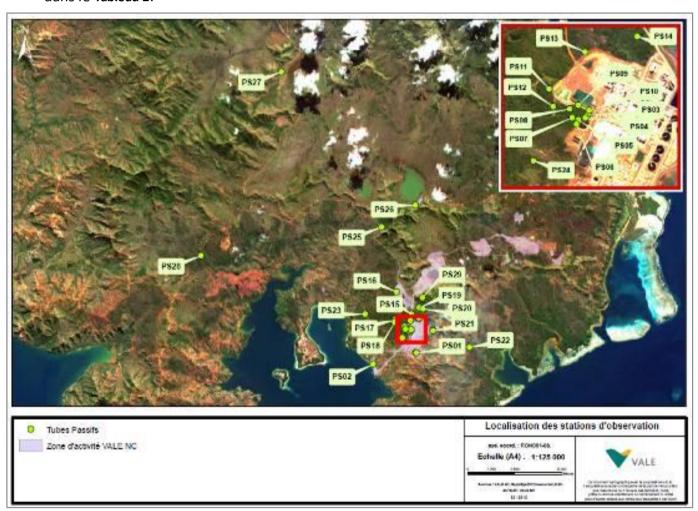


Figure 1: Localisation des 29 stations d'observation

	Distance à Orientation par				GPS RGNC 91					
Station observation	Localisation	la source (m)	rapport à la source	Végétation	Exposition	х ү	Classe	Remarque		
		` '								
	Exutoire Ck Baie Nord PE	200	W	Maquis arbustif dense	Lisière du creek	-22,33268 166,91				
	Bassin souffre lisière 1	200	W	Forêt Rivulaire	Lisière de l'usine	-22,33294 166,91				
	Bassin souffre exutoire lisière 2	250	WSW	Forêt Rivulaire	Lisière de l'usine	-22,33310 166,90				
PS 6	Bassin souffre lisière 3	250	WSW	Forêt Rivulaire	Lisière de l'usine	-22,33342 166,90	45			
PS 7	Forêt Rivulaire Galerie	300	WSW	Forêt Rivulaire	Fermée	-22,33293 166,90	09	Stations à haut risque susceptible		
PS 8	Forêt Rivulaire Chêne gomme	mme 350 W		Forêt à Chêne gomme	Fermée	-22,33228 166,90	89	de montrer une teneur moyenne en		
PS 9	3		W	Forêt à Chêne gomme	Lisière de l'usine	-22,33199 166,90	59 Proche	SO2 pouvant engendrer des		
PS 10			W	Forêt à Chêne gomme	Lisière de l'usine	-22,33239 166,91	48	dommages sévères sur les		
PS 11			WNW	Maquis arbustif dense	Lisière de l'usine	-22,33080 166,90	18	espèces sensibles		
PS 12	PS 12 Piste décanteur Ck Baie Nord		W	Maquis para-forestier	Lisiere de l'usine	-22,33212 166,90	52			
PS 13	S 13 Drain Périphérique PE 700		NNW	Maquis arbustif ouvert	Ouvert	-22,32802 166,91	13	1		
PS 14	Forêt McCoy 800		NNE	Forêt Humide	Lisière du creek -22,32683 166,91443		43	1		
PS 24	Doline avale Usine pilote	650	WSW	Maquis arbustif dense	lisière du piste	-22,33618 166,90	90			
PS 1	Plantation parabolique	1050	S	Maquis ligno-herbacé dense	Ouvert	-22,34313 166,91	16			
PS 15	Ligne haute tension PE Forêt McCoy	1000	NNW	Maquis arbustif ouvert	Ouvert	-22,32513 166,91	46			
PS 17	Piste émissaire STEP Doline	1200	NW	Maquis arbustif dense	Lisière du piste	-22,32781 166,90	07	Station à risque modéré		
PS 18	Piste Emissaire STEP CDE	1150	NW	Maquis arbustif dense	Lisière du piste	-22,32894 166,90	89 Movenne	susceptible de montrer une teneur moyenne en SO2 pouvant		
PS 19	Forêt Nord Piste forestière	1350	NNE	Forêt Humide	Lisière du piste	-22,32197 166,91	57 Woyeline	engendrer des dommages légers		
PS 20	Forêt Nord Reserve	1350	NNE	Forêt Humide	Fermée	-22,32261 166,91	49	sur les espèces sensibles		
PS 21	Col Paillard	1050	E	Maquis ligno-herbacé dense	Lisière du piste	-22,33272 166,92	74			
PS 29	Foret Nord AQMS	1900	NNE	Maquis ligno-herbacé dense	Ouvert	-22,31736 166,91	08			
PS 16	Base vie AQMS	2300	NNW	Maquis arbustif ouvert	Ouvert	-22,31474 166,90	86			
PS 2	Port	2700	SSE	Maquis ligno-herbacé sur gabbro	Ouvert	-22,34851 166,89	02	Faible risque et pouvant montrer		
PS 23	Route du Ferry	2750	WNW	Maquis arbustif ouvert	Ouvert	-22,32525 166,88	67	une teneur moyenne en SO2		
PS 22			Maquis arbustif dense	Ouvert	-22,34044 166,94	58	n'engendrant aucun dommage sur			
PS 25			Maquis arbustif dense	Ouvert	-22,28448 166,89	94 Loin	la végétation			
PS 26	Pépinière	6500	N	Maquis ligno-herbacé dense	Ouvert	-22,27429 166,91	38			
PS 28	Mine Prony	17000	WNW	Maquis arbustif ouvert	Ouvert	-22,29833 166,80	88	Sites utilisés pour évaluer les		
PS 27	Madeleine	20000	NNW	Maquis ligno-herbacé dense	Ouvert	-22,21230 166,84	80	teneurs normales de SO2 de l'air		

Tableau 2: Descriptif des 29 stations d'observation. Les suivis symptomologique sont réalisés pour 19 stations et les analyses chimiques foliaires pour 21 stations. Les mesures de qualité de l'air sont réalisées sur les 29 stations d'observation.

2.3 Méthode de suivi

2.3.1 Mesure de la concentration en SO2 de l'air

- Mesure de qualité de l'air par la méthode des tubes passifs

Des tubes à diffusion ont été positionnés au niveau des 29 stations d'observation afin de mesurer les concentrations mensuelles de SO2 de l'air (Figure 1). Les systèmes d'échantillonnages utilisés sont composés d'une enveloppe plastique et de deux tubes d'absorption spécifiques pour le piégeage des polluants recherchés : SO2. La durée d'exposition des échantillonneurs recommandée par campagne varie de 2 à 4 semaines pour la quantification du SO2 (Tableau 3).

Les systèmes ont été positionnés à une hauteur voisine de 2 m du sol sur des supports présents dans l'environnement : arbre ou poteau de clôture. Seuls les échantillonneurs des stations situées en milieux forestiers, PS 7, PS 8, PS 14, PS 19 et PS 20, ont été positionnés à la cime d'arbre au niveau de la canopée de ces stations. La campagne de prélèvement est assurée par Bureau Veritas.

Ces relevés mensuels sont associés à une évaluation mensuelle des symptômes foliaires, afin d'analyser les relations entre les concentrations de SO2 dans l'air et l'apparition ou non de symptômes foliaires.

PARAMETRES RECHERCHES	METHODES ET APPAREILLAGES	GAMME DE MESURE
SO2	Tube diffusion passive Temps d'exposition : 2 à 4 semaines Débit échantillonnage : 11,9 ml/min Voir fiche technique en annexe	0.5 – 240 µg/m3

Tableau 3 : Tableau récapitulatif présentant la méthodologie et les appareils mis en œuvre pour la réalisation des essais présentés (Bureau Véritas, 2012).

2.3.2 Suivi des symptômes foliaires

- Suivi mensuel des symptômes foliaires

Un suivi mensuel des symptômes foliaires est assuré pour 19 stations d'observation et concerne neuf espèces présentant des symptômes évidents en cas de forte exposition au dioxyde de soufre (Figure 2).

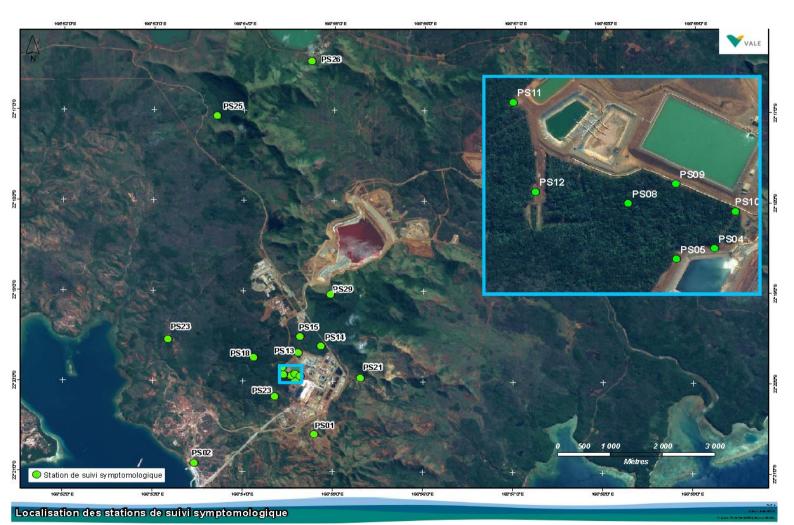


Figure 2: Localisation des 19 stations de suivi mensuel des symptômes foliaires

Un guide des symptômes foliaires élaboré pour onze espèces indicatrices par Francis Murray (Murray, 2012) sert de référence pour le relevé des symptômes sur le terrain (chlorose, nécrose, déformation). La caractérisation des symptômes pour chaque espèce a été réalisée en lisière de forêt ou de maquis dans la zone de dépérissement des chênes gommes ; ces milieux étant les premiers milieux récepteurs des effets du dioxyde de soufre et facile à évaluer par observation visuelle (Murray, 2012).

Les onze espèces indicatrices du guide des symptômes sont des espèces communes bien représentées dans le Grand Sud mais leur abondance peut toutefois varier selon la localité. Le choix des espèces suivies par station s'est basé sur leur abondance relative sur chaque station. 5 espèces sont suivies par station d'observation à l'exception de deux stations forestières où seule une espèce est suivie du fait des contraintes liées à l'évaluation des symptômes au niveau de la canopée (Tableau 4). Ce suivi symptomologique intègre une évaluation visuelle qualitative des symptômes (chlorose, nécrose, déformation) et une évaluation quantitative avec le relevé du nombre d'individus par espèce présentant des symptômes.

Des photographies des cinq espèces indicatrices suivies par station sont réalisées tous les mois. Les branches photographiées sont balisées afin de suivre l'évolution des symptômes foliaires par espèce et par localité dans le temps.

