

LIVRET D – GESTION ET PROTECTION DES EAUX SUPERFICIELLES ET SOUTERRAINES

Commune de Yaté et du Mont-Dore Nouvelle-Calédonie

Volet D – Plan de suivi des eaux et réseaux d'amélioration de la connaissance

REDACTION	Vale Nouvelle-Calédonie SAS	Jean-Luc FOLIO Christelle RENDU
VERIFICATION	Vale Nouvelle-Calédonie SAS	Nicolas TAN DELAGE Tanguy GIBAND
APPROBATION	Vale Nouvelle-Calédonie SAS	Joao VIDOCA Daryush KHOSHNEVISS

SOMMAIRE

4	PLAN DE SUIVI DES EAUX CONTINENTALES	1
	4.1 Réseaux réglementaires	1
	4.1.1 Eaux de surface	1
	4.1.1.1 Suivi qualitatif des eaux de surface	2
	4.1.1.2 Suivi de la nature et de la quantité des sédiments	7
	4.1.2 Eaux souterraines	8
	4.2 Réseaux d'amélioration de la connaissance	14
	4.2.1 Climatologie	14
	4.2.2 Eaux de surface	
	4.2.2.1 Acquisition de données limnimétriques et débitmétriques	15
	4.2.2.2 Campagnes de jaugeage différentiel	16
	4.2.2.3 Acquisition de données relatives à la qualité des eaux de surface	17
	4.2.3 Eaux souterraines	
	4.2.3.1 Acquisition de données piézométriques	23
	4.2.3.2 Acquisition de données relatives à la qualité des eaux souterraines	24
	4.3 Contrôle qualité et démarche de normalisation	25
	4.3.1 Matériel utilisé	25
	4.3.2 Analyses chimiques	25
	4.3.3 Suivis limnimétriques et débitmétriques	
	4.3.4 Contrôle des mesures automatiques	
	4.4 Suivi hydrobiologique	27

TABLEAUX

rableau i .	Localisation et description des points de suivi qualitatif in situ des éaux de surface	∠
Tableau 2 :	Localisation et description des points de suivi qualitatif ex situ des eaux de surface	2
Tableau 3 :	Méthodes d'analyse des paramètres physico-chimiques des eaux douces de surface	6
Tableau 4 :	Méthodes d'analyse des métaux dans les eaux douces de surface	6
Tableau 5 :	Localisation et description des points de suivi de la nature et de la quantité des sédiments	7
Tableau 6 :	Catégories granulométriques des sédiments	8
Tableau 7 :	Localisation et description des points de suivi du parc à résidus	8
Tableau 8 :	Localisation et description des points de suivi de l'UPM	9
Tableau 9 :	Paramètres analysés à une fréquence mensuelle pour le suivi des eaux souterraines du secteur Kwé Ouest	10
Tableau 10 :	Paramètres analysés à une fréquence semestrielle pour le suivi des eaux souterraines du secteur Kwé Ouest	10
Tableau 11:	Paramètres analysés pour le suivi des eaux souterraines de l'unité de préparation du minerai	11
Tableau 12:	Méthode d'analyse pour les paramètres physico-chimiques	12
Tableau 13:	Méthodes d'analyse pour les métaux	13
Tableau 14:	Valeurs réglementaires de selon l'arrêté n° 1466-2008/PS	13
Tableau 15:	Stations météorologiques suivies par VNC	14
Tableau 16:	Paramètres mesurés par les stations météorologiques installées sur le site de VNC .	14
Tableau 17:	Sections de mesures limnimétriques et débitmétriques	15
Tableau 18:	Synthèse des caractéristiques du réseau de jaugeage différentiel	17
Tableau 19:	Synthèse des caractéristiques du réseau d'acquisition de données relatives à la qualité des eaux de surface	21
Tableau 20:	Synthèse des caractéristiques du réseau d'acquisition de données piézométriques	23
Tableau 21:	Paramètres analysés et méthodes de référence à respecter	26
Tableau 22 :	Méthodes de référence utilisées	26
Tableau 23:	Localisation et description des points de suivi pour l'IBNC	28
Tableau 24:	Localisation des points de suivi pour le suivi de la faune ichtyologique	29
Tableau 25 :	Coordonnées des stations d'inventaire faunistique des zones humides	29
Tableau 26 :	Indice biotique de Nouvelle-Calédonie	
Tableau 27 ·	IBS Indice bio-sédimentaire de Nouvelle-Calédonie	30

4

PLAN DE SUIVI DES EAUX CONTINENTALES

Pièces graphiques – Carte D03 - Cadre hydrologique

Le suivi (au sens large) des eaux continentales est regroupé selon 2 grands types de réseaux :

- des réseaux réglementaires définis par les arrêtés autorisant la construction et l'exploitation de différents aménagements (par exemple le parc à résidu de la Kué Ouest, l'usine de préparation du minerai ou les carrières) :
- des réseaux d'acquisition de connaissances, mis en œuvre de façon volontaire par VNC, afin d'alimenter les différentes études à réaliser (par exemple des états des lieux environnementaux ou des études d'impacts) avec des données relatives au fonctionnement des hydro systèmes et à leurs caractéristiques.

Contrairement aux réseaux réglementaires, les réseaux d'acquisition de la connaissance (ou d'amélioration de la connaissance) n'ont pas vocation à être pérennisé dans le temps. Ils sont la matérialisation d'objectifs techniques définis dans le cadre de programmes à durée déterminée. Cette durée correspond au temps jugé nécessaire pour atteindre les objectifs techniques fixés dans le cadre de ces programmes. Ces réseaux ne correspondent donc pas à des réseaux de suivis d'impact.

Le cadre géographique dans lequel s'inscrivent ces différents réseaux est présenté à la carte D03.

4.1 RESEAUX REGLEMENTAIRES

Ce paragraphe s'appuie sur deux rapports faits par VNC. Le premier concerne le suivi environnemental des eaux douces de surface (fourni sur le CD-ROM des études de référence) et le second le suivi environnemental des eaux souterraines (fourni sur le CD-ROM des études de référence).

4.1.1 Eaux de surface

Dans le cadre du suivi réglementaire de la qualité des eaux de surface, mis en place par VNC, conformément aux arrêtés N° 1228-2002/PS du 25 septembre 2002 modifié par les arrêtés N° 541-2006/PS du 6 juin 2006, N° 890-2007/PS du 12 juillet 2007, N° 11479-2009/PS du 13 novembre 2009, N° 1466-2008/PS du 9 octobre 2008 et N° 1467-2008/PS du 9 octobre 2008 correspondant respectivement aux prescriptions des ICPE des stations d'épuration 1 et 4, des utilités, des stations d'épuration n° 5 et n° 6, du parc à résidus et de l'usine, de l'unité de préparation du minerai et du centre industriel de la mine, l'arrêté n° 1172-2013/ARR/DENV du 7 mai 2013 concernant la zone SMLT à proximité de l'UPM-CIM et l'arrêté n°2853-2014/ARR/DENV du 21 octobre 2014 concernant la zone d'emprunt de Fer (ZEF)., 2 types de suivi sont effectués :

- 1 suivi qualitatif des eaux de surface ;
- 1 suivi de la nature et de la quantité des sédiments.

4.1.1.1 Suivi qualitatif des eaux de surface

Objectif

La qualité des eaux de surface des rivières de Goro est influencée par la géologie des sols et de la roche mère, les résurgences, le réseau hydrographique, les précipitations et l'évaporation. Son suivi permet de connaître et de conserver l'intégrité chimique des écosystèmes.

Réseau de suivi

Pièces graphiques – Carte D04 - Réseau réglementaire - Suivi de la qualité physico-chimique des eaux de surface

Onze stations ont été choisies pour le suivi physico-chimique *in situ* des eaux de surface au niveau des bassins versants de la Kwé Ouest (KO), de la Kwé Principale (KP).Les différents points de suivi sont présentés dans le Tableau 1.

Tableau 1 : Localisation et description des points de suivi qualitatif in situ des eaux de surface

Nom	Bassin Versant	Type de suivi	Fréquence*	Raison d'être	E RGNC91	N RGNC91
1-A	KP	Physico-chimique	С	Arrêté n°1467-2008/PS	499142	210447
3-A	ко	Physico-chimique	S	Arrêté n°1466-2008/PS	495575	211479
3-B	ко	Physico-chimique	C, S	Arrêté n°1466-2008/PS	496478.1	210820.1
3-D	ко	Physico-chimique	S	Arrêté n°1466-2008/PS	495869	210942
3-E	ко	Physico-chimique	S	Arrêté n°1466-2008/PS	496393	210775
WK 17	ко	Physico-chimique	C, S	Arrêté n°1466-2008/PS	495617.6	210613.3
WK 20	ко	Physico-chimique	C, S	Arrêté n°1466-2008/PS	495673.3	210663.6
4-R2	ко	Physico-chimique	C, S	Arrêté n°1466-2008/PS	494882.1	211134.2
4-R6	ко	Physico-chimique	C, S	Arrêté n°1466-2008/PS	495439.6	210765.0
4-R7	ко	Physico-chimique	C, S	Arrêté n°1466-2008/PS	495483.4	210794.3
4-R8	ко	Physico-chimique	C, S	Arrêté n°1466-2008/PS	495462.6	210761.2

C: Continu, S: Semestriel

30 stations ont été choisies pour le suivi physico-chimique ex situ des eaux de surface sur les bassins versants de la Kwé Ouest (KO), de la Kwé Est (KE), de la Kwé Nord (KN), de la Kwé Principale (KP), du creek de la Crête Sud (CCS), d'Entonnoir, de la Truu, de Wajana (WD), de la rivière Trou Bleu (TB). Les différents points de suivi sont présentés dans le Tableau 2 ci-dessous.

