

LIVRET D – GESTION ET PROTECTION DES EAUX SUPERFICIELLES ET SOUTERRAINES

Commune de Yaté et du Mont-Dore Nouvelle-Calédonie

Volet C - Cadre hydrologique et hydrogéologique régional

REDACTION	Vale Nouvelle-Calédonie SAS	Sandrine LE CLERC Jean-Luc FOLIO Christelle RENDU	
VERIFICATION	Vale Nouvelle-Calédonie SAS	Tanguy GIBAND	
APPROBATION	Vale Nouvelle-Calédonie SAS	David CHIRON Daryush KHOSHNEVISS	

SOMMAIRE

3	CADRE	HYDROLOGIQUE ET HYDROGEOLOGIQUE REGIONAL	1
	3.1 Eau	x de surface	2
	3.1.1	Description des bassins versants	2
		Réseau hydrographique	
		Les régimes hydrologiques	
		x souterraines	
	3.2.1	Contexte géologique	7
		Les unités hydrogéologiques	
	3.2.2.1	Les unités hydrogéologiques du manteau d'altération	
	3.2.2.2		
	3.2.3	Modalités d'écoulement des eaux souterraines	. 13
	3.2.4	Fonctionnement hydrogéologique du manteau d'altération	. 13
	3.2.5	Fonctionnement hydrogéologique des chaînons rocheux	. 17
	3.2.6	Fonctionnement hydrogéologique des failles	. 19
	3.2.7	Fonctionnement hydrogéologique des systémes pseudo-karstiques	. 19
	3.2.7.1		
	3.2.7.2		
		carbonatées	
	3.2.7.3	Conditions nécessaires au développement de systèmes karstiques dans le Massif du Sud – probabilité d'existence	
	3.2.7.4		.22
	3.2.7.5	Proposition d'une typologie des pseudo-karsts dans le Massif du Sud	.23
	3.2.7.6		
	3.2.7.7		
	3.2.7.8		
	3.2.8	Synthèse sur le fonctionnement hydrogéologique du Massif du Sud	28
	3.2.8.1		.28
	3.2.8.2	Relations entre les rivières et les eaux souterraines	30
	3.2.8.3		
	3.2.8.4	, , , , , , , , , , , , , , , , , , , ,	
	3.2.8.5	Rôle hydrogéologique des failles	31

FIGURES

Figure 1	:	Records mondiaux de crues et crues calédoniennes	6
Figure 2	:	Successions stratigraphiques simplifiées rencontrées dans différents secteurs du site de Goro	8
Figure 3	: Un	ités hydrogéologiques dans le contexte de Goro	. 10
Figure 4	:	Modèle conceptuel géologique d'un chaînon rocheux	. 12
Figure 5	:	Modèle conceptuel d'altération à l'échelle locale – direction et sens des écoulements souterrains : cas général	. 15
Figure 6	:	Modèle conceptuel d'altération à l'échelle locale – direction et sens des écoulements souterrains : contexte de fortes pluies	. 16
Figure 7	:	Modèle conceptuel hydrogéologique d'un chaînon rocheux	. 18
Figure 8	:	Evolution des conduits karstiques en milieu carbonaté	. 21
Figure 9	:	Modèle conceptuel de fonctionnement d'un systéme pseudokarstique de chaînon rocheux	. 25
Figure 10) :	Modèle conceptuel hydrogéologique à l'échelle régionale	. 29
Figure 11	:	Représentation schématique des interactions possibles entre une rivière et la nappe	. 30
Figure 12	2 :	Représentation schématique des interactions possibles entre un lac et la nappe	. 31

TABLEAUX

l ableau 1 :	Caractéristiques des principaux bassins versants du projet d'exploitation minière	3
Tableau 2 :	Episodes remarquables de crues en Nouvelle-Calédonie	6

CADRE HYDROLOGIQUE ET HYDROGEOLOGIQUE REGIONAL

L'extrémité sud de la Nouvelle-Calédonie est constituée par un socle rocheux de péridotites sur lequel repose un manteau d'altération plus ou moins épais. Cet ensemble est organisé en une succession de plateaux et de bassins d'altitude décroissante du nord-ouest vers le sud-est, généralement bien individualisés par une série de crêtes rocheuses (encore appelés chaînons rocheux).

Il s'agit de la zone la plus arrosée de Nouvelle-Calédonie. Le chevelu de rivières et de creeks y est bien développé et incise plus ou moins profondément les plateaux et bassins. Dans les vallées les plus profondes, les rivières drainent les nappes d'eau souterraine qui vont ainsi soutenir les débits notamment en saison sèche.

Les petits bassins versants ont généralement une forme arrondie tandis que les plus grands ont tendance à s'allonger selon les 2 principales directions structurales de la Nouvelle-Calédonie. Le développement du réseau de rivières et de creeks est également guidé par les grandes failles qui structurent le Massif du Sud.

Ce massif est caractérisé par l'existence de nombreuses dépressions topographiques de toutes tailles qui présentent souvent un caractère endoréique. Ces dépressions constituent un ensemble de lacs et de zones humides temporaires ou pérennes dont le plus remarquable est le bassin de la plaine des lacs.

La géomorphologie si particulière du Massif du Sud est le résultat de l'action conjuguée de processus complexes impliquant l'activité tectonique passée et actuelle, des phénomènes d'altération géochimiques (à l'origine de la création des formations latéritiques) ainsi que des mécanismes de karstification des formations géologiques.

La karstification est un phénomène d'érosion interne des roches par le biais de processus chimiques ou mécaniques contrôlés par les eaux de surface et les eaux souterraines. A l'échelle mondiale, ce phénomène concerne très majoritairement les formations géologiques de type calcaire (formations carbonatées) dont le meilleur exemple régional est donné par l'île de Lifou.

Ce phénomène touche très rarement d'autres types de roches. La karstification des péridotites constitue donc la principale originalité du Massif du Sud. Elle permet le développement de systèmes hydrologiques très particuliers, appelés pseudo karts, dont le fonctionnement est comparable à celui des karsts présents dans les massifs de calcaire.

3.1 EAUX DE SURFACE

3.1.1 Description des bassins versants

Pièces graphiques – Carte D03 – Cadre hydrologique

Plusieurs bassins versants correspondant aux cours d'eau principaux caractérisant la région sudest de la Nouvelle-Calédonie. Les suivants sont concernés directement ou indirectement par le projet d'exploitation minière :

- le bassin versant de la rivière Kwé : d'une superficie de 39,05 km², ce bassin est drainé par 4 affluents. Le plus grand d'entre eux est la Kwé Ouest, qui s'étend sur environ 8 km et draine une superficie de 17,44 km². Le second affluent en taille est la Kwé Nord (10,9 km²,). La Rivière Kwé Est est un affluent plus modeste qui coule sur environ 4 km et draine une superficie de 2,25 km². Le dernier affluent est le creek de la crête Sud (1,60 km²) qui jouxte la limite sud du bassin versant de la Kwé Est. Par convention, le tronçon de rivière situé en aval de la confluence entre la Kwé Ouest, la Kwé Nord et la Kwé Est est appelé Kwé Principale. Ce tronçon est orientée sud-est et débouche en mer dans la baie Kué au niveau du canal de la Havannah.
- <u>le bassin versant de la rivière Trou Bleu</u> : situé au sud du bassin versant de la Kwé Ouest, d'une superficie de 6,43 km², il prend une orientation sud-est en direction du canal de la Havannah en passant par Port Boisé ;
- <u>le bassin versant de la rivière Wadjana</u> : adjacent à la limite est du bassin versant de la Kwé Nord, d'une superficie de 3,52 km², il s'écoule selon une orientation sud-est et débouche en une cascade de 60 m de hauteur au niveau de la tribu de Goro ;
- <u>le bassin versant de la rivière Kuébini</u> : situé au nord du Plateau de Goro, adjacent à limite est du bassin versant de la Rivière des Lacs, d'une superficie de 32,1 km², il s'écoule vers le Sud-est et débouche sur la côte à proximité de la tribu de Goro ;
- <u>le bassin versant de la rivière des lacs (plaine des lacs)</u>: Ce bassin est situé en bordure Nord du bassin de la Kwé. Avec une superficie de 81,88 km², Il s'agit du plus grand bassin versant de la zone. Il est caractérisé par des pentes très faibles et la présence de nombreux lacs et zones humides. Une large partie de la plaine des Lacs a été inscrite à la convention RAMSAR en 2014. La rivière des lacs qui draine ce bassin versant se jette dans le lac de Yaté ;
- <u>le bassin versant de la rivière Truu</u>: situé au sud-est du Plateau de Goro, d'une superficie de 3,34 km², il s'écoule vers le Sud-est et débouche dans la Baie de Goro ;
- <u>le bassin versant de la rivière Cascade</u> : situé au sud-est du Plateau de Goro, il s'étend sur une superficie de 2,02 km². Il s'écoule vers le sud et est connecté hydrauliquement au bassin de la Truu. Un conduit souterrain existe entre Gouffre (situé en aval de Cascade) et le captage de la Truu ;
- <u>le bassin versant d'Entonnoir</u> : situé à l'est du Plateau de Goro et jouxtant la limite ouest du bassin versant de la Wajana, il draine une superficie de 1,15 km². Il s'écoule vers le sudouest, et comme pour Cascade est relié hydrauliquement au bassin versant de la Truu avec comme point de sortie la source de la Truu ;

 les bassins versants de la baie de Prony sont constitués dans la zone du projet, des bassins versants de la rivière des Kaoris, de Kadji, du creek de la baie Nord et de la baie de Prony Est. La superficie totale de ces bassins est de 18,43 km².

Les caractéristiques de chaque bassin versant sont présentées dans le Tableau 1. De manière typique pour le Sud Est de la Nouvelle Calédonie, toutes ces rivières présentent des pentes généralement fortes et coulent dans un chenal étroit, entrecoupé de rapides et de cascades. Le régime d'écoulements est généralement torrentiel. Les sinuosités générales des cours d'eau sont variables. Les rivières de Trou Bleu et Kaori sont quasiment droites avec une sinuosité de 1,1, tandis que la Kuébini et la Kwé Nord-est sont très sinueuses.

