

Suivi environnemental Premier semestre 2011

EAUX SOUTERRAINES

SOMMAIRE

INT	ROD	UCTION	l	1
1.	PRE	SENTA	TION DES PLANS DE SUIVI ET DES PROTOCOLES DE MESURE	3
	1.1.	Localis	ation	3
		1.1.1	Suivi de l'impact des activités du port sur les eaux souterraines	3
		1.1.2	Suivi de l'impact des activités du parc à résidus sur les eaux souterraines	
		1.1.3 1.1.4	Suivi de l'impact des activités de l'unité de préparation du minerai (UPM)	
	1 2		oles de mesure	
	1.2.	1.2.1	Campagnes de mesures physico-chimiques	
		1.2.1	Mesure des paramètres physico-chimiques in situ	
		1.2.3	Analyse des hydrocarbures	11
		1.2.4	Analyse des paramètres physico-chimiques en solution	
		1.2.5	Analyse des métaux	13
2.	PRE	SENTA	TION DES RESULTATS	15
	2.1.	Rappel	des valeurs réglementaires	15
		2.1.1	Suivi de l'impact des activités du port sur les eaux souterraines	
		2.1.2	Suivi de l'impact des activités du parc à résidus sur les eaux souterraines	
		2.1.3 2.1.4	Suivi de l'impact des activités de l'UPM sur les eaux souterraines	
	2.2.		es campagnes de mesure	
		2.2.1	Données disponibles pour le port	
		2.2.2	Données disponibles pour le parc à résidus de la Kwé Ouest	16
		2.2.3	Données disponibles pour l'UPM	
		2.2.4	Données disponibles pour l'usine	
	2.3.		ats	
		2.3.1 2.3.2	Suivi de l'impact des activités du port sur les eaux souterraines	19
		2.3.2	Kwé Ouest	22
		2.3.3	Suivi de l'impact des activités de l'Usine sur les eaux souterraines	
		2.3.4	Suivi de l'impact des activités de l'UPM sur les eaux souterraines	25
3.	ANA	ALYSE	DES RESULTATS ET INTERPRETATION	27
	3.1.	Suivi de	e l'impact des activités du port sur les eaux souterraines	27
	3.2.	Suivi de	e l'impact des activités du parc à résidus sur les eaux souterraines	27
	3.3.	Suivi de	e l'impact des activités de l'usine sur les eaux souterraines	28
	3.4.	Suivi de	e l'impact des activités de l'UPM sur les eaux souterraines	28
4.	BILA	AN DES N	ON-CONFORMITES	29

CONCLUSION

٨	N I	N		v		c
4	IV	IV	_		_	. 7

Annexe I: Résultats du suivi des eaux souterraines de la Kwé Ouest

Annexe II: Suivi de la qualité des eaux souterraines de la Kwé Ouest: Piézomètres des groupes A,

B, C et D

Annexe III : Suivi de la qualité des eaux souterraines de la Kwé Ouest : Piézomètres WKBH102,

WKBH110, WKBH113

Annexe IV: Suivi des mesures en continu: WKBH102, WKBH110, WKBH113

Annexe V : Suivi de la qualité des eaux souterraines de l'usine Annexe VI : Suivi de la qualité des eaux souterraines de l'UPM Annexe VII : Résultats du suivi des eaux souterraines de l'UPM

Tableaux

l ableau 1 :	Localisation et description des points de suivi du port	3
Tableau 2 :	Localisation et description des points de suivi du parc à résidus	5
Tableau 3 :	Localisation et description des points de suivi de l'UPM	7
Tableau 4 :	Localisation et description des points de suivi de l'usine	9
Tableau 5 :	Méthode d'analyse pour les paramètres physico-chimiques	12
Tableau 6 :	Méthodes d'analyse pour les métaux	13
Tableau 7 :	Valeurs réglementaires selon l'arrêté n°891-2007/PS	15
Tableau 8 :	Valeurs réglementaires selon l'arrêté n°1466-2008/PS	15
Tableau 9 :	Données disponibles pour le suivi des eaux souterraines du port	16
Tableau 10 :	Données disponibles sur les piézomètres de la Kwé Ouest (fréquence semestrielle)	17
Tableau 11 :	Données disponibles sur les trois piézomètres de la Kwé Ouest (fréquence mensuelle)	18
Tableau 12 :	Données disponibles pour le suivi des eaux souterraines de l'UPM	18
Tableau 13 :	Données disponibles pour le suivi des eaux souterraines de l'Usine	19
Tableau 14 :	Comparaison des mesures de conductivité manuelles et in situ	24
Tableau 15 :	Statistiques des analyses d'eau souterraines sur le site de l'usine	25

Figures

Figure 1:	Carte de localisation des plezometres du port	4
Figure 2 :	Carte de localisation des piézomètres du parc à résidus	6
Figure 3 :	Carte de localisation des piézomètres de l'unité de préparation du minerai	8
Figure 4:	Carte de localisation des piézomètres de l'usine	10
Figure 5 :	Résultats du suivi du port – graphique pH	20
Figure 6 :	Résultats du suivi du port – graphique DCO	20
Figure 7:	Résultats du suivi du port – graphique Conductivité	21
Figure 8 :	Résultats du suivi du port – graphique HT	21

Sigles et abréviations

Lieux

Anc M Bassin Versant de l'ancienne mine

BPE Baie de Prony Est CBN Creek Baie Nord dol XW Doline Xéré Wapo

KB Kwébini
KJ Kadji
KO Kwé Ouest
KP Kwé Principale
SrK Source Kwé
TB Trou Bleu

UPM Unité de Préparation du Minerai

Organismes

CDE Calédonienne des Eaux

Paramètres

Ag Argent Αľ Aluminium Arsenic As В Bore Baryum Ba Béryllium Be Bismuth Bi Ca Calcium

CaCO3 Carbonates de Calcium

Cd Cadmium
Cl Chlore
Co Cobalt

COT Carbone Organique Total

Cr Chrome CrVI Chrome VI Cu Cuivre

DBO5 Demande Biologique en oxygène DCO Demande Chimique en Oxygène

 F
 Fluor

 Fe
 Fer

 Fell
 Fer II

HT Hydrocarbures Totaux

K Potassium Li Lithium

MES Matières en suspension

Mg Magnésium Mn Manganèse Мо Molybdène Na Sodium NB Nota Bene NH3 Ammonium Ni Nickel NO2 **Nitrites** NO₃ **Nitrates** NT Azote Total Р Phosphore Pb Plomb

pH Potentiel Hydrogène

PO4 Phosphates

S Soufre
Sb Antimoine
Se Sélénium
Si Silice

SiO2 Oxyde de Silicium

Sn Etain
SO4 Sulfates
Sr Strontium
T° Température
TA Titre alcalimétrique

TAC Titre alcalimétrique complet

Te Tellure Th Thorium Titane Τi Thallium ΤI U Uranium V Vanadium WJ Wadjana Zinc Zn

Autre

IBNC Indice Biotique de Nouvelle-Calédonie

IIB Indice d'Intégrité Biotique

N° Numéro

INTRODUCTION

Implanté dans le sud de la Nouvelle-Calédonie, aux lieux-dits « Goro » et « Prony-Est » sur les communes de Yaté et du Mont-Dore, le complexe industriel (usine, mine, port) détenu par Vale Nouvelle-Calédonie, a pour objectif d'extraire du minerai latéritique et de le traiter par un procédé hydrométallurgique, visant à produire 60 000 t/an de nickel et 5400 t/an de cobalt.

Les activités liées au projet Vale Nouvelle-Calédonie se répartissent sur plusieurs bassins versants : la Baie de Prony, le creek de la Baie Nord et trois des bras amont de la Kwé (Kwé Ouest, Nord et Est).

Afin de mesurer les impacts potentiels des activités liées au projet, des campagnes de suivi sont mises en place ou sont en cours de mise en place. Ces campagnes seront effectuées notamment conformément aux arrêtés N° 891-2007/PS du 13 juillet 2007, 1467-2008/PS du 9 octobre 2008 et 1466-2008/PS du 9 octobre 2008, correspondant respectivement aux prescriptions des ICPE du port, de l'usine, de l'unité de préparation du minerai et du centre de maintenance de la mine, et du parc à résidus.

Le présent document expose les données collectées sur le site du projet de Vale Nouvelle-Calédonie et les analyses réalisées dans le cadre du suivi effectué sur les eaux souterraines de ses différents bassins versant.

1. PRESENTATION DES PLANS DE SUIVI ET DES PROTOCOLES DE MESURE

1.1. Localisation

La localisation des piézomètres dédiés au suivi de l'impact des différentes installations du projet Vale Nouvelle-Calédonie est décrite dans les paragraphes suivants.

1.1.1 Suivi de l'impact des activités du port sur les eaux souterraines

L'arrêté N° 891-2007/PS du 13 juillet 2007, qui autorise notamment l'exploitation du port, prévoit qu'au total 3 piézomètres sont installés pour le suivi des eaux souterraines. Ces trois piézomètres sont décrits dans le tableau 1 et présentés sur la figure 1. Ils se situent à proximité des installations de stockage de fioul lourd et de gasoil.

Tableau 1 : Localisation et description des points de suivi du port

Nom	Bassin Versant	Type de suivi	Raison d'être	RGN91 Est	RGN91 Nord
7-1	BPE	Souterrain	Arrêté n°891-2007/PS	491884,5	205436,3
7-2	BPE	Souterrain	Arrêté n°891-2007/PS	491828,35	205442,3
7-3	BPE	Souterrain	Arrêté n°891-2007/PS	491847,2	205522,5

Le piézomètre nommé 7-1 a été placé à proximité de la rétention de fioul lourd et en aval hydraulique du piézomètre 7-2.

Le piézomètre 7-2 est en amont immédiat des rétentions de fioul lourd et de gasoil ; sa fonction principale est de donner une indication de l'état de référence du milieu.

Le piézomètre 7-3 a été placé en aval de la rétention de gasoil.

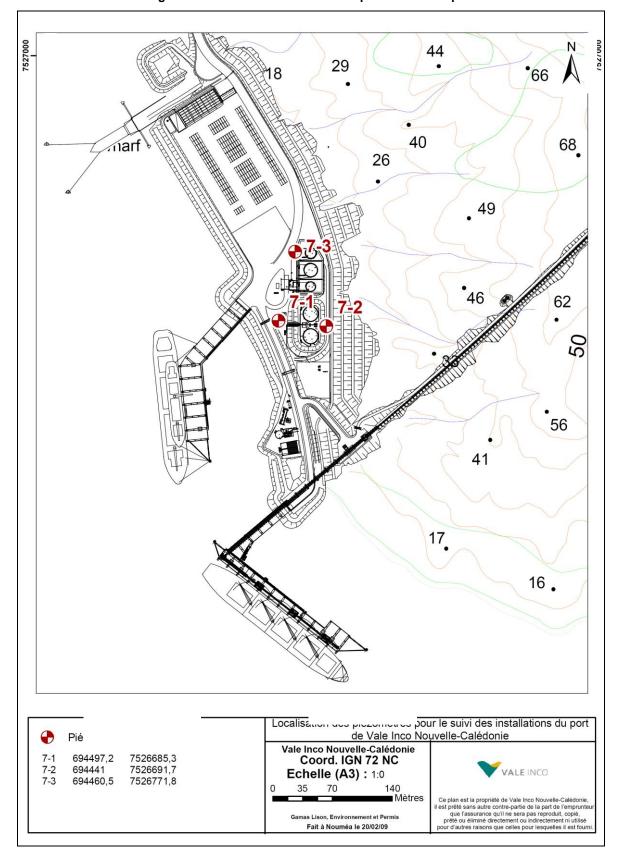


Figure 1 : Carte de localisation des piézomètres du port

1.1.2 Suivi de l'impact des activités du parc à résidus sur les eaux souterraines

Le suivi des eaux souterraines du bassin versant de la Kwé Ouest est effectué sur 41 piézomètres. Ils sont décrits dans le tableau 2 et localisés dans la figure 2.

Tableau 2 : Localisation et description des points de suivi du parc à résidus

Nom	Bassin versant	Type de suivi	Raison d'être	RGN91 Est	RGN91 Nord
WK 6-9	ко		Arrêté n°1466-2008/PS	495191,4	211087,3
WK 6-9a	КО		Arrêté n°1466-2008/PS	495190,4	211086,3
WK 6-11	Trou Bleu		Arrêté n°1466-2008/PS	495478,8	210727,3
WK 6-11a	Trou Bleu		Arrêté n°1466-2008/PS	495478,8	210728,3
WK 6-12	КО	Groupe A Piézomètres d'alerte	Arrêté n°1466-2008/PS	495643,2	210520,4
WK 6-12a	КО	au pied de la berme	Arrêté n°1466-2008/PS	495642,2	210520,4
WK 6-13	ко	. [Arrêté n°1466-2008/PS	495682,3	210360,7
WKBH 102	КО		Arrêté n°1466-2008/PS	495571,6	210620,0
WKBH 102a	ко		Arrêté n°1466-2008/PS	495572,6	210619,0
WKBH 103	КО		Arrêté n°1466-2008/PS	495638,8	210590,4
WKBH12	КО		Arrêté n°1466-2008/PS	495243,9	211142,6
WK 6-10	КО		Arrêté n°1466-2008/PS	495439,8	211029,0
WK 6-10a	КО		Arrêté n°1466-2008/PS	495439,8	211026,0
WKBH 109	КО		Arrêté n°1466-2008/PS	495827,0	210559,7
WKBH 109a	КО		Arrêté n°1466-2008/PS	495824,0	210558,7
WKBH 110	КО		Arrêté n°1466-2008/PS	495681,2	210676,7
WKBH 110a	КО	Groupe B	Arrêté n°1466-2008/PS	495684,2	210675,7
WKBH 110b	КО	Suivi de la qualité de l'eau souterraine dans	Arrêté n°1466-2008/PS	495687,2	210674,7
WKBH 111	КО	la zone tampon	Arrêté n°1466-2008/PS	495585,7	210742,0
WKBH 117	КО		Arrêté n°1466-2008/PS	496356,5	210330,3
WKBH 117a	КО		Arrêté n°1466-2008/PS	496357,5	210330,3
WKBH 117b	КО		Arrêté n°1466-2008/PS	496360,5	210331,4
WKBH 118	КО		Arrêté n°1466-2008/PS	495593,5	210921,1
WKBH 118a	КО		Arrêté n°1466-2008/PS	495590,5	210920,1
WKBH 118b	КО		Arrêté n°1466-2008/PS	495588,5	210919,0
WKBH 112	КО		Arrêté n°1466-2008/PS	496699,6	210601,6
WKBH 112a	КО		Arrêté n°1466-2008/PS	496704,6	210596,6
WKBH 113	КО		Arrêté n°1466-2008/PS	495539,3	211227,6
WKBH 113a	КО		Arrêté n°1466-2008/PS	495540,4	211219,7
WKBH 114	КО	Groupe C	Arrêté n°1466-2008/PS	495881,0	211130,0
WKBH 114a	КО	Suivi de la qualité de	Arrêté n°1466-2008/PS	495879,1	211127,0
WKBH 115	ко	l'eau souterraine près de la rivière Kwé	Arrêté n°1466-2008/PS	496102,6	210903,6
WKBH 115c	КО	Ouest	Arrêté n°1466-2008/PS	496100,6	210900,5
WKBH 115b	КО		Arrêté n°1466-2008/PS	496099,6	210898,5
WKBH 116	КО		Arrêté n°1466-2008/PS	496427,0	210701,8
WKBH 116a	КО		Arrêté n°1466-2008/PS	496424,9	210704,8
WKBH 116b	КО		Arrêté n°1466-2008/PS	496423,9	210706,8
WTBH 9	КО		Arrêté n°1466-2008/PS	496847,6	210476,6
WTBH 11	КО	Crows D	Arrêté n°1466-2008/PS	496974,2	209199,7
WTBH 11a	КО	Groupe D Suivi de la qualité de	Arrêté n°1466-2008/PS	496976,2	209199,7
WKBH 32	КО	l'eau souterraine dans	Arrêté n°1466-2008/PS	496571,5	211681,9
WK 6-14	Rivière Kadji	les vallées adjacentes	Arrêté n°1466-2008/PS	493803,5	209346,8

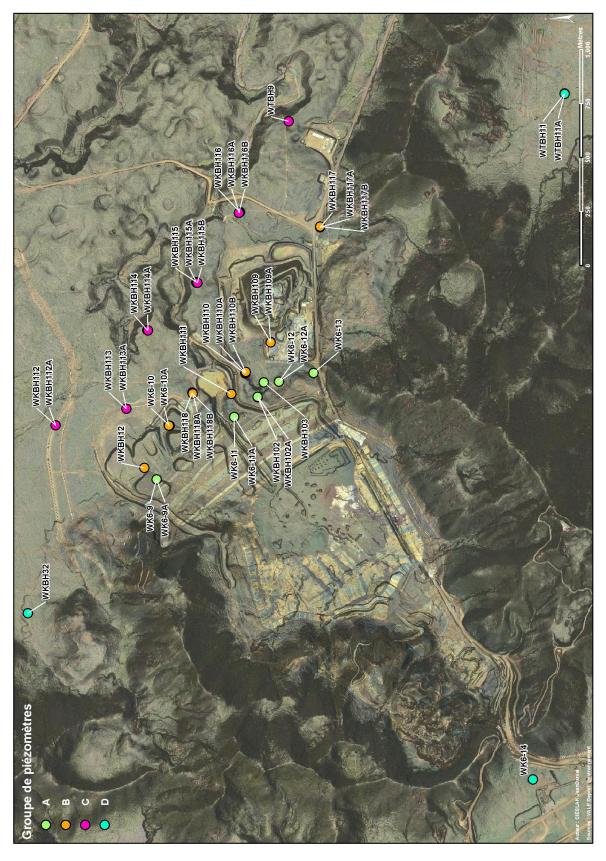


Figure 2 : Carte de localisation des piézomètres du parc à résidus

1.1.3 Suivi de l'impact des activités de l'unité de préparation du minerai (UPM)

Au total, 4 piézomètres ont été installés pour le suivi des eaux souterraines de l'UPM ; ils sont présentés dans le tableau 3 et la figure 3.

