

SUIVI DE L'ETAT DES PEUPLEMENTS RECIFAUX ET ORGANISMES ASSOCIES EN BAIE DE PRONY ET CANAL DE LA HAVANNAH

Mission octobre 2011

PROJET GORO NICKEL

VALE NOUVELLE CALEDONIE

Caractéristiques du dossier :

Référence du document		Rap 040-11_Ver 00
Référence du contrat		C2415 E20544
Numéro de l'affaire		040-11
Client		Vale Nouvelle-Calédonie
Commune		Mont Dore
Coordonnées	X	696 000
(WGS 84 UTM58)	Υ	7 528 000
Mots clés		projet Goro Nickel, ichtyologie, communautés récifales, biocénoses marines, suivis environnementaux, mine, port

Suivi des modifications :

N° de version	Transmis à	Action / Etat	Date
00	VALE NC	Rapport remis au Client (format électronique) : version préliminaire (draft) pour relecture de la forme	
	Experts partenaires	Rapport remis (format électronique) : version préliminaire (draft) pour relecture du fond	Janvier 2012
	AQUA TERRA	En interne : pour relecture pour contrôle qualité	
01	VALE NC	Rapport final remis au Client (3 exemplaires papier + 1 CDRom)	Janvier 2012

Les responsables du suivi des modifications sont :

Maître d'Ouvrage	Céline CASALIS (Vale NC)
Entreprise	Valérie VAILLET (AQUA TERRA)

N° Document	Émis le	Par	Approuvé par	Le
Rap 040-11_Ver 00	Janvier 2012	AQUA TERRA	Vale NC Biocénose	Janvier 2012
Rap 040-11_Ver 01	Janvier 2012	AQUA TERRA		Janvier 2012

Dans un souci constant de préserver l'environnement, ce rapport a été imprimé sur du papier certifié nos toner sont éliminés via une filière agrée.

, en recto-verso et

Equipe de travail

Le Mandataire pour cette étude est la SARL AQUA TERRA, avec Valérie VAILLET comme chef de projet, avec l'aide d'experts scientifiques.

Les principaux intervenants étaient donc :

Pour AQUA TERRA:

Valérie VAILLET: gérante de la société (Ingénierie de l'environnement et de la réhabilitation), ingénieur biologiste (DEA Océanographie biologique, Paris VI). Grande expérience en gestion de l'environnement et notamment à travers des campagnes d'échantillonnage sous-marin. A réalisé plusieurs missions dans le cadre du suivi des communautés coralliennes pour le projet Goro Nickel. Plongeur niveau III.

Pour cette étude : responsable logistique et technique ; échantillonnage du substrat (LIT) et traitement/analyses des résultats liés, photographie sous-marine ; synthèse des données, rédaction des rapports.

Pour ACREM:

Claude CHAUVET: professeur émérite des Universités à l'Université de Nouvelle Calédonie, biologiste marin, intervenant pour l'ACREM.

A participé à de nombreuses campagnes d'échantillonnage du milieu marin et notamment dans cette zone et pour le projet Goro Nickel. Plongeur niveau III.

Pour cette étude : inventaire des communautés ichtyologiques et traitements/analyses des résultats liés ; enregistrements vidéo (films).

Pour BIOCENOSE:

Grégory LASNE: gérant de la société (Etude environnementale marine), master recherche en Environnement Océanographique Littoral et Hauturier (Bordeaux I). Compétences reconnues pour la taxonomie corallienne et l'inventaire des biocénoses benthiques marines, ainsi que la description géomorphologique et environnementale de site sous marin. Plongeur niveau III, CAH IB.

Pour cette étude : inventaire des communautés benthiques et particulièrement des coraux, ainsi que l'analyse des résultats liés ; description des habitats ; atlas photographique (photographies *in situ*).

Personne physique:

Silbert SARRAILH: Plongeur CAH1B, Capitaine 200.

Sur le terrain, l'équipe était complétée par des plongeurs / pilotes professionnels pour assurer la sécurité et aider pour la partie technique (chargement du matériel, gonflement des blocs, mise en place des piquets sous l'eau, ...).

Ce rapport a été rédigé sur la base des résultats et commentaires de chacune des parties.

Crédit photographique: Grégory Lasne 2011 pour Biocénose, Valérie Vaillet 2011, pour AQUA TERRA

Table des Matières

E	QUIPE DE TRAVAIL	3
T	ABLE DES MATIERES	4
L	ISTE DES TABLEAUX	8
L	ISTE DES FIGURES	13
L		
L	ISTE DES PHOTOS	
1	PREAMBULE	
2	OBJECTIF DE L'ETUDE	
3	METHODOLOGIE	
•	3.1 ZONE D'ETUDE	
	3.1.1 Contexte général	
	3.1.2 Présentation des stations	
	3.1.2.1 Les stations	
	3.1.2.2 Les transects	
	3.2 LES TRAVAUX D'ECHANTILLONNAGE	
	3.2.1 Vérification des stations	
	3.2.1.1 Positionnement	
	3.2.1.2 Matérialisation	21
	3.2.1.2.1 Organisation « matérielle »	
	3.2.1.2.2 Organisation « temporelle »	
	3.2.2 Protocole pour l'étude du substrat	
	3.2.3 Protocole pour l'étude du benthos	
	3.2.4 Protocole pour l'étude des poissons	
	3.3 PERIODE D'ECHANTILLONNAGE	
	3.4 LE TRAITEMENT DES DONNEES	
	3.4.1 Pour le substrat	
	3.4.2 Pour le benthos	
	3.4.3 Pour les poissons	
4	RESULTATS BRUTS PAR STATION	30
	4.1 STATION 01 = CASY	
	4.1.1 Le substrat (ST01)	35
	4.1.2 Le benthos (ST01)	
	4.1.2.1 Benthos Transect 01 A	
	4.1.2.1.1 Les Scléractiniaires (ST01A)	36
	4.1.2.1.2 Les Macrophytes et les Invertébrés (ST01A)	37
	4.1.2.2 Benthos Transect 01 B	
	4.1.2.2.2 Les Macrophytes et les Invertébrés (ST01B)	
	4.1.3 Les poissons (ST01)	
	4.2 STATION 02 = CREEK BAIE NORD.	
	4.2.1 Le substrat (ST02)	
	4.2.2 Le benthos (ST02)	
	4.2.2.1 Benthos Transect 02 A	
	4.2.2.1.1 Les Scléractiniaires (ST02A)	
	4.2.2.1.2 Les Macrophytes et les Invertébrés (ST02A)	
	4.2.2.2 Benthos Transect 02 B	51
	4.2.2.2.1 Les Scléractiniaires (ST02B)	
	4.2.2.2.2 Les Macrophytes et les Invertébrés (ST02B)	
	4.2.3 Les poissons (ST02)	
	4.3 STATION 03 = PORT	
	4.3.1 Le substrat (ST03)	
	4.3.2 Le benthos (ST03)	
	4.3.2.1 Benthos Transect 03 A	
	4.3.2.1.1 Les Scléractiniaires (ST03A)	
	4.3.2.1.2 Les Macrophytes et les Invertébrés (ST03A)	
	4.3.2.2.1 Les Scléractiniaires (ST03B)	
	4.3.2.2.2 Les Macrophytes et les Invertébrés (ST03B)	
	4.3.2.3 Benthos Transect 03 C.	

4.3.2.3.1	Les Scléractiniaires (ST03C)	67
4.3.2.3.2	Les Macrophytes et les Invertébrés (ST03C)	
4.3.3 Les poi	issons (ST03)	71
4.4 STATION	04 = Woodin	75
4.4.1 Le sub	strat (ST04)	79
4.4.2 Le ben	thos (ST04)	80
4.4.2.1 B	enthos Transect 04 A	
4.4.2.1.1	Les Scléractiniaires (ST04A)	
	Les Macrophytes et les Invertébrés (ST04A)	
	enthos Transect 04 B	
4.4.2.2.1 4.4.2.2.2	Les Scléractiniaires (ST04B)	
	Les Macrophytes et les Invertébrés (ST04B)enthos Transect 04 C	
4.4.2.3.1	Les Scléractiniaires (ST04C)	
4.4.2.3.2	Les Macrophytes et les Invertébrés (ST04C)	
	issons (ST04)	
	05 = RECIF IORO	
	strat (ST05)	
	thos (ST05)	
	enthos Transect 05 A	
4.5.2.1.1	Les Scléractiniaires (ST05A)	
4.5.2.1.2	Les Macrophytes et les Invertébrés (ST05A)	
	enthos Transect 05 B	99
4.5.2.2.1	Les Scléractiniaires (ST05B)	
4.5.2.2.2	Les Macrophytes et les Invertébrés (ST05B)	100
	enthos Transect 05 C	
4.5.2.3.1	Les Scléractiniaires (ST05C)	
4.5.2.3.2	Les Macrophytes et les Invertébrés (ST05C)	
	issons (ST05)	
	strat (ST06)	
	thos (ST06)enthos Transect 06 A	
4.6.2.1.1	Les Scléractiniaires (ST06A)	
	Les Macrophytes et les Invertébrés (ST06A)	
4.6.2.2 B	enthos Transect 06 B	116
4.6.2.2.1	Les Scléractiniaires (ST06B)	
4.6.2.2.2	Les Macrophytes et les Invertébrés (ST06B)	117
	enthos Transect 06 C	
	Les Scléractiniaires (ST06C)	
4.6.2.3.2	Les Macrophytes et les Invertébrés (ST06C)	
	issons (ST06)	
	07 = Basse Chambeyron	
	strat (ST07)	
	thos (ST07)	
	enthos Transect 07 A	
4.7.2.1.1 4.7.2.1.2	Les Scléractiniaires (ST07A)	
	enthos Transect 07 B	
4.7.2.2.1	Les Scléractiniaires (ST07B)	
4.7.2.2.2	Les Macrophytes et les Invertébrés (ST07B)	
4.7.2.3 B	enthos Transect 07 C	
4.7.2.3.1	Les Scléractiniaires (ST07C)	
4.7.2.3.2	Les Macrophytes et les Invertébrés (ST07C)	
	issons (ST07)	
4.8 STATION	08 = Pointe Puka	143
	strat (ST08)	
	thos (ST08)	
	enthos Transect 08 A	
4.8.2.1.1	Les Scléractiniaires (ST08A)	
4.8.2.1.2	Les Macrophytes et les Invertébrés (ST08A)	
	enthos Transect 08 B	
4.8.2.2.1 4.8.2.2.2	Les Scléractiniaires (ST08B)	
	issons (ST08)	
	09 = Bancs pe Kie	1 <i>52</i> 157

	40.1 1 1 (700)	160
	4.9.1 Le substrat (ST09)	
	4.9.2 Le benthos (ST09)	
	4.9.2.1 Les Scléractiniaires (ST09A)	
	4.9.2.1.2 Les Macrophytes et les Invertébrés (ST09A)	
	4.9.2.2 Benthos Transect 09 B.	163
	4.9.2.2.1 Les Scléractiniaires (ST09B)	163
	4.9.2.2.2 Les Macrophytes et les Invertébrés (ST09B)	165
	4.9.2.3 Benthos Transect 09 C	
	4.9.2.3.1 Les Scléractiniaires (ST09C)	
	4.9.2.3.2 Les Macrophytes et les Invertébrés (ST09C)	
4	4.9.3 Les poissons (ST09)	
4	1.10 STATION 10 = ILOT KIE	
	4.10.1 Le substrat (ST10)	
	4.10.2 Le benthos (ST10)	
	4.10.2.1 Benthos Transect 10 A	
	4.10.2.1.1 Les Scieractimaries (ST10A)	170
	4.10.2.2 Benthos Transect 10 B	
	4.10.2.2.1 Les Scléractiniaires (ST10B)	
	4.10.2.2.2 Les Macrophytes et les Invertébrés (ST10B)	
	4.10.2.3 Benthos Transect 10 C	
	4.10.2.3.1 Les Scléractiniaires (ST10C)	
	4.10.2.3.2 Les Macrophytes et les Invertébrés (ST10C)	
	4.10.3 Les poissons (ST10)	
4	1.11 STATION 11 = RECIF TOEMO	
	4.11.1 Le substrat (ST11)	
	4.11.2 Le benthos (ST11)	
	4.11.2.1 Benthos Transect 11 A	
	4.11.2.1.1 Les Scléractiniaires (ST11A)	196
	4.11.2.1.2 Les Macrophytes et les Invertébrés (ST11A)	
	4.11.2.2.1 Les Scléractiniaires (ST11B)	
	4.11.2.2.2 Les Macrophytes et les Invertébrés (ST11B)	
	4.11.2.3 Benthos Transect 11 C	
	4.11.2.3.1 Les Scléractiniaires (ST11C)	201
	4.11.2.3.2 Les Macrophytes et les Invertébrés (ST11C)	
	4.11.3 Les poissons (ST11)	
4	1.12 STATION 12 = ILOT UGO	
	4.12.1 Le substrat (ST12)	
	4.12.2 Le benthos (ST12)	
	4.12.2.1 Benthos Transect 12 A	
	4.12.2.1.1 Les Scléractiniaires (ST12A)	
	4.12.2.1.2 Les Macrophytes et les Invertébrés (ST12A)	
	4.12.2.2.1 Les Scléractiniaires (ST12B)	
	4.12.2.2.2 Les Macrophytes et les Invertébrés (ST12B)	
	4.12.3 Les poissons (ST12)	
5	RESULTATS GENERAUX / SYNTHESE	
_	5.1 SUBSTRAT	
_	5.2 BENTHOS.	224
	i.3 ICHTYOLOGIE	
_	5.4 ESPECES EXOGENES	
6	COMPARAISON AVEC LES DONNEES HISTORIQUES	
-	5.1 SUBSTRAT	
_	5.2 BENTHOS.	
·	6.2.1 Variation de la richesse spécifique corallienne depuis 2009	
	6.2.2 Variation de la Richesse Spécifique (RS) et abondance (A) de mars 2011 à septembre 2011	
	6.2.2.1 Rappels des principaux résultats de la mission précédente du mois de mars 2011	
	6.2.2.2 Variations de mars 2011 à octobre 2011	233
	6.2.2.3 « Indicateur de l'état de santé » des récifs de la zone d'étude	
	6.2.3 Evolution globale des stations par rapport à mars 2011	241
6	5.3 ICHTYOLOGIE	
	6.3.1 Comparaisons temporelles « liste restreinte »	246
	6.3.1.1 La densité	
	6.3.1.2 La biomasse	249

		451
6.3.1.3 La biodiversite	é	251
6.3.1.4 Test de X ² de	rangs Kruskal-Wallis	254
6.3.1.5 Test de X ² de	rangs Friedman	254
6.3.1.6 Conclusion	-	256
6.3.2 Comparaisons temp	porelles « liste complète »	259
6.3.2.1 Biodiversité α	-	259
6.3.2.2 Biodiversité γ		262
	de la structurede	
6.3.2.4 Biodiversité β		269
	ccurrence spatiale et Permanence temporelle des espèces	
	APHIQUE, DE LA ZONE ETUDIEE	
	UX DE CROISSANCE CORALLIEN: POCILLOPORIDAE, GENERALITES	
7.2 RECRUTEMENT ET TA	UX DE CROISSANCE CORALLIEN: POCILLOPORIDAE, CAS DE LA STATION 01	277
8 CONCLUSION		288
9 DISCUSSION		291
10 RECOMMANDATION	NS / AMELIORATIONS	292
10.1 AMELIORATIONS PRO	PRES A CE SUIVI	292
	AHIER DES CHARGES	
	/EAU PROVINCIAL OU TERRITORIAL	
	LE D'ECHANTILLONNAGE DES COMMUNAUTES RECIFALES	
	LE D'ECHANTILLONNAGE DES COMMONAUTES RECIFALES	
	LONNAGE DES DIFFERENTES MISSIONS	
	ALINA DELLA GALERA GNE DADONA ANTINA A ONNA GERMANDE ANA	
CARACTERISTIQUES TERR	RAIN DE LA CAMPAGNE D'ECHANTILLONNAGE D'OCTOBRE 201	1 304
	CHANTILLONNAGE LIT OCTOBRE 2011	
	CHANTILLONNAGE DU BENTHOS D'OCTOBRE 2011	
RESULTATS BRUTS DE L'E	CHANTILLONNAGE ICHTYOLOGIOUE OCTORRE 2011	320

Liste des Tableaux

Tableau n°1 :	Coordonnées des stations d'échantillonnage	
Tableau n°2 :	Caractéristiques des transects selon les stations	
Tableau n°3 :	Indices semi-quantitatifs d'abondance – cas classique	
Tableau n°4 :	Indices semi-quantitatifs d'abondance – présence de grandes colonies (plusieurs me	²)24
Tableau n°5 :	Exemple de calcul pour le recouvrement du substrat	26
Tableau n°6 :	Code couleur pour la comparaison temporelle d'une même station	27
Tableau n°7 :	Lexique des abréviations des familles	28
Tableau n°8 :	Exemple de calcul pour « poisson »	
Tableau n°9 :	Biodiversité et Abondance des coraux par famille (ST01A)	
Tableau n°10 :	Biodiversité et Abondance des macrophytes et invertébrés (ST01A)	
Tableau n°11 :	Biodiversité et Abondance des coraux par famille (ST01B)	
Tableau n°12 :	Biodiversité et Abondance des macrophytes et invertébrés (ST01B)	40
Tableau n°13 :	Données sur les poissons (ST01)	
Tableau n°14 :	Liste des espèces complémentaires (ST01)	
Tableau n°15 :	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST01)	
Tableau n°16 :	Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011 (S	
Tableau n°17 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST01)	
Tableau n°18 :	Biodiversité et Abondance des coraux par famille (ST02A)	
Tableau n°19 :	Biodiversité et Abondance des macrophytes et invertébrés (ST02A)	
Tableau n°20 :	Biodiversité et Abondance des coraux par famille (ST02B)	
Tableau n°21 :	Biodiversité et Abondance des macrophytes et invertébrés (ST02B)	
Tableau n°22 :	Données sur les poissons (ST02)	54
Tableau n°23 :	Liste des espèces complémentaires (ST02)	
Tableau n°24 :	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST02)	
Tableau n°25:	Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011 (S'	
Tableau n°26:	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST02)	
Tableau n°27:	Biodiversité et Abondance des coraux par famille (ST03A)	
Tableau n°28:	Biodiversité et Abondance des macrophytes et invertébrés (ST03A)	65
Tableau n°29:	Biodiversité et Abondance des coraux par famille (ST03B)	66
Tableau n°30 :	Biodiversité et Abondance des macrophytes et invertébrés (ST03B)	
Tableau n°31:	Biodiversité et Abondance des coraux par famille (ST03C)	
Tableau n°32:	Biodiversité et Abondance des macrophytes et invertébrés (ST03C)	69
Tableau n°33:	Données sur les poissons (ST03)	
Tableau n°34:	Liste des espèces complémentaires (ST03)	
Tableau n°35:	Nombre d'espèces par famille ichtyologique de 2007 à 2011(ST03)	72
Tableau n°36:	Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011 (S'	T03) 73
Tableau n°37:	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST03)	
Tableau n°38:	Biodiversité et Abondance des coraux par famille (ST04A)	
Tableau n°39:	Biodiversité et Abondance des macrophytes et invertébrés (ST04A)	
Tableau n°40 :	Biodiversité et Abondance des coraux par famille (ST04B)	
Tableau n°41:	Biodiversité et Abondance des macrophytes et invertébrés (ST04B)	
Tableau n°42:	Biodiversité et Abondance des coraux par famille (ST04C)	
Tableau n°43:	Biodiversité et Abondance des macrophytes et invertébrés (ST04C)	
Tableau n°44:	Données sur les poissons (ST04)	,07 &&
Tableau n°45:	Liste des espèces complémentaires (ST04)	
Tableau n°46:	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST04)	
Tableau n°47 :		
Tableau n°48 :	Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011 (S'	
Tableau n°48 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST04)	
	Biodiversité et Abondance des coraux par famille (ST05A)	
Tableau n°50:	Biodiversité et Abondance des macrophytes et invertébrés (ST05A)	
Tableau n°51:	Biodiversité et Abondance des coraux par famille (ST05B)	
Tableau n°52:	Biodiversité et Abondance des macrophytes et invertébrés (ST05B)	
Tableau n°53 :	Biodiversité et Abondance des coraux par famille (ST05C)	103

Tableau n°54 :	Biodiversité et Abondance des macrophytes et invertébrés (ST05C)	104
Tableau n°55 :	Données sur les poissons (ST05)	
Tableau n°56 :	Liste des espèces complémentaires (ST05)	106
Tableau n°57 :	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST05)	107
Tableau n°58 :	Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 20. 108	11 (ST05)
Tableau n°59 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST05)	108
Tableau n°60 :	Biodiversité et Abondance des coraux par famille (ST06A)	
Tableau n°61 :	Biodiversité et Abondance des macrophytes et invertébrés (ST06A)	
Tableau n°62 :	Biodiversité et Abondance des coraux par famille (ST06B)	
Tableau n°63 :	Biodiversité et Abondance des macrophytes et invertébrés (ST06B)	
Tableau n°64 :	Biodiversité et Abondance des coraux par famille (ST06C)	
Tableau n°65 :	Biodiversité et Abondance des macrophytes et invertébrés (ST06C)	
Tableau n°66 :	Données sur les poissons (ST06)	
Tableau n°67 :	Liste des espèces complémentaires (ST06)	
Tableau n°68 :	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST06)	
Tableau n°69:	Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 20. 125	
Tableau n°70 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST06)	126
Tableau n°71:	Biodiversité et Abondance des coraux par famille (ST07A)	
Tableau n°72:	Biodiversité et Abondance des macrophytes et invertébrés (STO7A)	
Tableau n°73:	Biodiversité et Abondance des coraux par famille (ST07B)	
Tableau n°74:	Biodiversité et Abondance des macrophytes et invertébrés (ST07B)	
Tableau n°75:	Biodiversité et Abondance des coraux par famille (STO7C)	
Tableau n°76:	Biodiversité et Abondance des macrophytes et invertébrés (ST07C)	
Tableau n°77:	Données sur les poissons (ST07)	
Tableau n°78:	Liste des espèces complémentaires (ST07)	
Tableau n°79 :	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST07)	
Tableau n°80 :	Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011 (
Tableau n°81 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST07)	
Tableau n°82 :	Biodiversité et Abondance des coraux par famille (ST08A)	
Tableau n°83 :	Biodiversité et Abondance des macrophytes et invertébrés (ST08A)	
Tableau n°84 :	Biodiversité et Abondance des coraux par famille (ST08B)	
Tableau n°85 :	Biodiversité et Abondance des macrophytes et invertébrés (ST08B)	
Tableau n°86 :	Données sur les poissons (ST08)	
Tableau n°87 :	Liste des espèces complémentaires (ST08)	
Tableau n°88 :	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST08)	
Tableau n°89 :	Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 20	
	154	
Tableau n°90 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST08)	
Tableau n°91 :	Biodiversité et Abondance des coraux par famille (ST09A)	
Tableau n°92 :	Biodiversité et Abondance des macrophytes et invertébrés (ST09A)	
Tableau n°93 :	Biodiversité et Abondance des coraux par famille (ST09B)	
Tableau n°94 :	Biodiversité et Abondance des macrophytes et invertébrés (ST09B)	
Tableau n°95 :	Biodiversité et Abondance des coraux par famille (ST09C)	
Tableau n°96 :	Biodiversité et Abondance des macrophytes et invertébrés (ST09C)	
Tableau n°97 :	Données sur les poissons (ST09)	
Tableau n°98 :	Liste des espèces complémentaires (ST09)	
Tableau n°99 :	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST09)	
Tableau n°100 :	Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 20. 172	11 (ST09)
Tableau n°101 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST09)	172
Tableau n°102 :	Biodiversité et Abondance des coraux par famille (ST10A)	178
Tableau n°103 :	Biodiversité et Abondance des macrophytes et invertébrés (ST10A)	180
Tableau n°104 :	Biodiversité et Abondance des coraux par famille (ST10B)	181
Tableau nº105 ·	Riodiversité et Abondance des macronhytes et invertébrés (STIOR)	

Tableau n°106 :	Biodiversité et Abondance des coraux par famille (ST10C)
Tableau n°107 :	Biodiversité et Abondance des macrophytes et invertébrés (ST10C)
Tableau n°108 :	Données sur les poissons (ST10)
Tableau n°109 :	Liste des espèces complémentaires (ST10)
Tableau n°110 :	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST10)188
Tableau n°111 :	Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 2011 (ST10)
	189
Tableau n°112 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST10)190
Tableau n°113:	Biodiversité et Abondance des coraux par famille (ST11A)
Tableau n°114 :	Biodiversité et Abondance des macrophytes et invertébrés (ST11A)
Tableau n°115 :	Biodiversité et Abondance des coraux par famille (ST11B)
Tableau n°116 :	Biodiversité et Abondance des macrophytes et invertébrés (ST11B)201
Tableau n°117 :	Biodiversité et Abondance des coraux par famille (ST11C)
Tableau n°118 :	Biodiversité et Abondance des macrophytes et invertébrés (ST11C)203
Tableau n°119 :	Données sur les poissons (ST11)
Tableau n°120 :	Liste des espèces complémentaires (ST11)
Tableau n°121 :	Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST11)206
Tableau n°122 :	Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 2011 (ST11) 207
Tableau n°123 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST11)208
Tableau n°124 :	Biodiversité et Abondance des coraux par famille (ST12A)
Tableau n°125 :	Biodiversité et Abondance des macrophytes et invertébrés (ST12A)216
Tableau n°126:	Biodiversité et Abondance des coraux par famille (ST12B)
Tableau n°127:	Biodiversité et Abondance des macrophytes et invertébrés (ST12B)
Tableau n°128:	Données sur les poissons (ST12)
Tableau n°129 :	Liste des espèces complémentaires (ST12)
Tableau n°130 :	Nombre d'espèces par famille ichtyologique de 2009 à 2011 (ST12)
Tableau n°131 :	Comparaison de l'évolution de la richesse spécifique par famille, 2009 à 2011 (ST12) 221
Tableau n°132 :	Synopsis des résultats 2011 et récapitulatif des années précédentes (ST12)222
Tableau n°133 :	Récapitulatif des paramètres biologiques pour l'ichtyofaune
Tableau n°134 :	Récapitulatif du nombre d'espèces inventoriées pour les biocénoses (hors coraux) dans
le canal de la	Havannah depuis 2008236
Tableau n°135 :	Récapitulatif du nombre d'espèces inventoriées de coraux dans le canal de la Havannah
depuis 2008	237
Tableau n°136 :	Récapitulatif du nombre d'espèces inventoriées pour les biocénoses (hors coraux) dans
	ny et le canal Woodin depuis 2008237
Tableau n°137 :	Récapitulatif du nombre d'espèces inventoriées de coraux dans la baie de Prony et le
	depuis 2008
Tableau n°138 :	Indicateurs de l'état de santé des coraux (abondance, mortalité, recrutement et
	at) entre mars 2011et octobre 2011241
Tableau n°139 :	Evolution du taux de recouvrement du substrat de mars 2011 à octobre 2011 (différence
en %)	242
Tableau n°140 :	Evolution de la richesse spécifique du benthos de mars 2011 à octobre 2011 (gain/perte
en taxa)	242
Tableau n°141 :	Particularités de chaque station et évolution entre mars 2011 et octobre 2011243
Tableau n°142 :	Analyse de la Variance des densités moyennes (ind./m²) par station sur toutes les
	246
campagnes Tableau n°143 :	Analyse de la Variance des densités moyennes (ind./m²) pour les stations de la baie de
	· · · · · · · · · · · · · · · · · · ·
•	Anglyse de la Variance des deveités movemes (ind (m²) nour les stations du gard de la
Tableau n°144:	Analyse de la Variance des densités moyennes (ind./m²) pour les stations du canal de la toutes les campagnes.
Tableau n°145 :	toutes les campagnes
campagnes	Analyse de la variance des blomasses (g/m²) moyennes par station sur toutes les 249
Tableau n°146 :	Analyse de la Variance des biomasses (g/m²) moyennes pour les stations de la baie de
	res les campagnes250

Tableau n°147 : Hayannah sur	Analyse de la Variance des biomasses (g/m²) moyennes pour les stations du canal de la toutes les campagnes
Tableau n°148 :	Analyse de la Variance des biodiversités par station sur toutes les campagnes251
Tableau n°149 :	Analyse de la Variance des biodiversités pour les stations de la baie de Prony sur toutes
les campagnes	· · · · · · · · · · · · · · · · · · ·
Tableau n°150 :	Analyse de la Variance des biodiversités pour les stations du canal de la Havannah sur
	pagnes
Tableau n°151 :	Analyse non-paramétrique sur la densité, biomasse, biodiversité ichtyologiques (en
colonnes)	254
Tableau n°152 :	Analyse non-paramétrique sur la densité, biomasse, biodiversité ichtyologiques (en
lignes)	254
Tableau n°153:	Analyses non paramétriques Friedman (analyse en colonne)
Tableau n°154:	Tableau n°17-2 : Analyses non paramétriques Friedman (analyse en ligne)
Tableau n°155:	Analyses non paramétriques Friedman (analyse en ligne) sur les stations de Prony 255
Tableau n°156 :	Analyses non paramétriques Friedman (analyse en ligne) sur les stations du canal de la
Havannah	256
Tableau n°157 :	Analyses non paramétriques Friedman (analyse en ligne) sur le premier groupe de 4
	nal: Banc IORO; Pointe PUKA; TOEMO; UGO256
Tableau n°158 :	Analyses non paramétriques Friedman (analyse en ligne) sur le deuxième groupe de 5
stations du ca	nal: WOODIN; IONONTEA; B. CHAMBEYRON; Banc KIE; îlot KIE256
Tableau n°159 :	Moyennes des paramètres étudiés et calculées sur l'ensemble des stations256
Tableau n°160 :	Biodiversité α pour chaque station, depuis 2005260
Tableau n°161 :	<i>Tests sur les Ba.</i>
Tableau n°162 :	Moyennes temporelles Ba. en baie de Prony261
Tableau n°163 :	Moyennes temporelles Ba. en canal de la Havannah
Tableau n°164 :	Classement des stations par Ba décroissante
Tableau n°165 :	Espèces rencontrées sur les 12 stations en octobre 2011 et nombre de stations où
	es a été rencontrée (Σ)
Tableau n°166 :	Nombre d'espèces par famille
Tableau n°167:	Biodiversités et Equitabilités par mission
Tableau n°168:	Ubiquité spatiale depuis 2007
Tableau n°169:	Présence des espèces aux stations
Tableau n°170 :	Nombre de fois et proportion où une espèce a été vue par station depuis 2007274
Tableau n°171 :	Systématique / Description de Pocillopora damicornis
Tableau n°172 :	·
	Taille des colonies coralliennes fixées sur les piquets de la ST01A
Tableau n°173:	Annexe 01 : Catégories et composantes de substrat retenues pour l'échantillonnage et le
	données
Tableau n°174 :	Annexe 01 : Liste des poissons indicateurs
Tableau n°175:	Annexe 02: Différences dans les conditions d'exécution des différentes campagnes
	nages
Tableau n°176 :	Annexe 03 : Rapport de plongée
Tableau n°177 :	Annexe 03 : Corrections des marées
Tableau n°178 :	Annexe 02 : Agenda des marées (corrigées selon le lieu)
Tableau n°179 :	Annexe 04 : Recouvrement du susbtrat (en %) pour toutes les catégories305
Tableau n°180 :	Annexe 04 : Répartition du recouvrement (en %) du substrat, partie biotique/abiotique 305
Tableau n°181 :	Annexe 05: Inventaire des coraux et leur abondance (1 à 5) (stations de la baie de
Prony et du co	anal Woodin)306
Tableau n°182 : (stations de la	Annexe 05 : Inventaire des Macrophytes et des Invertébrés et leur abondance (1 à 5) baie de Prony et du canal Woodin)
Tableau n°183 :	Annexe 05 : Inventaire des coraux et leur abondance (1 à 5) (stations du canal de la
Havannah)	310
Tableau n°184 :	Annexe 05 : Inventaire des Macrophytes et des Invertébrés et leur abondance (1 à 5)
	unal de la Havannah)
Tableau n°185 :	Annexe 05 : Richesse spécifique du benthos par groupe
Tableau n°186 :	Annexe 05 : Richesse specifique un betinos pur groupe

de Prony et d	du canal Woodin)	316
Tableau n°187 : de la Havani	Annexe 05 : Liste des espèces cibles (CdC) et leur abondance (1 à 5) (station nah)	s du canal 317
Tableau n°188 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 320	007 (ST01)
Tableau n°189 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 321	007 (ST02)
Tableau n°190 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 322	007 (ST03)
Tableau n°191 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 323	007 (ST04)
Tableau n°192 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 325	007 (ST05)
Tableau n°193 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 327	007 (ST06)
Tableau n°194 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 328	007 (ST07)
Tableau n°195 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 330	007 (ST08)
Tableau n°196 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 332	007 (ST09)
Tableau n°197 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 333	007 (ST10)
Tableau n°198 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 335	007 (ST11)
Tableau n°199 :	Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 20 337	007 (ST12)
Tableau n°200 ·	Annexe 06 · Liste de toutes les espèces de poissons observées depuis 2005	338

