

Etat de référence des eaux souterraines

Référence :

Arrêté n° 1769-2004/PS du 15 octobre 2004

OCTOBRE 2005

Table des matières :

l	ntroduc	ction	3
S	ynthès	e	3
1	. Pré	sentation des piézomètres environnementaux	4
		Identification globale des points de surveillance	
	1.2	Carte de repérage des 12 piézomètres environnementaux échantillonnés lors de cette campagne	5
2	Pro	tocole de prélèvement et mesures in situ	7
3	Rés	sultats d'analyses	8
	3.1	Sélection du laboratoire d'analyses	8
	3.2	Installation de gestion des résidus	9
	3.3	Kwé ouest	. 11
4	Hau	uteurs d'eau et volumes à vidanger	. 12

Introduction

L'Arrêté n° **1769-2004/PS** du 15 octobre 2004 autorise la société Goro Nickel à exploiter une usine de traitement de minerai de nickel et de cobalt dont la capacité de production nominale est de 54 000 tonnes de nickel et 5400 tonnes de cobalt par an aux lieux-dits « Goro » et « Prony-est » sur les communes de Yaté et du Mont-Dore.

Cet Arrêté prévoit dans son article 12.3, des prescriptions techniques sur l'établissement d'un état de référence de la surveillance de la qualité physico-chimique des eaux souterraines, préalablement à la mise en service des installations, avant la reprise du chantier de construction et si possible en période d'étiage.

En application de ces prescriptions, la société Goro Nickel a donc organisé le 10 et 11 octobre 2005 une première campagne dite « d'état de référence des eaux souterraines » répartie autour de la Kwé ouest, de l'installation de gestion des résidus, du réservoir d'eau douce, de l'usine principale et des dépôts d'hydrocarbures du site portuaire et de la mine. De plus afin de répondre aux exigences imposées par l'Arrêté n° 1769-2004/PS du 15 octobre 2004 concernant les méthodes de prélèvements et de mesures, et pour des raisons techniques quant à des prélèvements allant jusqu'à 60 mètres de profondeur, Goro Nickel a sous traité l'échantillonnage des eaux souterraines au Bureau d'Etudes A2EP, qui s'est engagé à respecter la norme d'échantillonnage ISO 5667-11 concernant l'échantillonnage des eaux souterraines.

Cependant, certains piézomètres, ne possédant pas de fiches d'installation, n'ont pas pu être échantillonnés. Par conséquent, les résultats présentés dans ce rapport constituent le premier volet de la campagne d'état de référence eaux souterraines en période d'étiage de l'année 2005, sur 12 piézomètres environnementaux situés:

- Aux alentours de l'installation de gestion des résidus: 7 piézomètres
- Aux alentours de la Kwé ouest: 5 piézomètres.

La caractérisation physico-chimique de ces eaux souterraines, permettra d'une part, d'établir une cartographie globale de la qualité des eaux souterraines au voisinage du Projet de Goro Nickel avant le démarrage de la construction ; et d'autre part de servir de référent lors du suivi régulier de la qualité des eaux en phase de construction et d'exploitation afin de vérifier et de s'assurer qu'aucun impact sur la qualité des eaux de l'aquifère ne se produira.

Synthèse

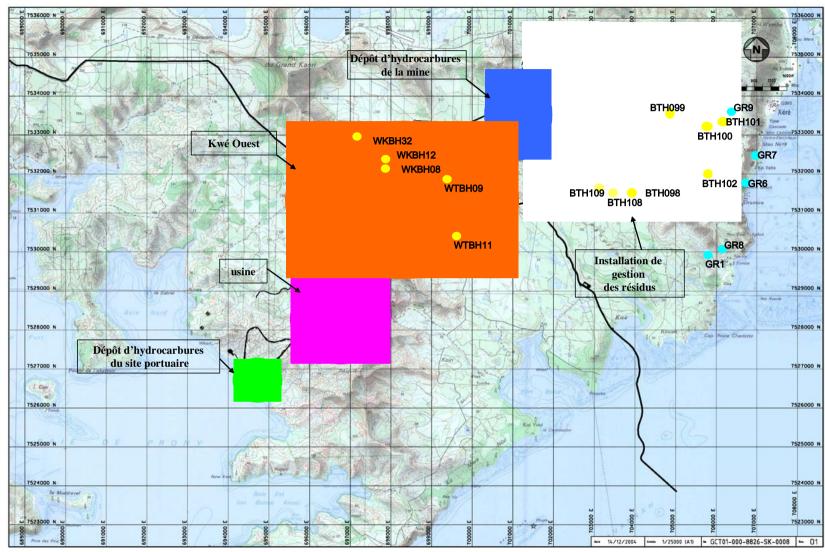
Ce rapport présente le déroulement de la campagne d'échantillonnage des eaux souterraines, réalisée du 10 au 11 octobre 2005 par la société A2EP, les mesures in situ et les résultats d'analyses. Cependant, l'utilisation d'équipements inadaptés pour ces mesures in situ, lors de cette campagne, a entraîné le 7 décembre 2005, la réalisation d'une nouvelle campagne de mesures.

