

Suivi environnemental Rapport annuel 2016

CAPTAGES

Vale Nouvelle-Calédonie Février 2017

Sommaire

1.	ACQUISITION DES DONNEES	2
	1.1. LOCALISATION	2
	1.2. METHODE	2
	1.3. Donnees disponibles	2
2.	RESULTATS	2 2 2 2 2 2 2 2 2 2
	·	
	· ·	
	· ·	
	2.2.2 Incidents et observations	
	2.2.2.1. Captage du barrage du Lac de Yaté	10
	2.2.2.2. Captage de la Pépinière	
	2.2.2.3. Captage du Camp de la Géologie	10
3.	MESURE DES VARIATIONS DE NIVEAU DU GRAND LAC	10
4.	ANALYSE DE LA RESSOURCE EN EAU	10
	4.1. QUALITE DE LA RESSOURCE EN EAU AU NIVEAU DU LAC DE YATE	10
	4.2. Qualite de la ressource en eau au niveau du Grand Lac	
_		
5.	BILAN DES NON-CONFORMITES	11
	Liste des Tableaux	
T	ableau 1 · Localisation et description des cantages	2
T:	ableau 2 · Bilan de la disponibilité des données des volumes d'eau captés	2
	ableau 3 : Causes de non-acquisition de données sur les captages	
	ableau 4 : Obligations règlementaires applicables aux captages	
T	ableau 5 : Dépassements relevés lors des suivis de la ressource en eau du lac de Yaté	. 10
T	ableau 6 : Dépassements relevés lors des suivis de la ressource en eau	. 11
	Liste des figures	
Fi	igure 1 : Carte de localisation des sites de captage	3
Fi	igure 2 : Volumes journaliers d'eau pompés au captage du lac de Yaté	6
Fi	igure 3 : Volumes mensuels d'eau pompés au captage du lac de Yaté en 2016	6
	igure 4 : Volumes journaliers d'eau consommés par la Pépinière	
	igure 5 : Volumes mensuels d'eau consommés par la Pépinière en 2016	
ГΙ	igure 6 : Volumes pompés au niveau du captage du Camp de la Géologie	ర

Sigles et Abréviations

% Pourcentage

UPM-CIM Unité de Préparation de Minerai et Centre Industriel de la Mine

Annexes

ANNEXE I : RESUTATS D'ANALYSES DE LA RESSOURCE EN EAU DU LAC DE YATE - PRELEVEMENT DU 5 A	VRIL ET
DU 24 NOVEMBRE 2016	14
ANNEXE II : RESUTATS D'ANALYSES DE LA RESSOURCE EN EAU DU GRAND LAC - PRELEVEMENT DU 5 A	VRIL ET
DU 24 NOVEMBRE 2016.	17

INTRODUCTION

Implanté dans le Sud de la Nouvelle-Calédonie, aux lieux-dits « Goro » et « Prony-Est » sur les communes de Yaté et du Mont-Dore, le complexe industriel (usine, mine, port) détenu par Vale Nouvelle-Calédonie a pour objectif d'extraire du minerai latéritique et de le traiter par un procédé hydrométallurgique visant à produire 60 000 t/an de nickel et 4 500 t/an de cobalt.

Le procédé de traitement employé par Vale Nouvelle-Calédonie requiert un apport journalier d'eau important ; la solution retenue a été de capter les eaux du lac de Yaté pour répondre à ce besoin. Les eaux sont utilisées dans le procédé de traitement de Vale Nouvelle-Calédonie, pour la centrale thermique de Prony Energies et pour la consommation humaine.

Vale Nouvelle-Calédonie effectue également d'autres prélèvements en eau au niveau du Grand Lac pour les besoins de la Pépinière et du Camp de la Géologie.

Ce document est un rapport des consommations annuelles en eau et des volumes d'eau qui ont été pompés ou captés sur le site industriel de Vale Nouvelle-Calédonie en 2016.

Les captages permanents de Vale Nouvelle-Calédonie sont :

- captage du Lac du barrage de Yaté,
- captage du Grand Lac pour la Pépinière,
- captage du Grand Lac pour le Camp de la Géologie.

1. ACQUISITION DES DONNEES

1.1. Localisation

Les points de captages d'eau pour la consommation humaine et pour l'opération du complexe industriel de Vale Nouvelle-Calédonie, ainsi que les autorisations, sont répertoriés dans le tableau cidessous. Au total, 3 captages sont présentés dans le tableau 1 et la figure 1.

Tableau 1 : Localisation et description des captages

Dénomination	Bassin Versant	Type de suivi	Statut en	Autorisation	Coordonn 9	ées RGNC 1
	rorount	Garri	2016		Х	Υ
Captage lac du barrage de Yaté	Lac de Yaté	Captage	Actif	Arrêté n°70- 2007/PS du 12 février 2007	488618	227090
Captage du Grand lac pour la Pépinière	Plaine des lacs	Captage	Actif	Arrêté n°551- 2014/ARR/DDR	493970	214322
Captage du grand lac pour le Camp de la Géologie	Plaine des lacs	Captage	Actif	Arrêté n°710- 2013/ARR/DDR du 10 juin 2013	494066	214500

1.2. Méthode

Les relevés des compteurs d'eau des différents captages et pompages sont effectués par Vale Nouvelle-Calédonie et par la CDE. Les données relevées sont vérifiées puis transmises à Vale Nouvelle-Calédonie. Les captages actuellement munis de compteurs volumétriques sont :

- captage du Lac du barrage de Yaté (VNC)
- captage de la Pépinière (VNC et CDE)
- captage du Camp de la Géologie (CDE)

1.3. Données disponibles

Le bilan des données disponibles porte sur les données relevées sur les compteurs volumétriques, les résultats sont présentés au Tableau 2.

