

LIVRET C - ETUDE D'IMPACT SUR L'ENVIRONNEMENT

Commune de Yaté et du Mont-Dore Nouvelle-Calédonie

Volet F – Méthodes utilisées pour suivre et évaluer les effets du projet

Ce document a été élaboré avec l'aide de la société :

egis structures & environnement 11 avenue du Centre – CS 30530 Saint-Quentin-en-Yvelines 78286 Guyancourt

COMPILATION	EGIS Environnement	France BAILLY Christelle RENDU
VERIFICATION	Vale Nouvelle-Calédonie SAS	Nicolas TAN DELAGE Tanguy GIBAND
APPROBATION	Vale Nouvelle-Calédonie SAS	Joao VIDOCA Daryush KHOSHNEVISS

SOMMAIRE

		TION	
ME	THODES	D'ACQUISITION DES DONNÉES	3
2.1	Milieu ı	physique	3
2	-	ité de l'air ambiant	_
_	2.1.1.1	État de référence	3
	2.1.1.2	Suivi de la qualité de l'air	4
	2.1.1.3	Moyens de mesure continue de la qualité de l'air ambiant	4
	2.1.1.4	Campagnes de mesure des métaux	4
2	.1.2 Mesu	ure de fibres d'amiante	5
	2.1.2.1	Plan de contrôle	5
	2.1.2.2	Méthodes de référence utilisées pour le dosage des fibres d'amiante	6
2	_	ité des eaux de pluie	
2.2	Milieu	eaux continentales	8
2	.2.1 Suivi	quantitatif	8
	2.2.1.1	Débit des rivières	8
	2.2.1.2	Plan d'eau dans les lacs et dolines	8
	2.2.1.3	Niveaux d'eau souterraine	9
2	.2.2 Suivi	de la qualité chimique et biologique des eaux	9
	2.2.2.1	Paramètres physico-chimiques des eaux de rivière, de lac et de doline	9
	2.2.2.2	Paramètres physico-chimiques des eaux souterraines	10
	2.2.2.3	Sédiments en rivières	10
	2.2.2.4 2.2.2.5	Faune en rivières, lacs et dolines Suivi de la faune en milieu lotique	11 11
	_	·	
2.3		marin	_
2	.3.1 Qual	ité physico-chimique des eaux marines	13
	2.3.1.1	Suivi qualitatif des eaux marines	13
	2.3.1.2	Bioaccumulation des métaux	15
	2.3.1.3	Sédimentation en mer	16
2		olements récifaux	
2.4	Milieu l	biologique terrestre	17
2	.4.1 Typo	ologie des formations végétales et zone biogéographique de référence	17
2	.4.2 Ident	tification des formations végétales et habitats sensibles	18
2	.4.3 Carto	ographie des formations végétales	19
2	.4.4 Inver	ntaires botaniques	20
	2.4.4.1	Méthodologie des inventaires botaniques	20
	2.4.4.2	Historique des inventaires botaniques	21
2	.4.5 Faun	e terrestre	29
	2.4.5.1	Inventaires herpétologiques	29
	2.4.5.2	Inventaire de l'avifaune	34
	2.4.5.3	Inventaire de la myrmécofaune	34
2.5	Milieu l	humain	36
2	.5.1 Pays	age	36

	-	Principe de l'analyse	36
		Préparation des données	36
	•	La couche raster du relief	36
	•	Les observateurs Interprétation des résultats	38 38
2.5		ées socio-économiquesées socio-économiques	
_			
_	-	noine culturel et archéologique	
2.6		on des Eléments Importants de l'Environnement (EIE)	
2.7		s importants de l'environnement retenus	
2.7	.1 Enviro	nnement atmosphérique	42
		louces et leur biodiversité	
2.7		narines et côtières, le lagon et sa biodiversité	-
2.7	.4 Eaux s	outerraines	.43
2.7	.5 Biodiv	ersité terrestre	.43
2.7	.6 Enviro	nnement humain	45
2.7	7.7 Synth	èse des Eléments Importants de l'Environnement	46
2.8	Elément	s non retenus	46
2.8	3.1 Agricu	ılture, élevage, chasse, cueillette vivrière, pêche en rivière et habitat	46
2.8	3.2 Resso	urces naturelles	.47
2.9	Types d'	effets résiduels	47
2.10	Outils ut	ilisés pour caractériser les effets résiduels	48
2.1	.o.1 Avis d	es experts	48
		isation	-
2.1	.o.3 Cartog	graphie et système d'information géographique	49
2.1	o.4 Matric	es	49
2.1	.o.5 Autres	s outils	49
2.11	Méthode	e d'évaluation des effets résiduels du projet sur l'environnement	50
2.1	.1.1 Limite	s d'évaluation environnementale	50
2.1	.1.2 Identif	fication des sources d'impact et des effets résiduels	50
2.1	.1.3 Impor	tance des impacts résiduels	.51
	_	Intensité	52
	•	Étendue	53
	5 5	Durée Importante globale de l'impact	54
	_	ité d'occurrence	54
		d'atténuation	
_		nation des mesures compensatoires	_
		-	
2.15	Program	ime de surveillance environnementale	57
RÉFÉ	FRENCE	POUR L'ÉVALUATION DES EFFETS RÉSIDUELS	Ε0
		de l'air	
3.1		es acoustiques	
3.2		•	
_		it admissible en limite de propriété	
		rgence	
3.3	Qualité d	de l'eau douce	60

3

3.3.1	Valeurs de référence	60
	Valeurs réglementaires issues des arrêtés ICPE	
3.4 Q	ualité de rejet des eaux usées et des eaux de ruissellement	63
3.4.1	Valeurs de référence	63
3.4.2	Valeurs réglementaires issues des arrêtés ICPE	64
3.5 Q	ualité des sédiments des rivières	. 64
3.6 Q	ualité des eaux marines	65
3.7 Q	ualité des sédiments marins	. 66
3.8 Bi	odiversité terrestre	67
3.8.1	Empreinte des installations	67
3.8.2	Présence d'écosystèmes d'intérêt patrimonial et d'espèces endémiques, rares ou menacés	68

FIGURES

Figure 1:	Dispositif de collecte des eaux de pluie	
Figure 2 :	Zones d'inventaires IRD par priorité (2003)	2
Figure 3:	Carte des altitudes du Modèle Numérique de Terrain (EGIS, 2012)	37
Figure 4 :	Processus d'évaluation des impacts résiduels	52
Figure 5 :	Critères de vulnérabilité d'après l'UICN	69

TABLEAUX

Tableau 1 :	Méthodes de référence utilisées pour l'analyse des eaux de pluie7
Tableau 2 :	Seuils pour le calcul de la qualité de l'eau12
Tableau 3 :	Méthodes et limites de détection pour le suivi des eaux marines13
Tableau 4 :	Méthodes et limites de détection pour le suivi de la qualité de l'eau de mer14
Tableau 5 :	Méthodes et limites de détection pour le suivi des éléments nutritifs et autres en milieu marin14
Tableau 6 :	Méthodes et limites de détection pour la détection des hydrocarbures15
Tableau 7 :	Méthodes et limites de détection pour le suivi des métaux en milieu marin15
Tableau 8 :	Seuils pour le calcul de la qualité de l'eau16
Tableau 9 :	Méthodologie pour le suivi des écosystèmes marins selon la CCB (2012)17
Tableau 10 :	Liste des inventaires floristiques effectués pour le projet global22
Tableau 11 :	Description des stations de suivi du scinque léopard et des méthodes utilisées31
Tableau 12 :	Liste des inventaires lézards et oiseaux réalisés entre 2008 et 201531
Tableau 13 :	Choix des élévations pour l'analyse paysagère (EGIS, 2012)38
Tableau 14 :	Synthèse des EIE retenus pour l'évaluation des effets du projet VNC46
Tableau 15 :	Identification des sources d'impact pour l'évaluation des effets de l'exploitation minière du projet VNC51
Tableau 16 :	Matrice valeur écosystémique/valeur socio-économique pour la caractérisation de la valeur de l'EIE53
Tableau 17 :	Matrice grandeur/valeur pour la caractérisation de l'intensité de l'effet résiduel53
Tableau 18 :	Grille d'évaluation du niveau d'impact négatif résiduel55
Tableau 19 :	Code couleur visualisant l'importance des impacts résiduels du projet55
Tableau 20 :	Objectifs de qualité pour l'air et la protection de la santé humaine59
Tableau 21 :	Valeurs admissibles des émissions sonores60
Tableau 22 :	Critères de qualité de l'eau proposés pour analyser les effets sur la qualité des eaux de surface61

Tableau 23 :	Valeurs réglementaires de la qualité des eaux souterraines suivant l'arrêté n° 1466-2008/PS	. 62
Tableau 24 :	Valeurs de référence pour la qualité des rejets d'eaux usées et de ruissellement	. 63
Tableau 25 :	Valeurs de référence pour la qualité des sédiments des rivières	. 64
Tableau 26 :	Valeurs de référence pour la qualité des eaux marines	. 65
Tableau 27 :	Valeurs de référence de qualité des sédiments marins	. 67
Tableau 28 :	Proportion des formations végétales affectée par le projet	. 68

ABREVIATIONS et ACRONYMES

ADEME Agence [française] de l'environnement et de la maîtrise de l'énergie

AEP Alimentation en eau potable

AES Aspects environnementaux significatifs

ANZECC Australian and New Zealand Environment and Conservation Council

BS Bassin de sédimentation

BSKN Bassin de sédimentation de la Kué

CCB Convention pour la conservation de la biodiversité

CDB Convention pour la diversité biologique

CIM/MIA Centre industriel de la mine

CITES Convention sur le commerce international des espèces de faune et de flore

sauvages menacées d'extinction

CNRT Centre national de recherche technologique

Co Cobalt

CO₂ Gaz carbonique COPIL Comité de pilotage

COFRAC Comité français d'accréditation
COV Composés organiques volatiles
CPKE Carrière de péridotite de la Kué Est

CPVSKE Carrière de péridotite de la verse de l'exercice minier

CR Chemin rural
Db Décibels

DENV Direction de l'environnement de la province Sud

DRN Direction des ressources naturelles (remplacée par la DENV)

EIE Elément important de l'environnement

ESP Emergency Stock Pile (stockage d'urgence)

FAO Organisation des Nations Unies pour l'alimentation et l'agriculture

FEL Front End Loading

IBNC Indice biotique de Nouvelle-Calédonie

IBS Indice bio-sédimentaire

ICMM International Council of Mining and Metals

ICPE Installation classée pour la protection de l'environnement

INERIS Institut international de l'environnement industriel et des risques

IRD Institut de recherche pour le développement (ex ORSTOM)

LLDP linear Low Density Polyethylene (polyéthylène linéaire à faible densité)

MES Matières en suspension

MET Microscopie électronique à transmission

MNT Modèle numérique de terrain

MOCP Microscopie optique par contraste de phase NGNC Nivellement général de la Nouvelle-Calédonie

NO₂ Dioxyde d'azote NO_x Oxyde d'azote

O₃ Ozone

ONG Organisation non gouvernementale

ORSTOM Actuel IRD

PEHD Polyéthylène de haute densité

POGES Plan opérationnel de gestion des eaux de surface

POI Plan opérationnel d'intervention

PPE Périmètre de protection éloigné (d'un captage)
QHSSE Qualité, hygiène, santé, sécurité et environnement

RAMSAR Convention relative aux zones humides d'importance internationale

Rompad Aire de stockage du minerai SMBT Stock de minerai basse teneur

SME Système de management environnemental

SMLT Stock de minerai long terme

So₂ Dioxyde de soufre

UICN/IUCN Union internationale pour la conservation de la nature

UNESCO Organisation des Nations Unies pour l'éducation, la science et la culture

UPM Unité de préparation de minerai VNC Vale Nouvelle-Calédonie SAS

VS Verse à stériles

VSKE Verse à stériles de l'exercice minier

PRÉAMBULE

Le présent dossier constitue le **VOLET F** du Livret C de la demande d'autorisation d'exploitation minière du gisement de Goro par la Société VNC.

Livret C - Étude d'impact			
Volet A	Introduction - présentation du projet		
Volet B	Analyse de l'état initial du site du projet et de son environnement		
Volet C	Analyse des effets directs et indirects, temporaires et permanents du projet sur l'environnement		
Volet D	Justification du projet - raisons pour lesquelles le projet présenté a été retenu parmi les solutions alternatives envisagées		
Volet E	Mesures mises en œuvre pour prévenir, supprimer, réduire et, si possible, compenser les conséquences dommageables du projet sur l'environnement		
VOLET F	Méthodes utilisées pour suivre et évaluer les effets du projet sur l'environnement		
Volet G	Résumé non technique		
Volet H	Plan de remise en état à l'issue des travaux d'exploitation		
Atlas cartographique	Cartes des volets A à H		

1 INTRODUCTION

Ce volet présente les principales méthodes utilisées dans l'étude d'impact environnemental pour acquérir les données relatives à l'état initial, l'état actuel et le suivi environnemental.

Les méthodes citées peuvent être standardisées, et dans ce cas la description de la méthode renvoie à la norme publiée correspondante, ou bien elles peuvent être spécifiquement adaptées au contexte de l'étude et dans ce cas sont détaillées de façon à assurer leur reproductibilité et permettre des comparaisons.

Ce volet présente également une définition des Éléments Importants de l'Environnement (EIE) et la méthode utilisée par VNC pour l'évaluation du niveau d'impact du projet sur ces EIE, en précisant les échelles spatiales et temporelles considérées et les valeurs guides utilisées pour cette évaluation.

Les échelles spatiales citées sont illustrées dans l'atlas cartographique.

2 METHODES D'ACQUISITION DES DONNÉES

2.1 MILIEU PHYSIQUE

Voir Atlas - Carte C44 – Localisation des stations de mesure

2.1.1 Qualité de l'air ambiant

Les activités minières du site de VNC impactent la qualité de l'air ambiant de deux façons différentes, par l'intermédiaire des émissions de gaz d'échappement et des émissions de poussières.

Les émissions de gaz d'échappement vont couvrir l'ensemble du trafic généré par les activités minières propres (excavation, roulage, stabilisation des ouvrages, tours de lumière, etc.), mais également certaines activités annexes comme l'approvisionnement en matières premières, l'évacuation des déchets, le transport de personnel ou les groupes électrogènes.

Les émissions de poussière sont générées par le trafic des engins, mais également par la manipulation du minerai en lui-même, la réalisation de tirs à l'explosif, voire par l'existence de zones défrichées exposées aux vents.

Le suivi de la qualité de l'air ambiant s'effectue dans le cadre des arrêtés ICPE n° 1466-2008 et n° 1467-2008 du 9 octobre 2008 et concernent l'usine de traitement du minerai et le parc à résidus de la Kué Ouest. La grande majorité des rejets dans l'air sont dus à l'activité de raffinage et pour une plus faible partie par les installations et les activités de la zone minière. Ils font l'objet d'un suivi et un certain nombre de stations de qualité de l'air sont présentes sur l'ensemble de l'emprise du projet industriel de VNC, y compris sur la Mine, mais surtout l'usine.

Les stations de la qualité de l'air positionnées dans l'environnement des installations ont toutes été localisées en fonction des émissions de l'usine susceptibles de se propager sur des distances plus importantes que les émissions de la mine qui sont plus diffuses et localisées. Les stations les plus proches de la zone minière sont celles de Port Boisé et du Col de l'Antenne. Même si les mesures de ces stations ne seront pas spécifiquement révélatrice des émissions atmosphériques de la Mine, il a tout de même semblé utile de préciser la méthode d'acquisition des données sur ce point.

2.1.1.1 État de référence

Une étude sur la qualité de l'air ambiant de la zone du projet de Goro a été réalisée en 2005 par VNC/Séchaud-LBTP avant le démarrage de l'exploitation. L'étude entrait dans le cadre des "états initiaux de référence air ambiant" des demandes d'autorisation d'exploiter ICPE du projet GORO Nickel.

2.1.1.2 Suivi de la qualité de l'air

Pour le suivi de la qualité de l'air ambiant, les éléments visés sont :

- Les gaz, SO2 et NO2 mesurés en continu ;
- · Les particules en suspension :
 - les quantités de poussières en suspension PM10 mesurées en continu ;
 - l'analyse des métaux contenus dans ces poussières effectuée de façon ponctuelle lors de campagnes de prélèvement;
- · Les retombées de poussières mesurées lors de campagnes de prélèvement.

La mesure des quantités de poussières en suspension PM10 et polluants gazeux (NO₂ et SO₂) est réalisée en cinq points de mesure. Les mesures de retombées de poussières sont réalisées sur les stations de la Forêt Nord et de Port-Boisé, conformément à l'étude de définition réalisée en 2007. Depuis février 2011 elles sont effectuées par l'association Scal-Air.

Pour les émissions relatives aux activités minières, les mesures de SO₂, les particules en suspension et les retombées de poussières peuvent être concernées par le fait qu'elles caractérisent les émissions de gaz d'échappement et les émissions de poussières. Cependant, ces éléments sont aussi caractéristiques de l'activité de l'usine de traitement du minerai située dans la même zone d'emprise que celle de la Mine.

2.1.1.3 Moyens de mesure continue de la qualité de l'air ambiant

Les résultats des mesures continues effectuées par les stations pour les gaz et les poussières émis par le complexe de la raffinerie (Usine du Grand Sud) sont enregistrés par un système d'acquisition SAM qui envoie toutes les trois heures les données via un modem GSM sur un serveur où le logiciel de validation des données XR5.5 est installé. Ces systèmes sont fréquemment utilisés par les réseaux de contrôle de la qualité de l'air.

MESURE DES POLLUANTS GAZEUX SO₂ ET NO₂

Pour le SO₂, un analyseur AF22 d'Environnement SA mesure la quantité par fluorescence. Généralement utilisé dans les réseaux de contrôle de la qualité de l'air, il répond aux normes NF X 43019 et NF X 43013.

Pour le NO₂, un analyseur AC32 d'Environnement SA permet de quantifier sa présence dans l'air par chimiluminescence. La concentration est calculée à partir de la mesure des NOX et du NO. L'analyseur est généralement utilisé par les réseaux de contrôle de la qualité de l'air et répond aux normes NF X 43018 et NF X 43 009.

MESURE DES POUSSIÈRES PM10

La mesure des PM10 se réalise avec un analyseur MP101 d'Environnement SA qui est généralement employé par les réseaux de surveillance de la qualité de l'air. Il répond aux normes NF X 43021, 43023, 43017.

2.1.1.4 Campagnes de mesure des métaux

MESURE DES MÉTAUX DANS LES POUSSIÈRES EN SUSPENSION PM10

La mesure des métaux dans les poussières en suspension PM10 se fait en deux étapes : le prélèvement puis la caractérisation chimique des poussières PM10.

Étape 1 – Prélèvement des poussières PM10 : Le Partisol-Plus d'Ecomesure est utilisé pour le prélèvement des PM10. C'est un préleveur automatique couramment utilisé par les réseaux de surveillance de la qualité de l'air. Il répond aux normes :

- NF X 43-023 "Mesure de la concentration des matières particulaires en suspension dans l'air ambiant".
- NF X 43-021 "Prélèvement sur filtre des matières particulaires en suspension dans l'air ambiant".
- EN 12341 de janvier 1999, norme européenne "Détermination de la fraction PM10 de matière particulaire en suspension".

Étape 2 – Caractérisation chimique : les échantillons prélevés font l'objet d'une analyse des métaux (Sb, Cr, Co, Cu, Sn, Mn, Ni, Pb, V, Zn, As, Cd et Hg) contenus dans les poussières en suspension PM10. L'analyse des métaux est réalisée selon la méthode normalisée NF EN 14902.

Une étude de définition de la mesure des métaux dans les poussières en suspension et les retombées de poussières a été faite en interne, à la suite de laquelle la méthode d'analyse par ICP-MS sur les poussières PM10 recueillies sur filtre pour le dosage des 13 métaux a été retenue. Le traitement des échantillons et les analyses sont effectués par un laboratoire externe, le laboratoire Micro-polluants Technologie SA situé à Thionville (Moselle).

MESURE DES MÉTAUX DANS LES RETOMBÉES DE POUSSIÈRES

Les mesures des métaux dans les retombées de poussières sont effectuées selon la norme NF X43-014 "Détermination des retombées atmosphériques totales – Échantillonnage – Préparation des échantillons avant analyse", à l'aide de collecteurs de précipitations de type jauge Owen. L'exposition des capteurs dure environ 1 mois (30 jours ± 3 jours selon la norme NF X43-014). Sur les deux sites, les collecteurs de précipitations sont placés à côté du capteur de poussières en suspension, le Partisol-Plus. Les échantillons de retombées de poussières font ensuite l'objet d'une analyse des métaux, les 13 métaux analysés par ailleurs dans les poussières en suspension : Sb, Cr, Co, Cu, Sn, Mn, Ni, Pb, V, Zn, As, Cd et Hg. Pour chaque échantillon, les fractions solubles et insolubles sont analysées séparément. La quantification des métaux dans les retombées de poussières est réalisée par méthode d'analyse ICP-MS. Le traitement des échantillons et les analyses sont effectués par la société Micro-Polluants Technologie SA située à Thionville (Moselle).

VALIDITÉ DES SÉRIES DE DONNÉES

Une série de données est considérée comme exploitable à partir du moment où 75 % des valeurs attendues sont acquises et valides (valeur prescrite dans le fascicule de documentation de l'ADEME "Règles et recommandations en matière de validation des données – critères d'agrégation – paramètres statistiques").

2.1.2 Mesure de fibres d'amiante

Se référer à l'ANNEXE C08: Plan de prévention contre les poussières issues des terrains amiantifères

2.1.2.1 Plan de contrôle

Un inventaire de chaque zone d'activité de la mine est réalisé en continu et les occurrences sont archivées dans une base de données géo-référencées. La mise à jour cartographique est effectuée sur une base mensuelle en fonction de l'avancée des différents travaux. Les informations sont diffusées en interne chez VNC ainsi qu'aux co-contractants.

Parallèlement, le suivi de la concentration en fibres dans l'air auquel est exposé le personnel de la mine (prélèvements individuels et d'ambiance) est réalisé lors des travaux ou des interventions sur les matériaux contenant potentiellement de l'amiante.

Des mesures de prévention et de protection supplémentaires seront mises en place lorsque les résultats des analyses présenteront des valeurs de fibres minérales amiantifères en fonctionnement normal, supérieures ou égales à la valeur limite réglementaire (100 f/l ou 0,1 fibre/cm³ sur une heure travaillée - délibération n° 211/CP du 15 octobre 1997) ou lorsqu'un matériau anormalement fibreux sera détecté visuellement lors des travaux.

2.1.2.2 Méthodes de référence utilisées pour le dosage des fibres d'amiante

- Norme AFNOR NF X 43-050 : détermination de la concentration en fibres d'amiante par microscope électronique à transmission méthode indirecte.
- Norme AFNOR XP X 43-269 : détermination de la concentration en nombre de fibres par microscopie optique en contraste de phase. Méthode du filtre à membrane.
- Instructions aux laboratoires pour l'analyse des échantillons de poussières prélevées dans l'air (Groupe de Travail Evaluation BRGM/DIMENC, septembre 2010).
- Lahondaire D., Maurizot P. 2009 Typologie et protocole d'échantillonnage des occurrences naturelles d'amiante en Nouvelle-Calédonie. Rapport BRGM/RP-57334-FR, 164 pages.