Liste des Figures

Figure $n^{\circ}1$:	Schéma théorique d'une station composée de 3 transects (A, B, C), de 20 m de long	20
Figure $n^{\circ}2$:	Diagramme schématique d'un transect	
Figure $n^{\circ}3$:	Comptage visuel des poissons : méthode des transects à largeur variable	24
Figure $n^{\circ}4$:	Schéma structural, plan et photographies de la ST01	
Figure $n^{\circ}5$:	Représentation du recouvrement (en %) du substrat pour ST01A	35
Figure n°6 :	Représentation du recouvrement (en %) du substrat pour ST01B	
Figure n°7 :	Richesse spécifique par famille de poissons (ST01)	
Figure n°8 :	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST01)	
Figure n°9 :	Schéma structural, plan et photographies de la ST02	
Figure n°10 :	Représentation du recouvrement (en %) du substrat pour ST02A	
Figure n°11 :	Représentation du recouvrement (en %) du substrat pour ST02B	48
Figure n°12 :	Richesse spécifique par famille de poissons (ST02)	
Figure n°13 :	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST02)	
Figure n°14 :	Schéma structural, plan et photographies de la ST03	
Figure $n^{\circ}15$:	Représentation du recouvrement (en %) du substrat pour ST03A	
Figure n°16:	Représentation du recouvrement (en %) du substrat pour ST03B	
Figure n°17:	Représentation du recouvrement (en %) du substrat pour ST03C	
Figure n°18:	Richesse spécifique par famille de poissons (ST03)	
Figure n°19:	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST03)	
Figure n°20:	Schéma structural, plan et photographies de la ST04	
Figure n°21:	Représentation du recouvrement (en %) du substrat pour ST04A	
Figure n°22:	Représentation du recouvrement (en %) du substrat pour ST04B	70
Figure $n^{\circ}23$:	Représentation du recouvrement (en %) du substrat pour ST04C	79
Figure n°24:	Richesse spécifique par famille de poissons (ST04)	90
Figure n°25:	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST04)	
Figure n°26:	Schéma structural, plan et photographies de la ST05	95
Figure n°27:	Représentation du recouvrement (en %) du substrat pour ST05A	96
Figure n°28:	Représentation du recouvrement (en %) du substrat pour ST05B	06
Figure n°29:	Représentation du recouvrement (en %) du substrat pour ST05C	
Figure n°30:	Richesse spécifique par famille de poissons (ST05)	
Figure n°31:	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST05)	
Figure n°32:	Schéma structural, plan et photographies de la ST06	
Figure n°33:	Représentation du recouvrement (en %) du substrat pour ST06A	
Figure n°34:	Représentation du recouvrement (en %) du substrat pour ST06B	
Figure n°35:	Penrésentation du recouvrement (en %) du substrat pour STOOD	113
Figure n°36:	Représentation du recouvrement (en %) du substrat pour ST06C	115
Figure n°37:	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST06)	
Figure n°38:	Schéma structural, plan et photographies de la ST07	129
Figure n°39:	Représentation du recouvrement (en %) du substrat pour STO7A	130
Figure $n^{\circ}40$:	Représentation du recouvrement (en %) du substrat pour STO7B	
Figure $n^{\circ}41$:	Représentation du recouvrement (en %) du substrat pour ST07C	
Figure n°42:	Richesse spécifique par famille de poissons (ST07)	
Figure n°43:	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST07)	
Figure n°44:	Schéma structural, plan et photographies de la ST08	
Figure n°45:	Représentation du recouvrement (en %) du substrat pour STO8A	
Figure n°46:	Représentation du recouvrement (en %) du substrat pour ST08B	
Figure $n^{\circ}47$:	Richesse spécifique par famille de poissons (ST08)	
Figure n°48:	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST08)	
Figure n°49:	Schéma structural, plan et photographies de la ST09	
Figure n°50:	Représentation du recouvrement (en %) du substrat pour ST09A	
Figure $n^{\circ}51$:	Représentation du recouvrement (en %) du substrat pour ST09B	
Figure n°52 :	Représentation du recouvrement (en %) du substrat pour ST09C	160

Figure n°53 :	Richesse spécifique par famille de poissons (ST09)	171
Figure n°54:	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST09)	
Figure n°55:	Schéma structural, plan et photographies de la ST010	
Figure n°56:	Représentation du recouvrement (en %) du substrat pour ST10A	
Figure n°57:	Représentation du recouvrement (en %) du substrat pour ST10B	
Figure n°58:	Représentation du recouvrement (en %) du substrat pour ST10C	
Figure n°59:	Richesse spécifique par famille de poissons (ST10)	
Figure n°60:	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST10)	
Figure n°61:	Schéma structural, plan et photographies de la ST011	
Figure n°62:	Représentation du recouvrement (en %) du substrat pour ST11A	
Figure n°63:	Représentation du recouvrement (en %) du substrat pour ST11B	
Figure n°64:	Représentation du recouvrement (en %) du substrat pour ST11B	
Figure n°65:	Richesse spécifique par famille de poissons (ST11)	
Figure n°66:		
Figure n°67:	Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST11)Schéma structural, plan et photographies de la ST012	
Figure n°68:	Représentation du recouvrement (en %) du substrat pour ST12A	
_		
Figure n°69:	Représentation du recouvrement (en %) du substrat pour ST12B	
Figure n°70:	Richesse spécifique par famille de poissons (ST12)	
<i>Figure n</i> °71 :	Evolution des paramètres biologiques ichtyologiques depuis 2009 (ST12)	
<i>Figure n</i> °72 :	Représentation du recouvrement (en %) du substrat partie biotique/abiotique	
<i>Figure n°73 :</i>	Richesse taxonomique du benthos dans les 3 groupes clés	
Figure n°74:	Richesse spécifique de l'ichtyofaune par station	220
Figure n°75:	Densité (nb ind/m²) de l'ichtyofaune par station	
Figure n°76 :	Biomasse (g/m²) de l'ichtyofaune par station	
Figure $n^{\circ}77$:	Compraison des richesses spécifiques (coraux), par station, depuis juin 2009	
Figure n°78:	Compraison des richesses spécifiques (biocénoses, hors coraux), par station, dep	vuis juin
2009	236	
Figure n°79 :	Indicateurs de l'état de santé des coraux (abondance, mortalité, recrute	
	ment) entre mars 2011et octobre 2011	
Figure n°80 :	Nombre d'espèces par famille en octobre 2011 et comparaison avec la moyenne 20 266	05-2011
Figure n°81 :	Nombre d'espèces par familles et comparaison entre le canal et la baie de Prony	267
Figure n°82:	Proportion d'espèces par familles dans le peuplement total	
Figure n°83:	Structure du peuplement selon le modèle de Frontier	
Figure n°84:	Structure du peuplement selon le modèle de Motomura	
	Evolution des biodiversités α , β , γ , de l'indice d'Equitabilité E_{β} et de la biodiversi	209
Figure n°85 : observée	Evolution des bloatversties α , ρ , γ , de i maice à Equitabilité E_{β} et de la bloatverst. 271	ie ioiaie
Figure n°86 :		272
	Evolution de l'Indice d'Ubiquité moyen et de son intervalle de confiance à 95%	
Figure n°87:	Représentation graphique de l'Ubiquité spatiale	
Figure n°88:	Représentation graphique de l'Ubiquité temporelle	
Figure n°89:	Courbes de croissance des colonies coralliennes fixées sur les piquets du transect	A ae ta
station 01	280 Evenuele de selving descriptif d'une station	202
Figure n°90:	Exemple de schéma descriptif d'une station	293 200
rigure n°91 ·	Νιουμμομιση με ενμησιές μπίμερε μίμε τος ςουρμάς structurally	/44

		4 -	_		_	_	 4 -	_
		TA	_	_	2 ()	a	ГО	
_	•		u	•	s C	a		•

Carte n°01:	Localisation des stations sur carte topographique (source DH111)	18
Carte $n^{\circ}02$:	Localisation des stations sur photographie aérienne (source Google Earth)	19
Carte $n^{\circ}03$:	Localisation de la station 01 (Casy)	
Carte n°04 :	Localisation de la station 02 (Creek baie nord)	46
Carte $n^{\circ}05$:	Localisation de la station 03 (Port)	
Carte n°06:	Localisation de la station 04 (Woodin)	77
Carte $n^{\circ}07$:	Localisation de la station 05 (Ioro)	94
Carte $n^{\circ}08$:	Localisation de la station 06 (Ionontea)	111
Carte $n^{\circ}09$:	Localisation de la station 07 (Basse Chambeyron)	128
Carte $n^{\circ}010$:	Localisation de la station 08 (Pointe Puka)	144
Carte $n^{\circ}011$:	Localisation de la station 09 (Bancs Kié)	158
Carte $n^{\circ}012$:	Localisation de la station 10 (Ilôt Kié)	175
Carte $n^{\circ}013$:	Localisation de la station 11 (Toémo)	
Carte $n^{\circ}014$:	Localisation de la station 12 (Ilot Ugo)	211
Carte $n^{\circ}015$:	Résultats généraux : ichtyofaune, communautés benthiques, substrat par static	on de la baie
de Prony -	- canal Woodin	228
<i>Carte n</i> °016 :	Résultats généraux : ichtyofaune, communautés benthiques, substrat par sta	tion pour le
canal de la	a Havannah	229
	Liste des Photos	
Photo n°01 :	Mise en place d'un piquet	25
Photo n °02 :	Piquets doublés en début de transect A avec le ruban métré déroulé	25
Photo n°03:	Echantillonnage poissons	
Photo n°04:	Echantillonnage LIT	
Photo n°05:	Echantillonnage benthos	
Photo n°06:	Vidéo	
Photo n°07:	Position en surface par rapport à la pointe sud de l'îlot (ST01)	
Photo n°08:	Position en surface par rapport à la côte (ST02)	

Position en surface par rapport à la côte (ST04)......77

Position en surface par rapport au feu signal (ST05)......94

Position en surface (ST07)......128

Position en surface par rapport à la côte (ST12)......211

Colonies A, B, C en octobre 2011 (piquet 0 ST01A)......281

Colonies A, B, C en septembre 2010 (piquet 0 ST01A)......283

Colonies A, B, C en mars 2010 (piquet 0 ST01A).......284

Colonie D en mars, octobre 2011, mars, septembre 2010 (piquet X ST01A)285

Colonies E, F, G en mars, septembre 2010, juin 2009 (piquet XX ST01A)287

Crédit photographique : Grégory Lasne 2011 pour Biocénose, Valérie Vaillet 2011, pour AQUA TERRA. Photographies aériennes : Google Earth

Photo $n^{\circ}09$:

Photo n°010:

Photo n°011: Photo n°012:

Photo $n^{\circ}013$:

Photo n°014:

Photo n°015:

Photo n°016:

Photo n°017: Photo n°018:

Photo n°019:

Photo $n^{\circ}020$:

Photo $n^{\circ}021$:

Photo $n^{\circ}022$:

Photo n°023:

Photo n°024:

Photo n°025:

Photo n°026:

Photo $n^{\circ}027$:

1 Préambule

La société Goro Nickel S.A.S. a réalisé un "état de référence" des habitats coralliens en 2005 dans le cadre de l'application de l'arrêté d'autorisation de mise en fonctionnement des Installations Classées pour la Protection de l'Environnement (ICPE) n° 1769-2004/PS du 15 octobre 2004.

Cette étude de référence a été réalisée sur un réseau de 11 stations de mesures localisées dans la baie de Prony, le canal de la Havannah et l'entrée du canal Woodin.

En l'absence de référence méthodologique officielle, la société Goro Nickel avait alors préconisé l'utilisation d'une variante de la méthode du Line Intercept Transect (LIT) de English & al (1997) [01] pour cette étude. Cette méthode d'échantillonnage est largement utilisée par les experts pour l'évaluation de l'état des peuplements récifaux et des organismes associés.

Suite à la transmission des résultats de l'étude, la Direction de l'Environnement (DENV) a émis un certain nombre de commentaires notamment sur la méthodologie employée. La DENV a demandé à la société Goro Nickel SAS d'organiser un atelier de travail spécifique afin d'établir un protocole de référence pour le suivi temporel futur des communautés marines.

Cet atelier de travail s'est tenu le 3 mars 2006 à Nouméa avec la participation des experts institutionnels (Institut de Recherche pour le Développement, Université de Nouvelle Calédonie, Commission du Pacifique Sud) et des bureaux d'études locaux, et une démarche méthodologique d'échantillonnage et d'analyse a été proposée au regard des objectifs fixés.

Un programme détaillé pour réaliser le suivi de l'état des peuplements récifaux et organismes associés sur un ensemble de 11 stations de mesures prédéfinies et suivant le protocole d'échantillonnage et les méthodes d'analyse validés à l'issue de l'atelier de travail précité a donc été rédigé pour servir de cahier des charges (cf. annexe 01).

La société Goro Nickel S.A.S., puis Vale Inco Nouvelle Calédonie et dernièrement Vale Nouvelle-Calédonie, a alors fait réaliser une nouvelle campagne en septembre 2007, en octobre 2008, en juin 2009, en mars-avril et septembre 2010 puis en mars 2011 sur la base de ce cahier des charges, dans le cadre de la mise en place d'une base de données en vue d'une surveillance du milieu marin au démarrage de l'usine Goro Nickel.

Ce rapport présente les résultats de la campagne réalisée en octobre 2011 (du 25 septembre au 06 octobre) et répond aux exigences du cahier des charges initial, transmis lors de l'appel d'offre¹.

Le Mandataire est ici la SARL AQUA TERRA, représentée par Valérie VAILLET, aidé par deux partenaires majeurs : ACREM pour la partie Ichtyologique et BIOCENOSE pour la partie Benthique².

Ce rapport est à compléter par deux autres documents :

- Un Atlas Photographique [02]: qui est composé de photographies *in situ* de la faune et de la flore benthique ainsi que des vues d'ensemble des stations. Les organismes sont inventoriés et classés par transect (profondeur et position GPS). L'identification des biocénoses et la nature des substrats rencontrés dans les couloirs de 2.5 m de part et d'autres des transect s'appuient sur les observations terrain et sur les critères taxonomiques receuillis dans la bibliographie.
- Une vidéo regroupant les films pris sur chaque transect.

² Les données fournies par ces deux sociétés, le sont sous leur entière responsabilité. La SARL AQUA TERRA ne peut être tenue à une quelconque implication dans leurs résultats.

_

Avec le rajout d'une nouvelle station : ST12, sur l'îlot Ugo depuis juin 2009.

2 Objectif de l'étude

L'objectif de cette étude est d'effectuer un suivi de l'état des communautés coralliennes sur un ensemble de stations de mesures afin d'alimenter une base de données qui permettra de :

- Evaluer la variabilité naturelle des stations et d'optimiser l'effort d'échantillonnage par une étude de puissance ;
- Suivre dans le temps les effets potentiels des activités industrielles du projet Goro Nickel.

Ce suivi se fait à travers l'échantillonnage de 3 thèmes : l'habitat (le substrat), les macro-invertébrés épibenthiques (simplifié par la suite en « benthos ») et les poissons.

Pour le substrat, l'analyse temporelle doit permettre de montrer les variations entre les pourcentages de couverture corallienne, de végétaux, d'éponges,

Les pourcentages de substrat biotique et de substrat abiotique doivent également être mis en évidence.

L'échantillonnage du benthos doit permettre de montrer si des changements ont lieu sur des taxons cibles.

Enfin, l'échantillonnage des poissons doit permettre d'évaluer les variations de divers paramètres liés à la structure des populations ciblées, en relation avec l'impact potentiel de l'usine et de ses activités ou toute autre cause de changements.

L'analyse temporelle a été faîte selon les données historiques disponibles des campagnes précédentes de 2005, 2007, 2008, 2009 et 2010.

Cependant, cette comparaison est limitée avec les résultats de 2005, car seulement 9 des 11 stations prédéfinies ont été échantillonnée en 2005 et les méthodologies d'échantillonnage étaient légèrement différentes, notamment en ce qui concerne le nombre et la longueur des transects (deux transects de 50 m avaient été définis par station en 2005, contre trois transects de 20 m par la suite) (cf. tableau 175 annexe 02).

Du fait de la participation de 2 autres spécialistes (ACREM en ichtyologie et Biocénose en benthos), une partie de leurs données ou commentaires généraux est reprise dans le corps du rapport.

Par ailleurs, leurs résultats sont retranscrits intégralement, sous leur responsabilité, dans les paragraphes concernés.

3 Méthodologie


Les méthodologies appliquées dans le cadre de cette étude ont rigoureusement respecté le cahier des charges élaboré sous contrôle de la DENV et fourni par Vale Nouvelle-Calédonie pour l'appel d'offre préalable à ce contrat.

3.1 Zone d'étude

3.1.1 Contexte général

La zone d'étude générale comprend la zone principale du lagon pouvant être influencée par le projet (de manière directe ou indirecte) ainsi que des stations de référence.

C'est donc, dans le Sud de la Grande Terre : la baie de Prony, le canal Woodin et le canal de la Havannah. Le contexte géographique général est présenté sur la carte 01.

Carte n°01: Localisation des stations sur carte topographique (source DITTT)

3.1.2 Présentation des stations

3.1.2.1 Les stations

Au début, l'étude portait sur les 11 stations de mesures prédéfinies.

A partir de la campagne de juin 2009, à la demande de la tribu de l'île Ouen, une station supplémentaire (ST12, Ugo) a été ajoutée.

Les 12 stations sont donc localisées ainsi :

- -7 + 1 = 8 stations dans le canal de la Havannah,
- 3 stations dans la baie du Prony,
- 1 station à l'entrée du canal Woodin.

Les coordonnées de ces stations sont données dans le tableau 01.

Elles avaient été fournies dans le cahier des charges et elles ont été vérifiées sur le terrain par un GPS (Garmin GPSmap 60CSx), dont la précision est métrique. Le cas échéant, elles ont été reprises et affinées et sont donc modifiées dans ce tableau (cellules grisées) par rapport à celles d'origines (du cahier des charges). Par défaut, elles correspondent au piquet de départ (0 mètre) du transect A.

			Coordonnées	(RGNC 91)
STATIONS	STATIONS			LATITUDE
	Ilot Casy	01	166°51.033	22°21.799
Baie de Prony	Creek Baie Nord	02	166°52.546	22°20.356
	Port	03	166°53.639	22°21.312
Canal Woodin	Woodin	04	166°49.593	22°22.933
	Récif Ioro	05	166°57.507	22°23.072
	Banc Ionontea	06	166°58.995	22°23.650
	Basse Chambeyron	07	167°00.671	22°23.591
Canal de la	Récif pointe Puka	08	166°58.554	22°21.264
Havannah	Bancs de Kié	09	167°01.529	22°22.070
	Ilot Kié	10	167°03.862	22°22.324
	Récif Toémo	11	167°01.875	22°20.046
	Ugo	12	166°55.615	22°26.438

Tableau n°1 : <u>Coordonnées des stations d'échantillonnage</u>

Les stations sont positionnées sur la photographie aérienne en carte 02.

Carte n°02 : Localisation des stations sur photographie aérienne (source Google Earth)

3.1.2.2 Les transects

En accord avec le cahier des charges de la méthodologie générale applicable pour le projet Goro Nickel et adapté aux caractéristiques morphologiques des stations, plusieurs transects ont été définis, comme décrits dans le tableau 02.

Le cahier des charges prévoit de travailler sur des transects (ligne) de 20 mètres de long. Ainsi, à chaque station, trois transects de 20 m sont positionnés, en fonction de la profondeur :

- sur le haut du tombant (noté A),
- sur le milieu du tombant (noté B),
- sur le bas du tombant (mais au maximum à 20 m de profondeur, et à l'exclusion des zones de vase et dans ce cas, le transect est effectué avant la zone de vase) (noté C).

Quatre stations n'ont que 2 transects (ST01, ST02, ST08 et ST12) et la profondeur de chacun des transects (tableau 02) provient des relevés effectués lors de la présente mission.

STATION	LOCALISATION	Nombre de	PROFONDEUR (m) DES TRANSEC		ANSECTS
		TRANSECTS	A	В	С
01	Ilot Casy	2	7	10	-
02	Creek Baie Nord	2	10	12	-
03	Port	3	5	10	13
04	Woodin	3	4	11	21
05	Récif Ioro	3	5	10	20
06	Banc Ionontea	3	9	15	21
07	Basse Chambeyron	3	7	17	22
08	Récif pointe Puka	2	9	12	-
09	Bancs de Kié	3	7	17	20
10	Ilot Kié	3	10	16	21
11	Récif Toémo	3	6	11	20
12	Ugo	2	5	13	-

Tableau n°2 : <u>Caractéristiques des transects selon les stations</u>

Pour matérialiser les transects, 3 piquets permanents ont été positionnés sur chacun : au départ, soit 0 m ; à 10 m et à la fin, soit 20 m. Par ailleurs un 2ème piquet a été posé au point 0 m du 1er transect (le plus haut). Une station classique (avec 3 transects) peut donc être schématisée comme dans la figure 01.

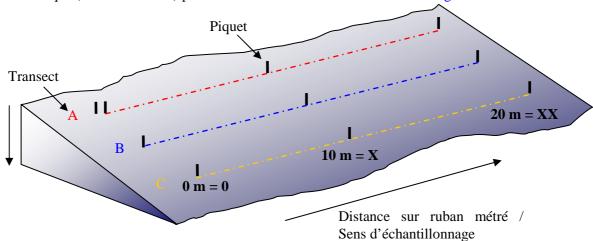


Figure n°1: Schéma théorique d'une station composée de 3 transects (A, B, C), de 20 m de long

Par mesure de commodité, dans la suite du rapport, les photos, figures etc. seront notées en abrégé par rapport à leur situation : le numéro de la station, la lettre du transect et le chiffre (en romain) de la longueur par rapport au ruban. Ainsi une photo prise sur le piquet de fin (à 20 m de distance) du transect du milieu de la station de Casy, sera abrégée en : ST01BXX.

Dans les schémas structuraux, les encadrés des photos sont de la couleur du transect : rouge pour le A, bleu pour le B et jaune pour le C.

3.2 Les travaux d'échantillonnage

3.2.1 Vérification des stations

Les travaux d'échantillonnages sur site peuvent être séparés en deux grandes phases :

- il faut au préalable localiser les stations sur le terrain (coordonnées GPS) et les vérifier sous l'eau,
- ensuite l'échantillonnage lui-même a été réalisé, selon le cahier des charges de la méthodologie générale applicable pour le projet Goro Nickel. La récolte des données a porté sur l'habitat (le substrat), le benthos et les poissons ainsi qu'en la réalisation de vidéos et de photos.

3.2.1.1 Positionnement

Les coordonnées des stations, préalablement calculées grâce aux cartes fournies par le Client, ont été rentrées dans le GPS (appareil Garmin GPSmap 60CSx), dont la précision est métrique.

Une fois rendue sur place, l'équipe a vérifié la concordance entre ces coordonnées et les profondeurs aussi prévues selon les cartes, grâce au sondeur du bateau.

Une reconnaissance en PMT (palmes / masque / tuba, de la surface) a alors été effectuée afin de repérer les piquets marquants les transects de la station.

Les plongeurs emmenent à cette occasion une bouée qu'ils attachent au 1^{er} piquet (0 m) du 1^{er} transect haut (le A), afin de permettre la prise des coordonnées exactes par GPS.

Lorsque les transects sont éloignés les uns des autres, cette manœuvre est répétée pour chacun.

3.2.1.2 Matérialisation

La méthode de suivi temporel statistique retenue pour le projet Goro Nickel, exige que les échantillonnages soient toujours réalisés sur les mêmes zones.

Cette précision implique la matérialisation physique de la station sous l'eau.

Les stations avaient toutes été matérialisées en 2005 puis vérifiées ou rematérialisées en 2007 & 2008.

3.2.1.2.1 Organisation « matérielle »

Le parfait état du marquage des stations étant primordial pour un suivi temporel, les piquets absents, tombés, branlants, etc. ont été systématiquement remplacés (cf. tableau 176 en annexe 03).

Pour « planter » un piquet, les consignes importantes à respecter sont :

- choisir obligatoirement un substrat abiotique,
- enfoncés suffisamment les piquets pour que ceux-ci ne puissent plus bouger.

Pour la résistance à l'oxydation, au recouvrement par les organismes marins, ... et faciliter leur perception visuelle sous l'eau, les piquets employés pour cette campagne étaient en acier galvanisé dont les caractéristiques sont les suivantes :

- longueur : 2 mètres,
- diamètre : 12 mm,
- peinture de protection grise et bande de marquage visuel (20 cm) en haut orange fluo,
- une pointe effilée.

Pour placer à bonne distance les piquets, un ruban métré est déroulé.

3.2.1.2.2 Organisation « temporelle »

L'échantillonnage du substrat étant basé sur la méthode en continu sur une ligne fixe, il est primordial pour la fiabilité du suivi de retrouver les transects placés précédemment et de les entretenir.

Cependant, cette maintenance peut influer sur la biocénose : les mouvements des plongeurs et le bruit occasionné par les coups sur les piquets peuvent perturber la faune pélagique (attraction ou au contraire fuite).

Par ailleurs, selon le substrat, cet effort peut rendre la visibilité très mauvaise du fait de la mise en suspension de sédiments fins du fond.

Pour éviter de fausser les données d'échantillonnage, elle a donc été pratiquée en 2 temps :

- Une première plongée préalable a permis de rechercher et retrouver les stations et leurs transects et de vérifier soigneusement leur état. Les opérations de maintenance nécessaires ont alors été réalisées.
- La plongée d'échantillonnage a été effectuée ultérieurement.

3.2.2 Protocole pour l'étude du substrat

L'analyse temporelle doit permettre de montrer les variations entre les pourcentages de couverture corallienne, de végétaux, d'éponges,

Les pourcentages de substrat biotique et de substrat abiotique doivent aussi bien être mis en évidence.

Pour cela, c'est la méthode dite « LIT » qui a été appliquée.

La méthode du Line Intercept Transect (LIT) de English & al (1997) [01] est largement utilisée par les experts locaux pour l'évaluation de l'état des peuplements récifaux et des organismes associés.

Cette méthode est dite à points fixes car seules les espèces et le substrat sous le transect sont notés.

Cette méthode permet d'évaluer la variabilité du substrat (suivi environnemental tous les semestres et/ou tous les ans). Cependant le LIT n'est pas représentatif de la biodiversité de la zone car les données prisent en compte sont exclusivement celles sous le ruban.

L'évaluation du substrat a été faîte le long du transect (sous le ruban) selon le principe des classes continues, avec une résolution de 10 cm.

Le principe est de noter à chaque changement de catégorie de substrat (= classe) la distance donné par le ruban, comme schématisé dans la figure 02 : le diagramme montre les points de transition (D) de chaque catégorie de substrat rencontré sous le transect. La différence entre deux points de transition est la "longueur" correspondante à cette catégorie.

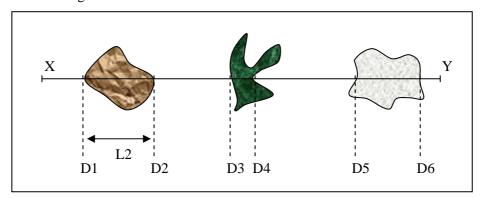


Figure n°2: Diagramme schématique d'un transect

Les classes retenues (au nombre de 28) sont adaptées de celles préconisées par English et al. [01] pour le « Line Intersept Transect » (« life forms »), et présentées dans le tableau 173 en annexe 01.

Une vidéo de chaque transect, ainsi que des photographies des objets représentatifs, ont été effectuées à des fins de stockage, permettant de revenir ultérieurement de façon qualitative sur des variations ayant été démontrées quantitativement avec le LIT.

3.2.3 Protocole pour l'étude du benthos

Cet échantillonnage doit permettre de quantifier la richesse spécifique (biodiversité) et de montrer si des changements ont lieu sur **des taxons**

cibles (cf. cahier des charges, annexe 01).

Pour cela, c'est la méthode d'observation sur couloirs qui a été appliquée.

Le couloir fait une largeur de 5 mètres (2.5 mètres de part et d'autre de chaque transect de 20 mètres de longueur).

Cette méthode donne une bonne représentation des communautés benthiques (inventaires faunes et flores) et du substratum (description géomorphologique) car une zone importante est prospectée et étudiée (100 m² pour chaque transect soit 300 m² par station théorique).

L'échantillonnage des stations comprend les communautés biotiques (les coraux scléractiniaires, les macrophytes et les invertébrés) et le substratum.

Les taxons cibles retenus sont :

- les algues et phanérogames (présence / absence), à déterminer au niveau du genre,
- les étoiles de mer, les oursins et les holothuries (densité), à déterminer au niveau de l'espèce,
- les crinoïdes (présence / absence),
- les cliones (densité),
- les bénitiers et les trocas (densité).

Prestations complémentaires :

Par rapport au cahier des charges, le travail a été approfondi, et l'échantillonnage a été en fait le plus exhaustif possible (tous les organismes benthiques et non que les taxons cibles), avec une détermination au niveau taxonomique le plus bas possible.

Par contre, la densité en organisme dans une zone d'étude étendue est difficile à évaluer précisément et peut conduire à de nombreuses erreurs. Afin de simplifier les opérations sous-marines et d'éviter les erreurs d'abondance, une échelle de recouvrement de 1 à 5 (tableau 03) a été mise en place au sein des groupes faunistiques suivant :

- Scléractiniaires (coraux) à l'échelle du genre et si possible de l'espèce.
- Algues à l'échelle du genre et si possible de l'espèce.
- Spongiaires et ascidies à l'échelle du genre et si possible de l'espèce.
- Bénitiers, trocas à l'échelle du genre.
- Echinodermes (étoiles de mer, oursins, holothuries, crinoïdes) à l'échelle du genre.

Cette échelle d'abondance a été modifiée par rapport à l'échelle d'abondance de English et al, 1997 [01]. Elle a été élaborée afin de caractériser l'abondance spécifique ou générique des biocénoses marines. Ainsi les pourcentages de recouvrement ont été réduits pour les indices (numéroté de 1 à 5) afin de pouvoir décrire les scléractiniaires, les macrophytes et les invertébrés sur l'ensemble de l'échelle.

Tableau n°3 :	Indices semi-quantitatifs d'abondance – cas classique

ECHELLE	RECOUVREMENT	ABONDANCE (nb individus ou colonies / 100 m²)
1	Rare	1
2	Faible	2 à 10
3	Moyen	11 à 20
4	Fort	21 à 41
5	Important	plus de 41

Certains genres de scléractiniaires (coraux durs) s'édifient en de grandes colonies de plusieurs mètres carrés (en particulier les formes massives, *Porites* spp., *Lobophyllia* spp., *Platygyra* spp., *Diploastrea heliopora*). Une seule de ces colonies peut ainsi construire un massif atteignant jusqu'à 10 mètres de diamètre. Dans ce cas, le fait d'indiquer le nombre de colonies n'a pas de sens. Pour ces espèces, une échelle paramétrée supplémentaire de 1 à 5 tient compte des mètres carrés colonisés par les colonies sur le couloir (pourcentage

de recouvrement) (tableau 04).

Tableau n°4: <u>Indices semi-quantitatifs d'abondance – présence de grandes colonies (plusieurs m²)</u>

ECHELLE	RECOUVREMENT	ABONDANCE (surface / 100 m²)
1	Rare	$< 0.5\% \text{ (soit } < 0.5 \text{ m}^2 / 100 \text{ m}^2\text{)}$
2	Faible	$> 0.5\% \text{ (soit } > 0.5 \text{ m}^2 / 100 \text{ m}^2\text{)}$
3	Moyen	$> 5\% \text{ (soit } > 5 \text{ m}^2 / 100 \text{ m}^2\text{)}$
4	Fort	$> 10\% \text{ (soit } > 10 \text{ m}^2 / 100 \text{ m}^2\text{)}$
5	Important	$> 15\% \text{ (soit } > 15 \text{ m}^2 / 100 \text{ m}^2\text{)}$

Des photographies et des vidéos ont été réalisées afin d'illustrer les observations terrain.

3.2.4 Protocole pour l'étude des poissons

Ce protocole doit permettre d'évaluer les variations de divers paramètres liés à la structure des populations ciblées, en relation avec l'impact potentiel de l'usine et de ses activités ou toute autre cause de changements.

Pour cela, c'est la méthode dite des transects à largeur variable « TLV » qui a été appliquée.

Les poissons sont échantillonnés par comptage visuel sous-marin comme précisé dans la figure 03 : un ou deux plongeurs progressent le long du transect et comptent les espèces retenues de part et d'autre.

Au cours de cette opération les plongeurs notent pour chaque espèce le nombre d'individus et estiment leur taille et leur distance perpendiculaire au transect.

Lorsque que les individus d'une même espèce sont en banc, le plongeur note la distance du poisson le plus proche (D1) et la distance du poisson le plus éloigné (D2).

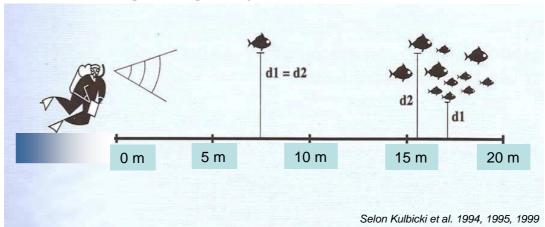


Figure n°3: Comptage visuel des poissons : méthode des transects à largeur variable

Les poissons qui doivent être comptabilisés sont listés dans le tableau 174 de l'annexe 01. Ils correspondent aux taxons indicateurs de la santé des récifs, ainsi qu'aux espèces comestibles.

Prestations complémentaires

1/ Liste complète

Le biologiste responsable de cet échantillonnage est spécialisé en écologie marine et notamment dans les poissons récifaux. Il a donc échantillonné l'ichtyofaune pour toutes les espèces présentes.

La nomenclature et l'orthographe des espèces, des genres et des familles sont celles utilisées par Randall J. E. [03].

2/ Zone complète

Par ailleurs la superficie échantillonnée a été agrandie à la station complète et non seulement aux seuls transects : Les poissons ont donc été repérés sur une surface de 25 ares environ. Elle comprend la zone où

ont été placés les transects et deux zones équivalentes de part et d'autre de cette dernière. Le plongeur se déplace lentement en notant les nouvelles espèces et cesse lorsque plus aucune nouvelle espèce n'est repérée depuis au moins 5 mn. Il peut donc repérer des espèces supplémentaires sur la zone des transects, espèces qui étaient restées invisibles depuis la ligne matérialisée par le pentadécamètre - où se tient obligatoirement le plongeur qui réalise un TLV - et repérer également des espèces du voisinage qui dans d'autres conditions auraient pu se trouver sur le transect. Ce complément de biodiversité permet de limiter les erreurs d'interprétation des « absences » faites à partir de la biodiversité de la première partie.

3.3 Période d'échantillonnage

La mission terrain a été déclenchée par la date de l'appel d'offre puis celle de la commande du présent contrat.

La période a été ensuite ajustée en fonction des coefficients de marée ainsi que de la lune (vives eaux ou mortes eaux) (détails dans les tableaux de l'annexe 03).

L'échantillonnage a donc été effectué du 25 septembre au 06 octobre 2011.

Photo n°01: Mise en place d'un <u>piquet</u>

Photo n°02: Piquets doublés en début de transect A avec le ruban métré déroulé

Photo n°03: <u>Echantillonnage</u> poissons

Photo n°04: Echantillonnage

Photo n°05: <u>Echantillonnage</u> benthos

Photo n°06: <u>Vidéo</u>

Les paramètres de chaque plongée ont été notés par la personne de surface, au fur et à mesure. Ils comprenaient notamment (liste non exhaustive):

- le numéro de la station.
- le nom du site.
- les coordonnées de la station en degrés, minutes et dixièmes de minute pour la longitude et pour la latitude,
- la date de la plongée,
- l'heure du début de la plongée sur la station,
- les conditions météorologiques lors de cette mission (vent, force et direction, pluie ou

- ensoleillement),
- la profondeur maximale et le temps de plongée,
- l'horaire des marées et les coefficients,
- le courant, la force approximative et la direction,
- la houle ou les vagues et le ressac qui peuvent gêner la mission,
- la visibilité.
- l'état de la station, la maintenance effectuée et les difficultés ou remarques éventuelles,
- la tâche effectuée par l'équipe et par chaque personne.