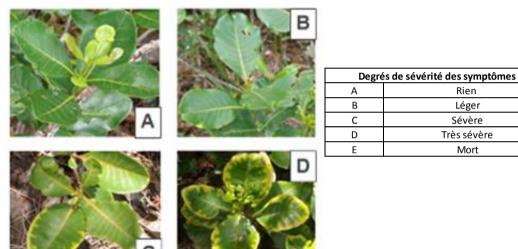
Distance par rapport à la source	Orientation par rapport au source	Station	Garcinia spp	Gymnostoma deplancheanum	Alphitonia neocaledonica	Codia spatulata	Tristaniopsis guillainii	Guioa glauca	Lomandra insularis	Montrouziera sphaeroidea	Styphelia spp	Nombre d'espèces suivies
	W	4										5
	WSW	5										5
	W	8										1
	W	9										5
PROCHE	W	10										5
PROCHE	WNW	11										5
	NNW	13										5
	NNE	14										1
	WSW	24										5
	W	12										5
	S	1										5
	NNW	15										5
MOYENNE	NW	18										5
	Е	21										5
	NNW	29										5
	SSE	2										4
LOIN	WNW	23										5
LOIN	N	26										5
	NNW	25										5

Tableau 4: Présentation des espèces suivies par station d'observation

Suivi trimestriel des symptômes foliaires

Un suivi trimestriel des symptômes foliaires est assuré pour six des stations considérées comme impactées en 2012 : PS 05, PS 11, PS 12, PS 13, PS 18 et PS 23 (Figure 3). Ce suivi complémentaire a été initié en 2013 et doit permettre d'évaluer l'évolution du dépérissement dans le temps en prenant en compte l'évolution du nombre d'individus présentant des symptômes et l'évolution du degré de sévérité des symptômes.

Suivi trimestriel des symptômes foliaires par transect


Figure 3: Localisation des stations pour le suivi trimestriel complémentaire par transect

Ce protocole consiste à suivre le degré de sévérité des symptômes chez une espèce indicatrice dominante ou co-dominante par station tous les trois mois. Les espèces indicatrices suivies par station sont présentées ci-dessous :

Station	Lisière	Intérieur
5	Styphelia pancheri	Styphelia pancheri
11	Codia spatulata	Codia spatulata
12	Styphelia pancheri	Styphelia pancheri
13	Tristaniopsis guillainii	Tristaniopsis guillainii
18	Codia spatulata	Codia spatulata
23	Tristaniopsis guillainii	x

Deux transects de 20 m sont mis en place au niveau de six stations impactées avec un transect en lisière et un transect en sous-bois. Quinze individus ont été identifiés et balisés pour chaque transect et le degré de sévérité des symptômes est relevé sur chaque individu tous les trois mois. Une photographie de chaque individu est également réalisée tous les trois mois. Les branches photographiées sont balisées afin de suivre l'évolution du degré de sévérité des symptômes foliaires sur chaque individu dans le temps. Cinq classes de degré de sévérité des symptômes ont été définies pour chaque espèce (

Figure 4; Figure 5; Figure 6).

Rien Léger Sévère

Très sévère Mort

Figure 4 : Illustration des cinq classes de degré de

sévérité des symptômes définies pour Codia spatulata

Figure 5: Illustration des cinq classes de degré de sévérité des symptômes définies pour Tristaniopsis guillainii

Figure 6: Illustration des cinq classes de degré de sévérité des symptômes définies pour *Styphelia pancheri*

2.3.3 Echantillonnage trimestriel et analyse chimique foliaire

Un échantillonnage de feuilles est réalisé sur 21 stations. Pour chaque station, un échantillon foliaire de 50 g est prélevé sur deux espèces sélectionnées dans le guide de suivi des symptômes. Pour un site donné, les deux espèces choisies restent les mêmes lors de chaque campagne d'échantillonnage trimestrielle (Annexe 1). L'élément majeur recherché dans les analyses est le soufre. Les analyses ont été réalisées par l'Université du Queensland (Centre for Mined Land Rehabilitation). Les résultats obtenus et présentés sont ceux des campagnes d'échantillonnage de 2012 à 2015.

3. Présentation des résultats

3.1 Campagne d'échantillonnage passif de la concentration en SO2 de l'air

3.1.1 Campagnes d'échantillonnages et durée d'exposition des échantillonneurs

Douze campagnes de prélèvement mensuel par tubes passifs ont été réalisées entre le 05 janvier 2015 et le 30 décembre 2015. Le Tableau 5 présente la durée d'exposition des échantillonneurs durant les douze campagnes d'échantillonnages de 2015 :

Campagne	Periode e	exposition
Janvier	05/01/2015	02/02/2015
Février	02/02/2015	04/03/2015
Mars	04/03/2015	01/04/2015
Avril	01/04/2015	29/04/2015
Mai	29/04/2015	02/06/2015
Juin	02/06/2015	02/07/2015
Juillet	30/06/2015	04/08/2015
Août	03/08/2015	03/09/2015
Septembre	02/09/2015	02/10/2015
Octobre	30/09/2015	02/11/2015
Novembre	02/11/2015	04/12/2015
Décembre	01/12/2015	30/12/2015

Tableau 5 : Date de début et de fin des différentes campagnes d'échantillonnage

La durée d'exposition des échantillonneurs a été ajustée au fur et à mesure des différentes campagnes afin de rester dans les spécifications du laboratoire (durée d'exposition et gammes de mesures) tout en essayant d'avoir un taux de couverture temporel maximum (Bureau Veritas, 2012).

3.1.2 Valeurs de référence et commentaires sur les résultats des essais

L'activité de production de Nickel de Vale NC est concernée par l'arrêté d'autorisation sur les installations classées pour la protection de l'environnement imposant une surveillance de la qualité de l'air par le biais d'un réseau de stations de mesures en continues. Cet arrêté définit les valeurs de références qui lui sont applicables. Le Tableau 6 présente ces valeurs de références :

_	Dioxyde de soufre (SO2)
Objectif de qualité	Moyenne annuelle : 50 µg/m3
Seuil de recommandation et d'information	Moyenne horaire : 300 μg/m3
Seuil d'alerte	Moyenne horaire : 500 µg/m3 (3 heures consécutives)
Valeurs limites pour la protection de la santé humaine	- Centile 99,7 : 350 µg/m3 moyenne horaire. - Centile 99,2 : 125 µg/m3 moyenne journalière.
Valeurs limites pour la protection de la végétation /des écosystèmes	-Centile 99,9 : 570 µg/m3 moyenne horaire. - Moyenne horaire : 230 µg/m3. - Moyenne annuelle : 20 µg/m3.

Tableau 6 : Valeurs de références définies par l'arrêté d'autorisation sur les installations classées pour la protection de l'environnement n°1467-2008/P S du 9 Octobre 2008

L'échantillonnage passif ne permet pas de comparer les niveaux mesurés aux seuils et valeurs de référence, du fait de méthodes de calculs et d'unités d'expression de résultats différentes (Bureau Veritas, 2012). Néanmoins, les résultats des mesures qui font l'objet de ce rapport sont comparés à titre indicatif aux valeurs de références issues de l'arrêté.

3.1.3 Résultat des mesures de SO2 de l'air

Concentrations moyennes annuelles en SO2 de l'air par station

Les mesures par échantillonnage passif permettent de connaître les valeurs moyennes des concentrations en SO2 de l'air relevées au niveau des 27 stations entre janvier et décembre 2015.

Les résultats, en date de décembre 2015, montre que les points d'échantillonnage ayant présenté les teneurs moyennes annuelles les plus élevées sont les points PS 09 et PS 11 ainsi que les points PS 17, PS 18, PS 03 à PS 12 (Figure 7). Ces douze stations d'observation ont présenté, à titre indicatif, des concentrations moyennes annuelles supérieures à la valeur moyenne annuelle pour la protection de la végétation et des écosystèmes (Figure 7) et ont présenté une exposition au SO2 atmosphérique significativement plus élevée par rapport aux autres points de suivi. La représentation spatiale des teneurs moyennes en SO2 de l'air montre que ces points d'échantillonnage sont positionnés sous le vent et au plus près de l'usine entre 200 et 1200 m (Figure 8). Ces résultats confortent les résultats obtenus en 2013 et 2014 (VALE NC, 2014).

La moyenne maximale de 43.73 μ g/m3 a été enregistrée par l'échantillonneur PS09 pour l'ensemble de la campagne. Pour l'ensemble des autres points, les concentrations sont, à titre indicatif, inférieures à 20 μ g/m3. Aucune différence significative n'a été relevée entre la station témoin 27 la plus éloignée et les stations 01,02,15,19,16,21,22,20,29,28,26,25 (Figure 7).

¹ Arrêté d'autorisation sur les installations classées pour la protection de l'environnement n°1467-2008/P S du 9 Octobre 2008 : *Valeurs limites pour la protection de la végétation /des écosystèmes :* Moyenne annuelle (SO2) : 20 μg/m³.

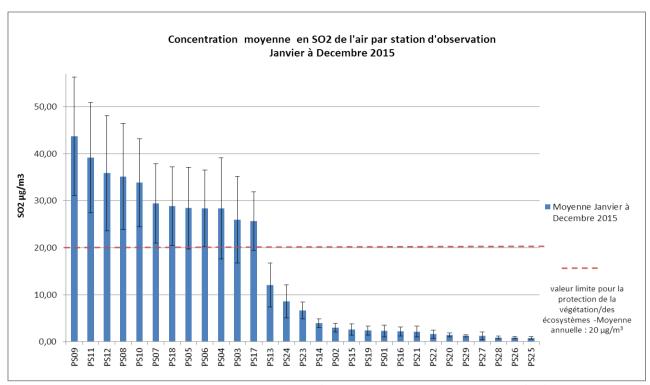


Figure 7: Concentrations moyennes annuelles en SO2 de l'air par station. Moyenne de janvier à Décembre 2015. La ligne en pointillés rouge correspond à titre indicatif à la valeur limite annuelle pour la protection des écosystèmes.

Figure 8 : Représentation spatiale des concentrations moyennes annuelles en SO2 de l'air mesurées par station entre janvier et décembre 2015.

❖ Profil des concentrations mensuelles en SO2 de l'air pour les différentes campagnes

Les campagnes de janvier- Février, avril et de novembre-décembre 2015 ont donné lieu aux mesures des concentrations les plus importantes. Les concentrations maximales mesurées ont été de 93,9 μ g/m3 et 82.7 μ g/m3 pour les points d'échantillonnage PS12 et PS09 durant respectivement les campagnes des mois de novembre et avril 2015 (Figure 9). Les concentrations les plus basses ont quant à elles été enregistrées entre mars et juin 2015.

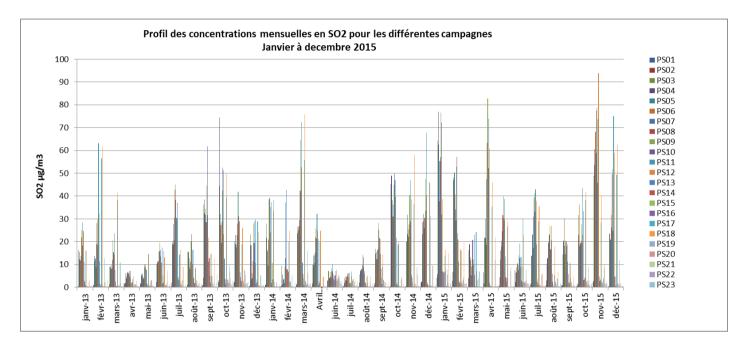


Figure 9: Profil des teneurs moyennes mensuelles relevées pour les différentes campagnes entre janvier 2013 et Décembre 2015.