RÉALISATION DES ANALYSES

Les prélèvements sont réalisés par un bureau d'étude extérieur certifié conformément à la norme XP X 43-269, et à l'arrêté du 14 mai 1996 et la norme NFX 43-050 relatifs aux modalités de contrôle de l'empoussièrement.

Les analyses par Microscopie Optique par Contraste de Phase (MOCP) et par Microscopie Electronique à Transmission (MET) sont effectuées par un laboratoire agréé.

L'analyse par MOCP est une méthode permettant le comptage des fibres sans leur différenciation (fibre d'amiante, autres fibres minérales ou végétales) et qui indique la concentration en fibres totales. L'analyse par MET est une méthode par carbonisation permettant de différencier les fibres entre elles. Cette analyse permet de déterminer le type de fibres d'amiante et de les quantifier. Les types considérés sont :

- · Antigorite;
- · Fibres courtes;
- · Fibres amiante classiques.

Les procédures internes à VNC PRO-0304 et EPS-0303-HS relatives respectivement à la gestion du risque amiante environnemental et au plan de prévention contre les poussières issues de terrains amiantifères sont fournies en Annexe C08.

2.1.3 Qualité des eaux de pluie

La société VNC mesure la qualité des eaux de pluie dans la région de Goro. Sept points de prélèvement ont été choisis et suivis depuis 2002 de manière plus ou moins continue : Parc Provincial de la Rivière Bleue, Prony, Forêt Nord, Base Vie, Usine, Port Boisé et Chute de la Madeleine. L'ensemble des analyses chimiques est effectué par le laboratoire interne de VNC

(accrédité ISO 17025 par le COFRAC). Les méthodes et les paramètres d'analyses sont décrits dans le Tableau 1 ci-dessous.

Tableau 1 : Méthodes	de référence utilisée	s pour l'anal	vse des eaux de pluie

Paramètre	Méthode de référence
Conservation et manipulation des échantillons	NF EN ISO 5667-3
Établissement des programmes d'échantillonnage	NF EN 25667-1
Techniques d'échantillonnage	NF EN 25667-2
Sulfates	NF EN ISO 11885
Nitrates	Méthode HACH 8192*
Chlorures	Méthode HACH 8113*
pH	NF T 90008

Les campagnes d'échantillonnage sont effectuées sur des collecteurs d'eau de pluie conçus et installés par VNC. Un blanc de terrain est réalisé à chaque campagne pour détection d'éventuelles interférences analytiques dues au dispositif d'échantillonnage ou à la manipulation des échantillons sur le terrain. Il consiste à remplir avec de l'eau distillée un flacon via le dispositif de collecte, l'ensemble ayant subi la même manipulation que le reste des échantillons. Sur certains paramètres analysés, une correction peut être réalisée à partir des résultats d'analyses du blanc.

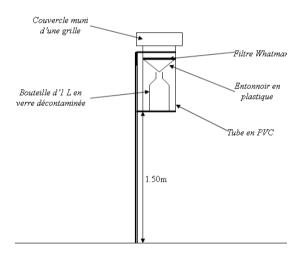


Figure 1 : Dispositif de collecte des eaux de pluie

2.2 MILIEU EAUX CONTINENTALES

2.2.1 Suivi quantitatif

2.2.1.1 Débit des rivières

OBJECTIFS

- Le suivi du débit des rivières permet de connaître le fonctionnement des cours d'eau et leur régime hydrologique. Il sert également à estimer les débits caractéristiques des rivières (crues, étiage, etc.) et à évaluer les échanges potentiels entre les eaux de surface et les eaux souterraines.
- Le débit des rivières est également un paramètre influant sur la composante écologique du cours d'eau.

Les réseaux de suivi sont présentés en détail dans le Volet B du Livret C.

MÉTHODOLOGIE

En rivière, il n'existe pas de méthode permettant de mesurer directement le débit. En général, on mesure des hauteurs d'eau (suivi limnimétrique) ou des vitesses d'écoulement (jaugeages), soit ponctuellement (mesure manuelle), soit à haute fréquence à l'aide de capteurs automatiques. Les données sont ensuite transformées en débit à l'aide de relations issues d'études hydrauliques spécifiques à chaque rivière appelées courbes de tarage.

Des campagnes de jaugeages différentiels sont également réalisées ponctuellement. Elles consistent en la réalisation de plusieurs jaugeages à distances régulières sur un linéaire de rivière défini. Elles permettent de comprendre les relations pouvant exister entre une rivière et les nappes d'eau souterraine.

SEUILS RÉGLEMENTAIRES ET NORMES

Pour les jaugeages, les préconisations de la charte française de qualité de l'hydrométrie (Code de bonnes pratiques. Ministère de l'aménagement du Territoire et de l'Environnement, septembre 1998) sont respectées.

2.2.1.2 Plan d'eau dans les lacs et dolines

OBJECTIFS

Le suivi quantitatif sur les plans d'eau et les dolines permet d'estimer les volumes d'eau stockée. Leur analyse permet d'affiner les connaissances relatives au fonctionnement hydraulique et écologique des systèmes, et de qualifier les échanges éventuels entre les lacs et les eaux souterraines.

Les réseaux de suivi sont présentés en détail dans le Volet B du Livret C.

MÉTHODOLOGIE

Des mesures manuelles de hauteur d'eau sont effectuées ponctuellement sur les échelles limnimétriques installées dans les lacs. Des sondes automatiques sont parfois également installées en complément afin d'acquérir des données à haute fréquence. Les mesures de hauteur d'eau ne

sont pas suffisantes pour connaître les volumes d'eau stockés dans les lacs. Pour obtenir cette information, des campagnes bathymétriques ponctuelles doivent être réalisées.

SEUILS RÉGLEMENTAIRES ET NORMES

Aucun seuil règlementaire n'est associé à ce suivi.

2.2.1.3 Niveaux d'eau souterraine

Voir Atlas Carte C51- Réseau volontaire de suivi quantitatif des eaux souterraines

OBJECTIFS

Ce suivi a pour but de comprendre le fonctionnement des nappes d'eau souterraine. Il permet de quantifier la ressource en eau et de déterminer les sens d'écoulements. Il fournit les données nécessaires à la mise en œuvre d'outils d'évaluation de l'impact potentiel des projets d'aménagement sur les eaux souterraines.

Les réseaux de suivi sont présentés en détail dans le Volet D du Livret D.

MÉTHODOLOGIE

A fréquence régulière, des mesures de niveau d'eau sont réalisées en forage (niveau piézométrique). Certains forages (ou piézomètres) sont équipés de sondes de suivi en continu afin d'obtenir des données à haute fréquence.

SEUILS RÉGLEMENTAIRES ET NORMES

Aucun seuil règlementaire n'est associé à ce suivi.

2.2.2 Suivi de la qualité chimique et biologique des eaux

2.2.2.1 Paramètres physico-chimiques des eaux de rivière, de lac et de doline

OBJECTIFS

L'hydrochimie permet de suivre la distribution et l'évolution des composés chimiques des eaux dans le temps et l'espace, suivant différentes conditions hydrologiques (périodes de basses, moyennes et hautes eaux). L'objectif est d'établir un état initial puis de suivre l'évolution de la qualité des eaux.

Les réseaux de suivi sont présentés en détail dans le Volet B du Livret C.

MÉTHODOLOGIE

Sur le terrain, les paramètres physico-chimiques (pH, conductivité, température) sont mesurés à l'aide de sondes portables, mono ou multi-paramètres. D'autres paramètres sont analysés par un laboratoire agréé sur des échantillons prélevés sur le terrain. Le laboratoire interne de VNC est certifié ISO 17025.

SEUILS RÉGLEMENTAIRES ET NORMES

L'échantillonnage (NF EN 25667-2), le transport, la conservation (NF EN ISO 5667-3) et l'analyse des échantillons d'eau sont réalisés suivant les normes françaises en vigueur.

L'arrêté ICPE n° 1466-2008 du 9 octobre 2008 autorisant l'exploitation d'une aire de stockage de résidus sur le site de la Kué Ouest, fixe des valeurs limites de rejet pour les eaux souterraines collectées sous la géomembrane et pour les eaux internes issues du système de drainage de la berme.

L'arrêté ICPE Arrêté n° 1467-2008/PS du 9 octobre 2008 autorisant l'exploitation d'une usine de traitement de minerai de nickel et de cobalt sise "Baie Nord" - commune du Mont-Dore, d'une usine de préparation du minerai et d'un centre de maintenance de la mine fixent également des valeurs limites pour les eaux rejetées dans le milieu naturel. L'ensemble de ces arrêtés ICPE sont consultables sur le site internet www.juridoc.gouv.nc.

2.2.2.2 Paramètres physico-chimiques des eaux souterraines

OBJECTIFS

L'hydrochimie permet de suivre la distribution et l'évolution des composés chimiques des eaux dans le temps et l'espace, suivant différentes conditions hydrologiques (périodes de basses, moyennes et hautes eaux). L'objectif est d'établir un état initial puis de suivre l'évolution de la qualité des eaux. Ce suivi permet de mettre en évidence une pollution éventuelle générée par le projet.

Les réseaux de suivi sont présentés en détail dans le Volet B du Livret C.

MÉTHODOLOGIE

Sur le terrain, les paramètres physico-chimiques (ph, conductivité) sont mesurés à l'aide de sondes portables, mono ou multi-paramètres. D'autres paramètres sont analysés par un laboratoire agréé sur des échantillons prélevés dans les piézomètres à l'aide d'un système de pompage. Le laboratoire interne de VNC est certifié ISO 17025.

SEUILS RÉGLEMENTAIRES ET NORMES

Le protocole d'échantillonnage des eaux souterraines est basé sur les recommandations des parties 3 et 11 de la norme ISO 5667 relatives à la conservation et la manipulation des échantillons d'eau (partie 3) et à l'échantillonnage des eaux souterraines (partie 11). L'échantillonnage (NF EN 25667-2), le transport, la conservation (NF EN ISO 5667-3) et l'analyse des échantillons d'eau sont réalisés suivant les normes françaises en vigueur.

Dans le cadre de l'exploitation du parc à résidus de la Kué Ouest, l'arrêté n° 1466-2008/PS du 9 octobre 2008 impose le respect des seuils, inspirés des valeurs guides A3 de l'arrêté ministériel français du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine. Les arrêtés sont consultables sur le site internet www.juridoc.gouv.nc.

Aucun seuil règlementaire de qualité des eaux souterraines n'est imposé dans l'arrêté N° 1467-2008/PS du 9 octobre 2008 pour le suivi de l'impact de l'activité de l'unité de préparation du minerai.

2.2.2.3 Sédiments en rivières

OBJECTIFS

Le suivi des sédiments permet de s'assurer que l'équilibre écologique et hydraulique des rivières n'est pas ou peu modifié par l'activité minière.

Les réseaux de suivi sont présentés en détail dans le Volet B du Livret C.

MÉTHODOLOGIE

Les prélèvements de sédiments des cours d'eau sont effectués à l'aide d'une pelle. Selon la largeur du lit du cours d'eau, plusieurs prélèvements sont effectués afin de réaliser un échantillon représentatif du transect étudié. La nature des sédiments est essentiellement définie par l'analyse granulométrique et les analyses chimiques réalisées sur les principaux métaux composant les sols des massifs miniers et les matières sèches.

- Les campagnes bathymétriques permettent d'évaluer la quantité de sédiments déplacés et leur répartition dans la rivière ;
- L'analyse par imagerie aérienne ou satellite a pour but de suivre l'évolution de la morphologie du cours d'eau et l'état des berges.

SEUILS RÉGLEMENTAIRES ET NORMES

Aucun seuil règlementaire n'est associé à ce suivi.

2.2.2.4 Faune en rivières, lacs et dolines

- Source : Extrait du Rapport intitulé Etude de suivi ichtyologique et carcinologique du Creek de la Baie Nord, la Kué et la Kué Bini Campagne de janvier 2011 (Erbio, 2011).
- Source : Extrait du Rapport intitulé Vale Nouvelle-Calédonie, 2011 c. Suivi environnemental –Rapport semestriel 2011 Eaux douces de surface. 51p.

2.2.2.5 Suivi de la faune en milieu lotique

OBJECTIES

Le suivi hydrobiologique des cours d'eau permet d'établir un diagnostic fiable de la fonction biologique des milieux aquatiques. Il permet d'établir un état initial et de suivre l'évolution de la qualité des cours d'eau.

Les réseaux de suivi sont présentés en détail dans le Volet B du Livret C.

MÉTHODOLOGIE

Le suivi hydrobiologique comprend 2 types de suivi :

- a) le suivi de la faune ichthyenne et carcinologique,
- b) le suivi des macro-invertébrés.

SUIVI DE LA FAUNE ICHTYENNE ET CARCINOLOGIQUE

🖎 (D'après VNC, 2011. Suivi environnemental - Eaux douces de surface, rapport annuel)

L'inventaire de la faune d'eau douce porte sur les poissons et les crustacés. La méthode d'échantillonnage pour le suivi de la faune ichtyologique (poissons) est la pêche électrique. Des inventaires d'effectifs, de biomasse et d'espèces sont ensuite réalisés.

SUIVI DE LA FAUNE MACRO BENTHIQUE

Des prélèvements sont effectués à plusieurs endroits de la rivière, à l'aide d'un filet à maille fine (protocole d'échantillonnage standardisé), afin de prélever les organismes présents dans le cours d'eau.

Le suivi de la qualité biologique de l'eau des rivières est réalisé selon la méthode des indices biotiques développée pour la Nouvelle-Calédonie (IBNC) par N. Mary (1999). C'est une méthode biologique d'évaluation indirecte de la qualité de l'eau des rivières qui permet de détecter des pollutions organiques, en milieux d'eau courante peu profonds.

On calcule cet indice avec des données récoltées. Dans les prélèvements de substrats effectués dans la rivière, on détermine les organismes présents. Il n'est pas nécessaire de dénombrer exactement la faune triée. Chaque taxon indicateur est pris en compte à partir du moment où il est présent, quelque soit son abondance. Les différents organismes étant plus ou moins sensibles aux pollutions, pour certains d'entre eux, cette sensibilité est évaluée sur une échelle de 1 à 10, les taxons les plus sensibles ayant les scores maximums

L'indice biotique d'une station est obtenu en divisant la somme des scores des taxons indicateurs présents sur la rivière par le nombre total de taxons indicateurs.

Ce même auteur a également mis en place <u>l'indice bio-sédimentaire</u> (IBS). Il permet de qualifier la qualité d'un milieu face à des altérations sédimentaires. C'est un indice variant de 1 à 10, basé sur une liste de 56 taxons indicateurs de la pollution, dont l'intérêt est de détecter des pollutions de type sédimentaire, notamment celle provoquée par les particules fines issues de sols latéritiques. L'IBNC et l'IBS sont calculés comme suit :

$$Indice = \frac{1}{n} \sum_{i=1}^{i=n} S_i$$

avec n: nombre de taxons indicateurs

Si : score du taxon i

À chaque note calculée, une qualité de l'eau est attribuée (voir Tableau 2).

SEUILS RÉGLEMENTAIRES ET NORMES

- La pêche électrique est réalisée conformément à la norme NF EN 14011 de juillet 2003.
- Aucun seuil règlementaire n'est associé au suivi hydrobiologique.
- A titre indicatif, les eaux sont caractérisées comme indiqué dans le Tableau 2.

Tableau 2 : Seuils pour le calcul de la qualité de l'eau

Indice Biotique (IBNC)	Indice BioSédimentaire (IBS)	Qualité de l'eau
IBNC ≤ 3.50	IBS ≤ 4.25	Très mauvaise
3.50 < IBNC ≤ 4.50	4.25 < IBS ≤ 5.00	Mauvaise
4.50 < IBNC ≤ 5.50	5.00 < IBS ≤ 5.75	Passable
5.50 < IBNC ≤ 6.50	5.75 < IBS ≤ 6.50	Bonne
IBNC > 6.50	IBS > 6.50	Excellente

SUIVI DE LA FAUNE DULCICOLE DES DOLINES

Pour les milieux lentiques tels que les dolines, la faune présente dans ces milieux particuliers sont essentiellement des macro-invertébrés.

Les suivis réalisés sur ce type de milieux requièrent une méthodologie spécifique proche de celle utilisée pour le suivi de la faune dulcicole des zones humides. Toutefois, les indices IBNC et IBS ne peuvent pas être utilisés car ils ont été créés pour des milieux lotiques uniquement.

2.3 MILIEU MARIN

2.3.1 Qualité physico-chimique des eaux marines

La surveillance de la qualité des eaux marines concerne les paramètres physico-chimiques et la structure de la colonne d'eau.

2.3.1.1 Suivi qualitatif des eaux marines

STRUCTURE PHYSIQUE ET CHIMIQUE DE LA COLONNE D'EAU

Les paramètres suivis en sub-surface (à moins de 3 mètres de profondeur), à mi-profondeur et au fond (à plus de 3 mètres du fond) de la colonne d'eau sur chacune des stations sont indiqués dans le Tableau 3 ainsi que les limites de détection. Les données sont acquises à l'aide d'une sonde multiparamétrique. La fréquence d'acquisition des données est de 0,5 secondes et la vitesse de descente d'environ 0,5 m/s. Une série d'acquisition est générée tous les 25 cm environ.

Tableau 3 : Méthodes et limites de détection pour le suivi des eaux marines

Labo	Prélèvements	Sonde multiparamétrique CTD	Seabird Modèle SBE 19
	Paramètre	Méthode	Limites de détection
Externe	Profondeur	Pression	
	Salinité	Mesure de la conductivité	0,001%
Externe	Température	Pont de Weston	0,01 °C
Externe	Turbidité	Absorption lumineuse	0,1 FTU
Externe	Fluorescence	Excitation lumineuse	0,1 mg/m ³
Externe	Irradience	Atténuation lumineuse	Sans unité

NB : la turbidité par mesure de la néphélométrie est exprimée en FTU (Formazin Turbidity Units) : 1FTU ~ 1 mg/l de matière particulaire sèche (capteur Sea Point) ;

La fluorescence in-vivo est exprimée en unités arbitraires et permet, après calibration par croisement avec les analyses effectuées sur les échantillons collectés, de calculer les concentrations en pigments chlorophylliens (capteur Wet labs).

ÉLÉMENTS MAJEURS, PH ET MES

Ces éléments sont suivis à 3 profondeurs et sur chaque station. L'échantillonnage est effectué à partir des prélèvements en bouteilles Niskin¹. Le flaconnage utilisé pour le stockage des prélèvements d'eau est en PEHD et les échantillons ont été conservés au froid (4 °C) jusqu'à leur analyse de retour au laboratoire.

Vale Nouvelle-Calédonie Demande d'autorisation d'exploitation minière Page 13 / 70

Nom de bouteilles de prélèvements océanographiques qui peuvent prélever un échantillon d'eau de mer à une profondeur voulue sans être contaminées par de l'eau des couches supérieures (Brevet déposé par Sale Niskin en mars 1966).

Les MES reflètent l'importance des apports terrigènes et la remise en suspension de sédiments sous l'influence des conditions météorologiques. Les MES influencent également la production primaire : une charge particulaire élevée peut en effet modifier l'épaisseur de la couche euphotique².

Tableau 4 : Méthodes et limites de détection pour le suivi de la qualité de l'eau de mer

	рН	MES Matières en suspension mg/L	Ca mg/L	K mg/L	Na mg/L	Mg mg/L	2- SO4 mg/L Sulfates	CI lons chlorure mg/L
Analyses en laboratoire	pH mètre WTW	Filtre Nucleopore de 0,45 µm de porosité	Optical E	ICP-OES (Inductively Coupled Plasma- Optical Emission Spectroscopy, marque Varian, modèle Vista (Varian-SpectrAA- 300/400).		Chromatographie ionique capillaire (Waters, CIA);	Méthode de Mohr	
Limites de détection	0, 01	0,1		0,050	0μg/L		_	_

SELS NUTRITIFS

Méthode de prélèvement : bouteille NISKIN 5L en surface, à mi profondeur et au fond (sans toucher le fond).

Tableau 5 : Méthodes et limites de détection pour le suivi des éléments nutritifs et autres en milieu marin

Analyses en laboratoire			
Paramètre	Méthodes adaptées spécifiquement au milieu oligotrophe marin	Normes et publications	Limite de détection
NH4	Fluorimètre de terrain	Homes et Al 1999	1,5 nmol/L
NOD	Auto analyser Technicon		0,02 μmol/L
POD	Auto analyser Technicon	Raimbault et Al 1999	10 µmol/L
NO2 + NO3	Auto analyser Technicon	Outot 1988	0,002 µmol/L
PO4	Auto analyser Technicon	Murphy et Riley 1962	0,01 µmol/L
SiO4	Auto analyser Technicon	Fanning et Pilson 1973	0,05 μmol/L
POP	Auto analyser Technicon	Raimbault et Al 1999	10 μmol/L
CHN	Auto analyser Technicon		0,05 μg/L
Chlorophylle a	Fluorimètre		0,05 μg/L
MES	Filtration sur membrane spécifique		0,1 mg/L
рН	Electrode au Calomel		0,01 unité de pH

Ces analyses sont externalisées (laboratoire privé) et des doublons sont fréquemment demandés pour vérifier la cohérence des résultats entre deux laboratoires.

HYDROCARBURES TOTAUX

L'analyse des hydrocarbures totaux s'effectue selon la norme NF T90-203 ou bien DINEN ISO 9377-2. L'indice en hydrocarbure dissous est calculé par dosage des hydrocarbures des chaînes carbonées comprises entre C10 et C40 par chromatographie gazeuse (GC/FID). Cette méthode permet de doser 0,1 mg/l d'hydrocarbures (limite de détection). Les analyses sont externalisées et généralement confiées au laboratoire Micropolluants Technologie S.A., Thionville, France.

_

² Euphotique : qualifie une couche des eaux recevant suffisamment de lumière pour que les organismes végétaux puissent effectuer la photosynthèse

Tableau 6: Méthodes et limites de détection pour la détection des hydrocarbures

Analyses en laboratoire			
Paramètres	Méthode	Normes et publications	Limite de détection
Hydrocarbures totaux	laboratoire Micropolluants Technologie S.A., Thionville, France	Norme NF T90-203 ou DINEN ISO 9377-2	0,1mg/L

Ces analyses sont externalisés (laboratoire privé).

MÉTAUX

Les métaux sont analysés selon les méthodes synthétisées dans le Tableau 7.