Tableau 2 : Localisation et description des points de suivi qualitatif ex situ des eaux de surface

Nom	Bassin Versant	Sous type de suivi	Fréquence*	Raison d'être	long RGNC91	lat RGNC
3-A	КО	Eau de surface	M, S, H	Arrêté n° 1466-2008/PS	495575	211479
3-B	КО	Eau de surface	M, S	Arrêté n° 1466-2008/PS	496478.1	210820.1
3-C	ТВ	Eau de surface	Т	Arrêté n°890-2007/PS	499124	206972

3-D	ко	Eau de surface	s	Arrêté n° 1466-2008/PS	495869	210942
3-E	КО	Eau de surface	S	Arrêté n° 1466-2008/PS	496393	210775
CS-01	ccs	Eau de surface	М	Déclaration DM §7.4.2.1	500552.2	210477.0
CS-02	ccs	Eau de surface	М	Déclaration DM §7.4.2.1	499350.9	210393.8
EN-02	Entonnoir	Eau de surface	М	Déclaration DM §7.4.2.1	502799.4	211441.3
KE-01	KE	Eau de surface	М	Déclaration DM §7.4.2.1	500126.4	211185.0
KE-04	KE	Eau de surface	М	Déclaration DM §7.4.2.1	501152.7	210988.1
KE-05	KE	Eau de surface	М	Déclaration DM §7.4.2.1	499043.7	211013.6
4-M	KN	Eau de surface	М	Arrêté n° 1467-2008/PS	498889.4	211632.5
BSO-01	KN	Eau de surface	М	Déclaration DM §7.4.2.1	499270.1	211967.1
KN-01	KN	Eau de surface	М	Déclaration DM §7.4.2.1	498719.8	210990.4
KN-02	KN	Eau de surface	М	Déclaration DM §7.4.2.1	500087.2	212523.7
KN-08	KN	Eau de surface	М	Déclaration DM§7.4.2.1	498869.1	211530.4
4-N	КО	Eau de surface	М	Arrêté n° 1467-2008/PS	497415.6	210891.5
KO-01	КО	Eau de surface	М	Déclaration DM §7.4.2.1	498553.7	211010.3
1-A	KP	Eau de surface	M, T, H	Arrêté n° 1467-2008/PS	499141.5	210447.4
1-E	KP	Eau de surface	М	Arrêté n° 1467-2008/PS	500042.1	208314.8
TR-01	Truu	Eau de surface	М	Déclaration DM §7.4.2.1	503193.6	208775.3
TR-02	Truu	Eau de surface	М	Déclaration DM §7.4.2.1	501932.7	209804.5
WJ-01	WD	Eau de surface	М	Déclaration DM §7.4.2.2	503607.7	212255.8
WK 17	КО	Source	H,S	Arrêté n° 1466-2008/PS	495617.6	210613.3
WK 20	КО	Source	H,S	Arrêté n° 1466-2008/PS	495673.3	210663.6
WK17-20	KO	Source	Н	Convention	495740.2	210666.1
4-R2	KO	Rejet	H,S	Arrêté n° 1466-2008/PS	494882.1	211134.2
4-R6	KO	Rejet	H,S	Arrêté n° 1466-2008/PS	495439.6	210765.0
4-R7	КО	Rejet	H,S	Arrêté n° 1466-2008/PS	495483.4	210794.3
4-R8	КО	Rejet	H,S	Arrêté n° 1466-2008/PS	495462.6	210761.2

C: Continu, H: Hebdomadaire, M: Mensuel, T: Trimestriel, S: Semestriel, A: Annuel.

Le suivi est effectué par des mesures *in situ* (pH, température et conductivité) à l'aide de sondes portatives, et *ex situ* à partir de prélèvements dont les analyses portent sur les hydrocarbures, les paramètres physico-chimiques en solution (Tableau 3) et les mesures des métaux (

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	MES	mg/L	5	GRV02	Dosage des matières en suspension (MES)	NF EN 872 Juin 2005
Interne	рН		-	PH01	Mesure du pH	NF T90-008
Interne	Conductivité	μS/cm	5	CDT01	Mesure de la conductivité	
Interne	CI	mg/L	0.1	ICS01		
Interne	NO3	mg/L	0.2	ICS01	Anglyse de 4 eu 6 enione nor	
Interne	SO4	mg/L	0.2	ICS01	Analyse de 4 ou 6 anions par chromatographie ionique (chlorure, nitrate,	NF EN ISO 10304-
Interne	PO4	mg/L	0.2	ICS01	phosphates, sulfate, fluorure et nitrate en	1
Interne	F	mg/L	0.1	ICS01	- plus si demandé)	
Interne	NO2	mg/L	0.1	ICS01		
Interne	CI	g/l	0.01	TIT10	Titration de l'ion chlorure par potentiométrie	
Interne	DCO	mg/L	10	SPE03	Analyse de la DCO	Méthode HACH 8000
Interne	TAC as CaCO3	mg/L	2	TIT11	Titustian de llelegiinité (TA et TAC)	
Interne	TA as CaCO3	mg/L	2	TIT11	Titration de l'alcalinité (TA et TAC)	
Interne	CrVI	mg/L	0.01	SPE01	Analyse du chrome VI dissous dans les eaux naturelles et usées	NF T 90-043 Octobre 1988
Interne	Turbidité	NTU	0.1	TUR01	Mesure de la turbidité	
Interne	NH3	mg/L	0.5	SPE05	Dosage de l'ammonium dans les eaux	Méthode HACH 10205
Interne	СОТ	mg/L	0.3	SPE09	Dosage du Carbone Organique Total (COT) dans les eaux	Méthode HACH 10129
Interne	SiO2	mg/L	1 de Si	CAL02	Calcul de SiO2 à partir de Si mesuré par ICP02	
Interne	NT	mg/L	0.5	SPE08	Dosage de l'azote total dans les eaux	Méthode HACH 10071

Tableau 4).

Mode opératoire (protocole de mesure)

Une double mesure manuelle des paramètres physico-chimiques est effectuée par deux opérateurs différents à l'aide d'une sonde multi-paramètres portative. Les sondes sont placées dans le lit du cours d'eau, dans un endroit assez calme où le courant n'est pas fort afin d'éviter que les mesures ne soient perturbées. Une fois les mesures stabilisées les valeurs des paramètres physico-chimiques sont relevées et consignées sur la fiche de terrain.

Les prélèvements d'eau sont réalisés au milieu de la section d'eau. Les flacons à échantillonnage sont préalablement rincés 3 fois dans le lit du cours d'eau avant qu'un échantillon final ne soit collecté. Les échantillons sont ensuite analysés le laboratoire d'analyse VNC.

Les méthodologies d'analyse utilisées sont issues de diverses normes indiquées dans le Tableau 3 et le

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme

Interne	MES	mg/L	5	GRV02	Dosage des matières en suspension (MES)	NF EN 872 Juin 2005
Interne	рН		-	PH01	Mesure du pH	NF T90-008
Interne	Conductivité	μS/cm	5	CDT01	Mesure de la conductivité	
Interne	CI	mg/L	0.1	ICS01		
Interne	NO3	mg/L	0.2	ICS01	Analyse de 4 ou 6 anions par	
Interne	SO4	mg/L	0.2	ICS01	chromatographie ionique (chlorure, nitrate,	NF EN ISO 10304-
Interne	PO4	mg/L	0.2	ICS01	phosphates, sulfate, fluorure et nitrate en	1
Interne	F	mg/L	0.1	ICS01	plus si demandé)	
Interne	NO2	mg/L	0.1	ICS01		
Interne	CI	g/l	0.01	TIT10	Titration de l'ion chlorure par potentiométrie	
Interne	DCO	mg/L	10	SPE03	Analyse de la DCO	Méthode HACH 8000
Interne	TAC as CaCO3	mg/L	2	TIT11	Titration de l'alcalinité (TA et TAC)	
Interne	TA as CaCO3	mg/L	2	TIT11	Titration de l'alcaimile (l'A et l'AC)	
Interne	CrVI	mg/L	0.01	SPE01	Analyse du chrome VI dissous dans les eaux naturelles et usées	NF T 90-043 Octobre 1988
Interne	Turbidité	NTU	0.1	TUR01	Mesure de la turbidité	
Interne	NH3	mg/L	0.5	SPE05	Dosage de l'ammonium dans les eaux	Méthode HACH 10205
Interne	СОТ	mg/L	0.3	SPE09	Dosage du Carbone Organique Total (COT) dans les eaux	Méthode HACH 10129
Interne	SiO2	mg/L	1 de Si	CAL02	Calcul de SiO2 à partir de Si mesuré par ICP02	
Interne	NT	mg/L	0.5	SPE08	Dosage de l'azote total dans les eaux	Méthode HACH 10071

Tableau 4.