Ces données ont été regroupées dans un rapport de plongée présenté dans l'annexe 03.

Des photos représentatives des différentes étapes de la mission d'échantillonnage sont présentées ci-dessus (photographies 01 à 06).

3.4 Le traitement des données

3.4.1 Pour le substrat

Comme vu sur la figure 02, paragraphe 3.2.2, le principe d'échantillonnage par LIT est de noter à chaque changement de catégorie de substrat (= classe) la distance donnée par le ruban. La différence entre deux points de transition est alors la "longueur" correspondante à cette catégorie.

Le traitement consiste ici à faire le calcul du pourcentage de recouvrement de chaque classe, qui est obtenu par la somme de "ses longueurs" divisée par la longueur du substrat multipliée par 100, comme montré dans l'exemple (tableau 05) ci-dessous (qui se réfère à la figure 02).

Tableau n°5 :	Exemple de calcul	pour le recouvrement du substrat

DISTANCE	Longueur	CLASSE
X - D1	L1 = D1-0	S
D1 - D2	L2 = D2-D1	RC
D2 - D3	L3 = D3-D2	S
D3 - D4	L4 = D4-D3	MA
D4 - D5	L5 = D5-D4	S
D5 - D6	L6 = D6-D5	DC
D6 - Y	L7 = Y-D6	S

Ainsi, par exemple, le pourcentage de couverture en sable (S) = (L1+L3+L5+L7) / XY * 100

Les classes qui sont au nombre de 28 (tableau 173 de l'annexe 01) ont été regroupées en 12 principales composantes comme montrées aussi dans ce tableau, afin de pouvoir simplifier les interprétations.

Ces composantes reprennent les groupes faunistiques (coraux scléractiniaires, autres coraux, alcyonaires, autres organismes, algues, algues sur corail mort) ainsi que le matériel composant le substrat (corail mort, débris, sable, dalle, vase, eau).

Elles sont alors exprimées en pourcentages pour chaque transect et présentées sous forme de graphiques pour permettre une comparaison visuelle rapide.

Les comparaisons insistent sur les rapports entre :

- Corail vivant / Corail mort;
- Corail vivant / Algues + autres invertébrés ;
- Abiotique total / Biotique total, dont Coraux scléractiniaires.

3.4.2 Pour le benthos

La recherche de paramètres écologiques types (et représentatifs) ont été réalisés sur les taxons cibles :

- listing au niveau taxinomique demandé,
- richesse spécifique (le cas échéant),
- diversité,
- densité,
- abondance relative.

Ces résultats seront comparés entre les transects et les stations.

Par ailleurs, afin de pouvoir évaluer rapidement le changement d'état d'une station d'une mission à une autre (recrutement, mortalité, blanchissement et abondance), un code couleur simple à été établi, comme décrit dans le tableau 06.

Tableau n°6: <u>Code couleur pour la comparaison temporelle d'une même station</u>

Nouvelle espèce recensée	Recrutement si la colonie est juvénile et/ou nouvelle espèce recensée dans le couloir ou la zone prospectée par rapport à la dernière mission			
Mortalité	Espèce absente dans le couloir par rapport à la dernière mission			
Blanchissement	Espèce influencée par le blanchissement et de couleur blanche			
Recolonisation zooxanthelles	Colonie en cours de recolonisation par les zooxanthelles (couleur pâle) Elle présente de grandes chances de survie			
Espèce cible	Espèce cible (biocénose hors coraux)			
Mobilité	Espèce corallienne absente mais non comptabilisée en « mortalité » car mobile et l'exosquelette n'a pas été retrouvé dans la station			
Echelle (1 à 5)	Augmentation de l'abondance par rapport à la dernière mission			
Echelle (1 à 5)	Diminution de l'abondance par rapport à la dernière mission			
Echelle (1 à 5)	Pas de changement de l'abondance par rapport à la dernière mission			

Prestations complémentaires

Le biologiste responsable de cet échantillonnage est spécialisé dans l'inventaire des biocénoses benthiques marines et particulièrement en taxonomie corallienne. Il a donc échantillonné le milieu pour tous les organismes et ce jusqu'au niveau taxinomique le plus bas possible.

La restitution des données comprend donc aussi :

- la liste taxonomique des biocénoses benthiques,
- les tableaux des groupes biotiques et abondance,
- les commentaires des biocénoses par transect et station,
- un atlas photographique, illustrant les biocénoses.

3.4.3 Pour les poissons

Les résultats des comptages par TLV reprennent la nomenclature et l'orthographe des espèces, des genres et des familles de Randall J. E. [03].

Le nom des familles est abrégé dans les différentes tableaux, tel que défini dans le tableau 07.

Ces résultats quantitatifs sont présentés sous deux listings :

- un premier qui représente exactement les comptages obtenus sur les TLV (sur les transects),
- un deuxième, qui présente les espèces « complémentaires » : Ce sont les espèces qui n'ont pas été vues lors de la réalisation du TLV. Soit qu'elles soient arrivées plus tard sur le transect, soit qu'elles étaient présentes mais invisibles depuis la ligne centrale du TLV ou encore qu'elles étaient sur la

station mais situées en dehors des limites du TLV. Ce sont les espèces de la « station ».

Tableau n°7 : Lexique des abréviations des familles

FAMILLES	ABREVIATIONS	FAMILLES	ABREVIATIONS	FAMILLES	ABREVIATIONS
Acanthuridae	Aca	Engraulidae	Eng	Nemipteridae	Nem
Anthiinidae	Ant (Serranidae)	Ephippidae	Eph	Ophidiidae	Oph
Apogonidae	Apo	Epinephelinae	Epi (Serranidae)	Ostraciidae	Ost
Atherinidae	Ath	Fistulariidae	Fist	Pinguipedidae	Pin
Aulostomidae	Aul	Gobiidae	Gob	Platacidae	Pla
Balistidae	Bal	Grammistidae	Gra (Serranidae)	Pomacanthidae	Poc
Blenniidae	Ble	Haemulidae	Hae	Pomacentridae	Pom
Caesionidae	Cae	Holocentridae	Hol	Priacanthidae	Pri
Canthigasteridae	Can	Kyphosidae	Кур	Pseudochromidae	Pse
Carangidae	Car	Labridae	Lab	Ptereleotridae	Pte
Carcharhinidae	Carc	Latridae	Lat	Scaridae	Sca
Centriscidae	Cen	Leiognathidae	Lei	Scombridae	Scom
Chaetodontidae	Cha	Lethrinidae	Let	Scorpaenidae	Sco
Cirrhitidae	Cir	Lutjanidae	Lut	Siganidae	Sig
Dasyatidae	Das	Microdesmidae	Mic	Sphyraenidae	Sph
Diodontidae	Dio	Monacanthidae	Mon	Synodontidae	Syn
Dussumieriinae	Dus	Mullidae	Mul	Tetraodontidae	Tet
Echeneidae	Ech	Muraenidae	Mur	Zanclidae	Zan

Les familles retenues par la DENV sont en caractères gras

La densité et la biomasse des poissons sont calculées selon les formules théoriques suivantes :

- Densité (poissons/m²) =
$$\mathbf{D} = (2\mathbf{L})^{-1} \sum_{i=1}^{p} n_i d_i^{-1}$$

- Biomasse (g/m²) = $\mathbf{W} = (2\mathbf{L})^{-1} \sum_{i=1}^{p} w_i d_i^{-1}$

- Biomasse
$$(g/m^2) = W = (2L)^1 \sum_{i=1}^p w_i d_i^{-1}$$

Où:

L: longueur du transect (20 m)

ni : nombre d'individus de l'espèce i

wi : poids de l'espèce i (g) (de l'espèce i : donc de tous les individus i de cette espèce)

di : distance moyenne de l'espèce i au transect (m)

p: nombre d'espèces.

Le poids des individus (en g) a été estimé d'après leur taille en utilisant une relation d'allométrie taille-poids, $wi = ali^b$ du type:

Où:

li = longueur du poisson

 $a \ et \ b = variables$

Ces variables sont des coefficients mis au point par Kulbicki & al. [04] pour environ 350 poissons du lagon. Ils sont utilisés couramment et notamment par la CPS dans le logiciel de traitement qu'ils ont élaboré.

Donc, dans le cas présent, par rapport aux tableaux et aux variables qui sont présentés, voici un exemple de

calcul (tableau 08).

Tableau n°8: <u>Exemple de calcul pour « poisson »</u>

Espèce	Nombre (ni)	Longueur (li) cm	Poids (wi) g	D1	D2	Surf m ²	Densité (D) / m²	Biomasse (W) g/m²	a	b
Pomacentrus aurifrons	20	3	15,52	1	1,5	25	0,8	0,621	0,028	3,02

ni = nombre de poissons observés de cette espèce = 20

li = longueur moyenne de chaque individu = 3 cm

wi = poids de tous les individus de cette espèce = $(0.028 * 3^{3.02}) * 20 = 15.52$ g

D1 et D2 sont les distances minimale et maximale des individus observés = 1 m et 1.5 m

Surf = surface d'échantillonnage = di * L = $(1+1.5) / 2 * 20 = 25 \text{ m}^2$

D = densité eg. le nombre de poissons par $m^2 = 20 / 25 = 0.8$ individu au m^2

W = biomasse = $15.52 / 25 = 0.621 \text{ g/m}^2$

La biomasse et la densité ont ensuite été analysées en fonction de diverses variables (taxon-site-temps) :

- Valeurs de densité et de biomasse totales et par famille entre les 3 transects de chaque station.
- Variations temporelles de densité et de biomasse totales et par famille, par transect, et par station (moyenne des valeurs des 3 transects) comparaisons statistiques par ANOVA puis Tukey ou Kruskal-Wallis puis MDBT ou Steel Dwass (ou autre test a posteriori non paramétrique).
- Variation temporelle multivariée par taxons (Manova paramétrique ou par permutation).
- Variations temporelles de la richesse spécifique totale et par famille (χ 2), par transect et par station.

Prestations complémentaires

Le biologiste responsable de cet échantillonnage est spécialisé en écologie marine et notamment dans les poissons récifaux. Il a donc échantillonné l'ichtyofaune pour toutes les espèces.

En effet, en notant les effectifs de <u>chacune</u> des espèces rencontrées, il est possible (en plus) de calculer la biodiversité par station ce qui permet d'obtenir les **biodiversités alpha**, **bêta** et **gamma** sur la zone ; ainsi que **l'équitabilité** (Indice de Shannon relatif)³.

Dans l'ensemble des résultats, quand cela n'est pas précisé, les calculs ont été fait d'après le listing simplifié du cahier des charges (tableau 174 en annexe 01).

<u>La biodiversité</u> est une donnée semi-quantitative

On définit 3 niveaux de biodiversité :

La biodiversité dite α est le nombre d'espèces n présentes sur une station.

 $B\alpha_i = n_i$

La biodiversité β (B_{β}) est la diversité des valeurs de diversités α ;

La biodiversité γ (B γ) est la biodiversité totale de la zone

 $B_{\gamma} = \bigcup B_{\alpha ii}$

³ <u>L'indice de Shannon</u> est fondé sur la théorie de l'information qui considère 2 composantes de la diversité : le nombre d'espèces et la régularité de leur distribution de fréquence.

Dans la nature la valeur de H' se situe en général entre 0.5 (très faible diversité) et 4.5 (dans le cas d'échantillons de grande taille de communautés complexes).

<u>L'indice d'Equitabilité</u> équivaut à la répartition des effectifs entre S espèces présentes. L'indice varie entre 0 et 1. Il tend vers 0 quand la quasi-totalité des effectifs appartient à 1 seule espèce. Il tend vers 1 lorsque toutes les espèces ont la même abondance. Il est calculé en fonction de l'indice de Shannon.

4 Résultats bruts par station

4.1 Station 01 = Casy

Localisation géographique	Sud du platier de l'îlot Casy. Attention, la bouée de balisage de réserve (croix jaune) a été déplacée en raison d'un élargissement de la zone de réserve. La station biologique n'est plus localisable grâce à ce repère.
Nombre transects	2 transects positionnés sur la pente sédimentaire proche du platier (pente très douce). La pente est trop faible pour pouvoir installer un troisième transect (à 20 m de profondeur) à une distance raisonnable.
Description transects	Sont installés à une cinquantaine de mètres l'un de l'autre afin d'atteindre une profondeur de 7 et 10 mètres avec une orientation sud-est / nord-ouest.
	Une colonie de <i>Lobophyllia corymbosa</i> , de 2 m de diamètre, sert de point de repérage pour le début du transect A (photographie 01 de la figure 04).

Description générale

La pente douce récifale est constituée de sable coquillé sur lequel repose de nombreux massifs coralliens ainsi que de nombreux débris. Les organismes benthiques colonisent préférentiellement ce substrat dur. Les algues brunes *Sargassum spp*. et les alcyonaires du genre *Sarcophyton* sont particulièrement bien développés.

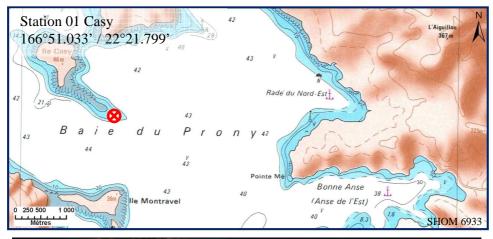
Cette station se caractérise par un recouvrement important en algues brunes (*Lobophora variegata*, *Sargassum*, *Distromium*, *Dictyota* et quelques *Padina*). Les macrophytes se distribuent sur du sable coquillé et sur des petits massifs coralliens répartis de manière hétérogène. Les alcyonaires occupent également une part importante du recouvrement (principalement *Sarcophyton*, *Sinularia* et *Lobophytum* et dans une moindre mesure *Dendronephthya*).

Désormais les cyanobactéries sont peu abondantes, elles se développent en petite proportion sur les débris coralliens. Elles ne prolifèrent plus comme pour les missions du mois de juin 2009 et octobre 2008 sur les *Lobophora variegata* (algue brune) et autour de la grande colonie de *Lobophyllia corymbosa*.

La richesse spécifique et le recouvrement corallien sont relativement faibles, les colonies coralliennes juvéniles observées au mois de septembre 2010 continuent à croître. La taille des colonies coralliennes scléractiniaires reste de taille décimétrique (*Pocillopora damicornis, Barabattoia amicorum, Galaxea fascicularis, Acanthastrea echinata, Goniastrea* cf. *pectinata*). Seules les genres *Acropora* de forme tabulaire et une colonie de *Lobophyllia corymbosa* reussissent à s'édifier et dépasser la taille métrique.

Par ailleurs, de nombreuses colonies coralliennes juvéniles s'édifient sur les massifs et même sur les piquets des transects (cf. photographies de la figure 04 et cf. § 7.2) (*Pocillopora damicornis, Barabattoia amicorum, Galaxea fascicularis, Acanthastrea echinata, Millepora* sp.).

Caractéristiques principales


- Recouvrement corallien faible.
- 🕏 7 colonies de *Pocillopora damicornis* colonisent les piquets du transect A.
- Hypersédimentation (la faune et flore sont adaptées à cette contrainte).
- \$\text{Les colonies coralliennes sont de petites tailles (hypersédimentation).}
- Recouvrement des alcyonaires et macrophytes (algues brunes) très important.
- 🖔 Compétition spatiale entre les alcyonaires, les éponges encroûtantes et les coraux.
- Richesse spécifique importante des macrophytes et des alcyonaires.
- Abondance des algues brunes Sargassum spp. et Lobophora cf. variegata.

Variations entre mars 2011 et octobre 2011

- ☼ Recouvrement de cyanobactéries faible.
- Augmentation du recouvrement des éponges du genre Cliona.
- Augmentation saisonnière de *Trichogloea requienii* (algue rouge).
- ⇔ Absence de l'algue brune du genre *Sargassum*.
- Richesse spécifique des ascidies a augmenté (*Polyphyllia aurita* et *P. nigricans*).
- Richesse spécifique des mollusques a légèrement augmenté (*Strombus* et *Spondylus*).
- 🖔 Richesse spécifique des coraux varie peu.
- Mortalité du genre Caulastrea qui était déjà auparavant peu commun dans cette station.
- Blanchissement corallien faible des espèces sensibles (*Seriatopora histrix* et *Acropora* tabulaire).
- L'ensemble des colonies de *Pocillopora damicornis* s'édifiant sur les 3 piquets du transect A ont une croissance moyenne estimée à 3.35 cm/6 mois.

Carte n°03: Localisation de la station 01 (Casy)

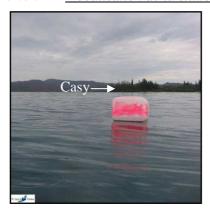
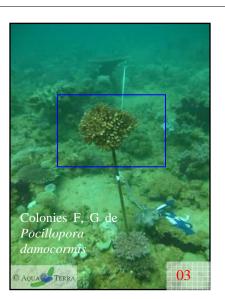
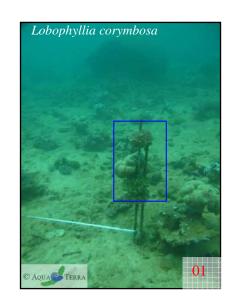
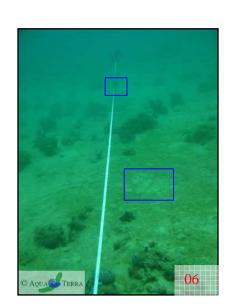
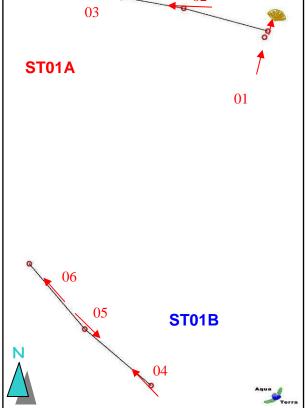
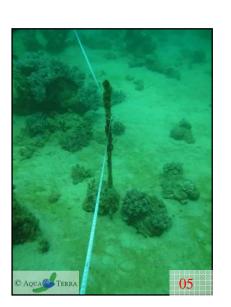



Photo n°07 : <u>Position en surface par rapport à la pointe sud de l'îlot (ST01)</u>








Colonies A, B et C de *Pocillopora damocormis*,

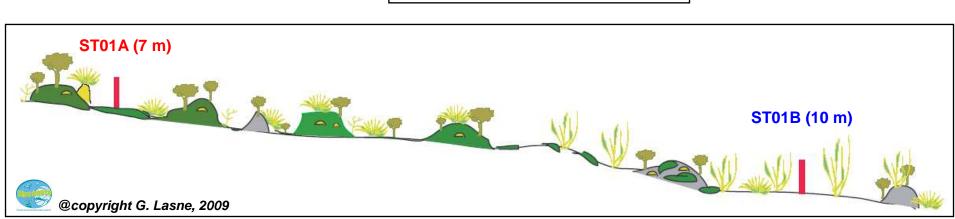


Figure n°4 : Schéma structural, plan et photographies de la ST01

Tapis de cyanobactéries

4.1.1 Le substrat (ST01)

Le pourcentage de couverture de chaque composante est donné dans la figure 05 pour le transect A et dans la figure 06 pour le transect B.



Figure n°5: Représentation du recouvrement (en %) du substrat pour ST01A

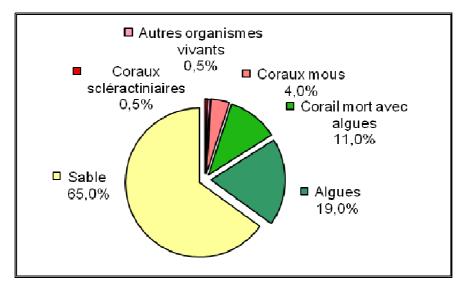


Figure n°6: Représentation du recouvrement (en %) du substrat pour ST01B

Le sable est prédominant avec respectivement 71.5% et de 65% de recouvrement pour les 2 transects. Cela entraîne évidemment que le substrat est majoritairement abiotique sur cette station : à 71.5% (contre 28.5% de biotique) au transect A et 65% (contre 35% de biotique) au transect B.

La partie biotique est constituée sur cette station essentiellement par des alcyonaires et des algues. Les coraux scléractiniaires sont faiblement représentés (7.5% et 0.5% respectivement sur chaque transect).

Il faut noter comme grand changement par rapport à la mission précédente : la quasi absence des sargasses (algues brunes) qui étaient une caractéristique de cette station, ainsi qu'une explosion de cyanobactéries au transect B. Celles-ci étaient répandues en tapis sur le fond (cf. photographie de la figure 04) et représentent 18% du substrat sur le transect bas.

4.1.2 Le benthos (ST01)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.1.2.1 Benthos Transect 01 A

4.1.2.1.1 Les Scléractiniaires (ST01A)

Les colonies sont généralement de petite taille (*Pocillopora damicornis, Barabattoia amicorum, Galaxea fascicularis, Acanthastrea echinata, Lobophyllia pachysepta, Cyphastrea japonica*). Seules les colonies d'*Acropora* tabulaire et *Lobophyllia corymbosa* dépassent la taille métrique. La colonie de *Lobophyllia corymbosa* (2 m de diamètre) s'édifiant à proximité du transect se fragmente tellement sa croissance est importante (phénomène normal pour une colonie de cette espèce).

Ce niveau bathymétrique est colonisé par 54 espèces coralliennes. Les familles scléractiniaires (52 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (17 taxons), les Acroporidae (11 taxons), les Fungiidae (4 taxons), les Mussidae (4 taxons), les Poritidae (3 taxons), les Dendrophyllidae (3 taxons) et les Pocilloporidae (3 taxons).

Famille	Nombre de taxa	Abondance (1 à 5)	
Scléractiniaire			
Acroporidae	11	3	
Agaraciidae	1	2	
Astrocoeniidae	1	2	
Caryophyllidae	0	0	
Dendrophyllidae	3	2	
Faviidae	17	3	
Fungiidae	4	3	
Merulinidae	2	2	
Mussidae	4	4	
Oculinidae	2	3	
Pectiniidae	0	0	
Pocilloporidae	3	4	
Poritidae	3	2	
Siderastreidae	1	1	
Total scléractiniaire	52	/	
Non Scléractiniaire			
Milleporidae	1	1	
Tubiporidae	0	0	
Gorgone	1	3	
Antipathaire	0	0	
Total coraux	54	/	

Tableau n°9 : Biodiversité et Abondance des coraux par famille (ST01A)

Sept colonies de *Pocillopora damicornis* s'édifient sur les 3 piquets du transect A (cf. § 7.2). La croissance moyenne des colonies est estimée à 3.35 cm / 6 mois (taux d'accroissement moyen 17%). Bien que la croissance des colonies coralliennes diminue avec le temps, on constate des variations d'accroissement durant l'année avec une plus forte activité bioconstructrice durant l'été austral.

<u>Variation entre mars 2011 et octobre 2011</u>							
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien					
Aucune nouvelle espèce recensée	Diminution d'abondance de 3	Faible observé sur 2 espèces : Acropora tabulaire, Seriatopora histrix					
Mortalité : toutes les espèces ont été recensées	espèces : Montipora sp., M. undata, Galaxea astreata	3 espèces ont réintégré leurs zooxanthelles : Cyphastrea serailia, Merulina ampliata, Pocillopora damicornis					

Les Macrophytes et les Invertébrés (ST01A) 4.1.2.1.2

Le recouvrement par les macrophytes et les alcyonaires et dans une moindre mesure par les spongiaires est très important dans cette station.

	Variation entre mars 2011 et octobre 2011				
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)			
Cyclicité des algues rouges : augmentation		Diminution d'abondance de 2 genres d'alcyonaires Sarcophyton et Sinularia			
d'abondance de		Présence nouvelle de 1 espèce d'holothurie Holothuria nobilis			
Trichogloea requienii	Pas de variation mais le recouvement est	Augmentation d'abondance de 1 espèce d'holothurie H. edulis			
Présence nouvelle de Gibsmithia hawaiiensis		Diminution d'abondance de 1 espèce d'holothurie <i>H. fuscopuntata</i>			
Giosminia nawanensis		Augmentation d'abondance des crinoides			
Diminution	faible	Présence nouvelle de 1 espèce de mollusque Conus miles			
d'abondance des algues brunes <i>Lobophora</i>	d'abondance des algues	Augmentation d'abondance de 1 espèce de mollusque <i>Pedum</i> spondyloideum			
U		Augmentation d'abondance et de recouvrement des éponges Cliona orientalis et C. jullienei			

Tableau n°10 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST01A)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	8	5
Algue brune	5	5
Algue rouge	2	3
Algue verte	1	2
Cyanobactéries	1	2
Anémone	0	0
Ascidie	1	2
Bryozoaire	0	0
Astérie	2	2
Crinoïde	1	3
Echinide	1	1

Holothurie	3	3
Hydraire	1	2
Mollusque	6	3
Spongiaire	3	4
Zoanthaire	0	0
TOTAL	35	/

4.1.2.2 Benthos Transect 01 B

4.1.2.2.1 Les Scléractiniaires (ST01B)

La richesse spécifique corallienne de ce niveau bathymétrique est la plus faible des stations de la baie de Prony (44 espèces coraux) et pour cette mission le nombre d'espèce est en légère diminution.

Ce niveau bathymétrique est colonisé par 44 espèces coralliennes (contre 45 en mars 2011) dont une espèce de *Tubipora musica* et une espèce de Millepore. Les familles scléractiniaires (41 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (11 taxons), les Acroporidae (6 taxons), les Pocilloporidae (4 taxons), les Mussidae (4 taxons), les Fungiidae (3 taxons), les Dendrophyllidae (3 taxons) et les Poritidae (3 taxons)

Variation entre mars 2011 et octobre 2011						
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien				
Présence nouvelle de 2 espèces (<i>Turbinaria peltata</i> et une Gorgone indéterminée)	Diminution d'abondance de 3 espèces (faible mortalité) :	La colonie corallienne				
Mortalité : 2 espèces n'ont pas été observées (<i>Caulastrea curvata</i> et <i>Cantharellus jebbi</i>). Cependant la mortalité est faible car ces deux taxons étaient représentés par une et deux colonies respectivement	Cyphastrea japonica, Lobophyllia pachysepta, Galaxea astreata	Seriatopora histrix blanchie lors de la dernière mission a réintégré ses				
Mobilité : l'espèce <i>Polyphyllia talpina</i> n'a pas été observée	Mobilité : Diminution d'abondance de <i>Cycloseris</i> sp.	zooxanthelles				

Tableau n°11 : <u>Biodiversité et Abondance des coraux par famille (ST01B)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	6	2
Agaraciidae	1	1
Astrocoeniidae	2	1
Caryophyllidae	0	0
Dendrophyllidae	3	1
Faviidae	11	3
Fungiidae	3	2
Merulinidae	1	1
Mussidae	4	2
Oculinidae	2	2
Pectiniidae	0	0
Pocilloporidae	4	2
Poritidae	3	2
Siderastreidae	1	1
Total scléractiniaire	41	/
Non Scléractiniaire		
Milleporidae	0	0
Tubiporidae	1	1
Gorgone	1	2
Antipathaire	1	1
Total coraux	44	/

4.1.2.2.2 Les Macrophytes et les Invertébrés (ST01B)

La richesse spécifique des macrophytes et des alcyonaires de ce niveau bathymétrique est l'une des plus fortes de toutes les stations de la baie de Prony (particulièrement par les algues brunes).

La zone est caractérisée par la présence de nombreuses espèces d'alcyonaires (5 espèces parmi les genres *Sarcophyton, Sinularia, Lobophytum, Klyxum*). Ces espèces de taille importante colonisent de préférence les substrats durs.

<u>Variation</u>	Variation entre mars 2011 et octobre 2011					
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)				
Absence importante du genre Sargassum (cyclicité saisonnière de ce genre)		Diminution d'abondance de 2 genres d'alcyonaires <i>Sarcophyton</i> et <i>Sinularia</i>				
Diminution d'abondance de Lobophora variegata Présence nouvelle de Trichogloea requienii et Gibsmithia hawaiiensis (algues rouges), Turbinaria ornata (algue brune) et Neomeris vanbossea (algue verte)		Augmentation d'abondance des crinoïdes				
	Absence	Présence nouvelle de 2 espèces d'ascidies <i>Polycarpa aurita</i> et <i>P. nigricans</i>				
		Présence nouvelle de 2 espèces de mollusques <i>Spondylus</i> sp. et <i>Strombus</i> sp.				

Tableau n°12 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST01B)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	6	5
Algue brune	5	4
Algue rouge	2	3
Algue verte	2	2
Cyanobactéries	0	0
Anémone	0	0
Ascidie	3	4
Bryozoaire	0	0
Astérie	1	1
Crinoïde	1	3
Echinide	0	0
Holothurie	2	2
Hydraire	1	2
Mollusque	5	3
Spongiaire	3	3
Zoanthaire	0	0
TOTAL	31	/

4.1.3 Les poissons (ST01)

La liste des espèces observées⁴ sur les transects et les résultats bruts sont fournis dans le tableau 13.

Station **Transect Transect Ilot Casy ST01** В A **Total** Moyenne Fam Espèces Nb Dens Biom Nb Dens Biom Nb Dens Biom 0,08 0,77 0,04 0,38 Ant Pseudanthias pictilis 6 6 Canthigaster valentini 0,01 0,01 2 Can 0,01 0,01 1 0,01 0,01 Epi 0,01 0,05 Cephalopholis boenak 1 1 0,01 0,02 2 2 0,02 Gob Amblygobius phalaena 0,03 0,04 0,01 0,13 Lab Cheilinus chlorourus 1 0,01 0,01 0,06 Lab Stethojulis bandanensis 1 0,01 0,12 1 0,01 0,06 Lab Thalassoma lunare 3 0,04 0,13 3 0,04 0,13 6 0,04 0,13 2 Pom Chrysiptera rollandi 2 0.03 0,02 0.01 0.01 Pom Dascyllus aruanus 6 0,08 0,08 6 0,04 0,04 Dascyllus reticulatus 5 5 0,03 0,03 Pom 0,06 0,06 7 0,23 Pom Pomacentrus moluccensis 7 0.09 0,23 0,09 14 0,09 0,23 Sca Scarus flavipectoralis 10 0,13 5,74 10 0,06 2,87 Siganus corallinus 2 2 0,10 Sig 0,03 0,19 0,01 **Total** 32 0.40 1.48 26 0,33 6,45 **58** 0.36 3,97 Biodiversité 8 8 **13** Indice de Shannon = 3,226 Equitabilité = 0,872

Tableau n°13 : <u>Données sur les poissons (ST01)</u>

Sur l'ensemble des transects de la station, 58 individus appartenant à 13 espèces différentes (tableau 13) ont pu être observés. Ils représentent une densité de 0.36 poisson/m² pour une biomasse de 3.97 g/m². 37 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 14).

Tableau n°14: <u>Liste des espèces complémentaires (ST01)</u>

	Ilot Casy ST01					
Fam	Espèces	Fam	Espèces	Fam	Espèces	
Aca	Acanthurus albipectoralis	Lab	Cheilinus chlorourus	Pom	Chromis margaritifer	
Aca	Acanthurus blochii	Lab	Coris batuensis	Pom	Chrysiptera rollandi	
Aca	Acanthurus dussumieri	Lab	Halichoeres argus	Pom	Dascyllus aruanus	
Aca	Acanthurus mata	Lab	Halichoeres prosopeion	Pom	Dascyllus reticulatus	
Aca	Zebrasoma veliferum	Lab	Stethojulis bandanensis	Pom	Pomacentrus adelus	
Ant	Pseudanthias pictilis	Lab	Thalassoma lunare	Pom	Pomacentrus chrysurus	
Can	Canthigaster valentini	Nem	Pentapodus aureofasciatus	Pom	Pomacentrus moluccensis	
Cha	Chaetodon baronessa	Nem	Scolopsis bilineatus	Pom	Pomacentrus nagasakiensis	
Cha	Heniochus acuminatus	Ost	Ostracion cubicus	Sca	Scarus altipinnis	
Epi	Cephalopholis boenak	Pin	Parapercis hexophtalma	Sca	Scarus ghobban	

⁴ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

Epi	Epinephelus ongus	Poc	Centropyge bicolor	Sca	Scarus flavipectoralis
Epi	Plectropomus leopardus	Poc	Centropyge tibicen	Sig	Siganus corallinus
Gob	Amblygobius phalaena				

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 15 et spécifiquement pour la campagne d'octobre 2011 sur la figure 07.

Tableau n°15 : Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST01)

Familles	Ilot Casy ST01						
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
Acanthuridae	2	1	1		1		
Anthiinidae					1		1
Blenniidae				1			
Canthigasteridae	1				1		1
Chaetodontidae	1			1			
Epinephelinae	2	1		1		1	1
Gobiidae	1	1	1	1	1	1	1
Labridae	1	2	2	2	2	3	3
Mullidae	1		1	1		1	
Nemipteridae		1	1	1			
Pomacanthidae	1	1					
Pomacentridae	4	2	5	4	4	5	4
Scaridae	2			1	1	1	1
Siganidae							1
Total espèces	16	9	11	13	11	12	13
Total familles	10	7	6	9	7	6	8



Figure n°7: Richesse spécifique par famille de poissons (ST01)

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 16), sous l'angle de vue de ce critère les sept campagnes sont similaires.

Tableau n°16: <u>Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011</u>
(ST01)

Test χ2	ddl	Seuil de tolérance à 0,95
43.57	78	99.62

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 17 et la figure 08.

Tableau n°17 : Synopsis des résultats 2011 et récapitulatif des années précédentes (ST01)

Ilot Casy ST01			Toutes espèces				
			Tran	Station	Station		
		Nb. ind.	Densité	Biodiv.2	Biodiv.3		
	Transect A	32	0,40	1,48	8		
2011 a	Transect B	26	0,33	6,45	8		
	Moy. AB	27,00	0,36	3,97	13	27	37
2011 a	Moy. AB	23,50	0,30	1,01	12	25	37
2010 b	Moy. AB	21	0,33	2,30	11	35	55
2010 a	Moy. AB	18,50	0,93	5,79	13	43	66
2009	Moy. AB	21,00	3,50	13,08	11	28	56
2008	Moy. AB	15,50	0,87	6,68	9	17	47
2007	Moy. AB	17,30	2,63	14,86	16	21	34

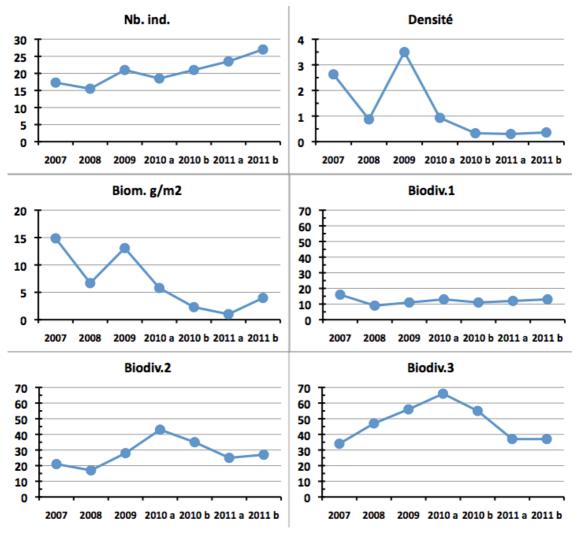
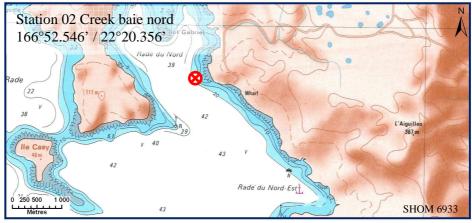


Figure n°8: <u>Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST01)</u>

4.2 Station 02 = Creek baie nord

Localisation géographique	Au sud de l'embouchure du creek de la Baie nord, à proximité d'un petit récif (langue récifale), face à un amas rocheux sur la plage (photographie 08).
Nombre transects	2 transects.
Description transects	Ils ont été installés à 10 et 12 mètres de profondeur, avec une orientation du sud vers le nord.