Les données de volume acquises au niveau du captage du Lac de Yaté sont relevées instantanément. Pour des raisons de traitement des données, celles-ci ont été extraites au pas de temps horaire.

Pour les autres captages les données sont relevées quotidiennement.

Localisation des captages Lac de Yaté Camp de la Géologie Pépinière Kwé Principale Légende : Captage 7 800M

Figure 1 : Carte de localisation des sites de captage

Tableau 2 : Bilan de la disponibilité des données des volumes d'eau captés

	Nombre de données attendues	Nombre de données acquises	Pourcentage de données acquises
Captage lac du barrage de Yaté (en nombre de jours)	366	366	100
Captage de la Pépinière (en nombre de jours)	366	158	43.2
Captage du Camp de la Géologie (en nombre de jours)	366	175	47.8

Le pourcentage de données acquises est bon pour le captage du lac de Yaté. En revanche, le pourcentage de données acquises pour le captage de la pépinière et du camp de la géologie est faible.

Le tableau 3 présente les raisons pour lesquelles les volumes journaliers ne sont pas disponibles.

Tableau 3 : Causes de non-acquisition de données sur les captages

	Compteur non relevé (%)	Problème de réception de la donnée (%)	
Captage lac du barrage de Yaté	-	-	
Captage de la Pépinière	100	0	
Captage du Camp de la Géologie	100	0	

Les données journalières des captages de la pépinière et du camp de la géologie n'ont pas pu être relevées à la fréquence règlementaire, l'accès aux compteurs d'eau est interdit le weekend.

2. RESULTATS

2.1. Valeurs réglementaires

2.1.1 Volumes captés

Les arrêtés imposent une valeur limite de captage ou de pompage, ces valeurs sont reprises dans le tableau 4 pour chaque installation.

Tableau 4 : Obligations règlementaires applicables aux captages

Prélèvement/ captage	Limite horaire (m³/h)	Limite journalière (m³/jour)	Limite mensuelle (m³/mois)	Limite annuelle (m³/an)	Utilisation de l'eau captée
Lac de barrage de Yaté	2 300	55 200	1 660 000	18 000 000	Approvisionnement en eau des installations de Vale Nouvelle-Calédonie et de la centrale à charbon de Prony Energies. Alimentation en eau potable de la base-vie, de l'Usine, de l'Unité de Préparation du Minerai et de Prony Energies pendant la phase d'exploitation.
Grand Lac pour la Pépinière	-	nov-jan : 48 fév-avr : 34	-	-	Alimentation en eau brute de la Pépinière de Vale Nouvelle- Calédonie
Grand Lac pour le Camp de la Géologie	4.8	48	-	-	Alimentation en eau du Camp de la Géologie

2.2. Valeurs obtenues

2.2.1 Volumes d'eau captés

2.2.1.1. Captage du lac de Yaté

La figure 2 présente les volumes d'eau pompés par jour au niveau du captage du Lac de Yaté en 2016.

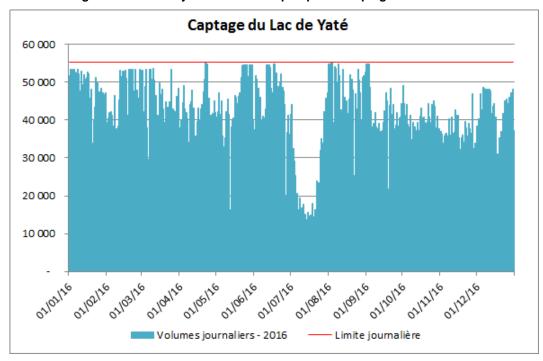


Figure 2 : Volumes journaliers d'eau pompés au captage du lac de Yaté

La figure 3 présente les volumes d'eau pompés par mois au captage du Lac de Yaté en 2016.

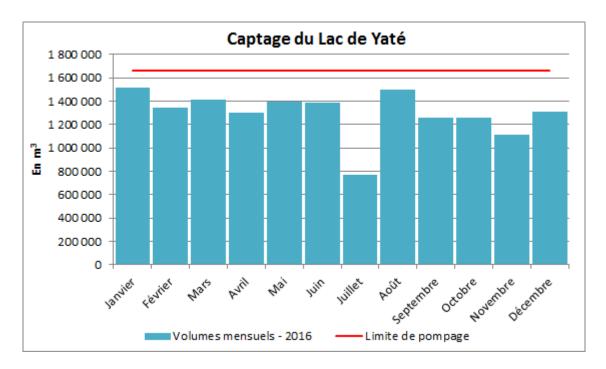


Figure 3 : Volumes mensuels d'eau pompés au captage du lac de Yaté en 2016

Le captage du Lac de Yaté est utilisé depuis octobre 2007. Les eaux pompées sont utilisées pour la production d'eau potable et d'eau industrielle pour les activités de l'usine.