3.2 Activité de l'usine

Conditions de marche durant la campagne

En 2015, les conditions de fonctionnement des différentes unités présentent sur le site ont été variables (Figure 10) avec notamment un arrêt des activités dans le cadre de la maintenance annuelle de l'usine durant le mois de juin 2015.

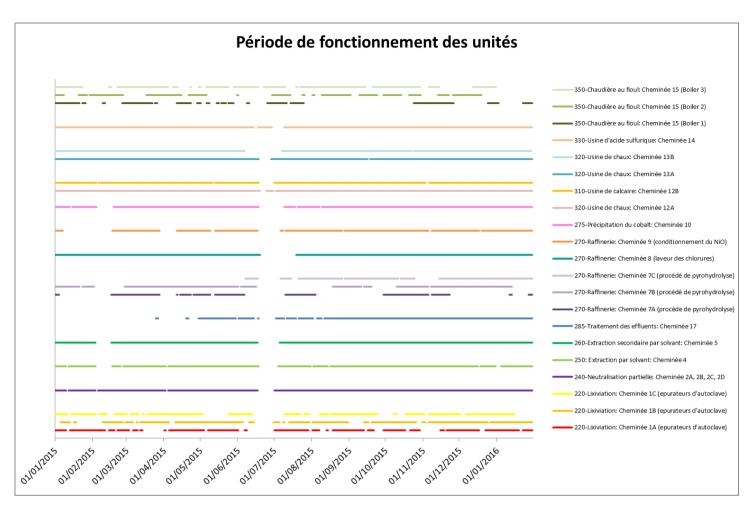


Figure 10: Période de fonctionnement des différentes unités.

Incidents recensés durant la campagne

L'année 2015 a été ponctuée de quelques incidents opérationnels, généralement des départs de feu de soufre ou de gâteau de soufre au niveau de l'usine d'acide –Unité 330 ou de la zone de stockage du souffre – Unité 545, susceptibles d'avoir une influence sur les concentrations de SO2 présentes dans l'air ambiant (**Tableau 7**).

Date	Unité	Descriptif incident et dégagement de SO₂
25/02/2015	545	une combustion lente de soufre s'est déclarée sur la zone de stockage
04/03/2015	545	une combustion dans le gateau de soufre
21/03/2015	330	Départ de feux dans la fosse du filtre 102
14/04/2015	330	Fuite de SO2 sur la connexion d'un assemblage boulonné sur un ballon de stockage de SO2.
24/04/2015	330	Fuite de SO2 sur le train 1 de liquefaction
29/05/2015	330	Départ de feu sur le toit de la cuve de fusion 330TNK101
07/07/2015	330	Départ de feu de soufre sur les parois de la cuve 330-TNK-102
23/07/2015	330	Dépassement de SO2 à la cheminée suite à un trip de l'usine d'acide.
02/09/2015	330	Fuite SO2 sur 330-HXS-125
13/11/2015	330	Depart de feu sur le 330-FIL-101
17/12/2015	330	Dégagement de SO2 suite à l'opération de maintenance d'un bruleur.
18/12/2015	330	Feu de Soufre 330-BUA-102
23/12/2015	545	Départ de feu sur le 545-CVB-005 (convoyeur de soufre)
26/12/2015	545	Départ de feux convoyeur 545 CVB005

Tableau 7: Date des incidents recensés entre janvier 2015 et décembre 2015.

❖ *Activité du site durant la campagne*

Les concentrations les plus basses en SO2 ont été enregistrées en juin 2015, période correspondant à l'arrêt des différentes unités dans le cadre de la maintenance annuelle de l'usine (Figure 9). Les campagnes de janvier- Février, avril et de novembre-décembre 2015 ont donnés lieu aux mesures des concentrations les plus importantes, hors plusieurs incidents opérationnels avec dégagement de SO2 ont été enregistrés durant ces périodes et ont probablement eut une influence majeure sur les concentrations de SO2 présentes dans l'air ambiant (Tableau 7).

3.3 Suivi mensuel des symptômes foliaires

3.3.1 Mise en évidence des stations d'observation avec symptômes

Le suivi symptomologique réalisé en 2015 a montré que 8 stations d'observations sur les 19 suivies ont été impactées ponctuellement avec l'apparition de symptômes foliaires de chlorose, nécrose et/ou déformation sur au moins une espèce indicatrice suivie se trouvant en général en lisière de la végétation ou en milieu exposé. Les stations concernées sont les stations PS 18, PS 23 ainsi que PS 04 à PS 13. Ces stations sont localisées au niveau de la zone dépérissement délimitée en 2011 et sont situées entre 200 et 2750 m à l'ouest de l'usine sous l'influence des vents dominants (**Figure 11**). L'ensemble de ces stations ont également été impactées ponctuellement en 2013 et 2014 avec l'apparition de symptômes foliaires (VALE NC, 2014) à l'exception de la station PS 15 qui n'a pas présenté de nouveaux symptômes en 2015.

Figure 11: Représentation spatiale des stations d'observation avec apparition de symptômes entre janvier 2015 et décembre 2015.

Sept espèces sur les neuf espèces indicatrices suivies sur l'ensemble des stations ont présenté des symptômes apparus au cours de l'année 2015 (Tableau 8). L'analyse par classe de stations, montre que le nombre d'espèces avec apparition de symptômes diminue avec la distance à la source de SO2 atmosphérique (Tableau 8; Figure 12). Les suivis réalisés en 2015 sur les stations « Proche », soit situées entre 200 et 800 m à la source d'émissions, ont mis en évidence que sept espèces ont présenté des symptômes, contre une seule espèce pour la station impactée la plus éloignée soit située à 2750 m (Tableau 8; Figure 12). Depuis 2013, on note une fluctuation du nombre d'espèces indicatrices impactées qui tend à augmenter pour les stations situées à moyenne distance et à se stabiliser pour les stations « proche ». On note une diminution du nombre d'espèces impactées pour la station la plus éloignée depuis 2013 (Figure 12).

Gymnostoma deplancheanum et Guioa glauca n'ont pas présenté de symptômes évidents caractéristiques d'une exposition au SO₂ atmosphérique en 2015. Garcinia sp. et Tristaniopsis guillainii sont apparus comme étant les espèces indicatrices les plus sensible au SO₂ atmosphérique et ont présenté des symptômes sur toutes les stations suivies considérées comme impactées (Tableau 8). Aucun cas de mortalité n'a été constaté sur les plantes suivies

durant la période de surveillance entre Janvier 2015 à Décembre 2015. Ces résultats confortent ceux obtenus depuis 2013.

Distance par rapport à la source	Orientation par rapport au source	Station	Garcinia spp	Gymnostoma deplancheanum	Alphitonia neocaledonica	Codia spatulata	Tristaniopsis guillainii	Guioa glauca	Lomandra insularis	Montrouziera sphaeroidea	Styphelia spp	Pourcentage d'espèces suivies ayant présenté des nouveaux symptômes par station	Nombre d'espèces suivies ayant présenté des symptômes par catégorie de station	Nombre d'espèces ayant présenté de nouveaux symptomes
	W	4			NS	NS					NS	60		3
	WSW	5	NS						NS		NS	60	7	3
	W	8	NS									100		1
	W	9	NS								NS	40		2
PROCHE	W	10	NS			NS	NS					60		3
	WNW	11	NS		NS	NS				NS		80		4
	NNW	13					NS			NS	NS	60		3
	NNE	14										0		0
	WSW	24										0		0
	W	12	NS			NS						40		2
	S	1										0		0
	NNW	15										0	_	0
MOYENNE	NW -	18	NS			NS	NS				NS	80	4	4
	E	21										0		0
	NNW	29										0		0
	SSE	2										0		0
LOIN	WNW	23					NS					20	1	1
	N	26										0]	0
	NNW	25										0		0

Tableau 8: Résultats du suivi symptomologique de 2015. Les cases vertes claires correspondent aux es pèces suivi es pour chaque station. Les cases vertes foncées annotées de NS signifient qu'il y a eu apparition de symptômes de chloroses et/ou nécroses sur l'espèce considérée au cours de l'année 2015.

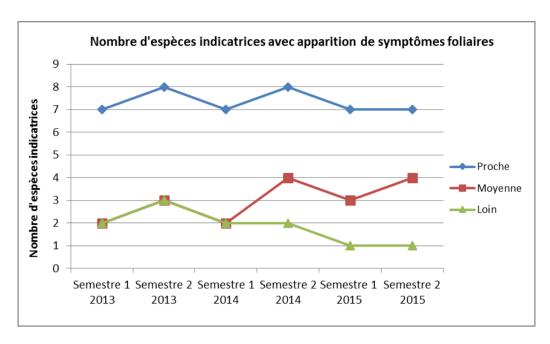


Figure 12: Evolution du nombre d'espèces indicatrices avec apparition de symptômes selon la distance au complexe industriel entre 2013 et 2015.

3.3.2 Expertise des symptômes sur le terrain

Les symptômes relevés en 2015 sont apparus sous forme de nécrose et/ou de chlorose sur les vieilles feuilles et/ou sur les jeunes feuilles témoignant d'une exposition aiguë et récente au SO2 atmosphérique. Les suivis ont également mis en évidence la présence de vieux symptômes sur les vieilles feuilles pouvant persister plusieurs mois ou plus selon les espèces et le renouvellement de leur feuillage.

Les symptômes de nécrose et de chlorose sont apparus plus marqués pour les stations « proche » et « moyenne » (Figure 13 ; Figure 15 ; Figure 16) tandis que la station PS 23 la plus éloignée n'a présenté que des symptômes de chlorose diffus sur les feuilles d'une seule espèce (Figure 17 : Figure 18 ; Figure 19 ; Figure 20). La majorité des symptômes marqués, se traduisant par des nécroses brunes vives ou des chloroses marginales ou internervales bien marquées, sont apparus en janvier-février ainsi qu'en avril et en octobre-novembre 2015. L'apparition de ces symptômes marqués coïncident avec les mesures des concentrations mensuelles en SO2 de l'air les plus importantes relevées en 2015 (Figure 9). Il convient de noter que sur toutes les stations suivies, seule une partie des individus suivis pour chaque espèce ont présenté des symptômes apparus au cours de l'année 2015.

Illustration des symptômes marqués au niveau de stations situées à proximité et à moyenne distance du complexe industriel

Figure 13: Apparition de necroses brunes et début de floraison sur *Alphitonia neocaledonica* sur la station PS 11. Figure 14: Nécroses relevées sur des jeunes feuilles sur *Styphelia sp.* Sur la station PS 18 en décembre 2015. Figure 15: Apparition de nécroses sur les jeunes feuilles de *Garcinia neglecta* en janvier sur la station PS09. Figure 16: Apparition de nécroses marquées sur les jeunes feuilles de *Tristaniopsis guillainii* sur la station « proche » PS 10.

Illustration des symptômes légers au niveau de la station la plus éloignée du complexe industriel

Figure 17 : Apparition d'une chlorose diffuse sur Tristaniopsis guillainii en avril 2015 sur la station la plus éloignée PS23. Figure 18 : Augmentation de la chlorose diffuse en septembre 2015. Figure 19 : Production de belles jeunes feuilles malgré la présence de symptômes de chlorose en décembre 2015.