Tableau 1 : Caractéristiques des principaux bassins versants du projet d'exploitation minière

Bassins	Surface Rivière					
versants principaux	BV (km²)	sous bassins versants	Longueur (km)	Pente (%)	Sinuosité (1)	Installations VNC
	18,09	Kwé Ouest	8,3	4,8	1,3	Stockage de résidus épaissis, usine de préparation du minerai (limite Kué Ouest et Kué Nord) Future zone d'aménagement KO4
Rivière Kwé	10,89	Kwé Nord	7.3	5.2	1.4	Mine
	2,25	Kwé Est	4,2	3,6	1,2	
	1,60	Creek de la Crête Sud	2,6	10,3	-	Aucune installation
	6,94	Kwé Principale	4,1	1,4	1,2	
Total Kwé	39,77					
Trou Bleu	6,43	Trou Bleu	3,7	3,2	1,1	Aucune installation
Wajana	3,52	Wajana	3,8	7,1	1,5	Aucune installation
Kué binyi	32,10	Kuébini	8,0	3,0	1,7	Aucune installation
Truu	3,34	Truu	4,4	10	-	Aucune installation
Cascade	2,02	Cascade	2,3	6	•	Aucune installation
Entonnoir	1,15	Entonnoir	1,2	8,5	-	Aucune installation
	14,20	Kaori	3,9	6,6	1,1	Aucune installation
	13,46	Kadji	4,7	7,7	1,2	Base-vie, tuyau d'eau brute (faible emprise)
Baie de Prony	9,57	Creek Baie Nord	5,3	n/d	n/d	Site industriel, convoyeur port-site industriel, station d'épuration base-vie, émissaire des effluents liquides
	18,43	Baie de Prony Est (2)	n/d	n/d	n/d	Port, convoyeur port–site industriel
Plaine des lacs	81.88	-	-	-	-	Pépinière, camp de la géologie
Total	104,22					

⁽¹⁾ Longueur réelle de la rivière/longueur de la rivière en ligne droite ;

3.1.2 Réseau hydrographique

La zone d'étude est parcourue par de nombreux cours d'eau:

 la Rivière Kwé est le cours d'eau le plus important en terme de superficie car il est constitué à la fois de la Kwé Ouest, de la Kwé Est et de la Kwé Nord. Il forme le collecteur principal de

⁽²⁾ Il ne s'agit pas d'une rivière mais du nom du bassin versant secondaire ; n/d = sans objet

- ces 3 affluents. Il est également le plus important en termes de suivi car il couvre la majorité de la zone impactée par le projet minier. Des stations de ce cours d'eau sont suivies dans le cadre du réseau réglementaire (cf. Chapitre 4, plan et réseaux de suivi des eaux) ;
- le Creek de la Baie Nord prend sa source en dessous de la centrale électrique de Prony Energies et se jette dans la baie de Prony. Il est situé au sud-ouest de la zone du projet, en dehors des limites à 25 ans mais est potentiellement impacté par l'usine. Il draine en effet la quasi-totalité des eaux de l'usine hydrométallurgique (eaux de ruissellement) mais aussi des eaux de rejet de la station d'épuration de la base vie du projet VNC. Plusieurs suivis, réglementaires et volontaires, sont assurés sur ce cours d'eau depuis 2006 (cf. Volet D, Réseaux de suivi des eaux).

Les eaux de plusieurs rivières sont captées pour alimenter en eau potable les tribus et villages environnants. C'est le cas de la Truu qui alimente le village de la Truu et de la Wadjana qui alimente la tribu de Goro. Un nouveau projet de construction de captage est également en cours sur la Kuébini, ce qui permettra d'alimenter toutes les tribus depuis le nord de Yaté jusqu'à Goro, soit 2 000 personnes environ.

La zone d'étude offre également des particularités hydrologiques. On a :

- le réseau hydrographique de la Kadji (Kadji 1 et Kadji 2) est très court mais présente sur tout son linéaire des pentes assez fortes;
- Port Boisé s'étend sur une région plane et présente un réseau hydrographique très diffus ;
- le débit de la source Truu, située en amont de la rivière Truu, est de 60 l/s (valeur calculée entre mars 2011 et février 2012 lors du suivi mensuel de la fosse minière à 25 ans). Elle est alimentée par un réseau souterrain mis en évidence en 2008 par des essais de traçage montrant une connexion hydraulique entre les bassins de la Kwé Est (VSKE) et de la Truu. D'autres essais par traçage ont été réalisés dans cette zone et ont révélé d'autres connexions hydrauliques :
 - o entre le bassin de la Kwé Est (VSKE) et le bassin Entonnoir ;
 - o entre le bassin Entonnoir et le bassin de Cascade ;
 - o entre le bassin de Cascade et le bassin de la Truu.
- le nord de la zone d'étude est constitué d'une immense plaine formée par de nombreux lacs. Une chaîne de montagnes sépare ces lacs et bassins de la zone d'exploitation de VNC située dans le bassin de la Kwé. Des relations hydrogéologiques sont suspectées entre la plaine des Lacs et le bassin de la Kwé Ouest (KO4 et KN1);
- de nombreuses dolines sont répertoriées sur toute la zone d'étude confirmant l'existence de dynamiques pseudo-karstique passées ou actuelles. Ce sont des centres de drainage locaux dont la plus spectaculaire est celle du Trou du Tahitien (188 m de long, 91m de large et 24 m de profondeur, soit un volume d'environ 410 500 m³);
- l'endoréisme, c'est-à-dire des régions dans lesquelles l'écoulement des eaux superficielles n'atteint pas la mer et se perd dans des dépressions fermées, apparait sur de nombreuses zones. La capture de nombreuses rivières existe également sur le site de Goro, et apparaissent essentiellement à la limite entre les bassins versants de la KO4 et de la KO5 d'une part et au sud du bassin versant de la plaine des Lacs d'autre part.

3.1.3 Les régimes hydrologiques

La nature du sol, des pentes et de la végétation, mais surtout les irrégularités du régime pluvial affectent les régimes hydrologiques.

La variation saisonnière des débits suit le rythme des précipitations. Les basses eaux s'observent entre août et novembre, l'étiage se produisant généralement entre septembre et octobre. Les valeurs d'étiage sont essentiellement liées au régime des précipitations et à la capacité de rétention des bassins versants, ils sont quasiment exclusivement alimentés par des nappes souterraines, en général peu développées, sauf pour les massifs de péridotite. Certaines rivières peuvent ainsi se tarir complètement ou partiellement. C'est le cas du creek de la Crête Sud dans la zone d'étude.

Les débits mensuels sont plus élevés de janvier à avril avec un pic observé généralement en février ou en mars.

L'irrégularité interannuelle des écoulements est fortement dépendante des perturbations tropicales (cyclones et dépressions). Les débits mensuels d'un mois donné peuvent être caractérisés par de fortes variations. Des crues brutales peuvent être observées sur l'ensemble des bassins de la Nouvelle-Calédonie, et lors du passage de cyclones ou de dépressions tropicales de très forts débits peuvent être enregistrés. Lors du passage du cyclone Gyan en 1981 de nombreuses valeurs de débit pointe de crue ont été répertoriés comme des records mondiaux de crue. Ce fut le cas à Ouaième, Dumbéa Est, au barrage de Yaté et à l'embouchure de la Ouinne.

Certaines crues observées sur le Territoire font partie des records mondiaux de crues répertoriés dans le *Répertoire mondial des crues maximales observées* publié par l'Association internationale de l'hydrologie scientifique (AIHS), (Reg Herschy IAHS Publication 284 (décembre 2003) ISBN 1-901502-47-3; 320 pp. Les données calédoniennes détaillées des événements recensés dans ce répertoire sont présentées au Tableau 2. Il présente les épisodes remarquables de crues avec leur date d'occurrence et le débit de pointe associé au niveau de chaque station hydrométrique, avec le coefficient de Francou-Rodier (K_{FR}) de chaque crue. C'est un index de sévérité des crues exprimant son importance sous forme d'un nombre indépendant de la taille du bassin versant. Il permet de comparer les bassins versants entre eux, qu'ils soient petits ou grands. On le note :

$$K_{FR} = 10 \times \left[1 - \frac{\ln\left(\frac{Q}{10^6}\right)}{\ln\left(\frac{A}{10^8}\right)} \right]$$

avec Q le débit de pointe de la crue (m³/s) et A la superficie du bassin versant (km²).

Station	Superficie km²	Date	Débit de pointe m³/s	K _{FR}	Evènement cyclonique
Dumbés Fat	F.C.	02/02/1969	1 200	5,33	Cyclone Coleen
Dumbéa Est	56	24/12/1981	830	5,07	Cyclone Gyan
Divière des lace moulet	77	19/01/1968	600	4,73	
Rivière des Lacs - goulet	77	25/12/1981	505	4,61	Cyclone Gyan
	435	25/12/1981	5 700	5,81	Cyclone Gyan
Yaté Barrage		30/11/1937	3 100	5,32	
		24/04/1937	2 800	5,24	
	143	13/02/1981	3 100	5,71	
Ouinne embouchure		24/12/1981	2 800	5,63	Cyclone Gyan
		08/03/1975	400	4,19	Cyclone Alison
Ouaième derniers rapides	330	24/12/1981	10 400	6,38	Cyclone Gyan

Tableau 2 : Episodes remarquables de crues en Nouvelle-Calédonie

(Source: IAHS, 2003)

La Figure 1 présente les 50 crues les plus fortes observées dans le monde pour des superficies variant entre 12 et 5 000 000 km² ainsi que les records de débit observés en Nouvelle-Calédonie. Pour plus de représentativité de leur sévérité, les droites correspondant aux coefficients de Francou Rodier (KFR) pour des valeurs comprises entre 5,5 et 6,5 sont également reportées sur cette figure. On remarque que le cyclone Gyan a généré des records de crue au niveau de 4 bassins versants. Le cyclone Coleen a généré un record de crue au niveau de la Dumbéa.