Les analyses des échantillons d'eaux souterraines ont été réalisées par le laboratoire de la Calédonienne Des Eaux et dans l'ensemble, les concentrations restent inférieures aux limites imposées par l'Arrêté n°1769-2004/PS du 15 octobre 2004.

Cependant, tous les échantillons sont relativement chargés en matières en suspension; à noter qu'il y a deux valeurs de MES supérieures à la limite imposée par l'Arrêté cité précédemment. De plus, sur l'analyse en chrome hexavalent de l'échantillon WKBH08, la concentration résultante est supérieure à la limite imposée. En ce qui concerne les mesures in situ, les valeurs de pH sont en moyenne très élevées, avec sur la station WKBH32, une valeur de pH supérieure à la limite imposée par l'Arrêté ICPE. Ces concentrations plus élevées pourraient être dues à la méthode d'échantillonnage utilisée par A2EP, qui n'a pas complètement respecté la norme ISO 5667-11 quant à la représentativité de l'échantillon.

1. Présentation des piézomètres environnementaux

1.1 Identification globale des points de surveillance


Tableau 1:

Lieu Référence de l'échantillon Description		Localissation GPS d'après l'arrêté n°1769-2004/PS		
	Point n°1 (amont#2054)	Nord du plateau de Goro	Est 702014 Nord 7535469	
	Point n°2 (BTH 099)	Aval vers Wadjana amont	Est 704878 Nord 7533587	
	Point n°3 (BTH 100)	Aval vers Wadjana	Est 705318 Nord 7533244	
	Point n°4 (BTH101)	Aval vers Wadjana aval	Est 706180 Nord 7533444	
Autour de	Point n°5	Court: aval vers ancienne mine	Est 705824 Nord 7532080	
l'installation de	(BTH102)	Long: aval vers ancienne mine	Est 705824 Nord 7532080	
gestion des résidus	Point n°6 (BTH098)	Aval au pied de la crête sud	Est 703970 Nord 7531479	
	Point n°7 (BTH108)	Court: aval au pied de la crête sud	Est 703609 Nord 7531622	
	` ′	Long: aval au pied de la crête sud	Est 703609 Nord 7531622	
	Point n°8 (BTH109)	Aval au pied de la crête sud	Est 631631 Nord 7531865	
	Point n°9 (3-1)	Aval prés de l'usine de traitement des effluents	Est 702595 Nord 7532130	
	Point n°10 (1-1)	Aval sous berme Ouest	Est 702067 Nord 7532201	
	Point n°1 (6-7)	Court: amont	Est 697164 Nord 7528164	
		Long: amont	Est 697164 Nord 7528164	
	Point n°2 (6-6)	Aval du stockage de gazole	Est 696779 Nord 7529040	
	Point n°3 (6-5)	Aval du stockage d' acide sulfurique	Est 697001 Nord 7528755	
Autour de l' usine	Point n°4 (6-4)	Aval transit déchets/cuves hydrocarbures	Est 696860 Nord 7528360	
	Point n°5 (6-3)	Aval station carburants	Est 696373 Nord 7527962	
	Point n°6 (6-1)	Court: aval aires de stockage	Est 695731 Nord 7528123	
		Long: aval aires de stockage	Est 695731 Nord 7528123	
	Point n°7 (6-2)	Court: aval du site	Est 695746 Nord 7528720	
		Long: aval du site	Est 695746 Nord 7528720	
Autour du dépôt	Point n°1	Amont du dépôt d'hydrocarbures	Est 694538 Nord 7526538	
hydrocarbure du site portuaire	Point n°2	Aval du dépôt d'hydrocarbures	Est 694502 Nord 7526533	
	Point n°1	Amont du dépôt d'hydrocarbures	Est 701256 Nord 7534175	
Autour du dépôt	Point n°2 (4-1)	Amont du dépôt d'hydrocarbures	Est 701508 Nord 7533767	
hydrocarbure de la	Point n°3 (4-1bis)	Aval du dépôt d'hydrocarbures	Est 701464 Nord 7533705	
mine	Point n°4 (4-2)	Aval atelier maintenance des véhicules	Est 700574 Nord 7533685	
	WTBH 09	Fond de la vallée Kwé ouest écoulement principal	Est 699 495.06 Nord 7 531 692	
	WTBH 11	Coté bassin versant Trou Bleu alignement sur faille	Est 699 614.75 Nord 7 530 414	
Kwe Ouest	WKBH 08	Aval de la berme extérieur au bassin de sédimentation	Est 697 965.4 Nord 7 532 057.2	
	WKBH 12	Aval de la berme extérieur au bassin de sédimentation	Est 697 895.7 Nord 7 532 369.4	
	WKBH 32	Nord de la berme alignement sur faille	Est 697 227.4 Nord 7 532 913	
	QCBH001	Coté ouest du col de l'antenne	Est 696 510.2 Nord 7 530 807.7	