Tableau 3 : Localisation et description des points de suivi de l'UPM

Nom	Bassin Versant	Type de sulvi Raison d'etre		RGN 91 Est	RGN 91 Nord
4-z1	Kwé Nord	Souterrain	Arrêté n°1467-2008/PS	498045,1	211693,8
4-z2	Kwé Ouest	Souterrain	Arrêté n°1467-2008/PS	498003,3	211658,5
4-z4	Kwé Ouest	Souterrain	Arrêté n°1467-2008/PS	497790,4	211651,0
4-z5	Kwé Ouest	Souterrain	Arrêté n°1467-2008/PS	497758,5	211493,8

Le piézomètre 4-z1 a été installé pour suivre l'installation de dépôt d'hydrocarbure côté Kwé Nord.

Le piézomètre 4-z2 a été installé pour suivre l'installation de dépôt d'hydrocarbure côté Kwé Ouest.

Le piézomètre 4-z4 a été installé pour contrôler les eaux souterraines à proximité de l'aire de lavage des véhicules lourds.

Le piézomètre 4-z5 a été installé pour contrôler les eaux souterraines en aval de l'aire de l'atelier de maintenance.

Figure 3 : Carte de localisation des piézomètres de l'unité de préparation du minerai

1.1.4 Suivi de l'impact des activités de l'usine

Au total, 16 piézomètres ont été installés pour le suivi des impacts des activités de l'usine sur les eaux souterraines ; ils sont présentés dans le tableau 4 et la figure 4.

Tableau 4 : Localisation et description des points de suivi de l'usine

Nom	Bassin Versant	Type de suivi	Raison d'être	RGN 91 Est	RGN 91 Nord
6-1	CBN	Aval des aires de stockage	Arrêté n°1467- 2008/PS	493460	207246
6-1a	CBN	Aval des aires de stockage	Arrêté n°1467- 2008/PS	493126	207428
6-2	CBN	Aval du site	Arrêté n°1467- 2008/PS	493126	207428
6-2a	CBN	Aval du site	Arrêté n°1467- 2008/PS	493753	206736
6-3	CBN	Aval de la station distribution du carburant	Arrêté n°1467- 2008/PS	493751	206733
6-3a	CBN	Aval de la station distribution du carburant	Arrêté n°1467- 2008/PS	493827	206864
6-4	CBN	Aval de la station de transit déchets et des cuves d'hydrocarbures	Arrêté n°1467- 2008/PS	494252	207902
6-5	CBN	Aval du stockage d'acide sulfurique	Arrêté n°1467- 2008/PS	494162	207810
6-6	CBN	Aval du stockage de gazole	Arrêté n°1467- 2008/PS	494404	206981
6-7	CBN	Amont site industriel	Arrêté n°1467- 2008/PS	494404	206981
6-7a	CBN	Amont site industriel	Arrêté n°1467- 2008/PS	493553	207645
6-8	CBN	Aval du bassin de contrôle Nord	Arrêté n°1467- 2008/PS	493553	207645
6-8a	CBN	Aval du bassin de contrôle Nord	Arrêté n°1467- 2008/PS	494456	207581
6-13	CBN	Aval bassin eau de procédé	Arrêté n°1467- 2008/PS	494014	207355
6-14	CBN	Aval stockage acide chlorhydrique	Arrêté n°1467- 2008/PS	494014	207355
6-14a	CBN	Aval stockage acide chlorhydrique	Arrêté n°1467- 2008/PS	498045	211694

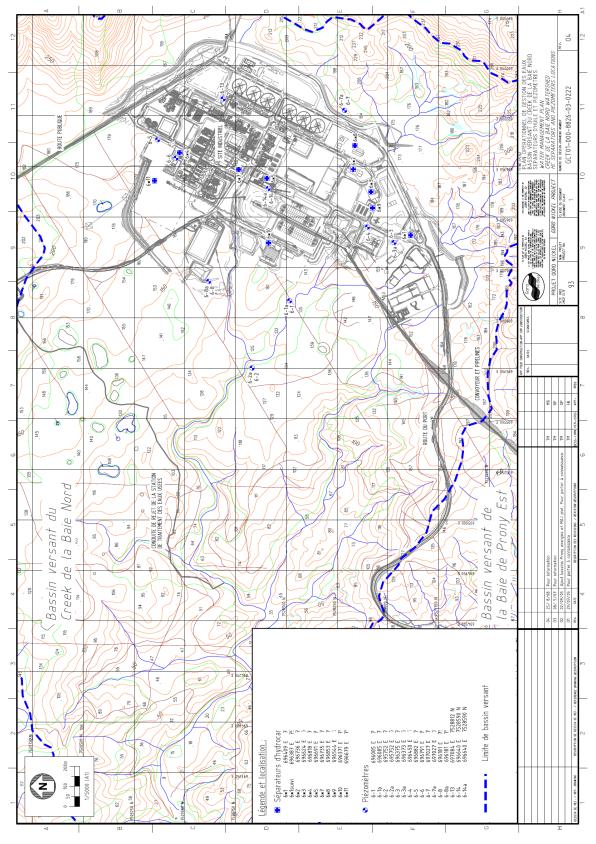


Figure 4 : Carte de localisation des piézomètres de l'usine

1.2. Protocoles de mesure

1.2.1 Campagnes de mesures physico-chimiques

Des prélèvements sont effectués dans les piézomètres réalisés spécifiquement pour le suivi des eaux souterraines. Le protocole d'échantillonnage des eaux souterraines est basé sur les recommandations des parties 3 et 11 de la norme ISO 5667 relatives à la conservation et à la manipulation des échantillons d'eau (partie 3) et à l'échantillonnage des eaux souterraines (partie 11). Il respecte en particulier les recommandations permettant d'assurer la représentativité de l'échantillonnage telle qu'elle est décrite dans la norme ISO 5667 partie 11 :

- la purge d'un volume d'eau égal à trois fois le volume compris dans le piézomètre (comprenant l'eau libre dans le tube ouvert et l'eau interstitielle du massif filtrant,
- la mesure de la conductivité et du pH de l'eau tout au long de la vidange.

Une exception est faite pour le prélèvement des échantillons destinés à la recherche de traces d'hydrocarbures qui est effectué avant la purge et en surface par écrémage, conformément à la norme ISO 5667.

Les analyses des échantillons sont effectuées par le laboratoire interne de Vale Nouvelle-Calédonie accrédité ISO 17025 depuis le 2 octobre 2008.

1.2.2 Mesure des paramètres physico-chimiques in situ

Les mesures *in situ* sont réalisées à l'aide des multi-paramètres portables *HachQ40d* et *HachSensio156*. Ces deux appareils sont composés d'une sonde de pH, d'une sonde pour la température et d'une sonde pour mesurer la conductivité.

Le pH est mesuré *in situ* selon la norme NF T90 008 et selon les recommandations précisées dans le mode d'emploi de l'appareil de mesure utilisé.

La conductivité est également mesurée *in situ* selon la procédure décrite dans le mode d'emploi de l'appareil de mesure utilisé.

1.2.3 Analyse des hydrocarbures

Les hydrocarbures sont mesurés par le laboratoire Vale Nouvelle-Calédonie selon la norme NF T 90 114.

1.2.4 Analyse des paramètres physico-chimiques en solution

Les méthodes d'analyse pour les paramètres physico-chimiques réalisés sont décrites dans le tableau 5 ci-dessous.

Tableau 5 : Méthode d'analyse pour les paramètres physico-chimiques

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	MES	mg/L	5	GRV02	Dosage des matières en suspension (MES)	NF EN 872 Juin 2005
Interne	рН		-	PH01	Mesure du pH	NF T90-008
Interne	Conductivité	μS/cm	5	CDT01	Mesure de la conductivité	
Interne	CI	mg/L	0.1	ICS01		
Interne	NO3	mg/L	0.2	ICS01	Analyse de 4 ou 6 anions	
Interne	SO4	mg/L	0.2	ICS01	par chromatographie ionique (chlorure, nitrate,	NF EN ISO
Interne	PO4	mg/L	0.2	ICS01	phosphates, sulfate,	10304-1
Interne	F	mg/L	0.1	ICS01	fluorure et nitrate en plus si demandé)	
Interne	NO2	mg/L	0.1	ICS01		
Interne	DCO	mg/L	10	SPE03	Analyse de la DCO	Méthode HACH 8000
Interne	TAC as CaCO3	mg/L	50	TIT11	Titration de l'alcalinité	
Interne	TA as CaCO3	mg/L	50	TIT11	(TA et TAC)	
Interne	CrVI	mg/L	0.01	SPE01	Analyse du chrome VI dissous dans les eaux naturelles et usées	NF T 90-043 Octobre 1988
Interne	Turbidité	NTU	0.1	TUR01	Mesure de la turbidité	
Interne	NH3	mg/L	0.5	SPE05	Dosage de l'ammonium dans les eaux	Méthode HACH 10205
Interne	СОТ	mg/L	0.3	SPE09	Dosage du Carbone Organique Total (COT) dans les eaux	Méthode HACH 10129
Interne	SiO2	mg/L	1 de Si	CAL02	Calcul de SiO2 à partir de Si mesuré par ICP02	
Interne	NT	mg/L	0.5	SPE08	Dosage de l'azote total dans les eaux	Méthode HACH 10071

1.2.5 Analyse des métaux

Les méthodes d'analyse des métaux dans les eaux douces sont indiquées dans le tableau 6.

Tableau 6 : Méthodes d'analyse pour les métaux

Labo	Analyse	Unité	LD	Méthode	Intitulé de la méthode	Norme
Interne	Al	mg/L	0.1	ICP02		
Interne	As	mg/L	0.1	ICP02		
Interne	Ca	mg/L	1	ICP02		
Interne	Cd	mg/L	0.01	ICP02		
Interne	Co	mg/L	0.01	ICP02		
Interne	Cr	mg/L	0.01	ICP02		
Interne	Cu	mg/L	0.01	ICP02		
Interne	Fe	mg/L	0.1	ICP02	Analyse d'une	
Interne	K	mg/L	0.1	ICP02	cinquantaine d'éléments dissous ou totaux (si	
Interne	Mg	mg/L	0.1	ICP02	demandé) dans les 150 118	ISO 11885 Août 2007
Interne	Mn	mg/L	0.01	ICP02		71001 2001
Interne	Na	mg/L	1	ICP02		
Interne	Ni	mg/L	0.01	ICP02		
Interne	Р	mg/L	0.1	ICP02		
Interne	Pb	mg/L	0.01	ICP02		
Interne	S	mg/L	1	ICP02		
Interne	Si	mg/L	1	ICP02		
Interne	Sn	mg/L	0.01	ICP02		
Interne	Zn	mg/L	0.1	ICP02		
Externe	Mercure	μg/L	0.1			NF EN ISO 17294-2

2. PRESENTATION DES RESULTATS

2.1. Rappel des valeurs réglementaires

2.1.1 Suivi de l'impact des activités du port sur les eaux souterraines

L'arrêté n°891-2007/PS du 13 juillet 2007 relatif aux installations portuaires impose le respect des seuils indiqués dans le tableau 7 pour la composition des eaux souterraines.

Tableau 7 : Valeurs réglementaires selon l'arrêté n°891-2007/PS

Paramètre	Valeurs seuil
рН	5,5 < x < 9,5
Conductivité	-
DCO	100 mg/L
HT	10 mg/L

Les autres paramètres dont le suivi est imposé ne sont soumis à aucun seuil réglementaire de qualité des eaux souterraines.

2.1.2 Suivi de l'impact des activités du parc à résidus sur les eaux souterraines

L'arrêté n°1466-2008/PS du 9 octobre 2008 relatif à l'exploitation du parc à résidus de la Kwé Ouest impose le respect des seuils indiqués dans le tableau 8 pour la composition des eaux souterraines, ainsi que des valeurs guides A3 inspirées de l'arrêté métropolitain relatif aux eaux brutes et aux eaux destinées à la consommation humaine du 11 janvier 2007.

Tableau 8 : Valeurs réglementaires selon l'arrêté n°1466-2008/PS

Paramètre	Valeurs seuil
рН	5,5 < pH < 9,5
Conductivité	1000 μS/cm
Sulfates	150 mg/L
Manganèse	1 mg/L

Ces valeurs doivent être respectées, à minima, pour les piézomètres faisant partie du groupe B.

2.1.3 Suivi de l'impact des activités de l'UPM sur les eaux souterraines

Aucun seuil réglementaire de qualité des eaux souterraines n'est imposé dans l'arrêté N°1467-2008/PS du 9 octobre 2008 pour le suivi de l'impact de l'activité de l'UPM.

2.1.4 Suivi de l'impact des activités de l'usine sur les eaux souterraines

Aucun seuil réglementaire de qualité des eaux souterraines n'est applicable pour le suivi de l'impact de l'activité de l'usine.

2.2. Bilan des campagnes de mesure

2.2.1 Données disponibles pour le port

Depuis janvier 2011, deux campagnes de suivi ont été effectuées. Pendant la campagne du mois de mai les analyses en HT et DCO n'ont pu être réalisées pour les piézomètres 7-1 et 7-2, les échantillons étant trop chargés en sédiments pour permettre la mise en œuvre de ces méthodes d'analyse. Le taux de données disponibles est présenté dans le tableau 9.

Tableau 9 : Données disponibles pour le suivi des eaux souterraines du port

7-1, 7-	-2, 7-3		20	11		Bilan au premie	r semestre 2011
Fréquence	Analyses	Février	Mai	Août	Novembre	Nombre analyses attendues	Nombre analyses réalisées
Trimestrielle	рН	3	3			6	6
Trimestrielle	Conductivité	3	3			6	6
Trimestrielle	DCO	3	1			6	4
Trimestrielle	HT	3	1			6	4
				Nombre	total d'analys	ses réalisées	20
				%	analyses réa	alisées	83,3

2.2.2 Données disponibles pour le parc à résidus de la Kwé Ouest

Le suivi des piézomètres de la Kwé Ouest est effectué en majorité à une fréquence semestrielle. La première campagne de suivi semestriel des eaux souterraines a été réalisée au mois de juin. La seconde est planifiée pour le mois de novembre.

Lors de ces deux campagnes certains piézomètres n'ont pas pu être échantillonnés :

- WKBH12 (groupe B) : le piézomètre est bouché,
- WKBH112A (groupe C): piézomètre détérioré ou bouché avant la campagne de juillet 2010,
- WK6-14 (groupe D) : piézomètre à sec lors de cette campagne.

Certains piézomètres ont fait l'objet d'un échantillonnage mais les échantillons correspondants ont été perdus au laboratoire de Vale :

- WKBH103 (groupe A)
- WKBH109, WKBH109A, WKBH117, WKBH117A, WKBH117B (groupe B)
- WKBH116 (groupe C)
- WTBH11, WTBH11A (groupe D)

Ces piézomètres ont été ré-échantillonnés en août 2011. Les résultats seront transmis lors du prochain bilan annuel.

Certains paramètres sont manquants :

- MES: étant donné que la méthode de pompage génère la mise en suspension des sédiments, l'analyse des MES n'est pas demandée pour les prélèvements d'eau souterraine car elle est non-représentative ;
- Nitrites et Fluorures : les demandes d'analyse de nitrites et fluorures n'ont pas été faites en raison d'une erreur de format de demande d'analyses.

Le **HCO3-** est obtenu par calcul à partir des mesures de TA et TAC.

Les taux de données disponibles sont présentés dans le tableau 10.

Tableau 10 : Données disponibles sur les piézomètres de la Kwé Ouest (fréquence semestrielle)

	(Groupe A			G	roupe B		(Groupe C			Group	e D	
	Attendu	Réalisé	%		Attendu	Réalisé	%	Attendu	Réalisé	%	Attendu	Réalisé	Piézo sec	%
рН	10	9	90		15	9	60	13	11	85	4	1	1	50
cond	10	9	90		15	9	60	13	11	85	4	1	1	50
Al	10	9	90	ı	15	9	60	13	11	85	4	1	1	50
As	10	9	90		15	9	60	13	11	85	4	1	1	50
Ca	10	9	90		15	9	60	13	11	85	4	1	1	50
CI	10	9	90		15	9	60	13	11	85	4	1	1	50
Co	10	9	90		15	9	60	13	11	85	4	1	1	50
Cr	10	9	90	ı	15	9	60	13	11	85	4	1	1	50
Cu	10	9	90		15	9	60	13	11	85	4	1	1	50
Fe	10	9	90		15	9	60	13	11	85	4	1	1	50
НСО3-	10	9	90		15	9	60	13	11	85	4	1	1	50
K	10	9	90		15	9	60	13	11	85	4	1	1	50
MES	10	0	0		15	0	0	13	11	85	4	0	1	25
Mg	10	9	90		15	9	60	13	11	85	4	1	1	50
Na	10	9	90		15	9	60	13	11	85	4	1	1	50
Ni	10	9	90		15	9	60	13	11	85	4	1	1	50
NO2	10	0	0		15	0	0	13	0	0	4	0	1	25
NO3	10	9	90		15	9	60	13	11	85	4	1	1	50
Pb	10	9	90		15	9	60	13	11	85	4	1	1	50
PO4	10	9	90		15	9	60	13	11	85	4	1	1	50
SiO2	10	9	90	Į	15	9	60	13	11	85	4	1	1	50
SO4	10	9	90		15	9	60	13	11	85	4	1	1	50
Zn	10	9	90		15	9	60	13	11	85	4	1	1	50
Mn	10	9	90	Į	15	9	60	13	11	85	4	1	1	50
F	10	0	0	Į	15	0	0	13	0	0	4	0	1	25
	nalyses ré (hors MES		82,5		% d'an réalisée ME	s (hors	55	% d'an réalisée ME	es (hors	78	% d'ana (hors M	alyses réa ES et piez	lisées to sec)	48

Pour trois piézomètres définis, un suivi est réalisé à une fréquence mensuelle pour quelques paramètres et la conductivité est mesurée en continu. Le suivi mensuel de mai n'a pas été réalisé. Le taux de données disponibles est présenté dans le tableau 11.

Tableau 11: Données disponibles sur les trois piézomètres de la Kwé Ouest (fréquence mensuelle)

	, WKBH102, BH110						20	011						Bilan au p semestre	
Fréquence	Analyse	Janv	Fév	Mars	Avril	Mai	Juin	Juillet	Août	Sept	Oct	Nov	Déc	Nombre d'analyses attendues	Nombre analyses réalisées
Continue	Conductivité					7	Fotal se	emestriel						13140	5866
Mensuelle	Sulfates	0	3	3	3	1	3							18	13
Mensuelle	Magnésium	0	3	3	3	1	3							18	13
Mensuelle	Calcium	0	3	3	3	1	3							18	13
Mensuelle	Manganèse	0	3	3	3	1	3							18	13
											٠,			and Control of the	

% de mesures continues de 56.4 conductivité réalisées Nombre total d'analyses 52 réalisées % analyses réalisées 72.2

Page 18 / 31

Les lacunes importantes dans les données continues de conductivité sont essentiellement dues à une fréquence insuffisante de vérification et de validation des données. Un projet de mise en place d'un système d'information pour la gestion des données hydrologiques et hydrogéologiques a débuté en fin 2010. Sa mise en service est prévue pour la fin 2011 et il permettra de faciliter et de systématiser les étapes de validation des données et d'augmenter la réactivité en cas d'erreur d'analyse ou de disfonctionnement des équipements.