Tableau 3 : Méthodes d'analyse des paramètres physico-chimiques des eaux douces de surface

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	MES	mg/L	5	GRV02	Dosage des matières en suspension (MES)	NF EN 872 Juin 2005
Interne	рН		-	PH01	Mesure du pH	NF T90-008
Interne	Conductivité	μS/cm	5	CDT01	Mesure de la conductivité	
Interne	CI	mg/L	0.1	ICS01		
Interne	NO3	mg/L	0.2	ICS01	Analyse de 4 ou 6 anions par	
Interne	SO4	mg/L	0.2	ICS01	chromatographie ionique (chlorure, nitrate,	NF EN ISO 10304-
Interne	PO4	mg/L	0.2	ICS01	phosphates, sulfate, fluorure et nitrate en	1
Interne	F	mg/L	0.1	ICS01	- plus si demandé)	
Interne	NO2	mg/L	0.1	ICS01		
Interne	CI	g/l	0.01	TIT10	Titration de l'ion chlorure par potentiométrie	
Interne	DCO	mg/L	10	SPE03	Analyse de la DCO	Méthode HACH 8000
Interne	TAC as CaCO3	mg/L	2	TIT11	Titration de l'electinité (TA et TAC)	
Interne	TA as CaCO3	mg/L	2	TIT11	Titration de l'alcalinité (TA et TAC)	
Interne	CrVI	mg/L	0.01	SPE01	Analyse du chrome VI dissous dans les eaux naturelles et usées	NF T 90-043 Octobre 1988
Interne	Turbidité	NTU	0.1	TUR01	Mesure de la turbidité	
Interne	NH3	mg/L	0.5	SPE05	Dosage de l'ammonium dans les eaux	Méthode HACH 10205
Interne	СОТ	mg/L	0.3	SPE09	Dosage du Carbone Organique Total (COT) dans les eaux	Méthode HACH 10129
Interne	SiO2	mg/L	1 de Si	CAL02	Calcul de SiO2 à partir de Si mesuré par ICP02	
Interne	NT	mg/L	0.5	SPE08	Dosage de l'azote total dans les eaux	Méthode HACH 10071

Tableau 4 : Méthodes d'analyse des métaux dans les eaux douces de surface

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	Al	mg/L	0.1	ICP02		
Interne	As	mg/L	0.05	ICP02		
Interne	Ca	mg/L	1	ICP02		
Interne	Cd	mg/L	0.01	ICP02		
Interne	Co	mg/L	0.01	ICP02		
Interne	Cr	mg/L	0.01	ICP02	A	
Interne	Cu	mg/L	0.01	ICP02	Analyse d'une cinquantaine d'éléments dissous ou totaux	
Interne	Fe	mg/L	0.1	ICP02	(si demandé) dans les solutions aqueuses	NFT90-210
Interne	K	mg/L	0.1	ICP02	faiblement concentrées par	
Interne	Mg	mg/L	0.1	ICP02	ICP-AES	
Interne	Mn	mg/L	0.01	ICP02		
Interne	Na	mg/L	1	ICP02		
Interne	Ni	mg/L	0.01	ICP02		
Interne	Р	mg/L	0.1	ICP02		
Interne	Pb	mg/L	0.01	ICP02		

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	S	mg/L	1	ICP02		
Interne	Si	mg/L	1	ICP02		
Interne	Sn	mg/L	0.01	ICP02		
Interne	Zn	mg/L	0.1	ICP02		

4.1.1.2 Suivi de la nature et de la quantité des sédiments

Objectif

Le suivi de la nature et de la quantité des sédiments est essentiel dans le suivi de la qualité des eaux. Il est en effet à la base d'un bon équilibrage de la qualité physico-chimique du milieu et du bon fonctionnement écologique des cours d'eau.

Réseau de suivi

Pièces graphiques – Carte D05 – Réseau réglementaire - Carte du suivi de la nature et de la quantité des sédiments

Six stations ont été définies pour le suivi de la nature et de la quantité des sédiments des bassins versants de la Kwé Nord (KN), de la Kwé Ouest et de la Kwé principale (KP). Les différents points de suivi sont présentés dans le Tableau 5.

Tableau 5 : Localisation et description des points de suivi de la nature et de la quantité des sédiments

Nom	Bassin Versant	Type de suivi	Fréquence*	Raison d'être	long RGNC91	lat RGNC91
4-M	KN	Sédiments	Т	Arrêté n° 1467-2008/PS	498889.4	211632.5
4-N	KO	Sédiments	Т	Arrêté n° 1467-2008/PS	497415.6	210891.5
1-A	KP	Sédiments	Т	Arrêté n° 1467-2008/PS	499142	210447
1-E	KP	Sédiments	Т	Arrêté n° 1467-2008/PS	500042.1	208314.8
3-A	KO	Sédiments	M	Arrêté n° 1466-2008/PS	495575	211479
3-B	КО	Sédiments	М	Arrêté n° 1466-2008/PS	496478.1	210820.1

^{*} M : Mensuel, T : Trimestriel

Mode opératoire (protocole de mesure)

Les prélèvements des sédiments des cours d'eau pour le suivi de leur nature sont effectués à l'aide d'une pelle de prélèvement. Selon la largeur du lit du cours d'eau, plusieurs prélèvements sont effectués en vue de réaliser un échantillon composite. Cette méthode d'échantillonnage a été choisie afin d'obtenir un profil complet du transect étudié. Elle permet de définir la nature des sédiments déposés en surface, qui est essentiellement définie par l'analyse granulométrique et l'analyse chimique réalisées sur les principaux métaux composant les sols des massifs miniers.

L'<u>analyse granulométrique</u> permet de connaître la répartition des éléments transportés par les cours d'eau selon leur taille. Depuis janvier 2010 elle est réalisée selon les normes françaises NF X 31-107 et NF ISO 11464. Les limites des classes granulométriques ont évolué et sont détaillées dans le Tableau 6.

Classe	Limites de taille (µm) laboratoire VNC 2008-2009	Limites de taille (μm) laboratoire Lab'Eau à partir de 2010
Gravier	>1700	>2000
Sable grossier	1700-220	2000-200
Sable fin	220-45	200-50
Limon grossier	45-20	50-20
Limon fin (+argile)	<20	20-2
Argile		<2

Tableau 6 : Catégories granulométriques des sédiments

Les principaux paramètres de la <u>composition chimique</u> analysée sur les échantillons de sédiments composites sont :

- les métaux (arsenic, cadmium, cobalt, chrome, chrome VI, manganèse, nickel, plomb, zinc) ;
- · les matières sèches.

4.1.2 Eaux souterraines

Suivi de la qualité des eaux souterraines

Objectif

Le suivi de la qualité des eaux souterraines permet de mettre en évidence une éventuelle pollution de nappes souterraines générée par le projet minier. Pour chaque site de VNC, les piézomètres sont installés en amont et en aval des installations de manière à comparer un apport éventuel de pollution s'il y a lieu.

Réseau de suivi

Pièces graphiques – Carte D06 – Réseau réglementaire – Suivi qualitatif des eaux souterraines

Le suivi réglementaire de la qualité des eaux souterraines du bassin versant de la Kwé Ouest est effectué sur 42 piézomètres. Les stations de mesures sont localisées sur la carte D06 et présentées dans le tableau ci-dessous. Le piézomètre WKBH12 a été détruit lors des travaux de terrassement en 2008.

Tableau 7 :	Localisation et	description of	les points de sui	vi du parc à résidus
-------------	-----------------	----------------	-------------------	----------------------

Nom	Bassin versant	Type de suivi	Raison d'être	RGN91 Est	RGN91 Nord
WK 6-9	KO		Arrêté n°1466-2008/PS	495191,4	211087,3
WK 6-9a	KO		Arrêté n°1466-2008/PS	495190,4	211086,3
WK 6-11	Trou Bleu		Arrêté n°1466-2008/PS	495478,8	210727,3
WK 6-11a	Trou Bleu	Groupe A Piézomètres d'alerte au pied de la berme	Arrêté n°1466-2008/PS	495478,8	210728,3
WK 6-12	КО		Arrêté n°1466-2008/PS	495643,2	210520,4
WK 6-12a	КО		Arrêté n°1466-2008/PS	495642,2	210520,4
WK 6-13	ко		Arrêté n°1466-2008/PS	495682,3	210360,7
WKBH 102	КО		Arrêté n°1466-2008/PS	495571,6	210620,0
WKBH 102a	ко		Arrêté n°1466-2008/PS	495572,6	210619,0
WKBH 103	КО		Arrêté n°1466-2008/PS	495638,8	210590,4
WKBH12	КО	Groupe B	Arrêté n°1466-2008/PS	495243,9	211142,6