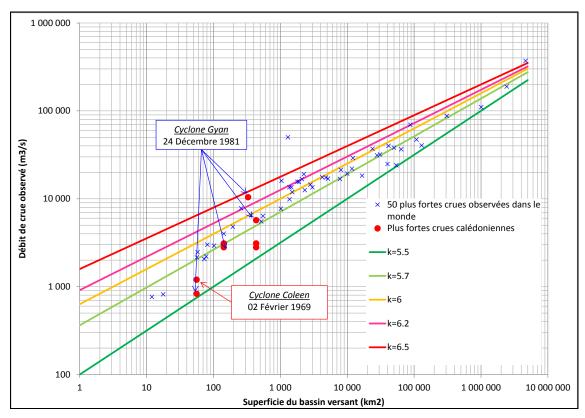
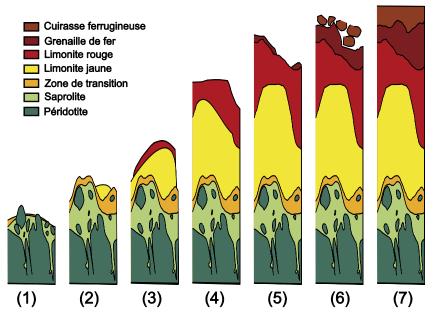


Figure 1 : Records mondiaux de crues et crues calédoniennes

3.2 EAUX SOUTERRAINES

Cette partie est consacrée à la présentation du cadre hydrogéologique régional. Les différentes unités hydrogéologiques rencontrées sont décrites de façon à faire apparaître les grandes caractéristiques de leur fonctionnement ainsi que les interactions, parfois complexes, existant entre elles.


3.2.1 Contexte géologique

Le profil géologique type du Massif du Sud est constitué de haut en bas par: la cuirasse ferrugineuse (incluant un horizon nodulaire appelé grenaille) développé au sommet d'une couche de latérite rouge, puis jaune, un horizon de saprolite fine, puis grossière surmontant la roche mère dont le degré de fracturation et d'altération diminue plus ou moins rapidement avec la profondeur.

Ces formations géologiques ont des épaisseurs variables et ne sont pas nécessairement présentes partout ce qui conduit à l'existence de profils d'altération tronqués. On peut distinguer ainsi trois grandes catégories de succession stratigraphique sur la base d'une classification morphostructurale du paysage :

- au niveau des chaînons rocheux la roche mère affleure et l'horizon saprolitique est peu épais. Dans certains talwegs qui incisent ces crêtes on peut trouver des horizons minces de latérites (Figure 2 : Successions stratigraphiques simplifiées rencontrées dans différents secteurs du site de Goro : successions 1 et 2);
- à proximité des pieds de crêtes et en périphérie des plateaux et des bassins on trouve plusieurs successions stratigraphiques intermédiaires pour lesquelles l'épaisseur des différents horizons est moindre (Figure 2 successions 3, 4 et 5);
- au centre des plateaux et des bassins les successions stratigraphiques sont le plus souvent complètes (Figure 2 successions 6 et 7).

(1 et 2) : successions stratigraphiques rencontrées sur les crêtes

(3, 4, 5) : successions stratigraphiques intermédiaires dans les zones de transition entre les plateaux et les crêtes ou entre les plateaux et les vallées

(6 et 7) : successions stratigraphiques complètes rencontrées sur les plateaux

Source: A2EP, 2014b

Figure 2 : Successions stratigraphiques simplifiées rencontrées dans différents secteurs du site de Goro

Au niveau de certains bassins la succession stratigraphique est recouverte par un dépôt plus ou moins discontinu et épais de formations alluviales.

Deux grandes familles de failles sont recensées : N120-130° et N20-30°, néanmoins, des linéaments sont également observés pour d'autres orientations, notamment N0° (orientation nord-sud). Selon le modèle structural généralement admis en Nouvelle-Calédonie, les linéaments N120-130 correspondent à des failles en compression tandis que les N20-30 sont vues en extension. Le pendage de ces failles est considéré comme sub-vertical.

Les péridotites, qui constituent la base de la succession stratigraphique, gardent la trace de ces accidents d'origine tectonique. Les failles ont permis le développement de réseaux de fractures favorisant le passage de l'eau ce qui entraine localement un approfondissement de l'altération.

A l'échelle locale, ce processus est à l'origine de la géométrie particulière de l'interface entre le bedrock rocheux et le profil d'altération. Le bedrock peut être décrit comme une "boite à œuf" constituée d'une juxtaposition de pinacles marquant les limites de cuvettes plus ou moins profondes remplies par les produits de l'altération (latérite et saprolite). Ce motif a une distribution spatiale pratiquement fractale. On peut le retrouver à l'échelle régionale dans la morphologie du paysage (succession de bassins juxtaposés, limités par des crêtes rocheuses).

C'est dans ce cadre géologique et géométrique que vont se mettre en place les écoulements d'eau souterraine.

3.2.2 Les unités hydrogéologiques

3.2.2.1 Les unités hydrogéologiques du manteau d'altération

Un consensus se dégage en matière d'hydrostratigraphie (Join et *al.*, 2005). Pour le Massif du Sud 4 unités hydrogéologiques sont décrites avec, de haut en bas (Figure 3) :

- l'aquifère supérieur constitué par la cuirasse : La perméabilité et la porosité de cette formation géologique peu épaisse est généralement très forte du fait d'une fracturation importante et de la présence de nombreux vides dans l'horizon nodulaire. L'infiltration des précipitations est donc importante au droit des cuirasses ;
- une unité semi-perméable (aquitard) constituée par la latérite (rouge et jaune). Cette unité introduit un contraste de perméabilité important dans le profil d'altération ce qui participe à la stratification hydraulique de l'ensemble;
- l'aquifère principal (ou aquifère inférieur) qui correspond essentiellement à la saprolite grossière et à la partie fracturée et altérée de la roche mère, notamment au niveau des crêtes rocheuses marquant les bordures de bassins et plateaux. La perméabilité de cette unité est en moyenne plus forte que celle des latérites mais elle reste significativement plus faible que celle de la cuirasse. Cette unité est le siège de la nappe la plus importante en termes de flux d'eau :
- le substratum hydrogéologique correspond à la roche mère saine dont la perméabilité est contrôlée par son degré de fracturation et d'altération chimique. A partir d'une certaine profondeur, la roche mère est suffisamment peu perméable pour que les flux d'eau qui y circulent puissent être considérés comme négligeables, elle constitue donc le socle audessus duquel l'essentiel des écoulements souterrains va se mettre en place.

Ponctuellement, les formations alluviales rencontrées dans certains bassins sont le siège de circulations de sub-surface qui contribuent à la formation de zones marécageuses, notamment en saison des pluies. Ces formations sont en continuité hydraulique avec l'aquitard latéritique ou l'aquifère inférieur selon les secteurs.

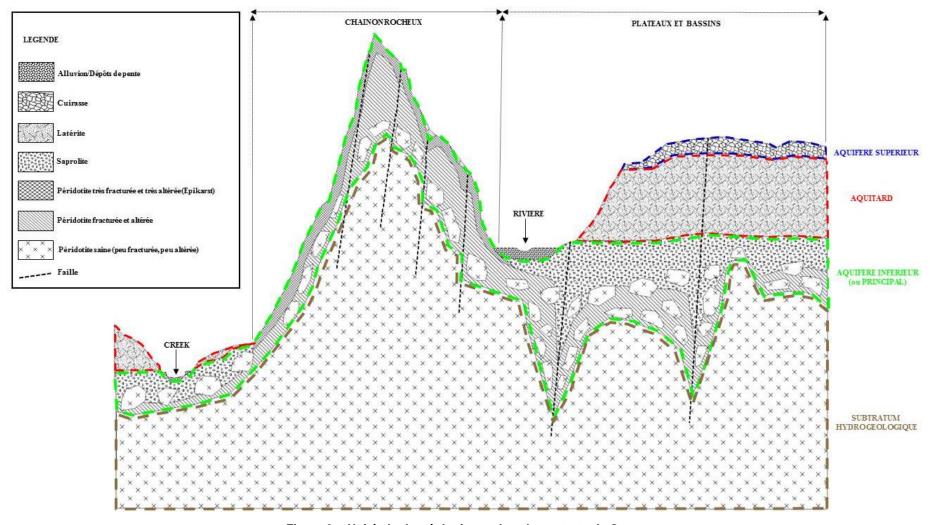


Figure 3 : Unités hydrogéologiques dans le contexte de Goro

3.2.2.2 Les unités hydrogéologiques des chaînons rocheux

Les tests hydrauliques réalisés dans les chaînons rocheux montrent sans ambiguïté que la perméabilité de la péridotite diminue avec la profondeur. Cette évolution est corrélée à une diminution de l'intensité de l'altération et de la fracturation de la roche. Sur cette base un chaînon rocheux typique du contexte de Goro peut être subdivisé en 3 couches présentant des caractéristiques hydrauliques a priori distinctes. On trouve du haut vers le bas (Figure 4):

- la couche de roche en contact avec la pluie et l'atmosphère (couche 1) est soumise à d'intenses processus d'altération et de karstification qui ont pour conséquence d'élargir la fracturation originelle de la péridotite. Un modelé de type lapiaz, typique des processus de karstification, est généralement observé à l'affleurement. Cette couche très perméable est le siège d'écoulements hypodermiques présentant des caractéristiques hydrauliques proches des systèmes karstiques. Dans le cadre de ce document, cette couche sera désignée par le terme d'épikarst par analogie aux systèmes superficiels également rencontrés dans les karsts des formations carbonatées. L'épaisseur de cet épikarst, c'est-à-dire la zone d'influence des mécanismes d'altération et de karstification, est variable selon les secteurs. Sur les quelques coupes géologiques visibles dans le secteur de Goro, elle a une épaisseur de l'ordre de quelques mètres à une dizaine de mètres;
- La couche 2 est une zone plus ou moins épaisse constituée par des roches présentant des caractéristiques de fracturation et d'altération intermédiaires entre la couche 1 et la couche 3. Sa perméabilité est très probablement variable selon les secteurs. Néanmoins, elle diminue plus ou moins rapidement avec la profondeur. Cette couche est vue en continuité hydraulique avec l'aquifère inférieur du manteau d'altération (Figure 3);
- La couche 3 constitue le cœur du chaînon rocheux. Il s'agit de roches saines peu ou pas fracturées constituant un noyau globalement peu perméable. Localement, cette perméabilité peut être plus importante notamment le long des grandes failles qui recoupent les chaînons ou très forte le long des axes de drainage des pseudo-karsts. Cette couche fait partie du substratum hydrogéologique régional (Figure 3). Pour les chaînons rocheux du secteur de Goro, les observations réalisées ont tendance à montrer que cette couche débute approximativement à partir de 50 mètres de profondeur sous la surface topographique.