Un prélèvement journalier a dépassé la limite autorisée de 55 200 m³/j. Ce dépassement a été enregistré le 22 avril 2016 et est de 55 289 m3. La conformité des prélèvements journaliers en 2016 est de 99.7%. Pour limiter ces dépassements des actions de réduction de la consommation de l'eau brute ont été mises en place au niveau de l'ensemble des unités du site industriel.

Aucun volume de prélèvement mensuel ne dépasse la limite autorisée de 1 660 000 m³.

Le volume pompé en 2016 au captage du Lac de Yaté est de 15 558 886 m³. En comparaison à 2015, le volume annuel pompé a diminué et est le résultat d'un plan d'action de la réduction de la consommation d'eau par les activités industrielles.

2.2.1.2. Captage de la Pépinière

Le compteur volumétrique de consommation en eau de la Pépinière a été mis en service le 18 décembre 2008. Les volumes journaliers consommés en 2016 sont présentés en figure 4 et les volumes mensuels sont présentés en figure 5.

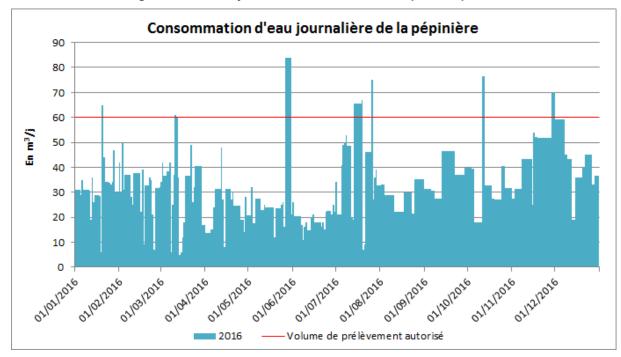


Figure 4 : Volumes journaliers d'eau consommés par la Pépinière

Entre le vendredi 27 et le lundi 30 mai 2016, des volumes importants de pompage sont relevés. Ils ont liés à un dysfonctionnement du système d'irrigation. Une fuite importante a été constatée au niveau d'une alimentation d'une serre. Des travaux de réparations de la fuite ont été réalisés à la suite de cette observation.

En juillet, suite à une rupture d'une ligne d'irrigation raccordée à la serre n°1 une fuite a été constatée. Les purges du système d'irrigation, permettant de limiter les dépôts dans les conduites font augmenter les volumes captés.

En octobre, les dépassements de la limite de pompage sont liés à une fuite sur des raccords localisés au niveau de l'ombrière n°1 de la pépinière.

En novembre, un dysfonctionnement de la membrane de l'électrovanne de la serre n°3 a conduit à un arrosage en continu jusqu'à détection de la défaillance.

Vale Nouvelle-Calédonie Page 7

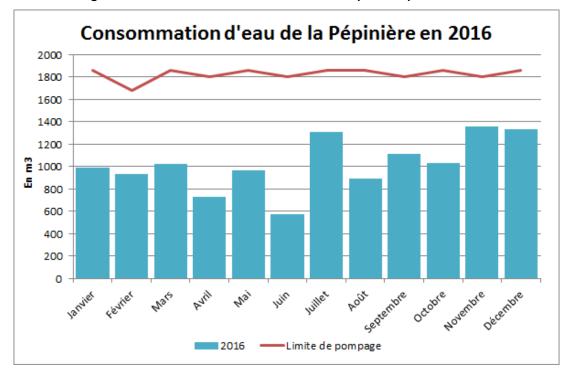


Figure 5 : Volumes mensuels d'eau consommés par la Pépinière en 2016

Le volume total des prélèvements en 2016 est de 12 255 m³.

Les volumes consommés par la Pépinière sont conformes à hauteur de 95.4% du temps en 2016.

2.2.1.3. Captage du Camp de la Géologie

Les volumes pompés en 2016 au niveau du captage pour le Camp de la Géologie sont présentés en figure 6.

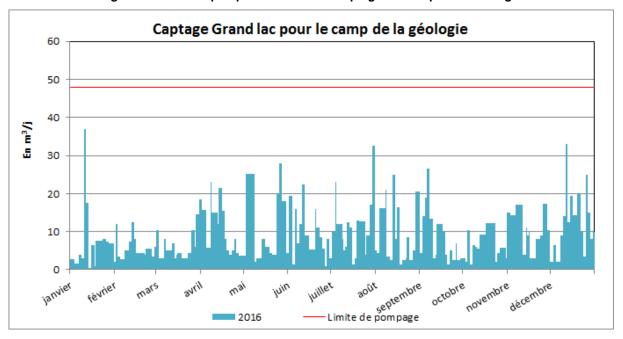


Figure 6 : Volumes pompés au niveau du captage du Camp de la Géologie

Le volume total des prélèvements en eau en 2016 est de 3 382 m³ pour le captage du Camp de la Géologie.

Les volumes d'eau pompés pour les besoins du camp de la géologie sont conformes à hauteur de 100% du temps en 2016.

2.2.2 Incidents et observations

Aucun incident majeur n'est à reporter sur les installations de captage.

2.2.2.1. Captage du barrage du Lac de Yaté

Aucun incident n'est à reporter sur les installations du captage du barrage du Lac de Yaté.