Comparaison de symptômes marqués au niveau d'une station située à moyenne distance et de symptômes légers au niveau de la station la plus éloignée sur Tristaniopsis guillainii

Figure 20 : Comparaison de chloroses marquées apparues en 2015 sur *Tristaniopsis guillainii* sur la station « moyenne » PS18 à gauche et de chloroses marginales diffuses sur *Tristaniopsis* sur la station 23 la plus éloignée. Le degré de sévérité des symptômes diminue avec la distance au complexe industriel.

Malgré l'apparition ponctuelle chaque année de symptômes foliaires, on constate sur l'ensemble des stations dont les plus exposées, une bonne reprise des individus impactés qui ont régulièrement produit un nouveau feuillage en bonne santé quelques mois ou moins après l'apparition des symptômes (Figure 21;Figure 22;Figure 23;Figure 24;Figure 25). Les symptômes persistent alors sur les vieilles feuilles durant plusieurs mois voire plus. Des phénomènes de floraison et fructification ont pu être observés sur l'ensemble des espèces suivies sur les zones impactées.

Illustration de la reprise d'individus avec production d'un nouveau feuillage malgré la présence de symptômes

Figure 21 : Malgré la présence de symptômes marqués de chlorose ou de nécrose sur *Tristaniopsis guillainii* sur la station PS13, les individus ont produit de belles jeunes feuilles.

Figure 22: Individus de *Codia spatulata* présentant de belles jeunes feuilles et des chloroses marquées sur ses vieilles feuilles (février 2015, PS4). Figure 23: Individu de *Styphelia sp*. Ayant produit de belles jeunes feuilles en janvier 2015 après apparition de symptômes de nécrose en 2014.

Figure 24: Individu de *Garcinia neglecta* avec nécroses apicales marquées en Décembre 2014 sur la station PS18. Figure 25 : Belle reprise de l'individu en Mars 2015.

Les suivis ont également permit de mettre en évidence l'apparition ponctuelle de symptômes plus ou moins marqués de brunissement de la cuticule des feuilles liés à des dépôts de cendres. L'importance des dépôts de cendres observés semble varier selon les espèces en fonction de la phyllotaxie et la forme de leurs feuilles. Certaines espèces semblent plus sensibles du fait qu'elles retiennent plus de cendres (*Codia sp., Styphelia sp...*) (Figure 26; Figure 27; Figure 28; Figure 29). Ce type de symptôme a en effet été observé de manière localisé au niveau de l'apex des feuilles ou sur des feuilles en forme de « coupelle » réduisant ainsi les phénomènes de lessivage et favorisant l'accumulation de cendre et d'eau de pluie (Figure 28). Il a été observé une bonne reprise des individus avec symptômes dont seule la cuticule de la feuille semble être marquée de manière superficielle (Figure 30).

Illustration de symptômes superficiels suite aux dépôts de cendres

Figure 26 et Figure 27 : Symptômes de brunissement de la cuticule lié aux dépôts de cendres sur *Styphelia*. Figure 28 et Figure 29 : Accumulation d'eausur le limbe d'une feuille de *Codia spatulata* en forme de coupelle et présence de vieux symptômes de brunissement liés aux dépôts de cendres.

Figure 30 : Evolution de symptômes de brunissement lié à des dépôts de cendres sur *Codia spatulata* au niveau de la station PS 10 en Septembre, octobre puis novembre 2015.

Il convient de rester prudent quant à l'évaluation visuelle des symptômes foliaires. Le service préservation de l'environnement a en effet pu mettre en évidence des symptômes semblables aux symptômes lié à une exposition au SO2 sur diverses espèces et au niveau de secteurs très éloignés du complexe industriel et hors influence des émissions atmosphérique. Ces symptômes foliaires naturels peuvent être reliés à des phénomènes de stress hydrique ou de carences nutritionnelles sur les sites éloignés.

Figure 31: Symptômes naturels de brunissement de la cuticule sur *Solmsia calophylla* au niveau de la Plaine des lacs. Figure 32: Symptômes naturels de chloroses marquées entre les nervures sur *Arillastrum gummiferum* vers CPKE. Figure 33: Symptômes naturels de chlorose marginale sur *Arillastrum gummiferum*.

3.4 Suivi complémentaire trimestriel par transect

La majorité des individus suivis sur l'ensemble des transects entre avril 2013 et octobre 2015 présentent des symptômes de type « léger ». Il convient de noter que les individus appartenant à cette catégorie apparaissent vigoureux et en bonne santé malgré la présence de légers symptômes de chloroses ou de nécroses foliaires. La Figure 34 montre une légère augmentation du nombre d'individus présentant des symptômes et du degré de sévérité des symptômes entre octobre 2013 et octobre 2014 suivi d'une légère diminution du nombre d'individus présentant des symptômes et du degré de sévérité des symptômes durant l'année 2015 indiquant une reprise de la végétation. Globalement, le phénomène apparait relativement stable depuis 2013 car les variations observées ne concernent qu'un faible nombre d'individus.

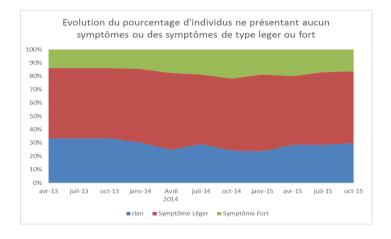


Figure 34 : Evolution du pourcentage d'individus ne présentant aucun symptôme ou des symptômes de type léger ou fort

L'analyse des résultats par station montre une prépondérance d'individus présentant des symptômes, soit plus de 60% des individus suivis, sur les stations de type proche et moyenne par rapport à la station la plus éloignée qui ne présente que 30% des individus suivis avec des symptômes. Seules les stations proches et localisées à moyenne distance ont présenté des symptômes de type fort. La station la plus éloignée, PS 23, n'a présenté que des symptômes légers. Seules les stations proches PS 12 et PS 05 ont montré une augmentation du nombre d'individus présentant des symptômes de type léger en 2015 (Annexe 4). Les stations PS 11, PS 23, PS 18 et PS 13 ont quant à elles enregistré une diminution du nombre d'individus présentant des symptômes et une diminution du degré de sévérité des symptômes durant l'année 2015.

3.5 Résultat des analyses chimiques foliaires trimestrielles

3.5.1 Concentration en soufre foliaire

Evolution des concentrations moyennes en soufre foliaire

Les résultats des analyses chimiques foliaires réalisées entre mai 2012 et décembre 2015 montrent que la teneur moyenne en Soufre foliaire apparait plus élevée pour les espèces présentes sur les sites avec symptômes que sur les sites sans symptômes. On note une légère augmentation de la teneur moyenne en soufre foliaire des sites avec symptômes depuis 2012 (Figure 35).

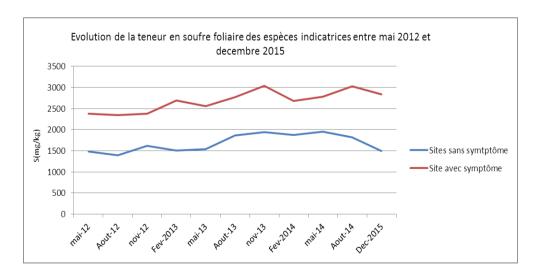


Figure 35: Evolution des concentrations moyennes en soufre foliaire entre mai 2012 et octobre 2015. (Alphitonia neocaledonica, Codia spatulata, Garcinia sp., Montrouziera sphaeroidea et Styphelia sp.)

3.6 Synthèse des résultats issus de l'étude VEGUSINE

Depuis 2008, VALE NC a mandaté Bluecham pour la mise en place d'un protocole de suivi de l'évolution de la végétation par imagerie satellitaire autour du complexe industriel de VALE NC. 27 massifs forestiers d'intérêt prioritaire ont été sélectionnés pour ce suivi (Figure 36).

Figure 36: Localisation des 27 massifs forestiers d'intérêt prioritaire autour de l'usine de VALE NC.

Le processus de suivi de l'évolution de l'état de la végétation est réalisé à partir d'une combinaison d'indices satellitaires permettant de :

- Suivre l'activité photosynthétique de la végétation
- Suivre la structure de la canopée et le couvert de feuilles
- Suivre le stress hydrique de la végétation (fraction de la végétation)

Les indices requis en entrée sont des indices scientifiquement validés et approuvés depuis de nombreuses années dans le suivi de la végétation en milieu tropical. Ces paramètres présentent des variations complémentaires pour la caractérisation de l'état de la végétation permettant une intégration pertinente au sein de l'indicateur ISEV.

Le suivi global est réalisé à l'aide de l'indicateur ISEV. A partir des changements mesurés pour chaque paramètre caractérisant la végétation, l'indicateur synthétique de l'évolution de la végétation ISEV permet de mettre en évidence 3 états de la végétation :

- Les valeurs centrées autour de 0 correspondent à des zones sans ou à très faible changements;
- Les valeurs tendant vers + 1 indiquent des changements positifs de l'activité de la végétation (1 = apparition de la végétation);
- Les valeurs tendant vers 1 indiquent des changements négatifs de l'activité de la végétation (-1 = mort ou disparition de la végétation).

La carte de synthèse de l'indice ISEV et des impacts estimés en janvier 2016 indique une forte progression de la végétation sur une grande partie des massifs forestiers depuis mai 2015 (Figure 37).

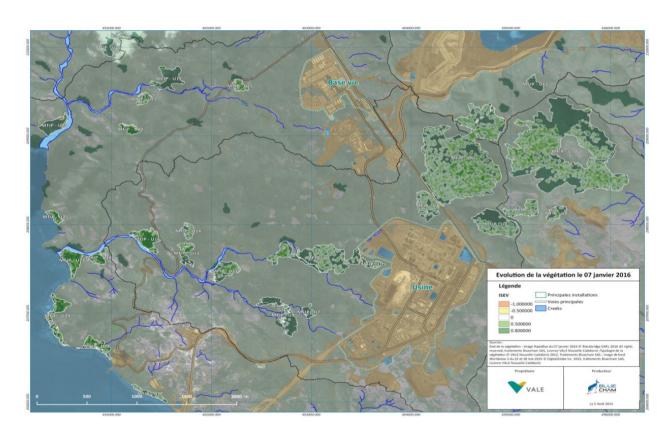


Figure 37: Evolution de la végétation entre mai 2015 et janvier 2016.

3.7 Synthèse des résultats des études de fumigation

Vale Nouvelle-Calédonie a mandaté le professeur Francis Murray de Murdoch University pour la réalisation de quatre études de fumigation de 2013 à 2015. Ces études consistaient à exposer dix espèces endémiques au dioxyde de soufre afin d'identifier les seuils de concentrations de SO2 engendrant l'apparition de symptômes aigus dans le cas d'expositions de courtes durées répétées. La sélection des différentes gammes de concentrations de SO2 pour la fumigation s'est basée sur le seuil de protection des écosystèmes terrestres ainsi que sur les concentrations de SO2 les plus élevées relevées aux alentours du complexe industriel suite à des incidents (Figure 38).