Description générale


Cette station est originale par l'importance de la richesse spécifique corallienne, la rareté des espèces coralliennes qui lui sont inféodées et par une multitude d'alcyonaires recouvrant le substratum (particulièrement le genre *Sarcophyton*). Les espèces benthiques vivant dans ce biotope sont adaptées aux conditions de turbidité soutenues et à un taux de sédimentation important (elles développent différentes stratégies d'adaptation pour s'édifier et survivre : peu demandeuses de lumière, grands polypes, sécrétion de mucus et/ou croissance rapide).

Caractéristiques principales

- Le recouvrement corallien du transect A est particulièrement représenté par des grands massifs de coraux branchus et celui du transect B est plutôt constitué de petites colonies éparpillées sur les blocs coralliens.
- Recouvrement alcyonaire important (*Sarcophyton*).
- Richesse spécifique importante des coraux (la plus importante de toutes les stations de suivi environnemental de la baie de Prony) : 87 espèces sur le transect A et 69 au transect B.
- 4 Hyper sédimentation : les petites colonies corallienne ont tendance à s'envaser.
- Originalité des espèces coralliennes adaptées à un milieu turbide et à la faible pénétration de la lumière dans l'eau par une croissance rapide, la secrétions de mucus et/ou de grands polypes pour se dégager de la sédimentation.
- \$ Compétition spatiale importante entre les alcyonaires, les algues brunes et les coraux.

Variations entre mars 2011 et octobre 2011

- 🔖 Evolution de la richesse spécifique des coraux :
 - Nouvelles espèces coralliennes (4 espèces au transect A).
 - Mortalité de 2 espèces au transect B.
- Blanchissement des espèces coralliennes sensibles à l'hypersédimentation : 2 espèces au transect B.
- Légère augmentation de la richesse spécifique des invertébrés (ascidies et mollusques).
- Présence de 1 spécimen de *Culcita novaeguineae* au transect B.
- ♦ Absence de cyanobactéries.

Carte n°04: <u>Localisation de la station 02 (Creek baie nord)</u>

Photo n°08: Position en surface par rapport à la côte (ST02)

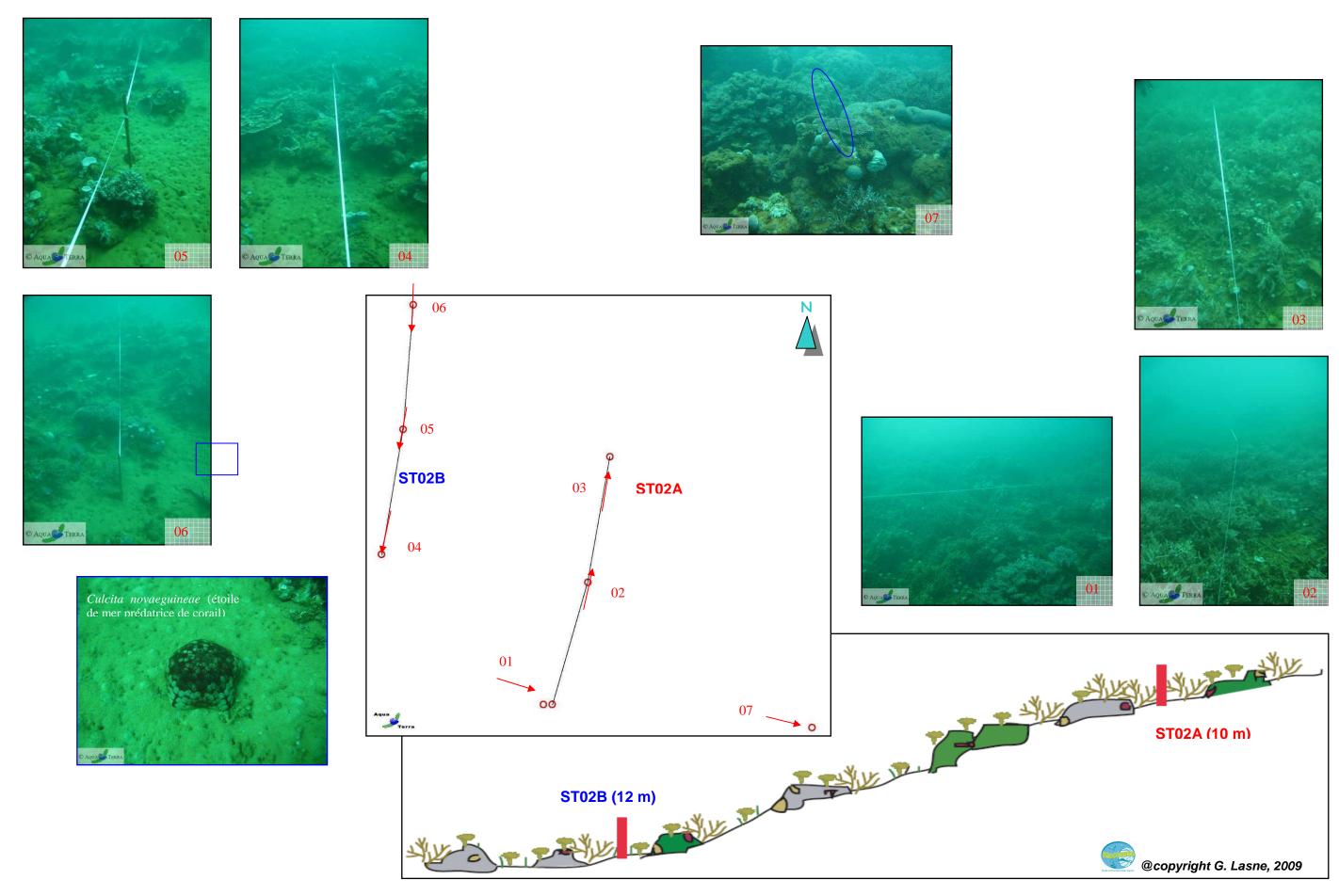


Figure n°9 : Schéma structural, plan et photographies de la ST02

4.2.1 Le substrat (ST02)

Le pourcentage de couverture de chaque composante est donné dans la figure 10 pour le transect A et dans la figure 11 pour le transect B.

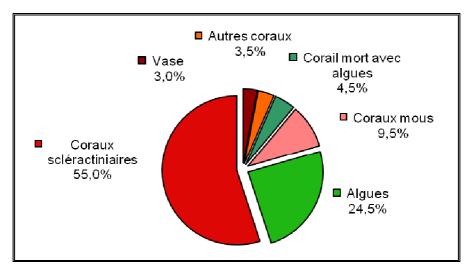


Figure n°10: Représentation du recouvrement (en %) du substrat pour ST02A

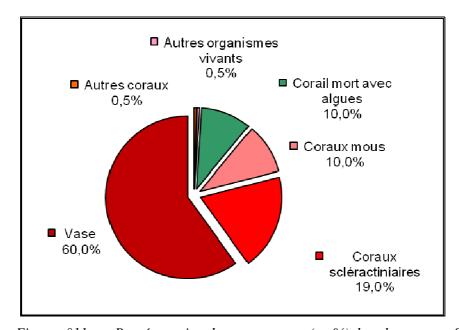


Figure n°11: Représentation du recouvrement (en %) du substrat pour ST02B

Au transect A, pour cette mission, la densité d'algues a diminué par rapport à la dernière fois (où il y avait eu une explosion : + 37.5% par rapport à septembre 2010) mais reste encore élevée avec 24.5%. Les coraux scléractiniaires voient, eux, leur recouvrement accru avec 55% (+ 26.5% soit presque un doublement par rapport à mars 2011). Cela peut s'expliquer en partie par leur croissance et certainement un moindre recouvrement par les algues. Ce sont essentiellement des *Acropora* sp.. De ce fait, le transect A est caractérisé par un substrat quasiment totalement biotique (97%).

Au contraire, sur le transect B, le substrat est majoritairement abiotique et vaseux (60%). La partie biotique est constituée essentiellement pas des alcyonaires et des coraux scléractiniaires (respectivement 10% et 19%). Le recouvrement est stable par rapport à la mission précédente.

4.2.2 Le benthos (ST02)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.2.2.1 Benthos Transect 02 A

4.2.2.1.1 Les Scléractiniaires (ST02A)

Les espèces inféodées à ce milieu sont adaptées aux conditions turbides (faible pénétration de la lumière dans l'eau) grâce à une croissance rapide et/ou grands polypes pour se dégager de la sédimentation. Les genres *Acropora*, *Anacropora* (Acroporidae: 19 espèces) et l'espèce *Hydnophora rigida* sont caractérisés par une croissance rapide (pointes blanches signifiant une croissance rapide car les zooxanthelles n'ont pas encore colonisées leurs extrémités). Ces espèces forment de grands massifs branchus et occupent des surfaces importantes. On peut noter la présence de *Anacropora puertogalerae* et de *Acropora grandis*. Les coraux massifs ou encroûtants colonisent généralement les parties verticales des récifs ou des blocs coralliens pour que la sédimentation ne soit pas un obstacle à leur édification.

Tableau n°18 : <u>Biodiversité et Abondance des coraux par famille (ST02A)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	19	5
Agaraciidae	7	3
Astrocoeniidae	2	3
Caryophyllidae	0	0
Dendrophyllidae	6	3
Faviidae	13	3
Fungiidae	8	3
Merulinidae	4	3
Mussidae	5	2
Oculinidae	3	3
Pectiniidae	4	3
Pocilloporidae	3	1
Poritidae	7	3
Siderastreidae	2	2
Total scléractiniaire	83	/
Non Scléractiniaire		
Milleporidae	3	4
Tubiporidae	0	0
Gorgone	0	0
Antipathaire	1	1
Total coraux	87	/

Ce niveau bathymétrique est colonisé par 87 espèces coralliennes dont deux espèces de *Millepora* branchu, une espèce de *Millepora* encroûtant et une espèce d'antipathaire. Les familles scléractiniaires (83 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Acroporidae (19 taxons), les Faviidae (13 taxons), les Fungiidae (8 taxons), les Agariciidae (7 taxons), les Poritidae (7 taxons), les Dendrophyllidae (6 taxons), les Mussidae (5 taxons), les Merulinidae (4 taxons) et les Pectinidae (4 taxons).

Variation entre mars 2011 et octobre 2011						
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien				
Présence nouvelle 4 espèces : Stylocoenielle guentheri, Goniastrea reniformis, Galaxea paucisepta et Pocillopora damicornis	Augmentation d'abondance de 3 espèces : Alveopora spongiosa, Galaxea fascicularis et Turbinaria reniformis	Aucun dans le				
Mortalité : toutes les espèces ont été recensées	Diminution d'abondance de 4 espèces : Anacropora puertogalerae, Merulina ampliata, Galaxea astreata, et Millepora branchu	couloir				

4.2.2.1.2 Les Macrophytes et les Invertébrés (ST02A)

Le recouvrement par les macrophytes et les invertébrés est important dans cette station.

Les algues brunes du genre *Lobophora variegata* envahissent l'ensemble des massifs et des débris coralliens. De nombreux alcyonaires aussi, dont les plus nombreux (*Sarcophyton* et *Sinularia*) peuvent atteindre de grande taille (50 cm de hauteur). Le recrutement en *Sarcophyton* est très important et des spécimens de petite taille se répartissent abondamment et recouvrent en masse les roches et les débris coralliens.

Tableau n°19 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST02A)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	9	5
Algue brune	1	3
Algue rouge	1	3
Algue verte	3	3
Cyanobactéries	0	0
Anémone	0	0
Ascidie	0	0
Bryozoaire	0	0
Astérie	0	0
Crinoïde	0	0
Echinide	0	0
Holothurie	1	2
Hydraire	1	3
Mollusque	4	2
Spongiaire	4	3
Zoanthaire	1	2
TOTAL	25	/

Variation entre mars 2011 et octobre 2011							
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)					
Diminution du recouvrement de l'algue brune <i>Lobophora</i>	Absence	Absence de 3 espèces d'échinodermes (Astérie : <i>Nardoa gomophia</i> sp., Echinide : <i>Diadema setosum</i> ; Holothurie : <i>Stichopus variegatus</i>)					
variegata		Présence nouvelle de 2 espèces de mollusques <i>Arca</i> ventricosa et <i>Pedum spondyloidum</i>					

4.2.2.2 Benthos Transect 02 B

4.2.2.2.1 Les Scléractiniaires (ST02B)

Ce niveau bathymétrique est colonisé par 69 espèces coralliennes dont trois espèces de *Millepora*. La richesse spécifique des scléractiniaires est l'une des plus importantes de la baie de Prony pour ce niveau bathymétrique. 66 espèces sont réparties préférentiellement dans les familles des Acroporidae (14 espèces), Faviidae (11 espèces), Agaraciidae (6 espèces), Pectiniidae (5 espèces), Mussidae (5 espèces), et Merulinidae (5 espèces).

Tableau n°20 : <u>Biodiversité et Abondance des coraux par famille (ST02B)</u>

Famille	Nombre de taxa	Abondance (1 à 5)	
Scléractiniaire			
Acroporidae	14	5	
Agaraciidae	6	3	
Astrocoeniidae	2	2	
Caryophyllidae	0	0	
Dendrophyllidae	3	3	
Faviidae	11	4	
Fungiidae	3	3	
Merulinidae	5	4	
Mussidae	5	2	
Oculinidae	3	4	
Pectiniidae	5	2	
Pocilloporidae	3	2	
Poritidae	3	2	
Siderastreidae	3	2	
Total scléractiniaire	66		
Non Scléractiniaire			
Milleporidae	3	3	
Tubiporidae	0	0	
Gorgone	0	0	
Antipathaire	0	0	
Total coraux	69	/	

Comme pour le niveau supérieur, les espèces inféodées à ce milieu sont adaptées aux conditions turbides (faible pénétration de la lumière dans l'eau) par une croissance rapide et/ou grands polypes pour se dégager de la sédimentation. Cependant, le transect est positionné en bas de pente sédimentaire et le taux de sédimentation est plus important que pour le niveau supérieur. Le recouvrement corallien est plus faible et les colonies sont majoritairement de plus petite taille. Cependant une grande colonie de *Coscinaraea columna* de 3 m de diamètre s'épanouie dans cet environnement chargé de particules terrigènes.

A noter, la présence d'espèces caractéristiques des milieux turbides : Blastomussa merleti, Anacropora sp., Hydnophora rigida, Lithophyllum edwardsi, Cyphastrea japonica, Porites cylindrica, Pavona cactus, Turbinaria mesenterina, T. stellulata, Stylocoeniella armata et S. guentheri.

Les espèces *Mycedium elephantotus*, *Leptoseris foliosa*, *L. mycetoseroides* et *L. yabei* sont logées dans des cavités ou bien des surplombs pour être protégées de la sédimentation.

Variation entre mars 2011 et octobre 2011							
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien					
Mortalité de 2 espèces : Psammocora contigua et Echinophyllia sp.	Diminution d'abondance pour 6 espèces (la majorité de ces espèces étaient influencées par le blanchissement lors de la mission précédente): Acropora branchu, Pavona cactus, Turbinaria mesenterina, Barabattoia amicorum, Merulina ampliata et Lobophyllia corymbosa	Observé sur 2 espèces : Acropora grandis, Mycedium elephantotus. Ces colonies montraient déjà des signes de blanchissement lors des 2					
Aucune nouvelle espèce corallienne	Augmentation d'abondance pour 2 espèces : Echinophyllia aspera et Coscinaraea columna	missions précédentes et ces dégradations s'accentuent au fur et à mesure du temps					

4.2.2.2.2 Les Macrophytes et les Invertébrés (ST02B)

Les macrophytes et des invertébrés sont également bien adaptés à la forte sédimentation. Leur recouvrement est important et ils colonisent tous les types de substrat.

Les algues brunes *Lobophora variegata* abondent sur tous les substrats durs et les algues vertes du genre *Halimeda* sont dispersées par thalles sur la roche et l'espèce *H. gigas* croit directement dans la vase (macrophyte à bulbe).

Le recrutement en *Sarcophyton* est très important, les spécimens de petite taille se répartissant abondamment et recouvrant en masse les roches et les débris coralliens.

Les échinodermes ne sont pas très diversifiés, aucune astérie ni crinoide n'a été inventoriée, seules les holothuries de l'espèce *Holothuria flovomaculata* sillonnent les substrats vaseux et les débris coralliens.

	Variation entre mars 2011 et octobre 2011						
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)					
Diminution de		Présence nouvelle de l'espèce d'astérie <i>Culcita novaeguinea</i> (1 seul spécimen)					
recouvrement de		Absence de 1 espèce d'alcyonaire Rhytisma sp.					
l'algue brune Lobophora	Absence	Présence nouvelle de l'espèce de mollusque Pteristernia reincarr					
variegata et l'algue		Absence de 1 espèce de mollusque Tridacna derasa					
verte <i>Halimeda</i> sp.		Augmentation du recouvrement des éponges <i>Cliona jullienei</i> et régression de <i>Cliona orientalis</i>					

Tableau n°21 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST02B)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	8	5
Algue brune	1	3
Algue rouge	1	3
Algue verte	3	2
Cyanobactéries	0	0
Anémone	0	0
Ascidie	1	2
Bryozoaire	0	0
Astérie	2	1
Crinoïde	0	0
Echinide	1	2
Holothurie	2	2
Hydraire	1	3
Mollusque	4	2
Spongiaire	3	4
Zoanthaire	1	2
TOTAL	28	/

4.2.3 Les poissons (ST02)

La liste des espèces observées⁵ sur les transects et les résultats bruts sont fournis dans le tableau 22.

Transect Transect Station Creek baie nord ST02 A В Total Moyenne **Biom** Nb Fam **Espèces** Nb **Dens** Biom Nb **Dens Dens Biom** 0.77 Ant Pseudanthias pictilis 6 0.08 6 0.04 0.38 Ble Ecsenius bicolor 2 0.03 0.03 0.01 0.02 Cae 70 0.25 48.00 70 0,13 24,00 Caesio cuning Can Canthigaster valentini 1 0,01 0,01 1 0.01 0.00 Cha Chaetodon auriga 2 0.03 4.26 0.01 2.13 Cha Chaetodon baronessa 2 2 0,01 0.21 0,01 0,42 Cha Chaetodon lunulatus 2 0,03 0,25 2 0.01 0.13 Cha Chaetodon melannotus 1 0.01 0.29 0.01 0.15 Chaetodon ulietensis Cha 1 0,01 0,07 1 0,01 0,03 Epi Anyperodon leucogrammicus 1 0,01 0,66 1 0,01 0.33 Hae Plectorhinchus flavomaculatus 30 0.09 120.00 30 0.05 60.00 Abudefduf whitleyi 7 12 Pom 0,06 0,87 5 0,06 0,69 0,06 0,78 Pom Chrysiptera rollandi 17 0.21 0.04 7 0.05 0.02 24 0.13 0.03 Pom Pomacentrus aurifrons 100 1.25 1.53 100 0.63 0.76 Pse Pseudochromis coralensis 0,23 10 0,06 0,12 10 0,13 Sca Scarus flavipectoralis 4 0.05 22,18 4 0.03 11.09 1,90 75,51 100,16 Total 178 124,82 90 0,46 268 1,18 Biodiversité 11 7 16 Indice de Shannon = 2,624 Equitabilité = 0.656

Tableau n°22 : <u>Données sur les poissons (ST02)</u>

Sur l'ensemble des transects de la station, 268 individus appartenant à 16 espèces différentes (tableau 22) ont pu être observés. Ils représentent une densité de 1.18 poissonS/m² pour une biomasse de 100.16 g/m². 54 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 23).

Creek baie nord ST02 Fam **Espèces** Fam Espèces Fam **Espèces** Ple Aca Naso unicornis Epi Epinephelus ongus Assessor macneilli Pomacanthus sexstriatus Ant Pseudanthias pictilis Epi Plectropomus leopardus Poc Apogon angustatus Hae Plectorhinchus chaetodonoides Pom Abudefduf whitleyi Apo Apo Cheilodipterus macrodon Hae Plectorhinchus flavomaculatus Pom Chrysiptera rollandi Ecsenius bicolor Ble Hol Sargocentron rubrum Pom Neoglyphydodon melas Cae Caesio cuning Lab Cheilinus trilobatus Pom Neoglyphydodon nigroris

Choerodon fasciatus

Pom

Tableau n°23 : Liste des espèces complémentaires (ST02)

Lab

Canthigaster valentini

Can

Rap 040-11_Ver01

Neopomacentrus filamentosus

⁵ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Cha	Chaetodon auriga	Lab	Coris aygula	Pom	Pomacentrus aurifrons
Cha	Chaetodon baronessa	Lab	Epibulus insidiator	Pom	Pomacentrus moluccensis
Cha	Chaetodon bennetti	Lab	Halichoeres argus	Pom	Pomacentrus pavo
Cha	Chaetodon flavirostris	Lab	Hemigymnus melapterus	Pom	Stegastes aureus
Cha	Chaetodon lunulatus	Lab	Labroides dimidiatus	Pse	Pseudochromis coralensis
Cha	Chaetodon melannotus	Lab	Oxycheilinus rhodochrous	Sca	Scarus flavipectoralis
Cha	Chaetodon ulietensis	Lab	Oxycheilinus unifasciatus	Sca	Scarus ghobban
Cha	Chaetodon vagabundus	Lut	Lutjanus fulvus	Sca	Scarus rubroviolaceus
Epi	Anyperodon leucogrammicus	Lut	Macolor niger	Sig	Siganus doliatus
Epi	Cephalopholis boenak	Mul	Parupeneus barberinoides	Syn	Synodus variegatus

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 24 et spécifiquement pour la campagne d'octobre 2011 sur la figure 12.

Tableau n°24 : Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST02)

Familles	Creek baie nord ST02							
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b	
Acanthuridae	1	2						
Anthiniidae							1	
Blenniidae			1		1		1	
Caesionidae							1	
Canthigasteridae							1	
Chaetodontidae	1	2	1	2	2	3	5	
Epinephelinae	1	2	2	1	1	2	1	
Haemulidae		1					1	
Labridae	1	1	1	2		2		
Nemipteridae		1	1	1		1		
Pomacentridae	1	3	3	3	3	1	3	
Scaridae	1			1	1	2	1	
Siganidae						2	1	
Total espèce	6	12	9	10	8	7	16	
Total familles	6	7	6	6	6	8	10	

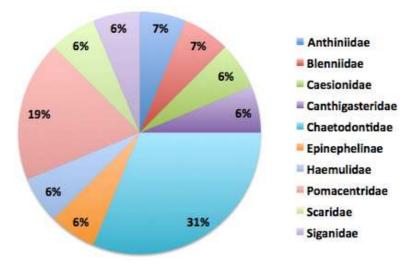


Figure n°12 : Richesse spécifique par famille de poissons (ST02)

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 25), sous l'angle de vue de ce critère les sept campagnes sont similaires.

Tableau n°25 : <u>Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011</u> (ST02)

Test χ2	ddl	Seuil de tolérance à 0,95
50.42	72	92.82

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte).
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 26 et la figure 13.

Tableau n°26 : Synopsis des résultats 2011 et récapitulatif des années précédentes (ST02)

			Liste DENV				Toutes espèces
Creek ba	Creek baie nord ST02		Transect TLV			Station	Station
		Nb. ind.	Densité	Biom. g/m ²	Biodiv.1	Biodiv.2	Biodiv.3
	Transect A	178	1,90	124,82	11		
2011 b	Transect B	90	0,50	78,81	7		
	Moy. AB	134,00	1,18	100,16	16	38	54
2011 a	Moy. AB	35,50	0,45	56,40	13	27	38
2010 b	Moy. AB	45	1,41	4,23	8	39	51
2010 a	Moy. AB	33,50	1,68	6,71	10	33	47
2009	Moy. AB	29,50	1,49	6,73	9	13	34
2008	Moy. AB	35,50	1,76	26,05	12	19	30
2007	Moy. AB	33,50	1,12	5,46	6	23	33

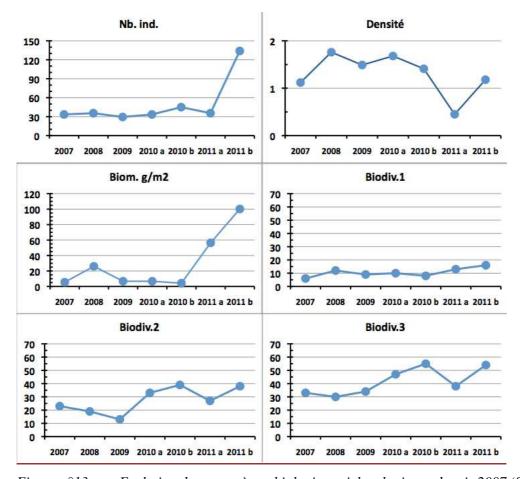


Figure n°13: <u>Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST02)</u>

4.3 Station 03 = Port

Localisation géographique	Au sud-est des quais du projet Goro Nickel (à +/- 150 m au plus près). Un petit creek (visible sur la photographie aérienne de la carte 05) débouche sur la côte, légèrement à l'est.
Nombre transects	3 transects.
Description transects	Ils ont été installés perpendiculairement à la pente à 5, 10 et 13 mètres de profondeur, dans une direction est-ouest.
	Le sommet de la pente sédimentaire a une inclinaison faible (entre 10 et 15°) puis cette inclinaison augmente de manière importante (35° à 40°) pour les profondeurs avoisinant les 15 mètres. Le transect A est sur un substrat peu colonisé et composé de vase sableuse avec des débris coralliens. Le transect C est situé en bas de pente.

Description générale

Cette station est située sur la pente récifale bordant un petit récif frangeant relativement bien préservé, mais la zone est fortement envasée. Cette sédimentation provient des apports terrigènes qui sont charriés par les creek et les rivières autour de cette zone. Lors de précipitations de nombreuses particules terrestres sont entraînées par ruissellement dans les cours d'eau créant un panache turbide se répartissant dans la baie selon les courants.

En surface la visibilité peut être réduite à cause de l'apport d'eau douce de la rivière et de résurgences avec des matières en suspension (halocline : masse d'eau douce sur masse d'eau salée).

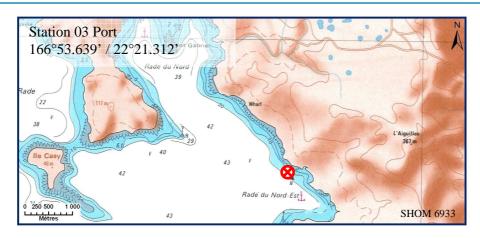
Le haut de la pente récifale (entre 3 et 6 m de profondeur) est composé de vase sur laquelle se développe des massifs coralliens épars et des *Halimeda gigas*. Ces blocs coralliens sont dispersés de manières hétérogènes et sont recouverts principalement par des algues brunes et de petites colonies coralliennes. Puis, à partir de 6 m de profondeur jusqu'en bas de pente, la pente récifale devient plus inclinée et le dépôt sédimentaire est de plus en plus important avec la profondeur. Le développement corallien va être en relation avec ce facteur limitant. Les colonies vont être de plus en plus petites avec la profondeur et les coraux branchus et les coraux à longs polypes vont se développer préférentiellement.

Pour les coraux branchus, la croissance est plus rapide que l'envasement, les colonies ne sont jamais recouvertes. Pour les coraux à longs polypes, les colonies coralliennes peuvent se dégager des dépôts vaseux par l'intermédiaire de leurs longs polypes.

Cette station est à surveiller car la proximité du port et les mouvements de gros bateaux peuvent occasionner une remobilisation des particules sédimentaires et un envasement plus conséquent des colonies coralliennes (pouvant entraîner des proliférations de cyanobactéries et la présence de *Culcita*, une étoile mangeuse de corail).

Caractéristiques principales

- 🔖 Originalité des espèces coralliennes adaptées à un milieu turbide.
- Présence en grand nombre de *Alveopora* spp., *Alveopora catalai*, *Goniopora* spp. et *Acropora* sp. à mi pente.
- 🖔 Blanchissement corallien au niveau bathymétrique supérieur.



Variations entre mars 2011 et octobre 2011

- Richesse spécifique des coraux en très légère augmentation.
- Blanchissement corallien au transect A (8 espèces concernées, comme en mars 2011).
- Recrutement corallien plus important (6 espèces sur l'ensemble de la station).
- ♥ Peu de mortalité corallienne.
- Présence de *Culcita novaeguineae* (alternance cyclique de cette étoile de mer en coussin prédatrice des coraux) sur le transect C.
- Recouvrement des cyanobactéries rare sur le transect A et absent sur les deux autres transects.

Photo n°09: <u>Vue aérienne par rapport aux structures portuaires (ST03)</u>

Carte $n^{\circ}05$: Localisation de la station 03 (Port)

Photo n°010: Position en surface par rapport aux structures portuaires (ST03)

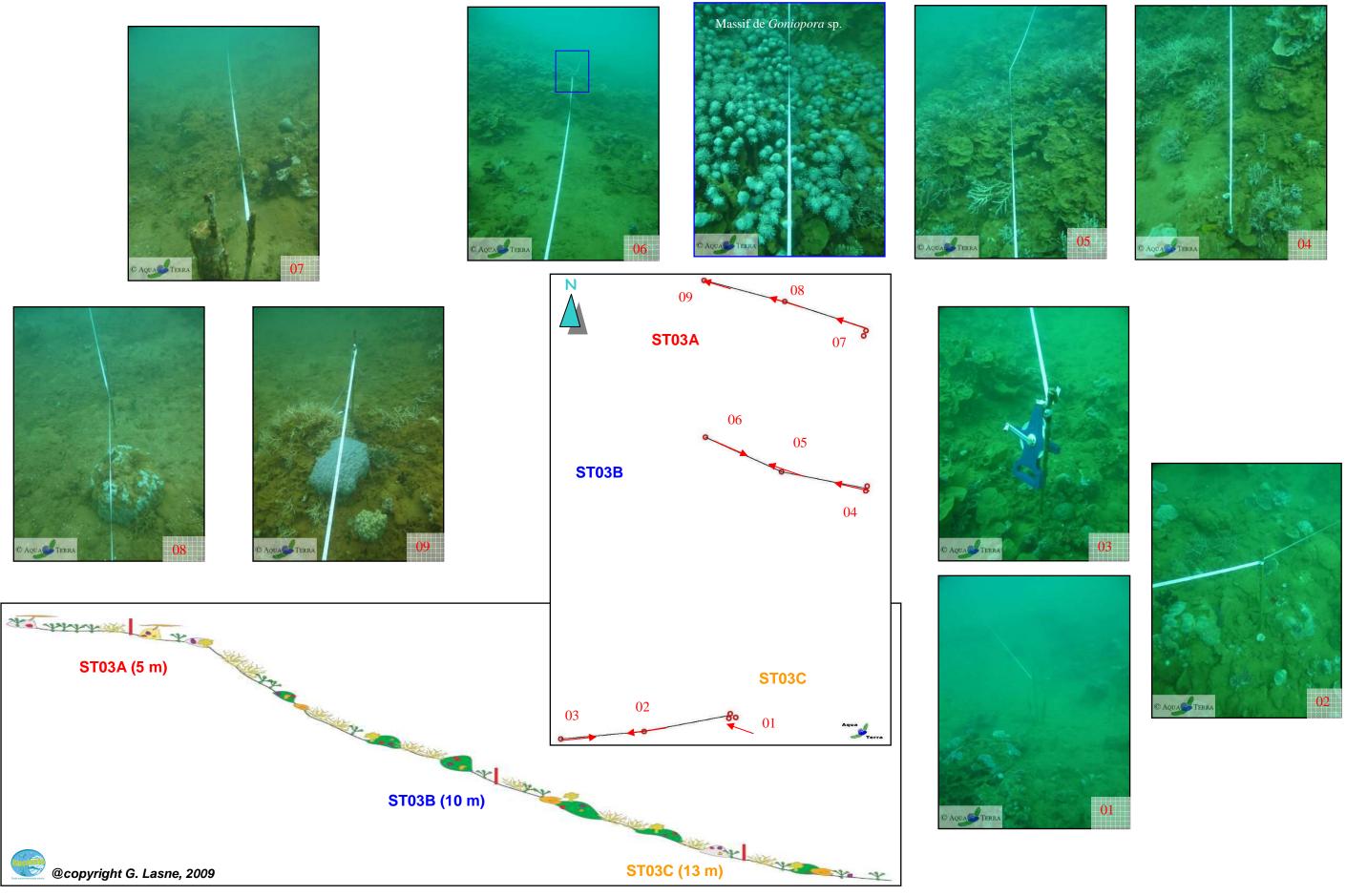


Figure n°14 : <u>Schéma structural, plan et photographies de la ST03</u>

4.3.1 Le substrat (ST03)

Le pourcentage de couverture de chaque composante est donné dans la figure 15 pour le transect A, dans la figure 16 pour le transect B et dans la figure 17 pour le transect C.

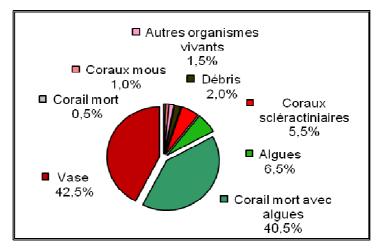


Figure n°15: Représentation du recouvrement (en %) du substrat pour ST03A

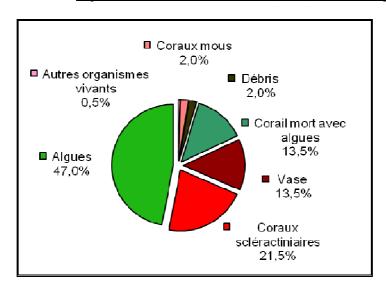


Figure n°16: Représentation du recouvrement (en %) du substrat pour ST03B

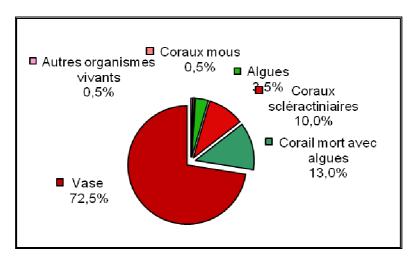


Figure n°17: Représentation du recouvrement (en %) du substrat pour ST03C

La part de biotique du transect A augmente par rapport à la précédente mission (de 37.5% à 55%): il y a moins de vase, avec des débris apparents, recouverts de tuff (classés en « corail mort avec algues », biotique). Le recouvrement des coraux scléractiniaires est stable (5.5%). A noter: 0.5% de corail mort.