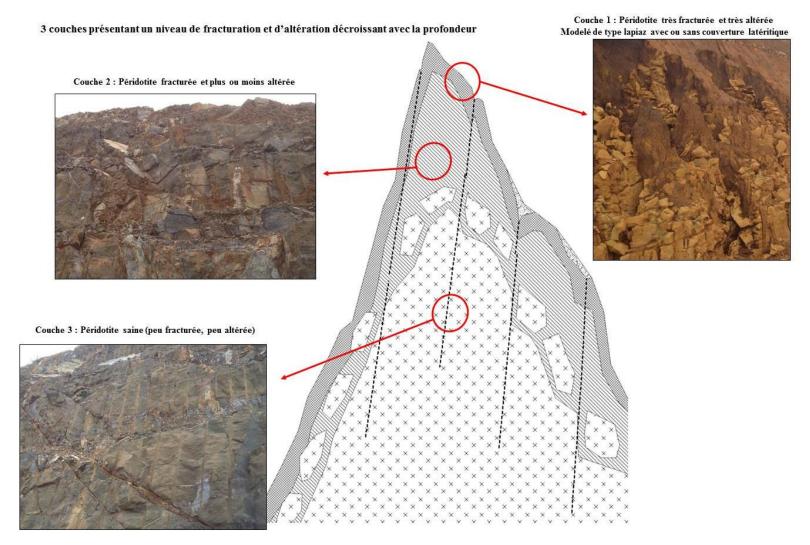


Figure 4: Modèle conceptuel géologique d'un chaînon rocheux

3.2.3 Modalités d'écoulement des eaux souterraines

Trois modalités d'écoulement sont rencontrées :

- écoulement en milieu poreux dans l'horizon nodulaire de la cuirasse, dans la partie latéritique et saprolitique du manteau d'altération;
- écoulement en milieu fracturé dans la cuirasse, à la base du manteau d'altération, au sein des chaînons rocheux et dans le socle de péridotite au droit des zones de passage des grandes failles;
- écoulement pseudo-karstique dans les versants des chaînons rocheux ou le long des failles qui peuvent guider des processus de karstification avec création de conduits plus ou moins développés et interconnectés.

Ces modalités sont détaillées dans les paragraphes suivants.

3.2.4 Fonctionnement hydrogéologique du manteau d'altération

L'interprétation des mesures issues du réseau de piézomètres implantés à l'échelle régionale (bassin versant de la Kwé et bassins voisins) et des essais par pompage (notamment au niveau des sources) renseigne sur les caractéristiques des nappes souterraines et les types de comportement et d'interaction hydrogéologique qui sont résumés ci-après (Figure 5 et Figure 6) :

- l'aquifère supérieur est une zone de transfert très rapide des eaux de pluie infiltrées dans la cuirasse vers les rivières et creeks. Dans les zones cuirassées, l'infiltration des précipitations est généralement prédominante par rapport au ruissellement. En raison du fort contraste de perméabilité avec les formations latéritiques sous-jacentes (formations peu perméables), l'essentiel des eaux infiltrées vont former une nappe qui va s'écouler au toit de la latérite. La direction principale d'écoulement dans l'aquifère supérieur est donc horizontale et ces écoulements souterrains se mettent en place à faible profondeur (écoulements dit de sub-surface). Aux limites des formations cuirassées, ces eaux émergent sous la forme de nombreuses sources observables notamment en bordure des grands plateaux. Lors d'épisodes pluvieux importants, cet écoulement peut se mettre en charge et des émergences apparaissent également à travers les fissures de la cuirasse au sein des plateaux. En raison de la forte perméabilité de ces formations, les écoulements de sub-surface sont très rapides et ne durent que le temps des épisodes pluvieux. Les sources associées sont donc non pérennes et ne participent que ponctuellement aux débits des rivières et des creeks. Ces écoulements souterrains sont considérés comme du ruissellement retardé qui pourrait avoir pour principal effet de prolonger les phases de décrue des cours d'eau après un évènement pluvieux ;
- l'aquitard latéritique est une zone de transfert des eaux souterraines vers l'aquifère principal. Ce transfert est considéré comme lent. Néanmoins, il est possible que les vitesses d'écoulement soient localement plus importantes à la faveur de l'existence de discontinuités géologiques. Quelle que soit sa perméabilité, cet aquitard correspond à une éponge saturée qui va échanger de l'eau avec l'aquifère supérieur et l'aquifère principal (phénomènes dits de drainance verticale) en fonction des conditions hydrauliques rencontrées. En règle générale, les écoulements souterrains au sein de l'aquitard sont dirigés du haut vers le bas. L'aquitard est rechargé soit directement par les précipitations infiltrées dans les zones ou la latérite est à l'affleurement soit indirectement par de l'eau en provenance de l'aquifère supérieur notamment dans les zones ou le contraste de perméabilité avec la latérite est

moins marqué. De là, l'eau au sein de l'aquitard est drainée par l'aquifère principal. Ce phénomène de drainage peut cependant s'inverser selon la saison (l'aquitard draine alors l'aquifère principal) notamment dans les secteurs à forte pente (crêtes rocheuses, bordures de plateaux). De façon anecdotique, l'aquitard peut ponctuellement déborder dans l'aquifère supérieur sous l'action d'une forte recharge. La composante horizontale des écoulements souterrains est par conséquent peu marquée et la contribution de l'aquitard aux débits des rivières est très faible. En revanche, le drainage des latérites constitue une part significative de la recharge annuelle de l'aquifère principal ;

 l'aquifère principal correspond à une zone de transfert des eaux souterraines vers les rivières ou vers l'océan. Les écoulements sont généralement plus rapides que ceux observés au sein de la latérite mais sont significativement plus lents que ceux existant dans la cuirasse.

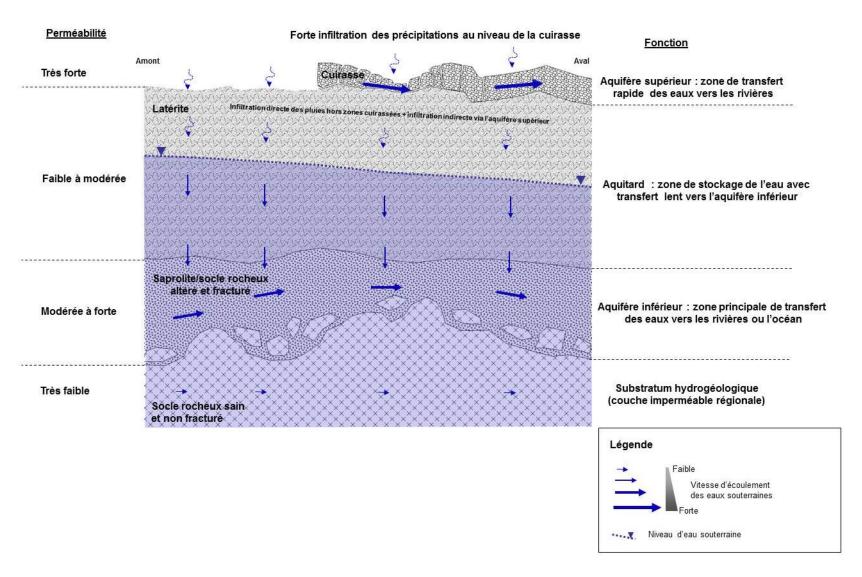


Figure 5 : Modèle conceptuel d'altération à l'échelle locale – direction et sens des écoulements souterrains : cas général

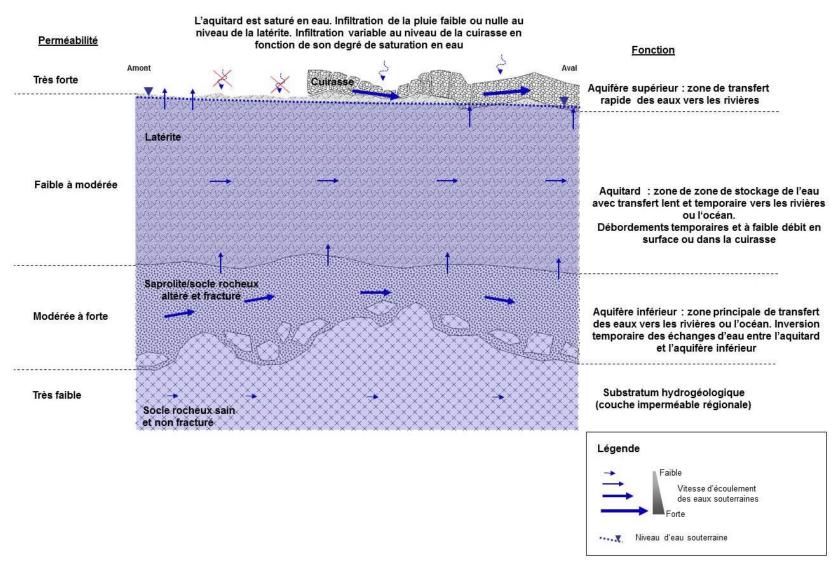


Figure 6 : Modèle conceptuel d'altération à l'échelle locale – direction et sens des écoulements souterrains : contexte de fortes pluies

3.2.5 Fonctionnement hydrogéologique des chaînons rocheux

Le fonctionnement hydrogéologique des chaînons rocheux est décrit à l'aide des observations réalisées dans le secteur de Goro. La Figure 7 illustre de façon schématique les principales caractéristiques de ce fonctionnement.