Tableau 7 : Méthodes et limites de détection pour le suivi des métaux en milieu marin

Description				
Normes et public	ations	Moreton et Al 2009		
Paramètres				
Métaux dissous		Chrome Total, Chrome VI, C Cadmium, Cuivre, Fer, Mang		
Eléments majeur	rs	Calcium, Sulfates, Carbonate	es	
Analyses en laboratoire	Méthode et norme	s –Publication	Limites de détection	
Со	Pré-concentration en labo de te ICP OES/ Moreton et Al (2009)	errain puis élution en labo Ŕ	0,012 μg/L	
Cd	Pré-concentration en labo de terrain puis élution en labo R ICP OES/ Moreton et Al (2009)		0,040 μg/L	
Cu	Pré-concentration en labo de terrain puis élution en labo É ICP OES/ Moreton et Al (2009)		0,015 μg/L	
Fe	Pré-concentration en labo de te ICP OES/ Moreton et Al (2009)	errain puis élution en labo É	0 ,011 μg/L	
Mn	Pré-concentration en labo de te ICP OES/ Moreton et Al (2009)	errain puis élution en labo Ŕ	0,011 μg/L	
Ni	Pré-concentration en labo de te ICP OES	errain puis élution en labo Ŕ	0,011 μg/L	
Pb	Pré-concentration en labo de te ICP OES/ Moreton et Al (2009)	errain puis élution en labo é	0,050 μg/L	
Zn	Pré-concentration en labo de terrain puis élution en labo É ICP OES/ Moreton et Al (2009)		0,030 μg/L	
Cr/crVI AdSV: Metrohm Application Note V-82/ Achterberg et Van den Berg 1994		0,005 μg/L		
As	AdSV : Metrohm Application Not Achterberg et Van den Berg 199		0,005 μg/L	

Ces analyses sont externalisés (laboratoire privé) et des doublons sont fréquemment demandés pour vérifier la cohérence des résultats entre deux laboratoires.

2.3.1.2 Bioaccumulation des métaux

La méthode retenue est la transplantation d'espèces bio-indicatrices (bi-valves et algues) sur des stations artificielles immergées (cages) sur un ensemble de huit points localisés dans la zone d'influence potentielle des effets directs ou indirects du projet minier.

Une cage concerne directement l'exploitation minière. Il s'agit de celle située en baie Kué.

2.3.1.3 Sédimentation en mer

Les paramètres suivis pour caractériser la sédimentation en mer sont : la qualité des sédiments (granulométrie, composition minéralogique et la concentration en métaux) et le taux d'accumulation des sédiments.

Les méthodes utilisées et leurs limites sont présentées dans le Tableau 8 ci-après.

Tableau 8 : Seuils pour le calcul de la qualité de l'eau

Description	Distribution des métaux dans les sédiments disponibles : granulométrie, minéralogie et concentration en métaux					
Normes et publication	Tessier et Al 1979					
Prélèvements						
Méthode	Benne à sédiments ou carottier					
Nombre de stations	14					
Fréquence	Tous les 3 ans sauf au port où le suivi est annuel					
Analyses	Méthode	Normes	Limites de détection			
Granulométrie	Diffraction laser		0,01µm			
Minéralogie	Diffraction aux rayons x					
Extraction séquentielle des phases organiques	Dissolution fractionnée et dosage ICP-OES	Tessier et Al 1979	Entre 0,005 et 0,02µg/L selon le métal			
Métaux			Entre 0,005 et 0,02µg/L selon le métal			
Description	Rapidi	té du taux de sédir	mentation			
Normes et publication	Godberg ED 1963, Geo Internat.	ochronology with Pt Atom Energy Agen	o-210 in radioactive dating. cy 121-131			
Prélèvements		Carottier piston				
Analyses	Méthode	Normes	Limites de détection			
Datation	Spectométrie Gamma basse énergie 46, 54 KeV (pour Pb 210)	Faure 1986	0,003 Bq/g			
Densité	Teneur en eau		0,01 mg/L			
Granulométrie et minéralogie	Diffractomètre laser et Diffraction rayons x		0,1µm, traces			
Métaux, géochimie : As, Cd, Co, Cr, Mn, Ni, Pb, Zn	Attaque totale ICP-OES	8	Entre 0,001 et 0,02 µg/L selon les éléments			

Ces analyses sont externalisées.

2.3.2 Peuplements récifaux

Les paramètres biologiques indicateurs de l'état des peuplements récifaux et des populations associées sont suivis selon les modalités présentées ci-après.

Tableau 9 : Méthodologie pour le suivi des écosystèmes marins selon la CCB (2012)

Paramètres et variables	Substrat (Habitats)	
	Epi benthos : macro invertébrés	
	Poissons : Espèces cibles	
Prélèvements	Pas de prélèvement. Observations et photographie + vidéo	
Méthode	Définie lors de l'atelier du 3 mars 2006 DRN Nouméa	
Normes et Publications	Line Intercept Transect LIT (de English et al., 1994- 1997) et transects à largeur variable (Kulbicki et al., 1994 et1995 et Kulbicki Sarramégna,1999)	
Analyses		
Paramètre	Méthode	Limites de détection
Substrat	LIT fixe	LIT fixe sous largeur du ruban
Benthos	LIT fixe sur couloir	100m ²
Poissons	Comptage sur transect à largeur variable	Vision du plongeur et visibilité de l'eau

SUIVI DE L'ÉPI-MACRO BENTHOS

Les relevés sont effectués sur un couloir de 2,5 mètres de chaque côté du transect (i.e. 100 m²) :

- Pourcentage de recouvrement d'algues et phanérogames à l'échelle du genre ;
- Densité en bénitiers, trocas, certains échinodermes (au niveau de l'espèce pour les étoiles de mer, les oursins et les holothuries, et présence/absence pour les crinoïdes) et cliones.

Remarque: depuis 2008, VNC et les scientifiques impliqués dans ces suivis vont au-delà de la méthodologie minimale décrite ici, notamment avec une surveillance fine de la vitalité des coraux, de la présence éventuelle d'espèces envahissantes, d'étoiles de mer dévoreuses de coraux et avec une quantification de la couverture algale afin de bien cerner ses fluctuations saisonnières. Ces suivis sont externalisés.

SUIVI DE L'ICHTYOFAUNE (POISSONS)

Le plan de suivi impose une liste restreinte de poissons cibles. Cependant pour alimenter sa base de données, VNC demande la liste exhaustive des poissons observés, fournie en annexe de chaque rapport de suivi réglementaire semestriel.

2.4 MILIEU BIOLOGIQUE TERRESTRE

2.4.1 Typologie des formations végétales et zone biogéographique de référence

Les travaux de l'IRD (2003) ont permis d'établir une typologie et une cartographie des formations végétales dans la zone du projet global industriel et minier de VNC, située dans la région du Grand Sud qui s'étend sur les communes de Mont Dore et de Yaté et intégrant. La liste des principaux groupements végétaux à considérer a été établie pour l'ensemble de la zone biogéographique du Grand Sud au sud de la ligne Mont-Dore/Yaté. Sur cette base, les travaux ultérieurs réalisés sur

des zones spécifiques affinent la localisation des habitats au fur et à mesure des campagnes de terrain. Les relevés botaniques effectués permettent d'identifier la composition floristique singulière de chaque zone inventoriée, de localiser les habitats sensibles, les espèces rares, remarquables, menacées et/ou protégées (localisation par géo-référencement).

La proportion de chaque formation affectée par le projet est évaluée par rapport à la zone de référence du Grand Sud.

2.4.2 Identification des formations végétales et habitats sensibles

Les études réalisées pour caractériser l'état initial (milieu biologique) du projet VNC ont mis en évidence l'existence de formations végétales variées. Ces études ont identifié et localisé des formations végétales sensibles voir d'intérêt écologique peuvent faire l'objet de mesures de conservation, de protection et de restauration ou enrichissement (lorsqu'elles se trouvent dans un état dégradé ou en fragments isolés).

En particulier, il existe dans la région du Grand Sud des écosystèmes d'intérêt patrimonial au sens du code de l'environnement de la Province Sud (Articles 232-1 et suivants du code de l'environnement) et notamment des formations denses humides sempervirentes (forêts, mangroves, herbiers, récifs coralliens). Les forêts humides sont en régression dans le Sud de la Nouvelle-Calédonie suite à une augmentation de la fréquence des incendies (Jaffré *et al*, 1998 b). Ces formations comportent les faciès suivants en fonction de la dominance d'espèce :

Les formations de forêts denses humides sempervirentes :

- la forêt à *Arillastrum gummiferum* (chêne gomme) : elle est caractérisée par une biodiversité végétale riche et ne se trouve que de façon très fragmentée, en îlots forestiers plus ou moins isolés et très souvent sur des surfaces excessivement réduites :
- la forêt à *Agathis lanceolata* (Kaori) : caractérisée par une surface très restreinte et comportant des espèces figurant sur la liste de l'UICN ;
- · la forêt à Araucaria nemerosa ;
- la forêt rivulaire : on les rencontre sur les berges des creeks et dans les zones d'écoulement préférentiel des eaux de ruissellement. La surface est encore plus réduite que celle de la forêt à *Agathis lanceolata*, et elle constitue un biotope particulier abritant quelques espèces rares.

D'autres formations sont également considérées comme sensibles voir d'intérêt écologique par VNC. Il s'agit des formations suivantes :

- Le maquis pré-forestier : Cette formation à dominance de Metrosideros nitida est localisée sur le plateau ferralitique du Nord-Ouest de Goro au niveau de l'ancienne pépinière. Ce groupement arborescent n'est rencontré que dans ce secteur. Ce groupement reste floristiquement proche des maquis paraforestier à Gymnostoma deplancheanum et à Arillastrum gummiferum mais un intérêt particulier est porté à cette formation car malgré le peu d'éléments forestiers qu'il contient, la diversité et la dynamique de ses strates moyennes et inférieures évoquent une évolution possible vers un groupement plus forestier.
- Les formations paraforestières : ce sont des milieux essentiels pour la reconstitution ou la sauvegarde de milieux forestiers. Les groupements paraforestiers situés au voisinage des reliques forestières dignes d'intérêt sont à protéger. Ils peuvent selon les localités remplir des fonctions écologique particulières (rôle de tampon, de réservoir de semences forestières, de corridor pour la faune ou encore la capacité d'évoluer vers des formations plus forestières. Ces derniers mériteraient, si possible, d'être utilisées comme milieu de reconstitution des formations

forestières. ; Ces groupements comprennent en particulier les maquis paraforestiers à *Gymnostoma deplancheanum* et à *Arillastrum gummiferum* ;

- Les maquis hydromorphes : Il est possible de distinguer deux groupements végétaux, l'un situé sur des piémonts dont le sol est marqué par une hydromorphie temporaire, l'autre occupant les plaines basses et les alluvions des cours d'eau qui la drainent. Les maquis des zones humides permanentes constituent un écosystème particulier, très original. Les maquis de zone humide permanente constituent un écosystème particulier, très original, qui ne se rencontre que dans l'extrême Sud de la Grande-Terre notamment an niveau de la plaines des lacs (*Jaffré et al. 2003*). Outre leur intérêt écologique internationalement reconnu (zone RAMSAR), ils sont également reconnues pour les fonctions qu'ils exercent (épuration, stockage de l'eau...) et les cortèges originaux de faune et de flore qu'elles abritent. Ils occupent une surface réduite et sont menacés ;
- Les maquis ligno-herbacés denses des bas de pente et des piémonts : ils sont plus fréquents, mais peuvent selon leur composition jouer un rôle précurseurs dans la reconquête du couvert forestier à condition de pouvoir bénéficier d'action d'enrichissement.

2.4.3 Cartographie des formations végétales

Se référer à l'ANNEXE C15 : Point zéro de la végétation – Estimation des surfaces décapées (Blue cham, mars 2012)

La cartographie des grandes classes d'occupation du sol a été réalisée à partir de la couverture GeoEye-1 de 2011, ainsi que l'indice de végétation dérivé de ces données. Les sols nus ont été croisés sous SIG avec les données fournies par VNC concernant les pistes et formations anthropiques afin de distinguer les sols nus naturels des sols nus anthropisés. L'analyse de la végétation a été menée par traitement des images THR par l'identification des canopées fermées et denses, la discrimination des arbres et arbustes isolés et densité spatiales de ceux-ci, densité du couvert végétal photosynthétique, analyse des textures de l'image. La distinction entre les différentes densités de maquis (maquis ouvert, semi-ouvert et dense) a été effectuée par comptage du recouvrement de la végétation marquante (selon Jaffre et al. 2002).

Au sein des différentes classes de maquis et de forêts, la distinction typologique a été effectuée par analyse géospatiale des grandes classes avec une cartographie des formations lithologiques de la zone d'étude fournie par VNC. Un traitement particulier a été apporté pour identifier les classes de maquis paraforestier et de forêt (Maquis paraforestier à *Gymnostoma deplancheanum*, Maquis paraforestier à *Arillastrum gummiferum*, Forêt à *Arillastrum gummiferum*, Forêts dominées par *Agathis lanceolata*, Formation à *Araucaria nemorosa*). Un relevé de terrain de ces formations a été effectué pour caractériser les signatures spectrales et texturales de ces formations. Celles-ci ont ensuite été identifiées par reconnaissance de motifs et par photo-interprétation assistée par ordinateur.

La classification finale résultante a été vectorisée et chaque cluster individualisé. Les clusters de superficie inférieure à 0,0001 Ha sont éliminés de la classification finale par agrégation aux clusters similaires adjacents par analyse majoritaire. Ainsi, des objets denses (maquis paraforestier et maquis dense) de très petite taille (< 0.05 ha) peuvent être reclassés en maquis ouvert ou semi-ouvert. Ce type de mauvaise allocation de classe se rencontrera exclusivement sur les maquis denses et paraforestiers de taille très réduite et entourés par une grande zone de sol nus ou de maquis ouvert très peu couvrant.

Il convient de noter que cette procédure a été révisée en 2012 pour l'élaboration de la typologie des formations végétales de 2012 afin d'assurer une meilleure conservation des objets de petites tailles

et de la définition des bordures des objets. Les discordances pouvant être révélées entre la typologie de Bluecham et les relevés terrain réalisés par des botanistes sont prises en compte après chaque inventaire floristique afin de préciser et optimiser la typologie de végétation et la méthodologie associée.

Cette méthode de cartographie est maintenant validée par VNC et sert de référence pour l'évaluation des superficies de formations végétales affectées par le projet d'exploitation minière.

La méthodologie Bluecham est décrite en détail dans l'annexe C15.

2.4.4 Inventaires botaniques

2.4.4.1 Méthodologie des inventaires botaniques

Les inventaires botaniques ont pour objectif de décrire la composition floristique de chaque formation végétale, de localiser des formations à forte diversité en espèces (forêt primaire) ou contenant des espèces rares, menacées et/ou protégées et d'établir un plan de protection environnementale. Le travail d'inventaire est effectué selon les étapes suivantes :

- Un inventaire botanique du périmètre et des surfaces concernées par un défrichage ;
- · Le balisage des espèces rares.

Des mesures de sauvegarde, d'atténuation ou d'évitement sont élaborées pour les habitats sensibles et les espèces rares, menacées et/ou protégées si ces dernières ne sont pas déjà intégrées dans des actions en cours ou des programmes existants.

Les inventaires floristiques ont été réalisés initialement par les botanistes du laboratoire de Botanique et d'Écologie végétale de l'IRD en collaboration avec les botanistes de VNC. D'autres bureaux d'études spécialisés en particulier Bota Environnement, sont mandatés ponctuellement par VNC en renfort des botanistes de VNC pour réaliser des inventaires floristiques.

ÉTABLISSEMENT DE LA COMPOSITION FLORISTIQUE (LISTE ET ABONDANCE/DOMINANCE DES ESPÈCES

Une première étape consiste à établir une cartographie des formations végétales présentes sur l'emprise de la zone à inventorier afin d'identifier les habitats sensibles. Sur le terrain, un relevé botanique est effectué dans chaque formation végétale homogène préalablement identifiée par cartographie. Un premier recensement des groupements floristiques est réalisé sur le terrain selon la structure de la formation végétale, sa composition floristique et sa situation topographique. Les relevés botaniques sont réalisés selon la méthode phyto-sociologique de Braun-Blanquet qui implique l'établissement d'un indice d'abondance et de recouvrement pour chaque espèce recensée. Dans le cadre du projet de VNC, tous les relevés sont réalisés selon un protocole standardisé unique.

DÉNOMBREMENT DU NOMBRE D'INDIVIDUS MATURES DES ESPÈCES PROTÉGÉES

L'estimation du nombre d'individus d'espèces protégées (inscrites sur la liste des espèces protégées de la province Sud) qui sont potentiellement concernés par le défrichement d'une zone dite « zone d'étude » est réalisée à partir de l'extrapolation de données relevées sur différentes unités d'observation (parcelles de 2500 m2, transects de 1000 m², quadrats de 100 m², Layon de 500 m²). Ces unités d'observation, extraites de précédents inventaires floristiques ou missions terrain, sont localisées au niveau de différentes formations végétales sur différents secteurs de l'aire d'emprise du site de Vale NC. L'extrapolation se fait ensuite en utilisant les données relevées par

type de formation végétale sur la zone d'évaluation (unités d'observation) appliquée aux surfaces totales des formations végétales sur la zone d'étude concernée par le défrichement.

2.4.4.2 Historique des inventaires botaniques

LES INVENTAIRES IRD 'PAR PRIORITÉ' (2002-2003)

À partir de 2003, les inventaires de chaque zone d'empreinte du projet VNC ont été effectués par ordre de priorités. Les inventaires de l'IRD concernant les zones des installations de la déclaration minière sont dans les rapports de l'IRD intitulés "Priorité 1" et transmis à la DRN (27/09/02); "Priorité 2" transmis à la DRN (9/09/03); "Priorité 3" transmis à la DRN (5/01/03); "Priorité 4" transmis à la DRN (2/01/03).

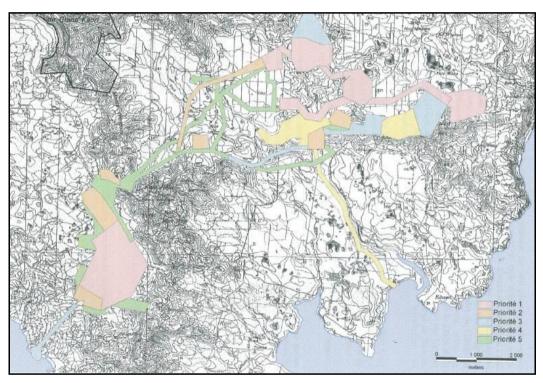


Figure 2 : Zones d'inventaires IRD par priorité (2003)

De nombreux inventaires ont été réalisés ultérieurement sur les zones devant être affectées par les aménagements du projet industriel et minier et qui sont soumises à demande de défrichement, ou bien sur les zones patrimoniales qui bénéficient d'un suivi réglementaire ou volontaire. L'ensemble des inventaires floristiques réalisés sur le site du projet global sont répertoriés dans le Tableau 10 ci-après.

Tableau 10 : Liste des inventaires floristiques effectués pour le projet global

Rédacteur	Date	Intitule de l'étude	Zone d'étude	Composant	Localisation ou unité	Code
RD	27/09/2002	Inventaire floristique des secteurs classés "Priorité 1" de la zone d'implantation des infrastructures minières et industrielles de Goro Nickel	L'aire initiale du développement du premier 18 mois de la mine	Stockage de litière végétale		SLV
				Voie de roulage fosse minière		VRFM
				Stock minerai		SM-KN2A
				Fosse minière de pré- production		FMP0
				Bassin de sédimentation	Kué nord 2,3 versant est	BS-KN23-E
			La route d'accès entre la mine et l'unité de préparation de minerai	Voie de roulage a l'unité de préparation de minerai		VRUPM
				Bassin de sédimentation	Kué nord 1	BS-KN1
				Couloir d'alimentation mine- usine		CAMU
				Remblai de franchissement	Kué nord 1	RF-KN1
			La route menant au stockage des stériles	Voie de roulage verse à stériles	Kué est	VRVS-KE
RD	09/09/2003	Inventaire floristique des secteurs classés "Priorité 2" de la zone d'implantation des infrastructures minières et industrielles de Goro Nickel	Berme de contrôle des sédiments de la mine	Bassin de sédimentation	Kué est	BS-KE
				Carrière de péridotite	Kué est	CP-KE
RD	05/01/2004	Inventaire floristique des secteurs classés "Priorité 3" de la zone d'implantation des infrastructures minières et industrielles de Goro Nickel	Aire de stockage des stériles	Verse à stériles	Kué est	VS-KE
				Bassin de sédimentation de la verse	Kué est	BS-VSKE
RD	02/01/2003	Inventaire floristique des secteurs classés "Priorité 4" de la zone d'implantation des infrastructures minières et industrielles de Goro Nickel	Réservoir de la Kué Nord	Bassin de sédimentation	Kué nord	BS-KN
Goro Nickel	12/09/2003	Inventaire floristique de l'exercice minier de pré- production	Exercice minier de pré-production	Bassin Central	Kué Nord	BSC-EM
				Bassin Ouest		BSO-EM

Rédacteur	Date	Intitule de l'étude	Zone d'étude	Composant	Localisation ou unité	Code
IRD	12/12/2004	Inventaire floristique des zones S1, S2, S3, S4 à Goro définies par Goro Nickel	Aire de stockage des résidus de la Kué Ouest	Aire de stockage des résidus	Kué Ouest	KWRSF
IRD	01/01/2005	Inventaire floristique des zones S6, S7, S8, S9 à Goro définies par Goro Nickel	Élargissement nord & sud de la route entre la mine et l'unité de préparation du minerai	Remblai de franchissement	Kué Nord	KN23
				Voie de roulage	Kué Ouest	KW
IRD	01/04/2005	Inventaire floristique de la zone S5 à Goro définies par Goro Nickel	Aire de stockage des résidus de la Kué Ouest	Aire de stockage des résidus	Kué Ouest	KWRSF
Goro Nickel	12/09/2005	Inventaire floristique du Bassin de Sédimentation de la Kué Nord	Bassin de Sédimentation de la Kué Nord	Bassin de sédimentation	Kué Nord	BS-KN
Goro Nickel	30/11/2005	Inventaire floristique du CR10 Déviation	CR10 déviation entre Kué Nord et Base opérationnel	CR 10 Déviation	Kué est	CR10
Goro Nickel	03/06/2005	Inventaire floristique de la carrière Péridotite sur la Kué Est	Inventaire floristique de la carrière Péridotite sur la Kué Est	Carrière et route d'accès	Kué Est	CPKE
Goro Nickel	11/07/2005	Berme et aire entreposage Kué Ouest	Berme et aire entreposage Kué Ouest	Berme	Kué Ouest	KWRSF
				Aire entreposage		
				Bureau & Atelier Kué Ouest		
Goro Nickel	25/01/2006	Inventaires floristique des pistes exploration KN3	Campagne de forage sur KN3	Pistes et plateformes	Kué Nord	KN3
Goro Nickel	02/02/2006	Inventaire floristique de la voie de roulage verse de la Kué Est	Inventaire floristique de la voie de roulage verse de la Kué Est	Voie de roulage	Kué Est	VRSKE
Goro Nickel	23/02/2006	Inventaire floristique emprise du pont des tuyauteries sur la Kué Ouest	Pont des tuyauteries sur la Kué Ouest entre Audemard et CIM	Pont	Kué Ouest	KW Pipe bridge
Goro Nickel	09/06/2006	Inventaire floristique de l'unité de préparation du minerai & Centre industriel de la mine	Unité de préparation de minerai & Centre industriel de la mine	Unité de préparation de minerai (Feed prep plant)	Kué Nord	UPM (FPP)
				Bassin de sédimentation		BSUPM
				Stock minerai		SM1
				Stock basse teneur		SBT
				Bassin de sédimentation		BS1
				Plate-forme de stockage de minerai tout venant		SM TV
				Centre industrielle de la mine		CIM (MIA)
				Bassin de sédimentation		BS2
Goro Nickel	23/08/2006	Inventaires de 3 aires d'emprunt sur la Kué Ouest	3 aires d'emprunt sur la Kué Ouest	Aire Emprunt	Kué Ouest	Limonite Nord
						Limonite Ouest
						Limonite Sud