2.2.2.2. Captage de la Pépinière

Entre le vendredi 27 et le lundi 30 mai 2016, des volumes importants de pompage sont relevés. Ils sont liés à un dysfonctionnement du système d'irrigation. Une fuite importante a été constatée au niveau d'une alimentation d'une serre. Des travaux de réparations de la fuite ont été réalisés à la suite de cette observation.

En juillet, suite à une rupture d'une ligne d'irrigation raccordée à la serre n°1 une fuite a été constatée. Les purges du système d'irrigation, permettant de limiter les dépôts dans les conduites font augmenter les volumes captés.

En octobre, les dépassements de la limite de pompage sont liés à une fuite sur des raccords localisés au niveau de l'ombrière n°1 de la pépinière.

En novembre, un dysfonctionnement de la membrane de l'électrovanne de la serre n°3 a conduit à un arrosage en continu jusqu'à détection de la défaillance.

2.2.2.3. Captage du Camp de la Géologie

Aucun incident n'est à reporter pour le captage du camp de la géologie

3. MESURE DES VARIATIONS DE NIVEAU DU GRAND LAC

Les niveaux relevés au niveau du Grand Lac sont enregistrés depuis le 27 janvier 2011. Les hauteurs d'eau mesurées en 2016 sont présentés en figure 7.

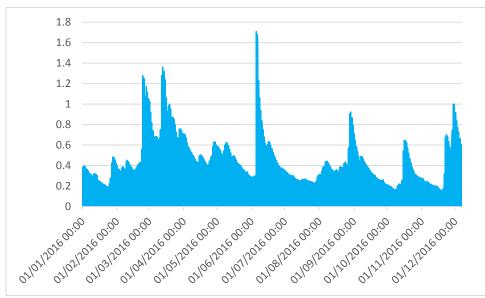


Figure 7 : Variations de niveau d'eau du Grand Lac

4. ANALYSE DE LA RESSOURCE EN EAU

4.1. Qualité de la ressource en eau au niveau du Lac de Yaté

Le site de captage dont les eaux sont destinées à la consommation humaine est le captage du Lac de Yaté. Afin de contrôler la **qualité de la ressource** l'arrêté n°79-153/SGCG du 3 avril 1979 et l'arrêté du 11 janvier 2007 relatif au programme de prélèvement et d'analyse du contrôle sanitaire pour les eaux fournies par un réseau de distribution, pris en application des articles R. 1321-10, R. 1321-15 et R. 1321-16 du code de la santé publique ont été pris en compte. Cette liste de paramètres inclut également les molécules suivies par la DAVAR au niveau du Lac de Yaté.

La ressource en eau a été analysée le 5 avril et le 24 novembre 2016. Les analyses sont présentées en Annexe I et les dépassements enregistrés au cours des suivis précédents sont présentés au tableau 5.

27/05/2015 17/11/2015 05/04/2016 24/11/2016 **Valeur limite Paramètre** Classe de qualité A1 Azote kjedahl (mg/L) 1.68 1 mg/L Substances extractibles au chloroforme (mg/L) 0,1 mg/L 2.3 Chrome (mg/L) 0.007 0.006 0.0059 0.0069 0.005 mg/L Coliformes totaux UFC/100mL 214 288 231 1413 50 UFC/100mL

Tableau 5 : Dépassements relevés lors des suivis de la ressource en eau du lac de Yaté

La qualité des eaux du Lac de Yaté destinées à la consommation doit respecter la classe de qualité A1 de l'arrêté du 11 janvier 2007 précité. Cette classe de qualité correspond à une eau subissant un traitement physique simple et une désinfection. L'unité de traitement de l'eau potable est une Unité Compacte Degrémont (UCD) permettant ce type de traitement.

4.2. Qualité de la ressource en eau au niveau du Grand Lac

Le captage de la Pépinière au niveau du Grand Lac est soumis à l'arrêté n°1253-2008/PS du 2 septembre 2008. Il y est mentionné la mise en place d'un plan comprenant un suivi semestriel de la qualité des eaux du Grand Lac comprenant les engrais, insecticides et autres produits utilisés à la Pépinière.

La liste d'analyses qui a été établie reprend l'ensemble des suivis imposés par les arrêtés n°79-153/SGCG du 3 avril 1979 et l'arrêté du 11 janvier 2007 relatif au programme de prélèvement et d'analyse du contrôle sanitaire pour les eaux fournies par un réseau de distribution, pris en application des articles R.1321-10, R.1321-15 et R.1321-16 du code de la santé publique. Ce choix a été déterminé par le fait que les eaux du Grand Lac sont pompées par le captage du Camp de la Géologie. En plus de ces listes d'analyses, l'ensemble des molécules des produits utilisés à la Pépinière sont prises en compte dans la liste des paramètres suivis.

La ressource en eau a été analysée le 5 avril et le 24 novembre 2016. Les analyses sont présentées en Annexe II et les dépassements enregistrés au cours des suivis précédents sont présentés au tableau 6.

Tableau 6 : Dépassements relevés lors des suivis de la ressource en eau

Paramètre		17/11/2015	05/04/2016	24/11/2016	Valeur limite ou NQE
Coliformes totaux (UFC/100ml)	-	-	397	248	50 UFC/100ml
Couleur		32	-	-	10
EDTA	20	<1	<1	<1	40

Les analyses de la ressource en eau pour le captage de la pépinière concernent, en plus du suivi de la qualité de la ressource, le suivi des produits utilisés à la pépinière.