SO ₂ concentration descriptor		Mean	SO ₂ co	ncentratio	n durin	g fumigat	ions	
	Expos	ure 1	Expos	ure 2	Expos	ure 3	Expos	ure 4
	ppb	μg/m³	ppb	μg/m³	ppb	μg/m³	ppb	μg/m³
Control	46	121	33	86	54	141	46	120
Low	150	393	267	700	488	1279	441	1155
Moderate	233	610	604	1582	833	2182	695	1821
High	422	1106	1036	2714	1215	3183	1160	3039
Very high	714	1871	1376	3605	1466	3841	1482	3882

Figure 38: Concentration moyenne de dioxyde de soufre par chambre. La limite réglementaire pour la protection des écosystèmes équivaut à 218 ppb durant une heure.

Les résultats issus de ces études ont montrés que l'ensemble des dix espèces ont présenté des symptômes de lésions visibles lorsqu'elles étaient exposées à environ 1400 ppb de SO 2 pendant 2 heures, 4 jours par semaine pendant 80 jours de fumigation sur une période all ant jusqu'à 155 jours. Ces espèces n'ont montré aucune lésion visible à des concentrations égales ou inférieures à 440-480 ppb de SO 2 dans les mêmes conditions d'exposition. Entre ces deux gammes de concentration, le degré de sévérité des symptômes a varié selon les espèces. Alphitonia neocaledonica, Deplanchea speciosa, Grevillea exul, Gymnostoma deplancheanum et Syzygium macranthum sont apparus moins sensibles au SO 2 qu'Agathis lanceolata, Araucaria nemorosa, Arillastrum gummiferum, Flindersia fournierii et Planchonella wakerii.

Ces résultats montrent que le seuil de 570 $\mu g/m3$ applicable pour la protection des écosystèmes terrestres est conservateur, et que son respect permet de garantir une absence d'impact. Il a également été relevé une augmentation des concentrations en soufre foliaire avec l'exposition au SO2 ainsi qu'une augmentation de la conductivité à 1160 et 1482 ppb et diminution du PH à une exposition à 695, 1160 et 1482 ppb de SO2. Les effets écologiques, le cas échéant, de ces petits changements dans la conductivité du sol d'environ 120 à 170 μ S/cm et du pH d'environ 5.85 à 5.6 ne sont pas connus, mais ils se trouvent dans la moyenne naturelle des écosystèmes de cette région.

3.7.1 Comparaison des concentrations en soufre foliaire relevées lors de l'étude fumigation et dans le cadre des suivis symptomologique pour *Alphitonia neocaledonica*

Les analyses chimiques réalisées dans le cadre de l'étude de fumigation ont mis en évidence une concentration moyenne maximale en soufre foliaire de l'ordre de 3049 mg/kg pour *Alphitonia neocaledonica* sous un régime d'exposition en SO2 maximal de 1482 ppb (3882 µg/m3) (Figure 39 ; Figure 40). A titre de comparaison, les concentrations foliaires *d'Alphitonia neocaledonica* relevées lors du suivi symptomologique sur les sites impactés localisés à proximité du complexe industriel sont apparues relativement basse avec une concentration moyenne maximale en soufre foliaire de 1642 mg/kg enregistrée en décembre 2015 (Figure 41).

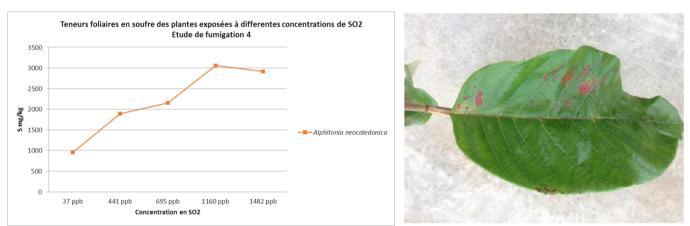


Figure 39: Teneur foliaire en soufre d'Alphitonia neocaledonica exposée à différentes concentrations de SO2 dans la cadre de l'étude fumigation 4. Figure 40: Symptôme de nécrose observé sur Alphitonia soumis à une exposition maximale de 1482 ppb pour l'étude de fumigation. Les symptômes observés sont similaires aux symptômes observés sur les staions localisées à proximité deu complexe industriel.

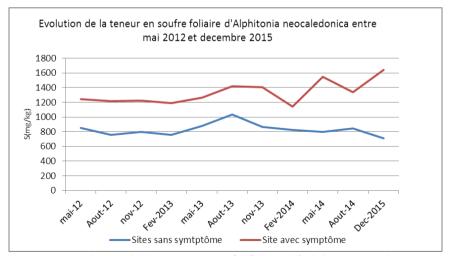


Figure 41 : Evolution de la teneur en soufre foliaire d'*Alphitonia* sur les sites impactés (PS09, PS11) et les sites indemnes de symptôme entre mai 2012 et decembre 2015. Les concentrations relevées au niveau des sites sans symptômes apparaissent similaires aux valeurs relevées sur les chambre témoins de l'étude de fumigation.

6. Conclusion:

L'interprétation des résultats d'investigations reportés dans les précédents rapports (Vale Nouvelle-Calédonie 2011; Murray, 2012; VALENC, 2013; VALENC 2014) et dans l'actuel rapport mettent en cause le dioxyde de soufre atmosphérique comme étant le facteur premier des symptômes observés sur la végétation.

Les suivis réalisés en 2015 montrent que des symptômes d'exposition aigue au SO2, faisant suite aux incidents enregistrés au cours de l'année, continuent à apparaitre au niveau de la zone de dépérissement. La zone impactée reste localisée au secteur identifié depuis 2012. Cette zone se situe entre 200 et 2750 m à l'ouest de la source de SO2 sous l'influence des vents dominants. Sept espèces sur les neuf espèces indicatrices suivies sur l'ensemble des stations ont présenté des symptômes apparus courant 2015 avec une prépondérance d'espèces indicatrices et d'individus touchés entre 200 et 1200 m par rapport à la source de SO2. Les symptômes de nécrose et de chlorose sont apparus plus marqués au niveau des stations situées entre 200 et 1200 m tandis que la station PS 23 la plus éloignée n'a présenté que des symptômes de chlorose diffuse sur une seule espèce. Malgré l'apparition ponctuelle chaque année de symptômes foliaires, on constate sur l'ensemble des stations dont les plus exposées, une bonne reprise des individus impactés qui ont régulièrement produit un nouveau feuillage en bonne santé quelques mois ou moins après l'apparition des symptômes. Aucun cas de mortalité n'a été relevé sur les individus suivis durant la période de surveillance.

Globalement, les résultats des suivis par transect réalisés depuis 2013 montrent une légère augmentation du nombre d'individus présentant des symptômes et du degré de sévérité des symptômes entre octobre 2013 et octobre 2014 suivi d'une légère diminution du nombre d'individus présentant des symptômes et du degré de sévérité des symptômes durant l'année 2015 indiquant une reprise de la végétation. Le suivi par télédétection des massifs forestiers d'intérêt prioritaire conforte les résultats obtenus et indique une forte progression de la végétation sur une grande partie des massifs forestiers depuis mai 2015. Les résultats des analyses chimiques en soufre foliaire montre une légère augmentation de la teneur moyenne en soufre foliaire des espèces indicatrices au niveau des sites avec symptômes depuis 2012. Les teneurs en soufre foliaire restent toutefois relativement basses si l'on compare les résultats obtenus dans le cadre du suivi symptomologique avec ceux obtenus lors de l'étude de fumigation pour Alphitonia neocaledonica. En effet, la concentration moyenne maximale en soufre foliaire enregistrée pour Alphitonia neocaledonica lors du suivi symptomologique atteint 1642 mg/kg contre 3049 mg/kg enregistrée lors de l'étude fumigation sous un régime d'exposition en SO2 maximal de 1482 ppb (3882 µg/m3) pendant 2 heures, 4 jours par semaine pendant 80 jours de fumigation.

7. Perspectives

L'analyse des résultats issus des suivis symptomologique engagés depuis 2012 a permis de confirmer l'emprise de la zone impactée localisée entre 200 et 2750 m à l'ouest de l'usine. Un nouveau protocole de suivi symptomologique quadrimestriel a été définit pour 2016 sur un maillage de sites localisés au sein du secteur impacté ainsi qu'en périphérie afin d'affiner l'évaluation de l'évolution spatiotemporelle du phénomène. Ce nouveau protocole de suivi devra permettre de quantifier et de cartographier la distribution du degré de sévérité des symptômes au sein du secteur impacté et de préciser leur évolution dans le temps. Des paramètres de suivi supplémentaires ont été rajoutés au nouveau protocole de suivi tel que la reprise de la végétation, l'état phytosanitaire, l'évaluation des dépôts de poussières et de cendres ainsi que l'évaluation de l'état de santé des lichens. Les analyses chimiques foliaires se concentreront sur deux espèces indicatrices à large répartition jugées sensibles au SO2 atmosphérique, à savoir Arillastrum qummiferum et Garcinia neglecta, afin d'affiner l'analyse des concentrations en soufre foliaire selon la distance au complexe industriel. Enfin, des analyses chimiques supplémentaires seront réalisées pour le sol avec l'analyse du Soufre, du PH et de la conductivité. Les analyses chimiques foliaires et les analyses chimiques du sol porteront également sur les compositions isotopiques du soufre afin de déterminer la part de soufre d'origine industrielle au sein des échantillons. Le réseau de tubes passifs sera réduit à 10 stations dans la zone d'exposition préférentielle.

Il convient de noter que le protocole de suivi engagé depuis 2012 sur lequel se base ce rapport sera maintenu selon une fréquence annuelle avec un maintien des analyses chimiques foliaires afin de valoriser les données obtenues depuis 2012 et maintenir une surveillance aux alentours du complexe industriel et ainsi assurer la détection précoce de nouveaux symptômes dans la zone d'influence potentielle des émissions issues de l'activité de l'usine

8. Références bibliographiques

Alignier A., 2010. Distribution des communautés végétales sous l'influence des lisières forestières dans des bois fragmentés. Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse. INRA Toulouse UMR 1201 INPT/ENSAT DYNAFOR.

Bell JNB. 1980. Response of plants to sulphur dioxide. Nature 284: 399-400.

Burea u Veritas, 2013. Rapport de synthèse. Qualité de l'Air: Mesures des concentrations de NO2 et de SO2.

Krauss G. H., Weis E., 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual review plant physiol. & mol. biol. 42: 313-349

Kuppers M., Timm H., Stegemann J., Stober R., Paliwal K., Karunaichamy K. S. T. K., Ortiz R., 1996. Effects of light environment and successional status on sunfleck use by understorey trees of temperate and tropical forests. Tree physiology 16: 69-80.

Murray F, Wilson S., 1987. Effects of SO2 and HF and Their Combination on Plants of Ecological or Agricultural Importance in Australia. Department of Primary Industries and Energy, Canberra.

Murray F., 2003. Air pollution impacts on vegetation in Australia. In: Air pollution Impacts on crops and forests: A global assessment. Edited by L. Emberson, M. Ashmore & F. Murray. pp.103-118. Imperial College Press, London.