Rédacteur	Date	Intitule de l'étude	Zone d'étude	Composant	Localisation ou unité	Code
Goro Nickel	03/08/2006	Inventaire de la structure et diversité de la Forêt S2	Aire de stockage des résidus de la Kué Ouest	Aire de stockage des Résidus	Kué Ouest	KWRSF
Goro Nickel	09/08/2006	Inventaires nouveaux trajectoires radiers de la Kué Ouest et Kué Nord	Radiers de la Kué Ouest et Kué Nord	Radiers	Kué Ouest	Radier Kué Ouest
Goro Nickel	12/10/2006	Inventaire de l'aire d'emprunt 4 sur la Kué Ouest	Aire d'emprunt 4 sur la Kué Ouest (Piton 300)	Aire Emprunt	Kué Ouest	Piton 300
Goro Nickel	06/12/2006	Inventaire floristique de l'emprise du drain temporaire Sud	Drain temporaire Sud sur Aire de stockage des résidus	Aire de stockage des Résidus	Kué Ouest	KWRSF
Vale INCO	01/07/2007	Inventaire déversoir BSKN	Déversoir BSKN	Déversoir	Kué Nord	BSKN
Vale INCO	27/03/2008	Inventaire floristique de la campagne de forage de la mine de pré-production de 2008.	Campagne de forage de la mine de pré-production de 2008.	Piste et Plateformes	Kué Est	Butte KE
Vale INCO	08/04/2008	Inventaire floristique du bassin de sédimentation du KN2,3	Bassin de sédimentation du KN2,3	Bassin de sédimentation	Kué Nord	KN23
Vale INCO	27/03/2008	Inventaire floristique de la zone de travaux KN 2-3 STOCKPILES / STOCKS DE MINERAI » et bassin de sédimentation	Zone de travaux KN 2-3 STOCKPILES / STOCKS DE MINERAI » et bassin de sédimentation	Zone de stockage	Kué Nord	KN23
Vale INCO	03/04/2008	Inventaire floristique de l'emprise de la route des crêtes Kué Ouest "ridge top road" entre le col de l'antenne et le déversoir	Route des crêtes Kué Ouest"ridge top road" entre le col de l'antenne et le déversoir du KWRSF	Route	Kué Ouest	KWRSF
Vale INCO	03/04/2008	Bilan des études floristiques sur la zone de verse "VSKE" Finale	Verse à stériles de la Kué Est emprise final	Verse	Kué Ouest	VSKE
Vale INCO	18/09/2008	Inventaire floristique des maquis rivulaire en amont du KN 23	Pistes exploration en amont du KN 23	Pistes	Kué Nord	KN23
Vale INCO	14/01/2009	Inventaire floristique de l'emprise du stock de minerai de basse teneur premier phase (SMBT)	Emprise du stock de minerai de basse teneur premier phase (SMBT)	Aire de stockage	Kué Ouest	SMBT
				Bassin de Sédimentation		BS6
Vale INCO	31/03/2009	Inventaires floristiques des pistes d'accès pour le curage et la maintenance de deux décanteurs à proximité de la Kué Nord 1 (KN1)	Pistes d'accès pour le curage et la maintenance de deux décanteurs à proximité de la Kué Nord 1 (KN1)	Pistes et plateformes	Kué Nord	KN1
Vale INCO	11/06/2009	Inventaire floristiques des seuils des affluents du KN1 et KO5	Seuils des affluents du KN1 et KO5	Pistes, plateformes et seuils	Kué Ouest	KO5
Vale INCO	23/06/2009	Inventaire floristique des pistes et plateformes de la campagne de forage "Epidote" Secteur Unité de Préparation de Minerai,	Campagne de forage "Epidote" Secteur Unité de Préparation de Minerai,	Piste et plateforme	Kué Ouest	UPM

Rédacteur	Date	Intitule de l'étude	Zone d'étude	Composant	Localisation ou unité	Code
Vale INCO	21/10/2009	Inventaire floristique de la fosse des 5 ans de la mine	Fosse des 5 ans de la mine	Piste, Fosse,	Kué Nord	KN3
Vale INCO	25/11/2009	Inventaire floristique Aire emprunte carrière Limonite Nord "Zone 3"	Aire emprunte carrière Limonite Nord "Zone 3"	Aire Emprunt	Kué Ouest	CLN
VNC	30/10/2010	Inventaire floristique de l'aire de stockage de minerai SMLT	Aire de stockage de minerai SMLT	Aire de stockage, draines et routes accès	Kué Ouest	SMLT
VNC	23/11/2010	Inventaire floristique campagne de sondage "Gardénia"	Campagne de sondage "Gardénia"	Pistes et plateformes	Kué Ouest	KO4
VNC	30/07/2010	Inventaire floristique du V5	Verse à stériles V5	Verse et routes d'accès	Kué Nord	V5
VNC	12/08/2011	Inventaire floristique les pistes et plateformes de la campagne de sondage 100x100 du KO4	Campagne de sondage 100x100 du KO4	Piste et Plateformes	Kué Ouest	KO4
VNC	16/09/2011	Inventaire floristique Carrière limonite Sud "extension"	Carrière limonite Sud "extension"	Aire Emprunt	Kué Ouest	CLS
Bota environnement	30/12/2011	Inventaire floristique du plateaude Goro pour les 15 ans de la mine	Plateau les 15 ans de la mine	Mine	Kué Nord	Mine
VNC	26/09/2011	Permis de coupe zone du grand Kaori en S5	Permis de coupe zone du grand Kaori en S5	Aire de stockage des résidus	Kué Ouest	KWRSF
VNC	07/06/2011	Reconnaissance floristique Campagne géophysique Fer B	Campagne géophysique Fer B	Lignes géophysiques	Kué Nord	KN
VNC	23/05/2012	Inventaire floristique de la voie de roulage "V1" entre l'unité de préparation de minerai et l'aire de stockage des résidus	Voie de roulage "V1" entre l'unité de préparation de minerai et l'aire de stockage des résidus	Voie de roulage	Kué Ouest	VRKO
VNC	18/12/2013	Vérification des formations végétales du ROM PAD	Bosquet UPM	Amélioration de la visibilité et de la manœuvrabilité des engins miniers	Kué Nord	Bosquet UPM
VNC	08/10/2013	Inventaire floristique CPVSKE	VSKE	Carrière de péridotite	Kué est	CPVSKE
VNC	10/12/2013	Inventaire floristique aire d'entreposage nord	Aire entreposage	Aire d'entreposage	Kué Ouest	Aire d'entreposage Nord
BOTA ENVIRONNEMENT	25/01/2013	Inventaire floristique Demande d'Autorisation Travaux de Recherches Concessions AS 3, AS 4, AS 5 Vale Nouvelle-Calédonie Rapport d'étude	AS3, AS4, AS5	Concession entière et balisage espèces rares lignes géophysiques	Prony, Baie Kadji	
BOTA ENVIRONNEMENT	11/03/2013	Inventaire floristique Demande d'Autorisation Travaux de Recherches Concessions INVASION 5 INVASION 6 INVASION 7 NH8 NH9 Vale Nouvelle-Calédonie Rapport d'étude	INVASION 5 INVASION 6 INVASION 7 NH8 NH9	Concession entière et balisage espèces rares lignes géophysiques	Vallée de la Capture, Rivière des Lacs	

Rédacteur	Date	Intitule de l'étude	Zone d'étude	Composant	Localisation ou unité	Code
BOTA ENVIRONNEMENT	12/04/2013	Inventaire floristique Demande d'Autorisation Travaux de Recherches Concessions YVON CHRISTMAS Vale Nouvelle-Calédonie Rapport d'étude	YVON CHRISTMAS	Concession entière et balisage espèces rares lignes géophysiques	Prony, Baie de Carenage	
BOTA ENVIRONNEMENT	19/05/2013	Inventaire floristique Demande d'Autorisation Travaux de Recherches Concessions INVASION 1 INVASION 3 INVASION 1 EXT Vale Nouvelle-Calédonie Rapport d'étude	INVASION 1 INVASION 3 INVASION 1 EXT	Concession entière et balisage espèces rares lignes geophysiques	Rivière des Lacs, Confluence Creek Pernod	
VNC	02/07/2013	Rapport Campagne de Forage FER Reconnaissance floristique des pistes et plateformes (Grille 200 x 200m) Juillet 2013	FER	pistes et plateformes		
BOTA ENVIRONNEMENT	13/08/2013	Inventaire floristique Demande d'Autorisation Travaux de Recherches Concessions DUNITE O DUNITE P DUNITE Q DUNITE R Vale Nouvelle-Calédonie Rapport d'étude	DUNITE O DUNITE P DUNITE Q DUNITE R	Concession entière et balisage espèces rares lignes géophysique		
BOTA ENVIRONNEMENT	01/11/2013	Demande d'autorisation pour les travaux de recherches Groupe de sondage 10 : concessions Invasion 2, Invasion 2 EXT et Invasion 4 Expertise sur la flore et les écosystèmes	Invasion 2, Invasion 2 EXT, Invasion 4	Concession entière et balisage espèces rares lignes géophysique		
VNC	09/09/2013	Inventaire floristique : Campagne « KO4_Geotech2 »	KO4	Balisage pistes et plateformes	KO4	
BOTA ENVIRONNEMENT	01/12/2013	Inventaires botaniques Pistes d'accès et plateformes de sondage KO4 et BS10 Vale NC	KO4	Balisage pistes et plateformes	KO4	
VNC	03/03/2014	Inventaire floristique complémentaire - DRAFT : Rapport KO4	KO4	Compilation des inventaires précèdent et complément terrain	KO4	

Rédacteur	Date	Intitule de l'étude	Zone d'étude	Composant	Localisation ou unité	Code
BOTA ENVIRONNEMENT	01/04/2014	Inventaires botaniques Site d'étude : BS10 Vale NC	Bassin BS 10	Bassin sédimentation	KO4	
BOTA ENVIRONNEMENT	01/04/2014	Inventaires botaniques Site d'étude : BUREAU KO4	Bureau KO4	Bureau	KO4	
BOTA ENVIRONNEMENT	02/04/2014	Inventaires botaniques Site d'étude : DÉVERSOIR KO4 Vale NC	Déversoir KO4	Déversoir	KO4	
BOTA ENVIRONNEMENT	03/04/2014	Inventaires botaniques Site d'étude : ROM PAD Vale NC	ROMPAD	ROMPAD		
BOTA ENVIRONNEMENT	04/04/2014	Inventaires botaniques Site d'étude : MIA Vale NC	MIA	MIA		
BOTA ENVIRONNEMENT	01/06/2014	Inventaires botaniques Site d'étude : Carrière KO4 : Vale NC : Bota Environnement : BE13040 2014 Environnement sur site Erratum Vale NC	Carrière CPA1	Carrière	KO4	
BOTA ENVIRONNEMENT	01/06/2014	Inventaires botaniques Site d'étude : Verse V6 Vale NC	Verse V6	Verse		
BOTA ENVIRONNEMENT	02/12/2014	Demande d'autorisation pour les travaux de recherches Groupe de sondage 2 : concession Fer 2 ext Expertise sur la flore et les écosystèmes	FER EXT 2	Concession entière et balisage espèces rares lignes géophysiques		
BOTA ENVIRONNEMENT	01/11/2014	Inventaires floristique et ornithologique Identification des espèces rares et protégées Kwé Ouest Vale NC	Versant sud KWRSF	Drain	KW	

Rédacteur	Date	Intitule de l'étude	Zone d'étude	Composant	Localisation ou unité	Code
BOTA ENVIRONNEMENT	01/01/2015	Inventaires floristiques et identification des espèces rares et protégées Projets de plates-formes et de pistes de sondages Concessions AS 3, AS 4 et AS 5 Vale NC	AS3 4 5	pistes et plateformes	AS3 4 5	
VNC	26/02/2015	Inventaire floristique Route d'accès au bassin versant KO4	KO4	Route	KO4	
VNC	01/01/2015	Inventaires floristique et identification des espèces rares et protégées Zones tampons Carrière KO4 et Déversoir	KO4 - Priorité 1	Carrière, zone tampon, déversoir	KO4	
VNC	28/01/2015	Inventaire floristique KWRSF Nord-Ouest Janvier 2015	KWRSF NO		KW	
BOTA ENVIRONNEMENT	01/09/2014	Inventaires floristiques et identification des espèces rares et protégées sur les lignes tomographiques Site : Nord V5 Vale NC	Campagne géophysique Nord V5	Lignes géophysiques	V5	

Source VNC, 2015

2.4.5 Faune terrestre

Les études réalisées pour caractériser l'état initial du projet VNC ont porté sur l'ensemble des groupes faunistiques cités dans le code de l'environnement de la Province Sud. Une attention spécifique a été apportée à des espèces ou à des groupements d'espèces particuliers : l'herpétofaune (reptiles : lézards), l'avifaune (oiseaux) et la myrmécofaune (fourmis).

En particulier, le suivi réglementaire de la faune terrestre est axé sur les groupes faunistiques considérés comme des indicateurs de la santé des milieux. Après concertation et validation par les spécialistes et les autorités locales, les communautés de lézards des forêts humides ainsi que les oiseaux terrestres ont été retenus comme espèces indicatrices de la santé des milieux terrestres de la région du Grand Sud et notamment des écosystèmes forestiers limitrophes des infrastructures de VNC. En effet, les habitats à forte diversité biologique et d'intérêt patrimonial, comme par exemple les forêts humides, sont protégés en application du code de l'environnement de la Province Sud (Articles 231-1 à 235-3) et renferment la plus forte diversité en espèces d'oiseaux et en lézards. Ces habitats particuliers ont donc été choisis pour être suivis.

2.4.5.1 Inventaires herpétologiques

L'état initial de populations de lézards (et geckos) de l'emprise du projet global VNC a été entrepris à partir de décembre 2003 (A Survey of the Lizard Fauna of the Proposed Goro Nickel Mine Site ; Sadlier & Shea ; 2004), puis dans les 4 réserves spéciales du Grand Sud (Etude de l'Herpétofaune de Quatre Réserves Spéciales du Grand Sud de la Nouvelle-Calédonie et Propositions d'Orientations de Mesures de Conservation ; Sadlier et Shea ; 2006).

Depuis 2008, de nombreux inventaires ont été réalisés afin de compléter l'état initial. À ce jour, presque la totalité du projet minier de VNC a fait l'objet d'inventaires herpétologiques. Une liste des inventaires réalisés depuis 2008 est présentée dans le Tableau 12.

Ces études ont démontré qu'outre les habitats forestiers, certains habitats, selon leur localité, de maquis paraforestiers sont à considérer pour la conservation de la biodiversité des lézards et geckos.

PROTOCOLE D'INVENTAIRE

La période optimale pour l'étude des reptiles correspond à la période pendant laquelle les individus ont une activité intense, autrement dit entre le mois de septembre et le mois de février (période au cours de laquelle les températures sont élevées et les risques de pluie sont généralement plus faibles).

Une fois les patchs de maquis paraforestiers et forestiers sélectionnés et localisés sur une carte, les stations d'inventaires sont repérées sur le terrain et les transects matérialisés. Le protocole consiste en :

- 2 transects de 200 mètres de long sur chaque site (2 x 3 sites), espacés de 30 mètres ;
- 10 pièges-puits sur chaque transect, espacés de 10 mètres.

Plusieurs méthodes de recensement sont utilisées afin d'optimiser la recherche des lézards les plus discrets :

• Recherche de jour (Day Search) : cette méthode consiste à marcher le long de chacun des deux transects de 200 m, à deux personnes, chacune de part et d'autre du transect, à 5 mètres

minimum l'une de l'autre, regardant chacune de leur côté jusqu'à 10 mètres. Chaque transect est parcouru sur une durée de 30 minutes, aux heures les plus chaudes de la journée (entre 9h et 15h). Cette méthode permet le recensement des espèces actives de jour et les plus communes.

- <u>Piège puits</u> (pit falls) : cette méthode consiste à placer le long de chacun des deux transects de 200 mètres, dix seaux de 5 litres (216mm, H : 181 mm) dans le sol, percés de plusieurs trous pour l'évacuation de l'eau de pluie, avec quelques feuilles déposées au fond du seau pour prévenir la prédation et/ou le dessèchement des animaux. Ces seaux sont vérifiés une fois par jour pour collecter et relâcher les individus piégés. Cette méthode est indispensable pour recenser les espèces discrètes et fouisseuses.
- Recherche de nuit (Spotlighting) : cette méthode permet d'observer les espèces nocturnes grâce à la réflexion des pupilles de l'animal éclairées par un faisceau lumineux. La détection est réalisée grâce à un système ingénieux d'une torche frontale fixée à une paire de jumelles (8 x 40 Wide angle). La canopée moyenne est scannée par un observateur à partir de 2 mètres jusqu'à 10 mètres de haut (au-delà, l'identification de l'espèce est impossible). Un deuxième observateur scrute la strate arbustive, de 0 à 2-3 mètres de hauteur pour repérer les geckos. Chaque transect est examiné pendant une durée de 1 heure.
- Les pièges à glue (glue trap) : cette méthode consiste à déposer au sol et sur les troncs des arbres les pièges à glue dans chaque site d'inventaire. Les pièges placés sur les troncs des arbres ciblent les espèces arboricoles.

En outre, tous les lézards observés hors du transect sont relevés et notés comme relevé « opportuniste ». Au début de chaque recensement, l'humidité, la température et la vitesse moyenne du vent sont notées grâce à un appareil de mesure multifonctions de type thermo-hygromètre (marque Kestrel 3000). Les recherches de jour et de nuit ainsi que celles réalisées par pièges-puits sont interrompues et reportées en cas de fortes pluies.

CAS PARTICULIER DU SCINQUE LÉOPARD

En août 2005, un premier suivi du scinque léopard a été réalisé au col de l'antenne. L'observation du *Lacertoides pardalis* était fondée sur une démarche « opportuniste », qui consiste à observer les sites possibles d'habitat à l'aide de jumelles.

En décembre 2008, le suivi a été réalisé au col de l'antenne sur trois jours (le 15, 16 et 17) par le cabinet de consultance Cygnet (R. Sadlier et G. Swan). La méthode utilisée est celle des pièges à glu (« glue traps ») où les pièges sont disposés aux endroits favorables aux repos des individus. Un appât (morceau de pomme) est posé sur le piège afin d'augmenter les chances de capture. Quatre stations ont été choisies pour cette campagne de suivi au col de l'antenne et 55 pièges ont été posés. Ils sont placés à différents endroits en fonction du milieu, soit au sol accolés à un bloc de péridotite, soit à l'entrée de crevasses ou creux entre le sol et la roche, ou encore dans de petites fissures dans les blocs de roches. Tous les pièges sont disposés de telle façon à ce qu'ils soient protégés des rayons du soleil (pouvant altérer la survie d'un individu capturé). Les pièges sont vérifiés deux (2) fois par jour, en fin de matinée (entre 10h30 et 12h30) et une autre fois en fin d'après-midi (entre 16h30 et 18H30), afin de limiter la prédation sur les animaux capturés.

Outre les pièges à glu, 15 pièges *Elliott* (piège à mammifère) ont été testés cette année-là (uniquement au col de l'antenne) pour attraper les scinques afin d'expérimenter leur utilisation dans un suivi à long terme. Des morceaux de pommes placés à l'intérieur des cages sont utilisés pour appâter les lézards. Les pièges sont placés au sol sur une surface plane à proximité des blocs de péridotites et protégés du rayonnement. Ils sont vérifiés en même temps que les pièges à glu.

Le suivi des populations de scinque léopard a été complété par une recherche de l'espèce sur un autre site propice à sa présence, la mine A1. Les modalités appliquées ont été les mêmes que

celles mises en œuvre au col de l'antenne. Deux stations ont été choisies et 20 pièges y ont été placés au total.

Le Tableau 11 ci-dessous résume les méthodes appliquées.