En novembre 2014, la substance EDTA a été détectée à une concentration de 3µg/L. En mai 2015 elle a été quantifiée à 20µg/L. Une augmentation des concentrations de cette molécule est donc observée au niveau du Grand Lac. L'origine de cette substance peut être un fertilisant utilisé à la pépinière, un produit utilisé pour le traitement des eaux de la STEP. Selon une fiche rédigée par l'INERIS en juin 2012 concernant cette substance, il est proposé une Norme de Qualité Environnementale en moyenne annuelle dans les eaux douces de 40µg/L et une concentration maximale acceptable de 78µg/L. La tendance de l'évolution de cette molécule au niveau du Grand Lac est donc à surveiller. Les résultats d'analyse des trois derniers échantillonnages indiquent que la molécule n'est pas détectée.

5. BILAN DES NON-CONFORMITES

Captage du Lac de Yaté

Les volumes d'eau pompés ont dépassé les volumes journaliers autorisés, uniquement pour la journée du 22/04/2016.

Des actions de réduction de la consommation de l'eau brute ont été mises en place pour l'ensemble des unités de Vale Nouvelle-Calédonie.

Captage de la Pépinière

Les volumes d'eau pompés sont supérieurs aux volumes de pompage journaliers autorisés et correspondent à 17 jours.

CONCLUSION

Les captages permanents en fonctionnement à la date de ce document sont :

- le captage du lac de barrage de Yaté ;
- le captage de la Pépinière ;
- le captage du Camp de la Géologie.

Les volumes d'eau pompés au niveau du Lac de Yaté sont conformes à 99.7%, en données journalières en 2016, à l'arrêté n°70-2007/PS du 12 février 2007. La qualité de la ressource pour le captage du Lac de Yaté a été échantillonnée le 5 avril 2016 et le 24 novembre 2016.

Les volumes d'eau consommés par la Pépinière sont conformes à 95.4% à l'arrêté 551-2014/ARR/DDR du 2 avril 2014.

Les volumes d'eau pompés pour les besoins du Camp de la Géologie sont conformes à 100% à l'arrêté n°710-2013/ARR/DDR du 10 juin 2013.

Les analyses de la ressource en eau du Grand Lac, alimentant la pépinière et le camp de la Géologie, ont été réalisées le 5 avril 2016 et le 24 novembre 2016.

ANNEXE I : RESUTATS D'ANALYSES DE LA RESSOURCE EN EAU DU LAC DE YATE - PRELEVEMENT DU 5 AVRIL ET DU 24 NOVEMBRE 2016

Méthodes	Paramètres	Unités	Limite de Quantification	05/04/2016	24/11/2016
IDEXX selon NF EN ISO 9308-3	Coliformes totaux	UFC/100ml	1	231	1413
IDEXX selon NF EN ISO 7899-1	Entérocoques	UFC/100mL	1	<1	<1
IDEXX selon NF EN ISO 9308-3	Escherichia coli	UFC/100mL	10 ou 1	5	<1
ISO 6340	Salmonelles		Présence ou absence /5L	absence	absence
NF EN ISO 17993	Acénaphtène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Acénaphtylène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Anthracène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Benzo (a) anthracène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Benzo (a) pyrène (3,4)	μg/L	0,005	<0.005	<0.005
NF EN ISO 17993	Benzo (b) fluoranthène (3,4)	μg/L	0,005	<0.005	<0.005
NF EN ISO 17993	Benzo (g,h,i) pérylène (1,12)	μg/L	0,005	<0.005	<0.005
NF EN ISO 17993	Benzo (k) fluoranthène (11,12)	μg/L	0,005	<0.005	<0.005
NF EN ISO 17993	Chrysène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Dibenzo (a-h) anthracène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Fluoranthène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Fluorène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Indéno (1,2,3-c,d) pyrène	μg/L	0,01	<0.005	<0.005
NF EN ISO 17993	Naphtalène	μg/L	0,01	<0.050	<0.050
NF EN ISO 17993	Phénanthrène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Pyrène	μg/L	0,01	<0.010	<0.010
NF EN ISO 17993	Somme des 16 HAP	μg/L	NC	<0.05	<0.05
NF EN ISO 11885	Arsenic	mg As/l	0.01	<0.001	0.00115
NF EN ISO 11885	Baryum	mg Ba/l	0.001	<0.001	<0.001
NF EN ISO 11885	Cadmium	mg Cd/l	0.001	<0.001	<0.001
NF EN ISO 11885	Chrome	mg Cr/l	0.001	0.0059	0.00686
NF EN ISO 14403 (distillation)	Cyanures totaux	μg/L	10	<10	<10
NF EN 1483	Mercure	μg Hg/l	0,05	<0.015	<0.015
NF EN ISO 11885	Nickel	mg Ni/l	0.001	0.013	0.00224
NF EN ISO 11885	Plomb	mg Pb/I	0.01	<0.001	<0.001
NF EN ISO 11885	Sélénium	mg Se/I	0.01	<0.001	<0.001
ISO 16265	Agent de surface anionique	mg LSA/I	0,05	<0.05	<0.05
EPA 10023	Ammonium	mg NH4/L	0,025	<0.025	<0.025
NF EN 25663	Azote kjeldahl	mg N/L	1	<1	<1
NF T90-041	Bore	mg B/L	0,02	0.0107	0.0166
EPA 10129	Carbone organique total (COT)	mg C/L	0,3	<0.3	<0.3
NF EN ISO 11885	Cuivre	mg Cu/l	0.002	<0.001	0.00106
NF EN 1899-1	Demande biologique en oxygène DBO5	mg/l	3	<3	<3
ISO 15705:2002	Demande chimique en oxygène DCO	mg/L	3	<3	4
NF EN ISO 11885	Fer dissous	mg Fe/l	0.01	0.0559	0.0172
NF EN ISO 10304-1	Fluorures dissous	mg F/L	0.1	<0.1	<0.1
NF EN ISO 9377-2	Hydrocarbures totaux	mg/L	0.1	0.1	<0.1
NF EN ISO 14402	Indice phénol	mg C6H5OH/I	0,01	<0.01	<0.01
NF EN ISO 11885	Manganèse	mg Mn/l	0.001	0.0049	0.00127
NF EN 872	Matières en suspension MES	mg/L	2	<2	<2
NF EN ISO 10304-1	Nitrites dissous	mg NO2/L	0,05	<0.05	0.06
NF EN 6878	Phosphore total	mg P2O5/L	0,09	<0.09	0.104
Gravimétrie	Substances extractibles au chloroforme SEC	mg/L	0,1	<0.1	<0.1
NF EN ISO 11885	Zinc	mg Zn/l	0.5	<0.001	< 0.001
NF EN ISO 11885	Calcium	mg Ca/L	0.25	0.425	0.522
NF ISO EN 9963-1	Carbonates	mg/L	3	<3	<3
NF EN ISO 10304-1	Chlorures dissous	mg Cl/L	0.125	5.15	5.43
NF EN 27888	Conductivité	μS/cm	1	85.5	161.4
NF EN ISO 7887	Couleur apparente	mg/L Pt	5	10	<5