Une part probablement importante des pluies infiltrées à l'intérieur des chaînons rocheux génère des écoulements hypodermiques qui se mettent en place au sein d'un épikarst. Cette eau est rapidement évacuée des chaînons via des sources non pérennes situées en pied de crête. Le fonctionnement détaillé de ces systèmes épikarstiques est présenté au paragraphe 3.2.7.7.

Le reste de la pluie infiltrée alimente une nappe d'eau souterraine qui prend la forme d'un dôme dont la surface est plus ou moins parallèle à la topographie. Cette nappe d'eau est en continuité hydraulique avec la nappe présente dans l'aquifère inférieur du profil d'altération. Ce dôme persiste généralement même lors des périodes d'étiage sévère. Au regard des fortes pentes hydrauliques constatées, il ne peut exister de manière permanente que si la perméabilité des terrains est faible. Cela signifie qu'au cours de l'année, et notamment en période d'étiage, ce dôme est essentiellement localisé dans le noyau peu perméable des chaînons rocheux.

Le dôme ne réagit que lorsqu'il pleut de façon significative. La hauteur atteinte par le toit du dôme est proportionnelle à l'intensité de la pluie, et inversement proportionnelle aux caractéristiques hydrauliques (perméabilité et porosité) de la péridotite située au-dessus du noyau. Dès que la pluie cesse, le niveau redescend très rapidement pour se stabiliser à nouveau dans le noyau.

La variation annuelle du toit de ce dôme est très importante (de l'ordre de 20 à 40 m) par rapport à ce qui est généralement observé dans le manteau d'altération au droit des plateaux et bassins (variation annuelle plurimétrique). Cette forte amplitude est caractéristique des milieux à porosité de fracture dont la capacité de stockage des eaux est modeste par rapport à celle des milieux à porosité granulaire (comme la latérite ou la saprolite).

Quel que soit le niveau atteint par la surface piézométrique au cours de l'année, les écoulements au sein du dôme sont divergents de part et d'autre de la ligne de crête. Les chaînons rocheux constituent donc une limite naturelle de partage des eaux souterraines. Cette limite empêche les transferts d'eau souterraine entre les bassins versants situés de part et d'autre de la ligne de crête.

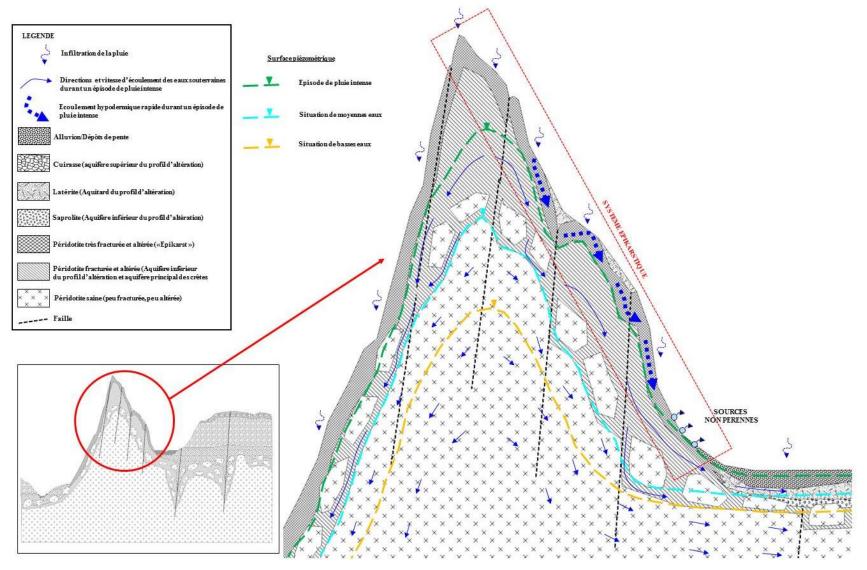


Figure 7: Modèle conceptuel hydrogéologique d'un chaînon rocheux

3.2.6 Fonctionnement hydrogéologique des failles

Les grandes failles peuvent être assimilées à des zones à forte perméabilité qui vont correspondre à des axes préférentiels d'écoulement des eaux souterraines. Cette fonction n'est cependant pas systématique et va dépendre de plusieurs facteurs parmi lesquels on peut citer le degré d'ouverture des failles, leur état de colmatage et l'énergie hydraulique disponible pour assurer leur fonctionnement.

Lorsqu'elles sont hydrauliquement fonctionnelles elles vont drainer plus ou moins intensément les nappes présentes dans le profil d'altération et/ou dans les chaînons rocheux. Lorsque le réseau d'observation piézométrique est suffisamment dense, les mesures réalisées permettent de localiser les zones drainées et les tronçons de faille impliqués dans le drainage.

3.2.7 Fonctionnement hydrogéologique des systémes pseudokarstiques

L'existence de systèmes pseudo-karstiques en Nouvelle-Calédonie a été évoquée dès le milieu des années 1960 (Wirthmann, 1965). En 1973 Trescases décrit notamment le «bassin karstique de la plaine des lacs et ses exutoires» dans le Massif du Sud de la Nouvelle-Calédonie. Ce constat a été dressé essentiellement sur la base de considérations morphologiques avec la description d'objets (lapiaz, dolines et poljés) caractéristiques des pays karstiques. Plus de 20 000 dépressions circulaires fermées qualifiées localement de "dolines" sont ainsi recensées dans et autour du bassin de la Kwé. Une typologie sommaire de ces dépressions permet de distinguer selon la profondeur supposée de leur enracinement dans le profil d'altération :

- des structures très superficielles limitées aux horizons nodulaires sous cuirasse et aux toits des latérites rouges. Il s'agirait de structures d'effondrement peu profondes liées à l'entraînement de matériaux en raison d'une vitesse d'écoulement importante sous la cuirasse. Cette catégorie d'objets aurait peu d'influence sur les écoulements profonds;
- de véritables dolines associées à une ou plusieurs failles avec développement de véritables conduits permettant un écoulement très rapide dans le profil et/ou dans le socle rocheux.
 Ces dolines peuvent être associées à des systèmes pseudo-karstiques fossiles ou encore fonctionnels.

Les six essais par traçage réalisés par VNC entre octobre 2008 et avril 2011 constituent la première démonstration hydrauliquement valide de l'existence de systèmes karstiques actifs.

Un modèle conceptuel de fonctionnement des systèmes pseudo-karstiques dans le contexte des péridotites de Nouvelle-Calédonie est proposé et détaillé dans les paragraphes suivants. Ce modèle est bâti à l'aide des observations réalisées dans le secteur de Goro complétées par une synthèse bibliographique spécifique à la Nouvelle-Calédonie. Certains aspects de ce modèle sont des hypothèses formulées sur la base d'une analogie de fonctionnement supposée avec les karsts des formations carbonatées.

3.2.7.1 Processus de karstification

Dans le cas des formations carbonatées, la karstification est due à un processus bien connu de dissolution physico-chimique dans lequel le $C0_2$ joue un rôle essentiel. Pour les péridotites du Massif du Sud, trois phénomènes couplés sont à l'origine de la karstification :

• un processus d'altération chimique et de dissolution conduisant à la formation de produit latéritique (Trescases, 1969, 1973 et 1975). Ce processus est guidé par la fracturation

préexistante et entraîne une perte de volume de l'ordre de 75 % par rapport au volume de la péridotite originelle. Cette perte de matière engendre des phénomènes de tassement différentiel sur des espaces de plus en plus importants au fur et à mesure de l'avancée de la latérisation (passage progressif de cellules de résorption unitaires à des dolines, puis à des poljés). Ce processus s'accompagne d'une augmentation importante de la porosité matricielle (porosité > 50 %) par rapport à celle de la roche mère (porosité < 1 %);

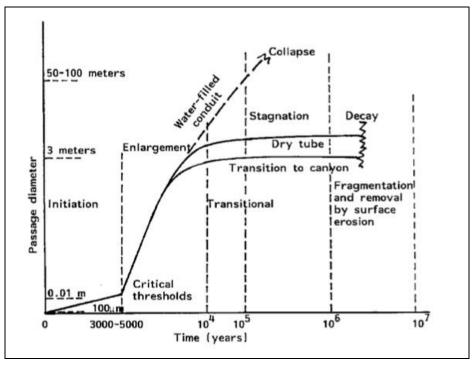
- un processus de fracturation induit par les phénomènes de tassement différentiel dans le profil d'altération (Genna et al. 2005). Ce tassement est accompagné de phases d'effondrement, de cisaillement et de bréchification qui vont engendrer l'apparition d'une nouvelle porosité de fracture qui peut être indépendante de la fracturation originelle ;
- un processus d'érosion mécanique et de transport solide des produits latéritiques par voie souterraine au sein du socle rocheux (Wirthmann, 1970). L'ouverture progressive des latérites facilite l'altération du socle rocheux sous-jacent grâce à une augmentation de l'infiltration et de la vitesse d'écoulement souterrains. Lorsque l'énergie générée est suffisante, un élargissement progressif de la fracturation préexistante dans la péridotite saine se met en place par transport solide des résidus de l'altération. Ce phénomène est amplifié par le fait que les cellules de résorption sont aussi des bassins endoréiques, à tout le moins durant une partie de leur existence. Lorsque tel est le cas les cellules concentrent l'énergie du ruissellement de surface vers un ou plusieurs points d'infiltration généralement matérialisés par des dolines.