Il y a toujours autant d'algues au transect B, mais avec une part nouvelle de cyanobatéries (6.5% des 47% algaux). Les coraux scléractiniaires voient une légère augmentation de leur recouvrement (21.5% vs 15.5% lors de la mission précédente).

Comme au transect A, au niveau bathymétrique inférieur, il y a un peu moins de vase (-10%), avec en contrepartie un peu plus de « corail mort avec algues ».

La station est malgré tout dans son ensemble assez stable.

4.3.2 Le benthos (ST03)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.3.2.1 Benthos Transect 03 A

4.3.2.1.1 Les Scléractiniaires (ST03A)

Le recouvrement des scléractiniaires n'est pas important pour ce niveau bathymétrique. Le développement et l'installation des espèces doivent être limités par les résurgences et l'apport de la rivière d'eau douce.

Tableau n°27 : <u>Biodiversité et Abondance des coraux par famille (ST03A)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	10	5
Agaraciidae	3	2
Astrocoeniidae	1	2
Caryophyllidae	0	0
Dendrophyllidae	0	0
Faviidae	9	3
Fungiidae	3	3
Merulinidae	2	3
Mussidae	6	2
Oculinidae	2	3
Pectiniidae	2	2
Pocilloporidae	3	3
Poritidae	6	3
Siderastreidae	0	0
Total scléractiniaire	47	/
Non Scléractiniaire		
Milleporidae	1	2
Tubiporidae	0	0
Gorgone	1	2
Antipathaire	0	0
Total coraux	48	/

Les colonies d'Acropora, Palauastrea ramosa et de Porites sont de taille penta-décimétrique à métrique et les autres espèces ont une croissance plus réduite (Pectinia paeonia, Acanthastrea echinata, Porites nigrescens, Cyphastrea japonica, Goniopora et Alveopora sp.).

La richesse spécifique de ce niveau bathymétrique est de 49 espèces coralliennes dont une espèce de Tubiporidae (*Tubipora musica*) et une espèce de *Millepora* (branchu). Les familles scléractiniaires (47 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Acroporidae (10 taxons), les Faviidae (9 taxons), les Poritidae (6 taxons), les Mussidae (6 taxons), les Pocilloporidae (3 taxons), les Agaraciidae (3 taxons) et les Fungiidae (3 taxons).

Variation entre mars 2011 et octobre 2011					
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien			
Présence nouvelle de 2 espèces : <i>Acropora</i> tabulaire, <i>Merulina scabriculata</i>	Légère diminution pour 5 espèces : Pavona cactus, Leptastrea purpurea, Lobophyllia pachysepta (influencée	Rare: observé sur 6 espèces: Acropora 1sp. (branchu), Montipora 1sp., Pachyseris speciosa, Barabattoia amicorum, Merulina scabriculata, Galaxea astreata,. La plupart			
Mortalité : absence de l'espèce Euphyllia ancora	par le blanchissemenbt lors de la mission précédente), <i>Palauastrea ramosa</i> et <i>Alveopora</i> sp.	de ces colonies étaient déjà influencées par le blanchissement lors de la mission précédente			

4.3.2.1.2 Les Macrophytes et les Invertébrés (ST03A)

La prédominance des algues et des spongiaires est à la défaveur des colonies coralliennes qui présentent un faible recouvrement sous ce transect.

Les algues vertes du genre *Halimeda* sont dispersées par thalles sur la roche et l'espèce *H. gigas* croit directement à même la vase (macrophyte à bulbe). Le recouvrement en algues brunes (*Lobophora variegata*) a légèrement diminué, elles colonisent les parties dures comme les débris et les massifs coralliens.

Les spongiaires *Spheciospongia vagabunda* se développent sur de nombreux types de substrats (débris, débris envasés, roches, massifs coralliens). Les blocs coralliens sont colonisés par quelques spongiaires perforantes (*Cliona jullienei* et *C. orientalis*). Une colonie de *Porites* se fait recouvrir progressivement par *Cliona jullienei*.

Variation entre mars 2011 et octobre 2011			
Algues (variation saisonnière) Cyanobactéries Invertébrés (mobilité et variation saisonnière)			
Augmentation du recouvrement des <i>Halimeda</i> sp. Leur développement est rare (nette diminution depuis les deux dernières missions)	Diminution du recouvrement de l'alcyonaire Sinularia		
	est rare (nette diminution depuis les deux dernières	Présence nouvelle de 1 espèce d'échinoderme (Echinide : Diadema setosum)	
		Absence de 1 espèce d'holothurie H. fuscopunctata	
		Présence nouvelle de 4 espèces de mollusques <i>Isognomon isognomon, Murex</i> sp., <i>Conus ratus</i> et <i>Spondylus</i> sp.	

Tableau n°28 : Biodiversité et Abondance des macrophytes et invertébrés (ST03A)

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	4	3
Algue brune	3	4
Algue rouge	1	3
Algue verte	3	4
Cyanobactéries	1	1
Anémone	0	0
Ascidie	1	2
Bryozoaire	0	0
Astérie	1	2
Crinoïde	0	0
Echinide	2	2
Holothurie	1	2
Hydraire	0	0
Mollusque	7	3
Spongiaire	3	4
Zoanthaire	0	0
TOTAL	27	/

4.3.2.2 Benthos Transect 03 B

4.3.2.2.1 Les Scléractiniaires (ST03B)

Les coraux colonisant cette partie de pente sont caractérisés par leur croissance rapide (Acroporidae) ou bien la grandeur de leurs polypes (Poritidae *Alveopora* spp., *A. Catalai* et *Goniopora* spp.). Ces caractéristiques leur permettent de s'affranchir du taux de sédimentation important. Les coraux branchus et à longs polypes s'édifient sur les anciennes générations coralliennes formant à nouveau des massifs plus ou moins denses. A noter : la présence de *Anacropora* sp., *Pachyseris rugosa, Caulastrea furcata, Cyphastrea japonica, Astreopora, Leptoseris scabra, Leptoseris gardineri, Porites nigrescens* et *Porites cylindrica*.

La richesse spécifique de ce niveau bathymétrique est de 53 espèces coralliennes dont une espèce de *Millepora* (branchu). Les familles scléractiniaires (52 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Acroporidae (15 taxons), les Agariciidae (8 taxons), les Faviidae (7 taxons), les Poritidae (6 taxons), les Fungiidae (4 taxons) et les Mussidae (3 taxons).

Tableau n°29 : Biodiversité et Abondance des coraux par famille (ST03B)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	15	5
Agaraciidae	8	3
Astrocoeniidae	2	2
Caryophyllidae	0	0
Dendrophyllidae	0	0
Faviidae	7	3
Fungiidae	4	3
Merulinidae	2	2
Mussidae	3	1
Oculinidae	2	2
Pectiniidae	0	0
Pocilloporidae	2	2
Poritidae	6	5
Siderastreidae	1	1
Total scléractiniaire	52	
Non Scléractiniaire		
Milleporidae	1	2
Tubiporidae	0	0
Gorgone	0	0
Antipathaire	0	0
Total coraux	53	/

Variation entre mars 2011 et octobre 2011				
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien		
Présence nouvelle de 3 espèces coralliennes : Avropora sp1. tabulaire, Lobophyllia hemprichii, Galaxea paucisepta	Diminution de 2 espèces de Porites (P. cylindrica et P. nigrescens)	Aucun dans le couloir		
Mortalité : aucune, toutes les espèces ont été recensées	Augmentation de 1 espèce : <i>Montipora</i> sp.			

4.3.2.2.2 Les Macrophytes et les Invertébrés (ST03B)

Les macrophytes, les alcyonaires et les spongiaires colonisent les substrats durs comme les débris coralliens, les anciennes générations de coraux morts et les blocs rocheux.

Les macrophytes présentent un recouvrement important : les algues brunes (*Lobophora variegata*) représentent la majorité du recouvrement algal et colonisent les blocs et les débris coralliens ainsi que les colonies coralliennes branchues. Le genre *Halimeda* se développe également dans les coraux branchus ainsi que le genre *Dictyota* en faible proportion.

Les algues rouges (Amphiroa et une algue calcaire indéterminée) sont toujours disséminées à travers les débris et la dalle.

Les alcyonaires (Sarcophyton et Sinularia) se développent sur les coraux morts et les débris coralliens

enfouis ou non dans la vase.

Tableau n°30 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST03B)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	3	3
Algue brune	2	5
Algue rouge	1	4
Algue verte	2	3
Cyanobactéries	0	0
Anémone	0	0
Ascidie	0	0
Bryozoaire	0	0
Astérie	1	1
Crinoïde	0	0
Echinide	0	0
Holothurie	1	3
Hydraire	1	2
Mollusque	5	3
Spongiaire	3	3
Zoanthaire	0	0
TOTAL	19	/

Variation entre mars 2011 et octobre 2011			
Algues (variation saisonnière)	- I Vananactoriae I Invartantae imanilità at variation calconniarai		
Légère augmentation du recouvrement en Halimeda sp. Aucunes		Absence de l'astérie <i>Culcita novaeguinea</i> . Cette observation est cyclique et aucune dégradation n'a été corrélée	
	Aucunes	Présence nouvelle des hydraires	
		Diminution du recouvrement de l'éponge Cliona jullienei	
		Présence nouvelle de 3 espèces de mollusques <i>Hyotisa hyotis</i> , Pteristernia reincarnata, Latirolagena smaragdula	
		Augmentation d'abondance du mollusque Isognomon isognomon	
		Augmentation d'abondance de l'holothurie Holothuria flovomaculata	

4.3.2.3 Benthos Transect 03 C

4.3.2.3.1 Les Scléractiniaires (ST03C)

La richesse spécifique de ce niveau bathymétrique est de 58 espèces coralliennes dont une espèce de *Millepora* (encroûtant). Les familles scléractiniaires (56 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Agariciidae (9 taxons), les Acroporidae (9 taxons), les Faviidae (8 taxons), les Poritidae (5 taxons), les Fungiidae (5 taxons), les Pectinidae (4 taxons), les Mussidae (4 taxons) et les Oculinidae (3 taxons).

Tableau n°31 : Biodiversité et Abondance des coraux par famille (ST03C)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	9	5
Agaraciidae	9	3
Astrocoeniidae	2	5
Caryophyllidae	0	0
Dendrophyllidae	2	2
Faviidae	8	4
Fungiidae	5	3
Merulinidae	2	3
Mussidae	4	2
Oculinidae	3	3
Pectiniidae	4	5
Pocilloporidae	2	3
Poritidae	5	5
Siderastreidae	1	2
Total scléractiniaire	56	/
Non Scléractiniaire		
Milleporidae	2	3
Tubiporidae	0	0
Gorgone	0	0
Antipathaire	0	0
Total coraux	58	/

Les coraux sont adaptés aux conditions turbides (adaptations à la faible pénétration de la lumière dans l'eau, croissance rapide et/ou grands polypes pour se dégager de la sédimentation). L'envasement est de plus en plus important en bas de pente. Les paramètres environnementaux vont être déterminants pour l'édification corallienne (seuil de tolérance et spécification corallienne).

La famille des Agariciidae est particulièrement diversifiée mais les colonies ont une abondance modérée. Ces espèces sont typiques des milieux turbides : on note la présence de *Leptoseris gardineri*, *L. scabra*, *L. foliosa*, *L. mycetoceroides*, *L. tubulifera*, *Pachyseris rugosa*, *P. speciosa*.

D'autres espèces typiques des milieux turbides se développent comme Cyphastrea japonica et Acropora branchus, ainsi que des colonies de petite taille comme Cantharellus noumeae, Pavona varians, Stylocoeniella guentheri et S. armata. Les coraux adoptent également des formes particulières car ils encroûtent des galeries de vers (Astreopora sp., A. explanata, Galaxea fascicularis, G. astreata et Psammocora profundacella).

La mortalité corallienne est induite par l'hyper sédimentation : la taille des colonies est réduite et le nombre de débris coralliens et de colonies mortes en place est très important. Cependant le taux de renouvellement (recrutement) reste conséquent au regard du nombre des colonies juvéniles.

<u>Varia</u>	ation entre mars 2011 et octobre 2011	
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien
Présence nouvelle de 3 espèces Acropora sp. tabulaire, Pocillopora damicornis et Millepora branchu	Augmentation de 3 espèces : Pachyseris speciosa, Pavona varians, Turbinaria mesenterina	Rare : sur 1 espèce :
Mortalité : aucune, toutes les espèces ont été recensées	Diminution de 5 espèces : Stylocoeniella guentheri, Favites sp., Merulina ampliata, Palauastrea ramosa, Porites sp.	Merulina ampliata

4.3.2.3.2 Les Macrophytes et les Invertébrés (ST03C)

Les algues couvrent la plus grande surface des groupes biotiques et elles résistent à la sédimentation bien qu'elles soient recouvertes par une fine couche de sédiment. Les algues brunes (*Lobophora variegata*) sont les mieux développées, elles colonisent tous les substrats durs. Les algues vertes (*Halimeda* spp) ont un taux de recouvrement plus faible que pour les niveaux bathymétriques supérieurs. Elles se développent sur les substrats durs (par thalles) et dans la vase (bulbes).

Tableau n°32 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST03C)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	5	5
Algue brune	2	5
Algue rouge	1	2
Algue verte	2	2
Cyanobactéries	0	0
Anémone	1	2
Ascidie	0	0
Bryozoaire	0	0
Astérie	2	2
Crinoïde	0	0
Echinide	1	2
Holothurie	1	2
Hydraire	1	2
Mollusque	5	3
Spongiaire	3	3
Zoanthaire	0	0
TOTAL	24	/

Les alcyonaires des genres *Sarcophyton* et *Sinularia* se développent peu à cette profondeur car ils manquent de substrat dur pour se fixer et également de lumière pour se développer. Ils s'édifient sur les débris coralliens enfouis dans la vase.

Selon les missions, on retrouve des espèces adaptées au milieu turbide comme les astéries (*Celerina heffernani, Fromia monilis, Nardoa gomophia*) et l'holothurie (*Holothuria flovomaculata*), les mollusques (*Isognomon isognomon, Athrina* sp.), les éponges (*Hamigera strongylata, Cliona orientalis* et *C. jullienei*) et les anémones (*Discosoma* sp.).

Variation entre mars 2011 et octobre 2011						
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)				
Légère diminution du recouvrement de l'algue brune Dictyota sp. (cyclicité)	Absence	Présence nouvelle de 1 espèce de mollusque <i>Pteria</i> sp.				
		Présence de l'astérie <i>Culcita novaeguinea</i> . Cette observation est cyclique et aucune dégradation n'a été corrélée				
		Présence nouvelle de l'astérie <i>Fromia monilis</i> et absence de <i>Nardoa gomophia</i>				
		Présence nouvelle des hydraires				
		Présence nouvelle de 2 espèces de mollusques <i>Arca ventricosa</i> et <i>Spondylus</i> sp.				
		Diminution du recouvrement de l'éponge Cliona jullienei				

4.3.3 Les poissons (ST03)

La liste des espèces observées⁶ sur les transects et les résultats bruts sont fournis dans le tableau 33.

Transect Transect Transect Station Port ST03 A В \mathbf{C} Total Moyenne Fam **Espèces** Nb Dens **Biom** Nb Dens **Biom** Nb Dens **Biom** Nb **Dens Biom** Aca Acanthurus blochii 2 0,03 0,11 0,01 0,04 2 Aca Zebrasoma veliferum 1 0,01 0,03 0,00 0,01 Ant Pseudanthias pascalus 5 0,06 0,16 5 0.02 0,05 Caesio caerulaurea 20 0,25 2,69 20 0,08 Cae 0,90 Chaetodon lunulatus Cha 2 0.03 0.11 2 0.01 0.04 Cha Chaetodon ulietensis 1 0,01 0,03 0,00 0,01 Cha Coradion altivelis 1 0,01 0,09 1 0,00 0,03 Epi Cephalopholis boenak 2 0.03 0.38 0.01 0.06 0.01 0.15 Mul Parupeneus barberinoides 1 0,01 0,03 1 0,00 0,01 5 5 Pom Abudefduf whitleyi 0,06 0,39 0,02 0,13 Pom Chrysiptera rollandi 5 0.06 0.04 0.05 0.07 9 0.04 0.03 Sca Scarus flavipectoralis 1 0,01 0,19 0,00 0,06 2 Sig Siganus vulpinus 0,03 0,11 2 0,01 0,04 Total 6 0.08 0.43 41 0.51 3.87 6 0.08 0.21 53 0.22 1.50 Biodiversité 2 10 3 13 Indice de Shannon = 2.918 Equitabilité = 0,788

Tableau n°33: Données sur les poissons (ST03)

Sur l'ensemble des transects de la station, 53 individus appartenant à 13 espèces différentes (tableau 33) ont pu être observés. Ils représentent une densité de 0.22 poisson/m² pour une biomasse de 1.50 g/m². 66 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 34).

Tableau n°34 : <u>Liste des espèces complémentaires (ST03)</u>

	Port ST03						
Fam	Fam Espèces		Fam Espèces		Espèces		
Aca	Acanthurus blochii	Gob	Gunnellichthys curiosus	Pom	Abudefduf whitleyi		
Aca	Naso unicornis	Gob	Gunnellichthys monostgma	Pom	Amblyglyphidodon leucogaster		
Aca	Zebrasoma veliferum	Gob	Valenciennea decora	Pom	Amblyglyphidodon orbicularis		
Ant	Pseudanthias pascalus	Gob	Valenciennea strigata	Pom	Chromis atripectoralis		
Bal	Balistoides conspicillum	Hol	Sargocentron ensiferum	Pom	Chromis chrysura		
Bal	Sufflamen fraenatus	Lab	Cheilinus chlorourus	Pom	Chromis margaritifer		
Ble	Ecsenius bicolor	Lab	Choerodon graphicus	Pom	Chromis viridis		
Cae	Caesio caerulaurea	Lab	Coris batuensis	Pom	Chrysiptera rollandi		
Can	Canthigaster valentini	Lab	Halichoeres argus	Pom	Chrysiptera taupou		
Cha	Chaetodon baronessa	Lab	Hemigymnus melapterus	Pom	Dascyllus aruanus		

⁶ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

Cha	Chaetodon bennetti	Lab	Labroides dimidiatus	Pom	Neopomacentrus nemurus
Cha	Chaetodon ephippium	Lab	Oxycheilinus diagrammus	Pom	Pomacentrus aurifrons
Cha	Chaetodon flavirostris	Lab	Thalassoma lunare	Pom	Pomacentrus coelestis
Cha	Chaetodon lunulatus	Let	Lethrinus harak	Pom	Pomacentrus pavo
Cha	Chaetodon melannotus	Mul	Parupeneus barberinoides	Sca	Scarus flavipectoralis
Cha	Chaetodon plebeius	Mul	Parupeneus barberinus	Sca	Scarus ghobban
Cha	Chaetodon ulietensis	Mul	Parupeneus indicus	Sca	Scarus rubroviolaceus
Cha	Chaetodon vagabundus	Mul	Upeneus tragula	Sca	Scarus spinus
Cha	Coradion altivelis	Nem	Scolopsis bilineatus	Sig	Siganus corallinus
Epi	Cephalopholis boenak	Pin	Parapercis hexophtalma	Sig	Siganus doliatus
Epi	Epinephelus howlandi	Pin	Parapercis xanthozona	Sig	Siganus puellus
Epi	Plectropomus leopardus	Pom	Abudefduf sexfasciatus	Sig	Siganus vulpinus

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 35 et spécifiquement pour la campagne d'octobre 2011 sur la figure 18.

Tableau n°35 : Nombre d'espèces par famille ichtyologique de 2007 à 2011(ST03)

Familles	Port ST03							
	2007	2008	2009	2010 a	2010 b	2011 a	2011 B	
Acanthuridae	1	2			1		2	
Anthiniidae							1	
Blenniidae	1		1	2		1		
Canthigasteridae								
Caesionidae		2		1		3	1	
Chaetodontidae	2	1	1			2	3	
Epinephelinae	1	1	1	2		2	1	
Labridae	1				1	1		
Mullidae					1		1	
Nemipteridae	1	1	1	1	1	1		
Pomacanthidae	2							
Pomacentridae	3	4	5	4	2	4	2	
Scaridae	1	2			4	1	1	
Siganidae	1	1			1		1	
Tetraodontidae						1		
Total espèces	15	14	9	10	11	9	13	
Total familles	10	8	5	5	7	9	9	

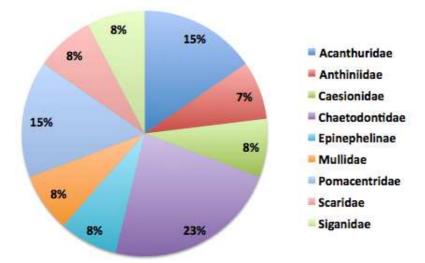


Figure n°18: Richesse spécifique par famille de poissons (ST03)

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 36), sous l'angle de vue de ce critère les sept campagnes sont similaires.

Tableau n°36 : <u>Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011</u>
(ST03)

Test χ2	ddl	Seuil de tolérance à 0,95
69.20	72	92.80

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 37 et la figure 19.

Tableau n°37 : Synopsis des résultats 2011 et récapitulatif des années précédentes (ST03)

		Liste DENV				Toutes espèces	
Port ST03		Transect TLV			Station	Station	
		Nb. ind.	Nb. ind. Densité Biom. g/m ² Biodiv.1		Biodiv.2	Biodiv.3	
	Transect A	6	0,08	0,43	2		
2011 B	Transect B	41	0,51	3,87	10		
2011 B	Transect C	6	0,08	0,21	3		
	Moy. ABC	17,67	0,22	1,50	13	46	66
2011 a	Moy. ABC	64,00	0,86	19,13	16	43	64
2010 b	Moy. ABC	31	0,31	1,26	11	43	64
2010 a	Moy. ABC	39,00	1,95	5,13	10	33	50
2009	Moy. ABC	60,66	3,03	4,55	9	16	39
2008	Moy. ABC	18,33	0,92	14,05	14	22	47
2007	Moy. ABC	32,30	1,59	14,73	15	19	34

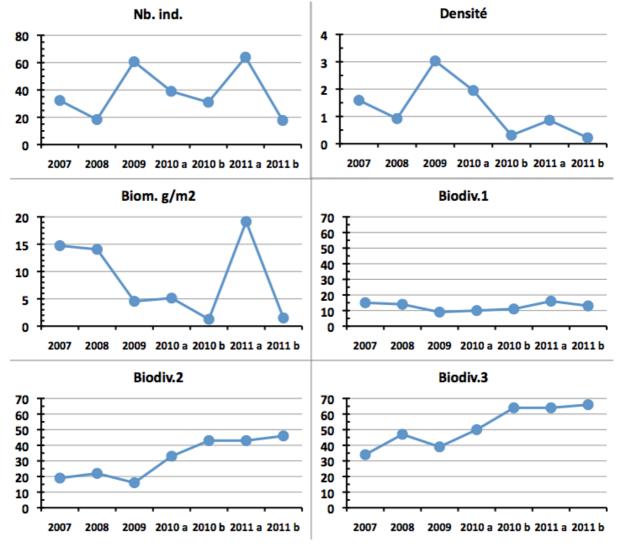


Figure n°19: <u>Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST03)</u>

4.4 Station 04 = Woodin

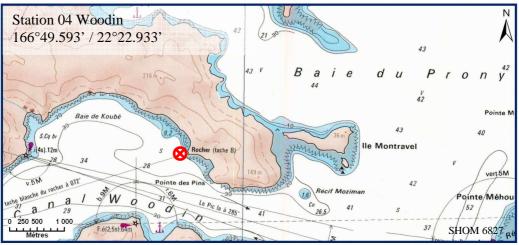
Localisation géographique	Face à un rocher blanc qui se trouve en bordure du rivage est du canal Woodin (photographie 11). Le canal Woodin proche de la baie du Prony sépare la « Grande Terre » de l'île Ouen. Ce canal est non seulement un passage privilégié pour la navigation, mais aussi pour une faune marine très importante (baleines, requins,). Il constitue un passage reliant les eaux du large au sud du lagon, et les courants de marées y sont permanents et souvent très forts. Les fonds sont détritiques grossiers et sont colonisés par de nombreux coraux (cependant la richesse spécifique est faible).
Nombre transects	3 transects.
Description transects	Ils ont été positionnés à 4, 11 et 21 mètres de profondeur afin de décrire chaque zone, en parallèle à la pente et dans une direction du sud-est vers le nord-ouest.
	Sur le transect A la colonisation des <i>Millepora</i> et de <i>Seriatopora histrix</i> est importante. Le transect B est installé dans une zone à éboulis de roche et débris coralliens branchus. La zone a subi un effondrement de roches provenant de l'étage supérieur. Un cyclone a certainement arraché les massifs du sommet de la pente. Les conditions hydrodynamiques sont encore importantes (courant de marée) et la luminosité réduite de manière significative avec la profondeur. Le transect C est en bas de pente dans une zone sableuse où de grandes colonies de <i>Tubastrea micrantha</i> s'édifient et dominent le paysage.

Description générale

La station est installée sur le front récifal d'un récif frangeant. La pente est abrupte (40°) , nivelée par trois étages de communautés coralliennes distinctes.

Cette station présente un écosystème qui est singulier en Nouvelle-Calédonie : en sommet de récif frangeant, les *Millepora* forment de grands massifs de 3 mètres de diamètre et les *Seriatopora histrix* se répartissent uniformément sur le substrat dur avec un recouvrement important. Le tombant est jalonné de blocs rocheux et de débris coralliens où s'édifient de petites colonies coralliennes ainsi que des massifs de *Millepora* et des *Tubastrea micrantha*. En bas de tombant, les colonies de *Tubastrea micrantha* sont remarquablement bien développées.

Attention : Le courant dans ce canal peut être très fort et il est impératif de se présenter à un étale pour pouvoir échantillonner cette station.


Caractéristiques principales

- La richesse spécifique des coraux diminue nettement avec la profondeur.
- Originalité des espèces benthiques adaptées à un milieu d'hydrodynamisme important (courant de marée) avec une turbidité soutenue.
- 🕏 Présence en grand nombre de Millepora, Seriatopora histrix et Tubastrea micrantha.
- Mortalité corallienne et nombreux débris (hydrodynamisme important).
- Les colonies coralliennes de la famille des Pocilloporidae ont une croissance importante (Seriatopora histrix et Pocillopora damicornis, Stylophora pistillata).

Variations entre mars 2011 et octobre 2011

- Recrutement important d'espèces nouvellement recencées : 5 espèces au transect A, 5 espèces en B, 6 espèces en C.
- 🖔 Croissance importante des Millepora, Seriatopora histrix et Tubastrea micrantha.
- Mortalité et effondrement de quelques colonies de *Tubastrea micrantha* aux transects B et C.
- Blanchissement corallien modéré pour les niveaux bathymétriques médian et inférieur : *Montipora* sp. et *Tubastrea micrantha*.
- Développement devenu modéré de *Cymbastella cantharella* (éponge), de *Hamigera strongylata* (éponge) et de *Alcyionidium* sp. (bryozoaire).
- 🖔 Les hydraires se développent de manière homogène sur l'ensemble du récif.
- U'abondance des crinoïdes est très importante au transect C.
- Augmentation de l'abondance des éponges *Cliona* à la défaveur des coraux pour les transects B et C.

Carte n°06: Localisation de la station 04 (Woodin)

Photo n°011 : <u>Position en surface par rapport à la côte (ST04)</u>

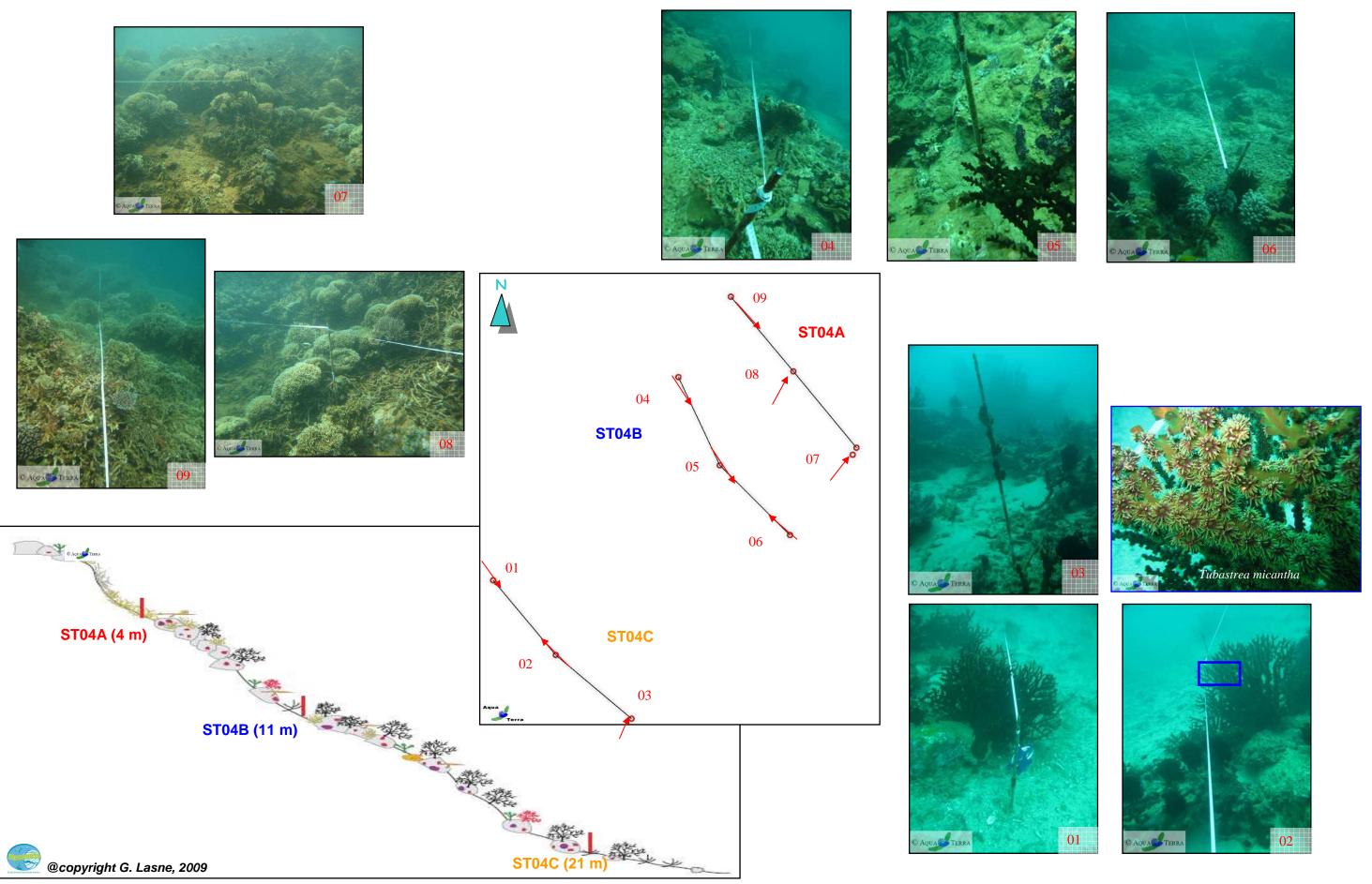


Figure n°20 : <u>Schéma structural, plan et photographies de la ST04</u>

4.4.1 Le substrat (ST04)

Le pourcentage de couverture de chaque composante est donné dans la figure 21 pour le transect A, dans la figure 22 pour le transect B et dans la figure 23 pour le transect C.

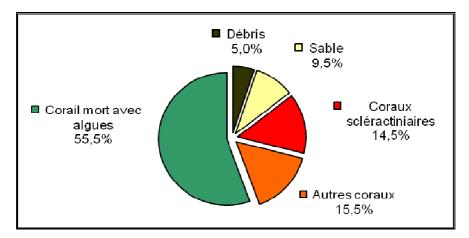


Figure n°21: Représentation du recouvrement (en %) du substrat pour ST04A

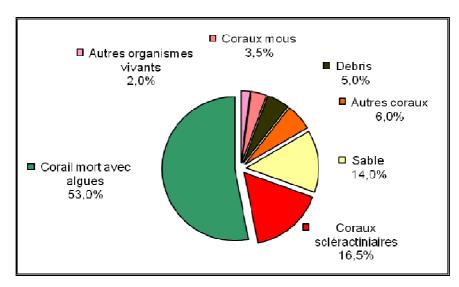


Figure n°22 : Représentation du recouvrement (en %) du substrat pour ST04B

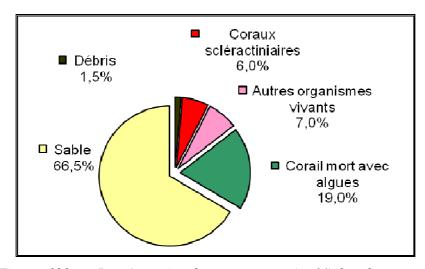


Figure n°23: Représentation du recouvrement (en %) du substrat pour ST04C

Malgré une hausse de la partie biotique pour les 3 tansects (due à l'augmentation de la catégorie « corail mort avec algues »), le transect C se différencie toujours par un sustrat majoritairement abiotique (68%) et composé essentiellement de sable.

Les coraux scléractiniaires sont moyennement représentés aux 3 transects (14.5%, 16.5% et 6%), avec une légère diminution pour les 3 transects (mais un retour aux valeurs de 2010), dû pour partie à la casse de quelques colonnies de *Tubastrea*.

La station est globalement stable.

4.4.2 Le benthos (ST04)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.4.2.1 Benthos Transect 04 A

4.4.2.1.1 Les Scléractiniaires (ST04A)

Tableau n°38 : <u>Biodiversité et Abondance des coraux par famille (ST04A)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	8	5
Agaraciidae	2	2
Astrocoeniidae	1	2
Caryophyllidae	1	1
Dendrophyllidae	4	4
Faviidae	14	3
Fungiidae	5	3
Merulinidae	3	2
Mussidae	3	2
Oculinidae	2	2
Pectiniidae	0	0
Pocilloporidae	3	5
Poritidae	1	2
Siderastreidae	4	2
Total scléractiniaire	51	
Non Scléractiniaire		
Milleporidae	3	5
Tubiporidae	1	1
Gorgone	0	0
Antipathaire	0	0
Total coraux	55	/

Ce niveau bathymétrique est colonisé par 55 espèces coralliennes dont trois espèces de *Millepora* particulièrement bien développées (encroûtant, branchu et sub massif) et une espèce de Gorgone. Les familles scléractiniaires (51 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (14 taxons), les Acroporidae (8 taxons), les Fungiidae (5 taxons), les Siderastreidae (4 taxons), les Dendrophyllidae (4 taxons), les Pocilloporidae (3 taxons), les Agaraciidae (3 taxons), les Mussidae (3 taxons) et les Merulinidae (3 taxons).