Méthodes	Paramètres	Unités	Limite de	05/04/2016	24/11/2016
NF T90-003	Dureté totale TH	°F	Quantification 0,2		
NF EN ISO 11885	Magnésium	mg Mg/L	0,2	2.8	3.6 9.49
Méthode interne	Odeur	TON	1	<1	<1
NF EN 25814	Oxygène dissous	%	1	-	100.8
NF EN 25814	Oxygène dissous	mg/L	0.1	8.28	8.47
NF T90-008	рН	Unités pH	0,1	7.4	7.6
EPA 8185	Silice	mg SiO2/L	1	5.2	10.5
NF EN ISO 11885	Sodium	mg Na/L	0.1	4.88	4.53
NF EN ISO 10304-1 NF EN ISO 11885	Sulfates dissous	mg SO4/L	1.25	1.63	2.09
LL-GCTSD selon NF EN 12918	Aluminium Phosalone	mg Al/l µg/L	0.01 0.04	0.00855 <0.040	0.00531 <0.040
Extraction liquide, dérivation et GC-MS	Nonylphénols	μg/L	0.1	<0.1	-
Extraction liquide, dérivation et GC-MS	4-nonylphénol-diéthoxylate	μg/L	0.02	-	<0.02
Extraction liquide, dérivation et GC-MS	4-nonylphénol-éthoxylate	μg/L	0.02	-	<0.02
SPE-LCMSMS selon NF EN ISO 11369	2,4-D (sels et/ou acide)*	μg/L	0,005	<0.005	<0.005
SPE-LCMSMS selon NF EN ISO 11369	Carbendazime*	μg/L	0.005	<0.005	<0.005
SPE-LCMSMS selon NF EN ISO 11369	Carbofuran*	μg/L	0.005	<0.005	<0.005
ID /HPLC /MSMS	Dazomet*	μg/L	0.005	<0.1	<0.1
Dégradation / HS /CPG / MS	Dithiocarbamates totaux*(Mancozèbe)	μg/L	2	<2	<2
SPE-LCMSMS selon NF EN ISO 11369	Carbetamide*	μg/L	0.005	<0.005	<0.005
SPE-LCMSMS selon NF EN ISO 11369	EPTC*	μg/L	0.05	<0.05	<0.05
SPE-LCMSMS selon NF EN ISO 11369	Méthomyl*	μg/L	0.005	<0.005	<0.005
ID /HPLC /MSMS	Thiophanate-méthyl*	μg/L	0.05	<0.05	<0.05
SPE-LCMSMS selon NF EN ISO 11369	Abamectin*	μg/L	0.1	<0.10	<0.10
SPE-LCMSMS selon NF EN ISO 11369 dérivation / HPLC	AMDA (Aminomáthulahaanhania	μg/L	0.02	<0.02	<0.02
/MSMS SPE-LCMSMS selon	AMPA (Aminométhylphosphonic Acid)*	μg/L	0,050	<0.050	<0.050
NF EN ISO 11369	Azoxystrobine*	μg/L	0.005	<0.005	<0.005
ID /HPLC /MSMS	Brodifacoum*	μg/L	0.1	<0.1	<0.1
LL-GCMS selon NF EN ISO 10695	Chlorothalonil*	μg/L	0,10	<0.10	<0.10
LL-GCMS selon NF EN ISO 10695	Dicofol*	μg/L	0.05	<0.050	<0.050
SPE /HPLC /MSMS	Diquat*	μg/L	0.1	<0.100	<0.100
HPLC / MS/MS SPE /HPLC /MSMS	Foséthyl aluminium* Glyphosate*	μg/L μg/L	0.1 0,050	<0.10 <0.050	<0.10 <0.050
SPE-LCMSMS selon NF EN ISO 11369	loxynil*	μg/L	0.1	<0.030	<0.030
LL / CPG /MS	Métaldéhyde*	μg/L	2	<0.02	<0.02
SPE /HPLC /MSMS	Paraquat*	μg/L	0,100	<0.100	<0.100
LL-GCMS selon NF EN ISO 10695	Tétradifon*	μg/L	0.05	<0.050	<0.050
LL-GCMS selon NF EN ISO 6468	4,4' DDT*	μg/L	0.01	<0.01	<0.01
LL-GCMS selon NF EN ISO 6468	Aldrine*	μg/L	0,01	<0.01	<0.01
LL-GCMS selon NF EN ISO 6468	Dieldrine*	μg/L	0,010	<0.010	<0.010
LL-GCMS selon NF EN ISO 6468	Endosulfan alpha*	μg/L	0,020	<0.020	<0.020
LL-GCMS selon NF EN ISO 6468	Endosulfan bêta*	μg/L	0.01	<0.01	<0.01
LL-GCMS selon NF EN ISO 6468	HCH Gamma (Lindane)*	μg/L	0.001	<0.001	<0.001
LL-GCMS selon NF	Heptachlore époxide (cis + trans)*	μg/L	0.01	<0.010	<0.010