3.2.7.2 Paramètres clés de fonctionnement - différences avec le karst des formations carbonatées

Selon la formulation thermodynamique exprimée par Mangin (1975) la notion d'énergie disponible est la clé qui permet de comprendre le fonctionnement et l'évolution d'un système karstique. L'énergie est également le facteur essentiel de déclenchement du transport solide.

L'énergie nécessaire pour assurer un fonctionnement karstique est fonction de la quantité d'eau disponible à l'infiltration (paramètres climatiques) et du potentiel hydraulique existant entre les limites physiques du système (paramètres morpholo-giques). Ce potentiel sera notamment fonction de la différence d'altitude entre les points hauts et les points bas du système.

Dans les formations ultrabasiques, le potentiel de karstification est beaucoup moins prononcé que dans les formations carbonatées. Cela tient au fait que :


- l'altération chimique des péridotites est beaucoup plus lente que la simple dissolution des formations carbonatées sous l'action du gaz carbonique ;
- cette altération produit énormément de résidus peu perméables (la latérite) qui font avoir tendance à colmater plus ou moins rapidement les systèmes pseudo karstiques.

Cela signifie que le fonctionnement d'un système pseudo karstique dans les péridotites nécessite beaucoup plus d'eau à l'infiltration et un potentiel hydraulique plus important pour pouvoir s'exprimer.

Par ailleurs, la quantité d'énergie nécessaire pour assurer le fonctionnement d'un système karstique n'est pas constante. Elle va augmenter avec le développement et l'ouverture des axes d'écoulement. Ce phénomène est à l'origine du cycle de vie de tous les systèmes karstiques carbonatés qui finissent, après un stade d'initiation et de développement suivi d'une phase plus ou moins longue de stagnation et de déclin, par cesser de fonctionner (Figure 8).

Parce que le moteur de fonctionnement est le même, ce schéma d'évolution couramment admis devrait rester valable pour les karsts en milieu latéritique. La seule différence porte sur leur durée de vie et leur capacité à s'étendre géographiquement.

Source: White, 1999

Figure 8 : Evolution des conduits karstiques en milieu carbonaté

Selon Wirthmann (1970), les karsts en milieu latéritique auraient un développement et une durée de vie plus limités. Les conduits et les dolines seraient colmatés à un stade relativement précoce de leur formation au regard des quantités importantes de résidus générés par l'altération et la dissolution des péridotites. Ce cycle de vie est d'autant plus court que les latérites générées par l'altération ont une faible perméabilité qui contribue à limiter le développement des écoulements en profondeur. Ce processus d'auto-colmatage par dissolution incongruente a été décrit dans d'autres formations silicatées (granites) où le processus de karstification se développe également (Jennings, 1987).

Comparativement aux karsts carbonatés, les systèmes pseudo karstiques présents dans les péridotites sont vus comme des systèmes à faible extension géographique, constitués par un réseau de « conduits » peu développés et peu interconnectés. Le portrait-robot d'un système considéré comme représentatif du contexte de Goro est présenté au paragraphe 3.2.7.6.

3.2.7.3 Conditions nécessaires au développement de systèmes karstiques dans le Massif du Sud – probabilité d'existence

En considérant la notion d'énergie, il peut être assumé que :

- l'existence d'une fracturation est la condition nécessaire au développement d'une karstification dans les péridotites. Les failles d'extension régionale sont donc des zones dans lesquelles la probabilité d'existence d'une karstification est importante;
- les écoulements karstiques ne peuvent se développer que dans les zones à fort potentiel hydraulique, c'est-à-dire celles présentant les pentes les plus importantes. Les chaînons de

péridotite délimitant des bassins décalés en altitude et, éventuellement, les bordures de plateaux latéritiques lorsqu'il existe une vallée profondément encaissée à proximité, sont des zones où la probabilité d'existence d'écoulements karstigues est importante :

- plus le manteau latéritique au-dessus du bedrock est épais et plus l'énergie nécessaire pour assurer un écoulement karstique et du transport solide devra être importante. Les plateaux latéritiques sont des zones dans lesquelles la probabilité d'existence d'écoulements karstiques est faible;
- Le rôle des bassins endoréiques apparaît essentiel. En concentrant le ruissellement de surface et en l'injectant dans les conduits souterrains, ces bassins retardent le colmatage des systèmes pseudo-karstiques et permettent à ces derniers de se développer. Plus les bassins endoréiques associés sont importants, plus la probabilité d'existence d'un pseudokarst hydrauliquement actif à proximité est forte;
- les versants des chaînons de péridotite sont le siège d'un ruissellement qui a tendance à se concentrer au sein de petits creeks non pérennes. Les différentes observations réalisées montrent que ces écoulements de surface ont tendance à s'infiltrer rapidement le long des thalwegs ou en pied de versant. Cette concentration d'énergie de ruissellement est favorable au fonctionnement de systèmes pseudo-karstiques.

3.2.7.4 Stades d'évolution d'un pseudo-karst

La principale caractéristique d'un système pseudo-karstique est sa nature évolutive. Son fonctionnement hydraulique va varier au cours du temps au gré de la compétition entre les processus de karstification et le processus d'auto-colmatage. Sur la base des mécanismes présentés précédemment, les différents stades d'évolution d'un pseudo-karst type seraient les suivants :

- <u>stade précoce</u> : les systèmes sont constitués par une doline ou un petit bassin endoréique relié à une source par un réseau de conduits passant au travers d'un chaînon rocheux à la faveur de l'existence de linéaments :
- <u>stade de développement</u>: la karstification se développe avec la création d'une couverture latéritique évacuée par érosion et transfert via les conduits. Par ce jeu d'altération/érosion, les bassins endoréiques s'étendent et deviennent de plus en plus profonds. En parallèle, les conduits s'élargissent et la crête rocheuse a tendance à s'affaisser au droit du linéament selon le même principe. Au niveau de l'exutoire du système, des dépôts de latérite remaniée peuvent se mettre en place ou être évacués par la rivière associée. Du fait des écoulements en provenance du bassin endoréique, le lit mineur du cours d'eau subit une érosion plus marquée que ne le permettrait le ruissellement sur son seul bassin versant;
- <u>stade de stagnation et de déclin</u>: lorsque l'énergie potentielle et l'énergie de ruissellement disponible deviennent insuffisantes, le processus d'autocolmatage par dissolution incongruente entraîne une phase de stagnation puis de déclin du pseudo-karst. Les conduits s'obstruent progressivement, le transfert de latérites est ralenti puis stoppé. En aval, le cours d'eau associé voit son débit diminuer progressivement. Des dépôts de latérite remaniée peuvent se mettre en place dans le lit de la rivière ;
- <u>stade de fossilisation</u>: le régime d'écoulement au travers de la crête cesse d'être turbulent. Les flux d'eau échangés (lorsqu'ils existent) sont contrôlés par la perméabilité du bouchon latéritique dans le ou les conduits. Lorsque le bassin endoréique est suffisamment profond pour recouper la surface piézométrique régionale, un plan d'eau peut se mettre en place progressivement. Lorsque la crête rocheuse est naturellement peu élevée, le processus d'altération peut se poursuivre jusqu'à ce qu'elle soit aplanie complétement, tout au moins

localement. S'il existait un lac au sein du bassin endoréique, ce dernier déborderait progressivement jusqu'à disparition complète.

Quelle que soit leurs origines (naturelles ou anthropiques), toutes modifications locales ou régionales sur les quantités d'eau infiltrée dans les bassins endoréiques ou sur les gradients hydrauliques dans les unités hydrogéologiques peut potentiellement engendrer des changements plus ou moins marqués sur le comportement d'un système pseudo-karstique situé à proximité. A l'extrême, ces modifications pourraient entraîner le déclin prématuré d'un système en cours de développement ou la réactivation d'un système fossilisé.

3.2.7.5 Proposition d'une typologie des pseudo-karsts dans le Massif du Sud

Sur la base des éléments présentés précédemment et de l'ensemble des observations réalisées sur le secteur de Goro, une classification des pseudo-karsts en trois catégories est proposée :

- pseudo-karsts de chaînons rocheux: lorsque les conditions sont favorables ces systèmes sont actifs. Les différents essais par traçage réalisés sur le secteur de Goro ont montré l'existence de cinq systèmes dont le plus grand fait 2 km de long. Tous ces systèmes sont associés à des bassins endoréiques de plus de 0,5 km² de superficie et engendrent des échanges d'eau entre bassins versants contigus;
- <u>épikarsts de versant de crête</u>: ces objets ont une longueur de quelques centaines de mètres. Leur principal moteur de fonctionnement est l'infiltration des eaux de ruissellement le long des thalwegs ou en pied de versant. Ils peuvent être décrits comme locaux car ils n'engendrent de connexion hydraulique entre bassins;
- <u>pseudo-karsts de plateaux latéritiques</u>: ces systèmes ont été reconnus sur les fronts de mine au niveau des plateaux latéritiques. Néanmoins leur stade d'évolution et leur modalité de fonctionnement restent hypothétiques.