2.2.3 Données disponibles pour l'UPM

Le suivi des eaux souterraines de l'UPM est réalisé à une fréquence trimestrielle. Le taux de données disponibles est présenté dans le tableau 12.

Tableau 12 : Données disponibles pour le suivi des eaux souterraines de l'UPM

4-z1, 4-z2,	4-z4, 4-z5		20	011		Bilan au semest	premier re 2011
Fréquence	Analyse	Février	Mai	Août	Octobre	Nombre d'analyses attendues	Nombre d'analyses réalisées
Trimestrielle	рН	4	4			8	8
Trimestrielle	Conductivité	4	4			8	8
Trimestrielle	DCO	4	4			8	8
Trimestrielle	Sulfates	4	4			8	8
Trimestrielle	Chrome VI	4	4			8	8
Trimestrielle	Calcium	4	4			8	8
Trimestrielle	Potassium	4	4			8	8
Trimestrielle	Sodium	4	4			8	8
Trimestrielle	TA	4	4			8	8
Trimestrielle	TAC	4	4			8	8
Trimestrielle	Chlorures	4	4			8	8
Trimestrielle	HT	3	3			8	6
				Nombre tota	al d'analyses	réalisées	94
				% an	alyses réalis	ées	98

Le prélèvement au bailer pour l'analyse des hydrocarbures n'a pu être réalisé au piézomètre 4-z5 lors du premier semestre. Ce piézomètre est détérioré (tube PVC tordu).

2.2.4 Données disponibles pour l'usine

Le suivi des eaux souterraines de l'usine est réalisé à une fréquence trimestrielle. Le taux de données disponibles est présenté dans le tableau 13.

Tableau 13 : Données disponibles pour le suivi des eaux souterraines de l'Usine

6-1, 6-1a, 6 3, 6-3a, 6-4, 7, 6-7a, 6-8, 6-14,	6-5, 6-6, 6- 6-8a, 6-13,		20)11		Bilan au semest	
Fréquence	Analyses	Février	Mai	Août	Octobre	Nombre analyses attendues	Nombre analyses réalisées
Trimestrielle	рН	15	15			32	30
Trimestrielle	Conductivité	15	15			32	30
Trimestrielle	DCO	15	15			32	30
Trimestrielle	Sulfates	15	15			32	30
Trimestrielle	Chrome VI	15	15			32	30
Trimestrielle	Calcium	15	15			32	30
Trimestrielle	Potassium	15	15			32	30
Trimestrielle	Sodium	15	15			32	30
Trimestrielle	TA	15	15			32	30
Trimestrielle	TAC	15	15			32	30
Trimestrielle	Chlorures	13	14			32	27
Trimestrielle	HT	13	13			32	26
				Nombre t	otal d'analys	es réalisées	353
				% :	analyses réal	lisées	92

Le prélèvement au bailer pour l'analyse des hydrocarbures n'a pu se faire au niveau du piézomètre 6-3A en raison de la détérioration du PVC.

2.3. Résultats

2.3.1 Suivi de l'impact des activités du port sur les eaux souterraines

Les graphiques des figures 5 à 8 présentées ci-dessous indiquent les valeurs obtenues lors du suivi des eaux souterraines du port. La valeur de DCO sur le piézomètre 7-1 mesurée en février 2011 est équivalente à la limite réglementaire lors du contrôle du mois du février. Les valeurs de pH, conductivité et hydrocarbures ne dépassent jamais les limites réglementaires au cours du premier semestre 2011.

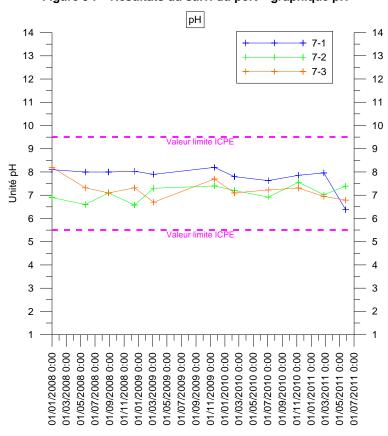
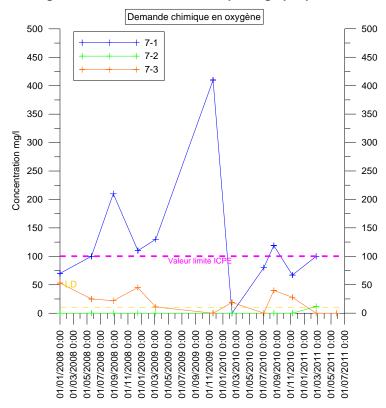



Figure 5: Résultats du suivi du port - graphique pH

Vale Nouvelle-Calédonie
Août 2011
Page 20 / 31

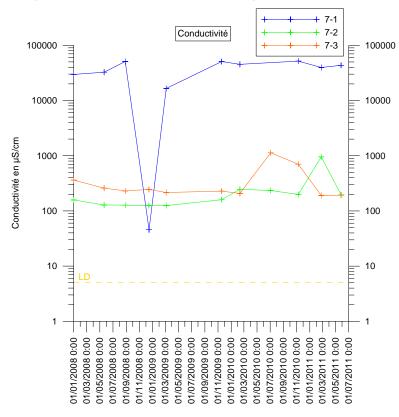
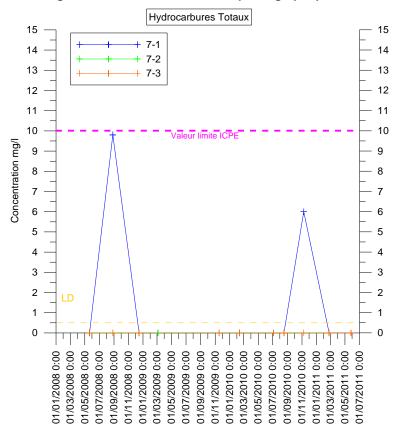



Figure 7: Résultats du suivi du port - graphique Conductivité

Vale Nouvelle-Calédonie Page 21 / 31 Août 2011

2.3.2 Suivi de l'impact des activités du parc à résidus sur les eaux souterraines de la Kwé Ouest

L'annexe I présente les statistiques effectuées sur les résultats du premier semestre 2011. L'annexe II présente les résultats sous forme graphique.

Groupe A:

- pH : compris entre 4,7 et 9,6.
- Conductivité : comprise entre 49,7 et 173 μS/cm.
- Sodium: les concentrations sont toujours plus importantes et variables au niveau de WK6-13.
- **Nitrates** : la tendance à l'augmentation observée sur les stations WKBH102 et WKBH103 en 2010 n'est pas confirmée au cours du premier semestre 2011.
- **Chrome** : on observe des concentrations plus élevées en chrome sur la station WK6-9A, sans tendance franche à l'augmentation.
- Sulfates: sur le piézomètre WKBH102, les résultats de 2011 révèlent des concentrations plus élevées et variables que les années précédentes. On constate également une légère tendance à l'augmentation à la station WKBH103, et à l'inverse une diminution des concentrations à la station WK6-11. Pour les autres stations, les concentrations sont faibles et stables.

Groupe B:

- pH : compris entre 6,2 et 9,3.
- Conductivité : entre 76,6 et 166 μS/cm.
- **Chrome**: après avoir observé une augmentation en chrome sur la station WK6-10 entre 2008 et 2009, les concentrations sont en baisse pour le bilan du premier semestre 2011.
- Sulfate: les résultats obtenus au cours de ce semestre montrent une tendance générale à la baisse des concentrations sur l'ensemble des stations de ce groupe.
- Manganèse: au cours de ce premier semestre on observe une tendance à l'augmentation au piézomètre WK6-10A. Le manganèse est aussi mesuré ponctuellement à la station WKBH110. Les valeurs mesurées restent largement inférieures au seuil réglementaire de 1 mg/l.

Groupe C:

- pH : compris entre 4,7 et 7,4.
- Conductivité: comprise entre 49,9 et 184 μS/cm.
- **Silicium, sodium, magnésium**: les résultats obtenus au cours du premier semestre 2011 confirment la stabilité des concentrations observée depuis 2008, exception faite de la station WKBH116A qui montre un pic inexpliqué et douteux au deuxième semestre 2010.
- **Chrome** : une tendance à la diminution est observée à la station WKBH113. Les résultats pour les autres stations de ce groupe montrent des concentrations faibles et stables depuis 2008.

Groupe D:

- pH : compris entre 6,2 et 9,3.
- Conductivité: comprise entre 76,6 et 166 µS/cm.
- Chlorures, sulfates : les concentrations montrent une légère tendance à la baisse.

Le piézomètre WK6-14 était sec lors des campagnes d'échantillonnage de juin 2011.

L'ensemble des paramètres est stable pour les piézomètres échantillonnés.

Mesures mensuelles: WKBH113, WKBH102, WKBH110

Conformément à l'arrêté ICPE, la qualité des eaux souterraines est suivie mensuellement et en continu pour la conductivité au niveau des forages suivant :

- WKBH102, qui se situe au pied de la berme, dans la zone d'influence prévisible du stockage des résidus (groupe A),
- WKBH110, qui se situe dans la zone tampon (groupe B), à proximité de la source WK20,
- WKBH113, qui se situe hors zone d'influence (groupe C), en bordure nord du bassin versant.

Les graphiques en annexe III présentent les données acquises depuis janvier 2008 pour les piézomètres WKBH102, WKBH110, WKBH113.

WKBH102

Les concentrations en magnésium, sulfates, chlorures, nitrates ainsi que la conductivité sont plus élevées sur WKBH102 que sur WKBH110 et WKBH113. A l'inverse, les valeurs de pH sur WKBH102 sont en général inférieures.

Les analyses en *sulfates* de 2011 montrent des variations de concentration. Les concentrations sont comprises entre 16 et 35 mg/L. Une légère diminution est observée pour les *nitrates* en 2011.

Une concentration en *manganèse* de 0,02 mg/l est mesurée en février 2011. Le dernier prélèvement de novembre 2010 a montré une valeur de 0,05 mg/l alors que cet élément n'a jamais été détecté depuis la mise en place du suivi. A partir de mars 2011, le manganèse n'est plus détecté à cette station.

WKBH110

Les valeurs de **pH** mesurées sont comparables aux années précédentes mais une baisse ponctuelle du pH est observée en mai 2011.

Les concentrations en *nitrates* semblent se stabiliser en 2011.

En janvier 2011, on observe un pic de concentration en *sulfates,* puis un retour aux concentrations habituelles, entre 2 et 3 mg/L.

L'analyse en *chlorures* de la campagne d'avril 2011 montre une valeur inférieure à la limite de détection alors que cet élément est systématiquement détecté depuis 2008. Même si les contrôles en laboratoire n'ont pas permis de l'affirmer, cette analyse est considérée comme douteuse.

On observe un pic isolé en *manganèse* à 0,07 mg/l, mesuré lors du suivi de février. Cet élément n'a jamais été détecté auparavant.

WKBH113

Les concentrations au niveau de ce piézomètre sont relativement stables au cours du premier semestre 2011.

Mesures de conductivité en continu : WKBH113, WKBH102, WKBH110

Ces piézomètres sont équipés depuis le 17 juin 2009 de sondes de type Aqua Troll 200 qui enregistrent les variations de conductivité et de température. Les enregistrements présentent d'importantes lacunes et sont représentés en annexe IV.

Les lacunes dans les données de WKBH102 ont plusieurs origines :

- 2 février au 4 avril : erreur de configuration de la sonde par nos équipes,
- 7 juin au 1^{er} juillet : erreur dans l'enregistrement du format de temps de la mesure dû à un problème technique au niveau de la sonde.

Les données de conductivité à la station WKBH113 sont incomplètes. Une erreur de programmation de l'Aquatroll 200 est à l'origine de la lacune du 1er janvier au 2 mars 2011. L'absence de données du 4 avril au 1et juillet est due à une mauvaise relance du programme lors du dernier déchargement de données.

La sonde installée à WKBH110 n'a pas enregistré de donnée du 1er janvier au 4 avril. Comme à la station WKBH102, un problème technique au niveau de la sonde a engendré des erreurs de format dans le temps de la mesure.

D'après le tableau 14 ci-dessous, les résultats enregistrés aux piézomètres WKBH110 sont comparables aux mesures réalisées en laboratoire. Pour les piézomètres WKBH102 et WKBH113, les

différents problèmes d'enregistrement des sondes sont à l'origine des écarts entre les moyennes de conductivité en laboratoire et *in situ*.

Tableau 14 : Comparaison des mesures de conductivité manuelles et in situ

Ouvrages	Moyenne des mesures réalisées en laboratoire pour la période (μS/cm)	Mesure moyenne de la sonde pour la période (μS/cm)
WKBH102	160.4	128.3
WKBH110	118.1	127.5
WKBH113	96.1	175.1

Comme il a été observé en 2010, les valeurs de conductivité des ouvrages WKBH102 et WKBH110 sont stables sur la période d'observation. En revanche, des variations fréquentes de la conductivité sont enregistrées au niveau de WKBH113.

2.3.3 Suivi de l'impact des activités de l'usine sur les eaux souterraines

Les résultats du suivi des eaux souterraines sur le site de l'usine sont présentés graphiquement en Annexe V suivant le type d'installation du piézomètre :

- piézomètres courts : suivi de la nappe contenue dans la latérite,
- piézomètres longs : suivi de la nappe contenue dans la saprolite.

Les tableaux 15 ci-dessous présentent les statistiques réalisées à partir des résultats obtenus depuis janvier 2011.

Piézomètres courts

- **Conductivité** : une tendance à l'augmentation est observée aux stations 6-14A et 6-8A. Aucune évolution particulière de la conductivité n'est constatée aux autres stations.
- **Chlorures**: on note une stabilisation des concentrations en chlorures depuis janvier 2011 dans les eaux souterraines des horizons latéritiques.
- **Sulfates**: les concentrations en sulfates restent plus élevées aux stations 6-8A et 6-14A que sur les autres stations. La tendance à la hausse au niveau de 6-14A en fin de semestre sera à vérifier au cours du bilan annuel. Les teneurs en sulfates sont stables au niveau des autres stations.
- **Hydrocarbures** : aucune trace d'hydrocarbures n'est relevée dans les eaux souterraines des horizons latéritiques.
- **Chrome** : comme observée dans les précédents bilans, la concentration en chrome dans la nappe latéritique est plus élevée à la station 6-7A. Le maximum observé en 2011 de 0,14 mg/l est identique au maximum mesuré en 2010.

Piézomètres longs

- pH et conductivité: pour l'ensemble des piézomètres longs, les valeurs mesurées de pH et de conductivité en 2011 sont stables. Dans les eaux souterraines des horizons saprolitiques, la moyenne des valeurs de pH est de 8 et la moyenne des conductivités mesurées est de 181 μS/cm.
- Chlorures et sulfates: les résultats de 2011 montrent une stabilisation des concentrations en chlorures et sulfates pour l'ensemble des stations. La station 6-8 montre toujours des valeurs élevées pour ces paramètres.
- **Hydrocarbures** : aucune trace d'hydrocarbure n'est détectée dans les eaux souterraines des horizons saprolitiques.

Vale Nouvelle-Calédonie Page 24 / 31

- **Chrome**: comme en 2010, les teneurs en chrome les plus élevées dans les eaux souterraines des horizons saprolitiques du secteur de l'usine sont enregistrées au piézomètre 6-5. Le maximum enregistré de 0,14 mg/l est inférieur au maximum mesuré en 2010.

Tableau 15 : Statistiques des analyses d'eau souterraines sur le site de l'usine

	/01/2011 /07/2011		Piezo	long: 6-7,	6-3, 6-14,	6-8, 6-1	, 6-2, 6	-13, 6-	5, 6-4	Pie	zo court:(6-7A, 6-3A,	6-14A,	6-8A, 6	6-1A, 6	-2A
Analyse	Unité	LD	Total Analyses	Nb Analyses < LD	% Valeur Exploitable	Moy	Min	Max	Médiane	Total Analyses	Nb Analyses < LD	% Valeur Exploitable	Moy	Min	Max	Médiane
рН	•	1	12	0	100	6.46	5.6	7	6.50	18	0	100	7.84	6.7	9.3	7.60
cond	μS/cm	5	12	0	100	161.8	80.6	281	136.5	18	0	100	181.3	94.1	268	195.5
DCO	mg/l	10	12	11	8		<ld< th=""><th>13</th><th></th><th>18</th><th>17</th><th>6</th><th></th><th><ld< th=""><th>11</th><th></th></ld<></th></ld<>	13		18	17	6		<ld< th=""><th>11</th><th></th></ld<>	11	
SO4	mg/l	0.2	11	0	100	13.81	1.9	62.9	3.80	17	0	100	4.47	1	21.1	2.5
Cr	mg/l	0.01	12	1	92	0.04	<ld< th=""><th>0.14</th><th>0.02</th><th>18</th><th>9</th><th>50</th><th>0.02</th><th><ld< th=""><th>0.1</th><th>0.01</th></ld<></th></ld<>	0.14	0.02	18	9	50	0.02	<ld< th=""><th>0.1</th><th>0.01</th></ld<>	0.1	0.01
CrVI	mg/l	0.01	12	1	92	0.04	<ld< th=""><th>0.16</th><th>0.02</th><th>18</th><th>2</th><th>89</th><th>0.03</th><th><ld< th=""><th>0.11</th><th>0.01</th></ld<></th></ld<>	0.16	0.02	18	2	89	0.03	<ld< th=""><th>0.11</th><th>0.01</th></ld<>	0.11	0.01
Ca	mg/l	1	12	5	58	2.00	<ld< th=""><th>5</th><th>2.00</th><th>18</th><th>7</th><th>61</th><th>1.2</th><th><ld< th=""><th>4</th><th>1.0</th></ld<></th></ld<>	5	2.00	18	7	61	1.2	<ld< th=""><th>4</th><th>1.0</th></ld<>	4	1.0
K	mg/l	0.1	12	0	100	0.49	0.2	1.2	0.35	18	0	100	0.3	0.2	0.5	0.3
Na	mg/l	1	12	0	100	8.92	7	12	8.50	18	0	100	8.3	7	13	8.0
TA as CaCO3	mg/l	2	12	12	0					18	13	28	3.3	<ld< th=""><th>17</th><th>0.0</th></ld<>	17	0.0
TAC as CaCO3	mg/l	2	12	0	100	29.8	11	55	28.5	18	0	100	72.3	22	132	77.5
CI	mg/l	0.1	10	0	100	14.5	12.5	17.1	13.9	17	0	100	13.1	10.9	18.5	12.100
нт	mg/kg	0.5	8	8	0					18	18	0				

2.3.4 Suivi de l'impact des activités de l'UPM sur les eaux souterraines

L'annexe VI présente les résultats du suivi des eaux souterraines sur le site de l'UPM sous forme graphique. L'annexe VII présente les statistiques effectuées sur les résultats du premier semestre 2011.