Les colonies de *Millepora* branchues, submassives et encroûtantes sont particulièrement bien étendues (2 à 3 mètres de diamètre). Les *Seriatopora histrix* se développent très bien en petits buissons répartis de manière homogène en haut de récif. De nombreuses colonies sont en manque de place pour leur développement (elles sont rapprochées et se touchent).

La zone présente également une mortalité corallienne non négligeable, les conditions hydrodynamiques intenses (courant de marée) favorisant la dégradation mécanique des coraux (débris coralliens). De plus, de grandes colonies d'*Acropora* tabulaires sont retournées ou mortes encore place (mais sans signe de prédation) et colonisées par des éponges, des algues, des alcyonaires et des *Tubastrea* sp. et de nombreux Pocilloporidae.

Variation entre mars 2011 et octobre 2011				
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien		
Présence nouvelle de 5 espèces : Goniastrea australensis, Leptastrea	Diminution pour 2 espèces : Tubastrea micrantha, Galaxea astreata			
purpurea, Hydnophora exesa, Merulina scabricula et Gorgone sp.	Mobilité : augmentation de Fungia simplex	Aucun dans le couloir		
Mortalité : 1 espèce n'a pas été recensée Pavona maldiviensis	Croissance importante des <i>Millepora</i> , Seriatopora histrix			

4.4.2.1.2 Les Macrophytes et les Invertébrés (ST04A)

Les macrophytes et les invertébrés ont peu évolué depuis la dernière mission.

Les éponges encroûtantes, *Cliona jullienei* et *Cliona orientalis* colonisent toujours quelques coraux morts en place et les débris coralliens. Les crinoïdes affectionnent de se positionner sur les *Tubastrea micrantha*, quelques *Millepora* branchus et les *Acropora* tabulaires morts.

Les oursins sont dissimulés dans les cavités des roches.

Variation entre mars 2011 et octobre 2011				
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)		
	Absence de l'échinide <i>Diadema setosum</i> qui sont redescendus jusqu'au bas de pente récifale			
		Diminution de l'abondance des crinoïdes qui sont redescendues jusqu'au bas de pente récifale		
Aucune	Absence	Augmentation de l'abondance des Hydraires		
		Présence nouvelle de 2 espèces de mollusques <i>Conus miles</i> et <i>Latirolagena smaragdula</i>		
		Diminution du recouvrement de l'éponge <i>Cliona orientalis</i> à la faveur des <i>Acropora</i> et des <i>Millepora</i> branchus		

Tableau n°39 : Biodiversité et Abondance des macrophytes et invertébrés (ST04A)

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	4	3
Algue brune	0	0
Algue rouge	1	2
Algue verte	4	2
Cyanobactéries	0	0
Anémone	0	0
Ascidie	0	0
Bryozoaire	1	4
Astérie	1	0
Crinoïde	2	3
Echinide	0	2
Holothurie	1	2
Hydraire	1	3
Mollusque	5	2
Spongiaire	4	4
Zoanthaire	1	0
TOTAL	25	/

4.4.2.2 Benthos Transect 04 B

4.4.2.2.1 Les Scléractiniaires (ST04B)

La richesse spécifique de ce niveau bathymétrique est de 55 espèces coralliennes dont trois espèces de *Millepora* (encroûtant, branchu et sub massif), deux espèces d'antipathaire et trois espèces de gorgone (*Astrogorgia mangolia* et *Melithaea ochracea*). Les familles scléractiniaires (47 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (12 taxons), les Acroporidae (7 taxons), les Dendrophyllidae (4 taxons), les Mussidae (4 taxons) et les Fungiidae (3 taxons).

Plusieurs grandes colonies de *Millepora* et de *Tubastrea micrantha* se développent et sont toujours de taille plurimétrique, même si certaines ont subit des dégradations mécaniques. Les massifs de *Millepora* sont cependant de taille plus petite que pour le niveau bathymétrique supérieur. Les grandes colonies de *Tubastrea micrantha* s'édifient perpendiculairement au courant de marée. Les autres colonies de scléractiniaires sont de petite taille et la richesse spécifique reste faible. A noter, la présence de *Cyphastrea japonica, Mycedium elephantotus, Scolymia vitiensis, Merulina scabricula, Stylocoeniella armata* et de *Polyphyllia talpina*.

La colonie de *Pocillopora damicornis* colonisant le 1^{er} piquet du transect B mesure désormais 22 cm (8 cm en avril 2010, 12 cm en septembre 2010 et 16 cm en mars 2011) soit une croissance de 6 cm/6 mois et un taux de croissance de 37.5%.

Variation entre mars 2011 et octobre 2011				
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien		
Présence nouvelle de 5 espèces : Astreopora gracilis, Goniastrea australiensis, Montastrea curta, Oxypora sp., Gorgone indéterminée	Diminution d'abondance de 7 espèces : Isopora palifera, Pavona explanulata, Tubastrea micrantha, Seriatopora histrix, Stylophora mordax, Millepora encroûtant et branchu	Rare: observé sur 2 espèces: Montipora 1sp. et Tubastrea micrantha (ces espèces étaient déjà influencées par le		
Mortalité : aucune, toutes les espèces ont été recensées	Mobilité : diminution d'abondance de Polyphyllia talpina	blanchissement lors de la dernière mission)		

Tableau n°40 : <u>Biodiversité et Abondance des coraux par famille (ST04B)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	7	3
Agaraciidae	2	2
Astrocoeniidae	1	1
Caryophyllidae	1	1
Dendrophyllidae	4	3
Faviidae	12	4
Fungiidae	3	2
Merulinidae	2	3
Mussidae	4	2
Oculinidae	2	2
Pectiniidae	2	2
Pocilloporidae	4	4
Poritidae	1	2
Siderastreidae	2	2
Total scléractiniaire	47	/
Non Scléractiniaire		
Milleporidae	3	5
Tubiporidae	3	2
Gorgone	0	0
Antipathaire	2	2
Total coraux	55	/

4.4.2.2.2 Les Macrophytes et les Invertébrés (ST04B)

Les éboulis de roches et les conditions hydrodynamiques et de turbidité ont favorisé la colonisation des spongiaires à la défaveur des madrépores cependant ces groupes biotiques ont très peu d'évolution depuis la dernière mission.

Les macrophytes ont une faible couverture et sont représentés seulement par quelques thalles d'algues vertes (*Halimeda* sp.) qui se développent modérément sur les débris coralliens et sur le sable. Le genre *Neomeris* n'a toujours pas été recensé lors de cette campagne. Les algues rouges sont représentées par les *Amphiroa* et les algues brunes sont absentes.

Parmi les éponges, Hamigera strongylata, Cliona cf. jullienei, C. orientalis encroûtent de manière

importante les blocs rocheux et les débris coralliens. Une éponge noire (indéterminée) se répartie par petites colonies sur les substrats durs.

Les alcyonaires sont de petite taille et un peu plus abondants que pour le niveau bathymétrique supérieur (*Sarcophyton, Lobophytum, Nephthea* et *Drendronephthya*). Les crinoïdes affectionnent les colonies coralliennes de *Tubastrea micrantha* et d'*Acropora* tabulaires morts (colonies exposées au courant de marée). Leur abondance a diminué mais reste importante.

Les bryozoaires *Alcyionidium* sp. sont particulièrement bien développés, ils recouvrent les blocs rocheux sur des surfaces de 0.5 m². L'abondance des crinoïdes reste importante.

Variation entre mars 2011 et octobre 2011				
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)		
Aucune Absence	Présence nouvelle de 1 genre d'alcyonaire : Sinularia			
		Légère diminution de recouvrement du bryozoaire Alcyionidium sp.		
	Absence	Diminution de l'abondance des crinoïdes en faveur du niveau bathymétrique inférieur		
		Présence nouvelle de 1 espèce de mollusque Coralliophila violacea		
		Augmentation de recouvrement de 1 espèce d'éponge <i>Cliona</i> orientalis		
		Présence nouvelle de l'éponge Spheciospongia vagabunda		

Tableau n°41 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST04B)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	5	3
Algue brune	0	0
Algue rouge	1	2
Algue verte	2	2
Cyanobactéries	0	0
Anémone	0	0
Ascidie	0	0
Bryozoaire	1	4
Astérie	1	1
Crinoïde	1	4
Echinide	1	2
Holothurie	0	0
Hydraire	1	3
Mollusque	6	2
Spongiaire	7	4
Zoanthaire	1	2
TOTAL	27	/

4.4.2.3 Benthos Transect 04 C

4.4.2.3.1 Les Scléractiniaires (ST04C)

La richesse spécifique de ce niveau bathymétrique est de 22 espèces coralliennes dont deux gorgones, deux

espèces de *Millepora* (encroûtant et branchu) et une espèce d'antipathaire (*Antipathus*). Malgré une augmentation de 3 espèces par rapport à la dernière mission, ce nombre d'espèce corallienne reste réduit et figure en dernière position au regard de tous les transects étudiés dans le canal de la Havannah et la baie de Prony.

Les familles scléractiniaires (17 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (6 taxons), les Acroporidae (3 taxons), les Dendrophyllidae (3 taxons), les Agaraciidae (1 taxon), les Pectiniidae (1 taxon), les Mussidae (1 taxon), les Merulinidae (1 taxon), les Oculinidae (1 taxon) et les Fungiidae (1 taxon).

L'espèce prédominante est *Tubastrea micrantha* qui s'édifie sur la dalle en grandes colonies pluri métriques de façon perpendiculaire au courant. Leur développement est tellement important qu'elles s'écroulent lorsque les conditions hydrodynamiques sont trop importantes. Des colonies mortes sont étalées sur le substrat sableux et leurs débris jalonnent le bas de tombant (blanchissement modéré).

Le reste des espèces est représenté par quelques petites colonies de *Pachyseris speciosa*, *Cyphastrea* sp., *C. chalciculum*, *Oxypora glabra*. *Acropora* tabulaire, *Favites* sp., *Scolymia australis* et *Psammocora superficialis*.

Tableau n°42 : <u>Biodiversité et Abondance des coraux par famille (ST04C)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	3	2
Agaraciidae	1	2
Astrocoeniidae	0	0
Caryophyllidae	0	0
Dendrophyllidae	3	4
Faviidae	6	2
Fungiidae	1	1
Merulinidae	1	1
Mussidae	1	2
Oculinidae	1	2
Pectiniidae	0	0
Pocilloporidae	0	0
Poritidae	0	0
Siderastreidae	0	0
Total scléractiniaire	17	/
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	2	2
Gorgone	0	0
Antipathaire	1	1
Total coraux	22	/

Variation entre mars 2011 et octobre 2011							
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien					
Présence nouvelle de 6 espèces <i>Turbinaria</i> reniformis, <i>Goniastrea australensis</i> , <i>Fungia</i> sp., <i>Merulina ampliata</i> , <i>Galaxea fascicularis</i> et gorgone sp. Mortalité de 1 espèce : <i>Oxypora glabra</i> Mobilité : absence de <i>Polyphyllia talpina</i>	Diminution d'abondance de 2 espèces : <i>Tubastrea</i> micrantha, <i>Cyphastrea</i> sp.	Observé sur 3 colonies de l'espèce <i>Tubastraea</i> micrantha (pas de variation par rapport à la dernière mission)					

4.4.2.3.2 Les Macrophytes et les Invertébrés (ST04C)

Les macrophytes sont quasi absentes dans ce milieu turbide, car la pénétration de la lumière est atténuée par la profondeur et les particules sédimentaires et ne permet pas une bonne photosynthèse. Seuls quelques thalles d'algues rouges (*Amphiroa* sp.) se répartissent à travers les débris coralliens.

Les éponges encroûtantes *Hamigera strongylata*, *Cliona jullienei* et *Cliona orientalis* colonisent les débris coralliens et les quelques roches. L'éponge noire (indéterminée) se répartie abondamment par petites colonies sur les substrats durs. Quelques grandes *Dactylia delicata* (éponge en orgue) se développent sur les débris coralliens.

Les alcyonaires sont de petite taille et peu abondants (Lobophytum, Sinularia et Drendronephthya).

Les crinoïdes sont nombreuses et installées sur les *Tubastrea micrantha* vivants ou morts (colonies exposées aux courants) et le reste des substrats durs exposés aux courants (débris, roches).

Tout comme pour la zone des 10 mètres de profondeur, les bryozoaires *Alcyionidium* sp. sont particulièrement bien développés, ils recouvrent les blocs rocheux et la dalle sur des surfaces de 0.5m². Les macrophytes et les invertébrés ont une très faible évolution depuis la dernière mission.

	Variation entre mars 2011 et octobre 2011							
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)						
		Présence nouvelle de 2 espèces de mollusques : <i>Isognomon isognomon</i> et <i>Pinctada margaritifera</i>						
Aucune	Absence	Absence de 1 espèce d'holothurie : Stichopus variegatus						
Aucune	Absence	Présence nouvelle de 1 espèce d'échinide : Diadema setosum						
		Augmentation d'abondance de 3 espèces de spongiaires : <i>Hamigera</i> strongylata, Cliona orientalis et éponge noire indéterminée						

Tableau n°43 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST04C)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	3	3
Algue brune	0	0
Algue rouge	1	1
Algue verte	0	0
Cyanobactéries	0	0
Anémone	0	0
Ascidie	0	0
Bryozoaire	1	5
Astérie	3	2
Crinoïde	1	4
Echinide	1	2
Holothurie	1	2
Hydraire	1	3
Mollusque	5	3
Spongiaire	9	5
Zoanthaire	2	2
TOTAL	28	/

4.4.3 Les poissons (ST04)

La liste des espèces observées⁷ sur les transects et les résultats bruts sont fournis dans le tableau 44.

Tableau n°44 : <u>Données sur les poissons (ST04)</u>

	Canal Woodin ST04		Transe	ct		Transe	ct		Transe	ct		Station	
		A				В		С			Total	Moyenne	
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom
Aca	Acanthurus albipectoralis				5	0,06	19,53				5	0,02	6,51
Aca	Acanthurus blochii							1	0,01	7,66	1	0,00	2,55
Aca	Acanthurus mata							12	0,09	18,94	12	0,03	6,31
Aca	Ctenochaetus striatus	2	0,03	0,17							2	0,01	0,06
Aca	Zebrasoma scopas	4	0,05	0,34							4	0,02	0,11
Ble	Ecsenius bicolor				1	0,01	0,01				1	0,00	0,00
Cae	Caesio caerulaurea				30	0,15	5,18	30	0,21	34,41	60	0,12	13,20
Cae	Caesio cuning							20	0,14	13,20	20	0,05	4,40
Car	Alepes vari							30	0,21	47,36	30	0,07	15,79
Cha	Chaetodon baronessa	1	0,01	0,09							1	0,00	0,03
Cha	Chaetodon bennetti	2	0,03	0,06							2	0,01	0,02
Cha	Chaetodon flavirostris				2	0,03	0,50				2	0,01	0,17
Cha	Chaetodon lunulatus	2	0,03	0,11							2	0,01	0,04
Cha	Chaetodon vagabundus	1	0,01	0,18							1	0,00	0,06
Cha	Coradion altivelis							1	0,01	0,94	1	0,00	0,31
Epi	Anyperodon leucogrammicus				1	0,01	3,91				1	0,00	1,30
Epi	Cephalopholis argus							2	0,03	1,87	2	0,01	0,62
Epi	Cephalopholis boenak	3	0,04	0,26	2	0,03	0,26				5	0,02	0,17
Epi	Epinephelus merra	3	0,04	1,30							3	0,01	0,43
Lab	Cheilinus chlorourus							1	0,01	0,94	1	0,00	0,31
Lab	Cheilinus trilobatus							1	0,01	0,34	1	0,00	0,11
Lab	Labroides dimidiatus	4	0,05	0,13	4	0,05	0,13				8	0,03	0,08
Lab	Thalassoma lunare	5	0,06	0,43	4	0,05	1,00				9	0,04	0,48
Mul	Parupeneus indicus							2	0,03	1,17	2	0,01	0,39
Nem	Scolopsis bilineatus	3	0,04	1,00	4	0,05	2,20				7	0,03	1,07
Poc	Centropyge bicolor				2	0,03	0,11	2	0,03	0,08	4	0,02	0,06
Poc	Centropyge tibicen							2	0,03	0,08	2	0,01	0,03
Pom	Abudefduf sexfasciatus	8	0,10	1,02				8	0,10	0,92	16	0,07	0,65
Pom	Abudefduf whitleyi	5	0,06	0,43	6	0,08	0,51				11	0,05	0,31
Pom	Chrysiptera rollandi				6	0,08	0,10				6	0,03	0,03
Pom	Chrysiptera taupou				6	0,08	0,10				6	0,03	0,03
Pom	Dascyllus reticulatus	15	0,19	0,24							15	0,06	0,08
Pom	Dascyllus trimaculatus							15	0,19	0,04	15	0,06	0,01
Pom	Pomacentrus moluccensis	5	0,06	0,16							5	0,02	0,05
Sca	Chlorurus sordidus	4	0,05	1,00							4	0,02	0,33
Sca	Scarus altipinnis	1	0,01	0,84							1	0,00	0,28
Sca	Scarus bleekeri	2	0,03	1,69	2	0,03	13,50				4	0,02	5,06
Sca	Scarus flavipectoralis	3	0,04	1,30	3	0,04	6,00				6	0,03	2,43
Sca	Scarus ghobban	2	0,03	1,69							2	0,01	0,56
Sca	Scarus globiceps	2	0,03	1,69							2	0,01	0,56

⁷ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

Sig	Siganus doliatus	2	0,03	0,50							2	0,01	0,17
Sig	Siganus vulpinus	2	0,03	0,50							2	0,01	0,17
	Total	81	1,01	15,11	78	0,75	53,02	127	1,09	127,95	286	0,95	65,36
	Biodiversité		23			15			14			42	
	Indice de Shannon =	4,444											
	Equitabilité =	0,824											

Sur l'ensemble des transects de la station, 286 individus appartenant à 42 espèces différentes (tableau 44) ont pu être observés. Ils représentent une densité de 0.95 poisson/m² pour une biomasse de 65.36 g/m². 88 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 45).

Tableau n°45 : <u>Liste des espèces complémentaires (ST04)</u>

			Canal Woodin ST04		
Fam	Espèces	Fam	Espèces	Fam	Espèces
Aca	Acanthurus blochii	Epi	Plectropomus leopardus	Pom	Abudefduf sexfasciatus
Aca	Acanthurus mata	Hae	Plectorhinchus chaetodonoides	Pom	Abudefduf whitleyi
Aca	Ctenochaetus striatus	Hae	Plectorhinchus gibbosus	Pom	Amblyglyphidodon curaca
Aca	Naso caesius	Kyp	Kyphosus pacificus	Pom	Chromis iomelas
Aca	Naso hexacanthus	Kyp	Kyphosus sydneyanus	Pom	Chromis margaritifer
Aca	Zebrasoma scopas	Lab	Anampses femininus	Pom	Chromis viridis
Aca	Zebrasoma veliferum	Lab	Cheilinus chlorourus	Pom	Chrysiptera rollandi
Apo	Apogon aureus	Lab	Cheilinus trilobatus	Pom	Chrysiptera taupou
Ble	Ecsenius bicolor	Lab	Choerodon fasciatus	Pom	Dascyllus aruanus
Ble	Meiacanthus atrodorsalis	Lab	Epibulus insidiator	Pom	Dascyllus reticulatus
Cae	Caesio caerulaurea	Lab	Halichoeres argus	Pom	Dascyllus trimaculatus
Cae	Caesio cuning	Lab	Halichoeres prosopeion	Pom	Neoglyphidodon nigroris
Cae	Caesio teres	Lab	Labroides dimidiatus	Pom	Neopomacentrus azysron
Car	Alepes vari	Lab	Oxycheilinus unifasciatus	Pom	Pomacentrus aurifrons
Cha	Chaetodon auriga	Lab	Thalassoma lunare	Pom	Pomacentrus moluccensis
Cha	Chaetodon baronessa	Lut	Lutjanus bohar	Pri	Priacanthus hamrur
Cha	Chaetodon bennetti	Lut	Lutjanus fulviflamma	Sca	Chlorurus sordidus
Cha	Chaetodon flavirostris	Lut	Lutjanus fulvus	Sca	Scarus altipinnis
Cha	Chaetodon lunulatus	Lut	Macolor niger	Sca	Scarus bleekeri
Cha	Chaetodon vagabundus	Mul	Parupeneus barberinoides	Sca	Scarus flavipectoralis
Cha	Coradion altivelis	Mul	Parupeneus indicus	Sca	Scarus ghobban
Dio	Diodon hystrix	Nem	Scolopsis bilineatus	Sca	Scarus globiceps
Epi	Anyperodon leucogrammicus	Ost	Ostracion cubicus	Sco	Scomberoides tol
Epi	Cephalopholis argus	Poc	Centropyge bicolor	Sig	Siganus corallinus
Epi	Cephalopholis boenak	Poc	Centropyge tibicen	Sig	Siganus doliatus
Epi	Cromileptes altivelis	Poc	Chaetodontoplus conspicillatus	Sig	Siganus puellus
Epi	Epinephelus howlandi	Poc	Pomacanthus imperator	Sig	Siganus vulpinus
Epi	Epinephelus malabaricus	Poc	Pomacanthus semicirculatus	Syn	Synodus variegatus
Epi	Epinephelus merra	Poc	Pygoplites diacanthus	Tet	Arothron meleagris
Epi	Epinephelus tauvina				

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 46 et spécifiquement pour la campagne d'octobre 2011 sur la figure 24.

Tableau n°46 : Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST04)

Familles		Canal Woodin ST04						
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b	
Acanthuridae	2	3	3	6	2	5	5	
Anthiinidae		1						
Blenniidae	1		1	2	2	2	1	
Caesionidae	1	1	2	1		1	2	
Canthigasteridae				1				
Carangidae	1	2	1	1		2	1	
Chaetodontidae	6	5	2	12	3	10	6	
Epinephelinae	4	4	1	6	2	5	4	
Haemulidae	1				1			
Labridae	4	4	4	6	3	8	4	
Lethrinidae		1		1	1	4		
Lutjanidae	2	4		1		2		
Mullidae	1		1	1		2	1	
Nemipteridae	1	1	1	1		1	1	
Pomacanthidae	5	2	5	4	4	3	2	
Pomacentridae	4	3	7	6	4	7	7	
Scaridae	3	6	5	3	3	4	6	
Siganidae	1	2	2	2		7	2	
Tetraodontidae						1		
Total espèces	37	39	35	54	25	64	42	
Total familles	15	14	13	16	10	16	13	

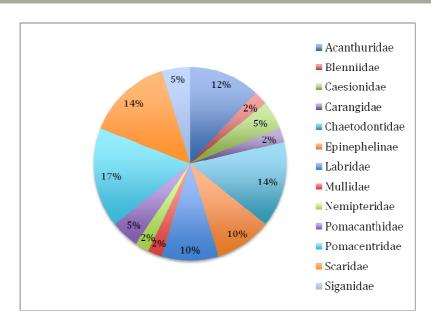


Figure n°24 : <u>Richesse spécifique par famille de poissons (ST04)</u>

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 47), sous l'angle de vue de ce critère les sept campagnes sont similaires.

Tableau n°47 : <u>Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011</u> (ST04)

Test ₂ 2	ddl	Seuil de tolérance à 0,95
74.64	102	125.8

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte).
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 48 et la figure 25.

Tableau n°48: Synopsis des résultats 2011 et récapitulatif des années précédentes (ST04)

			Toutes espèces							
Canal W	oodin ST04		Transect TLV Station							
		Nb. ind.	Densité	Biom. g/m ²	Biodiv.1	Biodiv.2	Biodiv.3			
	Transect A	81	1,01	15,11	23					
2011 b	Transect B	78	0,75	53,02	15					
2011 0	Transect C	127	1,09	127,95	14					
	Moy. ABC	95,33	0,95	65,36	42	68	88			
2011 a	Moy. ABC	169,00	2,11	730,66	64	89	111			
2010 b	Moy. ABC	81	0,84	38,60	25	70	92			
2010 a	Moy. ABC	107,00	3,38	460,91	54	79	110			
2009	Moy. ABC	45,00	4,07	456,26	35	55	81			
2008	Moy. ABC	52,00	2,71	267,80	39	49	89			
2007	Moy. ABC	95,00	5,45	408,31	37	40	54			

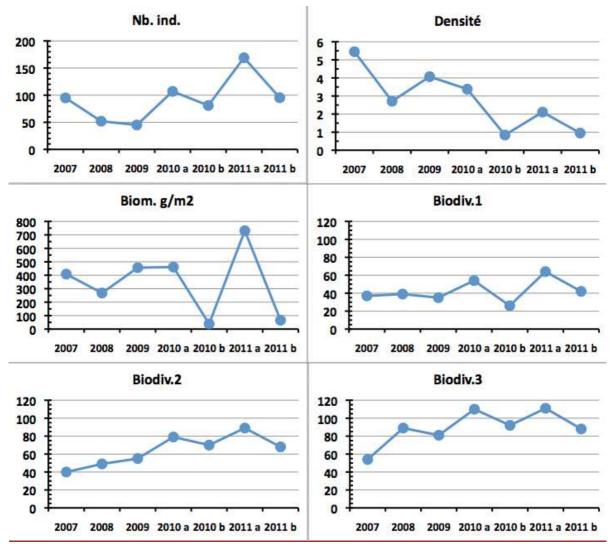


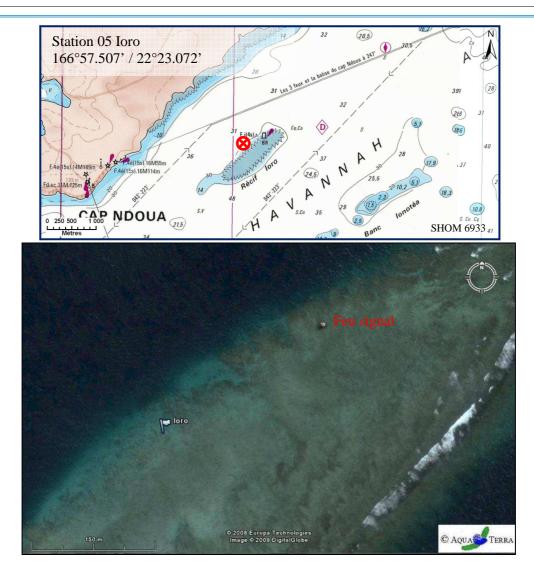
Figure n°25 : <u>Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST04)</u>

4.5 Station 05 = Récif loro

Localisation géographique	Façade nord-ouest du récif de Ioro, sous le vent, à environ 200 mètres dans le sud-ouest du feu signal de Ioro (photographie 12). Ce récif est ennoyé et soumis aux courants de marée et subit sur sa façade sud-est l'assaut des vagues dues aux alizés et à son exposition au large, alors que sa façade ouest est plus protégée.
Nombre transects	3 transects.
Description transects	Ils ont été positionnés perpendiculairement à la pente à 5, 10 et 20 mètres de profondeur et sont orientés du sud-ouest vers le nord-est.
	Le transect A est installé sur la zone sommitale du récif qui est constituée par du sable fin sur lequel sont disposés de nombreux débris, des grandes colonies massives de Porites et des massifs coralliens épars. Ces derniers sont recouverts principalement par des corallines. Des petites colonies coralliennes s'édifient et les Cliona encroûtent quelques coraux massifs. Le transect B se caractérise par un recouvrement important de débris et de blocs coralliens sur du sable coquillé. Les massifs coralliens sont épars, encore en place mais peu colonisés. Le transect C se situe en bas de pente.

Description générale

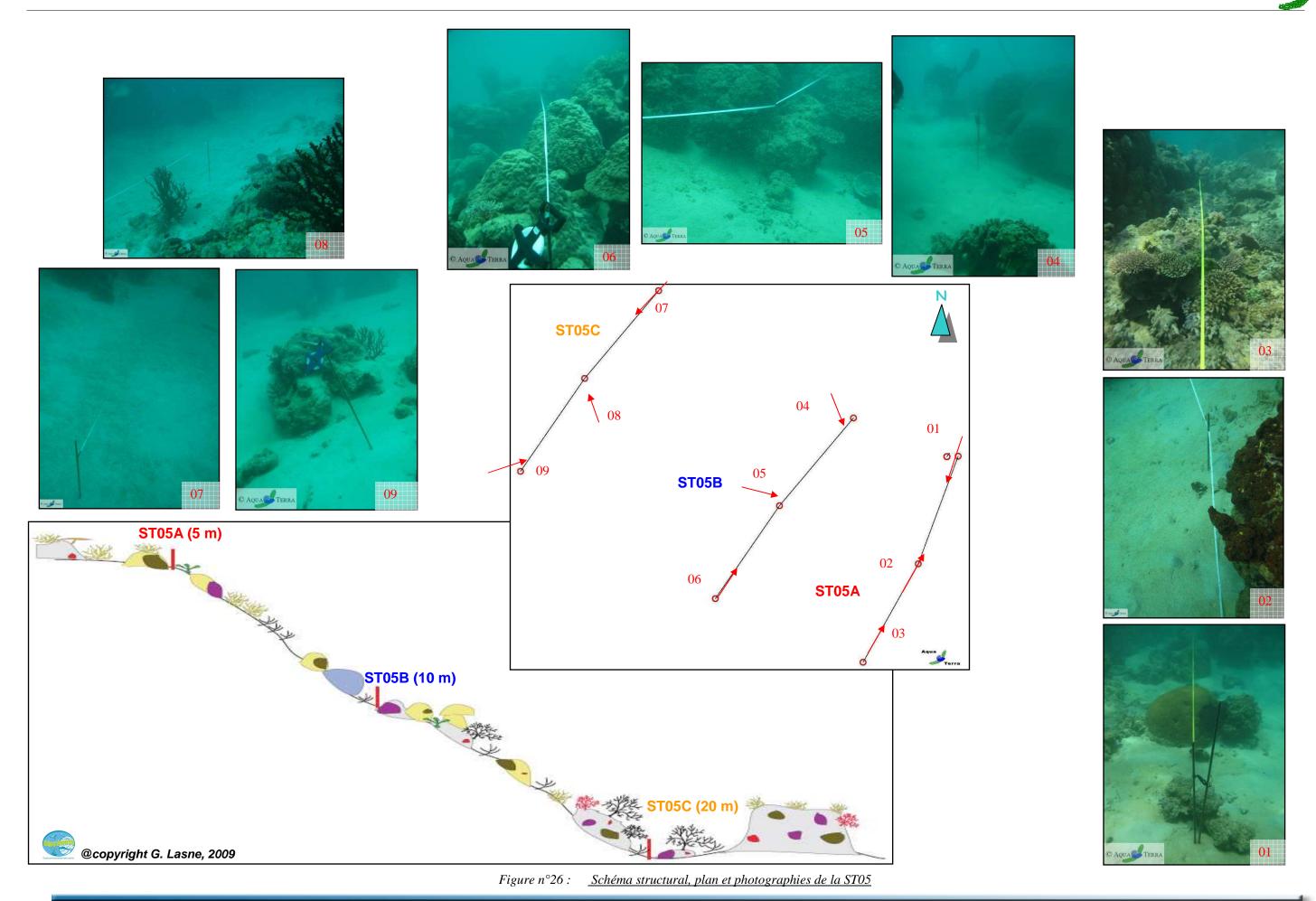
La façade nord-ouest du récif est composée par une pente sédimentaire détritique (sable, débris et roche) inclinée à environ 35°.


Des massifs coralliens de forme massive se développent particulièrement en surface jusqu'à mi-pente, laissant la place au fur et à mesure de la profondeur aux coraux branchus *Tubastrea micrantha* qui affectionnent les zones de courants.

Caractéristiques principales

- Originalité des peuplements coralliens adaptés à un milieu d'hydrodynamisme important (courant de marée).
- Présence en grand nombre de *Porites* massifs et branchus (diversité des Poritidae), *Millepora*, *Tubastrea micrantha* et d'une grande colonie pluri métrique de *Diploastrea heliopora* et *Turbinaria reniformis*.
- Mortalité corallienne et nombreux débris.
- Les spongiaires (*Cliona jullienei* et *C. orientalis*) sont relativement bien développées et colonisent les massifs coralliens vivants et les blocs coralliens.

Variations entre mars 2011 et octobre 2011


- Recrutement d'espèces nouvellement recensées : 2 au transect A, 2 en B et 4 en C.
- Mortalité des scléractiniaires : 4 espèces au transect A, 2 espèces en B et 4 espèces en C.
- Diminution de l'abondance des scléractiniaires pour 5 espèces au transect A, 6 en B et 2 en C.
- Le blanchissement est observé en petite proportion sur le transect inférieur (1 espèce au transect C).
- Présence rare de cyanobactéries (transects A et B).
- Variation de niveau bathymétrique par les échinodermes (échinides, holothuries).
- Présence d'*Acanthaster planci* au transect B (également présente lors de la dernière mission et attaque ancienne à plusieur année).
- Diminution de la richesse spécifique des holothuries.

Carte n°07: <u>Localisation de la station 05 (Ioro)</u>

Photo n°012: Position en surface par rapport au feu signal (ST05)

4.5.1 Le substrat (ST05)

Le pourcentage de couverture de chaque composante est donné dans la figure 27 pour le transect A, dans la figure 28 pour le transect B et dans la figure 29 pour le transect C.

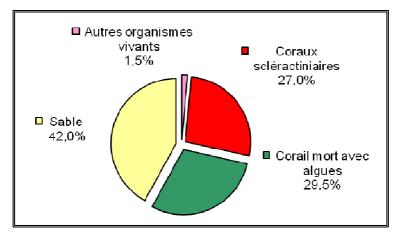


Figure n°27: Représentation du recouvrement (en %) du substrat pour ST05A

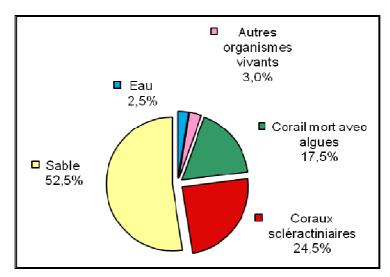


Figure n°28: Représentation du recouvrement (en %) du substrat pour ST05B

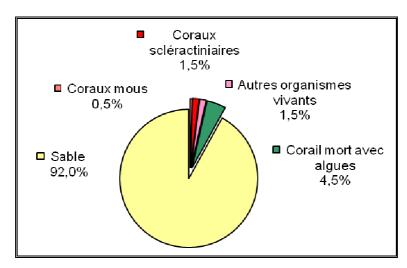


Figure n°29 : Représentation du recouvrement (en %) du substrat pour ST05C

Le substrat est majoritairement abiotique à cette station, avec une proportion de sable qui augmente avec la profondeur (42%, 52.5% puis 92%).