Nom	Bassin versant	Type de suivi	Raison d'être	RGN91 Est	RGN91 Nord
WK 6-10	KO	Suivi de la qualité de	Arrêté n°1466-2008/PS	495439,8	211029,0
WK 6-10a	КО	l'eau souterraine dans la zone tampon	Arrêté n°1466-2008/PS	495439,8	211026,0
WKBH 109	KO		Arrêté n°1466-2008/PS	495827,0	210559,7
WKBH 109a	КО		Arrêté n°1466-2008/PS	495824,0	210558,7
WKBH 110	KO		Arrêté n°1466-2008/PS	495681,2	210676,7
WKBH 110a	KO		Arrêté n°1466-2008/PS	495684,2	210675,7
WKBH 110b	KO		Arrêté n°1466-2008/PS	495687,2	210674,7
WKBH 111	KO		Arrêté n°1466-2008/PS	495585,7	210742,0
WKBH 117	KO		Arrêté n°1466-2008/PS	496356,5	210330,3
WKBH 117a	KO		Arrêté n°1466-2008/PS	496357,5	210330,3
WKBH 117b	KO		Arrêté n°1466-2008/PS	496360,5	210331,4
WKBH 118	KO		Arrêté n°1466-2008/PS	495593,5	210921,1
WKBH 118a	KO		Arrêté n°1466-2008/PS	495590,5	210920,1
WKBH 118b	KO		Arrêté n°1466-2008/PS	495588,5	210919,0
WKBH 112	KO		Arrêté n°1466-2008/PS	496699,6	210601,6
WKBH 112a	КО		Arrêté n°1466-2008/PS	496704,6	210596,6
WKBH 113	KO		Arrêté n°1466-2008/PS	495539,3	211227,6
WKBH 113a	KO		Arrêté n°1466-2008/PS	495540,4	211219,7
WKBH 114	КО	Groupe C	Arrêté n°1466-2008/PS	495881,0	211130,0
WKBH 114a	KO	Suivi de la qualité de	Arrêté n°1466-2008/PS	495879,1	211127,0
WKBH 115	KO	l'eau souterraine près	Arrêté n°1466-2008/PS	496102,6	210903,6
WKBH 115c	KO	de la rivière Kué Ouest	Arrêté n°1466-2008/PS	496100,6	210900,5
WKBH 115b	KO	Ouesi	Arrêté n°1466-2008/PS	496099,6	210898,5
WKBH 116	KO		Arrêté n°1466-2008/PS	496427,0	210701,8
WKBH 116a	КО]	Arrêté n°1466-2008/PS	496424,9	210704,8
WKBH 116b	KO		Arrêté n°1466-2008/PS	496423,9	210706,8
WTBH 9	KO		Arrêté n°1466-2008/PS	496847,6	210476,6
WTBH 11	KO		Arrêté n°1466-2008/PS	496974,2	209199,7
WTBH 11a	KO	Groupe D	Arrêté n°1466-2008/PS	496976,2	209199,7
WKBH 32	KO	Suivi de la qualité de l'eau souterraine dans	Arrêté n°1466-2008/PS	496571,5	211681,9
WK 6-14	Rivière Kadji	les vallées adjacentes	Arrêté n°1466-2008/PS	493803,5	209346,8

De plus, 4 piézomètres ont été installés pour le suivi des eaux souterraines de l'UPM, ils sont présentés dans le Tableau 8.

Tableau 8 : Localisation et description des points de suivi de l'UPM

Nom	Bassin Versant	Type de suivi	Raison d'être	RGN 91 Est	RGN 91 Nord
4-z1	Kwé Nord	Souterrain	Arrêté n°1467- 2008/PS	498045,1	211694
4-z2	Kwé Ouest	Souterrain	Arrêté n°1467- 2008/PS	498003,3	211658,5
4-z4	Kwé Ouest	Souterrain	Arrêté n°1467- 2008/PS	497790,4	211651,0
4-z5	Kwé Ouest	Souterrain	Arrêté n°1467- 2008/PS	497758,5	211493,8

Paramètres analysés et fréquence

Les paramètres analysés et la fréquence d'analyse suivant les piézomètres concernés sont présentés du Tableau 9 au Tableau 11.

Tableau 9 : Paramètres analysés à une fréquence mensuelle pour le suivi des eaux souterraines du secteur Kwé Ouest

Piézomètres : WKBH113, WKBH102, WKBH110						
Fréquence	Analyse					
Continue	Conductivité					
Mensuelle	Sulfates					
Mensuelle	Magnésium					
Mensuelle	Calcium					
Mensuelle	Manganèse					

Tableau 10 : Paramètres analysés à une fréquence semestrielle pour le suivi des eaux souterraines du secteur Kwé Ouest

Piézomètres: WKBH113, WKBH102, WKBH110					
Analyse	Fréquence				
рН	Semestrielle				
Cond	Semestrielle				
Eh	Semestrielle				
O2 Dissous	Semestrielle				
Al	Semestrielle				
As	Semestrielle				
Ca	Semestrielle				
Cl	Semestrielle				
Co	Semestrielle				
Cr	Semestrielle				
Cu	Semestrielle				
Fe	Semestrielle				
HCO3-	Semestrielle				
K	Semestrielle				
MES	Semestrielle				
Mg	Semestrielle				
Na	Semestrielle				
Ni	Semestrielle				
NO2	Semestrielle				
NO3	Semestrielle				
Pb	Semestrielle				
PO4	Semestrielle				
SiO2	Semestrielle				
SO4	Semestrielle				
Zn	Semestrielle				
Mn	Semestrielle				
F	Semestrielle				

Tableau 11 : Paramètres analysés pour le suivi des eaux souterraines de l'unité de préparation du minerai

Piézomètres : 4-z	1, 4-z2, 4-z4, 4-z5
Fréquence	Analyses
Trimestrielle	рН
Trimestrielle	Conductivité
Trimestrielle	DCO
Trimestrielle	Sulfates
Trimestrielle	Chrome VI
Trimestrielle	Calcium
Trimestrielle	Potassium
Trimestrielle	Sodium
Trimestrielle	TA
Trimestrielle	TAC
Trimestrielle	Chlorures
Trimestrielle	HT

Mode opératoire (protocole de mesure)

Les échantillonnages, prélèvements et analyses sont réalisés selon des méthodes de référence normalisées. Le suivi environnemental des eaux porte sur les éléments indicateurs de pollution dans les eaux souterraines.

Le protocole d'échantillonnage des eaux souterraines est basé sur les recommandations des parties 3 et 11 de la norme ISO 5667 relatives à la conservation et la manipulation des échantillons d'eau (partie 3) et à l'échantillonnage des eaux souterraines (partie 11). Le protocole respecte en particulier les recommandations permettant d'assurer la représentativité de l'échantillonnage telle qu'elle est décrite dans la partie 11 de la norme ISO 5667 :

- la purge d'un volume d'eau égal à trois fois le volume compris dans le piézomètre (comprenant l'eau libre dans le tube ouvert et l'eau interstitielle du massif filtrant) ;
- la mesure de la conductivité et du pH de l'eau tout au long de la vidange.

Une exception est faite pour le prélèvement des échantillons destinés à la recherche de traces d'hydrocarbures, qui est effectué avant la purge et en surface par écrémage conformément à la norme ISO 5667.

Les analyses des échantillons sont effectuées par le laboratoire interne de VNC, accrédité ISO 17025 depuis le 2 octobre 2008.

Mesures in situ des paramètres physico-chimiques : elles sont réalisées à l'aide de sondes multiparamètres portables mesurant le pH, la conductivité et la température. Le pH est mesuré in situ selon la norme NF T90 008 et selon les recommandations précisées dans le mode d'emploi de l'appareil de mesure. La conductivité est également mesurée in situ selon la procédure décrite dans le mode d'emploi de l'appareil de mesure.

Les méthodes d'analyse pour les paramètres physico-chimiques en solution sont décrites dans le Tableau 12.

Tableau 12 : Méthode d'analyse pour les paramètres physico-chimiques

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	MES	mg/L	5	GRV02	Dosage des matières en suspension (MES)	NF EN 872 Juin 2005
Interne	рН		-	PH01	Mesure du pH	NF T90-008
Interne	Conductivité	μS/cm	5	CDT01	Mesure de la conductivité	
Interne	CI	mg/L	0.1	ICS01		
Interne	NO3	mg/L	0.2	ICS01	Analyse de 4 ou 6 anions par	
Interne	SO4	mg/L	0.2	ICS01	chromatographie ionique	NF EN ISO
Interne	PO4	mg/L	0.2	ICS01	(chlorure, nitrate, phosphates, sulfate, fluorure et nitrate en	10304-1
Interne	F	mg/L	0.1	ICS01	plus si demandé)	
Interne	NO2	mg/L	0.1	ICS01		
Interne	DCO	mg/L	10	SPE03	Analyse de la DCO	Méthode HACH 8000
Interne	TAC as CaCO3	mg/L	2	TIT11	Titration de l'alcalinité (TA et	
Interne	TA as CaCO3	mg/L	2	TIT11	TAC)	
Interne	CrVI	mg/L	0.01	SPE01	Analyse du chrome VI dissous dans les eaux naturelles et usées	NF T 90-043 Octobre 1988
Interne	Turbidité	NTU	0.1	TUR01	Mesure de la turbidité	
Interne	NH3	mg/L	0.5	SPE05	Dosage de l'ammonium dans les eaux	Méthode HACH 10205
Interne	СОТ	mg/L	0.3	SPE09	Dosage du Carbone Organique Total (COT) dans les eaux	Méthode HACH 10129
Interne	SiO2	mg/L	1 de Si	CAL02	Calcul de SiO2 à partir de Si mesuré par ICP02	
Interne	NT	mg/L	0.5	SPE08	Dosage de l'azote total dans les eaux	Méthode HACH 10071

Les hydrocarbures sont mesurés par le laboratoire VNC selon la norme NF T 90 114.

Les méthodes d'analyse des *métaux* sont indiquées dans le Tableau 13.