- pH et conductivité : les mesures de pH et de conductivité sont stables depuis 2010.
- **Chlorures et sulfates** : la tendance à la baisse des concentrations en sulfates amorcée en 2010 est confirmée lors de ce bilan semestriel. Les concentrations en chlorures sont stables en 2011.
- Hydrocarbures: aucune trace d'hydrocarbure n'est détectée dans les eaux souterraines sur le site de l'UPM.
- Chrome VI: pour la première fois le chrome est détecté ponctuellement au piézomètre 4-z2, cependant la concentration mesurée est équivalente au seuil de détection du laboratoire et le chrome total n'a pas été détecté. Le chrome VI a été détecté à deux reprises au piézomètre 4-z4 et le maximum mesuré a été de 0,03 mg/l.

3. ANALYSE DES RESULTATS ET INTERPRETATION

3.1. Suivi de l'impact des activités du port sur les eaux souterraines

pН

Les valeurs de pH enregistrées aux trois stations sont comprises dans l'intervalle des seuils réglementaires mentionnées dans l'arrêté relatif aux installations portuaires. Le maximum est observé à la station 7-1. Ce comportement cohérent avec celui qui a été constaté pour la conductivité est associé à la présence d'une intrusion d'eau de mer recoupée par le piézomètre 7-1.

Conductivité

Comme il a été constaté les années précédentes, de fortes conductivités sont mesurées à la station 7-1. Ces valeurs élevées reflètent l'existence d'une contamination naturelle de l'eau douce souterraine par de l'eau de mer.

Ce phénomène est parfaitement normal en raison de la proximité immédiate des points d'observation avec l'océan et est renforcé par le fait que le site du port est installé sur un remblai positionné au-delà du trait de côte naturel.

DCO

Comme observé depuis 2008, la station 7-1 présente une valeur de DCO élevée qui est le reflet d'un mélange eau douce-eau salée. La présence de certains sels minéraux oxydables dans la composition de la colonne d'eau de mer peut influencer la valeur de DCO.

Hydrocarbures totaux

Aucune trace d'hydrocarbure n'a été détectée durant cette période.

Discussion

Les valeurs élevées en DCO sont influencées par une intrusion d'eau de mer et ne sont donc pas indicatrices d'une modification de la qualité des eaux induite par les activités du port.

Les activités portuaires, et plus particulièrement les stockages de fioul lourd et de gasoil, n'ont pas eu d'impact visible sur les eaux souterraines.

3.2. Suivi de l'impact des activités du parc à résidus sur les eaux souterraines

De manière générale, les concentrations en magnésium, sulfates, sodium, chlorures et nitrates diminuent en s'éloignant de la berme.

Les concentrations en chrome sont généralement stables, et parfois en baisse dans les eaux souterraines de la Kwé Ouest. Seules des concentrations plus élevées sont enregistrées sur le piézomètre WK6-9 situé dans la zone d'alerte au pied de la berme, mais celles-ci restent inférieures au maximum mesuré depuis 2008 dans cette zone.

Le manganèse est détecté dans 50% des piézomètres situés dans la zone d'alerte, au pied de la berme. Ces concentrations restent faibles et largement inférieures au seuil réglementaire de 1 mg/l mentionné dans l'arrêté. La teneur maximale enregistrée au cours du premier semestre 2011 est de 0,07mg/l.

Après comparaison avec les mesures de conductivité obtenues en laboratoire, les fluctuations de conductivité *in situ* au piézomètre WKBH113 correspondraient à un disfonctionnement de la sonde engendrant des dérives dans les mesures.

Les eaux des forages WKBH113, WKBH102 et WKBH10 sont de type bicarbonaté magnésien à tendance sulfatée. Elles présentent une conductivité moyenne de 124,8 µS/cm, considérée comme élevée dans le contexte du massif du Sud. Cette conductivité est caractéristique de l'aquifère profond saprolitique. Le pH de ces eaux est neutre.

La composition des eaux est en accord avec la nature des terrains traversés (massif de péridodite : silicate de magnésium et fer).

L'ensemble des autres résultats sont conformes aux recommandations de l'arrêté N° 1466-2008/PS du 9 octobre 2008.

3.3. Suivi de l'impact des activités de l'usine sur les eaux souterraines

Globalement, dans les eaux souterraines de l'usine, les concentrations en chrome, chrome VI, potassium, sodium, calcium chlorures, alcalinité et pH sont stables et restent comparables aux années précédentes.

Dans les eaux souterraines des horizons latéritiques, une augmentation de la conductivité est enregistrée aux stations 6-8 et 6-14. Les résultats en sulfates sur ces deux stations montrent des variations importantes depuis 2010, sans réelle tendance à l'augmentation. Ces stations sont situées respectivement en aval du bassin de premier flot Nord et du stockage d'acide chlorhydrique. Ces variations sont probablement dues à une contamination liée à l'activité industrielle réalisée en amont de ces piézomètres. Ces valeurs restent bien en dessous des normes de potabilité des eaux, qui est de 400 µS/cm pour la conductivité.

Les hydrocarbures ne sont pas détectés dans les eaux souterraines de l'usine.

Les résultats des paramètres analysés montrent une qualité satisfaisante des eaux souterraines au niveau de l'usine. Dans l'ensemble, la nature des colonnes d'eau souterraine analysées est relativement similaire aux années précédentes.

3.4. Suivi de l'impact des activités de l'UPM sur les eaux souterraines

En 2011, les teneurs mesurées pour la majorité des paramètres sont comparables aux résultats du suivi effectué en 2010. Une diminution des sulfates est observée dans les eaux souterraines de l'UPM depuis 2009.

Les activités telles que le trafic et le lavage des engins lourd, la station de distribution de carburant et d'autres activités associées à des huiles et hydrocarbures n'ont pas eu d'impact sur les eaux souterraines.

4. BILAN DES NON-CONFORMITES

Description des non-conformités et analyse des causes :

- Suivi des activités du port sur les eaux souterraines : aucune non-conformité n'est à reporter.
- Suivi des activités du parc à résidus sur les eaux souterraines : aucune non-conformité n'est à reporter.
- Suivi des impacts des activités de l'usine sur les eaux souterraines : aucune nonconformité n'est à reporter.
- Mesures correctives immédiates: aucune mesure corrective immédiate n'a été engagée.
- Plan d'action des mesures correctives : aucun plan d'action des mesures correctives n'a été mis en place.
- Suivi des actions correctives : sans objet.

CONCLUSION

Le suivi des stations selon les paramètres et les fréquences réglementaires a été réalisé en quasitotalité.

Les suivis non effectués sont majoritairement dus à la dégradation des installations de suivi.

Des difficultés sont encore rencontrées pour les suivis continus, un programme d'amélioration est en cours qui inclue des formations et la mise en place d'un système de gestion des données.

L'analyse des résultats du suivi des eaux souterraines n'a pas révélé de valeur supérieure aux seuils réglementaires ayant pour origine les activités des installations du projet Vale Nouvelle-Calédonie. Aucune non-conformité n'est à reporter pour le suivi des eaux souterraines au cours du premier semestre 2011.

ANNEXE 1

ANNEXE I

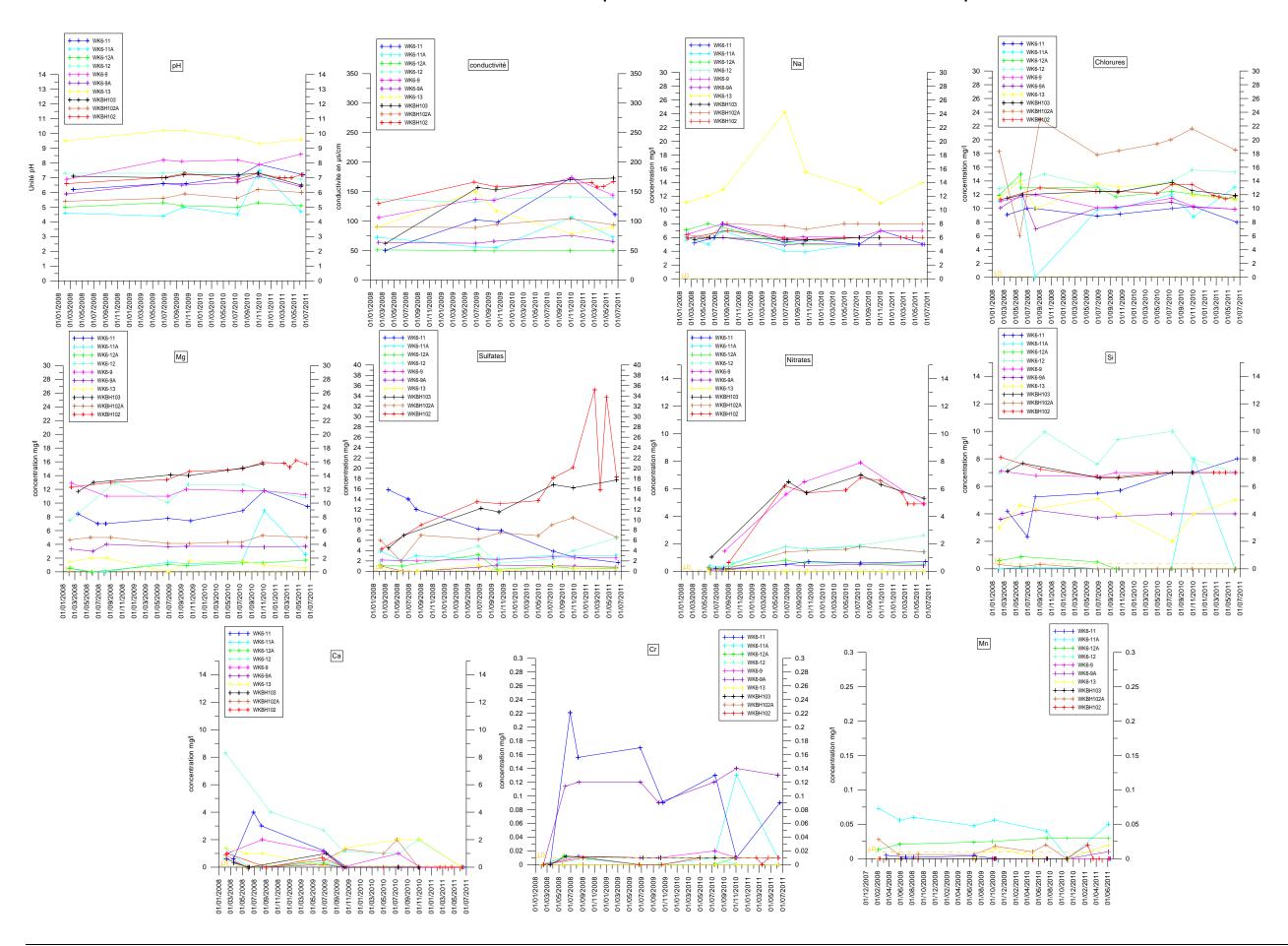
Gr	oupe A					200	9							201	10						Prem	ier seme	estre 201	11		
Paramètre	Unité	LD	Total analyses	Nb analyses < LD	% Valeurs exploitables	Moy.	Min.	Max.	Ecart- type	Médiane	Total analyses	Nb analyses < LD	% Valeurs expoitables	Moy.	Min.	Max.	Ecart- type	Médiane	Total analyses	Nb analyses < LD	% Valeurs expoitables	Moy.	Min.	Max.	Ecart- type	Médiane
рН	-	-	20	0	100	6.875	4.4	10.20	1.53	6.8	20	0	100	7	4.5	9.7	1.3	7.2	13	0	100	6.9	4.7	9.6	1.3	7
cond	μS/cm	-	20	0	100	108.27	49.5	166	41.06	109.5	9	0	100	119.2	49.8	174	47.2	106	13	0	100	122.1	49.7	173	43.5	140
Al	mg/l	0.1	20	18		0.05	<ld< th=""><th></th><th></th><th></th><th>22</th><th>20</th><th>9</th><th>0.02</th><th><ld< th=""><th>0.2</th><th>0.06</th><th></th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>				22	20	9	0.02	<ld< th=""><th>0.2</th><th>0.06</th><th></th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	0.2	0.06		12	12						
As	mg/l	0.05	20	20							22	22														
Са	mg/l	0.1	20	7	65	0.605	<ld< th=""><th>2.7</th><th>0.71</th><th>0.4</th><th>22</th><th>15</th><th>32</th><th>0.5</th><th><ld< th=""><th>2</th><th>0.80</th><th></th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	2.7	0.71	0.4	22	15	32	0.5	<ld< th=""><th>2</th><th>0.80</th><th></th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	2	0.80		12	12						
CI	mg/l	0.1	20	0	100	12.08	<ld< th=""><th>18.4</th><th>2.54</th><th>12.4</th><th>22</th><th>0</th><th>100</th><th>13.2</th><th>8.8</th><th>22</th><th>3</th><th>12.4</th><th>13</th><th>0</th><th>100</th><th>12</th><th>8</th><th>18.5</th><th>2.6</th><th>11.7</th></ld<>	18.4	2.54	12.4	22	0	100	13.2	8.8	22	3	12.4	13	0	100	12	8	18.5	2.6	11.7
Со	mg/l	0.03	20	20							22	22							12	12						
Cr	mg/l	0.01	20	12	40	0.0255	<ld< th=""><th>0.17</th><th>0.050</th><th>0</th><th>22</th><th>7</th><th>68</th><th>0.03</th><th><ld< th=""><th>0.14</th><th>0.05</th><th>0.01</th><th>12</th><th>4</th><th>66.7</th><th>0.02</th><th><ld< th=""><th>0.13</th><th>0.04</th><th>0.01</th></ld<></th></ld<></th></ld<>	0.17	0.050	0	22	7	68	0.03	<ld< th=""><th>0.14</th><th>0.05</th><th>0.01</th><th>12</th><th>4</th><th>66.7</th><th>0.02</th><th><ld< th=""><th>0.13</th><th>0.04</th><th>0.01</th></ld<></th></ld<>	0.14	0.05	0.01	12	4	66.7	0.02	<ld< th=""><th>0.13</th><th>0.04</th><th>0.01</th></ld<>	0.13	0.04	0.01
Cu	mg/l	0.03	20	20							22	22							12	10	16.7	0.005	<ld< th=""><th>0.04</th><th>0.012</th><th>0</th></ld<>	0.04	0.012	0
Fe	mg/l	0.2	20	18			<ld< th=""><th>0.4</th><th></th><th></th><th>22</th><th>19</th><th>14</th><th>0.03</th><th><ld< th=""><th>0.5</th><th>0.11</th><th></th><th>12</th><th>10</th><th>16.7</th><th>0.07</th><th><ld< th=""><th>0.5</th><th>0.16</th><th>0</th></ld<></th></ld<></th></ld<>	0.4			22	19	14	0.03	<ld< th=""><th>0.5</th><th>0.11</th><th></th><th>12</th><th>10</th><th>16.7</th><th>0.07</th><th><ld< th=""><th>0.5</th><th>0.16</th><th>0</th></ld<></th></ld<>	0.5	0.11		12	10	16.7	0.07	<ld< th=""><th>0.5</th><th>0.16</th><th>0</th></ld<>	0.5	0.16	0
K	mg/l	0.3	20	4	80	0.335	<ld< th=""><th>0.8</th><th>0.25</th><th>0.3</th><th>22</th><th>0</th><th>100</th><th>0.4</th><th>0.1</th><th>0.8</th><th>0.2</th><th>0.35</th><th>12</th><th>0</th><th>100</th><th>0.42</th><th>0.2</th><th>1.1</th><th>0.27</th><th>0.35</th></ld<>	0.8	0.25	0.3	22	0	100	0.4	0.1	0.8	0.2	0.35	12	0	100	0.42	0.2	1.1	0.27	0.35
MES	mg/l	5	19	2	89.5	803.6	<ld< th=""><th>5100</th><th>1249.18</th><th>260</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	5100	1249.18	260																
Mg	mg/l	0.1	20	1	95	6.941	<ld< th=""><th>14.6</th><th>5.31</th><th>5.78</th><th>22</th><th>0</th><th>100</th><th>8.3</th><th>1</th><th>15.9</th><th>5.5</th><th>8.9</th><th>12</th><th>0</th><th>100</th><th>8.99</th><th>0.6</th><th>16.2</th><th>6.0</th><th>10.15</th></ld<>	14.6	5.31	5.78	22	0	100	8.3	1	15.9	5.5	8.9	12	0	100	8.99	0.6	16.2	6.0	10.15
Mn	mg/l	0.01	20	12	40	0.010	<ld< th=""><th>0.056</th><th>0.017</th><th>0</th><th>22</th><th>17</th><th>23</th><th>0.01</th><th><ld< th=""><th>0.04</th><th>0.01</th><th></th><th>12</th><th>6</th><th>50</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.02</th><th>0.005</th></ld<></th></ld<></th></ld<>	0.056	0.017	0	22	17	23	0.01	<ld< th=""><th>0.04</th><th>0.01</th><th></th><th>12</th><th>6</th><th>50</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.02</th><th>0.005</th></ld<></th></ld<>	0.04	0.01		12	6	50	0.01	<ld< th=""><th>0.05</th><th>0.02</th><th>0.005</th></ld<>	0.05	0.02	0.005
Na	mg/l	0.5	20	0	100	6.96	3.9	24.2	4.71	5.65	22	0	100	6.6	5	13	2.0	6	12	0	100	6.6	5	14	2.5	6
Ni	mg/l	0.01	20	12	40	0.0145	<ld< th=""><th>0.09</th><th>0.024</th><th>0</th><th>22</th><th>9</th><th>59</th><th>0.02</th><th><ld< th=""><th>0.09</th><th>0.03</th><th>0.015</th><th>12</th><th>2</th><th>83.3</th><th>0.03</th><th><ld< th=""><th>0.1</th><th>0.03</th><th>0.02</th></ld<></th></ld<></th></ld<>	0.09	0.024	0	22	9	59	0.02	<ld< th=""><th>0.09</th><th>0.03</th><th>0.015</th><th>12</th><th>2</th><th>83.3</th><th>0.03</th><th><ld< th=""><th>0.1</th><th>0.03</th><th>0.02</th></ld<></th></ld<>	0.09	0.03	0.015	12	2	83.3	0.03	<ld< th=""><th>0.1</th><th>0.03</th><th>0.02</th></ld<>	0.1	0.03	0.02
NO2	mg/l	0.01	1	1							10	10														
NO3	mg/l	0.1	20	2	90	2.47	<ld< th=""><th>6.5</th><th>2.46</th><th>1.55</th><th>22</th><th>9</th><th>59</th><th>2.2</th><th><ld< th=""><th>7.9</th><th>2.9</th><th>0.6</th><th>13</th><th>1</th><th>92.3</th><th>2.9</th><th><ld< th=""><th>5.7</th><th>2.2</th><th>2.6</th></ld<></th></ld<></th></ld<>	6.5	2.46	1.55	22	9	59	2.2	<ld< th=""><th>7.9</th><th>2.9</th><th>0.6</th><th>13</th><th>1</th><th>92.3</th><th>2.9</th><th><ld< th=""><th>5.7</th><th>2.2</th><th>2.6</th></ld<></th></ld<>	7.9	2.9	0.6	13	1	92.3	2.9	<ld< th=""><th>5.7</th><th>2.2</th><th>2.6</th></ld<>	5.7	2.2	2.6
Pb	mg/l	0.1	20	20							22	22							12	12						
PO4	mg/l	0.2	20	20						_	22	22							13	13				_		_
S	mg/l	1	20	12	40	1.285	<ld< th=""><th>4.3</th><th>1.70</th><th>0</th><th>22</th><th>11</th><th>50</th><th>32.6</th><th><ld< th=""><th>682</th><th>145.1</th><th>0.5</th><th>12</th><th>4</th><th>66.7</th><th>2.58</th><th><ld< th=""><th>6</th><th>2.57</th><th>2</th></ld<></th></ld<></th></ld<>	4.3	1.70	0	22	11	50	32.6	<ld< th=""><th>682</th><th>145.1</th><th>0.5</th><th>12</th><th>4</th><th>66.7</th><th>2.58</th><th><ld< th=""><th>6</th><th>2.57</th><th>2</th></ld<></th></ld<>	682	145.1	0.5	12	4	66.7	2.58	<ld< th=""><th>6</th><th>2.57</th><th>2</th></ld<>	6	2.57	2
Si	mg/l	0.4	20	5	75	4.28	<ld< th=""><th>9.4</th><th>3.11</th><th>5.3</th><th>22</th><th>6</th><th>73</th><th>4.7</th><th><ld< th=""><th>10</th><th>3.4</th><th>7</th><th>12</th><th>3</th><th>75</th><th>4.92</th><th><ld< th=""><th>8</th><th>3.15</th><th>7</th></ld<></th></ld<></th></ld<>	9.4	3.11	5.3	22	6	73	4.7	<ld< th=""><th>10</th><th>3.4</th><th>7</th><th>12</th><th>3</th><th>75</th><th>4.92</th><th><ld< th=""><th>8</th><th>3.15</th><th>7</th></ld<></th></ld<>	10	3.4	7	12	3	75	4.92	<ld< th=""><th>8</th><th>3.15</th><th>7</th></ld<>	8	3.15	7
SiO2	mg/l	1	20	5	75	9.16	<ld< th=""><th>20</th><th>6.65</th><th>11.4</th><th>16</th><th>3</th><th>81</th><th>11.3</th><th><ld< th=""><th>20.4</th><th>6.8</th><th>14.5</th><th>9</th><th>3</th><th>66.7</th><th>8.79</th><th><ld< th=""><th>17.6</th><th>7.19</th><th>10</th></ld<></th></ld<></th></ld<>	20	6.65	11.4	16	3	81	11.3	<ld< th=""><th>20.4</th><th>6.8</th><th>14.5</th><th>9</th><th>3</th><th>66.7</th><th>8.79</th><th><ld< th=""><th>17.6</th><th>7.19</th><th>10</th></ld<></th></ld<>	20.4	6.8	14.5	9	3	66.7	8.79	<ld< th=""><th>17.6</th><th>7.19</th><th>10</th></ld<>	17.6	7.19	10
SO4	mg/l	0.2	20	1	95	5.15	<ld< th=""><th>13.5</th><th>4.54</th><th>2.85</th><th>22</th><th>0</th><th>100</th><th>6.4</th><th>0.6</th><th>20.1</th><th>6.5</th><th>3.05</th><th>13</th><th>0</th><th>100</th><th>11.02</th><th>0.5</th><th>35.2</th><th>12.27</th><th>6.4</th></ld<>	13.5	4.54	2.85	22	0	100	6.4	0.6	20.1	6.5	3.05	13	0	100	11.02	0.5	35.2	12.27	6.4
A as CaCO3	mg/l	25	20	20							22	20	9	0.8	<ld< th=""><th>11</th><th>2.6</th><th></th><th>10</th><th>8</th><th>20</th><th>1.5</th><th><ld< th=""><th>10</th><th>3.37</th><th>0</th></ld<></th></ld<>	11	2.6		10	8	20	1.5	<ld< th=""><th>10</th><th>3.37</th><th>0</th></ld<>	10	3.37	0
Zn	mg/l	0.1	20	20							22	22							12	12						