Les coraux scléractiniaires ne sont correctement représentés que sur les deux premiers transects (27% et 24.5%), puisqu'il n'y en a que 1.5% au transect C.

En effet, le transect C est remarquable par sa quasi absence de vie : il est positionné au-dessus du sable, et croise seulement un massif corallien mort (avec tuff algal) sur sa fin. Même si à cet étage le susbtrat est peu colonisé, ce transect n'est cependant pas représentatif de cette zone, où on peut observer notamment de très beaux *Tubastrea micrantha*.

La station est très stable par rapport à la précédente mission.

4.5.2 Le benthos (ST05)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.5.2.1 Benthos Transect 05 A

4.5.2.1.1 Les Scléractiniaires (ST05A)

Ce niveau bathymétrique est colonisé par 59 espèces coralliennes, dont une espèce de *Millepora* branchu et 1 espèce de gorgone indéterminée. Les familles scléractiniaires (57 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (14 taxons), les Acroporidae (12 taxons), les Poritidae (7 taxons), les Agariciidae (5 taxons), les Dendrophyllidae (3 taxons), les Merulinidae (3 taxons), les Pectinidae (3 taxons) et les Pocilloporidae (3 taxons).

Les familles scléractiniaires Poritidae et Acroporidae sont particulièrement bien développées : leurs espèces sont variées et adaptées aux conditions hydrodynamiques soutenues (courants de marée). Les colonies de Poritidae adoptent de grandes formes massives de plusieurs mètres de diamètre (*Porites lobata, Porites lutea* et *Porites* sp.), des formes branchues (*Porites cylindrica* et *Porites nigrescens*) ainsi que des formes avec de long polypes (*Alveopora* sp.). Les Acroporidae sont plutôt de forme branchue et robuste (*Isopora palifera, Montipora stellata* et *Acropora* spp.) et de forme encroûtante (*Montipora* spp.). Les autres colonies coralliennes sont de petite taille (*Cyphastrea japonica, Pectinia lactuca, Turbinaria mesenterina, T. peltata*).

Les dégradations sont de plusieurs types, dans le premier cas les conditions hydrodynamiques entraînent une casse importante des colonies branchues, dans le second cas, les coraux morts sont encore en place et sont les témoins d'anciennes proliférations d'*Acanthaster planci* observées les années passées qui ont dévoré les colonies massives et les éponges encroûtantes (*Cliona orientalis* et *C. jullienei*) sont en compétition spatiale avec les madrépores. La mortalité corallienne est importante au regard des nombreux débris coralliens et des grosses patates de *Porites* mortes (encore à nu ou bien envahies par les éponges encroûtantes).

Variation entre mars 2011 et octobre 2011						
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien				
Présence nouvelle de 2 espèces Leptoria phrygia, Gorgone sp.	Diminution d'abondance pour 2 espèces Turbinaria peltata et Porites cylindrica					
Mortalité : 2 espèces non pas été recencées Pavona duerdeni, Galaxea astreata	Pas d'augmentation d'abondance mais les colonies juvéniles de la dernière mission ont bien été identifiées comme Acropora spp., Barabattoia amicorum, Hydnophora exesa, Galaxea fascicularis, Pocillopora damicornis	Aucun				

Tableau n°49 : Biodiversité et Abondance des coraux par famille (ST05A)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	12	5
Agaraciidae	5	3
Astrocoeniidae	1	2
Caryophyllidae	0	0
Dendrophyllidae	3	2
Faviidae	14	4
Fungiidae	2	3
Merulinidae	3	2
Mussidae	2	2
Oculinidae	1	2
Pectiniidae	3	1
Pocilloporidae	3	2
Poritidae	7	5
Siderastreidae	1	2
Total scléractiniaire	57	/
Non Scléractiniaire		
Milleporidae	1	2
Tubiporidae	1	1
Gorgone	0	0
Antipathaire	0	0
Total coraux	59	/

4.5.2.1.2 Les Macrophytes et les Invertébrés (ST05A)

Les macrophytes présentent un recouvrement plutôt faible : les algues rouges (*Amphiroa*), les algues brunes (*Turbinaria ornata*) et les algues vertes (*Chlorodesmis fastigiata*) sont fixées préférentiellement sur les massifs coralliens et les débris. Le genre *Halimeda* est regroupé sur les différents substrats durs (amas de débris coralliens, blocs coralliens et massifs) et sur le sable et les algues brunes sont absentes (*Turbinaria ornata*).

Le recouvrement en alcyonaires est pauvre, seul quelques petits *Sarcophyton* se sont fixés à travers les débris. A contrario, les spongiaires sont relativement bien développées (*Cliona jullienei* et *C. orientalis*) et colonisent les substrats durs et colonisent aussi les coraux vivants (espèce bio indicatrice de l'affaiblissement des coraux). Une grosse colonie de *Platygyra daedalea* est colonisée par une *Cliona jullienei* mais cette dernière n'a pas d'évolution au fur et à mesure des quatre dernières missions.

A noter, la présence rare de *Clathria rugosa*. Les échinides (*Diadema setosum*) se camouflent dans les cavités des blocs coralliens.

	Variation entre mars 2011 et octobre 2011									
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)								
		Présence nouvelle de 2 espèces d'ascidies <i>Polycarpa</i> sp. et <i>P. nigricans</i>								
En diminution leur	En diminution, leur	Présence nouvelle de 2 espèces d'échinides <i>Echinometra mathaei</i> et <i>Echinostrephus aciculatus</i>								
Aucune	développement est rare et se concentre sur les débris coralliens	Présence nouvelle de 4 espèces de mollusques <i>Chicoreus ramosus</i> , <i>Pleuroploca</i> sp., <i>Pteristernia reincarnata</i> et <i>Murex ramosus</i>								
		Absence de 1 espèce d'holothurie : Thelenota ananas								
		Diminution d'abondance des mollusques <i>Tridacna squamosa</i> et <i>T. maxima</i> (mortalité)								
		Diminution d'abondance de l'éponge Cliona orientalis								

Tableau n°50 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST05A)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	1	1
Algue brune	0	0
Algue rouge	1	3
Algue verte	3	2
Cyanobactéries	1	1
Anémone	1	1
Ascidie	3	2
Bryozoaire	0	0
Astérie	0	0
Crinoïde	0	0
Echinide	3	2
Holothurie	0	0
Hydraire	0	0
Mollusque	10	3
Spongiaire	3	3
Zoanthaire	1	1
TOTAL	27	/

4.5.2.2 Benthos Transect 05 B

4.5.2.2.1 Les Scléractiniaires (ST05B)

Ce niveau bathymétrique est colonisé par 59 espèces coralliennes dont trois espèces de *Millepora* (branchu, sub massif et encroûtant) et un anthipathaire (*Antipathus*). Les familles scléractiniaires (55 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Acroporidae (12 taxons), les Faviidae (8 taxons), les Poritidae (7 taxons), les Dendrophyllidae (5 taxons), les Agaricidae (5 taxons), les Pocilloporidae (4 taxons), les Merulinidae (4 taxons) et les Pectiniidae (3 taxons).

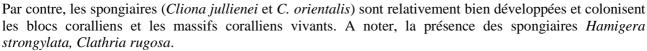
Les colonies massives se développent très bien dans ce genre de biotope. Les espèces *Porites lobata*, *P. lutea* et une colonie de *Diploastrea heliopora* sont de grande taille (2 à 3 mètres de diamètre). Les colonies

branchues forment de petits massifs (Porites nigrescens, Porites cylindrica et Millepora).

Cependant, tout comme pour le transect A, à 5 mètres de profondeur, les coraux ont subit des dégradations (coraux morts en place) par une ancienne attaque de l'astérie Acanthaster planci et par la colonisation des éponges encroûtantes du genre Cliona.

Variation entre mars 2011 et octobre 2011									
Evolution de la richesse spécifique des coraux Variation d'abondance Blanchissement coral									
Présence nouvelle de 2 espèces <i>Acropora</i> sp1 tabulaire et Gorgone sp1	Diminution pour 4 espèces : <i>Scolymia</i>								
Mortalité : absence de 2 espèces : <i>Galaxea</i> astreata et <i>Pocillopora eydouxi</i>	vitiensis, Goniopora sp., Porites cylindrica et Porites licken	Aucun dans le couloir							
Mobilité : absence de <i>Sandalolitha robusta</i> et <i>Polyphyllia talpina</i>	Pas d'augmentation d'abondance								

Tableau n°51 : Biodiversité et Abondance des coraux par famille (ST05B)


Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	12	4
Agaraciidae	5	3
Astrocoeniidae	1	2
Caryophyllidae	0	0
Dendrophyllidae	5	2
Faviidae	8	3
Fungiidae	1	2
Merulinidae	4	2
Mussidae	2	2
Oculinidae	1	2
Pectiniidae	3	2
Pocilloporidae	4	3
Poritidae	7	5
Siderastreidae	2	2
Total scléractiniaire	55	/
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	1	2
Gorgone	0	0
Antipathaire	1	1
Total coraux	59	/

4.5.2.2.2 Les Macrophytes et les Invertébrés (ST05B)

Les macrophytes ont un recouvrement très faible. Les espèces ont une cyclicité dans leur présence/absence (Halimeda sp. Turbinaria ornata, Chlorodesmis fastigiata) et quelques thalles d'Amphiroa sont disséminés à travers les débris et les massifs coralliens.

Les alcyonaires (Sarcophyton et Sinularia) sont également très peu représentés dans cette station.

Les mollusques Arca ventricosa sont incrustés dans les patates de Porites et les espèces Hyotissa sp., Lopha sp., Pedum spondylcidum, Pteria sp. et Spondylus sp. sont camouflées sur les blocs coralliens. Les holothuries ont des variations d'abondance bathymétrique.

Variation entre mars 2011 et octobre 2011								
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)						
		Présence rare d'Acanthaster planci (1 spécimen)						
		Présence nouvelle de 2 espèces d'ascidies <i>Polycarpa</i> sp. blanche et <i>P. nigricans</i>						
	En diminution, leur développement est rare et se concentre sur les débris coralliens	Diminution de l'abondance de l'ascidie Polycarpa cryptocarpa						
Aucune		Présence nouvelle de 2 espèces de mollusques <i>Pteristernia</i> reincarnata et Conus miles						
		Absence de 2 espèces d'holothuries <i>Holothuria atra</i> et <i>Stichopus</i> chloronotus						
		Diminution de l'abondance du mollusque <i>Arca ventricosa</i> incrusté dans les massifs de <i>Porites</i>						
		Augmentation du recouvrement de l'éponge Cliona orientalis						

et Goro Nickel Page 102/342

Tableau n°52 : Biodiversité et Abondance des macrophytes et invertébrés (ST05B)

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	2	2
Algue brune	0	0
Algue rouge	1	2
Algue verte	1	2
Cyanobactéries	1	1
Anémone	0	0
Ascidie	3	3
Bryozoaire	1	3
Astérie	3	2
Crinoïde	2	2
Echinide	2	2
Holothurie	2	2
Hydraire	2	2
Mollusque	8	4
Spongiaire	5	5
Zoanthaire	1	2
TOTAL	34	/

4.5.2.3 Benthos Transect 05 C

4.5.2.3.1 Les Scléractiniaires (ST05C)

La richesse spécifique de ce niveau bathymétrique est de 46 espèces coralliennes dont une espèce de *Millepora* branchu et deux espèces d'antipathaires. Les familles scléractiniaires (42 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (11 taxons), les Agaraciidae (6 taxons), les Mussidae (5 taxons), les Acroporidae (4 taxons), les Dendrophyllidae (3 taxons) et les Pocilloporidae (3 taxons).

Les colonies coralliennes de *Tubastrea micrantha* sont nombreuses et bien développées (perpendiculairement au courant). Cette espèce représente la plus grande partie du recouvrement corallien de ce bas de pente. Les autres espèces sont en majorité de petite taille et sont typiques d'environnement où la pénétration de la lumière est affaiblie (*Leptoseris scabra*, *Galaxea fascicularis*, *Caulastrea furcata*, *Goniopora* sp., *Coscinaraea columna*, *Pavona explanulata*, *Barabattoia amicorum*, *Turbinaria mesenterina* et *T. Peltata*).

Variation entre mars 2011 et octobre 2011										
Evolution de la richesse spécifique des coraux Variation d'abondance Blanchissement corallier										
Présence nouvelle de 4 espèces Coeloseris mayeri, Pavona maldivensis, Pavona varians, Alveopora spongiosa	Diminution d'abondance de 2 espèces <i>Tubastrea</i>	Observé sur 1 espèce : Tubastrea micrantha (1								
Mortalité : absence de 4 espèces Caulastrea curvata, Platygyra pini, Acanthastrea echinata, Galaxea astreata	micrantha et Lobophyllia pachysepta	colonie blanchie comme la mission précédente)								

Tableau n°53 : Biodiversité et Abondance des coraux par famille (ST05C)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	4	2
Agaraciidae	6	2
Astrocoeniidae	0	0
Caryophyllidae	1	1
Dendrophyllidae	3	4
Faviidae	11	5
Fungiidae	1	3
Merulinidae	1	2
Mussidae	5	3
Oculinidae	1	2
Pectiniidae	1	2
Pocilloporidae	3	2
Poritidae	3	2
Siderastreidae	2	1
Total scléractiniaire	42	/
Non Scléractiniaire		
Milleporidae	1	2
Tubiporidae	1	2
Gorgone	0	0
Antipathaire	2	2
Total coraux	46	/

Les Macrophytes et les Invertébrés (ST05C)

Le recouvrement est majoritairement composé par le substrat abiotique de sable coquillé, peu d'organismes colonisent ce substrat meuble.

Selon les missions, les algues vertes (Chlorodesmis fastigiata), les algues rouges (Amphiroa) et les ascidies (Polycarpa cryptocarpa) sont fixées sur les débris et les massifs coralliens. Quelques ascidies Polycarpa clavata colonisent des débris coralliens enfouis dans le sable.Les alcyonaires sont peu nombreux mais sont un peu plus variés que pour les niveaux bathymétriques supérieurs (Cladiella, Sarcophyton, Lobophytum, Chironephthya et Drendronephthya).

A noter, la présence de l'alcyonaire Chironephthya qui est peu commun dans l'ensemble de la zone d'étude.

Les bryozoaires (Alcyionidium sp.), les zoanthaires (Palythoa sp.) et les spongiaires (Hamigera strongylata, Cliona orientalis, C. jullienei, Stylissa flabelliformi, Stellata globostellata) encroûtent les massifs et les débris coralliens.

Variation entre mars 2011 et octobre 2011								
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)						
		Absence de 1 genre d'alcyonaire Cladiella sp.						
		Absence de 1 espèce d'échinide <i>Diadema setosum</i> (mobilité)						
Absence de Chlorodesmis	Absence	Absence de 1 espèce d'holothurie Stichopus chloronotus (mobilité)						
fastigiata	Ausence	Présence nouvelle de 1 espèce de mollusque Lopha cristagali						
, 0		Augmentation des spongiaires Chlatria rugosa						
		Diminution d'abondance des crinoïdes						

Tableau n°54 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST05C)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	4	3
Algue brune	0	0
Algue rouge	1	2
Algue verte	0	0
Cyanobactéries	0	0
Anémone	0	0
Ascidie	1	2
Bryozoaire	1	3
Astérie	2	2
Crinoïde	1	1
Echinide	0	0
Holothurie	0	0
Hydraire	1	3
Mollusque	5	1
Spongiaire	6	4
Zoanthaire	1	2
TOTAL	23	/

4.5.3 Les poissons (ST05)

La liste des espèces observées⁸ sur les transects et les résultats bruts sont fournis dans le tableau 55.

Tableau n°55 : <u>Données sur les poissons (ST05)</u>

	Banc Ioro ST05		Transe	ct		Transe	ct	Transect			Station		
		A			В			C			Total	Moyenne	
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom
Aca	Ctenochaetus striatus	2	0,03	0,17	1	0,01	0,09				3	0,01	0,09
Aca	Naso unicornis	5	0,06	53,59							5	0,02	17,86
Aca	Zebrasoma scopas	1	0,01	0,05							1	0,00	0,02
Ble	Ecsenius bicolor	1	0,01	0,01	1	0,01	0,01				2	0,01	0,00
Cae	Caesio caerulaurea				20	0,25	8,64	20	0,17	7,32	40	0,14	5,32
Cha	Chaetodon ephippium	1	0,01	0,13							1	0,00	0,04
Cha	Chaetodon flavirostris				2	0,03	0,26				2	0,01	0,09
Cha	Chaetodon plebeius	2	0,03	0,06	1	0,01	0,05				3	0,01	0,04
Cha	Heniochus acuminatus				1	0,01	0,43				1	0,00	0,14
Epi	Epinephelus merra	2	0,03	0,50							2	0,01	0,17
Epi	Plectropomus leopardus				1	0,01	6,75				1	0,00	2,25
Hae	Plectorh. chaetodonoides							3	0,03	13,50	3	0,01	4,50
Hae	Plectorhinchus picus							2	0,02	9,00	2	0,01	3,00
Lab	Bodianus loxozonus							1	0,01	0,56	1	0,00	0,19
Lab	Bodianus perditio							1	0,01	1,33	1	0,00	0,44
Lab	Coris aygula				1	0,01	0,55				1	0,00	0,18
Lab	Labroides dimidiatus							5	0,04	0,10	5	0,01	0,03
Lab	Thalassoma lunare	3	0,04	0,38	3	0,04	0,38	3	0,03	0,26	9	0,03	0,34
Let	Lethrinus atkinsoni				1	0,01	3,91	1	0,01	2,60	2	0,01	2,17
Mul	Parupeneus barberinus	6	0,08	0,77	2	0,03	0,50				8	0,03	0,42
Mul	Parupeneus bifasciatus	1	0,01	0,25	1	0,01	0,25				2	0,01	0,17
Mul	Parupeneus ciliatus				1	0,01	0,25				1	0,00	0,08
Mul	Parupeneus indicus							1	0,01	0,29	1	0,00	0,10
Mul	Upeneus tragula				6	0,08	0,77				6	0,03	0,26
Nem	Scolopsis bilineatus	5	0,06	2,16	6	0,08	2,59				11	0,05	1,58
Poc	Centropyge bicolor	2	0,03	0,06	2	0,03	0,06				4	0,02	0,04
Poc	Centropyge tibicen							2	0,02	0,02	2	0,01	0,01
Pom	Abudefduf sexfasciatus	10	0,13	0,31							10	0,04	0,10
Pom	Abudefduf whitleyi				4	0,05	0,51				4	0,02	0,17
Pom	Amphiprion clarkii	3	0,04	0,09							3	0,01	0,03
Pom	Chrysiptera rollandi	5	0,06	0,03							5	0,02	0,01
Pom	Chrysiptera rollandi				4	0,05	0,03	2	0,02	0,01	6	0,02	0,01
Pom	Chrysiptera taupou	10	0,13	0,07							10	0,04	0,02
Pom	Dascyllus aruanus	10	0,13	0,02							10	0,04	0,01
Pom	Dascyllus reticulatus							5	0,04	0,02	5	0,01	0,01
Pom	Dascyllus trimaculatus	10	0,13	0,02				10	0,08	0,05	20	0,07	0,02
Pom	Pomacentrus moluccensis	3	0,04	0,05	4	0,05	0,06				7	0,03	0,04
Pom	Pomacentrus philippinus				4	0,05	0,06				4	0,02	0,02
Pom	Stegastes nigricans	1	0,01	0,09							1	0,00	0,03
Sca	Scarus flavipectoralis				2	0,03	0,50				2	0,01	0,17

⁸ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

Sca	Scarus frenatus							2	0,02	1,13	2	0,01	0,38
Sca	Scarus spinus				2	0,03	0,50				2	0,01	0,17
Sig	Siganus puellus				2	0,03	0,86				2	0,01	0,29
	Total		1,04	58,82	72	0,90	28,02	58	0,48	36,19	213	0,81	41,01
	Biodiversité		20			23			14			43	
Indice de Shannon = 4,976													
	Equitabilité = 0,862												

Sur l'ensemble des transects de la station, 213 individus appartenant à 43 espèces différentes (tableau 55) ont pu être observés. Ils représentent une densité de 0.81 poisson/m² pour une biomasse de 41.01 g/m². 84 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 56).

Tableau n°56 : <u>Liste des espèces complémentaires (ST05)</u>

Banc Ioro ST05								
Fam	Espèces	Fam	Espèces	Fam	Espèces			
Aca	Acanthurus blochii	Lab	Coris dorsomacula	Pom	Chromis margaritifer			
Aca	Acanthurus nigricauda	Lab	Gomphosus varius	Pom	Chrysiptera rollandi			
Aca	Ctenochaetus striatus	Lab	Halichoeres melanurus	Pom	Chrysiptera taupou			
Aca	Naso unicornis	Lab	Halichoeres prosopeion	Pom	Dascyllus aruanus			
Aca	Zebrasoma scopas	Lab	Hemigymnus fasciatus	Pom	Dascyllus reticulatus			
Aca	Zebrasoma veliferum	Lab	Hemigymnus melapterus	Pom	Dascyllus trimaculatus			
Bal	Sufflamen chrysopterus	Lab	Labroides dimidiatus	Pom	Plectroglyphidodon lacrymatus			
Bal	Sufflamen fraenatus	Lab	Thalassoma lunare	Pom	Pomacentrus moluccensis			
Ble	Ecsenius bicolor	Let	Lethrinus atkinsoni	Pom	Pomacentrus nagasakiensis			
Cae	Caesio caerulaurea	Lut	Lutjanus russellii	Pom	Pomacentrus philippinus			
Cha	Chaetodon ephippium	Mic	Gunnellichthys curiosus	Pom	Stegastes nigricans			
Cha	Chaetodon flavirostris	Mul	Parupeneus barberinus	Pri	Priacanthus hamrur			
Cha	Chaetodon lunulatus	Mul	Parupeneus bifasciatus	Pse	Pictichromis porphyreus			
Cha	Chaetodon plebeius	Mul	Parupeneus ciliatus	Sca	Cetoscarus ocellatus			
Cha	Chaetodon speculum	Mul	Parupeneus indicus	Sca	Chlorurus sordidus			
Cha	Heniochus acuminatus	Mul	Upeneus tragula	Sca	Hipposcarus longiceps			
Cir	Paracirrhites forsteri	Nem	Pentapodus aureofasciatus	Sca	Scarus altipinnis			
Epi	Aethaloperca rogaa	Nem	Scolopsis bilineatus	Sca	Scarus bleekeri			
Epi	Plectropomus leopardus	Nem	Scolopsis lineatus	Sca	Scarus flavipectoralis			
Hae	Plectorhinchus chaetodonoides	Pin	Parapercis hexophtalma	Sca	Scarus frenatus			
Hae	Plectorhinchus picus	Ple	Assessor macneilli	Sca	Scarus rubroviolaceus			
Lab	Anampses neoguinaicus	Poc	Centropyge bicolor	Sca	Scarus schlegeli			
Lab	Bodianus axillaris	Poc	Centropyge flavissima	Sca	Scarus spinus			
Lab	Bodianus loxozonus	Poc	Centropyge tibicen	Scr	Synanceia verrucosa			
Lab	Bodianus perditio	Pom	Abudefduf sexfasciatus	Sig	Siganus doliatus			
Lab	Cheilinus chlorourus	Pom	Abudefduf whitleyi	Sig	Siganus puellus			
Lab	Coris aygula	Pom	Amblyglyphidodon curacao	Syn	Saurida gracilis			
Lab	Coris batuensis	Pom	Amphiprion clarkii	Syn	Synodus dermatogenys			

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 57 et spécifiquement pour la campagne d'octobre 2011 sur la figure 30.

Tableau n°57 : Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST05)

Familles	Banc Ioro ST05							
	2007	2008	2009	2010 a	2010 b	2011 a	2011 t	
Acanthuridae	1	2	4	4	2	4	3	
Anthiinidae		1						
Blenniidae	1			1	1	2	1	
Caesionidae						1	1	
Canthigasteridae			1	1		1		
Carangidae						2		
Chaetodontidae	3	1	3	4	1	10	4	
Dasyatidae			1		1	1		
Epinephelinae	1	3	4	1	1	3	2	
Gobiidae	1		1	1				
Haemulidae			2	1	1	1	2	
Labridae	3	5	4	8	2	6	5	
Lethrinidae		1	1	1		1	1	
Lutjanidae		1		1		1		
Mullidae		2	2	2	2	4	5	
Nemipteridae	1	1	1	1	1	1	1	
Pomacanthidae	2	3	5	3	3	5	2	
Pomacentridae	8	7	8	9	7	7	12	
Scaridae	1	2	4	2	1	4	3	
Scombridae						1		
Siganidae		1	3	2	1	1	1	
Total espèces	22	30	44	42	24	56	43	
Total familles	10	13	15	16	13	19	14	

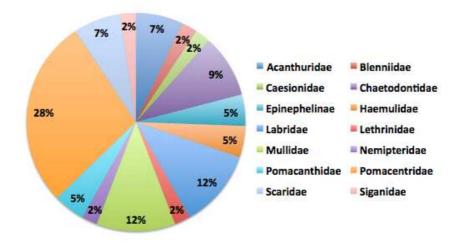


Figure $n^{\circ}30$: Richesse spécifique par famille de poissons (ST05)

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 58), sous l'angle de vue de ce critère les sept campagnes sont hautement similaires.

Tableau n°58 : Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 2011 (ST05)

Test χ2	ddl	Seuil de tolérance à 0,95
73.50	120	149.9

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 59 et la figure 31.

Tableau n°59: Synopsis des résultats 2011 et récapitulatif des années précédentes (ST05)

Banc Ioro ST05			Toutes espèces					
		Transect TLV				Station	Station	
		Nb. ind.	Nb. ind. Densité Biom. g/m ² Biodiv.1		Biodiv.2	Biodiv.3		
2011 b	Transect A	83	1,04	58,82	20			
	Transect B	72	0,90	28,02	23			
	Transect C	58	0,48	36,19	14			
	Moy. ABC	71,00	0,81	41,01	43	59	84	
2011 a	Moy. ABC	141,33	1,56	661,47	56	67	94	
2010 b	Moy. ABC	100	1,23	37,89	24	50	66	
2010 a	Moy. ABC	71,00	2,37	93,78	42	63	79	
2009	Moy. ABC	45,50	4,09	315,96	44	56	69	
2008	Moy. ABC	57,30	2,02	57,97	30	41	52	
2007	Moy. ABC	26,30	0,73	47,65	22	37	50	

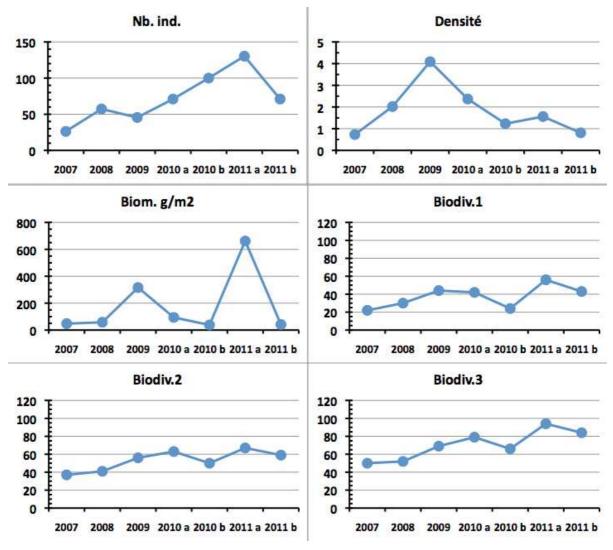


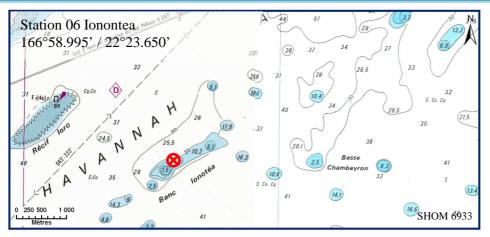
Figure $n^{\circ}31$: Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST05)

4.6 Station 06 = Banc Ionontea

Localisation géographique	Au nord-est du banc Ionontea. Le banc Ionontea se situe au milieu du canal de la Havannah. Ce récif est totalement immergé (cf. photographie 13) et subit les forts courants de marée et l'assaut des trains de houle. Aucun abri n'est possible.
Nombre transects	3 transects.
Description transects	Ils ont été positionnés parallèlement à la rupture de pente sous une orientation du sud-ouest vers le nord-est à 9, 15 et 21 mètres de profondeur.
	Le transect A se situe au début de la rupture de pente du récif. Le transect B se trouve au milieu de la pente qui est abrupte. Cette déclivité et les courants intenses ont généré des éboulements de blocs (10 cm à 1 m) et retourné des <i>Acropora</i> tabulaires.
	Le transect C se situe en bas de pente. Au-delà, les massifs coralliens sont beaucoup plus espacés et le sable parsemé de débris, représente plus de 70 % du recouvrement.

Description générale

La station est positionnée sur une pente abrupte inclinée entre 40-50° pour les profondeurs de 6 et 20 mètres.


Le banc est recouvert à son sommet principalement par des coraux du genre *Acropora* tabulaires et sub massif *Pocillopora* puis par une algueraie d'algues brunes des genres *Turbinaria* et *Sargassum*. Cette zone est fréquentée par de nombreuses tortues qui viennent se nourrir de ces algues. On note également la présence de deux couloirs d'avalanches avec des débris coralliens où les madrépores sont quasiment inexistants.

Caractéristiques principales

- Unique d'hydrodynamisme important (courant de marée).
- Présence en grandes colonies de *Porites* massifs à mi pente (10 m de profondeur).
- Nombreux coraux tabulaires retournés.
- Mortalité corallienne et nombreux débris.
- Les spongiaires (*Cliona jullienei* et *C. orientalis*) se développent relativement bien et colonisent les blocs coralliens et les massifs coralliens vivants.
- Lors de la mission de mars 2011 les communautés benthiques étaient dégradées sur l'ensemble de la station et plus particulièrement au transect A (cause : hydrodynamisme important).

Variations entre mars 2011 et octobre 2011

- Les coraux recolonisent progressivement la dalle et les débris corallien.
- Augmentation de la biodiversité des coraux avec des espèces nouvelles (1 espèce au transect A, 8 en B, 4 en C).
- Blanchissement corallien (2 espèces au transect A, 1 en B, 2 en C).
- 🖔 Légère augmentation du recouvrement de cyanobactéries *Phormidium* sp. (absence au transect A).
- Prédation des mollusques (*Drupella cornus*) sur 2 colonies coralliennes au transect B.
- Sevolution bathymétrique et spécifique des holothuries et astéries.
- Augmentation de la biodiversité des astéries.

Carte n°08 : Localisation de la station 06 (Ionontea)

Photo n°013 : <u>Position en surface (ST06)</u>

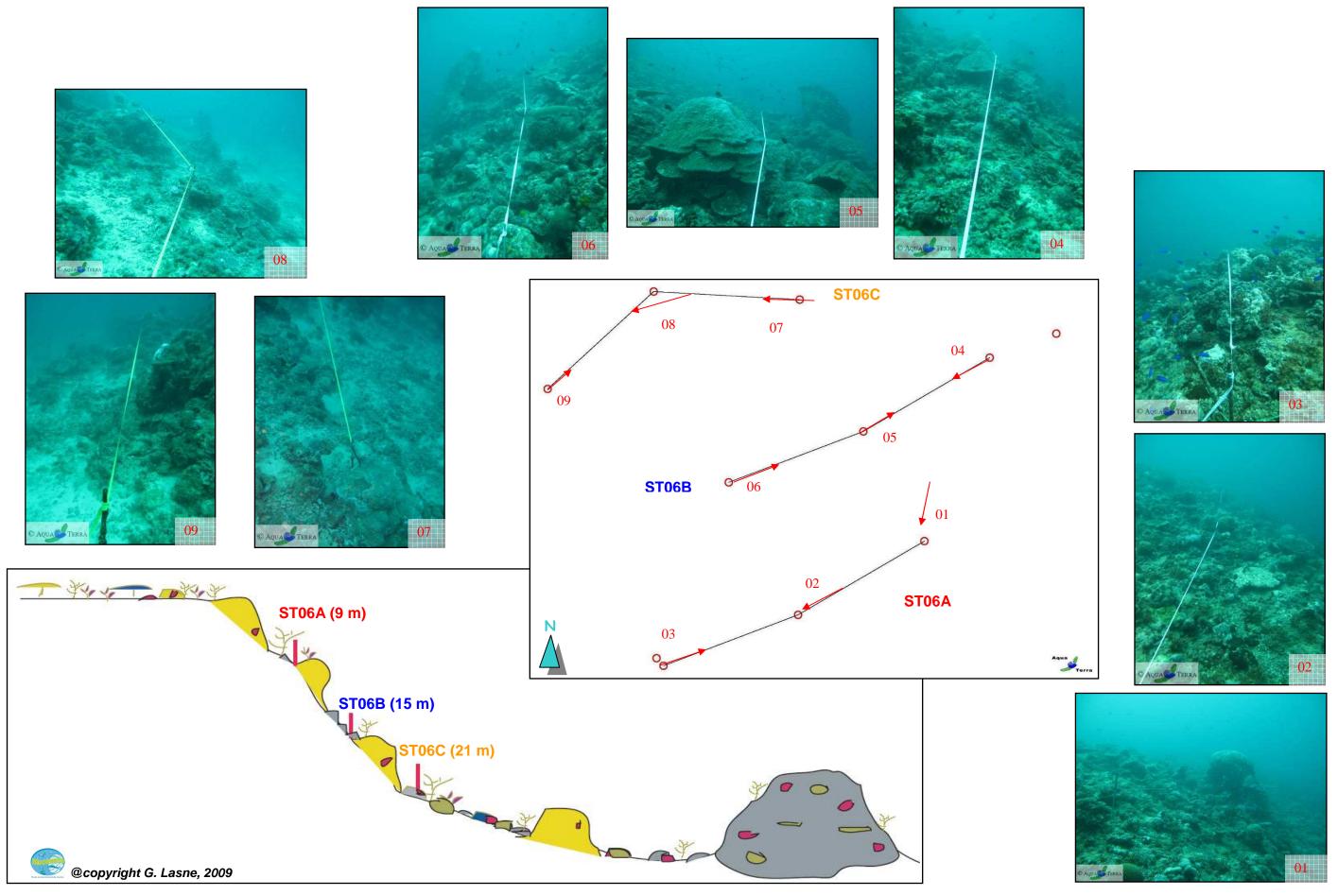


Figure n°32 : <u>Schéma structural, plan et photographies de la ST06</u>

4.6.1 Le substrat (ST06)

Le pourcentage de couverture de chaque composante est donné dans la figure 33 pour le transect A, dans la figure 34 pour le transect B et dans la figure 35 pour le transect C.