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	Al	mg/L	0.1	ICP02		
Interne	As	mg/L	0.1	ICP02		
Interne	Ca	mg/L	1	ICP02		
Interne	Cd	mg/L	0.01	ICP02		
Interne	Co	mg/L	0.01	ICP02		
Interne	Cr	mg/L	0.01	ICP02		
Interne	Cu	mg/L	0.01	ICP02		
Interne	Fe	mg/L	0.1	ICP02	Analyse d'une	
Interne	K	mg/L	0.1	ICP02	cinquantaine d'éléments dissous ou totaux (si	
Interne	Mg	mg/L	0.1	ICP02	demandé) dans les	ISO 11885 Août 2007
Interne	Mn	mg/L	0.01	ICP02	solutions aqueuses faiblement concentrées	71041 2007
Interne	Na	mg/L	1	ICP02	par ICP-AES	
Interne	Ni	mg/L	0.01	ICP02		
Interne	Р	mg/L	0.1	ICP02		
Interne	Pb	mg/L	0.01	ICP02		
Interne	S	mg/L	1	ICP02		
Interne	Si	mg/L	1	ICP02		
Interne	Sn	mg/L	0.01	ICP02		
Interne	Zn	mg/L	0.1	ICP02		

Tableau 13 : Méthodes d'analyse pour les métaux

Exploitation du parc à résidus de la Kué Ouest

L'arrêté N° 1466-2008/PS du 9 octobre 2008 impose le respect des seuils indiqués dans le Tableau 14 pour la composition des eaux souterraines, ainsi que des valeurs guides inspirées de l'arrêté ministériel métropolitain du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine.

Tableau 14 : Valeurs réglementaires de selon l'arrêté n° 1466-2008/PS

Paramètre	Valeurs seuil
Conductivité	1000 μS/cm
Sulfates	150 mg/L
Manganèse	1 mg/L

Aucun seuil réglementaire de qualité des eaux souterraines n'est imposé dans l'arrêté N° 1467-2008/PS du 9 octobre 2008 pour le suivi de l'impact de l'activité de l'unité de préparation du minerai.

4.2 RESEAUX D'AMELIORATION DE LA CONNAISSANCE

Les réseaux d'amélioration de la connaissance portent sur les thématiques suivantes :

- climatologie ;
- hydrologie ;
- hydrogéologie.

4.2.1 Climatologie

Pièces graphiques – Carte D01 – Stations météorologiques installées sur le site de Goro

Huit stations sont présentes sur le site de Goro, dont trois ayant leur activité suspendue. Leurs coordonnées et leur statut sont présentés dans le Tableau 15 ci-dessous.

Tableau 15 : Stations météorologiques suivies par VNC

Numéro station	Station	Long (RGNC91)_Reel	Lat (RGNC91)_Reel	Statut
267	SMAA (Pépinière)	499742,5	214527,1	Suspendu
268	SMAB (Usine Pilote)	493570,4	206728,5	Suspendu
269	SMAC (Plateau KW)	497875,0	211847,6	Suspendu
368	GORO_USINE	493610,4	206767,4	Actuel
366	GORO_ANCIENNE_PEPINIERE	499722,4	214535,6	Actuel
364	GORO_RESIDUS	494032,1	209481,1	Actuel
365	GORO_GISEMENT	501566,4	212330,4	Actuel
367	GORO_MINE	497662,8	211376,5	Actuel

Source : Météo-France, 2012

Ces stations mesurent les différents paramètres ci-dessous :

Tableau 16 : Paramètres mesurés par les stations météorologiques installées sur le site de VNC

Mnémonique	Libellé	Unité	Pas de temps
RR1	Hauteur de précipitations horaire	Millimètres et 1/10	Horaire
Т	Température sous-abri horaire	DEG C et 1/10	Horaire
TN	Température minimale sous abri horaire	DEG C et 1/10	Horaire
TX	Température maximale sous abri horaire	DEG C et 1/10	Horaire
FF	Vitesse du vent horaire	M/S et 1/10	Horaire
DD	Direction du vent à 10 m horaire	Rose de 360	Horaire
FXI	Vitesse du vent instantané maxi horaire	M/S et 1/10	Horaire
DXI	Direction du vent maxi instantané horaire	Rose de 360	Horaire
U	Humidité relative horaire	%	Horaire
UN	Humidité relative mini horaire	%	Horaire
UX	Humidité relative maxi horaire	%	Horaire
GLO	Rayonnement global horaire	Joules / CM2	Horaire

Source : Météo-France, mars 2012

4.2.2 Eaux de surface

4.2.2.1 Acquisition de données limnimétriques et débitmétriques

Objectif

Les mesures limnimétriques et débitmétriques permettent d'obtenir, en certains points du cours d'eau ou de lacs, des mesures de hauteur d'eau et/ou de débit en période de basses, moyennes et hautes eaux. Des mesures manuelles ponctuelles sont effectuées tous les mois et des sondes automatiques sont installées sur la majorité des sections jaugées pour acquérir une connaissance fine des hauteurs d'eau du creek et par extrapolation des débits.

Réseaux d'acquisition de données

Pièces graphiques – Carte D07 – Eaux de surface : réseau d'acquisition de données limnimétriques et débitmétriques

Ce réseau est constitué par 22 stations en rivière et 6 stations déployées sur les lacs et dolines. Les différents points sont présentés dans le Tableau 17.

Tableau 17 : Sections de mesures limnimétriques et débitmétriques

Nom	X_RGNC	Y_RGNC	Suivi	Suivi continu
Kué Binyi	503247	215603	rivière sur section naturelle	OUI
Kué Nord (KN18)	499411	212450	rivière sur section naturelle	NON (jaugeage mensuel uniquement)
Déversoir_BSKN (Kwé Nord)	498885	211198	rivière sur déversoir rectangulaire	OUI
CPKE_05 (Kwé Est)	499067	211016	rivière sur seuil en V	OUI
CCS (Creek de la crête Sud)	499348	210409	rivière sur section naturelle	OUI
Entonnoir	502880	211428	rivière sur section naturelle	OUI
Source_Truu	501934	209806	source sur section naturelle	OUI
Captage_Truu	502676	209085	source sur section naturelle	OUI
Radier_Truu	503174	208768	rivière sur section naturelle	OUI
Wajana_radier	503581	212268	rivière sur section naturelle	OUI
Wajana_tribu	504431	211804	rivière sur section naturelle	NON (jaugeage mensuel uniquement)
Kadji1	490524	209403	rivière sur section naturelle	OUI
Kadji2	490645	209401	rivière sur section naturelle	OUI
Amont_Kué ouest	497003	210666	rivière sur section naturelle	NON (jaugeage mensuel uniquement)
Aval_Kué ouest	497310	210662	rivière sur section naturelle	NON (jaugeage mensuel uniquement)
Confluence_KO5-KO	497425	210876	rivière sur section naturelle	NON (jaugeage mensuel uniquement)

Nom	X_RGNC	Y_RGNC	Suivi	Suivi continu
Trou Bleu	499129	207012	rivière sur section naturelle	OUI
KOL (Kwé Ouest)	496889	210601	rivière sur section naturelle	OUI
KO-amont-conf-KN	498693	210945	rivière sur section naturelle	NON (jaugeage mensuel uniquement)
KAL (Kwé principale)	499182	210420	rivière sur section naturelle	OUI
KO5	497291	211055	rivière sur seuil en V	OUI
KN1	498762	211739	rivière sur seuil en V	OUI
Le Trou	498848	214463	Doline	OUI
Lac Goro Sud	500137	212400	lac	OUI
Lac Robert	502188	211979	lac	OUI
Lac Were Wapo	501910	212485	lac	OUI
Grand Lac	494131	214468	lac	OUI
Lac en huit	491084	214390	lac	OUI

Mode opératoire (protocole de mesures)

Lors de chaque prestation mensuelle les opérations suivantes sont réalisées :

- double lecture manuelle des niveaux d'eau sur l'échelle limnimétrique ;
- jaugeage réalisé hors influence de crue et de décrue ;
- photos en amont et en aval de la section avec le décamètre posé afin de décrire les conditions d'écoulement ;
- prise des points GPS de chacune des sections ;
- contrôle visuel de l'état physique des seuils, du matériel en place (sonde, échelle limnimétrique) et des conditions d'écoulement ;
- contrôle de la dérive des équipements de mesure, de leur niveau de batterie, leur horloge et leur espace mémoire disponible ;
- contrôle de la station limnimétrique ;
- rédaction d'un compte rendu synthétisant toutes les informations du déroulement de la mission.

4.2.2.2 Campagnes de jaugeage différentiel

Objectif

L'objectif des campagnes de jaugeage différentiel est de caractériser les relations entre les nappes et les rivières (localisation, qualification et quantification des éventuels échanges d'eau) en périodes de hautes, moyennes et basses eaux.

Réseaux d'acquisition de données

Se référer à l'ANNEXE D1 : Localisation des sections de jaugeage différentiel

120 points sont suivis au total lors des campagnes de jaugeage différentiel. Le Tableau 18 cidessous présente par bassin les caractéristiques de ce réseau d'acquisition de données.