Gr	oupe B					200	9							201	0						Prem	ier seme	estre 201	11		
Paramètre	Unité	LD	Total analyses	Nb analyses < LD	% Valeurs exploitables	Moy.	Min.	Max.	Ecart- type	Médiane	Total analyses	Nb analyses < LD	% Valeurs expoitables	Moy.	Min.	Max.	Ecart- type	Médiane	Total analyses	Nb analyses < LD	% Valeurs expoitables	Moy.	Min.	Max.	Ecart- type	Médiane
рН	-	-	28	0	100	7.59	6	9.8	1.04	7.55	28	0	100	7.53	5.9	9.7	0.88	7.6	17	0	100	7.4	6.2	9.3	0.9	7.7
cond	μS/cm	-	28	0	100	128.73	74	156	19.42	129	11	0	100	136.03	75.3	173	24.05	139	17	0	100	127.6	76.6	166	21.2	126
Al	mg/l	0.1	28	28							30	30							12	12						
As	mg/l	0.05	28	27			<ld< th=""><th>0.1</th><th></th><th></th><th>30</th><th>30</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	0.1			30	30														
Ca	mg/l	0.1	28	8	71.4	1.76	<ld< th=""><th>11</th><th>2.70</th><th>0.55</th><th>30</th><th>21</th><th>30</th><th>0.87</th><th><ld< th=""><th>6</th><th>1.72</th><th>0</th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	11	2.70	0.55	30	21	30	0.87	<ld< th=""><th>6</th><th>1.72</th><th>0</th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	6	1.72	0	12	12						
CI	mg/l	0.1	28	0	100	11.16	9.7	13.3	1.04	10.7	30	0	100	11.45	9.6	13.6	1.11	11.3	17	1	94.1	10.3	<ld< th=""><th>15.1</th><th>3.1</th><th>10.1</th></ld<>	15.1	3.1	10.1
Со	mg/l	0.03	28	28							30	30							12	11	8.33		<ld< th=""><th>0.01</th><th></th><th></th></ld<>	0.01		
Cr	mg/l	0.01	28	6	78.6	0.031	<ld< th=""><th>0.35</th><th>0.074</th><th>0.01</th><th>30</th><th>5</th><th>83</th><th>0.04</th><th><ld< th=""><th>0.33</th><th>0.08</th><th>0.01</th><th>12</th><th>0</th><th>100</th><th>0.04</th><th>0.01</th><th>0.26</th><th>0.07</th><th>0.01</th></ld<></th></ld<>	0.35	0.074	0.01	30	5	83	0.04	<ld< th=""><th>0.33</th><th>0.08</th><th>0.01</th><th>12</th><th>0</th><th>100</th><th>0.04</th><th>0.01</th><th>0.26</th><th>0.07</th><th>0.01</th></ld<>	0.33	0.08	0.01	12	0	100	0.04	0.01	0.26	0.07	0.01
Cu	mg/l	0.03	28	27			<ld< th=""><th>0.02</th><th></th><th></th><th>30</th><th>30</th><th></th><th></th><th></th><th></th><th></th><th></th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	0.02			30	30							12	12						
Fe	mg/l	0.2	28	27			<ld< th=""><th>0.1</th><th></th><th></th><th>30</th><th>28</th><th>7</th><th></th><th><ld< th=""><th>0.1</th><th></th><th></th><th>12</th><th>10</th><th>16.7</th><th>0.04</th><th><ld< th=""><th>0.3</th><th>0.10</th><th>0</th></ld<></th></ld<></th></ld<>	0.1			30	28	7		<ld< th=""><th>0.1</th><th></th><th></th><th>12</th><th>10</th><th>16.7</th><th>0.04</th><th><ld< th=""><th>0.3</th><th>0.10</th><th>0</th></ld<></th></ld<>	0.1			12	10	16.7	0.04	<ld< th=""><th>0.3</th><th>0.10</th><th>0</th></ld<>	0.3	0.10	0
K	mg/l	0.3	28	9	67.9	0.24	<ld< th=""><th>0.6</th><th>0.21</th><th>0.25</th><th>30</th><th>1</th><th>97</th><th>0.26</th><th><ld< th=""><th>0.6</th><th>0.12</th><th>0.2</th><th>12</th><th>0</th><th>100</th><th>0.4</th><th>0.2</th><th>0.9</th><th>0.2</th><th>0.2</th></ld<></th></ld<>	0.6	0.21	0.25	30	1	97	0.26	<ld< th=""><th>0.6</th><th>0.12</th><th>0.2</th><th>12</th><th>0</th><th>100</th><th>0.4</th><th>0.2</th><th>0.9</th><th>0.2</th><th>0.2</th></ld<>	0.6	0.12	0.2	12	0	100	0.4	0.2	0.9	0.2	0.2
MES	mg/l	5	27	0	100	592.17	6.2	4900	1052.83	230																
Mg	mg/l	0.1	28	0	100	10.55	3.74	15.5	2.99	11.15	30	0	100	10.81	3.9	15.4	2.74	11.3	12	0	100	11.0	4.2	14.2	2.7	11.6
Mn	mg/l	0.01	28	26	7.1	0.001	<ld< th=""><th>0.022</th><th>0.005</th><th>0</th><th>30</th><th>29</th><th>3</th><th></th><th><ld< th=""><th>0.01</th><th></th><th></th><th>12</th><th>10</th><th>16.7</th><th>0.01</th><th><ld< th=""><th>0.07</th><th>0.02</th><th>0</th></ld<></th></ld<></th></ld<>	0.022	0.005	0	30	29	3		<ld< th=""><th>0.01</th><th></th><th></th><th>12</th><th>10</th><th>16.7</th><th>0.01</th><th><ld< th=""><th>0.07</th><th>0.02</th><th>0</th></ld<></th></ld<>	0.01			12	10	16.7	0.01	<ld< th=""><th>0.07</th><th>0.02</th><th>0</th></ld<>	0.07	0.02	0
Na	mg/l	0.5	28	0	100	5.80	5.2	6.7	0.43	5.7	30	0	100	6.10	6	7	0.31	6	12	0	100	6	6	6	0	6
Ni	mg/l	0.01	28	21	25	0.005	<ld< th=""><th>0.03</th><th>0.009</th><th>0</th><th>30</th><th>18</th><th>40</th><th>0.01</th><th><ld< th=""><th>0.03</th><th></th><th></th><th>12</th><th>7</th><th>41.7</th><th>0.01</th><th><ld< th=""><th>0.08</th><th>0.02</th><th>0</th></ld<></th></ld<></th></ld<>	0.03	0.009	0	30	18	40	0.01	<ld< th=""><th>0.03</th><th></th><th></th><th>12</th><th>7</th><th>41.7</th><th>0.01</th><th><ld< th=""><th>0.08</th><th>0.02</th><th>0</th></ld<></th></ld<>	0.03			12	7	41.7	0.01	<ld< th=""><th>0.08</th><th>0.02</th><th>0</th></ld<>	0.08	0.02	0
NO2	mg/l	0.01	2	2							12	12														
NO3	mg/l	0.1	28	4	85.7	5.04	<ld< th=""><th>96.1</th><th>17.89</th><th>2.1</th><th>30</th><th>5</th><th>83</th><th>1.59</th><th><ld< th=""><th>4.5</th><th>1.34</th><th>1.45</th><th>17</th><th>4</th><th>76.5</th><th>1.58</th><th><ld< th=""><th>2.6</th><th>1.10</th><th>2.3</th></ld<></th></ld<></th></ld<>	96.1	17.89	2.1	30	5	83	1.59	<ld< th=""><th>4.5</th><th>1.34</th><th>1.45</th><th>17</th><th>4</th><th>76.5</th><th>1.58</th><th><ld< th=""><th>2.6</th><th>1.10</th><th>2.3</th></ld<></th></ld<>	4.5	1.34	1.45	17	4	76.5	1.58	<ld< th=""><th>2.6</th><th>1.10</th><th>2.3</th></ld<>	2.6	1.10	2.3
Pb	mg/l	0.1	28	28							30	29	3		<ld< th=""><th>0.01</th><th></th><th></th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	0.01			12	12						
PO4	mg/l	0.2	28	28	42.9	0.59	4 D	2	0.71	0	30	30	37	0.47	4 D	2	0.68	0	17	17 5	58.3	0.0	4.0	2	0.0	1
Si Si	mg/l	0.4	28	16	96.4	6.29	<ld <ld< th=""><th>10.4</th><th>2.67</th><th>7.2</th><th>30</th><th>19</th><th></th><th>6.33</th><th><ld <ld< th=""><th>2</th><th>2.64</th><th>7</th><th>12 12</th><th>0</th><th>100</th><th>0.8 6.75</th><th><ld< th=""><th>2</th><th>0.8</th><th>7</th></ld<></th></ld<></ld </th></ld<></ld 	10.4	2.67	7.2	30	19		6.33	<ld <ld< th=""><th>2</th><th>2.64</th><th>7</th><th>12 12</th><th>0</th><th>100</th><th>0.8 6.75</th><th><ld< th=""><th>2</th><th>0.8</th><th>7</th></ld<></th></ld<></ld 	2	2.64	7	12 12	0	100	0.8 6.75	<ld< th=""><th>2</th><th>0.8</th><th>7</th></ld<>	2	0.8	7
SiO2	mg/l	0.4	28	0	100	14.12		34.2	6.80	15.3	30		93 100	14.40	1.5	10	5.52	15.6		0	100	14.3	3.3	11		15.8
S04	mg/l	0.2	28 28	0	100	2.93	0.3	5.2	1.28	2.85	18 30	0	100	3.75	0.5	22.1 11.3	2.41	2.9	8 17	3	82.4	2.9	ა.ა <ld< th=""><th>22.5 6.3</th><th>6.3 1.9</th><th>2.5</th></ld<>	22.5 6.3	6.3 1.9	2.5
TA as CaCO3	mg/l	25		28	100	2.93	0.3	5.∠	1.20	2.65		27		0.77	0.5 <ld< th=""><th></th><th>2.41</th><th>0</th><th>13</th><th>12</th><th>7.7</th><th>2.9</th><th><ld <ld< th=""><th>12</th><th>1.9</th><th>2.5</th></ld<></ld </th></ld<>		2.41	0	13	12	7.7	2.9	<ld <ld< th=""><th>12</th><th>1.9</th><th>2.5</th></ld<></ld 	12	1.9	2.5
Zn	mg/l		28 28		7.1	0.011	<ld< th=""><th>0.20</th><th>0.042</th><th>0</th><th>30 30</th><th></th><th>10</th><th>0.77</th><th><ld <ld< th=""><th>12</th><th>2.70</th><th>U</th><th>12</th><th></th><th>1.1</th><th></th><th><ld< th=""><th>12</th><th></th><th></th></ld<></th></ld<></ld </th></ld<>	0.20	0.042	0	30 30		10	0.77	<ld <ld< th=""><th>12</th><th>2.70</th><th>U</th><th>12</th><th></th><th>1.1</th><th></th><th><ld< th=""><th>12</th><th></th><th></th></ld<></th></ld<></ld 	12	2.70	U	12		1.1		<ld< th=""><th>12</th><th></th><th></th></ld<>	12		
Zn	mg/l	0.1	28	26	7.1	0.011	<lu< th=""><th>0.20</th><th>0.042</th><th>U</th><th>30</th><th>29</th><th>3</th><th></th><th><lu< th=""><th>0.2</th><th></th><th></th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></lu<></th></lu<>	0.20	0.042	U	30	29	3		<lu< th=""><th>0.2</th><th></th><th></th><th>12</th><th>12</th><th></th><th></th><th></th><th></th><th></th><th></th></lu<>	0.2			12	12						