Tableau 11 : Description des stations de suivi du scinque léopard et des méthodes utilisées

Site	Station	Méthode	Caractéristiques
	Forêt Nord Haut A & B combiné	12 pièges à glue 3 cages Elliott	Pièges placés dans les crevasses, creux et buissons le long de la route dans l'affleurement rocheux
Forêt Nord - Route du col de l'Antenne			Placés dans les petits blocs de péridotite le long de la route
	Forêt Nord Bas B	11 pièges à glue 4 cages Elliott	Placés dans les petits blocs de péridotite dispersés
	Forêt Nord Bas C	23 pièges à glue 3 cages Elliott	Placés dans les petits à larges blocs de péridotite dispersés
Min o A 4	Mine A1-A	10 pièges à glue	Placés dans les moyens à larges blocs de péridotite
Mine A 1	Mine A1-B	10 pièges à glue	Placés dans les larges blocs de péridotite

(Extrait Sadlier, 2009)

Tableau 12 : Liste des inventaires lézards et oiseaux réalisés entre 2008 et 2015

Zone d'inventaire	Date	Groupe faunistique	Surface inventoriée (ha)	Nb d'espèces/ Nb d'individus/ Effort de recherche
Future zone de roulage, tronçon KN1 et KN 2-3	janvier - avril 2008			Observation diurne / nocturne
Future zone de Stockage de Minerai Basse Teneur de la zone KN2-3 (SMBT KN2-3), ainsi	avril - mai	Lézards		Observation diurne / nocturne
que de son futur Bassin de Sédimentation (BS KN2-3)	2008			Pièges à fosse
Verse à stériles de la Kué Est (VSKE), phase d'extension 3 et du noyau forestier de la digue	mai - juillet 2008	Lézards		Observation diurne / nocturne
Ouest (dit KE4)	2008			Pièges à fosse
Future zone de Stockage de Minerai Basse Teneur de l'Unité de Préparation du Minerai (SMBT-UPM)	septembre - octobre 2008	Lézards		Observation diurne / nocturne
Zone d'extension de la fosse minière (5-10 ans)	octobre - novembre	Lézards		Observation diurne / nocturne
	2008			Pièges à glue
Zone de la Carrière à Péridotite de la Kué Est (zone CPKE) – Finalisation du rapport Faune	mars 2008	Lézards		Bilan bibliographique d'études réalisées en 2004
Crêtes de Kwa Neie – Surveillance Lacertoides	décembre	Lézards		Pièges à glue
pardalis	2008	Lezalus		Pièges à trappes
	décembre			8 esp. de scinques/ 3 esp. de geckos
Fosse de la mine (20 à 30 ans)	2010	Lézards	225	198 individus
				540 pièges à glu/ 4 transects de nuits
Concession FED. AS7	aout-	Lézards		6 esp. de scinques/ 2 esp. de geckos
Concession FER, AS7	septembre 2010	Lezalus		88 ind. diurnes/ 10 ind. nocturnes

Zone d'inventaire	Date	Groupe faunistique	Surface inventoriée (ha)	Nb d'espèces/ Nb d'individus/ Effort de recherche
				280 pièges à glu/ 6 transects de nuit
				7 esp. de scinques/ 4 esp. de geckos
Concession FER, AS7, ROBERT	juin 2010	Lézards		43 ind. diurnes/ 11 ind. nocturnes
				260 pièges à glu/ 4 transect de nuit
				17 espèces (6 EE; 7 SEE)
Concessions AS2, AS3, AS4 AS5 AS7	juin/juillet 2010	Oiseaux	~ 570	213 individus
				25 points d'écoute
				2 esp. de scinques/ 1 esp. de gecko
Concessions KUE, AS2, AS3	juin 2010	Lézards		3 ind. diurnes/ 1 ind. nocturne
				36 pièges à glu/ 1 transect de nuit
				21 espèces (10 EE ; 10 SEE)
Concessions RHONE, KUE	juin 2010	Oiseaux	~324	189 individus
				18 points d'écoute
				2 esp. de scinque / 0 esp. de geckos
Concessions RHONE	juin 2010	Lézards		5 ind. diurnes / 0 nocturnes
				102 pièges à glu / 1 transect de nuit abandonné
				20 espèces (12 EE ; 8 SEE)
Concession FER E2	Juin/Juillet 2010	Oiseaux	~1650	508 individus
	2010			59 points d'écoute
	décembre			25 espèces (10 EE ; 12 SEE)
	2010	Oiseaux		352 individus
				32 point d'écoutes
Zone de conservation de la Wajana				8 esp. de scinques / 6 esp. de geckos
	janvier 2011	Lézards		174 esp. diurnes / 41 esp. nocturnes
				360 pièges à glu posés / 2 transects de nuit
				9 esp. de scinques/ 2 esp. de geckos
NICO B Est	mars 2011	Lézards	+/- 830 ha	66 individus
				120 pièges à glu / 1 transect de nuit
				6 esp. de scinques / 2 esp. de geckos
AS1	avril 2011	Lézards	+/- 625 ha	50 individus
				180 pièges à glu sur 6 sites / 2 transects de nuit

Zone d'inventaire	Date	Groupe faunistique	Surface inventoriée (ha)	Nb d'espèces/ Nb d'individus/ Effort de recherche
				6 esp. de scinques / 5 esp. de geckos
FER E2	juin 2011	Lézards	+/- 2146 ha	96 individus
				360 pièges à glu sur 6 sites/ 1 transect de nuit
				8 esp. de scinques / 4 esp. de geckos
AS3, AS4 et AS5	juillet 2011	Lézards	+/- 795 ha	124 individus
				720 pièges à glu sur 8 sites/ 12 transects de nuit
Zono do concentation de la Weigne	février 2011	Oiseaux	+/- 490 ha	25 espèces (10 EE ; 12 SSE) avec 1 El (un paon)
Zone de conservation de la Wajana	levilei 2011	Oiseaux	inventoriés	352 individus
				32 points d'écoute
			Etudes	17 espèces (8 EE ; 8 SEE)
AS1, AS3, AS4, AS5 et NICO B EST	mai 2011	Oiseaux	complémentair es (quelques	243 individus 3 points d'écoute sur AS1 ; 9
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		O.OOG.	points par	points sur AS3, AS4, AS5 et 23
			concessions)	points d'écoute sur NICO B EST
				0 espèces
Forêt Nothofagus	Juillet 2014	Lézards		0 individus
				30 pièges à glue / 1 site / pas de
				transect de nuit
K94 5		Lézards		8 Espèces (8 scinques et 4 geckos
KO4, Bureaux KO4, BS 10, BS V6, KWRSF, Ext ROM Pad & MIA, et ZEF	Août 2014			294 individus
NOW Fad a Will , or ZET				780 pièges à glue / 26 stations / 2 transects de nuit
				11 Espèces (9 scinques et 2 geckos)
Carrière KO4 (CP-A1)	Octobre 2014	Lézards		162 individus
				420 pièges / 14 sites / 6 transects
				de nuits
	Décembre			28 Espèces (11 EE, 16 SE et 1 LR
Plateau de Goro (zones forestières et lacustres)	2012 à Février 2013	Oiseaux		2629 Contacts
				48 points d'écoutes
				9 Espèces (8 scinques et 1 gecko)
Route d'accès à la mine	Janvier 2015	Lézards		64 individus
				180 pièges à glue / 6 sites2 transects de nuit
				12 Espèces (8 scinques et 4 geckos)
KO4 Carrière n°4	Janvier 2015	Lézards		122 individus
				300 pièges à glue / 10 sites / 2 transects de nuit
Zones périphériques à KO4 et déversoir	Mars 2015	Lézards		7 Espèces de scinque
Zones peripriendues a NO4 et deversoil	Wars 2013	LGZAIUS		74 individus

Zone d'inventaire	Date	Groupe faunistique	Surface inventoriée (ha)	Nb d'espèces/ Nb d'individus/ Effort de recherche
				300 pièges à glue / 10 sites / 2 transects de nuit
Desired	May 0045	I formula		11 Espèces (7 scinques et 4 geckos)
Projet Lucy	May 2015	Lézards		208 individus
				270 pièges à glues / 11 sites
	Octobre 2014			34 Espèces (11 EE, 17SE, 6 LR)
Plateau de Goro (zones forestières et lacustres)	à décembre	Oiseaux		3169 Contacts
	2014			48 points d'écoutes

2.4.5.2 Inventaire de l'avifaune

La méthode utilisée pour l'établissement de l'état initial de l'avifaune du plateau de Goro (2003) et des suivis annuels effectués depuis 2008 sur 12 sites suit un même protocole d'étude maintenant bien étalonné et utilisé dans divers milieux arborés de Nouvelle-Calédonie (Villard et al, 2003 ; Barré et Menard, 2003).

MÉTHODE D'OBSERVATION SUR LE PLATEAU DE GORO

La méthode utilisée est celle des points d'écoute ou Indices Ponctuels d'Abondance (IPA). Cette méthode est la suivante :

- sélection des points d'écoute géoréférencés, espacés de 300 mètres en zone forestière et de 500 mètres en maquis minier ;
- détection des oiseaux par l'écoute et le recensement pendant dix minutes des espèces présentes dans un rayon de 15 mètres. Les doubles comptages de mêmes individus sont écartés par l'expérience de l'observateur à distinguer et localiser les oiseaux entendus ;
- relevés effectués du lever du soleil à 9h30 jusqu'à 15h30 au crépuscule. Les prospections sont interrompues en cas de fort vent et de pluie (réduction de l'activité des oiseaux) ;
- détection de l'avifaune des milieux lacustres en scannant le plan d'eau avec une paire de jumelles 10 x 40 pendant une dizaine de minutes.

Pour l'établissement de l'état initial en 2003-2004, 203 points ont été réalisés en saison sèche du 13 octobre 2003 au 21 novembre 2003 (51 en forêt humide et 152 en maquis minier) et 198 points en saison humide du 2 mars 2004 au 23 avril 2004 (51 en forêt humide et 147 en maquis minier).

Le suivi de l'avifaune terrestre a débuté en 2008. Au total, 48 points d'écoute plus trois en milieu lacustre (points rajoutés en 2009) sont répartis sur l'ensemble de la zone d'emprise du projet VNC. Chaque point est répété quatre fois (deux fois le matin et deux fois l'après-midi) durant le suivi afin d'optimiser les chances de détection de toutes les espèces.

2.4.5.3 Inventaire de la myrmécofaune

Les stations en milieu naturel ont été étudiées suivant le protocole ALL ('Ants of the Leaf Litter' : fourmis de la litière de feuilles), proposé par Agosti et al. (2000). Ce choix se justifie par la qualité

des résultats obtenus lors de la réalisation du protocole, pour un effort d'échantillonnage donné, et par l'intérêt de pouvoir comparer les résultats obtenus avec ceux de l'étude des maquis miniers du Sud, conduite pour la Direction des Ressources Naturelles³ de la province Sud selon ce même protocole (Chazeau et al. 2003). Il s'impose comme un protocole standard dans les études de diversité de la myrmécofaune.

Les 4 stations en milieu fortement anthropisé (sans litière suffisante pour être correctement échantillonnée) sont étudiées en utilisant une détection par des appâts, associés ou non à des pièges d'interception de Barber. Sur ces stations, les études se focalisent sur la présence de certaines espèces invasives, particulièrement la fourmi de feu *Solenopsis invicta* dont l'introduction avec du matériel importé d'Australie est redoutée.

LE PROTOCOLE ALL

Il consiste en un double échantillonnage au sol, le long d'un transect à travers le milieu étudié. Deux méthodes complémentaires sont mises en œuvre de façon synchrone :

- Prélèvements systématiques de litière tous les 10 mètres sur une surface de 1 m²;
- Pose de pièges d'interception de type Barber ('pitfall traps') au voisinage des points de prélèvement de la litière et relevés après 48 heures de capture.

Le nombre d'échantillons préconisés est compris entre 20 et 50, ce qui implique des transects de 200 à 500 mètres (Fisher et *al.*, 2000). Pour cette étude, les échantillons se font sur des transects de 200 mètres pouvant être constitués d'un layon non rectiligne ou de 2 layons de 100 mètres, pour éviter de sortir de la zone type étudiée ou d'y inclure une zone trop altérée (piste, clairière trop vaste, layon).

LA TECHNIQUE DES APPÂTS

Elle a été utilisée à chaque fois que les conditions de milieu ne permettaient pas un échantillonnage convenable de la litière, afin de compléter l'échantillonnage par pièges d'interception de Barber. La technique des appâts (toujours distants de 10 mètres) a aussi été utilisée seule pour la détection des espèces envahissantes (et plus particulièrement *Solenopsis invicta*) dans la frange du rivage et à proximité du wharf et dans la zone des magasins.

L'appât est présenté sous la forme d'une «noisette» du mélange décrit, ou de beurre, déposé dans un tube de matière plastique (pâté : h 70 mm, Ø 65 mm ; beurre d'arachide : h 68 mm, Ø 28 mm) avec la palette servant à la prélever. Les tubes sont relevés au bout de 2 heures, examinés sur le terrain (loupe de poche), étiquetés et ramenés au laboratoire si un examen plus approfondi est nécessaire.

Nature des appâts:

- Appâts polyvalents : mélange de pâté en conserve du commerce (protéines et graisses) et de biscuits sec (sucres) ;
- Appâts spécifiques à Solenopsis invicta : beurre d'arachide ('peanut butter' du commerce).

IDENTIFICATION DES ESPÈCES ÉCHANTILLONNÉES

Il n'existe pas de clé générale d'identification pour la myrmécofaune néo-calédonienne. Sa connaissance est loin d'être exhaustive et plusieurs espèces collectées ne sont pas encore

Maintenant remplacée par la Direction de l'Environnement

nommées (Jourdan 1999, 2002). L'identification est donc faite au niveau du genre. Lorsque l'identification à une espèce décrite n'a pas été possible, l'espèce, ou la « morphospecies » distinguée par l'utilisation des critères discriminants les plus communément utilisés, s'est vue attribuer un code d'identification. Une collection de référence est conservée à l'IRD Nouméa. L'existence d'un polymorphisme de caste dans certains groupes, qui complique souvent l'identification des fourmis, a été prise en compte pour cette identification.

2.5 MILIEU HUMAIN

Les données du milieu humain rapportées dans le livret C sont limitées à celles qui vont permettre d'évaluer les effets sur les sites et les paysages, les biens et le patrimoine archéologique et culturel, la commodité de voisinage (bruit, vibrations, odeurs, émissions lumineuses), l'hygiène, la sécurité et la salubrité publiques (selon les indications du code minier).

2.5.1 Paysage

Une étude de visibilité a été entreprise dans le cadre de l'étude d'impact du projet d'exploitation minière par traitement informatique à partir du MNT. La méthode utilisée pour mettre en évidence les secteurs géographiques possédant des vues sur le projet est la visibilité réciproque. Ce traitement est décrit dans les paragraphes ci-dessous.

2.5.1.1 Principe de l'analyse

Le principe utilisé repose sur la réciprocité de la visibilité : si un observateur A voit un observateur B alors l'observateur B voit l'observateur A. Sur cette base, des groupes d'observateurs sont positionnés et vont déterminer, depuis leur emplacement propre, les secteurs visibles autour d'eux. Le calcul de visibilité est effectué avec le logiciel SIG ArcView d'ESRI complété par les modules 3D Analyst et Spatial Analyst. L'outil utilisé nécessite un ou plusieurs observateurs (couche vecteur de points) et une couche raster du relief.

Le calcul consiste en une analyse binaire du champ de vision de chaque observateur avec une réponse de type vu ou non vu pour chacune des cellules du raster. Les résultats du calcul de tous les observateurs sont ensuite cumulés pour obtenir une carte de visibilité de type binaire dans un premier temps et une carte de hiérarchisation des secteurs les plus exposés dans un second temps.

Le nombre d'observateurs concernés détermine l'intensité de la visibilité de chaque secteur de la zone d'étude.

2.5.1.2 Préparation des données

2.5.1.2.1 La couche raster du relief

LE TERRAIN NATUREL

Cette couche a été établie à partir des courbes de niveau définies par VNC, qui ont permis de créer un fichier de triangulation, c'est-à-dire un découpage surfacique de l'enveloppe contenant les courbes de niveau en triangles d'altitudes homogènes, mais de tailles hétérogènes. Pour simplifier les calculs et au vu de la région couverte par les courbes de niveau (et en fonction des capacités de calcul de l'ordinateur), les courbes maîtresses, espacées de 5 mètres en 5 mètres, sont sélectionnées dans le fichier LIDAR1m.shp fourni par VNC. Le résultat de cette triangulation a été

ensuite converti en couche raster, le Modèle Numérique de Terrain (MNT). Les cellules de ce MNT sont des carrés de 5 mètres de côté.

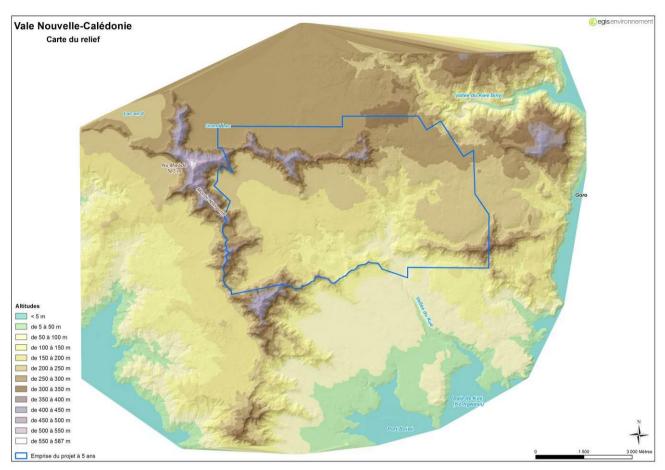


Figure 3 : Carte des altitudes du Modèle Numérique de Terrain (EGIS, 2012)

LES OBSTACLES NATURELS

Dans le cas d'un calcul précis de visibilité, le relief naturel d'un terrain est insuffisant, il est nécessaire de prendre également en considération les obstacles visuels : les zones bâties ou aménagées et les zones végétalisées.

- Les zones bâties ou aménagées (verses à stériles, stocks de minerais, barrage du parc à résidus, hangars et bureaux...) ont été ajustées en fonction des données du projet.
- La détermination de l'élévation moyenne de la végétation a été réalisée sur la base des formations végétales présentes dans l'emprise du projet à 5 ans et de la carte des groupements végétaux dans la zone d'étude (Cf. Carte C37). Les hauteurs moyennes définies sont indiquées dans le Tableau 13 ci-après.

Tableau 13 : Choix des élévations pour l'analyse paysagère (EGIS, 2012)

Hauteur en m	Formation végétale
1	Maquis ligno-herbacé des pentes érodées Maquis ouvert sur gabbro
1	Maquis des plaines hydromorphes
2	Forêt sur éboulis péridolitiques et forêt rivulaire Maquis des sols à hydromorphie temporaire Maquis ligno-herbacé de bas de pente ou de piémont
3	Maquis arbustif ouvert sur sol ferralitique cuirassé Maquis arbustif semi-ouvert sur sol ferralitique cuirassé ou gravillonnaire
10	Maquis dense sur sol ferralitique cuirassé ou gravillonnaire
15	Maquis paraforestier de piémont ou sur colluvions Maquis paraforestier à <i>Arillastrum gummiferum</i> Maquis paraforestier à <i>Gymnostoma deplancheanum</i> Maquis préforestier (formation de l'ancienne pépinière)
15	Forêt à Arillastratum gummiferum
25	Forêt dominée par Agathis lanceolata

RÉSULTAT

La couche raster résultant de la somme du MNT et de l'élévation relative aux formations végétales est appelée Modèle Numérique d'Elévation (MNE). C'est cette couche qui est utilisée comme raster relief.

2.5.1.2.2 Les observateurs

DÉTERMINATION DES POINTS

Des points ont été positionnés à l'intérieur de l'emprise du projet au droit des zones d'aménagement existantes ou projetées et à la hauteur correspondante. Ainsi 1385 observateurs sont positionnés à la fois selon une grille régulière avec un pas de 100 mètres et au niveau des équipements miniers existants ou projetés.

SÉLECTION DES OBSERVATEURS

Parmi ces points, ceux situés dans des formations végétales trop hautes pour permettre l'observation ont été exclus. Tous les points situés dans une formation végétale dont la hauteur moyenne est supérieure ou égale à 10 mètres, ont été supprimés. Les points situés dans des formations végétales de 2 et 3 mètres de hauteur ont été conservés, bien que ces hauteurs soient supérieures à la taille humaine, pour tenir compte de trouées éventuelles permettant la vue.

CRITÈRES COMPLÉMENTAIRES

Pour affiner le calcul de visibilité, les observateurs ont été considérés comme surélevés du MNE d'un mètre (hauteur d'une personne assise). De même, les cibles, c'est-à-dire l'ensemble des cellules du MNE ont été visées un mètre au-dessus des valeurs d'altitude afin de prendre en compte une végétation basse.

2.5.1.2.3 <u>Interprétation des résultats</u>

La carte de visibilité résultante permet de positionner les zones aux alentours du projet depuis lesquelles les aménagements sont visibles, et selon une intensité croissante.

2.5.2 Données socio-économiques

Les données ont été reprises de l'analyse des conditions socio-économiques et culturelles actuelles (fin 2011–début 2012) des communautés présentes dans la zone d'impact du projet et largement décrite dans le Livret G de la demande d'autorisation. Le périmètre d'analyse s'étend sur les communautés vivant à proximité de la zone du projet susceptibles d'être plus directement impactées et plus particulièrement sur les villages et les tribus du littoral Sud :

- Ile Ouen (commune du Mont-Dore) ;
- · Goro (commune de Yaté);
- Touaourou (Commune de Yaté);
- Unia (commune de Yaté);
- · Waho (commune de Yaté).

2.5.3 Bruit

VNC procède à des campagnes de mesure des niveaux sonores au titre de la réglementation ICPE depuis 2007, année qui sert de référence à l'analyse comparative des résultats. La fréquence réglementaire imposée de ce suivi est de trois (3) ans et concerne 11 points de mesure répartis dans le Grand Sud aux abords de zones habitées et des zones naturelles identifiées comme patrimoniales (forêts classées).

L'objectif de ces campagnes est d'évaluer le niveau sonore à la limite des zones du site à émergences réglementées et en limite de propriété de l'usine, conformément à la délibération n° 741-2008/BAPS du 19 septembre 2008 relative à la limitation des bruits aériens émis dans l'environnement par les installations classées pour la protection de l'environnement. Cette délibération fixe pour chacune des périodes (diurne et nocturne), les niveaux de bruit à ne pas dépasser en limite de propriété de l'établissement, déterminés de manière à assurer le respect des valeurs d'émergence admissibles.

Les stations de mesure ont été regroupées en cinq (5) zones :

- Zone 1 : ensemble « premières habitations » en baie de Prony : îlot Casy, village de Prony ;
- Zone 2 : ensemble « mine » : base opérationnelle de la mine, unité de préparation de minerai :
- Zone 3 : ensemble « limite de propriété » : col Paillard, débarcadère Ferry, Forêt Nord et limite de la base-vie ;
- · Zone 4 : ensemble « premières habitations » côte Est : tribu de Goro, Port-Boisé ;
- Zone 5 : autre : base-vie.

Ces zones ont été définies pour l'ensemble des installations industrielles de VNC et non pas spécifiquement à celles de la Mine. Ainsi certaines zones, comme les zones 1, 3 et 5, sont plus particulièrement concernées par les bruits émis par les installations de l'usine ou du Port de VNC.

2.5.4 Patrimoine culturel et archéologique

Les données sur le patrimoine ont été extraites de l'inventaire archéologique raisonné réalisé par l'Association Océanienne d'Archéologie (AOA) en 2006. Son objectif était de réaliser une reconnaissance d'ensemble des sites archéologiques de surface. Lors de cet inventaire, les

photographies aériennes n'ont pas permis d'identifier d'éventuels vestiges, en raison de la couverture végétale. L'analyse des archives, bien que succincte, a permis de focaliser l'étude terrain sur les secteurs non encore étudiés.

L'étude terrain a permis d'inventorier un certain nombre de sites classés en deux catégories principales : les entités historiques (XIXème et XXème siècle) et les entités Kanaks diachroniques.

2.6 DÉFINITION DES ELÉMENTS IMPORTANTS DE L'ENVIRONNEMENT (EIE)

DÉTERMINATION DES ÉLEMENTS IMPORTANTS DE L'ENVIRONNEMENT

La détermination des EIE, sur lesquels va porter l'évaluation des impacts environnementaux, est le résultat d'un processus participatif qui s'appuie sur la prise en compte des éléments suivants :

- L'identification des composantes sensibles de l'environnement naturel et humain réalisée au cours de l'établissement de l'état des lieux et transcrite dans les différents dossiers successifs de demande d'autorisation d'exploiter au titre des installations classées pour la protection de l'environnement (ICPE) déposés par la société Goro Nickel (devenue Vale Nouvelle-Calédonie SAS) en avril 2004 et en octobre 2007;
- Les résultats des enquêtes publiques de 2004 et de 2007et les avis des commissairesenquêteurs;
- Les préoccupations des communautés, qui ont pu être recueillies au cours de campagnes de consultation des populations locales (*Cf. livret G de la présente demande*) et qui ont été mises en relation avec les différentes composantes du projet ;
- Les obligations juridiques en matière de protection de l'environnement applicables en Nouvelle-Calédonie;
- Les bonnes pratiques en matière de développement durable relatées dans les guides tels que ceux édités par l'IFC/BM, l'UE, l'ICMM...

Sur cette base et en intégrant l'évolution du projet depuis juillet 2002, les préoccupations environnementales ont fait l'objet d'une évaluation méthodique. Ces préoccupations sont regroupées par thématiques et appelées EIE.