Tableau 18 : Synthèse des caractéristiques du réseau de jaugeage différentiel

Rivières/bassins versants	Superficie des BV (ha)	Nombre de points de mesure	Fréquence des mesures	Paramètres mesurés
Kwé Nord	884,0	19	Trimestrielle	Débit (m ³ /s)
Kwé Est	348,04	8	Trimestrielle	Débit (m ³ /s)
Creek de la crête Sud	138,45	4	Trimestrielle	Débit (m ³ /s)
Truu	327,02	9	Trimestrielle	Débit (m³/s)
Cascade	204,69	6	Trimestrielle	Débit (m³/s)
Entonnoir	109,61	1	Trimestrielle	Débit (m³/s)
Wajana	359,01	4	Trimestrielle	Débit (m³/s)
Kué Binyi	3189,12	12	Trimestrielle	Débit (m³/s)
KN1	227,51	6	Trimestrielle	Débit (m³/s)
KO5	338,17	7	Trimestrielle	Débit (m³/s)
Kwé Ouest	232,56	6	Trimestrielle	Débit (m³/s)
Kwé Principale	573,76	1	Trimestrielle	Débit (m³/s)
Creek de la Plaine des Lacs	155,92	10	Trimestrielle	Débit (m³/s)
Portion de Kwé Ouest comprise entre le bassin KO4 et la confluence avec la Kwé Nord	661,85	27	Trimestrielle	Débit (m³/s)

Mode opératoire (protocole de mesures)

Lors de chacune des campagnes les opérations suivantes sont effectuées :

- · jaugeage en point par point ;
- photos en amont et en aval de la section afin de décrire les conditions d'écoulement ;
- prise des points GPS de chacune des sections.

Ces opérations sont effectuées hors influence de crue ou de décrue.

4.2.2.3 Acquisition de données relatives à la qualité des eaux de surface

Objectif

La caractérisation hydrochimique des rivières est effectuée au travers de mesures in situ et de prélèvements avec analyses en laboratoire.

L'hydrochimie permet de suivre la distribution et l'évolution des composés chimiques des eaux dans le temps et suivant des conditions hydrologiques différentes (périodes de basses, moyennes et hautes eaux). L'objectif à long terme est de définir des niveaux de référence afin de maintenir ou de restaurer par la suite l'intégrité chimique des écosystèmes.

Réseaux d'acquisition de données

- Pièces graphiques Carte D08 Eaux de surface : réseau d'acquisition de données physicochimiques
- Se référer à l'ANNEXE D2 : Lexique des paramètres physico-chimiques

Des mesures physico-chimiques *in situ* sont réalisées mensuellement sur l'ensemble des stations limnimétriques (cf. points du Tableau 17 et .

Tableau 19 : Synthèse des caractéristiques du réseau d'acquisition de données relatives à la qualité des eaux de surface

Rivière/bassin versant	Nombre de points	Fréquence des mesures	Paramètres mesurés	Type de mesure
	19	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Kwé Nord	2	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	2	Mensuelle	pH, conductivité, température	in-situ
	8	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Kwé Est	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	4	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Creek de la crête Sud	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	9	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Truu	3	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	3	Mensuelle	pH, conductivité, température	in-situ
Cascade	6	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
	1	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Entonnoir	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	4	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Wajana	2	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	2	Mensuelle	pH, conductivité, température	in-situ
Kué Binyi	12	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ

Rivière/bassin versant	Nombre de points	Fréquence des mesures	Paramètres mesurés	Type de mesure
	1	Tri-annuelle	CO3, HCO3, F, Cl, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4 , Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	1	Mensuelle	pH, conductivité, température	in-situ
Trou Bleu	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4 , AI, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
Lac en huit, Grand Lac, lac Goro Sud, Xere Wapo et lac Robert	1 station par lac	Mensuelle	pH, conductivité, température	in-situ
IZNIA	6	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
KN1	1	Tri-annuelle	CO3, HCO3, F, Cl, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
KOE	7	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
KO5	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, AI, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
Kwé Ouest	6	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
	3	Mensuelle	pH, conductivité, température	in-situ
Kwé Principale	1	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Portion de Kwé Ouest comprise	27	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
entre le bassin KO4 et la confluence avec la Kwé Nord	1	Mensuelle	pH, conductivité, température	in-situ

⁾ et trois fois par an sur l'ensemble des sections intégrées dans les campagnes de jaugeages différentiels.

Sur l'ensemble des stations limnimétriques, des échantillons d'eau sont également prélevés pour être analysés en laboratoire. La fréquence d'échantillonnage est tri-annuelle.

Le.

Tableau 19 : Synthèse des caractéristiques du réseau d'acquisition de données relatives à la qualité des eaux de surface

Rivière/bassin versant	Nombre de points	Fréquence des mesures	Paramètres mesurés	Type de mesure
	19	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Kwé Nord	2	Tri-annuelle	CO3, HCO3, F, Cl, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	2	Mensuelle	pH, conductivité, température	in-situ

Rivière/bassin versant	Nombre de points	Fréquence des mesures	Paramètres mesurés	Type de mesure
	8	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Kwé Est	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	4	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Creek de la crête Sud	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	9	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Truu	3	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4 , Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	3	Mensuelle	pH, conductivité, température	in-situ
Cascade	6	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
	1	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Entonnoir	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	4	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Wajana	2	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	2	Mensuelle	pH, conductivité, température	in-situ
	12	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Kué Binyi	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	1	Mensuelle	pH, conductivité, température	in-situ
Trou Bleu	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, AI, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
Lac en huit, Grand Lac, lac Goro Sud, Xere Wapo et lac Robert	1 station par lac	Mensuelle	pH, conductivité, température	in-situ
1014	6	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
KN1	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
1/05	7	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
KO5	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4 , Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire

Rivière/bassin versant	Nombre de points	Fréquence des mesures	Paramètres mesurés	Type de mesure
Kwé Ouest	6	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
3	3	Mensuelle	pH, conductivité, température	in-situ
Kwé Principale	1	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Portion de Kwé Ouest comprise	27	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
entre le bassin KO4 et la confluence avec la Kwé Nord	1	Mensuelle	pH, conductivité, température	in-situ

ci-dessous synthétise les différentes caractéristiques de ce réseau d'acquisition de données physico-chimiques.

Tableau 19 : Synthèse des caractéristiques du réseau d'acquisition de données relatives à la qualité des eaux de surface

Rivière/bassin versant	Nombre de points	Fréquence des mesures	Paramètres mesurés	Type de mesure
	19	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Kwé Nord	2	Tri-annuelle	CO3, HCO3, F, Cl, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	2	Mensuelle	pH, conductivité, température	in-situ
	8	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Kwé Est	1	Tri-annuelle	CO3, HCO3, F, Cl, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
Creek de la crête ' Sud	4	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
	1	Tri-annuelle	CO3, HCO3, F, Cl, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	9	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Truu	3	Tri-annuelle	CO3, HCO3, F, Cl, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	3	Mensuelle	pH, conductivité, température	in-situ
Cascade	6	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
	1	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Entonnoir	1	Tri-annuelle	CO3, HCO3, F, Cl, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
Wajana	4	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ

Rivière/bassin versant	Nombre de points	Fréquence des mesures	Paramètres mesurés	Type de mesure
	2	Tri-annuelle	CO3, HCO3, F, Cl, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, Al, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	2	Mensuelle	pH, conductivité, température	in-situ
	12	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Kué Binyi	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, AI, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
	1	Mensuelle	pH, conductivité, température	in-situ
	1	Mensuelle	pH, conductivité, température	in-situ
Trou Bleu	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, AI, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
Lac en huit, Grand Lac, lac Goro Sud, Xere Wapo et lac Robert	1 station par lac	Mensuelle	pH, conductivité, température	in-situ
IZNIA	6	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
KN1	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, AI, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
1/05	7	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
KO5	1	Tri-annuelle	CO3, HCO3, F, CI, SO4, NO2, NO3 et PO4, Na, K, Ca, Mg, et NH4, AI, Cr, Cr VI, Fe et Mn, SiO2	laboratoire
Kwé Ouest	6	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
	3	Mensuelle	pH, conductivité, température	in-situ
Kwé Principale	1	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
Portion de Kwé Ouest comprise	27	Tri-annuelle	pH, conductivité, température, eH, oxygène dissous	in-situ
entre le bassin KO4 et la confluence avec la Kwé Nord	1	Mensuelle	pH, conductivité, température	in-situ

Mode opératoire (protocole de mesures)

Une double mesure manuelle des paramètres physico-chimiques est effectuée par 2 opérateurs différents à l'aide d'une sonde multi-paramètres portative. Les sondes sont placées dans le lit du cours d'eau, dans un endroit assez calme où le courant n'est pas fort afin d'éviter que les mesures ne soient perturbées. Une fois les mesures stabilisées les valeurs des paramètres physico-chimiques sont relevées et consignées sur la fiche de terrain.

Les prélèvements d'eau sont réalisés au milieu de la section d'eau. Les flacons à échantillonnage sont préalablement rincés trois fois dans le lit du cours d'eau avant qu'un échantillon final soit collecté. Les échantillons sont ensuite analysés par un laboratoire d'analyse agréé et ceux prélevés au niveau du réseau volontaire du creek de la Baie Nord sont analysés par le laboratoire de VNC.

4.2.3 Eaux souterraines

4.2.3.1 Acquisition de données piézométriques

Objectif

Le suivi de nombreux piézomètres sur les différents secteurs d'études permet d'obtenir une vision du fonctionnement hydrogéologique à l'échelle régionale. La majorité des piézomètres est équipée de sondes qui enregistrent automatiquement, suivant le modèle utilisé, la pression, la température, la hauteur d'eau, la conductivité, la salinité.