Gr	oupe C					200	9							201	0						Prem	ier seme	estre 201	1		
Paramètre	Unité	LD	Total analyses	Nb analyses < LD	% Valeurs exploitables	Moy.	Min.	Max.	Ecart-type	Médiane	Total analyses	Nb analyses < LD	% Valeurs expoitables	Moy.	Min.	Max.	Ecart- type	Médiane	Total analyses	Nb analyses < LD	% Valeurs expoitables	Moy.	Min.	Max.	Ecart- type	Médiane
рН	-	-	26	0	100	6.85	4.4	8.4	1.10	7	22	0	100	6.78	4.5	8.6	1.17	7.1	14	0	100	6.6	4.7	7.4	0.8	7
cond	μS/cm	-	26	0	100	123.47	51.4	260	56.81	130	11	0	100	110.26	50.3	183	48.68	116	14	0	100	112.3	49.9	184	42.5	106.4
Al	mg/l	0.1	26	26							24	23	4		<ld< th=""><th>0.3</th><th></th><th></th><th>13</th><th>13</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	0.3			13	13						
As	mg/l	0.05	26	26							24	24														
Ca	mg/l	0.1	26	4	84.6	2.83	<ld< th=""><th>22.5</th><th>4.64</th><th>1.7</th><th>24</th><th>13</th><th>46</th><th>1.54</th><th><ld< th=""><th>6</th><th>1.96</th><th>0</th><th>13</th><th>13</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<></th></ld<>	22.5	4.64	1.7	24	13	46	1.54	<ld< th=""><th>6</th><th>1.96</th><th>0</th><th>13</th><th>13</th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	6	1.96	0	13	13						
CI	mg/l	0.1	26	0	100	10.29	9.4	11.9	0.77	10.05	24	2	92	9.94	<ld< th=""><th>14.6</th><th>3.24</th><th>10.6</th><th>14</th><th>0</th><th>100</th><th>9.5</th><th>8.6</th><th>11.7</th><th>0.9</th><th>9.4</th></ld<>	14.6	3.24	10.6	14	0	100	9.5	8.6	11.7	0.9	9.4
Со	mg/l	0.03	26	25			<ld< th=""><th>0.01</th><th></th><th></th><th>24</th><th>23</th><th>4</th><th></th><th><ld< th=""><th>0.02</th><th></th><th></th><th>13</th><th>12</th><th>7.7</th><th></th><th><ld< th=""><th>0.01</th><th></th><th></th></ld<></th></ld<></th></ld<>	0.01			24	23	4		<ld< th=""><th>0.02</th><th></th><th></th><th>13</th><th>12</th><th>7.7</th><th></th><th><ld< th=""><th>0.01</th><th></th><th></th></ld<></th></ld<>	0.02			13	12	7.7		<ld< th=""><th>0.01</th><th></th><th></th></ld<>	0.01		
Cr	mg/l	0.01	26	9	65.4	0.05	<ld< th=""><th>0.34</th><th>0.087132</th><th>0.01</th><th>24</th><th>7</th><th>71</th><th>0.06</th><th><ld< th=""><th>0.63</th><th>0.15</th><th>0.01</th><th>13</th><th>3</th><th>76.9</th><th>0.08</th><th>0</th><th>0.27</th><th>0.11</th><th>0.02</th></ld<></th></ld<>	0.34	0.087132	0.01	24	7	71	0.06	<ld< th=""><th>0.63</th><th>0.15</th><th>0.01</th><th>13</th><th>3</th><th>76.9</th><th>0.08</th><th>0</th><th>0.27</th><th>0.11</th><th>0.02</th></ld<>	0.63	0.15	0.01	13	3	76.9	0.08	0	0.27	0.11	0.02
Cu	mg/l	0.03	26	26							24	24							13	12	7.7		<ld< th=""><th>0.04</th><th></th><th></th></ld<>	0.04		
Fe	mg/l	0.2	26	24			<ld< th=""><th>0.2</th><th></th><th></th><th>24</th><th>16</th><th>33</th><th>0.06</th><th><ld< th=""><th>0.5</th><th>0.11</th><th></th><th>13</th><th>12</th><th>7.7</th><th></th><th><ld< th=""><th>0.1</th><th></th><th></th></ld<></th></ld<></th></ld<>	0.2			24	16	33	0.06	<ld< th=""><th>0.5</th><th>0.11</th><th></th><th>13</th><th>12</th><th>7.7</th><th></th><th><ld< th=""><th>0.1</th><th></th><th></th></ld<></th></ld<>	0.5	0.11		13	12	7.7		<ld< th=""><th>0.1</th><th></th><th></th></ld<>	0.1		
K	mg/l	0.3	26	7	73.1	0.33	<ld< th=""><th>1.7</th><th>0.36</th><th>0.2</th><th>24</th><th>0</th><th>100</th><th>0.28</th><th>0.1</th><th>1.1</th><th>0.21</th><th>0.2</th><th>13</th><th>0</th><th>100</th><th>0.23</th><th>0.1</th><th>0.5</th><th>0.111</th><th>0.2</th></ld<>	1.7	0.36	0.2	24	0	100	0.28	0.1	1.1	0.21	0.2	13	0	100	0.23	0.1	0.5	0.111	0.2
MES	mg/l	5	26	1	96.2	1050.52	<ld< th=""><th>6100</th><th>1819.45</th><th>175</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></ld<>	6100	1819.45	175																
Mg	mg/l	0.1	26	0	100	9.25	0.67	19.8	5.79	10.08	24	0	100	11.30	0.8	68.2	13.46	9.6	13	0	100	8.05	0.9	16.6	5.06	8.3
Mn	mg/l	0.01	26	14	46.2	0.01	<ld< th=""><th>0.058</th><th>0.02</th><th>0</th><th>24</th><th>17</th><th>29</th><th></th><th><ld< th=""><th>0.1</th><th></th><th></th><th>13</th><th>9</th><th>30.8</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th></ld<></th></ld<></th></ld<>	0.058	0.02	0	24	17	29		<ld< th=""><th>0.1</th><th></th><th></th><th>13</th><th>9</th><th>30.8</th><th>0.01</th><th><ld< th=""><th>0.05</th><th>0.01</th><th>0</th></ld<></th></ld<>	0.1			13	9	30.8	0.01	<ld< th=""><th>0.05</th><th>0.01</th><th>0</th></ld<>	0.05	0.01	0
Na	mg/l	0.5	26	0	100	6.03	4.5	17.7	2.52	5.55	24	0	100	6.46	4	29	4.85	5.5	13	0	100	5.46	5	6	0.52	5
Ni	mg/l	0.01	26	11	57.7	0.04	<ld< th=""><th>0.2</th><th>0.06</th><th>0.01</th><th>24</th><th>6</th><th>75</th><th>0.05</th><th><ld< th=""><th>0.19</th><th>0.06</th><th>0.02</th><th>13</th><th>1</th><th>92.3</th><th>0.05</th><th><ld< th=""><th>0.2</th><th>0.06</th><th>0.04</th></ld<></th></ld<></th></ld<>	0.2	0.06	0.01	24	6	75	0.05	<ld< th=""><th>0.19</th><th>0.06</th><th>0.02</th><th>13</th><th>1</th><th>92.3</th><th>0.05</th><th><ld< th=""><th>0.2</th><th>0.06</th><th>0.04</th></ld<></th></ld<>	0.19	0.06	0.02	13	1	92.3	0.05	<ld< th=""><th>0.2</th><th>0.06</th><th>0.04</th></ld<>	0.2	0.06	0.04
NO2	mg/l	0.01	6	6							10	10								_	212					
NO3	mg/l	0.1	26	1	96.2	1.05	<ld< th=""><th>2.6</th><th>0.65</th><th>1.05</th><th>24</th><th>12</th><th>50</th><th>0.50</th><th><ld< th=""><th>2.2</th><th>0.72</th><th>0.1</th><th>14</th><th>5</th><th>64.3</th><th>0.7</th><th><ld< th=""><th>2.2</th><th>0.7</th><th>0.4</th></ld<></th></ld<></th></ld<>	2.6	0.65	1.05	24	12	50	0.50	<ld< th=""><th>2.2</th><th>0.72</th><th>0.1</th><th>14</th><th>5</th><th>64.3</th><th>0.7</th><th><ld< th=""><th>2.2</th><th>0.7</th><th>0.4</th></ld<></th></ld<>	2.2	0.72	0.1	14	5	64.3	0.7	<ld< th=""><th>2.2</th><th>0.7</th><th>0.4</th></ld<>	2.2	0.7	0.4
Pb	mg/l	0.1	26	26							24	24							13	13						
PO4	mg/l	0.2	26	26	24.0	0.00	1.0	7.5	4.70	0	24	24	20	0.40		2	0.70	0	14	14	00.4	0.0	- 1 D		0.0	
S	mg/l	1	26	17	34.6	0.92	<ld< th=""><th>7.5</th><th>1.73</th><th>7.4</th><th>24</th><th>16</th><th>33</th><th>0.46</th><th><ld< th=""><th>3</th><th>0.78</th><th>0</th><th>13</th><th>10</th><th>23.1</th><th>0.3</th><th><ld< th=""><th>2</th><th>0.6</th><th>7</th></ld<></th></ld<></th></ld<>	7.5	1.73	7.4	24	16	33	0.46	<ld< th=""><th>3</th><th>0.78</th><th>0</th><th>13</th><th>10</th><th>23.1</th><th>0.3</th><th><ld< th=""><th>2</th><th>0.6</th><th>7</th></ld<></th></ld<>	3	0.78	0	13	10	23.1	0.3	<ld< th=""><th>2</th><th>0.6</th><th>7</th></ld<>	2	0.6	7
Si	mg/l	0.4	26	5	80.8	7.25	<ld< th=""><th>16.3</th><th>5.28</th><th></th><th>24</th><th>6</th><th>75</th><th>9.46</th><th><ld< th=""><th>61</th><th>12.35 12.39</th><th>7.5</th><th>13</th><th>3</th><th>76.9</th><th>6.8 14.3</th><th><ld< th=""><th>15</th><th>5.1</th><th></th></ld<></th></ld<></th></ld<>	16.3	5.28		24	6	75	9.46	<ld< th=""><th>61</th><th>12.35 12.39</th><th>7.5</th><th>13</th><th>3</th><th>76.9</th><th>6.8 14.3</th><th><ld< th=""><th>15</th><th>5.1</th><th></th></ld<></th></ld<>	61	12.35 12.39	7.5	13	3	76.9	6.8 14.3	<ld< th=""><th>15</th><th>5.1</th><th></th></ld<>	15	5.1	
SiO2 SO4	mg/l	1	26	2	84.6 92.3	18.88 4.04	<ld <ld< th=""><th>87.7 21.2</th><th>17.72</th><th>18.8</th><th>13 24</th><th>3</th><th>77 96</th><th>14.97 2.60</th><th><ld <ld< th=""><th>37.7 5.7</th><th>12.39</th><th>15.5 2.1</th><th>10 14</th><th>3</th><th>70 100</th><th>2.0</th><th><ld 0.6</ld </th><th>32.9 5</th><th>12.5</th><th>15.7 1.6</th></ld<></ld </th></ld<></ld 	87.7 21.2	17.72	18.8	13 24	3	77 96	14.97 2.60	<ld <ld< th=""><th>37.7 5.7</th><th>12.39</th><th>15.5 2.1</th><th>10 14</th><th>3</th><th>70 100</th><th>2.0</th><th><ld 0.6</ld </th><th>32.9 5</th><th>12.5</th><th>15.7 1.6</th></ld<></ld 	37.7 5.7	12.39	15.5 2.1	10 14	3	70 100	2.0	<ld 0.6</ld 	32.9 5	12.5	15.7 1.6
	mg/l	0.2	26		92.3	4.04	<ld< th=""><th>21.2</th><th>4.68</th><th>2.3</th><th></th><th></th><th>90</th><th>∠.00</th><th><ld< th=""><th>5.7</th><th>1.44</th><th>2.1</th><th></th><th>11</th><th>100</th><th>2.0</th><th>შ.ნ</th><th>o</th><th>1.17</th><th>1.0</th></ld<></th></ld<>	21.2	4.68	2.3			90	∠.00	<ld< th=""><th>5.7</th><th>1.44</th><th>2.1</th><th></th><th>11</th><th>100</th><th>2.0</th><th>შ.ნ</th><th>o</th><th>1.17</th><th>1.0</th></ld<>	5.7	1.44	2.1		11	100	2.0	შ.ნ	o	1.17	1.0
TA as CaCO3	mg/l	25	26	26							24	24							11							
Zn	mg/l	0.1	26	26							24	24							13	13						

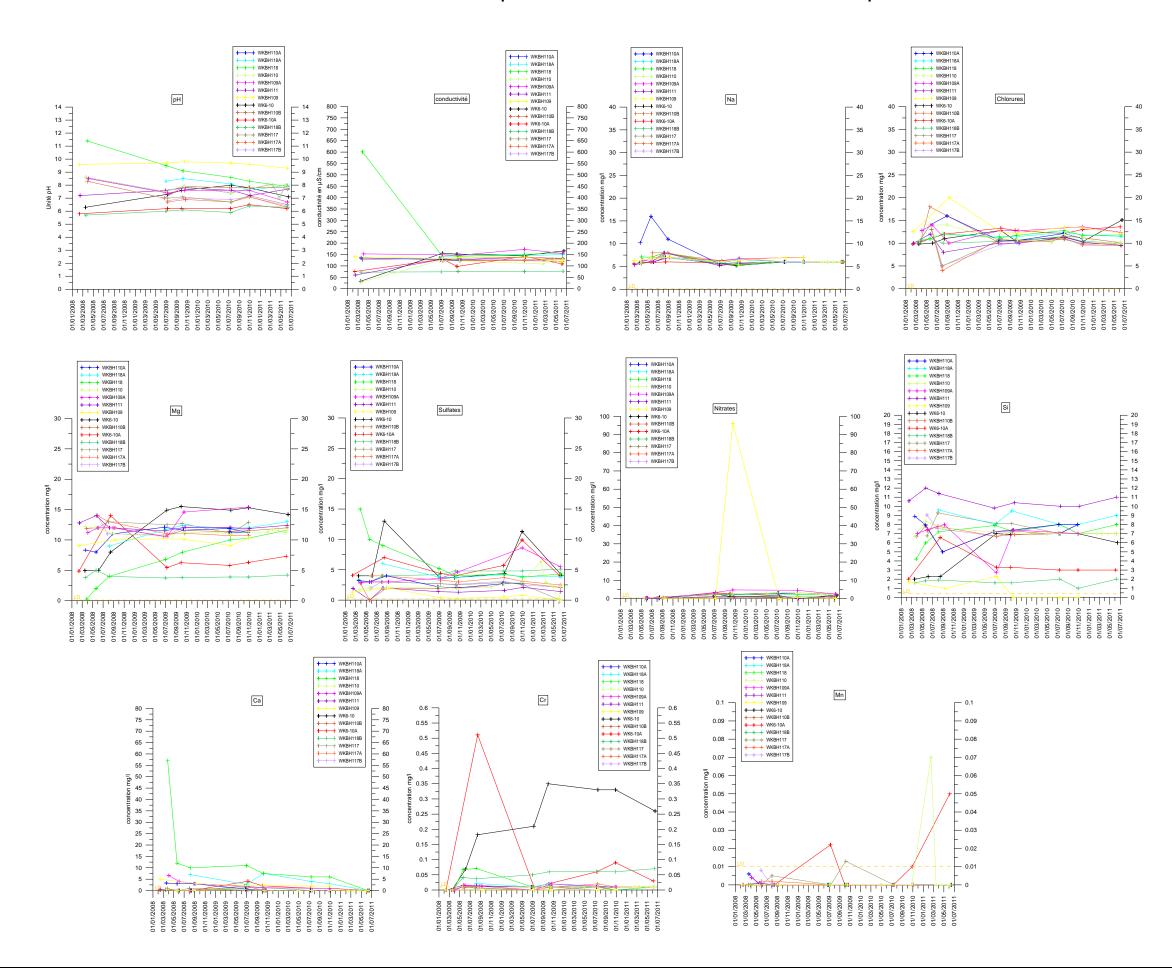
Résultats du suivi des eaux souterraines de la Kwé Ouest

Groupe D 2009														20	10						Premi	ier sem	estre 201	1		
Paramètre	Unité	LD	Total analyses	Nb analyses < LD	% Valeurs exploitables	Moy.	Min.	Max.	Ecart- type	Médiane	Total analyses	Nb analyses < LD	% Valeurs expoitables	Moy.	Min.	Max.	Ecart- type	Médiane	Total analyses	Nb analyses < LD	% Valeurs expoitables	Moy.	Min.	Max.	Ecart- type	Médiane
рН	-	-	7	0	100	8.21	6.8	9.7	1.15	8	6	0	6	100	8.27	7	9.7	1.13	7.95	3	0	100	7.9	0.8	9.9	1.7
cond	μS/cm	-	7	0	100	151.71	122	211	37.06	137	3	0	3	100	155.33	124	206	44.29	136	3	0	100	154	42.5	206	45.4
Al	mg/l	0.1	7	7							6	6	0							1	1					
As	mg/l	0.05	7	7							6	6	0													
Ca	mg/l	0.1	7	3	57.1	0.27	<ld< td=""><td>0.6</td><td>0.26</td><td>0.4</td><td>6</td><td>6</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<>	0.6	0.26	0.4	6	6	0							1	1					
CI	mg/l	0.1	7	1	85.7	9.11	<ld< td=""><td>11.6</td><td>4.11</td><td>9.8</td><td>6</td><td>0</td><td>6</td><td>100</td><td>11.75</td><td>10.9</td><td>12.5</td><td>0.69</td><td>12</td><td>3</td><td>0</td><td>100</td><td>10.2</td><td>0.9</td><td>10.7</td><td>0.8</td></ld<>	11.6	4.11	9.8	6	0	6	100	11.75	10.9	12.5	0.69	12	3	0	100	10.2	0.9	10.7	0.8
Со	mg/l	0.03	7	7							6	6	0							1	1					
Cr	mg/l	0.01	7	2	71.4	0.016	<ld< td=""><td>0.05</td><td>0.017</td><td>0.01</td><td>6</td><td>2</td><td>4</td><td>67</td><td>0.01</td><td><ld< td=""><td>0.02</td><td>0.01</td><td>0.01</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<></td></ld<>	0.05	0.017	0.01	6	2	4	67	0.01	<ld< td=""><td>0.02</td><td>0.01</td><td>0.01</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<>	0.02	0.01	0.01	1	1					
Cu	mg/l	0.03	7	7							6	6	0							1	1					
Fe	mg/l	0.2	7	7							6	5	1	17		<ld< td=""><td>0.1</td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<>	0.1			1	1					
K	mg/l	0.3	7	4	42.9	0.1	<ld< td=""><td>0.3</td><td>0.13</td><td>0</td><td>6</td><td>0</td><td>6</td><td>100</td><td>0.27</td><td>0.2</td><td>0.5</td><td>0.12</td><td>0.2</td><td>1</td><td>0</td><td>100</td><td></td><td></td><td>0.3</td><td></td></ld<>	0.3	0.13	0	6	0	6	100	0.27	0.2	0.5	0.12	0.2	1	0	100			0.3	
MES	mg/l	5	7	0	100	428.14	11	2100	749.51	160																
Mg	mg/l	0.1	7	0	100	14.19	10.3	21.2	4.73	11.9	6	0	6	100	15.00	10.5	23	5.52	12.4	1	0	100			22.2	
Mn	mg/l	0.01	7	6			<ld< td=""><td>0.028</td><td></td><td></td><td>6</td><td>6</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<>	0.028			6	6	0							1	1					
Na	mg/l	0.5	7	0	100	6.36	6	6.5	0.17	6.4	6	0	6	100	6.67	6	7	0.52	7	1	0	100			7	
Ni	mg/l	0.01	7	6			<ld< td=""><td>0.02</td><td></td><td></td><td>6</td><td>5</td><td>1</td><td>17</td><td></td><td><ld< td=""><td>0.01</td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<></td></ld<>	0.02			6	5	1	17		<ld< td=""><td>0.01</td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<>	0.01			1	1					
NO2	mg/l	0.01	3	3							3	3	0													
NO3	mg/l	0.1	7	6			<ld< td=""><td>1.7</td><td></td><td></td><td>6</td><td>6</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>3</td><td></td><td></td><td></td><td></td><td>igwdot</td></ld<>	1.7			6	6	0							3	3					igwdot
Pb	mg/l	0.1	7	7							6	6	0							1	1					
PO4	mg/l	0.2	7	7	110	0.10					6	6	0							3	3					
S	mg/l	1	7	6	14.3	0.16	<ld< td=""><td>1.1</td><td>0.42</td><td>0</td><td>6</td><td>6</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<>	1.1	0.42	0	6	6	0							1	1					
Si	mg/l	0.4	7	1	85.7	5.57	<ld< td=""><td>7.9</td><td>3.39</td><td>7.2</td><td>6</td><td>2</td><td>4</td><td>67</td><td>5.33</td><td><ld< td=""><td>8</td><td>4.13</td><td>8</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<></td></ld<>	7.9	3.39	7.2	6	2	4	67	5.33	<ld< td=""><td>8</td><td>4.13</td><td>8</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td></ld<>	8	4.13	8	1	1					
SiO2	mg/l	1	7	1	85.7	11.91	<ld< td=""><td>16.9</td><td>7.25</td><td>15.4</td><td>3</td><td>0</td><td>3</td><td>100</td><td>12.03</td><td>1.8</td><td>17.9</td><td>8.89</td><td>16.4</td><td>1</td><td>1</td><td>400</td><td></td><td></td><td>0.4</td><td></td></ld<>	16.9	7.25	15.4	3	0	3	100	12.03	1.8	17.9	8.89	16.4	1	1	400			0.4	
SO4	mg/l	0.2	7	1	85.7	2.11	<ld< td=""><td>2.9</td><td>0.96</td><td>2.4</td><td>6</td><td>0</td><td>6</td><td>100</td><td>2.57</td><td>2.4</td><td>2.9</td><td>0.18</td><td>2.5</td><td>3</td><td>0</td><td>100</td><td>2.0</td><td>0.6</td><td>2.1</td><td>0.06</td></ld<>	2.9	0.96	2.4	6	0	6	100	2.57	2.4	2.9	0.18	2.5	3	0	100	2.0	0.6	2.1	0.06
A as CaCO3	mg/l	25	7	6			<ld< td=""><td>29</td><td></td><td></td><td>6</td><td>4</td><td>2</td><td>33</td><td>6.83</td><td><ld< td=""><td>23</td><td>10.70</td><td>0</td><td>3</td><td>2</td><td>33</td><td></td><td><ld< td=""><td>27</td><td></td></ld<></td></ld<></td></ld<>	29			6	4	2	33	6.83	<ld< td=""><td>23</td><td>10.70</td><td>0</td><td>3</td><td>2</td><td>33</td><td></td><td><ld< td=""><td>27</td><td></td></ld<></td></ld<>	23	10.70	0	3	2	33		<ld< td=""><td>27</td><td></td></ld<>	27	
Zn	mg/l	0.1	7	7							6	6	0							1	1					