L'EIE est, par définition, un élément de la nature susceptible d'être affecté par le projet VNC. Il revêt plusieurs formes :

- l'EIE peut être un paramètre environnemental imposé par les réglementations applicables ou recommandées sur lequel porte l'évaluation des effets des installations :
 - Les règlementations applicables considérées sont les plus récentes en vigueur sur le territoire calédonien et/ou en métropole ; en cas d'absence de directive sur un paramètre précis alors les seuils ANZECC sont pris en compte.
 - Les EIE sont extrêmement variés et les normes qui se rapportent à leur protection aussi.
 Les normes et les valeurs guides ou de référence sont rappelées dans ce rapport à la section 5 : Référence pour l'évaluation des effets résiduels.

- l'EIE peut être l'objet d'une **préoccupation** des populations **locales** identifiées par consultations des communautés et/ou revêt une dimension **internationale**.
- l'EIE peut avoir une valeur patrimoniale ou culturelle en corrélation ou non avec sa valeur écologique :
 - La valeur patrimoniale ou culturelle d'un EIE n'est pas fondée sur une valeur chiffrable objective évidente mais sur une valeur historique et mythique. Cette valeur est évaluée au travers des consultations des populations et par un travail d'identification des éléments ou des lieux emblématiques importants du milieu marin ou du milieu terrestre. Par exemple une espèce végétale peut avoir une haute importance dans certaines coutumes ou cérémonies, elle est donc de forte valeur, au même titre qu'une espèce qui serait sur la liste rouge de l'UICN.
 - La valeur écologique, quant à elle, doit être objectivée (dans une finalité de quantification qui est une préoccupation internationale forte) et elle se réfère aux listes de l'UICN et à tous les référentiels suivants : CITES, FAO, Code de l'environnement de la Province Sud, CDB, etc. La vulnérabilité (rareté) du taxon ou de l'habitat considéré, son abondance dans toute la région du Grand Sud calédonien et sur la zone d'évaluation, ses tendances évolutives, son degré de protection, ses possibilités de reproduction en pépinière, son rôle fonctionnel, son micro-endémisme, sa valeur marchande reconnue ou illégale (par exemple une espèce recherchée pour ses essences ou par les collectionneurs), etc. sont des critères pris en considération pour évaluer la valeur écologique d'une espèce ou d'un habitat à protéger prioritairement. Les recommandations de l'IRD de Nouméa prennent en compte ces critères en hiérarchisant les priorités de protection sur les forêts, les maquis pré-forestiers, les écosystèmes rivulaires, etc. À cette fin, la région de référence du Grand Sud est inventoriée pour comparer la représentativité d'un habitat potentiellement affecté par le projet avec sa répartition dans cette région et dans la zone d'empreinte. Les priorités d'évitement sont ainsi définies dans une approche systémique.
 - Le rôle d'un taxon (ou d'un milieu) dans la fonctionnalité des écosystèmes, et donc sa pérennisation évolutive est difficile à appréhender malgré les efforts d'études engagés depuis 1996. Un manque de connaissances sur la fonctionnalité des écosystèmes calédoniens en milieu ultramafique handicape l'approche fonctionnelle (bien que les études effectuées depuis 2009 au travers des mesures compensatoires VNC-Province Sud-CCB aient permis d'acquérir de nouvelles connaissances). L'amélioration des connaissances est continue et fait l'objet de mesures compensatoires ou volontaristes de VNC. En fonction de la progression des connaissances et de l'évolution des écosystèmes de la région, la valeur d'une espèce (ou d'un habitat) peut être réévaluée.

L'EIE doit permettre la mise en place **d'un plan de gestion et de surveillance** (sur la base d'indicateurs environnementaux), tout au long de la vie du projet, voire au-delà. Cependant, ce critère n'est pas véritablement discriminant car la plupart des éléments environnementaux peuvent faire l'objet d'un plan de surveillance. Il s'agit de prendre en compte le fait qu'un EIE identifié comme tel devra être suivi d'une façon quantifiée et la plus objective possible durant toute la durée du projet, tel un indicateur. Cette obligation de planification et de « reporting » est une garantie qui exclue les éléments trop conceptuels ou force à définir et quantifier les indicateurs de suivi.

2.7 ELÉMENTS IMPORTANTS DE L'ENVIRONNEMENT RETENUS

Sur la base de la définition de l'Elément Important de l'Environnement (EIE), un argumentaire succinct est développé pour l'identification des éléments retenus. Les EIE sont rassemblés par thèmes tels que présentés dans le Tableau 14.

2.7.1 Environnement atmosphérique

Les activités ou sources d'émissions susceptibles d'affecter la qualité de l'air sont principalement :

- L'exploitation minière (émission de poussières lors de l'excavation) ;
- · Les émissions polluantes liées à la circulation des véhicules et des engins.

La qualité de l'air constitue une préoccupation dans la mesure où elle peut induire des effets sur la santé humaine et sur les écosystèmes (terrestres, aquatiques). Au vu de ces considérations, les EIE retenus pour l'environnement atmosphérique sont :

- · La qualité de l'air ;
- · Les effets sur la santé humaine.

2.7.2 Eaux douces et leur biodiversité

Les activités ou sources susceptibles d'affecter la qualité et le régime des eaux douces de surface (accès, disponibilité) et leur biodiversité sont principalement :

- · Les activités minières ;
- Les eaux de ruissellement issues de la mine, des aires de stockage des résidus ;
- Les résurgences des eaux d'infiltration en particulier des aires de stockage ;
- · Les captages ;
- · Les contaminations accidentelles.

L'emprise au sol des principales infrastructures (actuelles et projetées) du projet VNC est limitée aux bassins versants suivants :

- Le bassin de la rivière Kué où sont localisées les infrastructures minières ;
- Le versant Sud de la Plaine des lacs (camp de géologie et pépinière).

Aucune infrastructure n'est construite sur les autres bassins versants du Grand Sud (rivière de la Madeleine, rivière Kuébini, rivière Wajana, ancienne mine, Entonnoir, Trou bleu...).

Les altérations de la qualité des eaux, des sédiments et des débits des cours d'eau peuvent avoir des effets sur les écosystèmes aquatiques et terrestres rivulaires.

Au vu de ces considérations, les EIE retenus sont :

• La disponibilité et la qualité de la ressource en eau ;

- · Les débits d'eau douce :
- · Les écosystèmes d'eau douce et leur biodiversité (poissons et invertébrés).

2.7.3 Eaux marines et côtières, le lagon et sa biodiversité

La qualité des eaux marines et côtières ainsi que leur biodiversité est susceptible d'être perturbée du fait :

- de l'activité liée à la construction des infrastructures sur le milieu terrestre ;
- · du fonctionnement des installations ;
- de l'exploitation de la mine sur le plateau de Goro.

Ces perturbations peuvent avoir des conséquences sur la qualité de l'eau, les communautés coralliennes, la faune et la flore aquatique du lagon et sa biodiversité et les zones de pêche de subsistance ainsi que sur l'activité touristique.

Les eaux côtières du Canal de la Havannah constituent un lieu de passage de mammifères marins (baleines). De plus, la réserve marine Merlet est située à environ 7 km de l'estuaire de la Kué et fait partie de la zone du lagon Sud inscrite au patrimoine mondial de l'UNESCO.

Toutes les perturbations potentielles du lagon, de leurs communautés et des mammifères marins (baleines) ou autres espèces de valeur écologique, emblématique et patrimoniale constituent une préoccupation locale et internationale. Compte tenu de ces éléments, les EIE retenus sont :

- · la qualité des eaux marines et côtières ;
- la biodiversité du lagon.

2.7.4 Eaux souterraines

Les activités ou sources susceptibles d'affecter la qualité et le régime des eaux souterraines sont principalement :

- L'exploitation de la mine et l'excavation d'une fosse à ciel ouvert, en raison de son impact sur les régimes des eaux souterraines ;
- · Les aires de stockage de résidus et les lixiviats associés ;
- Le stockage et la manipulation de produits dangereux en raison du risque de contamination des sols et par conséquent des eaux souterraines.

Compte tenu de ce qui précède, les EIE retenus sont :

- La qualité des eaux souterraines ;
- · Le régime d'écoulement des eaux souterraines.

2.7.5 Biodiversité terrestre

Les activités ou sources susceptibles d'affecter la biodiversité terrestre englobant la faune, la flore et leurs habitats sont principalement :

• la construction des ouvrages et des installations ;

- · le bruit ;
- les émissions lumineuses ;
- le trafic routier ;
- · la qualité de l'air ;
- · l'introduction d'espèces exogènes ;
- · les incendies ;
- l'anthropisation et sa pression sur les milieux au sens général.
- la coupe de bois illégal favorisée par l'ouverture de pistes pouvant offrir un accès privilégié aux maquis paraforestier et forêts, notamment à proximité de la route communale

Ces activités peuvent entraîner la fragmentation de l'habitat, la réduction ou le dérangement des zones de prédation, de repos et de reproduction, la modification de corridors et barrières, des déséquilibres écologiques.

La flore terrestre calédonienne est caractérisée par sa diversité, par la présence d'espèces végétales rares, endémiques et menacées d'extinction. En Nouvelle-Calédonie, 147 espèces végétales sont répertoriées par la convention CITES. Plus d'une soixantaine d'espèces végétales listées par l'UICN se trouvent dans la zone d'emprise du projet global (mine et usine). Plus de 40 espèces végétales sont également inscrites sur la liste des espèces protégées du code de l'environnement de la Province Sud (dont une vingtaine apparaît également sur la liste UICN). Trois réserves botaniques spéciales sont situées au voisinage du projet (Forêt Nord, Monts Oungoné (Pic du Grand Kaori) et Cap N'Dua). Le code de l'environnement de la Province Sud présente une liste des milieux protégés.

La faune terrestre calédonienne est caractérisée par la présence d'espèces protégées par le cadre règlementaire néo-calédonien (code de l'environnement de la Province Sud) dans la zone d'emprise du projet, d'espèces répertoriées comme sensibles par des conventions internationales et d'espèces endémiques.

La biodiversité terrestre constitue une préoccupation locale et internationale en raison de la rareté de certaines espèces (animales et végétales) et des potentialités offertes par les écosystèmes (tourisme, éducation, recherche scientifique, connaissances en général...).

Un des engagements de VNC dans sa démarche de protection de la biodiversité est « d'éviter, minimiser, rectifier et compenser les impacts sur la biodiversité » du Sud calédonien tout au long du cycle de son activité minière (exploration, construction, exploitation et fermeture). Dans cette démarche, la priorité est accordée à la préservation des habitats, suivie de la protection des populations et des espèces.

Les EIE retenus doivent donc permettre d'atteindre cet objectif. Si les EIE associés à l'étude des impacts résiduels permettent de définir les actions de compensation, il faut cependant noter que :

- Les actions d'évitement et de minimisation (qui ont déjà eu lieu lors des modifications successives et améliorations du design du projet) ne sont pas terminées mais se poursuivront tout au long du projet qui est amené à évoluer.
- Les actions de sauvegarde ne sont pas focalisées sur la conservation d'un seul EIE (comme une espèce rare). Le premier engagement de VNC est d'éviter une extinction d'espèce mais, audelà de cette sauvegarde ponctuelle, la priorité va aux habitats et à leur capacité d'évoluer de façon pérenne.

- La sauvegarde et la restauration des habitats sont des démarches reconnues qui permettent une protection des espèces associées et de leurs interactions vitales. En l'absence d'une connaissance approfondie des fonctionnalités et structures éco-systémiques, la démarche la plus sécuritaire, pour toutes les espèces concernées, consiste en une sauvegarde de l'habitat global. Les études systémiques pourront être effectuées par la suite dans la perspective d'une amélioration continue des connaissances.
- Le manque de connaissances sur la fonctionnalité de la biodiversité ne permet pas d'aller plus loin qu'une approche « physique » systémique, les réactualisations futures tiendront d'avantage compte de la fonctionnalité, des relations et des corridors écologiques au fur et à mesure de l'avancée des études.

Sur la base des éléments ci-dessus, les EIE retenus pour la biodiversité terrestre sont :

- Les habitats et formations végétales (forêts denses humides et rivulaires, maquis paraforestiers, hydromorphes et de piémonts) ;
- La faune terrestre : herpétofaune et Entomofaune (myrmécofaune) ;
- · L'avifaune.

2.7.6 Environnement humain

L'environnement humain rassemble des éléments aussi divers que l'économie de la Nouvelle-Calédonie (emploi, formation), la situation foncière dans le secteur de la province Sud, l'activité touristique et récréative dans ce secteur, la « coutume », c'est-à-dire le mode de vie traditionnel et la culture mélanésienne ainsi que les patrimoines historiques et archéologiques. Le projet de VNC dans son ensemble est susceptible d'affecter cet environnement. Les populations et les autorités locales ont manifesté leurs inquiétudes à l'égard de ces aspects.

De plus, à l'initiative de la province Sud, par deux arrêtés⁴, ont été créés :

- un Comité local d'information du site industriel de VNC,
- un Comité local d'information du site minier de VNC.

L'objectif du comité d'information est d'émettre toute recommandation à l'égard du projet VNC dans une perspective de développement durable. Le comité de pilotage vise à examiner les difficultés induites par le projet VNC et à proposer les mesures permettant son insertion dans le tissu économique, social et culturel existant. Ces 2 comités sont constitués, en particulier, par des représentants des autorités publiques, des autorités coutumières et de VNC. Au vu de ces considérations, les EIE retenus sont :

- · La commodité du voisinage et le paysage ;
- Les aspects (macro et micro) économiques ;
- Les aspects socioculturels.

Arrêté n° 2705-2012-ARR-DIMENC du 30 novembre 2012 relatif à la création du comité local d'information du site industriel de Vale Nouvelle-Calédonie et arrêté n° 2707-2012-ARR-DIMENC du 30 novembre 2012 relatif à la création du comité local d'information du site minier de Vale Nouvelle-Calédonie

2.7.7 Synthèse des Eléments Importants de l'Environnement

Le Tableau 14 récapitule les EIE identifiés dans le cadre du projet VNC qui feront l'objet d'une évaluation.

Tableau 14 : Synthèse des EIE retenus pour l'évaluation des effets du projet VNC

EIE rassemblés par thème	EIE
Environnement atmosphérique	Qualité de l'air
Environnement aumosphenque	Effet sur la santé humaine
	Disponibilité et qualité de la ressource en eau
Eaux douces et leur biodiversité	Débits d'eau douce
	Ecosystèmes d'eau douce et leur biodiversité (poissons et invertébrés)
Eaux marines et côtières, le lagon et	Qualité des eaux marines et côtières
sa biodiversité	Biodiversité du lagon
Eaux souterraines	Qualité des eaux souterraines
Eaux souterraines	Régime des eaux souterraines
Di li vici	Formations végétales (forêts denses humides et rivulaires, maquis paraforestiers, hydromorphes et de piémonts et corridors écologiques)
Biodiversité terrestre	Faune terrestre (Herpétofaune et Entomofaune / Myrmécofaune)
	Avifaune
	Commodité du voisinage et paysage
Environnement humain	Aspects macro-économiques (territoire, province)
Livilorine ment numain	Aspects micro-économiques (communautés, tribus)
	Aspects socioculturels

2.8 ELÉMENTS NON RETENUS

Les éléments non retenus ne feront pas l'objet de l'évaluation méthodique des effets environnementaux du projet. Ils seront cependant mentionnés dans l'analyse des impacts en tant que tels. Ces éléments concernent l'agriculture, l'élevage, la chasse, la cueillette vivrière, la pêche en rivière et l'habitat.

2.8.1 Agriculture, élevage, chasse, cueillette vivrière, pêche en rivière et habitat

Aucune activité agricole n'est recensée dans la zone d'emprise du projet, en raison de la « pauvreté » des sols et de leur condition édaphique particulière de sol ultramafique. La culture maraîchère est surtout pratiquée à proximité des villages (littoral Est et commune de Yaté). Il n'y a ni pâturage ni zone directement ou indirectement utile à l'élevage dans la zone du projet.

La zone du projet n'étant pas habitée, il n'y a aucun déplacement d'habitation à prévoir.

La zone d'emprise du projet n'est pas un lieu de chasse ou de cueillette vivrière.

La pêche en rivière n'est pas une activité pratiquée par les communautés sur la zone du projet.

L'inventaire archéologique a conclu à l'absence de site archéologique sur le site du projet. Cependant une veille attentive reste effective avec l'engagement du respect en cas de découverte d'un site reconnu pour avoir une valeur archéologique.

2.8.2 Ressources naturelles

Les ressources naturelles en question sont principalement l'eau (consommation pour l'unité de préparation du minerai) et les ressources minérales (nickel, cobalt).

Les ressources énergétiques doivent également être considérées par la nature et la consommation des énergies fossiles non renouvelables (charbon, fuel lourd, kérosène, gazole).

En ce qui concerne les ressources minérales, la Nouvelle-Calédonie fait partie des cinq principaux pays miniers au monde avec 9 % de la production mondiale de nickel.

MÉTHODE D'ÉVALUATION DES EFFETS DU PROJET

Depuis le démarrage des études environnementales liées au projet global d'exploitation industrielle et minière de Goro, une méthode a été mise en place pour l'évaluation des impacts sur l'environnement attribuables au projet.

Cette méthode a été appliquée systématiquement pour la rédaction de tous les dossiers successifs présentés aux autorités pour l'obtention des autorisations d'exploiter, et ce depuis le premier dossier soumis en 1997.

Cette utilisation systématique permet de suivre l'évolution des niveaux d'impacts résiduels du projet intégrant les mesures d'atténuation qui sont mises en place par VNC tout au long de la vie du projet.

La démarche appliquée, qui est décrite ci-après, répond aux meilleures pratiques internationales en la matière pour la discrimination des différents types et niveaux d'impacts.

Avant de décrire cette méthodologie, une définition de la nature des effets est rappelée ainsi qu'une synthèse des outils existants d'évaluation des effets.

Les effets du projet VNC seront analysés en tenant compte des mesures d'atténuation mises en œuvre. Ils seront donc dénommés « effets résiduels » dans la suite de ce document et dans l'étude d'impact.

2.9 TYPES D'EFFETS RÉSIDUELS

Les effets résiduels du projet sur les EIE peuvent être négatifs ou positifs et appartenir aux catégories suivantes :

- Les effets résiduels directs sont directement attribuables au projet et traduisent les conséquences immédiates du projet sur l'environnement dans l'espace et dans le temps ;
- Les effets résiduels indirects résultent d'une relation de cause à effet ayant à l'origine un effet résiduel direct. Ils peuvent concerner des territoires éloignés du projet ou apparaître dans un

délai plus ou moins long mais leurs conséquences peuvent être aussi importantes que celles des effets résiduels directs :

- Les effets résiduels permanents sont des effets inscrits dans la durée, dus au projet ou à son exploitation, qui se manifesteront tout au long de sa vie ;
- Les effets résiduels temporaires sont des effets limités dans le temps : ils disparaissent immédiatement après cessation de la cause, ou leur intensité peut s'atténuer progressivement jusqu'à disparaître.

A ces notions, s'ajoutent celles de **réversibilité** ou **d'irréversibilité** des effets des aménagements ou des activités sur les composantes de l'environnement. Un effet résiduel est réversible si les conséquences sur la composante affectée ne sont pas définitives et qu'une résilience peut s'opérer. Un effet résiduel est irréversible si, au contraire, l'effet subsiste au cours du temps après cessation de la cause l'ayant généré.

Les effets résiduels cumulatifs sont le résultat du cumul et de l'interaction de plusieurs effets résiduels directs ou indirects générés par un même projet ou par des projets distincts, dans le temps et l'espace, et pouvant conduire à des changements brusques ou progressifs des milieux.

2.10 OUTILS UTILISÉS POUR CARACTÉRISER LES EFFETS RÉSIDUELS

De nombreux outils existent pour la caractérisation des effets résiduels environnementaux. Le choix d'un outil approprié est fonction de la nature des effets résiduels étudiés, de la disponibilité des données et de leur qualité, et enfin des conditions propres au projet (budget, temps imparti, équipe d'étude).

Les principaux outils utilisés comprennent des outils d'identification (nature, origine, étendue) et d'évaluation (quantification) des effets résiduels environnementaux. Ils peuvent être employés indépendamment ou en association.

2.10.1 Avis des experts

Les composantes de l'environnement étant de nature multiple et parfois complexe (interactions), il est souvent fait appel à une équipe pluridisciplinaire d'experts capables d'identifier et d'évaluer les effets résiduels environnementaux d'un projet. L'opinion des experts (organismes publics, locaux et régionaux, chercheurs, universités, consultants, etc.) est formulée sur la base de l'expérience acquise et de l'analyse des données à disposition. L'avis des experts intervient également dans le choix et l'utilisation des outils appropriés.

Par exemple, concernant les effets sur la biodiversité, les recommandations formulées par H. Léthier dans son rapport⁵ constituent des pistes d'action empruntées par VNC pour mener une réflexion sur les méthodes d'évaluation des effets environnementaux, composant la démarche pour la conservation de la biodiversité.

_

⁵ LETHIER, H, 2010 – Evaluation du coût des impacts résiduels du complexe industriel et minier de VNC. Rapport d'études et éléments de plan d'action, EMC2l/Province Sud, 44 pages + annexes.

2.10.2 Modélisation

De nombreux outils de modélisation existent et permettent de reproduire tout ou partie du fonctionnement de systèmes, puis de prévoir les conséquences des modifications apportées par le projet à ces systèmes.

Ces outils sont notamment utilisés pour l'hydrologie, l'hydrogéologie et le milieu marin.

2.10.3 Cartographie et système d'information géographique

L'outil cartographique (cartes, système d'information géographique SIG) permet, par la préparation de cartes ou la superposition de couches présentant des informations complémentaires, d'identifier la répartition spatiale des effets résiduels, d'établir un état zéro des conditions environnementales initiales, d'apprécier les évolutions du projet dans le temps et de cerner les zones particulièrement sensibles ou affectées.

En 2011, Bluecham a été mandaté pour la réalisation de la cartographie des grandes classes d'occupation du sol. VNC souhaitait ainsi intégrer ces nouvelles données dans son Système d'Information Géographique. VNC en disposerait comme d'un nouvel outil préliminaire d'aide à la décision et d'une base de données à fournir aux autorités dans le cadre de ses activités. Le point zéro de la végétation en 2011 avait pour objectif d'identifier et de cartographier au 1/2500 les éléments d'occupation du sol par télédétection à partir de la couverture GeoEye-1 acquise par VNC en juin 2011. Ce travail de cartographie s'est appuyé sur la typologie définie par l'IRD en 2003 pour la cartographie des maquis de basse altitude en 2003.

En 2012, Bluecham a été mandaté pour actualiser et poursuivre la cartographie des grandes classes d'occupation du sol et la méthodologie a été révisée en collaboration avec les experts botanistes de VNC afin d'optimiser cette outil d'analyse et d'adapter la classification aux réalités du paysage du Sud de la Nouvelle-Calédonie. Ce travail de cartographie des grandes classes d'occupation du sol a été élargi à l'ensemble des concessions VNC (concession de Tiebaghi incluse).

2.10.4 Matrices

Les matrices sont généralement présentées sous la forme de tableaux. Elles peuvent être utilisées pour identifier les effets résiduels directs sur les composantes de l'environnement, et leur exploitation peut être étendue aux effets résiduels indirects et cumulatifs (interactions) entre différentes composantes environnementales. Les matrices ne permettent pas de quantifier les effets résiduels, mais de les pondérer sur la base de critères tels que la durée, l'étendue et l'intensité.