3.2.7.6 Fonctionnement hydrogéologique d'un système pseudo-karstique de chaînon rocheux

Sur la base des études réalisées, le système pseudo-karstique typique du secteur de Goro est caractérisé par les trois éléments suivants (Figure 9):

- l'impluvium (la zone d'alimentation du système) est toujours constitué par un bassin endoréique. Sa superficie est de l'ordre de quelques hectares à quelques centaines d'hectares. Tout ou partie de ce bassin est constitué par un versant de chaînon rocheux. L'impluvium capture l'ensemble de la pluie qui ruisselle et l'injecte dans le système pseudo-karstique au niveau de la zone principale d'infiltration. Cette zone correspond au point bas du bassin endoréique et est toujours située en pied de chaînon. Elle peut prendre la forme d'une ou plusieurs dolines ou celle d'une vasque constituant la partie terminale d'un creek. L'impluvium assure également le rôle de zone de stockage des eaux souterraines. Au niveau de l'impluvium non karstique, l'eau est stockée dans les unités hydrogéologiques du manteau d'altération. Au niveau de l'impluvium karstique, le socle rocheux est suffisamment fracturé pour permettre le développement d'une zone saturée en eau qui prend la forme d'un dôme. Par analogie, ce dôme correspond à la zone noyée des karsts de formations carbonatés. (Pour plus de détail concernant le fonctionnement hydrogéologique des chaînons rocheux, le lecteur est invité à se reporter au paragraphe 3.2.5);
- la longueur de l'axe de drainage (qui correspond à la zone de transfert d'eau entre l'impluvium et l'exutoire du pseudo-karst) varie entre quelques centaines de mètres et quelques kilomètres. Il se développe à l'intérieur des chaînons rocheux en suivant les zones

de passage des grandes failles découpant le Massif du Sud. Ses caractéristiques géométriques ne sont pas connues, il peut s'agir soit d'un, soit de plusieurs conduits plus ou moins cylindriques, soit d'un ensemble de fractures très ouvertes. Les observations faites dans les bassins endoréiques après les périodes de pluie suggèrent qu'il s'agit d'objets de faible diamètre ou peu ouverts. En effet, lors des épisodes de pluie intense la capacité de transfert de l'axe peut être dépassée ; un plan d'eau temporaire se met alors en place dans le bassin endoréique. Lorsqu'il pleut, l'eau qui circule dans l'axe de drainage provient majoritairement du ruissellement capturé par le bassin endoréique (alimentation rapide). Les vitesses apparentes de transfert sont alors importantes (plus de 100 m/heure). Hors période de pluie l'axe draine les eaux souterraines stockées dans l'impluvium (alimentation retardée).

• l'exutoire de ce système correspond à une source, généralement unique. L'évolution du débit de cette source au cours du temps est fonction des deux types d'alimentation de l'axe. L'alimentation rapide en période de pluie va engendrer des phénomènes de crues observables sur la source. Ce débit "de crue" est fonction de la lame d'eau précipitée, de la capacité au transfert de l'axe de drainage, de la superficie de l'impluvium ainsi que de sa capacité à générer du ruissellement. Hors période de pluie, le débit de la source est conditionné par les propriétés hydrauliques des formations géologiques (perméabilité et capacité de stockage) au droit de l'axe de drainage et de l'impluvium et le volume d'aquifère présent dans l'impluvium ainsi que par la recharge reçue par ces aquifères au cours de l'année.

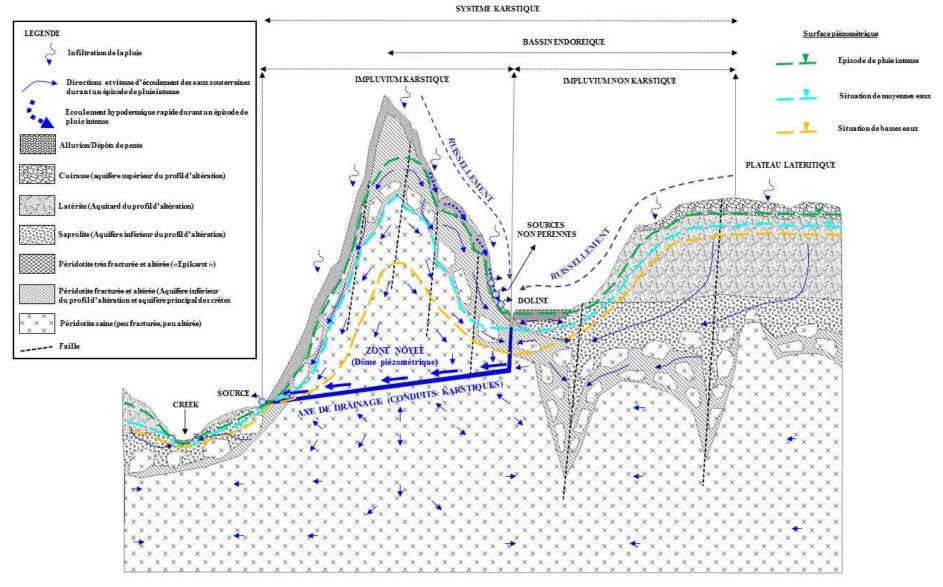


Figure 9 : Modèle conceptuel de fonctionnement d'un systéme pseudokarstique de chaînon rocheux

3.2.7.7 Fonctionnement hydrogéologique d'un épikarst de versant de crête

Les observations hydrogéologiques réalisées dans le contexte de Goro ont montré l'existence d'écoulements hypodermiques de type karstique dans la couche 1 des chaînons rocheux (Figure 7). Par analogie avec les karsts des formations carbonatées, ces systèmes sont qualifiés d'épikarstiques parce qu'ils sont situés à faible profondeur. Les principales différences entre les épikarsts et les pseudo-karsts de chaînon rocheux sont les suivantes :

- la taille et le positionnement spatial des objets sont significativement différents. Les épikarsts sont des systèmes locaux et superficiels de quelques centaines de mètres de long. A contrario, les pseudo-karsts peuvent faire plus de un kilomètre de long et être situés à plus de 50 m de profondeur dans les chaînons rocheux ;
- l'impluvium de l'épikarst ne correspond pas un bassin versant endoréique mais à un versant de chaînon rocheux. L'alimentation rapide de l'épikarst provient des fortes infiltrations généralement constatées le long des petits creeks qui se développent au niveau des chaînons. Ces creeks semblent jouer le rôle de zones de concentration du ruissellement et de l'infiltration à l'image des dolines situées dans les points bas des bassins endoréiques. La couche 1 est trop perméable et pas assez épaisse pour stocker d'importants volumes d'eau. Sa capacité d'alimentation différée est par conséquent très faible ;
- l'axe de drainage d'un épikarst n'a plus besoin d'une grande faille régionale pour se développer. Cela signifie que l'on peut virtuellement rencontrer des axes de drainage un peu partout dans les versants des chainons rocheux. Néanmoins, les creeks de versant sont vus comme des zones privilégiées de développement de ces axes puisque les directions d'écoulements sont conditionnées principalement par la topographie des versants. A l'intérieur de ces axes, les écoulements sont vus comme extrêmement turbulents. Ils semblent posséder une forte capacité à éroder les latérites produites par l'altération de la roche et à les transporter sous forme de particules en suspension au sein de l'épikarst. Autrement dit, l'énergie hydraulique disponible est suffisante pour laver ces systèmes et les empêcher de s'auto colmater ;
- l'exutoire d'un épikarst est situé en pied de crête, généralement dans les zones ou la pente s'adoucit. Dans le contexte de Goro, cet exutoire prend généralement la forme d'une ligne de sources situées à des altitudes variables qui vont s'activer au gré des quantités d'eau qui circulent dans l'épikarst. Du fait d'une alimentation retardée faible, ces sources ne sont pas pérennes. Elles ne fonctionnent que lorsque les pluies sont suffisamment intenses pour activer le système épikarstique

Ces écoulements hypodermiques ne peuvent exister que si un ou plusieurs phénomènes interviennent pour limiter l'infiltration des eaux de pluie et de ruissellement en profondeur. Les 2 cas de figures suivants sont envisagés :

- cas 1 : les écoulements hypodermiques sont des systèmes perchés complétement déconnectés du dôme piézométrique présent à l'intérieur des chaînons rocheux ;
- cas 2 : les écoulements hypodermiques sont totalement dépendants du dôme piézométrique et ne correspondent plus à des systèmes perchés. Cette hypothèse apparaît cohérente avec le fait que l'altitude du ou des exutoires semble varier en fonction de l'intensité des précipitations.

Pour le cas1, il faut imaginer l'existence d'un contraste de perméabilité suffisant pour limiter la percolation de l'eau de pluie vers le noyau des crêtes. Les 3 situations suivantes peuvent expliquer l'existence d'un tel contraste (Voir Figure 4 pour la position des couches) :

- la couche 2 n'est pas présente ou est peu épaisse. La couche 1 repose directement sur le novau peu perméable du chaînon rocheux ;
- le contraste de perméabilité entre les couches 1 et 2 est suffisant à lui seul pour permettre le développement d'écoulements épikarstiques ;
- le contraste de perméabilité entre les couches 1 et 2 est insuffisant mais il existe une zone de dépôt de produits peu perméables à faible profondeur. Ce type de formation, décrit dans d'autres contextes saprolitiques, peut notamment être le résultat de phénomènes pédologiques (Solomon et al. 1992). Dans le contexte de Goro, ce niveau pourrait correspondre à une zone ou les vitesses de percolation ou d'écoulement baissent suffisamment pour permettre le dépôt et l'accumulation d'une partie des particules latéritiques transportées en suspension au sein du systéme épikarstique.

Dans le cas 2, le toit du dôme piézométrique est vu comme l'interface sur laquelle les écoulements hypodermiques font se développer. Ce cas ne peut se présenter que lorsque les pluies sont suffisamment fortes pour permettre la remontée du dôme piézométrique jusqu'à la couche épikarstique. Le fonctionnement du système serait le suivant :

- au cours d'un épisode de pluie, le dôme remonte vers la surface. Tant que la pluie n'atteint pas un certain seuil, ce dôme reste sous la zone épikarstique et l'exutoire de l'épikarst ne s'active pas. La pluie infiltrée traverse la zone épikarstique pour alimenter la nappe;
- lorsque le seuil est atteint, les pluies infiltrées qui touchent la surface piézométrique vont générer des écoulements turbulents compte tenu du fort gradient hydraulique existant et de la forte perméabilité des terrains. Ces écoulements rejoignent l'exutoire de l'épikarst en « ruisselant » sur la surface piézométrique ;
- cette situation est transitoire. Dès que les pluies cessent, le dôme redescend plus rapidement au centre qu'en pied de crête. Tant que l'exutoire reste connecté, il reçoit ce qu'il reste des pluies infiltrées stockées dans l'épikarst;
- au bout d'un certain temps, le niveau piézométrique en pied de crête passe en dessous de l'exutoire épikarstique. La source s'arrête alors de couler. Néanmoins, il est possible que le système épikarstique continue de se vidanger mais les écoulements se font alors dans l'aquifère principal sous-jacent.