Méthodes	Paramètres	Unités	Limite de Quantification	05/04/2016	24/11/2016
EN ISO 6468					
LL-GCMS selon NF EN ISO 6468	Heptachlore*	μg/L	0,005	<0.005	<0.005
LL-GCTSD selon NF EN 12918	Oxadiazon*	μg/L	0.02	<0.020	<0.020
LL-GCTSD selon NF EN 12918	Chlorpyriphos éthyl*	μg/L	0,0050	<0.0050	<0.0050
LL-GCTSD selon NF EN 12918	Chlorpyriphos méthyl*	μg/L	0,02	<0.02	<0.02
LL-GCTSD selon NF EN 12918	Dichlorvos*	μg/L	0,05	<0.05	<0.05
LL-GCTSD selon NF EN 12918	Malathion*	μg/L	0.05	<0.050	<0.050
SPE-LCMSMS selon NF EN ISO 11369	Parathion éthyl*	μg/L	0.04	<0.04	<0.04
NF EN ISO 6468	Parathion méthyl*	μg/L	0.05	<0.050	< 0.050
NF EN ISO 6468	Alpha-cypermethrine*	μg/L	0.01	NA	NA
LL-GCMS selon NF EN ISO 10695	Cyfluthrine*	μg/L	0.05	<0.050	<0.050
LL-GCMS selon NF EN ISO 10695	Cyperméthrine*	μg/L	0,080	<0.080	<0.080
LL-GCMS selon NF EN ISO 10695	Deltaméthrine*	μg/L	0.08	<0.080	<0.080
SPE-LCMSMS selon NF EN ISO 11369	Amétryne*	μg/L	0.005	<0.005	<0.005
SPE-LCMSMS selon NF EN ISO 11369	Atrazine*	μg/L	0.005	<0.005	<0.005
SPE-LCMSMS selon NF EN ISO 11369	Metribuzine*	μg/L	0.005	<0.005	<0.005
dérivation / HPLC / FLUO	Aminotriazole (Amitrole)*	μg/L	0,1	<0.1	<0.1
SPE-LCMSMS selon NF EN ISO 11369	Difenoconazole*	μg/L	0.005	<0.005	<0.005
LL-GCTSD selon NF EN 12918	Triadiméfon*	μg/L	0.05	<0.050	<0.050
SPE-LCMSMS selon NF EN ISO 11369	Diuron*	μg/L	0.005	<0.005	<0.005
SPE-LCMSMS selon NF EN ISO 11369	Isoproturon*	μg/L	0.005	<0.005	<0.005
SPE-LCMSMS selon NF EN ISO 11369	Linuron*	μg/L	0.005	<0.005	<0.005