Seuls les piézomètres sur fond jaune ont pu être échantillonnés lors de cette campagne.

1.2	2 Carte de repérage des 12 piézomètres environn campagne	nementaux échantillonnés lors de cette
	es 12 stations de surveillance sont localisées avec leur référenc ivante.	e de l'Arrêté n°1769-2004/PS sur la carte IGN

Carte de repérage des 12 piézomètres environnementaux

Arrêté n° 1769-2004/PS du 15 octobre 2004

p.6/13

2 Protocole de prélèvement et mesures in situ

Dans le cadre de cette campagne d'état de référence des eaux souterraines, Goro Nickel a confié le prélèvement des échantillons et les mesures in situ, à la société A2EP. En effet, cette dernière s'est engagée à respecter les normes d'échantillonnage ISO 5667-1 et 5667-3 concernant les prélèvements des eaux souterraines. D'après celles-ci, le puit doit être vidé de 4 à 6 fois son volume avant prélèvement pour que l'échantillon soit représentatif de l'aquifère. Cependant, le prélèvement par A2EP s'est fait à l'aide d'un échantillonneur avec soupape passive (Bel air) d'une capacité d' 1 litre et formée par une bille de densité 1.4 à 2 dans la partie inférieure du tube de prélèvement, laissant pénétrer l'eau dans le tube lorsque ce dernier descend dans le forage et se refermant lors de la remontée. Cette méthode n'est pas adaptée par rapport au volume à vidanger et peut occasionner des turbulences à l'intérieur du piézomètre.

Le protocole d'échantillonnage adopté par A2EP s'est fait selon les étapes suivantes:

- 1 er étape: mesure de la hauteur d'eau du piézomètre à l'aide d'une sonde piézo et mesures des conductivités le long de la colonne d'eau à l'aide d'une sonde de conductivité.
- <u>2^{ème} étape</u>: rinçage du préleveur par vidange d' 1L.
- <u>3^{ème} étape</u>: prélèvement pour analyse des hydrocarbures totaux transvasé dans une bouteille en verre d'1L.
- <u>4\(\frac{\phine}{2}\) Etape</u>: vidange de 10L pour les puits de moins de 50m de profondeur et de 15 L pour les puits de plus de 50 m de profondeur.
- <u>5 ème</u> <u>étape</u>: prélèvement pour les mesures in situ (pH et T°C); à noter que le pH a été mesuré à l'aide de papier pH.
- <u>6^{ème} étape</u>: prélèvement pour analyse des composés organiques halogénés transvasé dans une bouteille d' 1L en verre.
- $7^{\text{ème}}$ étape: prélèvement pour analyse de MEST, DBO₅, DCO, azote global, platine, sulfates, Cr VI, zinc, magnésium, calcium et silicium transvasé dans une bouteille en plastique d' 1L.
- <u>8^{ème} étape</u>: prélèvement pour analyse des métaux (As; Cr; Pb; Cu; Ni; Mn; Sn; Fe; Al; Co; Hg; Cd) transvasé dans 1 flacon en plastique de 125 mL.
- <u>9^{ème} étape</u>: conditionnement et stockage des bouteilles d'échantillons dans une glacière contenant des glaçons, maintenant les échantillons à une température de 2 à 5°C sous attente de transfert vers le laboratoire d'analyse d'une durée maximale de 48h.