3.2.7.8 Fonctionnement hydrogéologique d'un système pseudo-karstique de plateau latéritique

Sur la base de l'argumentation présentée au paragraphe 3.2.2.1, les bassins et plateaux correspondent à des secteurs ou l'énergie actuellement disponible apparaît comme insuffisante pour permettre le fonctionnement de systèmes pseudo-karstiques. Les axes de drainage seraient situés à l'interface socle-saprolite sous un épais manteau d'altération constitué en grande partie de latérite peu perméable.

Les impluviums correspondent à des zones plates ou l'énergie potentielle est faible, sauf en périphérie lorsque des vallées profondes ont été creusées par les rivières. Les bassins endoréiques de grande taille sont absents. Les seuls dispositifs pouvant injecter de grandes quantités d'eau dans les axes de drainage sont les dolines, mais celles que l'on rencontre dans les grands plateaux et bassins présentent généralement une morphologie d'objet *a priori* colmaté.

Il est assumé que ces systèmes se seraient développés précocement dès la mise en place de la nappe de péridotites il y a environ 20 millions d'années. Il s'agirait pour l'essentiel de systèmes fossilisés recouverts par un épais manteau d'altération, qui néanmoins pourraient potentiellement être encore fonctionnels en bordure de plateau ou de bassin lorsque les conditions d'énergie sont suffisantes.

Si les dolines ne jouent plus de rôle en matière de dynamique pseudo-karstique elles peuvent néanmoins constituer des zones privilégiées de recharge de l'aquitard et de l'aquifère inférieur présents dans le manteau d'altération.

3.2.8 Synthèse sur le fonctionnement hydrogéologique du Massif du Sud

3.2.8.1 Modèle conceptuel hydrogéologique à l'échelle régionale

Le manteau d'altération et les chaînons rocheux constituent un système hydrogéologique classique, constitué par un niveau de saturation régional qui se répartit dans un ensemble de couches plus ou moins interdépendantes.

Cependant, ce schéma hydrogéologique simple est complexifié par la présence de failles d'extension régionale associées ou non à des phénomènes de karstification. Cette fracturation introduit deux modalités supplémentaires de circulation des eaux qui viennent se surimposer au schéma initial.

A l'échelle régionale, le système peut être décrit comme un puzzle de cellules, peu ou pas fracturées, séparées par des failles (Figure 10), l'ensemble étant plus ou moins interconnecté. Le fonctionnement de ce système à cellules peut être décrit au travers de deux fonctions :

- une fonction de transfert aux frontières des cellules. En période de pluie, elle correspond à
 des écoulements très rapides et probablement fugaces au travers de la fracturation. Hors
 période de pluie les écoulements proviennent du drainage du profil d'altération à l'intérieur
 des cellules. Ils présentent alors les caractéristiques associées à une fonction capacitive. La
 vitesse moyenne d'écoulement est de l'ordre de 1 à 100 m par jour dans les failles actives
 et de quelques mètres par an dans les failles colmatées par les produits latéritiques.
 Lorsque des systèmes pseudo-karstiques se mettent en place, les vitesses d'écoulement
 augmentent de façon significative (potentiellement plusieurs kilomètres par jour);
- une fonction capacitive caractérisée par des écoulements lents et tamponnés dans le manteau d'altération. L'alimentation des unités présentes dans le profil provient essentiellement de pluie infiltrée en surface de cellule. La vitesse moyenne d'écoulement est de l'ordre de quelques mètres par an dans l'aquitard latéritique et de quelques centaines de mètres par an dans l'aquifère principal. Cette fonction capacitive est à l'origine du débit de base et d'étiage des principales rivières du Massif du Sud.

Le socle rocheux constitue un substratum hydrogéologique régional. La profondeur à partir de laquelle sa perméabilité peut être considérée comme négligeable n'est pas connue avec précision, elle varie selon que l'on considère les zones de passage des grandes failles ou les panneaux intacts. Sur la base des études menées dans le secteur de Goro, la péridotite est considérée comme imperméable au-delà de 50 m d'épaisseur.

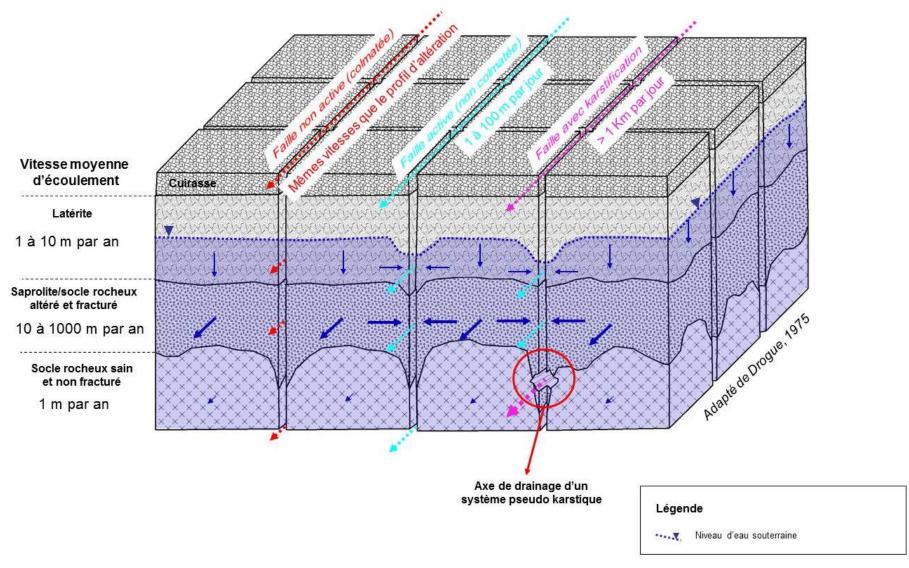


Figure 10 : Modèle conceptuel hydrogéologique à l'échelle régionale

3.2.8.2 Relations entre les rivières et les eaux souterraines

Les différents types de relation hydraulique pouvant se mettre en place entre les rivières et les eaux souterraines sont présentés à la Figure 11.

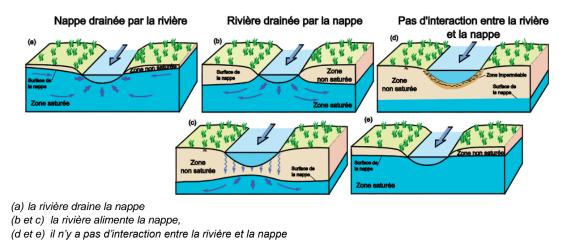


Figure 11 : Représentation schématique des interactions possibles entre une rivière et la nappe

Source : A2EP, 2014b, illustration inspirée de Winter et al., 1998

D'une manière générale, les rivières drainent les unités hydrogéologiques du profil d'altération. L'aquifère principal joue notamment un rôle important pour le régime hydraulique des rivières. Il constitue une éponge qui va soutenir le débit des cours d'eau toute l'année et en assurer la pérennité durant l'étiage, au plus fort de la saison sèche. Ce débit d'origine souterraine est appelé débit de base ; au niveau du bassin de la Kwé, il représente en moyenne 40 % du débit total annuel des rivières.

3.2.8.3 Relations entre les lacs, les dolines et les eaux souterraines

L'alimentation des lacs a généralement 2 origines : les pluies tombées dans l'emprise des bassins versants topographiques associées et les eaux souterraines.

Les différents types de relation hydraulique pouvant se mettre en place entre les lacs, les dolines et les eaux souterraines sont présentés à la Figure 12.

Figure 12 : Représentation schématique des interactions possibles entre un lac et la nappe

Dans le contexte de Goro, la relation entre les lacs ou les dolines et les eaux souterraines est complexe. La connexion, lorsqu'elle existe, se fait avec l'aquitard latéritique. En contexte de hautes eaux, les lacs et les dolines sont généralement alimentés par les eaux souterraines. En moyennes et basses eaux, il peut y avoir une inversion des échanges (les lacs et les dolines se vidangent dans l'aquitard), voire une déconnexion complète entre le compartiment de surface et le compartiment souterrain.

3.2.8.4 Rôle hydrogéologique des chaînons rocheux

Les chaînons rocheux qui compartimentent les grands bassins versants du Massif du Sud constituent une entité hydrogéologique particulière. Ils correspondent à une limite régionale de partage des eaux souterraines qui contribue à empêcher les échanges d'eau interbassins.

Leur rôle est ambigu en matière de recharge des eaux souterraines du fait de la dualité dans les modalités d'écoulement (écoulement hypodermique et nappe en milieu fracturé). En fonction de la quantité de pluie capturée par les systèmes épikarstiques, les chaînons rocheux peuvent être considérés ou non comme des zones privilégiées de recharge des eaux souterraines à l'échelle régionale.

3.2.8.5 Rôle hydrogéologique des failles

D'un point de vue hydrogéologique, l'existence de failles va avoir 2 conséquences :

 une connexion hydraulique entre bassins peut se mettre en place dans les zones de passage des grandes failles si ces dernières sont non colmatées, ou suffisamment ouvertes pour pouvoir drainer significativement le dôme piézométrique présent dans les chaînons rocheux. Cet effet peut être pérenne ou bien saisonnier, avec une plus forte probabilité d'apparition en période d'étiage;

lorsque les conditions sont réunies, un système pseudo-karstique peut se développer le long de ces failles. Cela a alors pour effet d'augmenter significativement la vitesse d'écoulement des eaux souterraines et le volume d'eau échangé entre bassins.