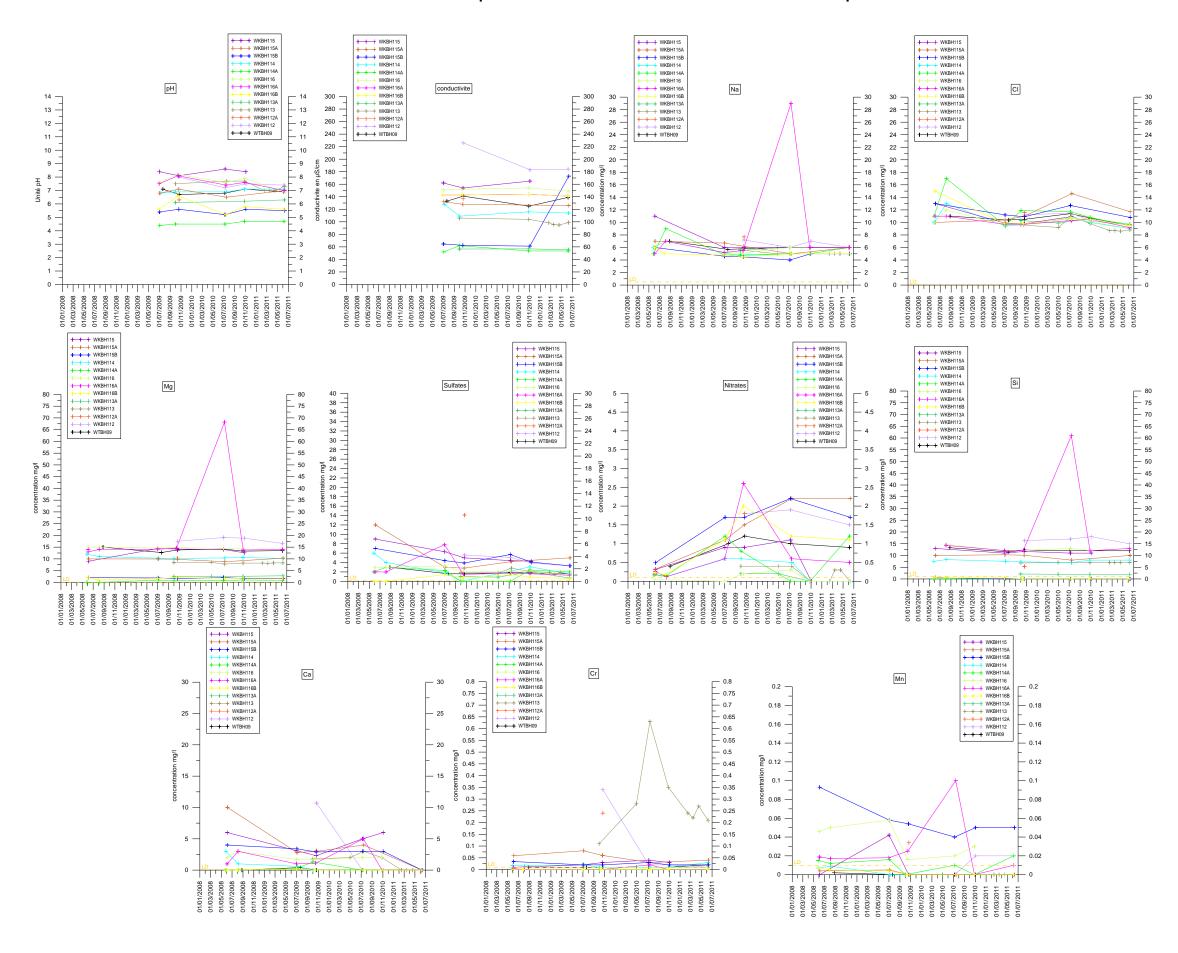

ANNEXE II

Suivi de la qualité des eaux souterraines de la Kwé Ouest :

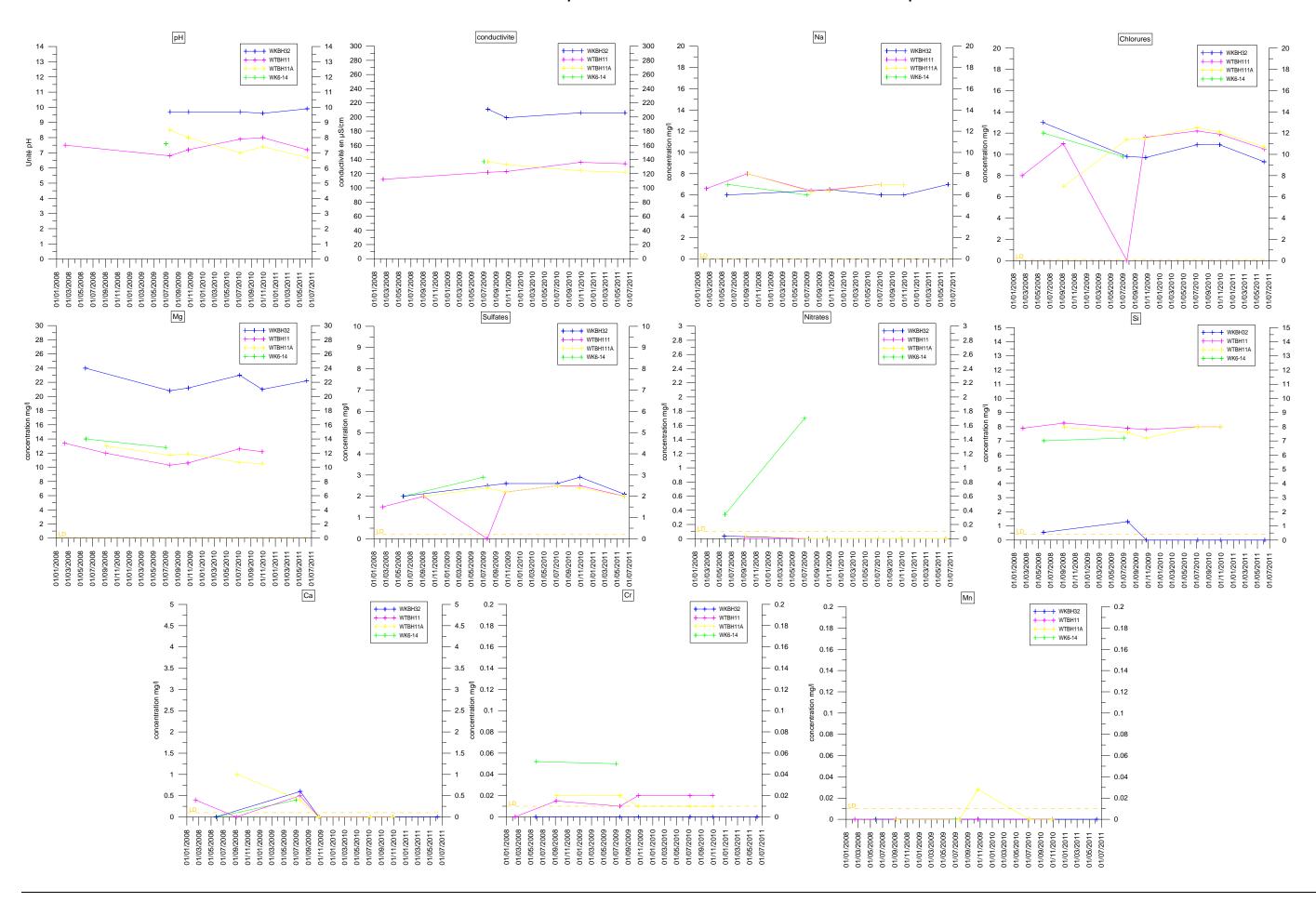
Piézomètres des groupes A, B, C et D



Résultats du suivi de la qualité des eaux souterraines de la Kwé Ouest : Groupe A

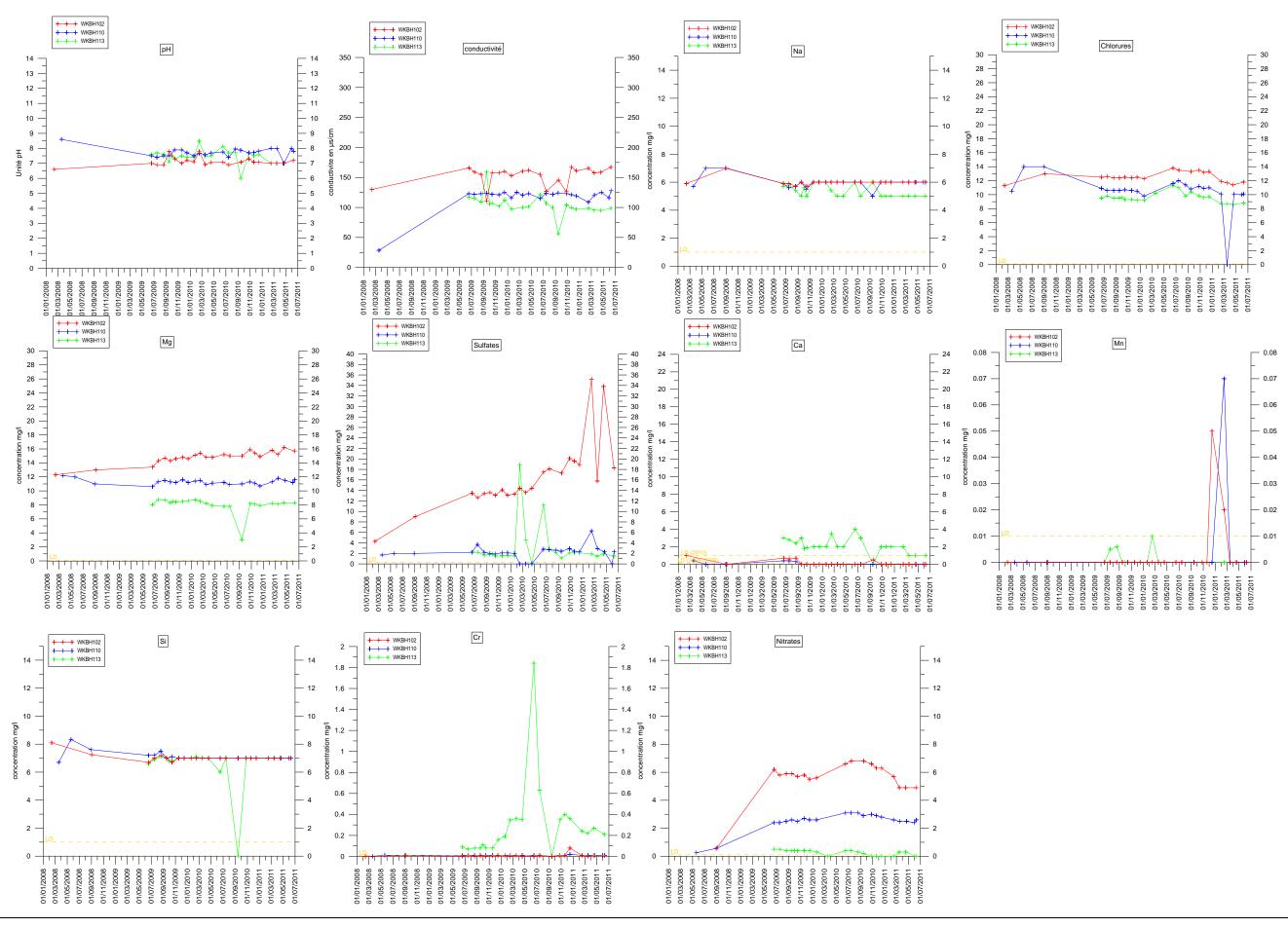


Résultats du suivi de la qualité des eaux souterraines de la Kwé Ouest : Groupe B



Résultats du suivi de la qualité des eaux souterraines de la Kwe Ouest : Groupe C

Résultats du suivi de la qualité des eaux souterraines de la Kwe Ouest : Groupe D

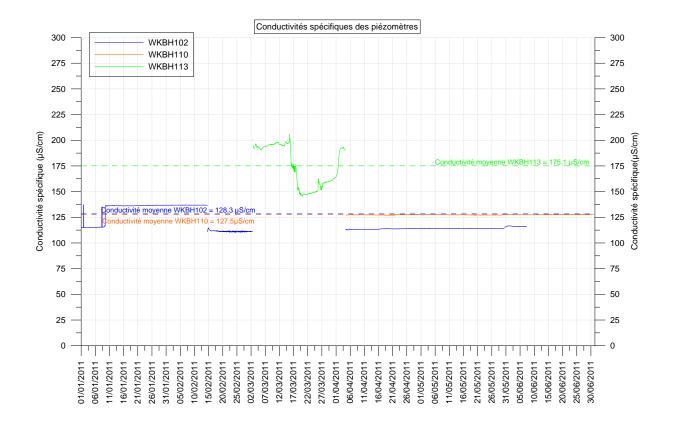

ANNEXE III

Suivi de la qualité des eaux souterraines de la Kwé Ouest :

Piézomètres WKBH102, WKBH110, WKBH113

Suivi de la qualité des eaux souterraines de la Kwé Ouest : piézomètres WKBH102, WKBH110, WKBH113