Murray F., 2004. Goro monitoring protocol. Murdoch University, Perth, Australia

Murray F., 2011. Les enquêtes sur la cause du décès d'arbres sur un site industriel de Vale Nouvelle Calédonie: Investigations et rapport d'étape. Murdoch University, Perth, Australia

Murray F., 2012. Investigations sur les facteurs en cause du dépérissement de la végétation dans la zone d'emprise de l'activité industrielle de Vale Nouvelle Calédonie. Murdoch University, Perth, Australia

Soudania, K., Trautmann J., Walter J.M., 2001. Comparaison de méthodes optiques pour estimer l'ouverture de la canopée et l'indice foliaire en forêt feui llue; Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie Volume 324, Issue 4, April 2001, Pages 381–392

Vale Nouvelle-Calédonie, 2011. Investigation sur la cause du dépéris sement d'une formation végétale dominée par le chêne gomme en aval du site industriel de Vale Nouvelle-Calédonie: Rapport d'étape. Vale Nouvelle-Calédonie, Noumea.

Vale Nouvelle-Calédonie, 2013. Suivi de l'Etat de santé de la flore des réserves forestières provinciales à proximité de l'usine de Vale Nouvelle-Calédonie, Bilan 2010.

Vale Nouvelle-Calédonie, 2013. Surveillance symptomologique de la flore endémique sur 27 stations d'observation situées aux alentours de l'usine de Vale Nouvelle-Calédonie : Bilan de Janvier 2012 à mars 2013.

Vale Nouvelle-Calédonie, 2014. Surveillance symptomologique de la flore endémique sur 27 stations d'observation situées aux alentours de l'usine de Vale Nouvelle-Calédonie : Bilan de Janvier 2013 à Décembre 2013.

Welles J. M., Cohen. S., 1996. Canopy structure measurement using commercial instrumentation. Journal of Experimental Botany, Vol. 47, No. 302, pp. 1335-1342, September 1996

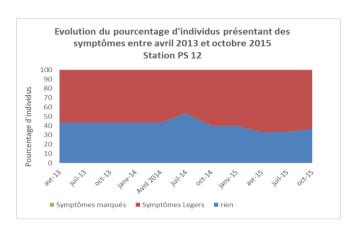
9. Annexes

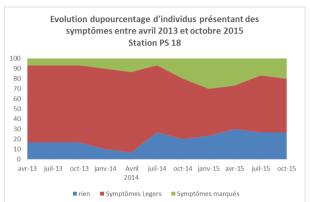
Annexe 1 : Liste des espèces échantillonnées par station d'observation pour les analyses chimiques foliaires (S)

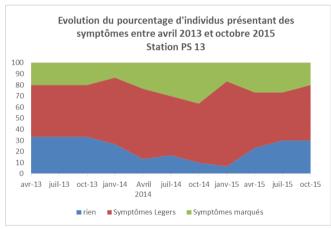
Site N°	Echantillon N°	Espèces
1	1	Alphitonia neocaledonica
1	2	Codia discolor
2	1	Montrouziera spharoidea
2	2	Codia spatulata
2	1	Tristaniopsis guillainii
3	2	Alphitonia neocaledonica
	1	Garcinia spp
4	2	Codia spatulata
_	1	Codia spatulata
5	2	Garcinia spp
	1	Tristaniopsis guillainii
6	2	Codia spatulata
	1	Garcinia spp
7	2	Guettarda eximia
	1	Pagiantha cerifera
8	2	Garcinia spp
	1	Codia spatulata
9	2	Alphitonia neocaledonica
	1	Codia spatulata
10	2	Tristaniopsis guillainii
	1	Codia spatulata
11	2	Alphitonia neocaledonica
	1	Garcinia spp
12	2	
-	1	Styphelia spp
13		Styphelia spp
	1	Tristaniopsis guillainii
14	2	Alphitonia neocaledonica
		Gardenia aubryi
15	1	Codia spatulata
	2	Tristaniopsis guillainii
16	1	Codia spatulata
	2	Styphelia spp
17	1	Tristaniopsis guillainii
	2	Garcinia spp
18	1	Tristaniopsis guillainii
	2	Codia spatulata
19	1	Sparattosysce dioica
	2	Macaranga alchorneoides
20	1	Macaranga alchorneoides
	2	Morierina Montana
21	1	Codia spatulata
	2	Garcinia spp
22	1	Alphitonia neocaledonica
	2	Codia spatulata
23	1	Montrouziera spharoidea
	2	Tristaniopsis guillainii
24	1	Codia spatulata
	2	Styphelia spp
25	1	Arriladtrum gummiferum
	2	Alphitonia neocaledonica
26	1	Alphitonia neocaledonica
	2	Codia spatulata
29	1	Montrouziera spharoidea
2.5	2	Codia spatulata

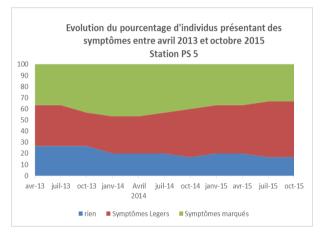
Annexe 2 : Résultats détaillés des mesures de SO2 de l'air

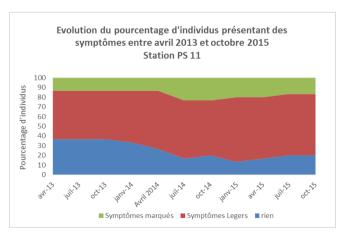
Site janv	-13 févr	-13 mars-1	3 avr-13	mai-13	juin-13	juil-13	août-13	sept-13	oct-13	nov-13	déc-13	janv-14	févr-14	mars-14	Avril-Mai-14	juin-14	juil-14	août-14	sept-14	oct-14	nov-14	déc-14	janv-15	févr-15	mars-15	avr-15	mai-15	juin-15	juil-15	août-15	sept-15	oct-15	nov-15	déc-15	Min Max
PS01 0,	3 0,	8 0,3	1,5	1,5	0,3	0,5	0,3	0,9	2,2	2,1	0,6	0,3	0,3	1,4	0,4	2,8	0,3	0,3	1	0,3	0,3	2,1	4,2	2,8	0,3	6,5	0,5	7,6	0,9	0,9	0,7	0,7	2	0,3	0,3 7,6
PS02 0,	3 1,	1 1,2	1,9	1,8	2,3	2	1,1	4,3	3	2,5	0,8	1,1	0,8	1,1	1,7	3	0,5	2	1,9	0,6	0,6	2,4	5,8	6,7	4,1	1,7	4,4	2,3	1,7	3	0,9	1,7	2,9	0,6	0,3 6,7
PS03 16	2 11	,6 9	6,2	5,6	10,2	20,2	15,6	36,2	44,4	19,9	23,2	27,9	9,4	26,4	9,8	7,2	4,1	5,6	16,8	45,3	20	23,3	64,2	48,2	16,2	21,7	12,1	6,3	14	10,5	14,3	31,6	48,9	23,5	4,1 64
PS04 15	4 13	,7 8,4	3,8	5,1	10,6	18,7	15,3	32,4	74,4	22,8	18,4	21,7	5,5	23,6	9,6	4	1,9	7,1	14,7	48,9	23,3	28,6	77	46,9	18,7	21,7	16	6,5	13,7	12,7	20,1	22,9	60,6	23,4	1,9 77
PS05 12	4 12	,6 9,9	4,7	6,1	11,5	27,7	12,8	38,5	32,2	18,7	3,7	16,5	1,3	25	13,9	4,2	2,8	7,4	15,5	38,3	31,9	32,2	62,6	50,3	13,2	30,1	20,3	8,6	23	19,7	20,5	18,1	53,5	21	1,3 63
PS06 11	8 8,	9 8	6,1	5,4	11,5	20,8	8,9	34,3	27,4	17,4	6,2	15,7	3,3	26,8	10,7	6,7	4,7	8	12,3	31	25,5	29,1	37,6	40,8	11,7	18,6	18,1	10,5	17,3	19,3	30,3	36,2	68,2	31,7	3,3 68
PS07 13	8 18	,9 8,2	6,8	4,3	15,7	30,5	8	31,9	19,3	22,9	4,1	9,4	3,6	29,4	15,1	4,7	3,1	7,9	16,3	36,3	22,1	25,9	55,4	34,2	5,2	47,3	24,7	9,6	30,8	23,3	18,2	19,2	58,8	26,2	3,1 59
PS08 21	9 28	,1 11,9	6,3	3,7	15,9	42,7	11,2	28,6	28,8	27,9	11,5	20,9	1,8	42,6	22	4,3	4,6	9,7	16,8	30,9	27,5	30,4	57	29,3	9	63,4	31,6	7,6	39,2	22,8	14,5	20,3	77,5	49,6	1,8 78
PS09 25	2 30	,1 20,5	6	8,6	19,6	45	19,9	44,4	42,3	41,7	27,9	38,7	8,9	64,7	25,7	8,2	5,3	14,3	28,1	44,9	40,4	47,5	76,6	52,9	12,1	82,7	39,7	14	41,4	26,7	20,4	27,6	78,8	51,8	5,3 83
PS10 18	2 18	,6 15,3	7,2	10,1	16,2	38,3	23,2	61,8	52,5	31	19,4	39,2	12,7	42,2	21,4	6,9	6,2	13,2	25,3	49,9	28,9	33,5	72,2	57,1	20,8	52,2	30,3	12,8	33,2	16,6	20,2	19,6	45,8	24,9	6,2 72
PS11 28	6 63	,1 23,7	4,9	8,9	13,6	30,4	16,3	31,6	51,3	42	28,9	35,1	37,3	72,4	32,3	10,2	6,1	8,9	21,8	47	47	67,8	31,8	23,6	9,9	73,9	38,6	19,2	42,9	20,6	18	43,5	73,6	74,9	4,9 75
PS12 24	7 32	,2 14,3	4,3	10,2	10,8	29,7	10,2	21,7	23,3	29	10,7	24	7,9	52,6	24,7	5,8	4,4	5,9	21,4	39,6	38,5	40,4	38,7	21	12,1	60,8	29,4	8,9	37,8	27	18,9	23	93,9	58,8	4,3 94
PS13 11	2 11	,4 7,5	7,1	7,8	17,5	37,1	16,4	11,3	12,5	6,6	29,6	37,2	42,7	10,8	21,1	3,6	1,7	7,2	14,6	21,7	5,2	1,3	6,9	11,3	23,1	1,8	13,5	13,1	18,8	2,4	11,3	33,4	4,7	4,6	1,3 43
PS14 2,	1,	5 2,4	1,7	1,7	1,7	3,8	4,2	12,7	3,9	4,4	1,6	1,9	7,9	5,8	0,9	5	6,3	2	8,1	1,3	4,2	2,1	6,5	2,6	5,3	0,7	4,4	2,8	2,3	6	5,8	3,2	2,7	4,8	0,7 13
PS15 3	1,	2 0,7	2	1,3	5,1	4,8	4	4,9	3,3	2,9	3,5	10,7	7,1	3,8	2,7	3	2	0,7	4,3	2	2	1	0,6	2	0,6	0,8	2,4	9,1	3,6	1,3	2	4,2	3,6	0,7	0,6 11
PS16 1	0,	5 0,5	2,2	0,6	2,1	3,1	1,9	2,1	1,5	2,6	2,3	3,5	6,8	1,1	1,9	5,1	1,7	0,3	1,4	0,9	0,4	0,3	6,6	1,9	0,3	0,3	4	2,2	1,2	0,3	1,9	4	3,1	0,3	0,3 6,8
PS17 16	1 56	,5 38,3	3,6	14,7	15,8	14,3	8,3	14,8	39,4	18,8	28,9	38,2	20,1	55,8	19,8	7,2	7	4,4	9	18,7	36,6	45,9	13,7	16,9	24,2	35,3	26,5	29,9	28,9	5,3	10,9	38,3	28,5	49,4	3,6 57
PS18 1	61	,6 41,6	4,8	14,6	13,1	16,4	8,9	14,6	49,7	26	24,3	33,6	24,8	75,7	24,8	7,7	4,9	5,2	14,4	19,7	57,8	46,2	16,4	16,1	7,2	46	29	23,1	35,6	18	10,3	41,9	40,1	62,5	4,8 76
PS19 0,	1 0,	9 0,9	0,5	0,7	0,9	1,7	3,2	5	3,5	2	1	2,4	2,5	2,6	0,5	2,9	3,3	1,7	3,3	0,3	1,1	31,3	7,1	2,1	3	0,4	0,2	2,1	0,9	2,7	4,1	2	2,2	1,5	0,2 31
PS20 0,	7 0,	4 0,4	1,3	1	0,9	1	1,6	4,8	2,1	3,2	0,8	0,3	2,5	1,1	0,3	3,8	2,7	0,3	2,4	0,7	1,6	0,8	0,8	1,3	0,3	0,3	0,3	2,5	1	2,1	2,5	2,8	1,7	1,5	0,3 4,8
PS21 0,	3 0,	4 0,5	1,1	2,2	1,3	2,6	2,9	1,4	3,2	1,2	0,9	0,6	0,6	1,7	0,3	2,9	3,7	0,3	0,7	0,6	0,3	0,8	7,9	2,4	4,1	0,4	0,1	1,6	1	1,5	1,4	0,9	4,2	0,3	0,1 7,9
PS22 0,	3 0,	8 0,9	1,2	3	0,9	0,9	0,7	0,4	1,8	7,6	0,3	0,4	0,3	1,6	0,3	3,9	0,9	0,3	0,3	0,4	0,5	0,3	5,6	3,3	0,3	0,3	0,2	2,6	0,4	0,6	0,3	1,4	3,7	0,3	0,2 7,6
PS23 2,	3 12	,7 10,8	1,3	3,1	2,3	3,1	0,9	2,4	10,1	7,2	5,1	2	5,2	16,1	4,7	5,1	2,3	2,1	2,1	3,3	8,6	9,2	1,8	4,4	6,9	12	7,1	7,8	5,4	3,8	1,1	8,9	8,7	12	0,9 16
PS24 3,	1 2,	2 1,8	2,8	3,3	7,3	8,9	1,6	12,8	7	5,3	0,8	2,2	0,7	6,2	4,5	4,5	2,9	4,8	2,1	4,2	5,3	10,2	15,1	20,1	0,4	21,9	8,9	3,4	5,9	6,7	5	3	10,5	1,9	0,4 22
PS25 0,	3 0,	4 0,3	0,7	0,8	0,3	0,3	0,3	0,3	4,1	1,5	0,3	0,4	0,3	0,9	0,4	2,7	1	0,3	0,3	0,4	0,3	0,5	0,7	1,5	0,3	0,7	0,1	1,7	0,3	0,9	0,3	0,8	1,6	0,7	0,1 4,1
PS26 0,	5 0,	6 0,5	0,8	0,7	0,4	0,3	2,3	0,7	1,5	1,8	0,8	0,3	0,3	0,8	0,3	2	0,3	0,3	0,6	0,3	0,8	0,4	0,3	1,5	0,3	0,9	0,4	1,7	1	0,4	1,1	1,2	1,3	0,3	0,3 2,3
PS27 0,	3 0,	4 0,3	0,7	0,8	1,2	0,3	0,3	0,4	0,8	1,9	0,7	0,4	0,3	1,4	0,5	1,4	0,8	1,3	0,3	0,3	0,7	0,4	5,8	1,9	0	0,3	0,3	1,7	0,7	0,5	0,3	0,3	2,7	0,3	0 5,8
PS28 0,	3 0,	8 0,6	0,6	0,4	1	0,3	0,5	2	1	1,7	1	0,5	0,3	1,6	0,3	2,8	1	0,3	0,3	1,4	0,3	1,3	1,5	1,4	0,3	0,5	0,4	1,2	0,9	0,3	0,3	1,2	1,9	0,7	0,3 2,8
PS29 0.			0.7	0.6	1.6	1.3	1.4	5.3	2.8	2.4	0.9	1.3	2	1.7	0.7	1.3	2.5	1.7	2.2	0.3	0.5	0.3	1.5	2	0.3	1.2	0.7	1.7	0.6	1.6	1.5	1.6	1.5	0.7	0.3 5.3