Concernant la mesure du pH, la méthode utilisée (papier pH) par A2EP lors de la campagne du 10 et 11 octobre, ne correspondait pas aux normes que Goro Nickel s'est engagée à respecter par Arrêté. Par conséquent, une nouvelle campagne de mesures in situ a été réalisée le 7 décembre 2005 afin de mesurer avec précision le pH (sonde immergée).

Enfin, lors de cette campagne de prélèvements, les conditions météorologiques étaient les suivantes :

- 10 octobre : nuageux à ensoleillé.
- 11 octobre : ensoleillé

3 Résultats d'analyses

3.1 Sélection du laboratoire d'analyses

La société Goro Nickel a sélectionné le laboratoire de la Calédonienne Des Eaux pour l'analyse des échantillons de cette campagne; en effet la CDE est un partenaire régulier, dont la notoriété n'est plus à démontrer en qualité d'analyses environnementales. Le tableau ci-dessous reprend les méthodes d'analyses et les limites de détection utilisées par ce Laboratoire pour chaque paramètre à analyser et demandé par Goro Nickel

Tableau 2:

Paramètres à analyser	Méthodes d'analyse	Limites de détection (mg/L)
Aluminium	FDT 90119	0,001
Calcium	NFT 90005	0,1
Magnésium	NFT 90005	0,01
Silice	VARIAN Si	0,1
Sulfates	CIA SO ₄	0,1
Cobalt	FDT 90119	0,001
Cuivre	FDT 90119	0,001
Fer	FDT 90119	0,001
Hydrocarbures totaux	XPT90114	0,01
Manganèse	FDT 90119	0,001
Azote total	Calcul	0,5
Nitrites	CIA NO ₂	0,01
Nitrates	CIA NO ₃	0,1
Azote de Kjeldahl	NF EN 25663	1
Phosphore	EPA 8190	0,1
Zinc	FDT 90112	0,01
Arsenic	FDT 90119	0,001
Cadmium	FDT 90119	0,001
Chrome	FDT 90119	0,001
Chrome hexavalent	NFT 90043	0,005
Mercure	NFT 90131	0,001
Nickel	FDT 90119	0,001
Plomb	FDT 90119	0,002
Etain	FDT 90119	0,001
Demande biochimique en oxygène	NFT 90103	1
Demande chimique en oxygène	NFT 90101	5
Matières en suspension	NF EN 872	1

3.2 Installation de gestion des résidus

Seule la station BTH 098 n'a pu être échantillonnée car la nappe a été repérée à 25 m de profondeur et le puit était obstrué à 26 m de profondeur. Par conséquent, il n'y a eu qu'un prélèvement en surface pour les hydrocarbures totaux.

Les limites imposées par l'Arrêté n°1769-2004/PS et les résultats d'analyses sont exprimés en mg/L.

Tableau 3:

Paramétres	Limites*	BTH 099	BTH 100	BTH 101	BTH 102	BTH 108	BTH 109	BTH 098
Date	-	10/10/05	10/10/05	10/10/05	10/10/05	10/10/05	10/10/05	10/10/05
Aluminium	5	0,008	0,002	0,017	0,005	0,004	0,004	na
Calcium	-	0,6	0,9	0,7	0,6	0,5	0,6	na
Magnésium	-	5,8	2,2	4,5	9,2	11,1	12,2	na
Silice	-	5,8	0,1	3,4	5,9	7,1	8,8	na
Sulfates	-	4	5,8	2	3,1	2,2	2,3	na
Cobalt	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	na
Cuivre	0,5	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	na
Fer	5	0,025	0,01	0,005	0,008	0,004	0,008	na
Hydrocarbures totaux	10	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Manganèse	1	0,006	0,011	0,002	<0,001	<0,001	<0,001	na
Azote global	30	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	na
Nitrites	-	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	na
Nitrates	-	0,5	1,5	1,7	0,2	0,1	0,4	na
Azote de Kjedahl	-	<1	<1	<1	<1	<1	<1	na
Phosphore	-	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	na
Zinc	2	0,04	0,26	0,07	0,02	0,02	0,02	na
Arsenic	0,05	0,002	<0,001	0,002	0,003	0,004	0,005	na
Cadmium	0,2	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	na
Chrome	0,5	0,001	0,001	0,004	0,015	0,007	0,007	na
Chrome VI	0,1	<0,005	<0,005	<0,005	0,02	0,01	0,005	na
Mercure	0,05	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	na
Nickel	2	0,021	0,037	0,02	0,026	0,026	0,01	na
Plomb	0,5	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	na
Etain	2	<0,001	<0,001	<0,001	0,001	0,001	0,001	na
DBO5	30	<1	<1	<1	<1	<1	<1	na
DCO	125	<5	<5	<5	<5	<5	<5	na
MEST	35	14	19	10	37	85	16	na