2.10.5 Autres outils

Il existe d'autres outils utilisés pour l'évaluation d'impact qui peuvent faire appel à des sondages et questionnaires, l'utilisation de listes de référence (checklists), des comparaisons de résultats de mesures avec des valeurs limites (seuils) réglementaires ou recommandées lorsqu'elles existent et qui sont issues des différentes sources suivantes :

• Les valeurs guides, les normes et les recommandations généralement établies par les organisations nationales et internationales. Pour ces valeurs recommandées, VNC se réserve la possibilité de s'imposer en totalité ou de manière partielle leur suivi ;

• Les critères réglementaires (locaux, nationaux et éventuellement internationaux) qui établissent les seuils admissibles d'émission ou de rejet par activité ou les concentrations acceptables qu'un milieu peut supporter.

2.11 MÉTHODE D'ÉVALUATION DES EFFETS RÉSIDUELS DU PROJET SUR L'ENVIRONNEMENT

La méthode proposée pour évaluer, de manière objective, les effets résiduels du projet VNC sur l'environnement et la biodiversité, procède d'une suite rigoureuse et logique d'étapes. Ainsi, chaque EIE préalablement identifié sera traité selon les étapes définies ci-dessous.

2.11.1 Limites d'évaluation environnementale

Les limites spatiales, temporelles et techniques entourant le projet, les limites écologiques et/ou socio-économiques s'il y a lieu, sont décrites ainsi que les données disponibles et leurs limites.

Les outils identifiés ci-dessus (cartographie, modélisation...) permettent d'apprécier les limites de l'évaluation.

2.11.2 Identification des sources d'impact et des effets résiduels

Les travaux, activités, installations, ouvrages ou aménagements constituant la source d'impact sur les composantes de l'environnement sont identifiés pour chacune des phases du projet (construction, exploitation, fermeture).

Les sources d'impact des activités du projet sont synthétisées dans le Tableau 15 ci-après.

Une fois identifiés, les effets résiduels attendus issus des sources d'impact et prenant en compte les mesures d'atténuation sont développées et synthétisées sous forme de matrices illustrant les relations entre les composantes du projet (nature d'impact) et les composantes de l'environnement réunies en EIE.

Tableau 15 : Identification des sources d'impact pour l'évaluation des effets de l'exploitation minière du projet VNC

Phases du projet	Opération/ activité	Source d'impact
Construction	Construction des corridors techniques - voies de circulation, pipes et équipements associés Exploitation des carrières Construction du parc à résidus KO4 Construction des ouvrages de gestion des eaux Aménagement de verses et aires de stockage	Terrassement défrichage, manipulation des terres Prélèvement ou détournement d'eau Eaux de ruissellement chargées en MES Production de déchets et rejets de construction Utilisation et stockage de matières dangereuses ou polluantes Émissions gazeuses et de poussières (fonctionnement et mouvements du matériel) Bruit et vibrations Fréquentation accrue
Exploitation	Exploitation de la fosse minière Exploitation des verses à stériles et des verses de stockage temporaire de minerais Exploitation des parcs à résidu Exploitation des pipes du corridor technique (fuel, eau brute, minerai et résidus) Exploitation des corridors de transport (voies de circulation et voies de roulage)	Défrichements, décapage et exploitation minière Prélèvement et détournement d'eau Eaux de ruissellement et eaux d'exhaure de la fosse minière chargées en MES Modification des régimes hydrogéologiques et hydrauliques Infiltration d'eaux polluées dans les nappes souterraines Déversement accidentels de résidus Production de déchets Émissions gazeuses et de poussières Bruit et vibrations Pollution lumineuse Fréquentation accrue
Fermeture	Démantèlement des installations telles que les bureaux, les ateliers, les canalisations Remodelage et aménagement des sites avant végétalisation Fermeture, réaménagement et mise en sécurité de la fosse d'exploitation, des verses à stériles, des carrières et des sites de stockage temporaires de minerais, des parcs à résidus	Végétalisation Eaux de ruissellement chargées en MES Infiltration d'eaux polluées dans les nappes souterraines Déversement accidentels de résidus Production de déchets Émissions gazeuses et de poussières Bruit

2.11.3 Importance des impacts résiduels

L'importance des impacts résiduels est évaluée sur la base de 3 critères :

- 1. L'intensité de la modification (ou sa gravité s'il s'agit d'un impact négatif) ;
- 2. L'étendue de la modification ;
- 3. La durée de la modification et le temps de résilience s'il s'agit d'un impact négatif.

La démarche tient compte des mesures environnementales d'atténuation prévues par VNC et caractérise donc l'importance de l'impact résiduel.

Ces critères sont regroupés dans une grille et permettent de préciser l'importance de l'effet d'une activité du projet sur un EIE.

Le processus d'évaluation des impacts résiduels est schématisé dans la figure ci-après.

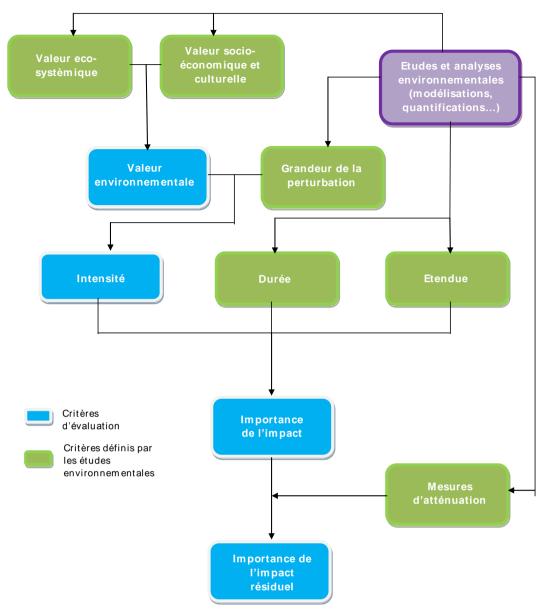


Figure 4 : Processus d'évaluation des impacts résiduels

2.11.3.1 Intensité

L'intensité, de l'effet résiduel est le résultat du croisement entre la « grandeur » de la perturbation et la « valeur » accordée à l'EIE.

LA « GRANDEUR » DE LA PERTURBATION

La grandeur de la perturbation est évaluée à partir des résultats des modélisations numériques ou physiques, de la cartographie ou par analogie à partir de l'expérience et de la pratique des experts. Elle prend en compte les mesures d'atténuation mises en place par VNC pour limiter, réduire ou maîtriser les effets écologiques néfastes du projet. La grandeur est comparée à des critères de référence bien définis, et les difficultés éventuelles rencontrées pour les apprécier sont précisées. La grandeur peut être :

• Forte – lorsque la perturbation détruit la composante, met en cause son intégrité ou entraîne un changement majeur de sa répartition générale ou de son utilisation dans le milieu.

- Moyenne lorsque la perturbation modifie la composante touchée sans mettre en cause son intégrité ou son utilisation ou entraîne une modification limitée de sa répartition générale dans le milieu.
- Faible lorsque la perturbation altère faiblement la composante mais ne modifie pas véritablement sa qualité, sa répartition générale ou son utilisation dans le milieu.

LA « VALEUR » DE L'EIE

La valeur de l'EIE tient compte de :

- Son caractère écosystémique⁶, caractérisant son rôle ou sa fonction dans l'écosystème ou les chaînes alimentaires, sa rareté, sa vulnérabilité, son statut de protection attribué par la société, etc. et ses relations avec les autres milieux ;
- Son caractère socio-économique et culturel⁷, attribué par la société (populations, organisations, autorités, etc.).

Tableau 16 : Matrice valeur écosystémique/valeur socio-économique pour la caractérisation de la valeur de l'EIE

Valeur socio-	Valeur éco systémique					
économique	Faible Moyenne Forte					
Faible	Faible	Moyenne	Moyenne			
Moyenne	Moyenne	Moyenne	Forte			
Forte	Moyenne	Forte	Forte			

La caractérisation de l'intensité de l'effet résiduel résulte du croisement de la grandeur de la perturbation et de la valeur de l'EIE. Sur la base de la matrice grandeur/valeur ci-après, l'intensité est jugée faible, moyenne ou forte.

Tableau 17 : Matrice grandeur/valeur pour la caractérisation de l'intensité de l'effet résiduel

Grandeur	Valeur				
Grandeur	Faible	Moyenne	Forte		
Faible	Faible	Faible	Moyenne		
Moyenne	Moyenne	Moyenne	Moyenne		
Forte	Moyenne	Forte	Forte		

2.11.3.2 Étendue

L'étendue de l'effet résiduel fait référence à la superficie touchée et à la proportion de la population affectée. L'étendue d'un effet peut être :

• **Régionale** – si un effet résiduel sur une composante est ressenti dans une zone géographique importante ou par une grande partie de sa population. Pour notre étude, cette zone correspond en

Vale Nouvelle-Calédonie SAS Demande d'autorisation d'exploitation minière

Le caractère écosystémique: la valeur écologique doit être objectivée (dans une finalité de quantification qui est une préoccupation internationale forte) et elle se réfère aux listes de l'UICN et à des référentiels tels que le CITES, la FAO, le code de l'environnement de la Province Sud, etc. La vulnérabilité du taxon ou de l'habitat considérés, son abondance dans toute la région et sur la zone d'évaluation, ses tendances évolutives, son degré de protection, ses possibilités de reproduction assistée, son rôle fonctionnel dans la limite des connaissances, son micro-endémisme, sa valeur marchande, etc. sont des critères qui sont pris en considération pour évaluer la valeur écologique d'une espèce ou d'un habitat. Les rôles d'un taxon (ou d'un milieu) dans la fonctionnalité des écosystèmes et leur pérennisation évolutive, sont difficiles à appréhender malgré les efforts d'études. En fonction de l'évolution de ces connaissances et des écosystèmes de la région, la valeur d'une espèce (ou d'un habitat) peut être réévaluée.

^{7 &}lt;u>Le caractère socio-économique et culturel</u>: la valeur patrimoniale ou culturelle d'un EIE n'est pas fondée sur une valeur chiffrable objective évidente, mais sur une valeur parfois historique et mythique. Les consultations des populations, notamment sur des éléments emblématiques importants, permettent d'identifier de nombreux EIE de valeur patrimoniale.

général au Grand Sud Calédonien (superficie proche de 69 000 ha) et en particulier à l'hydroécorégion pour les EIE relatifs aux hydrosystèmes.

- Locale si un effet résiduel sur une composante est ressenti sur une portion limitée de la zone d'étude ou de sa population. Pour notre étude, cette zone correspond à la zone d'influence globale du projet telle que définie au chapitre 5 du volet A et la carte C10 de l'atlas cartographique, soit une superficie de 11 895 ha en zone terrestre étendue à une zone maritime d'influence réduite à l'embouchure de la rivière Kué.
- **Ponctuelle** si un effet résiduel sur une composante est ressenti dans un espace réduit et circonscrit ou par un faible nombre d'individus. Pour notre étude, cette zone correspond à l'emprise des aménagements.

2.11.3.3 Durée

La durée de l'effet résiduel renvoie à la période pendant laquelle les effets seront ressentis dans le milieu perturbé. C'est également le temps de résilience d'un milieu (soit du laps de temps nécessaire à un écosystème pour récupérer son état originel suite aux perturbations), qui peut permettre de quantifier la durée d'une perturbation. Cependant, selon les milieux (marin, forestier, d'eau douce...) et selon les espèces considérées (baleines ou oiseaux de mer par exemple), les temps de résilience seront différents. L'estimation de la durée des effets est variable selon l'effet évalué.

Trois durées ont été considérées : longue, moyenne et courte. Pour les appréhender facilement elles sont comparées à la durée du projet :

- Longue lorsque l'effet résiduel est ressenti de façon continue ou discontinue sur une période égale ou excédant la durée de vie du projet (ici durée supérieure à 25 ans) quelle que soit la rapidité de résilience du milieu affecté à la fin de la perturbation ;
- Moyenne lorsque l'effet résiduel est ressenti de façon continue ou discontinue, sur une période inférieure à la durée de vie du projet (ici, durée comprise entre 5 et 25 ans) ;
- Courte lorsque l'effet résiduel est ressenti de façon temporaire, d'une manière continue ou discontinue, pendant les phases de construction, d'exploitation ou de démantèlement (ici, durée comprise entre 2 et 5 ans). Une durée courte implique une capacité de résilience rapide de l'EIE à la fin de la perturbation.

2.11.3.4 Importante globale de l'impact

L'importance globale de l'impact ou **Niveau d'impact** (ici niveau d'impact résiduel) est déterminée en combinant ces trois critères, c'est-à-dire intensité, étendue et durée, et en utilisant une grille de détermination divisée selon les niveaux suivants :

- Impact négatif, distinguant 3 niveaux : majeur, moyen, mineur
- Impact non significatif
- Impact positif

La matrice de croisement des critères intensité, étendue et durée pour l'évaluation de l'importance des effets négatifs résiduels du projet est rappelée dans le Tableau 18.

	Critère			
Intensité	Étendue	Durée	Importance	
	Régionale	Longue Moyenne Courte	Majeure Majeure Majeure	
Forte	Locale	Longue Moyenne Courte	Majeure Modérée Modérée	
	Ponctuelle	Longue Moyenne Courte	Majeure Modérée Mineure	
Moyenne	Régionale	Longue Moyenne Courte	Majeure Modérée Modérée	
	Locale	Longue Moyenne Courte	Modérée Modérée Mineure	
	Ponctuelle	Longue Moyenne Courte	Modérée Mineure Mineure	
Faible	Régionale	Longue Moyenne Courte	Modérée Modérée Mineure	
	Locale	Longue Moyenne Courte	Modérée Mineure Mineure	
	Ponctuelle	Longue Moyenne Courte	Mineure Mineure Mineure	

Tableau 18: Grille d'évaluation du niveau d'impact négatif résiduel

Un code couleur permet de visualiser l'importance de l'effet résiduel dans les matrices.

Tableau 19 : Code couleur visualisant l'importance des impacts résiduels du projet

Importance de l'impact résiduel				
Majeure				
Modérée				
Mineure				
Impact non Significatif				
Impact Positif				

2.12 PROBABILITÉ D'OCCURRENCE

La notion de probabilité d'occurrence est prise en compte au cas par cas :

- si la probabilité qu'un effet résiduel survienne est forte, il s'agit d'un effet résiduel probable ;
- si la probabilité que l'effet résiduel survienne est faible ou négligeable, l'effet résiduel est qualifié d'improbable.

Il est souhaitable d'appliquer des méthodes scientifiques et/ou statistiques rigoureuses pour déterminer la probabilité d'occurrence des impacts environnementaux résiduels d'importance modérée ou majeure. Les données scientifiques et/ou statistiques n'étant pas toujours disponibles

dans les cas précis étudiés dans le cadre de cette DAEM, la méthode qualitative est établie sur la base soit d'une analyse non quantitative, soit de l'expertise professionnelle de l'équipe d'étude.

2.13 MESURES D'ATTÉNUATION

Lorsque des effets potentiels de certaines parties du projet sont évalués comme significativement négatifs sur l'environnement, cela implique l'élaboration et la mise en place de mesures d'atténuation visant à réduire le niveau d'impact. Ces mesures d'atténuation comprennent les mesures prises à la conception du projet, les stratégies de protection de l'environnement ou toute autre mesure d'accompagnement visant à réduire ou à maîtriser les effets néfastes sur l'environnement.

La mise en place de ces mesures d'atténuation doit être efficace et permettre d'abaisser le niveau d'impact résiduel jusqu'à un niveau faible.

Lorsqu'aucune mesure d'évitement ou d'atténuation n'est à même de remplir cet objectif, des mesures de compensation sont alors élaborées.

2.14 DÉTERMINATION DES MESURES COMPENSATOIRES

Si les impacts environnementaux résiduels d'un projet, après intégration des mesures d'atténuation, sont d'importance majeure ou modérée (voire incertaine), il convient :

- De définir des mesures environnementales complémentaires qui comprennent des mesures réductrices et/ou des mesures compensatoires. Les mesures compensatoires sont en général destinées à reconstituer ailleurs des milieux ayant un intérêt écologique ou une même fonctionnalité que les milieux dégradés par le projet.
- Les mesures compensatoires peuvent être délocalisées et/ou aussi dissociées c'est-à-dire qu'elles peuvent porter sur un sujet différent de celui de l'impact résiduel, selon les actions d'intérêts les plus pertinentes à mettre en œuvre. Elles peuvent avoir un caractère technique ou un caractère d'accompagnement telles des études et inventaires qui appuient un plan de gestion (Ministère de l'Ecologie et du Développement Durable. Direction des Etudes Economiques et de l'Evaluation Environnementale). Cette délocalisation doit cependant être limitée dans la mesure de la pertinence de sauvegarde du milieu concerné.
- Les mesures compensatoires doivent être additionnelles c'est-à-dire ne pas se substituer aux obligations règlementaires de restauration de l'empreinte d'un projet ni se substituer à des actions de gestion provinciale ou déjà en cours.
- Les mesures compensatoires doivent avoir pour seul objectif : la préservation, l'amélioration, l'enrichissement de la biodiversité afin qu'elle conserve ses capacités d'évolution naturelle dans la zone du projet.

2.15 PROGRAMME DE SURVEILLANCE ENVIRONNEMENTALE

Un programme de surveillance environnementale et de suivi scientifique basé sur des indicateurs environnementaux pertinents permet d'observer les effets résiduels immédiats ou plus durables du projet, et au besoin, de corriger certaines composantes des travaux pendant l'avancement de l'exploitation.

RÉFÉRENCE POUR L'ÉVALUATION DES EFFETS RÉSIDUELS

3.1 QUALITÉ DE L'AIR

En Nouvelle-Calédonie, les valeurs seuils pour la qualité de l'air sont fixées au cas par cas par les arrêtés d'exploitations et sont spécifiques à chaque installation et activité. Ils concernent, pour l'essentiel, le dioxyde de soufre.

Plus précisément, les valeurs de référence pour les polluants considérés concernant la protection de la santé humaine correspondent aux objectifs de qualité du code de l'environnement métropolitain.

L'objectif de qualité est un niveau à atteindre à long terme et à maintenir, afin d'assurer une protection efficace de la santé humaine et de l'environnement dans son ensemble. Le Tableau 20 reprend ces objectifs de qualité sauf pour le mercure qui correspond à la valeur toxicologique de référence.

Paramètres	Objectif de qualité	Source
SO ₂	50 μg/m ³	Code de l'environnement métropolitain
NO_2	40 μg/m ³	Code de l'environnement métropolitain
PM10	30 μg/m ³	Code de l'environnement métropolitain
Ni	20 ng/m ³	Code de l'environnement métropolitain
Cd	5 ng/m ³	Code de l'environnement métropolitain
Hg	0,3 μg/m ³	US-EPA (1995)
Pb	0,25 μg/m ³	Code de l'environnement métropolitain

Tableau 20 : Objectifs de qualité pour l'air et la protection de la santé humaine

3.2 NUISANCES ACOUSTIQUES

Pour les ICPE présentes dans la zone minière (UPM et parcs à résidus), les mesures et analyses de bruit sont réalisées conformément à la délibération n° 741-2008/BAPS du 19 septembre 2008 relative à la limitation des bruits émis dans l'environnement par les installations classées pour la protection de l'environnement. Les bruits émis par l'activité d'exploitation minière ne sont pas concernés par cette délibération. Deux notions sont considérées :

- Le bruit admissible en limite de propriété ;
- · L'émergence.

Cette délibération fixe ainsi pour chaque période diurne et nocturne, les niveaux de bruit à ne pas dépasser en limite de propriété de l'établissement, déterminés de manière à assurer le respect des valeurs d'émergence admissibles.

3.2.1 Le bruit admissible en limite de propriété

Les valeurs ne peuvent excéder 70 dB(A) pour la période de jour et 60 dB(A) pour la période de nuit, sauf si le bruit résiduel pour la période considérée est supérieur à cette limite :

- 60 dB(A) pour la période de nuit retenue 21h00 06h00,
- 70 dB(A) pour la période de jour retenue 06h00 21h00.

3.2.2 L'émergence

Les zones à émergence réglementée sont définies par :

- L'intérieur des immeubles habités ou occupés par des tiers, existant à la date de l'arrêté d'autorisation de l'installation et leurs parties extérieures éventuelles les plus proches (cour, jardin, terrasses);
- Les zones constructibles définies par des documents d'urbanisme opposables aux tiers et publiés à la date de l'Arrêté d'autorisation ;
- L'intérieur des immeubles habités ou occupés par des tiers, qui ont été implantés après la date d'autorisation dans les zones constructibles définies ci-dessus et leurs parties extérieures éventuelles les plus proches (cour, jardin, terrasses), à l'exclusion de celles des immeubles implantés dans les zones destinées à recevoir des activités artisanales ou industrielles.

Les critères et limites d'émergence sont repris dans le Tableau 21.

Tableau 21: Valeurs admissibles des émissions sonores

Niveau de bruit ambiant existant dans les zones à émergence réglementée (incluant le bruit de l'établissement)	Émergence admissible pour la période allant de 6 h à 21 h sauf dimanches et jours fériés	Émergence admissible pour la période allant de 21 h à 6 h ainsi que les dimanches et jours fériés
Supérieur à 35 dB(A) et inférieur à 45 dB(A)	6 dB(A)	4 dB(A)
Supérieur à 45 dB(A)	5 dB(A)	3 dB(A)

3.3 QUALITÉ DE L'EAU DOUCE

3.3.1 Valeurs de référence

Les critères de qualité de l'eau pouvant servir de référence sont présentés dans le tableau 22 ciaprès et sont basés sur :

- Les normes de l'arrêté du 11 janvier 2007 relatif aux limites de qualité des eaux brutes et des eaux destinées à la consommation humaine mentionnées aux articles R. 1321-2, R. 1321-3, R1321-7 et R. 1321-38 du Code de la santé publique métropolitain ;
- Les PNEC : concentrations prédites sans effet sur les organismes aquatiques issues du rapport de l'INERIS « Détermination de concentrations prédites sans effet sur les organismes aquatiques

PNECaqua pour les substances de la liste II de la Directive 76/464/CEE – Substances traitées en 2005 – Partie II substances inorganiques (23 substances) », février 2006 ;

• Les résultats des analyses réalisées en 2000 par Rescan sur la rivière Carénage. Suffisamment éloignée de la zone du projet, elle considérée comme représentative du bruit de fond naturel local. Elle est utilisée comme rivière de référence pour la qualité des eaux douces.