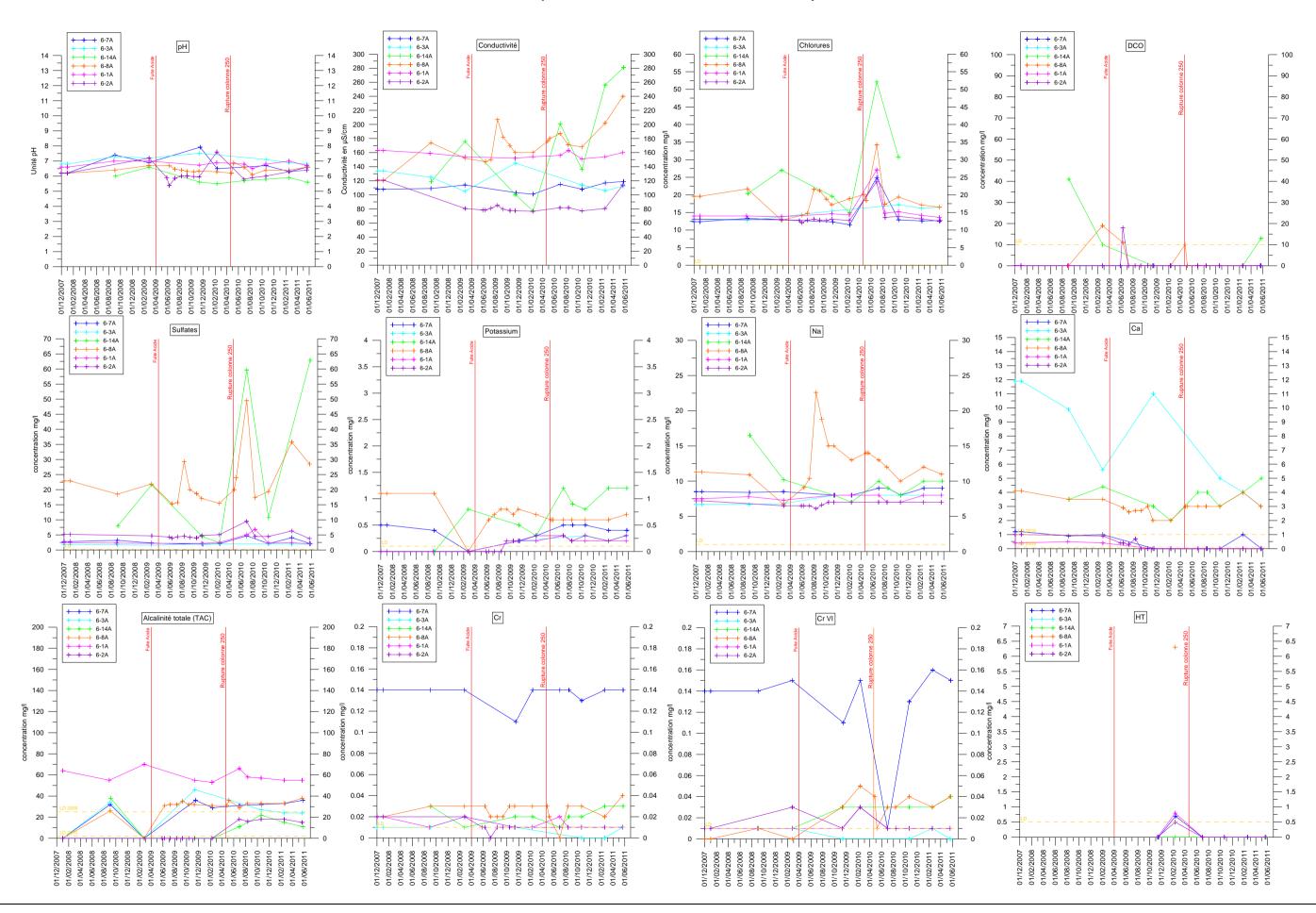
ANNEXE 4



ANNEXE IV

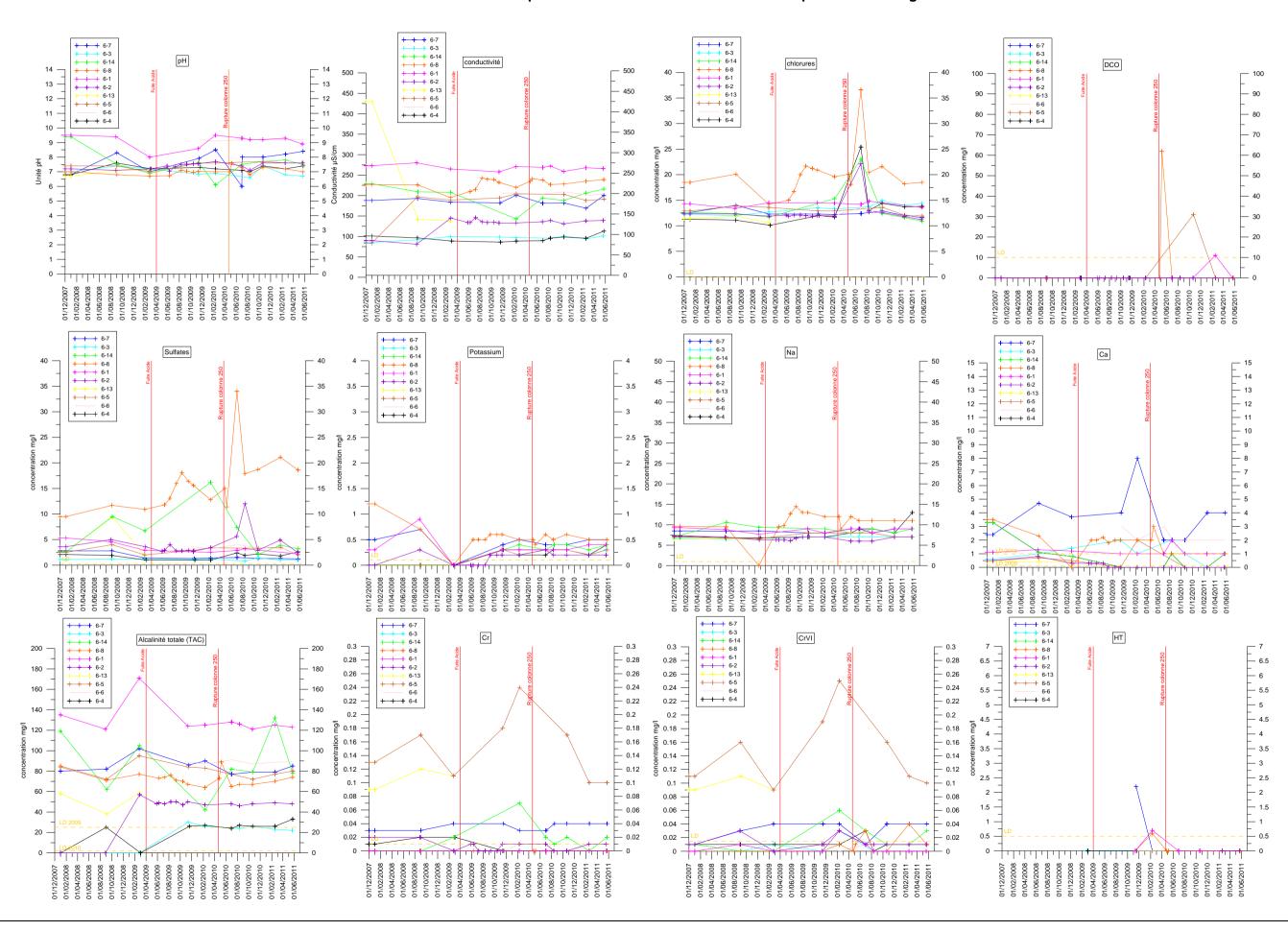
Suivi des mesures en continu : WKBH102, WKBH110, WKBH113

Suivi des mesures en continu : WKBH102, WKBH110, WKBH113



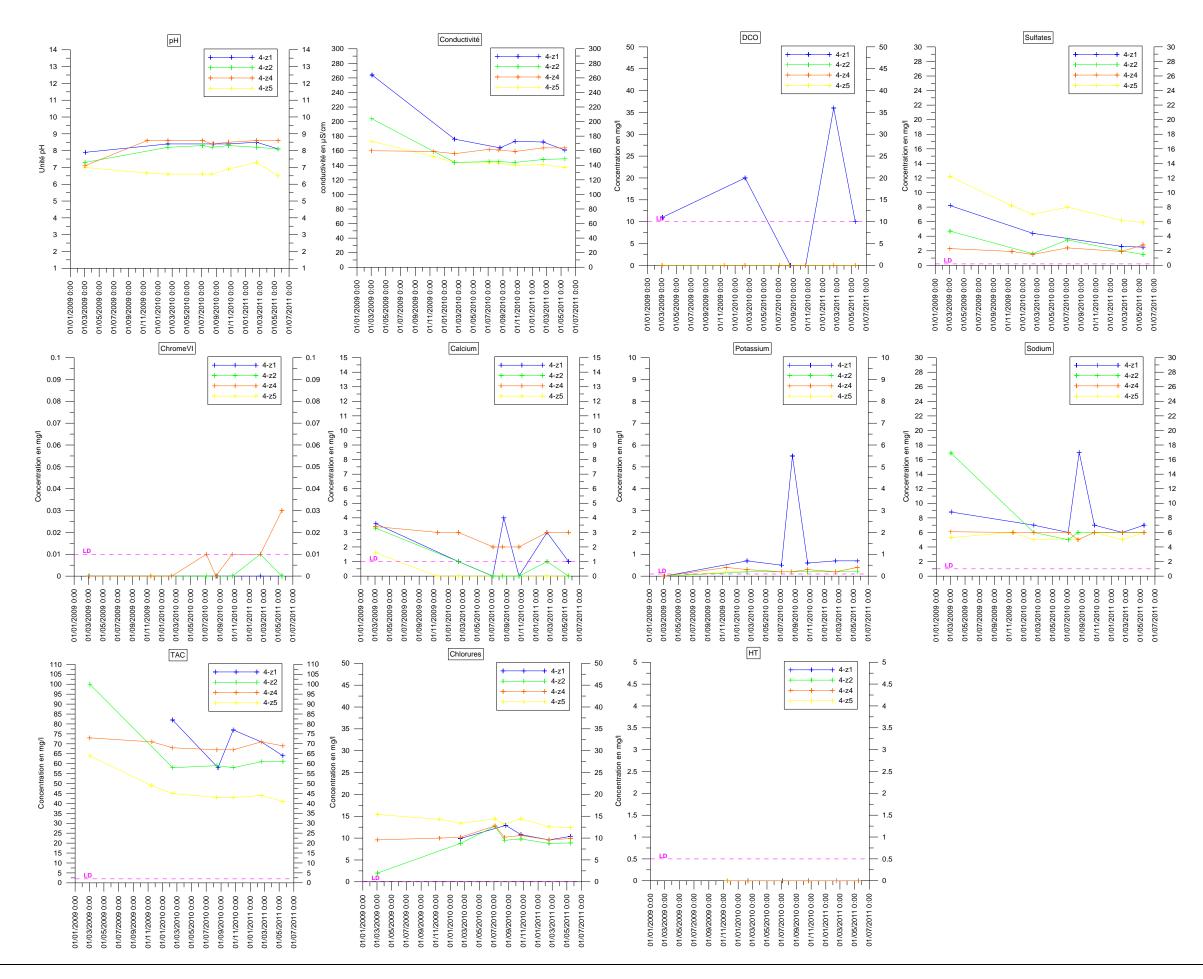
ANNEXE V

Suivi de la qualité des eaux souterraines de l'usine



Résultats du suivi de la qualité des eaux souterraines de l'usine : piézomètres courts

Résultats du suivi de la qualité des eaux souterraines de l'usine : piézomètres longs



ANNEXE VI

Suivi de la qualité des eaux souterraines de l'UPM

Résultats du suivi de la qualité des eaux souterraines de l'UPM

ANNEXE VII

4	-z1				2009					2010				01/01/20	11-01/07	/2011	
Analyses	Unité	LD	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.
рН	-	-	2	0	7.9	7.1	8.6	4	0	8.5	8.4	8.6	2	0	8.6	8.6	8.6
cond	μS/cm	5	2	0	159.5	159.0	160.0	4	0	159.5	156.0	162.0	2	0	164	164	164
Ca	mg/l	0.1 et 1	2	0	3.2	3.0	3.4	4	0	2.3	2.0	3.0	2	0	3	3	3
CI	mg/l	0,1	2	0	9.8	9.6	10.0	4	0	11.0	10.2	12.8	2	0	9.75	9.6	9.9
Cr	mg/l	0,01	2	2				4	4				2	1		<ld< th=""><th>0.02</th></ld<>	0.02
CrVI	mg/l	0,01	2	2				4	2	0.005	<ld< th=""><th>0.01</th><th>2</th><th>0</th><th>0.02</th><th>0.01</th><th>0.03</th></ld<>	0.01	2	0	0.02	0.01	0.03
DCO	mg/l	10,0	2	2				4	4				2	2			
HT	mg/kg	0,5	1	1				3	3				2	2			
K	mg/l	0,1	2	1	0.2	<ld< th=""><th>0.4</th><th>4</th><th>0</th><th>0.3</th><th>0.2</th><th>0.3</th><th>2</th><th>0</th><th>0.3</th><th>0.2</th><th>0.4</th></ld<>	0.4	4	0	0.3	0.2	0.3	2	0	0.3	0.2	0.4
Na	mg/l	1,0	2	0	6.1	6.0	6.1	4	0	5.8	5.0	6.0	2	0	6	6	6
S	mg/l	1,0	2	2				4	4				2	2			
SO4	mg/l	0,2	2	0	2.1	1.9	2.3	2	0	2.0	1.5	2.4	2	0	2.35	1.9	2.8
TA as CaCO3	mg/l	2	2	2				4	4				2	0	3	3	3
TAC as CaCO3	mg/l	2	2	0	72.0	71.0	73.0	4	0	69	67	74	2	0	70	69	71

4	-z2				2009					2010				01/01/20	11-01/07	/2011	
Analyses	Unité	LD	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.
рН	-	-	2	0	7.3	7.3	7.3	4	0	8.3	8.2	8.3	2	0	8.15	8.1	8.2
cond	μS/cm	5	2	0	198.5	193.0	204.0	4	0	144.5	144.0	145.0	2	0	148.5	148	149
Ca	mg/l	0.1 et 1	2	0	5.2	3.3	7.0	4	3	0.25	<ld< th=""><th>1.0</th><th>2</th><th>1</th><th>0.5</th><th>0</th><th>1</th></ld<>	1.0	2	1	0.5	0	1
CI	mg/l	0,1	2	0	10.2	2.0	18.4	4	0	10.2	8.8	12.7	2	0	8.85	8.8	8.9
Cr	mg/l	0,01	2	2				4	4				2	2			
CrVI	mg/l	0,01	2	1				4	4				2	1		<ld< th=""><th>0.01</th></ld<>	0.01
DCO	mg/l	10,0	2	2				4	4				2	2			
HT	mg/kg	0,5	1	1				3	3				2	2			
K	mg/l	0,1	2	1	1.0	<ld< th=""><th>2.0</th><th>4</th><th>0</th><th>0.2</th><th>0.2</th><th>0.2</th><th>2</th><th>0</th><th>0.2</th><th>0.2</th><th>0.2</th></ld<>	2.0	4	0	0.2	0.2	0.2	2	0	0.2	0.2	0.2
Na	mg/l	1,0	2	0	14.0	11.0	16.9	4	0	5.8	5.0	6.0	2	0	6	6	6
S	mg/l	1,0	2	0	8.0	7.0	9.0	4	4				2	2			
SO4	mg/l	0,2	2	0	16.4	4.7	28.1	2	0	2.6	1.6	3.5	2	0	1.75	1.5	2
TA as CaCO3	mg/l	2	2	2				4	4				2	2			
TAC as CaCO3	mg/l	2	2	0	71.0	42.0	100.0	4	0	58.5	58.0	59.0	2	0	61	61	61

4	-z4				2009					2010				01/01/20	11-01/07	/2011	
Analyses	Unité	LD	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.
рН	-	-	2	0	8.3	7.9	8.7	3	0	8.4	8.4	8.4	2	0	8.3	8.1	8.5
cond	μS/cm	5	2	0	223.5	183.0	264.0	3	0	171.0	164.0	176.0	2	0	166.5	161	172
Ca	mg/l	0.1 et 1	2	0	2.3	1.0	3.6	4	2	1.3	<ld< th=""><th>4.0</th><th>2</th><th>0</th><th>2</th><th>1</th><th>3</th></ld<>	4.0	2	0	2	1	3
CI	mg/l	0,1	2	0	10.7	10.7	10.7	3	0	11.2	9.9	12.9	2	0	10	9.6	10.4
Cr	mg/l	0,01	2	2				4	4				2	2			
CrVI	mg/l	0,01	2	2				3	3				2	2			
DCO	mg/l	10,0	2	0	14.0	11.0	17.0	4	2	9.5	<ld< th=""><th>20.0</th><th>2</th><th>0</th><th>23</th><th>10</th><th>36</th></ld<>	20.0	2	0	23	10	36
HT	mg/kg	0,5	1	1				3	3				2	2			
K	mg/l	0,1	2	1	0.5	<ld< th=""><th>0.9</th><th>4</th><th>0</th><th>1.8</th><th>0.5</th><th>5.5</th><th>2</th><th>0</th><th>0.7</th><th>0.7</th><th>0.7</th></ld<>	0.9	4	0	1.8	0.5	5.5	2	0	0.7	0.7	0.7
Na	mg/l	1,0	2	0	8.4	8.0	8.8	4	0	9.3	6.0	17.0	2	0	6.5	6	7
S	mg/l	1,0	2	0	3.0	2.0	4.0	4	0	1.3	1.0	2.0	2	1	1	<ld< th=""><th>2</th></ld<>	2
SO4	mg/l	0,2	2	0	6.9	5.6	8.2	1	0	4.4	4.4	4.4	2	0	2.55	2.5	2.6
TA as CaCO3	mg/l	2	2	1	68.0	<ld< th=""><th>136.0</th><th>3</th><th>3</th><th></th><th></th><th></th><th>2</th><th>2</th><th></th><th></th><th></th></ld<>	136.0	3	3				2	2			
TAC as CaCO3	mg/l	2	1	0	84.0	84.0	84.0	3	0	72.3	58.0	82.0	2	0	67.5	64	71

4	-z5				2009					2010				01/01/20	11-01/07	2011	
Analyses	Unité	LD	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.	Total analyses	Nb analyses < LD	Moyenne	Min.	Max.
рН	-	-	2	0	6.8	6.7	7.0	4	0	6.7	6.6	6.9	2	0	6.9	6.5	7.3
cond	μS/cm	5	2	0	162.5	152.0	173.0	4	0	142.8	140.0	144.0	2	0	139	137	141
Ca	mg/l	0.1 et 1	2	1	0.8	<ld< th=""><th>1.6</th><th>4</th><th>4</th><th></th><th></th><th></th><th>2</th><th>2</th><th></th><th></th><th></th></ld<>	1.6	4	4				2	2			
CI	mg/l	0,1	2	0	14.9	14.3	15.4	4	0	13.9	13.2	14.4	2	0	12.5	12.4	12.6
Cr	mg/l	0,01	2	2				4	4				2	2			
CrVI	mg/l	0,01	2	2				4	4				2	2			
DCO	mg/l	10,0	2	2				4	4				2	2			
HT	mg/kg	0,5	1	1				2	2				0	0			
K	mg/l	0,1	2	1	0.1	<ld< th=""><th>0.2</th><th>4</th><th>0</th><th>0.2</th><th>0.2</th><th>0.2</th><th>2</th><th>0</th><th>0.3</th><th>0.2</th><th>0.4</th></ld<>	0.2	4	0	0.2	0.2	0.2	2	0	0.3	0.2	0.4
Na	mg/l	1,0	2	0	5.7	5.3	6.0	4	0	5.3	5.0	6.0	2	0	5.5	5	6
S	mg/l	1,0	2	0	3.6	3.0	4.2	4	0	2.0	2.0	2.0	2	0	2	2	2
SO4	mg/l	0,2	2	0	10.2	8.2	12.2	2	0	7.5	7.0	8.0	2	0	6.05	5.9	6.2
TA as CaCO3	mg/l	2	2	2				4	4				2	2			
TAC as CaCO3	mg/l	2	2	0	56.5	49.0	64.0	4	0	43.3	42.0	45.0	2	0	42.5	41	44