ANNEXE II : RESUTATS D'ANALYSES DE LA RESSOURCE EN EAU DU GRAND LAC - PRELEVEMENT DU 5 AVRIL ET DU 24 NOVEMBRE 2016

Méthodes	Paramètres	Unités	Limite de Quantificati on	05/04/2016	24/11/2016
IDEXX selon NF EN ISO 9308-	Coliformes totaux	UFC/100ml	1	397	248
IDEXX selon NF EN ISO 7899- 1	Entérocoques	UFC/100mL	1	8	1
IDEXX selon NF EN ISO 9308- 3	Escherichia coli	UFC/100mL	1	<1	17
ISO 6340	Salmonelles	Présence ou absence /5L	-	absence	absence
NF EN ISO 11885	Arsenic	mg As/I	0.01	<0.001	0.00115
NF EN ISO 11885	Baryum	mg Ba/l	0.001	<0.001	<0.001
NF EN ISO 11885	Cadmium	mg Cd/l	0.001	<0.001	<0.001
NF EN ISO 11885	Chrome	mg Cr/l	0.001	0.003	0.00646
NF EN ISO 14403 (distillation)	Cyanures totaux	μg/L	10	<10	<10
NF EN 1483	Mercure	μg Hg/l	0.05	<0.015	<0.015
NF EN ISO 11885	Nickel	mg Ni/l	0.001	0.006	0.0078
NF EN ISO 11885	Plomb	mg Pb/l	0.01	<0.001 <0.001	<0.001
NF EN ISO 11885 ISO 16265	Sélénium Agent de surface anionique	mg Se/l mg LSA/l	0.01 0.05	<0.001	<0.001 <0.05
EPA 10023	Ammonium	mg NH4/L	0.025	<0.025	<0.025
NF EN 25663	Azote kjeldahl	mg N/L	1	<1	<1
NF T90-041	Bore	mg B/L	0.001	0.012	0.002
EPA 10129	Carbone organique total (COT)	mg C/L	0.3	<0.3	<0.3
NF EN ISO 11885	Cuivre	mg Cu/l	<0.002	0.012	0.00229
NF EN 1899-1	Demande biologique en oxygène DBO5	mg/l	3	<3	<3
ISO 15705:2002	Demande chimique en oxygène DCO	mg/L	3	<3	9
NF EN ISO 11885	Fer dissous	mg Fe/l	0.01	0.044	0.0892
NF EN ISO 10304-1	Fluorures dissous	mg F/L	0.1	<0.10	<0.10
NF EN ISO 9377-2	Hydrocarbures totaux	mg/L	0.1	<0.10	0.3
NF EN ISO 14402	Indice phénol	mg C6H5OH/I	0.01	<0.010	<0.010
NF EN ISO 11885	Manganèse	mg Mn/l	0.001	0.0025	0.00579
NF EN 872	Matières en suspension MES	mg/L	2	<2	<2
NF EN ISO 10304-1	Nitrates dissous	mg NO3/L	0.05	0.104	<0.05
NF EN ISO 10304-1	Nitrites dissous	mg NO2/L	0.05	<0.05	<0.05
NF EN 6878 Gravimétrie	Phosphore total Substances extractibles au	mg P2O5/L mg/L	0.09	<0.09 <0.10	<0.09
	chloroforme SEC	_			
NF EN ISO 11885	Zinc	mg Zn/l	0.5	0.0109 0.0059	0.0018 0.023
NF EN ISO 11885 NF EN ISO 11885	Aluminium Calcium	mg Al/l mg Ca/L	0.01 0.25	0.0059	0.023
NF ISO EN 9963-1	Carbonates	mg/L	3	<3	<3
NF EN ISO 10304-1	Chlorures dissous	mg Cl/L	0.125	6.54	7.36
NF EN 27888	Conductivité	μS/cm	1	51.3	52.2
NF EN ISO 7887	Couleur apparente	mg/L Pt	5	10	12
NF T90-003	Dureté totale TH	°F	0.2	1.7	1
Calcul	Equilibre calco-carbonique	-	-	eau très agressive	eau très agressive
NF EN ISO 9963-1	Hydrogénocarbonates	mg/L	6	21.3	18.3
NF EN ISO 11885	Magnésium	mg Mg/L	0.1	4.48	3.11
Méthode interne	Odeur	TON	1	<1	<1
NF EN 25814	Oxygène dissous	%	1	100.3	100.5
NF EN 25814	Oxygène dissous	mg/L	<0.1	8.22	8.43
NF T90-008 EPA 8185	pH Silice	Unités pH	0.1	6.9 1.9	7.85
NF EN ISO 11885	Sodium	mg SiO2/L mg Na/L	0.1	6.2	3.43 5.47
NF EN ISO 10304-1	Sulfates dissous	mg SO4/L	<1.25	1.71	1.78
NF EN ISO 9963-1	Titre alcalimétrique complet TAC	°F	0.5	1.75	1.78
NF ISO 11423-1	1,2,4-Trimethylbenzene	μg/L	1	<1	<1

Méthodes	Paramètres	Unités	Limite de Quantificati on	05/04/2016	24/11/2016
	(Pseudocumène)				
NF ISO 11423-1	Ethylbenzène	μg/L	0.2	<0.2	<0.2
LL-GCTSD selon NF EN 12918	malathion	μg/L	0.05	<0.050	<0.05
NF ISO 11423-1	ortho+méta+para xylène	μg/L	0.2	<0.2	<0.2
Méthode interne colorimétrie	Agent de surface cationiques	mg//L	0.4	0.5	<0.2
NF EN ISO 11369	Imidaclopride	μg/L	0.005	<0.005	<0.005
Dégradation / HS/GC/MS	Mancozeb	μg/L	2	<2	<2
Injection directe / CPG / FID	Diéthylène Glycol	μg/L	20	<20	-
Méthode interne HPLC / MS / MS	Propamocarbe chlorhydrate	μg/L	0.1	<0.1	<0.1
Méthode interne HPLC / LS	EDTA	μg/L	1	<1	<1