Tableau 22 : Critères de qualité de l'eau proposés pour analyser les effets sur la qualité des eaux de surface

Paramètre	Unité	Étude RESCAN 2000 Rivière Carénage	Arrêté métropolitain du 11 janvier 2007, Normes	PNECaqua Valeurs seuils
Paramètres physiques				
Conductivité	μS	85.5		-
рН		7.57		-
Température	°C	Na	25***	-
MES	mg/l	<3		-
Turbidité	NTU	0.45	1	-
Minéralisation	'			
Alcalinité	mg/l	23.5		-
Calcium	mg/l	0.23		-
Chlorures	mg/l	9.25	250***	-
Fluorures	mg/l	<0.02	0.7/1****	0.37
Magnésium	mg/l	6.9		-
Potassium	mg/l	0.19		-
Silice	mg/l	11.35		-
Sodium	mg/l	4.92	200***	-
Sulfates	mg/l	1	250***	-
Nutriments				
Ammonium	mg/l	<0.005	0.1	-
Nitrate	mg/l	0.022	50	-
Nitrite	mg/l	0.001	0.1	0.006
Orthophosphate	mg/l	0.004		-
Phosphate total	mg/l	0.0025		-
Phosphore	mg/l	Na		-
COT	mg/l		2	-
Métaux – métalloïdes – non				
Aluminium dissous	μg/l	1.5		-
Aluminium et fer	μg/l	Na		-
Aluminium total	μg/l	2	200	-
Antimoine dissous	μg/l	<0.05		-
Antimoine total	μg/l	<0.05	5	113*
Argent dissous	μg/l	0.02		-
Argent total	μg/l	0.03		0.05**
Arsenic dissous	μg/l	<0.1		-
Arsenic total	μg/l	<0.1	10	4.2**
Cadmium dissous	μg/l	<0.05		-
Cadmium total	μg/l	<0.05	5	-
Chrome dissous	μg/l	4.7		-
Chrome total	μg/l	4.5	50	-
Chrome VI total	μg/l	Na		3.4
Cobalt dissous	μg/l	0.35		-

Paramètre	Unité	Étude RESCAN 2000 Rivière Carénage	Arrêté métropolitain du 11 janvier 2007, Normes	PNECaqua Valeurs seuils
Cobalt total	μg/l	0.45		0.28**
Cuivre dissous	μg/l	<0.1		-
Cuivre total	μg/l	<0.1	2000	1.4*
Étain	μg/l	Na		1.52**
Fer dissous	μg/l	<0.03	1***	-
Fer total	μg/l	<0.03	200	-
Manganèse dissous	μg/l	7.25	1	-
Manganèse total	μg/l	8.07	50	-
Mercure dissous	μg/l	<0.05		-
Mercure total	μg/l	<0.05	1	-
Nickel dissous	μg/l	30.6		-
Nickel total	μg/l	31.05	20	-
Plomb dissous	μg/l	<0.05		-
Plomb total	μg/l	<0.05	10	-
Sélénium dissous	μg/l	<1		-
Sélénium total	μg/l	<1	10	0.95**
Zinc dissous	μg/l	<1		-
Zinc total	μg/l	<1		3.1/7.8

^(*) Valeur provisoire

3.3.2 Valeurs réglementaires issues des arrêtés ICPE

L'arrêté n°1466-2008/PS du 9 octobre 2008 autorisant l'exploitation du parc à résidus de la Kué Ouest impose le respect des valeurs guides A3 inspirées de l'arrêté métropolitain relatif aux eaux brutes et aux eaux destinées à la consommation humaine du 11 janvier 2007 et notamment les seuils indiqués dans le Tableau 23 pour la composition des eaux souterraines.

Tableau 23 : Valeurs réglementaires de la qualité des eaux souterraines suivant l'arrêté n° 1466-2008/PS

Paramètre	Valeurs seuil
Conductivité	1000 μS
Sulfates	150 mg/L
Manganèse	1 mg/L

Aucun seuil règlementaire de qualité des eaux souterraines n'est imposé dans l'arrêté N° 1467-2008/PS du 9 octobre 2008 pour le suivi des impacts de l'activité de l'Unité de Préparation du Minerai (UPM) sur les eaux souterraines.

^(**) Valeur proposée par l'INERIS

^(***) Valeur de référence de la qualité de l'eau (valeur indicative)

^(****) Valeur guide pour des eaux classées en groupe A3 – Annexe III

3.4 QUALITÉ DE REJET DES EAUX USÉES ET DES EAUX DE RUISSELLEMENT

3.4.1 Valeurs de référence

Les eaux de ruissellement susceptibles d'être polluées transitent, avant rejet dans le milieu naturel, par des ouvrages de collecte et de contrôle (bassins de décantation, bassins de contrôle, séparateurs à hydrocarbures).

En l'absence de règlementation propre à la Nouvelle-Calédonie, les valeurs limites qui peuvent être considérées pour les rejets d'eaux de ruissellement et d'eaux usées, Vale NC s'inspire en tant que valeurs guides, des valeurs limites définies par l'arrêté métropolitain du 2 février 1998. Cet arrêté est relatif aux prélèvements et à la consommation d'eau, ainsi qu'aux émissions de toute nature des installations classées pour la protection de l'environnement soumises à autorisation, pour un rejet dans le milieu naturel.

Tableau 24 : Valeurs de référence pour la qualité des rejets d'eaux usées et de ruissellement

Paramètre	Unité	Valeurs limites de l'arrêté
Paramètres physico-chimiques		
Température	°C	30
рН	Unité pH	Entre 5.5 et 8.5
Couleur	Mg Pt/I	100
MEST	mg/l	35
DBO5	mg/l	30
DCO	mg/l	125
Azote global	mg/l	30
Phosphore	mg/l	10
Composés organiques halogénés (AOX ou EOX)	mg/l	1
Hydrocarbures totaux	mg/l	10
Fluor et composés (en F)	ng/l	15
Indice phénols	mg/l	0.3
Cyanures	mg/l	0.1
Métaux – métalloïdes		
Arsenic	mg/l	0.005
Cadmium	mg/l	0.2
Chrome et composé (en Cr)	mg/l	0.5
Chrome hexavalent et composés (en Cr6+)	mg/l	0.1
Cobalt et composés (en Co)	mg/l	-
Cuivre et composés (en Cu)	mg/l	0.5
Étain et composés (en Sn)	mg/l	2
Fer, aluminium et composés (en Fe+Al)	mg/l	5
Manganèse et composés, y compris méthylmercure (en Hg)	mg/l	1
Nickel et composés (en Ni)	mg/l	2
Plomb et composés (en Pb)	mg/l	0.5
Zinc et composés (en Zn)	mg/l	2

3.4.2 Valeurs réglementaires issues des arrêtés ICPE

Aucune valeur réglementaire n'est imposée par les arrêtés d'autorisation d'exploitation de VNC, excepté dans l'arrêté autorisant l'exploitation d'une aire de stockage à résidus sur le site de la Kué Ouest où une valeur limite de **50 µg/L** a été fixée pour le **manganèse** dans les eaux de surface.

3.5 QUALITÉ DES SÉDIMENTS DES RIVIÈRES

Les critères pouvant servir de référence pour la qualité des sédiments des rivières sont présentés dans le Tableau 25 et sont basés sur :

- La qualité des sédiments d'une rivière de référence (RESCAN 2000), en l'occurrence la rivière Carénage en raison de son éloignement de la zone projet ;
- Les valeurs guides publiées par l'ANZECC (2000) pour les sédiments.

Ce guide définit plusieurs valeurs guides :

- les Valeurs de Définition de Source dans les Sols (VDSS) sont utilisées pour évaluer la pollution dans un sol. Ces valeurs permettent de déterminer si un sol contenant une substance chimique donnée constitue une source de pollution ;
- les Valeurs de Constat d'Impact (VCI) permettent de constater l'importance de l'impact sur les milieux sols ou eaux.

Tableau 25 : Valeurs de référence pour la qualité des sédiments des rivières

Paramètre	Unité	Etude RESCAN Rivière Carénage		Valeur (guide franç BRGM, 2000	ANZDECC (2000)	
		min	Max	VDSS	VCI us	VCI usn	sédiments
Phosphore	mg/kg	<0.2	<0.2	-	-	-	
Azote total	%	0.03	0.13	-	-	-	
Potassium	mg/kg	<1000	<2000	-	-	-	
Soufre total		0.07	0.14	-	-	-	
Calcium	mg/kg	66	191	-	-	-	
Magnesium	mg/kg	980	6630	-	-	-	
Sodium	mg/kg	<500	<700	-	-	-	
Sulfate	mg/kg	Na	Na	-	-	-	
Carbone Organique total		0.55	2.05	-	-	-	
Métaux - Métalloïdes	- Non métaux						
Aluminium	mg/kg	36200	51300	-	-	-	
Antimoine	mg/kg	0.1	0.3	50	100	250	2
Argent	mg/kg	<0.1	<0.1	-	-	-	1
Arsenic	mg/kg	4.13	10.1	19	37	120	20
Cadmium	mg/kg	<0.4	<0.4	10	20	60	1.5
Chrome	mg/kg	11900	14700	65	130	7000	80
Cobalt	mg/kg	1070	1510	120	240	1200	
Cuivre	mg/kg	49	62	95	190	950	65
Fer	mg/kg	511000	584000	-	-	-	
Plomb	mg/kg	2	4	200	400	2000	50

Paramètre	Unité	Etude RESCAN Rivière Carénage		Valeur (ANZDECC (2000)		
		min	Max	VDSS	VCI us	VCI usn	sédiments
Manganèse	mg/kg	6670	8980	-	-	-	
Mercure	mg/kg	0.073	0.116	3.5	7	600	0.15
Nickel	mg/kg	6470	11800	70	140	900	21
Sélénium	mg/kg	2.4	4.5	-	-	-	
Zinc	mg/kg	280	355	4500	9000		200

3.6 QUALITÉ DES EAUX MARINES

Les critères de qualité pouvant servir de référence pour les eaux marines sont :

- Les valeurs obtenues lors des caractérisations de l'état des lieux
 - Les concentrations associées aux paramètres physico-chimiques mesurées par Rescan en 2000 dans la baie d'Ué car cette baie est suffisamment éloignée de la zone du projet pour représenter un point de référence, cependant elle ne fait pas partie de la même hydro région;
 - Les concentrations associées aux paramètres physico-chimiques mesurées par Rescan et l'IRD, entre 2000 et 2005 dans le canal de la Havannah;
- Les valeurs-guides publiées par l'ANZECC pour les activités récréatives et l'esthétique et les valeurs guides calculées pour les écosystèmes ;
- Les valeurs de références pour la Nouvelle-Calédonie mentionnées dans le Guide pour le suivi de la qualité du milieu marin en Nouvelle-Calédonie, programme ZoNéCo et le programme CNRT-Nickel et Environnement (2011) à condition de suivre les mêmes méthodologies et d'être dans des hydro régions marines comparables.

Tableau 26 : Valeurs de référence pour la qualité des eaux marines

		Baie d'Ué MWR1, MWR2 2000			Canal de la Havannah 2000 à 2005			ANZECC 2000	
Paramètre	Unité	S	M	Р	Moy	Min	Max	Valeurs guides pour les activités récréatives	Valeurs guides oour les eaux et écosystèmes marins
Paramètres physique	es								
рН		8.04	8.07	8.02	8.3	7	8.5	6.5-8.5	
Oxygène dissous	mg/l	6.5	6.55	12.9	6.4	6.1	7	<6.5	-
Salinité	mg/l	na	na	na	28017	28000	28500	-	-
Conductivité	μS/cm	>50000	>50000	>50000	>50000	>50000	>50000	•	-
MES	mg/l	17	13	7	9.7	3	20	-	-
Turbidité	NTU	1	1.2	1	0.37	0.22	1.3	-	-
Nutriments									
Ammonium	mg/l	<0.03	<0.03	<0.03	-	0.002	0.002	0.02	0.5
Nitrate	mg/l	<0.005	<0.005	<0.005	0.01	0.005	0.03	10	0.7 (e)
Nitrite	mg/l	<0.001	0.002	0.003	-	-	1	1	-
Ortho-phosphate	mg/l	<0.001	0.002	0.0008	0.001	0.01	0.002	•	-
Phosphate total	mg/l	<0.002	0.004	0.032	0.006	0.002	0.01	-	-
Phosphore	mg/l	na	na	na	<0.1	<0.1	<0.1	-	-
Métaux									
Aluminium total	μg/l	1	0.75	1.25	-	1.5	1.5	200	0.5 (a)

	Unité	Baie d'Ué MWR1, MWR2 2000			Canal de la Havannah 2000 à 2005			ANZECC 2000	
Paramètre		S	M	Р	Моу	Min	Max	Valeurs guides pour les activités récréatives	Valeurs guides oour les eaux et écosystèmes marins
Aluminium dissous	μg/l	1	1	1	-	0.75	0.75	-	-
Antimoine total	μg/l	1.1	0.55	1.05	0.5	0.5	0.5	-	270 (b)
Antimoine dissous	μg/l	0.3	0.45	0.4	0.47	0.4	0.55	-	-
Arsenic total	μg/l	1.1	1.15	1.35	1.2	1.2	1.3	50	(c)
Arsenic dissous	μg/l	1	1.15	1.1	1.04	0.74	.41	-	-
Argent	μg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	50	0.8
Argent dissous	μg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Cadmium total	μg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	5	0.7
Cadmium dissous	μg/l	<0.02	<0.02	<0.02	0.07	<0.02	0.15	-	-
Chrome total	μg/l	0.2	0.2	<0.2	0.17	0.15	0.2	50	(d)
Chrome dissous	μg/l	0.2	0.15	<0.2	0.15	0.15	0.15	-	-
Cobalt total	μg/l	0.06	0.05	0.05	-	0.008	0.008	-	0.005
Cobalt dissous	μg/l	<0.05	<0.05	0.31	0.03	0.001	0.07	-	-
Cuivre total	μg/l	0.25	0.35	0.25	0.11	0.0000 6	0.25	1000	0.3
Cuivre dissous	μg/l	0.24	0.35	0.25	1.27	0.02	10.07	-	-
Fer total	μg/l	<30	<30	<30	1.26	0.13	2.39	300	ID
Fer dissous	μg/l	<30	<30	<30	0.34	0.13	0.55	-	-
Manganèse total	μg/l	0.81	0.56	0.59	0.17	0.08	0.23	100	80 (b)
Manganèse dissous	μg/l	0.52	0.4	0.45	0.59	0.07	3.14	-	10-
Mercure total	μg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1	0.1
Mercure dissous	μg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Nickel total	μg/l	0.73	0.73	0.63	0.25	0.13	0.33	100	7
Nickel dissous	μg/l	0.75	0.75	0.7	0.52	0.09	1.62	-	-
Plomb total	μg/l	<0.1	0.3	0.08	<0.1	<0.1	<0.1	50	2.2
Plomb dissous	μg/l	<0.1	<0.1	0.08	-	-	-	-	-
Sélénium total	μg/l	<1	<1	<1	<1	<1	<1	10	ID
Sélénium dissous	μg/l	<1	<1	<1	<1	<1	<1	-	
Zinc total	μg/l	<0.5	<0.5	<0.5	-	<0.5	0.5	5000	7
Zinc dissous	μg/l	0.53	<0.5	<0.5	3.4	0.43	13.36	-	-

3.7 QUALITÉ DES SÉDIMENTS MARINS

Les critères de qualité pouvant servir de référence pour les sédiments marins sont :

- Les valeurs obtenues lors des caractérisations de l'état des lieux :
 - Les concentrations associées aux paramètres physico-chimiques mesurées par Rescan en 2000 dans la baie d'Ué car cette baie est suffisamment éloignée de la zone du projet pour représenter un point de référence;
 - Les concentrations associées aux paramètres physico-chimiques mesurées par Rescan et l'IRD, entre 2000 et 2005 dans le canal de la Havannah;
 - Les valeurs guides publiées par l'ANZECC pour les sédiments ;
 - Les valeurs de référence pour la Nouvelle-Calédonie mentionnées dans le Guide pour le suivi de la qualité du milieu marin en Nouvelle-Calédonie, programme ZoNéCo et programme CNRT-Nickel et environnement (2011), à condition de suivre les mêmes méthodologies et d'être dans des hydro régions marines comparables.

Tableau 27 : Valeurs de référence de qualité des sédiments marins

Paramètre	Unité		la Havannah 0,2005	Baie d'Ué l	ANZECC sédiments	
		min	max	Min	max	
Phosphore	mg/kg	0.2	1.2	<0.2	0.2	-
Azote total	%	0.03	0.04	0.11	0.11	-
Calcium	mg/kg	321000	326000	209000	489000	-
COT	%	<0.05	< 0.05	0.58	0.61	-
Magnésium	mg/kg	17600	19900	20000	40700	-
Potassium	mg/kg	795	1140	1560	3810	-
Sodium	mg/kg	8250	9840	18400	46000	-
Soufre total	%	0.14	0.22	0.27	0.29	-
Métaux						
Aluminium	mg/kg	437	522	20500	43300	-
Antimoine	mg/kg	0.6	1.38	0.79	1.09	2
Argent	mg/kg	<0.1	<0.1	<0.1	<0.1	1
Arsenic	mg/kg	10.5	13.5	58	102	20
Cadmium	mg/kg	<0.4	<0.4	<0.6	<0.6	1.5
Chrome	mg/kg	0.6	814	2700	3530	80
Cobalt	mg/kg	0.033	59.4	190	235	-
Cuivre	mg/kg	0.25	5.6	13	25	65
Fer	mg/kg	5	46800	155000	164000	-
Plomb	mg/kg	5	5	5	7	50
Manganèse	mg/kg	0.2	411	1490	1850	-
Mercure	mg/kg	0.006	0.007	0.027	0.034	0.15
Nickel	mg/kg	0.25	1191	2980	3690	21
Sélénium	mg/kg	<0.1	0.1	0.5	0.6	-
Zinc	mg/kg	<3	<3	100	106	200

3.8 BIODIVERSITÉ TERRESTRE

3.8.1 Empreinte des installations

L'effet de l'emprise des installations sur la végétation et les habitats est évalué sur la base de la surface affectée de chaque formation considérée, rapportée à sa présence dans la zone de référence du Grand Sud.

Tableau 28 :	Proportion des	formations	végétales	affectée par	le projet

	Végétation	Surface affectée en % de la surface de la zone d'évaluation				
	vogstation.	Faible	Moyenne	Forte		
Formations sensibles	Forêts Maquis ligno-herbacé sur sol à hydromorphie permanente ou temporaire Mosaïque de maquis à <i>Gymnostoma deplancheanum</i> et de zones hydromorphes Maquis ligno-herbacé de bas de pente et de piémont Maquis paraforestier à <i>Gymnostoma deplancheanum</i> dominant sur sol induré Maquis semi-ouvert à dense, dominé par <i>Gymnostoma deplancheanum</i>	< 2%	De 2 à 5%	>5%		
Formations moins sensibles	Maquis ligno-herbacé des pentes érodées Maquis très ouverts sur gabbros Maquis ouvert sur gabbros Maquis ouvert sur sol cuirassé	< 5%	De 5 à 10%	> 10%		

3.8.2 Présence d'écosystèmes d'intérêt patrimonial et d'espèces endémiques, rares ou menacés

L'évaluation des effets considère en premier lieu la liste des écosystèmes d'intérêt patrimonial et les listes des espèces végétales et animales protégées en province sud, mentionnés aux titres III et IV du code de l'environnement de la Province Sud. Elle tient également compte de la présence d'espèces animales et végétales protégées, rares ou menacées, selon les catégories définies par l'UICN (voir la Figure 5).

- Éteint (EX): un taxon est dit « éteint » lorsqu'il ne fait aucun doute que le dernier individu est mort. Un taxon est présumé « éteint » lorsque des études exhaustives menées dans son habitat connu et/ou présumé, à des périodes appropriées (rythme diurne, saisonnier, annuel), et dans l'ensemble de son aire de répartition historique n'ont pas permis de noter la présence d'un seul individu. Les études doivent être faites sur une durée adaptée au cycle et aux formes biologiques du taxon.
- Éteint à l'état sauvage (EW) : un taxon est dit « éteint à l'état sauvage » lorsqu'il ne survit qu'en culture, en captivité ou dans le cadre d'une population (ou de populations) naturalisée(s), nettement en dehors de son ancienne aire de répartition. Un taxon est présumé « éteint à l'état sauvage » lorsque des études détaillées menées dans ses habitats connus et/ou probables, à des périodes appropriées (rythme diurne, saisonnier, annuel), et dans l'ensemble de son aire de répartition historique, n'ont pas permis de noter la présence d'un seul individu. Les études doivent être faites sur une durée adaptée aux cycles et aux formes biologiques du taxon.

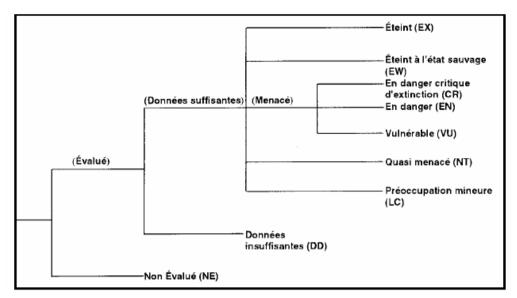


Figure 5 : Critères de vulnérabilité d'après l'UICN

- En danger critique d'extinction (CR) : un taxon est dit « en danger critique d'extinction » lorsque les meilleures données disponibles indiquent qu'il remplit l'un des critères suivants (A à E) et, en conséquence, qu'il est confronté à un risque extrêmement élevé d'extinction à l'état sauvage :
 - Réduction de la taille de la population ;
 - Répartition géographique ;
 - Population estimée à moins de 250 individus matures ;
 - Population estimée à moins de 50 individus matures ;
 - Analyse quantitative montrant que la probabilité d'extinction à l'état sauvage s'élève à 50 % au moins en l'espace de 10 ans ou 3 générations, selon la période la plus longue (maximum de 100 ans).
- En danger (EN) : un taxon est dit « en danger » lorsque les meilleures données disponibles indiquent qu'il remplit l'un des critères suivants (A à E) et, en conséquence, qu'il est confronté à un risque très élevé d'extinction à l'état sauvage :
 - Réduction de la taille de la population ;
 - Répartition géographique ;
 - Population estimée à moins de 2500 individus matures ;
 - Population estimée à moins de 250 individus matures ;
 - Analyse quantitative montrant que la probabilité d'extinction à l'état sauvage s'élève à 20 % au moins en l'espace de 20 ans ou cinq générations, selon la période la plus longue (maximum de 100 ans).
- Vulnérable (VU) : un taxon est dit « vulnérable » lorsque les meilleures données disponibles indiquent qu'il remplit l'un des critères suivants (A à E) et, en conséquence, qu'il est confronté à un risque élevé d'extinction à l'état sauvage :
 - Réduction de la taille de la population ;
 - Répartition géographique ;
 - Population estimée à moins de 10 000 individus matures ;
 - Population très petite ou limitée ;
 - Analyse quantitative montrant que la probabilité d'extinction à l'état sauvage est d'au moins 10 % en l'espace de 100 ans.

- Quasi menacé (NT) : un taxon est dit « quasi menacé » lorsqu'il a été évalué d'après les critères et ne remplit pas, pour l'instant, les critères des catégories « En danger critique d'extinction », « En danger » ou « Vulnérable » mais qu'il est près de remplir les critères correspondant aux catégories du groupe « Menacé » ou qu'il les remplira probablement dans un proche avenir.
- Préoccupation mineure (LC) : un taxon est dit de « préoccupation mineure » lorsqu'il a été évalué d'après les critères et ne remplit pas les critères des catégories « En danger critique d'extinction », « En danger », « Vulnérable » ou « Quasi menacé ».