Réseaux d'acquisition de données

- Pièces graphiques Carte D09 Réseau d'acquisition de données piézométriques
- Se référer à l'ANNEXE D3 : Piézomètres suivis sur les différents secteurs d'étude

De nombreux piézomètres sont implantés sur les différents secteurs d'étude, généralement répartis par plate-forme. Chaque plate-forme est constituée de :

- 1 piézomètre environnemental long (PEL) implanté dans l'aquifère saprolitique;
- 1 piézomètre environnemental court (PEC) implanté dans l'aquitard latéritique.

Il convient de noter qu'il existe également des plateformes avec 1 seul piézomètre généralement implanté dans l'aquifère saprolitique.

Le Tableau 20 ci-dessous présente les réseaux de suivi piézométrique et les différents équipements associés.

Tableau 20 : Synthèse des caractéristiques du réseau d'acquisition de données piézométriques

Secteur	Nombre de piézomètres	% d'ouvrage équipés de sondes de mesure automatique
Bassin de la Kwé (Kwé Nord, Kwé Ouest et, Kwé Est)	310	55%
Secteur Nord (Plaine des lacs)	45	71%
Secteur Est (Bassins de la Wajana, d'Entonnoir et de Cascade)	22	50%
Secteur Ouest (Bassins de la rivière Kaori, et de la rivière Kadji)	8	62%
Secteur Sud (Port Boisé) dont bassins du creek de la crête Sud , de la rivière Truu et de la rivièreTrou Bleu)	14	93%
Total	399	-

Mode opératoire (protocole de mesures)

Chaque mois une double mesure des niveaux piézométriques est effectuée à l'aide d'une sonde piézométrique manuelle par deux opérateurs différents. Ce processus est répété autant de fois que nécessaire jusqu'à ce que les 2 valeurs mesurées soient identiques. Les valeurs sont notées afin d'être bancarisées.

Pour les piézomètres équipés de sondes des mesures complémentaires sont effectuées. L'état du piézomètre et des sondes est contrôlé et tout problème est noté et retranscrit dans un registre de suivi. L'ensemble des sondes installées est déchargé sur un pocket-PC et les données sont vérifiées. Un contrôle de la dérive de l'appareil est également fait sur le terrain et au bureau. Les niveaux de batterie et d'espace mémoire disponibles sont également vérifiés.

4.2.3.2 Acquisition de données relatives à la qualité des eaux souterraines

Objectif

Comme pour les eaux de surface le suivi de la qualité des eaux souterraines permet de définir des niveaux de référence et de maintenir, ou de restaurer à long terme la qualité chimique du milieu.

Réseaux d'acquisition de données

Pièces graphiques – Carte D10 – Réseau d'acquisition de données relatives à la qualité physicochimique des eaux souterraines

Le suivi de la qualité des eaux souterraines s'effectue 3 fois par an.

Comme pour les rivières, la caractérisation hydrochimique des nappes souterraines permet de suivre la distribution et l'évolution des composés chimiques des eaux. Les mesures se font *in situ*, puis *ex situ* en laboratoire. Elles permettent de vérifier la validité des données, les mesures *in situ* étant considérées comme valeurs de référence. Elles se font à la fois sur les piézomètres implantés dans l'aquitard latéritique et sur de l'aquifère saprolitique.

Le nombre de piézomètres impliqués dans ce réseau de caractérisation chimiques des eaux souterraines fluctue au cours du temps. Il est de l'ordre de 100 à 120 ouvrages selon les années ce qui représente en moyenne 30% du réseau de suivi piézométrique.

Les paramètres mesurés in-situ ou analysés en laboratoire sont les suivants :

- paramètres in-situ : pH, conductivité, température, eH, oxygène dissous ;
- éléments chimiques analysés : CO₃, HCO₃, F, CI, SO₄, NO₂, NO₃ et PO₄, Na, K, Ca, Mg, et NH₄, AI, Cr, Cr VI, Fe et Mn, SiO₂.

Mode opératoire (protocole de mesures)

Dans le cadre de la caractérisation hydrochimique des nappes, un système de pompe permet de remonter l'eau contenue dans les piézomètres puis de la déverser dans un seau. Comme en rivière, les sondes sont plongées dans l'eau et la lecture se fait lors de la stabilisation des différents paramètres. Les prélèvements sont réalisés une fois que la conductivité est stable. Les échantillons sont ensuite analysés par des laboratoires d'analyses agréés (Ces analyses ne sont donc pas réalisées par le laboratoire de VNC).

4.3 CONTROLE QUALITE ET DEMARCHE DE NORMALISATION

La société VNC s'est engagée dans une démarche de contrôle qualité et de normalisation afin de s'assurer, pour les différents suivis, de la validité des données recueillies et de leur niveau de cohérence. Ce contrôle passe par plusieurs étapes décrites ci-après.

4.3.1 Matériel utilisé

Les mesures de vérification suivantes sont appliquées :

- le bon fonctionnement et le bon étalonnage des appareils de mesure est vérifié immédiatement avant et après chaque campagne ;
- des fiches de vie des stations et des appareils de mesures sont réalisées et mises à jour après chaque mission.

4.3.2 Analyses chimiques

Les mesures de vérification suivantes sont appliquées :

- les balances ioniques de chaque analyse chimique sont calculées ; elles sont considérées comme bonnes si leur pourcentage est inférieur à +/- 5 % pour les échantillons dont la conductivité électrique est supérieure à 250 μ S/cm.et inférieur à +/- 12% pour les échantillons dont la conductivité électrique est inférieure à 250 μ S/cm. En cas de résultat non équilibré une nouvelle analyse est effectuée ;
- les normes d'analyses suivantes servent de référence (Tableau 21) :

Tableau 21 : Paramètres analysés et méthodes de référence à respecter

Paramètre	Méthode de référence	
Débit	-	
Température	-	
рН	NF T 90 008	
Conductivité	NF EN 27888	
Azote global	NF EN ISO 25663, 10304, 13395, 26777 et FD T 90 045	
Phosphore total	NF EN 1189 ; ISO 11 885	
Sulfates	ISO 10304-1 ; ISO 10304-2 ; NF T 90-009 ; NF T 90-040	
Arsenic	FD T 90-119 ; ISO 11969 ; NF EN 26 595 ; ISO 11885	
Chrome hexavalent et composés (en Cr6+)	NF T 90-043	
Chrome et composés (en Cr)	NF EN 1233, FD T 90 112, FD T 90 119, ISO 11885	
Plomb et composés (en Pb)	NF T 90 027, FD T 90 112, FD T 90 119, ISO 11 885	
Cuivre et composés (en Cu)	NF T 90 022, FD T 90 112, FD T 90 119, ISO 11 885	
Nickel et composés (en Ni)	FD T 90 112, FD T 90 119, ISO 11 885	
Zinc et composés (en Zn)	FD T 90 112, ISO 11 885	
Manganèse et composés (en Mn)	NF T 90 024, FD T 90 112, FD T 90 119, ISO 11 885	
Étain et composés (en Sn)	FD T 90 119, ISO 11 885	
Fer, aluminium et composés (en Al+Fe)	NF T 90 017, FD T 90 112, FD T 90 119, ASTM 8.57.79, ISO 11 885	
Cobalt et composés (en Co)	FD T 90 112, FD T 90 119, ISO 11 885	
Magnésium et composés (en Mg)	NF T 90 005, ISO 11 885	
Calcium et composés (en Ca)	NF T 90 005, ISO 11 885 ; NF T 90-016	
Silicium et composés (en Si	ISO 11 885	
Mercure et composés, y compris méthylmercure (en Hg)	NF T 90 131, NF T 90 113, NF EN 1483	
Cadmium	FD T 90 112, FD T 90 119, ISO 11885	

Source: VNC, 2010c

Les échantillonnages et les prélèvements sont réalisés conformément aux méthodes de référence indiquées dans le tableau ci-dessous :

Tableau 22 : Méthodes de référence utilisées

Paramètre Paramètre	Méthode de référence
Etablissement des programmes d'échantillonnage	NF EN 25667-1
Techniques d'échantillonnage	NF EN 25667-2
Conservation et manipulation des échantillons	NF EN ISO 5667-3

4.3.3 Suivis limnimétriques et débitmétriques

Des courbes de tarage sont réalisées, mises à jour et révisées le cas échéant.

4.3.4 Contrôle des mesures automatiques

Afin de fonder les interprétations sur des données valides et fiables, un traitement particulier des données est exigé lors du suivi des sondes. Ce travail est demandé aussi bien pour les sondes installées dans les cours d'eau que pour celles des piézomètres. Une cohérence entre les mesures manuelles et les mesures automatiques doit être assurée et tout comportement anormal ou déviant doit être justifié. Une procédure QAQC (Quality Assurance/Quality Control) a été mise en place et s'appuie sur le SANDRE français (Service d'administration nationale des données et référentiels sur l'eau). Celui-ci définit quatre niveaux de validation pour un contrôle correct des mesures :

- **Niveau 0** : données brutes issues du processus d'acquisition et n'ayant subi aucun examen (directement issues de l'appareil de mesure).
- **Niveau 1** : données ayant subi 1 ou plusieurs contrôles (au bureau, par une personne physique ou un système expert) en fonction du contexte de la mesure.
- **Niveau 2** : données ayant subi un contrôle par comparaison avec une mesure manuelle sur le terrain (contrôle de la chaîne d'acquisition avec correction des dérives).
- **Niveau 3** : données mise en perspective. La valeur a été utilisée dans un rapport ou valorisée. Cette mise en perspective de l'information permet de consolider son niveau de validité et de détecter les dernières erreurs.