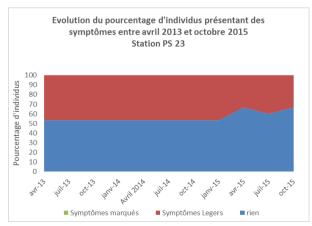

Résultats des mesures par échantillonnage passif du SO2 de l'air réalisées entre Janvier 2013 et Décembre 2015.


Annexe 3 : Résultats du suivi mensuel symptomologique de 2015 par semestre


Distance par rapport à la source	Orientation par rapport au source	Station	Garcinia spp	. Gymnostoma deplancheanum	Alphitonia neocaledonica	Codia spatulata	Tristaniopsis guillainii	Guioa glauca	Lomandra insularis	Montrouziera sphaeroidea	Styphelia spp	Pourcentage d'espèces suivies ayant présenté des nouveaux symptômes par station	Nombre d'espèces suivies ayant présenté des symptômes par catégorie de station
	W	Δ	l P	remier	Semesi	re 2015	(Janvi	er à Juii	n) 			40	
		4											
	WSW	5										60	
	W	8										100	
	W	9										40	
PROCHE	W	10										60	7
	WNW	11										80	
	NNW	13										60	
	NNE	14										0	
	WSW	24										0	
	W	12										40	
	S	1										0	
MOVENING	NNW	15										0	2
MOYENNE	NW	18										60	3
	E	21										0	
	NNW	29										0	
	SSE	2										0	
LOIN	WNW	23										20	1
	N N	26 25										0	
	NNW		ième Se		2015/	المالان ا	Door	abua\				0	
	W	4	ieme se	mestre	2015 (Juneta	Decen	nbrej				60	
	WSW	5										20	
	W	8										0	
	W	9										0	
	W	10										20	
PROCHE	WNW	11										40	7
	NNW	13										60	
	NNE	14										0	
	WSW	24										0	
	W	12										0	
	S	1										0	
	NNW	15										0	
MOYENNE	NW	18										80	4
	Е	21										0	
	NNW	29										0	
	SSE	2										0	
LOIN	WNW	23										20	1
LOIN	N	26										0	1
	NNW	25										0	


Les cases vertes indiquent que l'es pèce est suivie sur la station et les cases vertes foncées indiquent que l'es pèce suivie a présenté des symptômes apparus au cours de l'année 2015.


Annexe 4 : Résultats du suivi trimestriel complémentaire par transect et par station



Annexe 5 : Résultats détaillés des mesures des teneurs en soufre foliaire

Site	Espèces	mai-12	Aout-12	nov-12	Fev-2013	mai-13	Aout-13	nov-13	Fev-2014	mai-14	Aout-14	nov-15	MIN	MAX	Moyenne 2012 à 2015
1	Alphitonia neocaledonica	687	818	799,92	785	1022	1105	866	819	775	850	761	687	1105	844
1	Codia discolor	1508	1653	1312,88	1750	1540	869	1995	2110	1520	1635	1785	869	2110	1607
2	Montrouziera spharoidea	3128	3016	3051,88	4009	3177	3751	4950	3189	3996	3873	3259	3016	4950	3582
2	Codia discolor	1619	1486	1292,69	2384	1480	1246	1723	1640	1761	1472	1354	1246	2384	1587
4	Garcinia spp	2606	2609	2422,57	3011	4641	3281	3088	4763	3448	5768	3133	2423	5768	3525
4	Codia spatulata	3025	2805	4175,86	4071	4194	4343	3767	3444	3673	3472	3733	2805	4343	3700
5	Codia spatulata	2922	2788	2976,47	2709	2870	3543	3070	4033	3729	4183	3684	2709	4183	3319
5	Garcinia spp	3352	2686	2428,9	3281	3480	3666	5346	3020	3805	3787	3591	2429	5346	3495
7	Garcinia spp	3693	2140	1821,83	1947	2281	3971	4628	2015	2747	4475	3270	1822	4628	2999
7	Guettarda eximia	1720	2188	2397,49	1492	1511	2225	2282	1663	2700	1617	2337	1492	2700	2012
8	Pagiantha cerifera	9882	8179	10375,64	8353	9138	8623	9553	8965	12392	12895	9253	8179	12895	9783
8	Garcinia spp	2433	2259	1990,26	2100	2012	2178	3902	1508	2599	3090	2403	1508	3902	2407
9	Codia spatulata	2417	3261	3790,16	3103	2445	2778	4654	3262	3154	3410	2997	2417	4654	3206
9	Alphitonia neocaledonica	1279	1145	1279,93	1155	1160	1481	1422	1110	1476	1379	1759	1110	1759	1331
10	Codia spatulata	3920	3946	3856,39	3892	3101	3917	3509	3735	3811	4055	4683	3101	4683	3857
10	Tristaniopsis guillainii	1151	1285	1273,8	1149	1803	2278	1534	1504	1406	1323	1405	1149	2278	1465
11	Codia spatulata	2451	1939	2333,85	2169	2328	2454	3269	2639	2582	3447	3104	1939	3447	2611
11	Alphitonia neocaledonica	1205	1283	1167,31	1226	1366	1361	1383	1170	1616	1303	1524	1167	1616	1328
12	Garcinia spp	2886	2263	1635,4	2938	2319	2728	2605	1985	2973	2661	2290	1635	2973	2480
12	Styphelia spp	1674	1518	1401,06	2970	2043	2813	3307	1947	2733	2237	2760	1401	3307	2309
13	Styphelia spp	1353	907	1213	1172	1111	1544	1817	1279	1623	1569	1328	907	1817	1356
13	Tristaniopsis guillainii	867	896	1022,21	1331	1059	948	1364	1057	1092	1134	1014	867	1364	1071
14	Alphitonia neocaledonica	1014	1136	886,21	1126	976	1014	1052	1021	1113	1808	853	853	1808	1091
14	Gardenia aubryi	1659	1509	1448,65	1338	1590	2349	1951	1952	1652	1093	1733	1093	2349	1661
15	Codia spatulata	1379	1338	1635,94	2106	1716	1834	2292	1886	1658	1556	1542	1338	2292	1722
15	Tristaniopsis guillainii	818	743	745,83	789	735	896	951	854	831	819	817	735	951	818
18	Tristaniopsis guillainii	890	1038	1278,73	1039	1081	790	1213	1183	1227	1201	1097	790	1279	1094
18	Codia spatulata	1661	2134	2158,06	1959	1999	2141	2346	2291	1950	2024	2949	1661	2949	2147
20	Macaranga alchorneoides	1544	1921	1479,62	1609	2220	1719	1556	1702	1703	1712		1480	2220	1717
20	Morierina Montana	1936	2128	2279,94	1940	1986	2182	2219	2342	1985	2383		1936	2383	2138
21	Codia discolor	1953	1225	2560,06	1846	1392	2183	2157	1660	1468	1478	1599	1225	2560	1775
21	Garcinia spp	1693	1522	1626,55	1454	1810	2081	1744	1971	2276	2151	1464	1454	2276	1799
23	Montrouziera spharoidea	3551	4630	3255,83	4608	3621	3668	3749	3622	3524	4555	3418	3256	4630	3837
23	Tristaniopsis guillainii	894	722	1052,37	835	989	986	917	1088	1068	958	841	722	1088	941
24	Codia spatulata	1587	1365	1944,61	1354	1448	2305	2347	2390	1746	1909	2075	1354	2390	1861
24	Styphelia spp	876	943	959,51	950	1032	1003	1071	1097	1021	1062	950	876	1097	997
25	Arrilastrum gummiferum	539	539	735,04	655	609	598	709	650	657	716	567	539	735	634
25	Alphitonia neocaledonica	698	660	662,93	690	799	837	820	765	771	832	651	651	837	744
26	Alphitonia neocaledonica	1161	798	921,41	798	807	1160	909	880	840	861	716	716	1161	896
26	Codia discolor	1162	1648	1687,44	1008	1370	1717	1560	1815	1620	1559	1170	1008	1815	1483
29	Montrouziera spharoidea	2066	1992	3148,09	1686	2336	2672	2785	3923	4608	3007	1693	1686	4608	2720
29	Codia spatulata	1498	1471	1430,23	1787	1456	1818	2018	1849	1545	1846	1861	1430	2018	1689