Tableau 4:

Mesures in situ	Limites*	BTH 099	BTH 100	BTH 101	BTH 102	BTH 108	BTH 109	BTH 098
Date	-	07/12/05	07/12/05	07/12/05	07/12/05	07/12/05	07/12/05	07/12/05
Cond. (µS/cm)	-	96,1	90,1	101,4	133,8	140	140,5	-
Température (°C)	30	24,5	24,6	25,4	29,5	23,8	23,6	-
рН	5,5-9,5	8,85	7,79	8,03	8,15	8,92	8,8	-

^{*} Limites : valeurs limites de concentration à respecter en phase d'exploitation selon l'Arrêté n°1769-2004/PS

Commentaires:

Dans l'ensemble, les résultats d'analyses restent inférieurs aux limites imposées par l'Arrêté n° 1769-2004/PS du 15 octobre 2004. Cependant les analyses de matières en suspension montrent des valeurs élevées dont deux supérieures aux limites imposées par l'Arrêté. Ces écarts sont probablement causés par la méthode de prélèvement qui ne respecte pas le renouvellement du puit, en eau souterraine et qui occasionne beaucoup de turbulences.

3.3 Kwé ouest

Toutes les stations ont pu être échantillonnées.

Les limites imposées par l'Arrêté n°1769-2004/PS et les résultats d'analyses sont exprimés en mg/L.

Tableau n° 5 :

Paramétres	Limites*	WTBH09	WTBH11	WKBH08	WKBH12	WKBH32
Date	-	10/10/05	10/10/05	10/10/05	10/10/05	10/10/05
Aluminium	5	0,011	0,011	0,008	0,01	0,01
Calcium	_	11,5	1,4	1,8	0,6	1,3
Magnésium	-	15	12,2	8	8,7	17,8
Silice	-	11,2	7,6	5,9	6,4	1,4
Sulfates	_	3,1	2,1	4	1,8	4
Cobalt	-	0,002	<0,001	<0,001	<0,001	<0,001
Cuivre	0,5	<0,001	0,002	<0,001	<0,001	<0,001
Fer	5	0,017	0,005	0,005	0,037	0,011
Hydrocarbures totaux	10	<0,01	<0,01	<0,01	<0,01	<0,01
Manganèse	1	0,007	0,001	<0,001	0,005	0,002
Azote global	30	<0,5	<0,5	<0,5	<0,5	<0,5
Nitrites	-	<0,01	<0,01	<0,01	<0,01	<0,01
Nitrates	-	1,5	0,2	0,7	0,2	0,2
Azote de Kjedahl	-	<1	<1	<1	<1	<1
Phosphore	-	<0,1	<0,1	<0,1	<0,1	<0,1
Zinc	2	0,05	0,03	0,17	0,02	0,03
Arsenic	0,05	0,006	0,005	0,003	0,003	0,002
Cadmium	0,2	<0,001	0,062	0,001	<0,001	<0,001
Chrome	0,5	0,01	0,014	0,263	0,012	0,002
Chrome VI	0,1	0,01	0,015	0,2	0,01	<0,005
Mercure	0,05	<0,001	<0,001	<0,001	<0,001	<0,001
Nickel	2	0,139	0,003	0,003	0,04	0,002
Plomb	0,5	<0,002	<0,002	<0,002	<0,002	<0,002
Etain	2	0,002	0,002	<0,001	0,001	<0,001
DBO5	30	<1	<1	<1	<1	<1
DCO	125	< 5	< 5	<5	< 5	<5
MEST	35	33	11	12	17	30

Tableau 6:

Mesures in situ	Limites*	WTBH09	WTBH11	WKBH08	WKBH12	WKBH32
Date	-	07/12/05	07/12/05	07/12/05	07/12/05	07/1/05
Cond. (µS/cm)	-	168,2	139,6	103,2	116,8	189,2
Température (°C)	30	25,5	23,3	24,8	25,2	24,6
pН	5,5-9,5	8,28	8,92	8,85	8,84	9,72

^{*} Limites : valeurs limites de concentration à respecter en phase d'exploitation selon Arrêté n°1769-2004/PS

Commentaires:

Dans l'ensemble, les résultats d'analyses restent inférieurs aux limites imposées par l'Arrêté n° 1769-2004/PS du 15 octobre 2004. Cependant, l'analyse du Chrome hexavalent sur la station WKBH08 révèle une concentration supérieure à la limite imposée par l'Arrêté, ce qui pourrait être due à la méthode d'échantillonnage utilisée par A2EP; à noter De plus, lors de la deuxième campagne de mesures in situ, les valeurs de pH étaient particulièrement élevées dont une supérieure à l'intervalle imposée par l'Arrêté; ces valeurs de pH pourraient être dues encore une fois à la méthode d'échantillonnage utilisée.

4 Hauteurs d'eau et volumes à vidanger

Tableau 7: Campagne du 10 et 11 octobre 2005

Identité	Prof fond piezo (m)	Hauteur de la tête du piezo (m)	Date	Prof de la nappe (m)	Volume piézo (L)	Volume à purger avant prélèvement (L)	Volume vidé avant prélèvement lors de la campagne (L)
TBH 98	68	0,43	11/10/2005	25,06	84,1624	252	1
TBH 99	64,7	0,63	10/10/2005	20,06	87,4944	262	15
TBH 100	65	0,77	11/10/2005	33,62	61,5048	185	15
TBH 101	19,8	0,57	10/10/2005	3,4	32,144	96	10
TBH 102	53	0,35	10/10/2005	12,67	79,0468	237	15
TBH 108	36,1	0,44	11/10/2005	13,46	44,3744	133	10
TBH 109	29,3	0,46	11/10/2005	7,65	42,434	127	15
WTBH 09	51	0,51	10/10/2005	24,92	51,1168	153	10
WTBH 11	47,8	0,48	10/10/2005	10,39	73,3236	220	10
WKBH 08	52,2	0,62	10/10/2005	14,58	73,7352	221	10
WKBH 12	34,05	0,57	10/10/2005	8,31	50,4504	151	10
WKBH 32	30,6	0,41	10/10/2005	7,72	44,8448	135	10

Tableau 8: Campagne du 07 novembre 2005

Identité	Prof fond piezo (m)	Hauteur de la tête du piezo (m)	Date	Prof de la nappe (m)	Volume piézo (L)	Volume à purger avant prélèvement (L)	Volume vidé avant prélèvement lors de la campagne (L)
TBH 98	68	0,43	07/12/2005	27.98	78.4392	235.3176	0
TBH 99	64,7	0,63	07/12/2005	21.3	85.064	255.192	5
TBH 100	65	0,77	07/12/2005	36.29	56.2716	168.8148	5
TBH 101	19,8	0,57	07/12/2005	3.41	32.1244	96.3732	5
TBH 102	53	0,35	07/12/2005	19.76	65.1504	195.4512	5
TBH 108	36,1	0,44	07/12/2005	15.2	40.964	122.892	5
TBH 109	29,3	0,46	07/12/2005	8.09	41.5716	124.7148	5
WTBH 09	51	0,51	07/12/2005	25.6	49.784	149.352	5
WTBH 11	47,8	0,48	07/12/2005	14.4	65.464	196.392	5
WKBH 08	52,2	0,62	07/12/2005	16.25	70.462	211.386	5
WKBH 12	34,05	0,57	07/12/2005	10.82	45.5308	136.5924	5
WKBH 32	30,6	0,41	07/12/2005	7.65	44.982	134.946	5

Les volumes sont calculés avec une section de piézo de 0.00196 m² pour une section. A noter que les volumes vidangés lors de la campagne sont nettement inférieurs à calculation d'échantillonnage des eaux souterraines.	on du forage de 0.00/2 m². ce qui est imposé par la norme
Arrêté n° 1769-2004/PS du 15 octobre 2004	p.13/13