En complément des divers contrôles effectués selon les niveaux de validation, chaque donnée est codifiée suivant la nomenclature SANDRE, qui permet une codification commune des données sur l'eau. Ainsi, une valeur sera déclarée :

- «Correcte» («c») lorsqu'elle est estimée valide au stade de validation indiqué dans l'information « statut de donnée » et compte tenu de la finalité recherchée ;
- «<u>Incertaine</u>» («ince») si la validité de la donnée reste douteuse au stade de validation indiqué dans l'information «statut de donnée». Dans la mesure du possible la qualification «douteuse» doit être une étape transitoire de la validation de la donnée et doit être réservée à des avancements intermédiaires de la validation ;
- «<u>Incorrecte</u>» («inco») lorsqu'elle est estimée erronée au stade de validation indiqué dans l'information «statut de donnée» et compte tenu de la finalité recherchée ;
- «<u>Non qualifiée</u>» lorsque l'état initial de la mesure n'a subi aucun audit ou aucune interprétation du producteur de données en vue de sa validation ;
- «<u>Qualification non définissable</u>» lorsque le producteur est dans l'impossibilité d'obtenir les informations nécessaires pour évaluer la conformité de la donnée.

4.4 SUIVI HYDROBIOLOGIQUE

- Source : Extrait du Rapport intitulé Etude de suivi ichtyologique et carcinologique du Creek de la Baie Nord, la Kué et la Kué Bini Campagne de janvier 2011 (Erbio, 2011).
- Source : Extrait du Rapport intitulé Vale Nouvelle-Calédonie, 2013. Suivi environnemental Rapport annuel 2013 Eaux douces de surface

Objectif

Le suivi hydrobiologique des cours d'eau permet de garantir un diagnostic fiable de la fonction biologique des milieux aquatiques, de prendre en considération l'impact du projet minier sur ces milieux et d'en limiter les effets. Le suivi hydrobiologique comprend 2 types de suivi :

- le suivi des macro-invertébrés ;
- le suivi de la faune ichthyenne et carcinologique.

Réseaux de suivi

Pièces graphiques – Carte D11 – Stations de suivi hydrobiologique

9 stations sont choisies pour le suivi des macro-invertébrés et 12 pour le suivi des faunes ichtyennes (poissons) et carcinologiques (crevettes). Celles-ci sont présentes sur les cours d'eau de la Kwé, la Kadji, la Kuebini et Trou Bleu. Les différents points de suivi sont présentés dans le Tableau 23 et Tableau 24 ci-dessous.

Tableau 23 : Localisation et description des points de suivi pour l'IBNC

Nom	Bassin Versant	Type de suivi	Fréquence*	Raison d'être	RGNC 91 Est	RGNC 91 Nord
4-M	KN	Macro-Invertébré	А	Arrêté n°1467-2008/PS	498889,4	211632,5
4-N	КО	Macro-Invertébré	А	Arrêté n°1467-2008/PS	497415,6	210891,5
1-E	KP	Macro-Invertébré	S	Arrêté n°1467-2008/PS	500042,1	208314,8
3-B	КО	Macro-Invertébré	S	Arrêté n°1467-2008/PS	496478,1	210820,1
3-C	ТВ	Macro-Invertébré	Т	Mesure compensatoire	499124	206972
KE-05	KE	Macro-Invertébré	А	Arrêté n°2853-2014/ARR/DENV	499041	211014
KO5-10-I	KO5	Macro-Invertébré	А	Arrêté n°1172-2013/ARR/DENV	496606	212760
KO5-20-I	KO5	Macro-Invertébré	А	Arrêté n°1172-2013/ARR/DENV	496730	212060
KO5-50-I	KO5	Macro-Invertébré	А	Arrêté n°1172-2013/ARR/DENV	495534	211259

^{*} M : Mensuel, T : Trimestriel, S : Semestriel, A : Annuel

Source: Erbio, 2011

Tableau 24 : Localisation des points de suivi pour le suivi de la faune ichtyologique

Nom	Bassin Versant	Type de suivi	Fréquence	Raison d'être	RGNC 91 Est	RGNC 91 Nord
TBL-50	ТВ	Suivi poisson	Tous les 2 ans	Convention biodiversité	499477.5	207400.8
TBL-70	ТВ	Suivi poisson	Tous les 2 ans	Convention biodiversité	499469	207313.8
KO-20	КО	Suivi poisson	Annuelle	Convention biodiversité	496909	210585
KO5-20-P	KE	Suivi poisson	Annuelle	Arrêté n°1172- 2013/ARR/DENV	496824	212114
KWP-10	KP	Suivi poisson	Annuelle	Convention biodiversité	499313.6	210881.4
KWP-70	KP	Suivi poisson	Annuelle	Convention biodiversité	501310	208180.4
KUB-50	Kuébini	Suivi poisson	Semestrielle	Mesure Compensatoire	502032	215188
KUB-40	Kuébini	Suivi poisson	Semestrielle	Mesure Compensatoire	501028	214810
KUB-60	Kuébini	Suivi poisson	Semestrielle	Mesure Compensatoire	503117	215400
WAD-40	Wajana	Suivi poisson	Tous les 2 ans	Mesure Compensatoire	503211	212009
WAD-50	Wajana	Suivi poisson	Tous les 2 ans	Mesure Compensatoire	503552	211740
WAD-70	Wajana	Suivi poisson	Tous les 2 ans	Mesure Compensatoire	504070	211496

Un inventaire faunistique des zones humides a été mené en 2010 sur 6 plans d'eau présents dans l'emprise de la mine à 5 ans (ancien projet), le tableau suivant présente le positionnement des stations (Erbio, 2010).

Tableau 25 : Coordonnées des stations d'inventaire faunistique des zones humides

Station	X (IGN 72)	Y (IGN 72)
ZH-01	702868	7533537
ZH-02	703645	7533065
ZH-03	703515	7532763
ZH-04	703358	7532704
ZH-05	702489	7532806
ZH-06	702276	7532870

Source : Aquaterra, août 2011

Mode opératoire (protocole de mesures)

Le suivi hydrobiologique des rivières de la région du projet VNC est réalisé selon la méthode de l'indice biotique de la Nouvelle-Calédonie (IBNC) développée par N. Mary (1999).

L'IBNC est une méthode biologique d'évaluation de la qualité de l'eau des rivières qui se fonde sur le constat que des animaux ou des végétaux présentant des sensibilités différentes face à certains facteurs environnementaux coexistent dans les mêmes milieux aquatiques. En cas de variation de ces facteurs les organismes les plus sensibles, ou bio-indicateurs, régressent au profit des plus résistants. L'IBNC dans sa forme actuelle n'est cependant pertinent que si les campagnes de mesure sont réalisées en dehors des périodes de fortes précipitations.

L'IBNC repose sur une liste de 66 taxa intégrateurs de la pollution. L'intérêt de cet indice est de détecter des pollutions de type organique. Il est établi selon la formule suivante :

$$IBNC = \frac{1}{n} \sum_{i=1}^{i=n} s_i$$

n: nombre de taxa intégrateurs

Si: score du taxon i

En fonction de la valeur de l'indice on attribue une classe de qualité écologique au cours d'eau (Tableau 26).

Tableau 26 : Indice biotique de Nouvelle-Calédonie

Valeur de l'IBNC	Qualité
6,51 ≤ IBNC	Excellente
5,51 ≤ IBNC < 6,51	Bonne
4,51 ≤ IBNC < 5,51	Passable
3,51 ≤ IBNC < 4, 51	Mauvaise
IBNC < 3, 51	Très mauvaise

Ce même auteur a également mis en place l'indice bio-sédimentaire (IBS), qui n'est pour l'instant pas validé par les autorités locales. Il permet de qualifier la qualité d'un milieu face à des altérations sédimentaires. C'est un indice variant de 1 à 10, basé sur une liste de 56 taxa intégrateurs de la pollution, dont l'intérêt est de détecter des pollutions de type sédimentaire, notamment celle provoquée par les particules fines issues de sols latéritiques. Il est établi selon la formule suivante :

$$IBS = \frac{1}{n} \sum_{i=1}^{i=n} s_i$$

n: nombre de taxa indicateur

Si: score du taxon i

En fonction de la valeur de l'indice on attribue une classe de qualité écologique au cours d'eau (Tableau 27).

Tableau 27 : IBS : Indice bio-sédimentaire de Nouvelle-Calédonie

Valeur de l'IBS	Qualité
6,50 ≤ IBS	Excellente
5,75 ≤ IBS < 6,50	Bonne
5 ≤ IBS < 5,75	Passable
4,25 ≤ IBS < 5	Mauvaise
IBS < 4,25	Très mauvaise

La méthode d'échantillonnage pour le suivi de la faune ichtyologique est la pêche électrique. Elle est réalisée conformément à la norme NF EN 14011 de juillet 2003. La méthode d'interprétation des populations de poissons est basée sur différents indicateurs. Les caractéristiques mésologiques (type de milieu et physico-chimie) sont retranscrites lors de chaque campagne. L'inventaire faunistique porte sur les poissons et la faune carcinologique (crustacés).