Annexe 6 : Fiche de relevé terrain – suivi symptomologique

	Date	<u>:</u>			OBS:	: "0"	rien; '	"1" Je	une f	euille	sain	e et ar	ncien	nes fe	euilles	attei	ntes;	"2" je	une	feuill	e atte	inte e	t viei	lle feu	uille sa	aine;":	3" jeu	nes fe	euille	s et vie	eilles	feuil	les att	einte	s. "NA	\" pas	de disti	inction	possib
	Sign	ificati	on et	codif	icatio	n: "Cl	HL" = (Chlor	ose fo	oliaire	; "NE	C" = N	écros	se foli	iaire; "	'DEF"	= Déf	orma	tion f	foliair	re																		
					_				_				_				_								<u></u>											$\overline{}$,		
				/.0	8			/5									,							est	IN							,de2	>						
			/	edom				iferu			/					/							/	arch			/ 15	,			28	STOR						/	dinii
		/	Y60Cs	X		/	Sum			/	ilata			/	.0				0			/	nader	2		/.	rena			/.0	1050			6	R			1580	illi
	,	KON	٥`		,	Stri	N.		,	250	di.		,	inia	36,		/	2000	Se		_	ROSTO	31.		/	andra			/	TOUTH	,		/,	relias			/20	TiOPS	
Site N°	/	Adritoni			P	tillo	in Burns		<u>/</u> ¢	odiaspa			<u>/6</u>	arcinia			6	ijo aglal			6	ALU.		Jarthe at	/0	mandrai			1/10	ntrouile on the last			STYP	inelia spr			- Kristi	जातिक है है है वे	
	CHL	NEC	DEF	OBS	CHL	NEC	DEF	OBS	CHL	NEC	DEF	OBS	CHL	NEC	DEF	OBS	CHL	NEC	DEF	OBS	CHL	NEC	DEF	OBS	CHL	NEC	DEF	OBS	CHL	NEC [DEF C	OBS (CHL	NEC	DEF	OBS (CHL NE	C DEF	OBS
1 VS	_			_	/	4	4	4		<u> </u>			4	4	\angle	4	4	4	/	4		\square			4	4	4	4	_	_	\dashv	4	\longrightarrow	\vdash	\square	_	//	X	
1 NS					/	4	/	4	_	<u> </u>			/	/		4	4	/	/	/					/	/	4	4	_	_	+	4	\longrightarrow	\square	\square	_	//	X	
2 VS	/	/	/,	Z,	Z,	/	/,	Z,		<u> </u>	igspace		/	Z,	\angle	4	4		/	\angle					\angle	\angle		4	\dashv	_	\perp	\dashv		\square	Щ	_		//	
2 NS	/	/	/	/	/	/	/	Ζ,			$oxed{oxed}$		/	/	\angle	\angle	/	/	/	\angle		Ш										_		Ш	Ш		//		
4 VS					4	4	4	Z,			igspace		4	Z	\angle	4	4	/	/,	\angle								_	4	//	4		\longrightarrow		Щ				
4 NS		<u> </u>		L,	4	4	4	4		<u> </u>	igspace	igsqcup				4	4	/	/	\angle	Ш	Щ					_	_	4	4	4	4	\longrightarrow	Щ	Щ	_		4	
5 VS	/,	/	/,	Z,	Z,	/	4	Ζ,		<u> </u>	igspace	igsqcup	<u> </u>	<u> </u>			4	/	/,	\angle								_	4		4			\square	\square			$\langle \chi \rangle$	
5 NS	/	4	/	Z,	K,	/	4	Z,	L,	\downarrow	Ļ	igsqcup	<u> </u>	<u> </u>	Щ		4	4	/	\angle								_	4	//	4	4				\rightarrow		4	
8 VS	/,	/	Ζ,	Z,	Z,	/	/	Ζ,	Z,	\angle	K		<u> </u>	<u> </u>			4	/	/,	\angle			/	/,	\angle		\angle	4			4	4				4	//	$\langle \chi \rangle$	
8 NS	/	/	/	/	4	/	/	4	/		/		<u> </u>	<u> </u>			4	/	/	4					4	/	4	4	4	//	//	4				4		X	
9 VS	_				/	4	4	K,	_	<u> </u>	↓_	\sqcup	<u> </u>	<u> </u>			4	4	/	\angle					4		4	4	/	//	4		\longrightarrow	\sqcup	\sqcup			X	
9 NS				Ι,	K,	4	/	K,	_	<u> </u>			<u> </u>	<u> </u>			4	4	/	\angle	Ш				\angle		4	4	4	//	4		\longrightarrow	\sqcup	\vdash				
10 VS	/	/	/,	K,	K	/	/	4	_	<u> </u>			<u> </u>	<u> </u> '			4	4	/	\angle		\square			\angle		4	4	4	//	4		\longrightarrow	$\vdash \vdash \mid$	$\vdash \vdash \downarrow$	\rightarrow	\perp	+	44
10 NS	/	/		/	/	/	/	/	<u> </u>	<u> </u>	igspace	\sqcup	<u> </u>		\sqcup	\dashv	4	/	/	/		\vdash					4	4	/	//	//	4							
11 VS	-	_		_	/	/	/	4	_	<u> </u>		\sqcup	<u> </u>		\sqcup		4	/	/	4	\square	\square					4	4	\dashv	\dashv	+	-			4	4	//	X	
11 NS	-	_		_	/	/	/	/	<u> </u>	<u> </u>	—	\sqcup	<u> </u>	<u> </u> '			4	/	/	\angle	\square	\vdash					4	4		\downarrow	\downarrow	1				4	//	X	\times
12 VS		_			/	/	/	4		 	igspace	\sqcup	<u> </u>	 	$\vdash \vdash$		4	/	/	\angle	igwdapprox	$\vdash \vdash$			4	\angle	4	4	4	4	4	4	\longrightarrow	\longrightarrow	$\vdash \vdash$	-	//	X	\times
12 NS				Ι,	/	/	/	/	L,							_	/	/	/	\angle		$\vdash \vdash$						/	/	//	//	4	\longrightarrow	\vdash	$\vdash \vdash \downarrow$	<u> </u>	//		
13 VS	/	/	/	4	K	/	/	4	K,	/	/	4	4	/		4	4	/	/	\angle	igwdapprox	$\vdash \vdash$				\vdash	\dashv	\dashv	\dashv	\dashv	+	\dashv	\longrightarrow	$\vdash \vdash$	$\vdash \vdash$	\dashv	+	$+\!\!\!\!-$	1
13 NS																						Ш												ш	Ш			\perp	

Date OBS: "O" rien; "1" Jeune feuille saine et anciennes feuilles atteintes; "2" jeune feuille atteinte et vieille feuille saine; "3" jeunes feuilles et vieilles feuilles atteintes. "NA" pas de distinction possib Signification et codification: "CHL" = Chlorose foliaire; "NEC" = Nécrose foliaire; "DEF" = Déformation foliaire

					_																																			'
			\rac{1}{20}	je do nice	8		,ırî	miterum	<u> </u>				7		_	_	7		_	_	7		der	danchear	lum		ulari	,			era sah	lae roide	,0				/ 		OLIMI	diril
Site N°	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	adhitoni.	a neocal		<u></u>	Arillastri	Jrn gunt		<u>/c</u>	odia spä	, sular		<u>/</u> 6	arcinias	,R		<u>/</u> 6	nioa & a	,uca		6	ATTITO STO	orna	1	\s\(\s\(\)	mandra	ITE		r _M	ontrouzi	,e ^{to}		Star	stelias P	Ŗ	· · · · · · · · ·	zit.	staniopsi	şis Bull di	
										NEC	DEF	OBS	CHL	NEC	DEF	OBS	CHL	NEC	DEF	OBS															1 1	OBS			DEF (
14 VS	\angle						\angle							igsqcup	Ш	\square	\angle	4	4	4		\angle	Ζ,		/		\angle		$\angle \downarrow$	4	4	4	4	4	4					
14 NS		/											!	igsqcup											/		/					/					/			
15 VS		/			/				<u> </u>	<u></u> —'	<u> </u>	igsqcup	/	/						\square					/						\angle	/		\square						!
15 NS									'	∟'	<u> </u>	Ш													\angle												\perp	\square		'
18 VS										$\perp \!\!\! \perp'$	<u> </u>																													
18 NS									'	\coprod'	<u> </u>		!																											
21 VS										\square'																														
21 NS										$\lceil _ \rceil$!																								\nearrow			
23 VS																																							\prod_{i}	
23 NS													/																								\Box		\prod_{i}	
24 VS													/																\angle											
24 NS																													\nearrow								\nearrow			
25 VS																																								
25 NS													\Box																\overline{A}								\overline{A}			
26 VS		\Box					1						\sqcap																								T			
26 NS													\Box																											
27 VS													\Box																											
27 NS		\Box		\Box			1/						\Box																											
27 rome	14-	20	السا		-1.6		de III-																																	

²⁷ remplacé par 29 = tube passif au col de l'antenne