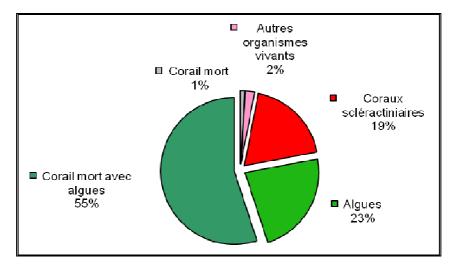


Figure n°33 : Représentation du recouvrement (en %) du substrat pour ST06A

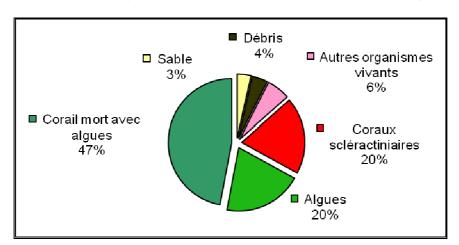


Figure n°34: Représentation du recouvrement (en %) du substrat pour ST06B

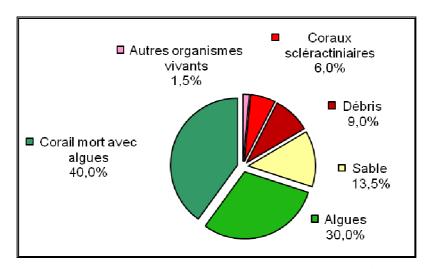


Figure n°35 : Représentation du recouvrement (en %) du substrat pour ST06C

Le substrat est très recouvert à cette station, notamment de coraux morts anciennement et colonisés par des algues calcaires encroûtantes (avec ainsi 99% de substrat biotique au transect A).

Les coraux scléractiniaires sont bien représentés particulièrement sur les 2 transects haut (19%, 19.5% et 6%).

A noter : les cyanobactéries ont totalement disparues du transect B (présentes lors des 3 dernières missions), mais se maintiennent faiblement sur le transect inférieur (1% en C).

Il y a 1% de corail blanc au transect A.

Les trois transects sont globalement stables au vu de la répartition biotique/abiotique, avec cependant une très forte augmentation algale (qui recouvre les « coraux morts avec algues ») aux trois niveaux bathymétriques.

4.6.2 Le benthos (ST06)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.6.2.1 Benthos Transect 06 A

4.6.2.1.1 Les Scléractiniaires (ST06A)

Les scléractiniaires se caractérisent par leur robustesse et leur résistance aux forts courants de marée et à l'assaut de la houle. De nombreuses colonies de petite taille (généralement décimètrique) adoptent des formes massives (Poritidae, Faviidae et Agariciidae), des formes encroûtantes (*Pavona varians, Montipora* spp., *Hydnophora pilosa*), des formes tabulaires (*Acropora* 3 spp.) et branchues (*Acropora* 4 spp., *Pocillopora damicornis, Seriatopora histrix, S. calendrium*). A noter, la présence rare de *Gardineroseris planulata* et *Barabattoia amicorum*.

Malgré la robustesse des colonies coralliennes, le taux de recouvrement corallien vivant a diminué et la biodiversité a nettement chutée (12 espèces n'avaient pas été recencées durant la mission de mars 2011). De nombreuses colonies de coraux tabulaires sont retournées ou ont dévalées la pente récifale et de nombreux débris coralliens sont les témoins d'un évènement hydrodynamique intense (dégradation mécanique). Cependant de petite colonies recolonisent le site à nouveau et s'édifient sur la dalle et les débris corallien.

La richesse spécifique de ce niveau bathymétrique est de 66 espèces coralliennes dont une espèce d'antipathaire (*Antipathus* sp.). Les familles scléractiniaires (65 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Acroporidae (15 taxons), les Faviidae (15 taxons), les Merulinidae (7 taxons), les Pocilloporidae (7 taxons), les Agariciidae (6 taxons), les Mussidae (5 taxons), les Merulinidae (5 taxons), les Fungiidae (3 taxons), les Siderastreidae (3 taxons) et les Dendrophyllidae (3 taxons).

Variation entre mars 2011 et octobre 2011			
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien	
Présence nouvelle de 1 espèce Hydnophora exesa	Augmentation d'abondance de 2	Obsarvá sur 2 aspàgas	
Mortalité : aucune, toutes les espèces ont été recenséees	espèces : <i>Tubastrea</i> sp. et <i>Galaxea fascicularis</i>	Observé sur 2 espèces d' <i>Acropora</i> sp. (tabulaire)	

Tableau n°60 : Biodiversité et Abondance des coraux par famille (ST06A)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	15	5
Agaraciidae	6	3
Astrocoeniidae	0	0
Caryophyllidae	0	0
Dendrophyllidae	3	2
Faviidae	15	4
Fungiidae	3	2
Merulinidae	5	2
Mussidae	5	2
Oculinidae	1	3
Pectiniidae	0	0
Pocilloporidae	7	4
Poritidae	2	3
Siderastreidae	3	2
Total scléractiniaire	65	/
Non Scléractiniaire		
Milleporidae	0	0
Tubiporidae	0	0
Gorgone	0	0
Antipathaire	1	2
Total coraux	66	/

4.6.2.1.2 Les Macrophytes et les Invertébrés (ST06A)

Les espèces de macrophytes et d'invertébrés sont adaptées aux milieux balayés par les courants. Les observations des missions précédentes ont révélé de nombreux changements saisonniers amplifiés par l'hydrodynamisme important qui évolu dans cette zone. De plus les espèces mobiles et en particulier les échinodermes ont des variations bathymétriques et spécifiques selon les missions. Le developpement modéré des cyanobactéries peut être corrélé à la dégradation corallienne.

Variation entre mars 2011 et octobre 2011		
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)
Augmentation de		Présence nouvelle de 2 genres d'alcyonaires Xenia et Sinularia
la diversité de 3 espèces : Asparag	Absence	Présence nouvelle de 4 espèces d'ascidies <i>Didemum</i> sp., <i>Clavelina detorta</i> , <i>Polycarpa aurita</i> , <i>Polycarpa nigricans</i>
opsis armata, Trichogloea		Augmentation de l'abondance des crinoïdes
requienii, Halimeda sp.		Présence nouvelle de 4 espèces de mollusques Conus distans, Conus sp., Lattiris gibbulus, Pedum spondyloidum

Groupe Macrophytes et Invertébrés Nombre de taxa Abondance (1 à 5) 3 Alcyonaire 3

Tableau n°61 : Biodiversité et Abondance des macrophytes et invertébrés (ST06A)

Algue brune 0 0 4 5 Algue rouge Algue verte 1 2 Cyanobactéries 0 0 0 0 Anémone Ascidie 5 5 Bryozoaire 0 0 Astérie 0 0 3 Crinoïde 1 **Echinide** 1 1 0 0 Holothurie Hydraire 0 0 Mollusque 5 4 4 **Spongiaire** 4 2 Zoanthaire 1 TOTAL 25

4.6.2.2 Benthos Transect 06 B

4.6.2.2.1 Les Scléractiniaires (ST06B)

Ce niveau bathymétrique est colonisé par 77 espèces coralliennes dont deux espèces de Millepora (encroûtant et branchu), une gorgone et un antipathaire (Antipathus). Les familles scléractiniaires (73 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (19 taxons), les Acroporidae (9 taxons), les Pocilloporidae (6 taxons), les Merulinidae (6 taxons), les Mussidae (6 taxons), les Agariciidae (6 taxons), les Pectiniidae (4 taxons), les Dendrophyllidae (5 taxons), les Fungiidae (3 taxons) et les Poritidae (3 taxons).

Le recouvrement en coraux vivants est faible et les dégradations sont importantes mais plus modérées que pour le niveau bathymétrique supérieur. Depuis mars 2011, de nombreuses colonies coralliennes de ce niveau ont été ensevelies, cassées ou entraînées par les éboulis de roches et de coraux morts provenant de l'étage supérieur. Les colonies vivantes sont de petite taille (Pectinia sp., Euphyllia divisa, Pavona maldiviensis, Scapophyllia cylindrica, Pocillopora damicornis, Scolymia vitiensis, Pachyseris speciosa, Turbinaria mesenterina, Turbinaria peltata, Psammocora contigua, Cyphastrea japonica, Echinopora lamellosa, Favites abdita...). Cependant, de grandes colonies de Porites lobata (2 m de diamètre) s'édifient sur la pente abrupte.

Variation entre mars 2011 et octobre 2011			
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien	
Présence nouvelle de 8 espèces : <i>Pavona</i> explanulata, <i>P. maldivensis</i> , <i>E. cristata</i> , <i>Tubastrea</i> sp., <i>Favia halicora</i> , <i>Leptoria phrygia</i> , <i>Fungia granulosa</i> , Gorgone indéterminée	Augmentation de l'abondance de 2 espèces : Turbinaria reniformis et Psammocora contigua	Rare et localisé sur 1	
Mobilité : 1 espèce (Sandalolitha robusta)	Pas de diminution d'abondance contairement à la dernière mission où 16 espèces avaient régrésé	colonie de <i>Porites lobata</i>	

Tableau n°62 : <u>Biodiversité et Abondance des coraux par famille (ST06B)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	9	4
Agaraciidae	6	3
Astrocoeniidae	0	0
Caryophyllidae	1	1
Dendrophyllidae	5	3
Faviidae	19	5
Fungiidae	4	3
Merulinidae	6	5
Mussidae	6	3
Oculinidae	2	3
Pectiniidae	4	3
Pocilloporidae	6	3
Poritidae	3	3
Siderastreidae	2	2
Total scléractiniaire	73	/
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	1	2
Gorgone	0	0
Antipathaire	1	2
Total coraux	77	/

4.6.2.2.2 Les Macrophytes et les Invertébrés (ST06B)

Les espèces de macrophytes et d'invertébrés sont adaptées aux milieux balayés par les courants. Les macrophytes ont de grandes variations de recouvrement et de diversité par leur cycle saisonnier. Les spongiaires du genre *Cliona* et en particulier l'espèce *C. orientalis* se répartissent abondamment sur les débris, les blocs et les coraux morts en place. Plusieurs exemples d'encroûtement de coraux scléractiniaires par les *Cliona orientalis* sont les marqueurs de la fragilité du récif et de la faiblesse des scléractiniaires dans ce milieu. Les cyanobactéries se développent également selon les saisons et selon les dégradations des colonies coralliennes. Les alcyonaires et les ascidies (*Polycarpa cryptocarpa, P. nigricans, P. clavata, Clavelina detorta, Didemum molle* et *Atriolum robustum*) sont également en compétition avec les coraux

pour la colonisation du milieu. Une petite partie de la place perdue par les coraux lors des effondrements de blocs répétitifs est compensée par le recouvrement en spongiaires et en zoanthaires.

Variation entre mars 2011 et octobre 2011			
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)	
Présence nouvelle et en abondance de 3 espèces d'algues rouges :	Leur développement est en augmentation	Présence nouvelle de 6 espèces d'ascidies : Atriolum robustum, Didemum sp., Citorclinum laboutei, Clavelina detorta, Polycarpa aurita, Polycarpa nigricans	
Asparagopsis armata, Gibsmithia hawaiiensis, Trichogloea requienii	mais reste modéré et localisé sur les colonies	Présence nouvelle de 5 espèces de mollusques : Pteristernia reincarnata, Conus millaris, Pedum spondyloidum, Astraea rhodostoma et Turbo sp	
Augmentation de l'abondance de <i>Dictyota</i> sp. (algue brune)	coralliennes dégradées et les débris coralliens	Augmentation de l'abondance des crinoïdes	

Tableau n°63 : Biodiversité et Abondance des macrophytes et invertébrés (ST06B)

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	3	2
Algue brune	1	2
Algue rouge	5	5
Algue verte	1	2
Cyanobactéries	1	2
Anémone	0	0
Ascidie	8	5
Bryozoaire	1	1
Astérie	1	1
Crinoïde	1	2
Echinide	1	2
Holothurie	2	2
Hydraire	1	2
Mollusque	7	3
Spongiaire	3	5
Zoanthaire	1	2
TOTAL	37	/

4.6.2.3 Benthos Transect 06 C

4.6.2.3.1 Les Scléractiniaires (ST06C)

Ce niveau bathymétrique est colonisé par 82 espèces coralliennes dont une espèce de *Millepora* (encroûtant), une espèce d'antipathaire (*Antipathus* sp.) et une espèce de gorgone. Les familles scléractiniaires (79 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (20 taxons), les Acroporidae (9 taxons), les Agariciidae (9 taxons), les Fungiidae (8 taxons), les Dendrophyllidae (6 taxons), les Mussidae (5 taxons), les Pocilloporidae (5 taxons), les Pectiniidae (3 taxons) et les Poritidae (3 taxons).

Le bas de pente étant l'exutoire de nombreux débris coralliens et de roches, le recouvrement des coraux vivants est faible mais les dégradations sur les communautés coralliennes sont minoritaires au regard des transects supérieurs. La richesse spécifique a nettement augmenté. Les colonies juveniles observées lors de la mission précédente n'ont pas été dégradées et sont maintenant assez grandes pour être identifiables. Les espèces les plus abondantes sur ce site sont communes au lagon néo-calédonien (*Seriatopora histrix, Galaxea astreata, G. fascicularis* et *Pocillopora damicornis*).

A noter, la présence rare de *Physogyra lichtensteini*, *Pocillopora subseriata*, *Leptoseris scabra*, *L. hawaiiensis*, *Mycedium elephantotus*, *Pavona decussata*, *Sandalolitha robusta*, *Turbinaria mesenterina*, *Oulastrea crispa*, *Pectinia lactuca*, *P. pæonia*, *Psammocora contigua*, *Hydnophora microconos* et *Acanthastrea echinata*.

Variation entre mars 2011 et octobre 2011			
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien	
Présence nouvelle de 4 espèces coralliennes : Tubastraea sp., Leptastrea purpurea, Fungia granulosa et Seriatopora calendrium	Augmentation de l'abondance de 1 espèce : <i>Cyphastrea serailia</i>	Rare, sur 2 espèces	
Mortalité : 1 espèce (Echinopora lamellosa)	Diminution de l'abondance : aucune pour cette mission contre 6 espèces pour la mission précédente	(Porites sp., P. lobata)	

Tableau n°64 : <u>Biodiversité et Abondance des coraux par famille (ST06C)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	9	3
Agaraciidae	9	2
Astrocoeniidae	0	0
Caryophyllidae	1	1
Dendrophyllidae	6	3
Faviidae	20	5
Fungiidae	8	3
Merulinidae	3	2
Mussidae	5	3
Oculinidae	2	3
Pectiniidae	5	2
Pocilloporidae	6	3
Poritidae	3	2
Siderastreidae	2	2
Total scléractiniaire	79	/
Non Scléractiniaire		
Milleporidae	1	2
Tubiporidae	1	2
Gorgone	0	0
Antipathaire	1	2
Total coraux	82	/

4.6.2.3.2 Les Macrophytes et les Invertébrés (ST06C)

Les macrophytes et les invertébrés ont une richesse spécifique qui a beaucoup augmenté.

L'évolution du recouvrement et de la diversité de ces organismes peut être attribuée aux cycles saisonniers et à la recolonisation du site après les nombreuses dégradations observées lors de la mission de mars 2011.

Les cyanobactéries (*Phormidium* sp.) et les spongiaires (*Cliona orientalis* et *C. jullienei*) se développent de manière modérée sur quelques colonies coralliennes vivantes et des débris coralliens (pas d'évolution depuis le dernier recensement).

Variation entre mars 2011 et octobre 2011			
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)	
Présence nouvelle et en abondance de 3 espèces d'algues rouges	Leur développement est en augmentation	Présence nouvelle de 6 espèces d'ascidies Atriolum robustum, Didemum sp., Citorclinum laboutei, Clavelina detorta, Polycarpa aurita, Polycarpa nigricans Pas d'évolution d'abondance des crinoïdes	
Asparagopsis armata, Gibsmithia hawaiiensis, Trichogloea requienii	mais reste modéré et localisé sur les colonies	Présence nouvelle de 2 espèces d'astéries <i>Linckia multifora</i> et <i>Gomophia</i> sp.	
Présence nouvelle modéré	coralliennes dégradées et les	Présence nouvelle de 1 espèce de mollusque <i>Coralliophila</i> sp. Présence nouvelle de 1 espèce d'holothurie <i>Holothuria atra</i>	
débris coralliens débris coralliens	Présence nouvelle de 1 espèce d'echinide <i>Diadema setosum</i>		

Tableau n°65 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST06C)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	4	3
Algue brune	1	3
Algue rouge	5	5
Algue verte	1	2
Cyanobactéries	1	2
Anémone	0	0
Ascidie	8	4
Bryozoaire	0	0
Astérie	2	2
Crinoïde	1	2
Echinide	1	1
Holothurie	2	2
Hydraire	1	2
Mollusque	2	1
Spongiaire	3	5
Zoanthaire	1	2
TOTAL	33	/

4.6.3 Les poissons (ST06)

La liste des espèces observées⁹ sur les transects et les résultats bruts sont fournis dans le tableau 66.

Tableau n°66 : <u>Données sur les poissons (ST06)</u>

	Ionontea ST06		Transe	ct		Transe	ct		Transe	ect		Station	
		A	A	A	В	В	В	C	C	C	Total	Moy	enne
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom
Aca	Acanthurus achilles	2	0,03	2,92							2	0,01	0,97
Aca	Acanthurus blochii	1	0,01	2,00	1	0,01	1,46				2	0,01	1,15
Aca	Acanthurus mata	8	0,10	4,39							8	0,03	1,46
Aca	Zebrasoma scopas	3	0,04	0,38							3	0,01	0,13
Aca	Zebrasoma veliferum				2	0,03	1,37				2	0,01	0,46
Ant	Pseudanthias pascalus	10	0,13	0,86							10	0,04	0,29
Ble	Ecsenius bicolor				1	0,01	0,01				1	0,00	0,00
Ble	Meiacanthus atrodorsalis				1	0,01	0,01				1	0,00	0,00
Cae	Caesio caerulaurea				20	0,25	10,99				20	0,08	3,66
Cha	Chaetodon bennetti				2	0,03	0,50				2	0,01	0,17
Cha	Chaetodon ephippium	2	0,03	0,26							2	0,01	0,09
Cha	Chaetodon kleinii	5	0,06	0,16							5	0,02	0,05
Cha	Chaetodon mertensii				2	0,03	0,26				2	0,01	0,09
Cha	Chaetodon pelewensis	2	0,03	0,17							2	0,01	0,06
Cha	Chaetodon unimaculatus	2	0,03	0,17							2	0,01	0,06
Cha	Forcipiger flavissimus	2	0,03	0,26							2	0,01	0,09
Cha	Heniochus chrysostomus				1	0,01	0,84				1	0,00	0,28
Cha	Heniochus varius							2	0,03	1,69	2	0,01	0,56
Epi	Cephalopholis urodeta				1	0,01	0,84				1	0,00	0,28
Epi	Epinephelus fasciatus				1	0,01	1,02				1	0,00	0,34
Epi	Plectropomus laevis							2	0,01	102,40	2	0,00	34,13
Epi	Plectropomus leopardus							3	0,02	64,80	3	0,01	21,60
Hae	Plectorh. chaetodonoides				1	0,01	1,14				1	0,00	0,38
Lab	Cheilinus chlorourus	1	0,01	0,25	1	0,01	0,84				2	0,01	0,36
Lab	Coris aygula				1	0,01	0,43				1	0,00	0,14
Lab	Labroides dimidiatus	5	0,06	0,27	5	0,06	0,64				10	0,04	0,30
Lab	Stethojulis bandanensis	3	0,04	0,38							3	0,01	0,13
Lab	Thalassoma amblycephalum	3	0,04	0,38							3	0,01	0,13
Lab	Thalassoma hardwicke	8	0,10	1,02							8	0,03	0,34
Lab	Thalassoma lunare	7	0,09	0,90	5	0,06	0,27				12	0,05	0,39
Let	Monotaxis grandoculis							1	0,01	2,70	1	0,00	0,90
Lut	Lutjanus fulvus							5	0,04	5,71	5	0,01	1,90
Mul	Parupeneus barberinoides	3	0,04	0,75							3	0,01	0,25
Mul	Parupeneus ciliatus				3	0,04	0,38				3	0,01	0,13
Nem	Scolopsis bilineatus	5	0,06	1,25	3	0,04	1,30	5	0,06	2,16	13	0,05	1,57

⁹ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

Poc	Centropyge bicolor				2	0,03	0,03				2	0,01	0,01
Poc	Centropyge bispinosa				2	0,03	0,03				2	0,01	0,01
Poc	Centropyge flavissima							2	0,03	0,03	2	0,01	0,01
Poc	Centropyge tibicen	2	0,03	0,03							2	0,01	0,01
Pom	Chromis fumea	10	0,13	0,16	10	0,13	0,16				20	0,08	0,11
Pom	Pomacentrus moluccensis				5	0,06	0,08				5	0,02	0,03
Sca	Chlorurus sordidus	5	0,06	1,25							5	0,02	0,42
Sca	Scarus altipinnis				2	0,01	4,46				2	0,00	1,49
Sca	Scarus ghobban				1	0,01	2,23	1	0,01	2,23	2	0,00	1,49
Sig	Siganus corallinus				2	0,03	0,86				2	0,01	0,29
Sig	Siganus dolliatus	2	0,03	0,50							2	0,01	0,17
	Total	91	1,14	18,71	75	0,92	30,17	21	0,19	181,73	187	0,75	76,87
Biodiversité			22			24			8			46	
	Indice de Shannon =	4,908	3										
	Equitabilité =	0,889)										

Sur l'ensemble des transects de la station, 187 individus appartenant à 46 espèces différentes (tableau 66) ont pu être observés. Ils représentent une densité de 0.75 poisson/m² pour une biomasse de 76.87 g/m². 124 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 67).

Tableau n°67: <u>Liste des espèces complémentaires (ST06)</u>

	Ionontea ST06								
Fam	Espèces	Fam	Espèces	Fam	Espèces				
Aca	Acanthurus achilles	Hae	Plectorhinchus gibbosus	Mul	Parupeneus spilurus				
Aca	Acanthurus albipectoralis	Hae	Plectorhinchus pictum	Nem	Pentapodus aureofasciatus				
Aca	Acanthurus annulatus	Hol	Myripristis kuntee	Nem	Scolopsis bilineatus				
Aca	Acanthurus blochii	Lab	Anampes caeruleopunctatus	Pin	Parapercis hexophtalma				
Aca	Acanthurus dussumieri	Lab	Anampes femininus	Poc	Centropyge bicolor				
Aca	Acanthurus mata	Lab	Anampses neoguinaicus	Poc	Centropyge bispinosa				
Aca	Ctenochaetus striatus	Lab	Bodianus axillaris	Poc	Centropyge flavissima				
Aca	Naso brevirostris	Lab	Bodianus perditio	Poc	Centropyge tibicen				
Aca	Naso lituratus	Lab	Cheilinus chlorourus	Poc	Genicanthus watanabei				
Aca	Naso unicornis	Lab	Cheilinus fasciatus	Pom	Chromis amboinensis				
Aca	Zebrasoma scopas	Lab	Coris aygula	Pom	Chromis fumea				
Aca	Zebrasoma veliferum	Lab	Coris batuensis	Pom	Chromis margaritifer				
Ant	Pseudanthias pascalus	Lab	Halichoeres hortulanus	Pom	Chromis nitida				
Ant	Pseudanthias pictilis	Lab	Halichoeres melanurus	Pom	Chrysiptera rex				
Bal	Sufflamen fraenatus	Lab	Halichoeres prosopeion	Pom	Chrysiptera rollandi				
Ble	Ecsenius bicolor	Lab	Hemigymnus fasciatus	Pom	Chrysiptera taupou				
Ble	Meiacanthus atrodorsalis	Lab	Hemigymnus melapterus	Pom	Dascyllus reticulatus				
Cae	Caesio caerulaurea	Lab	Labroides dimidiatus	Pom	Neopomacentrus bankieri				
Can	Canthigaster janthinoptera	Lab	Labropsis australis	Pom	Neopomacentrus filamentosus				
Can	Canthigaster valentini	Lab	Stethojulis bandanensis	Pom	plectroglyphidodon imparipennis				
Carc	Carcharhinus albimarginatus	Lab	Thalassoma amblycephalum	Pom	plectroglyphidodon lacrymatus				
Cha	Chaetodon bennetti	Lab	Thalassoma hardwicke	Pom	Pomacentrus bankanensis				
Cha	Chaetodon citrinellus	Lab	Thalassoma lunare	Pom	Pomacentrus chrysurus				
Cha	Chaetodon ephippium	Lab	Thalassoma lutescens	Pom	Pomacentrus moluccensis				
Cha	Chaetodon kleinii	Lab	Thalassoma nigrofascitus	Pom	Pomacentrus nagasakiensis				

Cha	Chaetodon mertensii	Lab	Wetmorella albofasciata	Pom	Pomacentrus pilotoceps
Cha	Chaetodon ornatissimus	Let	Lethrinus atkinsoni	Pom	Pomacentrus vaiuli
Cha	Chaetodon pelewensis	Let	Lethrinus nebulosus	Sca	Cetoscarus ocellatus
Cha	Chaetodon speculum	Let	Monotaxis grandoculis	Sca	Chlorurus sordidus
Cha	Chaetodon trifascialis	Let	Monotaxis heterodon	Sca	Scarus altipinnis
Cha	Chaetodon unimaculatus	Lut	Aprion virescens	Sca	Scarus chameleon
Cha	Forcipiger flavissimus	Lut	Lutjanus adetii	Sca	Scarus flavipectoralis
Cha	Heniochus chrysostomus	Lut	Lutjanus bohar	Sca	Scarus forsteni
Cha	Heniochus varius	Lut	Lutjanus fulvus	Sca	Scarus ghobban
Cir	Paracirrhites arcatus	Lut	Lutjanus quinquelineatus	Sca	Scarus psittacus
Cir	Paracirrhites forsteri	Lut	Macolor macularis	Sca	Scarus frenatus
Epi	Aethaloperca rogaa	Mic	Gunnellichthys curiosus	Sig	Siganus corallinus
Epi	Cephalopholis urodeta	Mic	Ptereleotris evides	Sig	Siganus dolliatus
Epi	Epinephelus fasciatus	Mic	Ptereleotris heteroptera	Sig	Siganus punctatus
Epi	Plectropomus laevis	Mul	Parupeneus barberinoides	Syn	Synodus variegatus
Epi	Plectropomus leopardus	Mul	Parupeneus ciliatus		
Hae	Plectorhinchus chaetodonoides	Mul	Parupeneus indicus		

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 68 et spécifiquement pour la campagne d'octobre 2011 sur la figure 36.

Tableau n°68 : Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST06)

Familles	Ionontea ST06						
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
Acanthuridae	6	8	6	5	4	8	5
Anthiinidae	2	2		1	2	1	1
Blenniidae					1	1	2
Caesionidae			1	1		1	1
Canthigasteridae						1	
Carangidae				4			
Chaetodontidae	5	3	4	3	3	4	9
Epinephelinae	5	4	5	5	2	4	4
Haemulidae		1	2	1	1		1
Labridae	5	8	1	7	7	10	7
Lethrinidae	1		1	1	2	4	1
Lutjanidae	2		3	2		1	1
Mullidae	1	1		1	3	2	2
Nemipteridae	1	1		1	1	1	1
Pomacanthidae	6	4	2	2	3	3	4
Pomacentridae	5	4	3	4	5	5	2
Ptereleotridae	1	1					
Scaridae	4	3	3	4	3	4	3
Scombridae				1		1	
Siganidae	1	1		1		1	2
Total espèces	45	41	31	44	37	50	46
Total familles	14	13	11	17	13	16	16

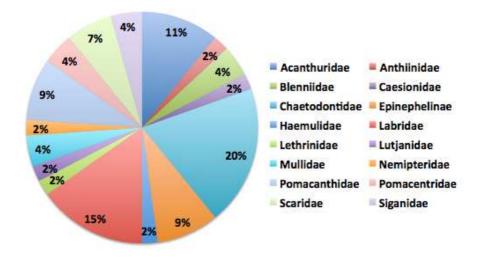


Figure n°36 : Richesse spécifique par famille de poissons (ST06)

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 69), sous l'angle de vue de ce critère les sept campagnes sont similaires.

Tableau n°69 : <u>Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 2011</u>
(ST06)

Test χ2	ddl	Seuil de tolérance à 0,95
94.41	114	142.7

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 70 et la figure 37.

Tableau n°70: Synopsis des résultats 2011 et récapitulatif des années précédentes (ST06)

	Ionontea ST06		Liste DENV							
Ionor			Tran	Station	Station					
		Nb. ind.	Densité	Biom. g/m ²	Biodiv.1	Biodiv.2	Biodiv.3			
	Transect A	91	1,14	18,71	22					
2011 a	Transect B	75	0,92	30,17	24					
2011 a	Transect C	21	0,19	181,73	8					
	Moy. ABC	62,33	0,75	76,87	46	88	124			
2011 a	Moy. ABC	178,30	2,23	687,67	51	75	102			
2010 b	Moy. ABC	190	1,91	92,96	37	58	81			
2010 a	Moy. ABC	76,00	2,05	487,76	44	71	94			
2009	Moy. ABC	27,00	1,17	226,52	31	33	81			
2008	Moy. ABC	43,67	2,99	385,65	41	54	67			
2007	Moy. ABC	42,67	2,45	1322,4	45	51	60			

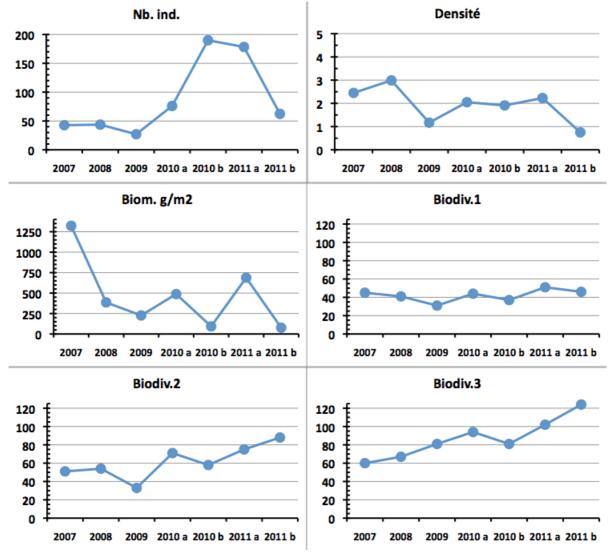


Figure n°37: <u>Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST06)</u>

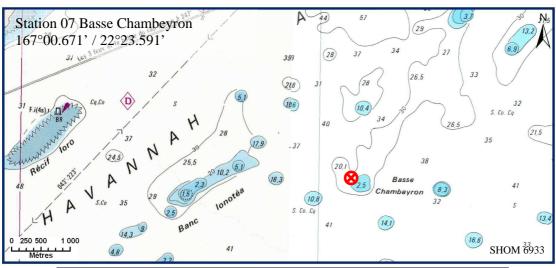
4.7 Station 07 = Basse Chambeyron

Localisation géographique	Dans la partie ouest du récif ennoyé de Basse Chambeyron. C'est un banc isolé, totalement ennoyé (cf. photographie 14) et qui subit les forts courants de marée et l'assaut des trains de houle. Aucun abri n'est possible.
Nombre transects	3 transects.
Description transects	Ils ont été positionnés aux profondeurs de 7, 17 et 22 mètres, avec une orientation du nord-est vers le sud-ouest.
	Ils se placent depuis la rupture du tombant récifal jusqu'à la pente sédimentaire (zone d'accumulation de débris et de roche). Cette pente est d'environ 40°.

Description générale

Le haut du plateau est soumis à de violents ressacs et courants : la majeure partie du banc est arasée et les quelques scléractiniaires qui s'y maintiennent développent des morphoses robustes.

Sur le dessus du banc (3-5 mètres), la plupart des espèces adaptées au ressac n'ont pas été détruites et sont encore en place. Leur taux de recouvrement est d'environ 10-15 %. Juste avant la rupture de pente (5 à 7 mètres) on trouve une zone d'*Acropora* branchu (*Acropora* cf. *formosa*) monospécifique, qui résistait paradoxalement depuis plusieurs années mais qui à été très dégradée lors des événements cycloniques du début d'année 2011. Au delà de 6-7 mètres, la pente est inclinée à 40°, la zone présente des séquelles de dégradations mécaniques (tempêtes et cyclones) comme l'atteste un nombre conséquent de roches et de débris coralliens de tailles variées. Par le phénomène d'avalanches, les grosses colonies fixées à l'origine vers 6-7 mètres (gros *Acropora* tabulaires, *Porites* massifs, ...) ont été arrachées, détruisant les organismes fixés sur leur passage.


Caractéristiques principales

- Originalité des peuplements coralliens adaptés à un milieu d'hydrodynamisme important (courant de marée) et taille relativement petite des colonies.
- Mortalité corallienne importante : couloir d'avalanche avec nombreux débris et coraux tabulaires retournés
- Les spongiaires (*Cliona jullienei* et *C. orientalis*) sont relativement bien développées et colonisent les blocs coralliens et les massifs coralliens vivants.
- Présence de *Blastomussa wellsi* aux transects B et C (espèce rare).
- Mobilité bathymétrique des échinodermes (astéries, holothuries, échinides) et des mollusques.
- Richesse spécifique des macrophytes qui varie selon la saison.
- Prédation des mollusques (*Druppela cornus*) sur quelques coraux tabulaires aux transects B et C.

Variations entre septembre 2010 et mars 2011

- Durant la dernière mission de mars 2011, les dégradations coralliennes étaient importantes et de nombreuses holothuries se répartissaient sur les nouveaux débris. Maintenant les holothuries se sont déplacées et on note une baisse de la diversité pour ce groupe biotique.
- Recolonisation des communautés benthiques sur l'ensemble de la station et plus particulièrement des algues rouges, des ascidies, des crinoïdes et des mollusques.
- Présence de colonies coralliennes juvéniles sur les 3 transects.
- Blanchissement corallien rare observé sur une colonie de Porites au transect C.
- Les cyanobactéries ont un développement modéré sur l'ensemble de la station.

Carte n°09: Localisation de la station 07 (Basse Chambeyron)

Photo n°014 : <u>Position en surface (ST07)</u>

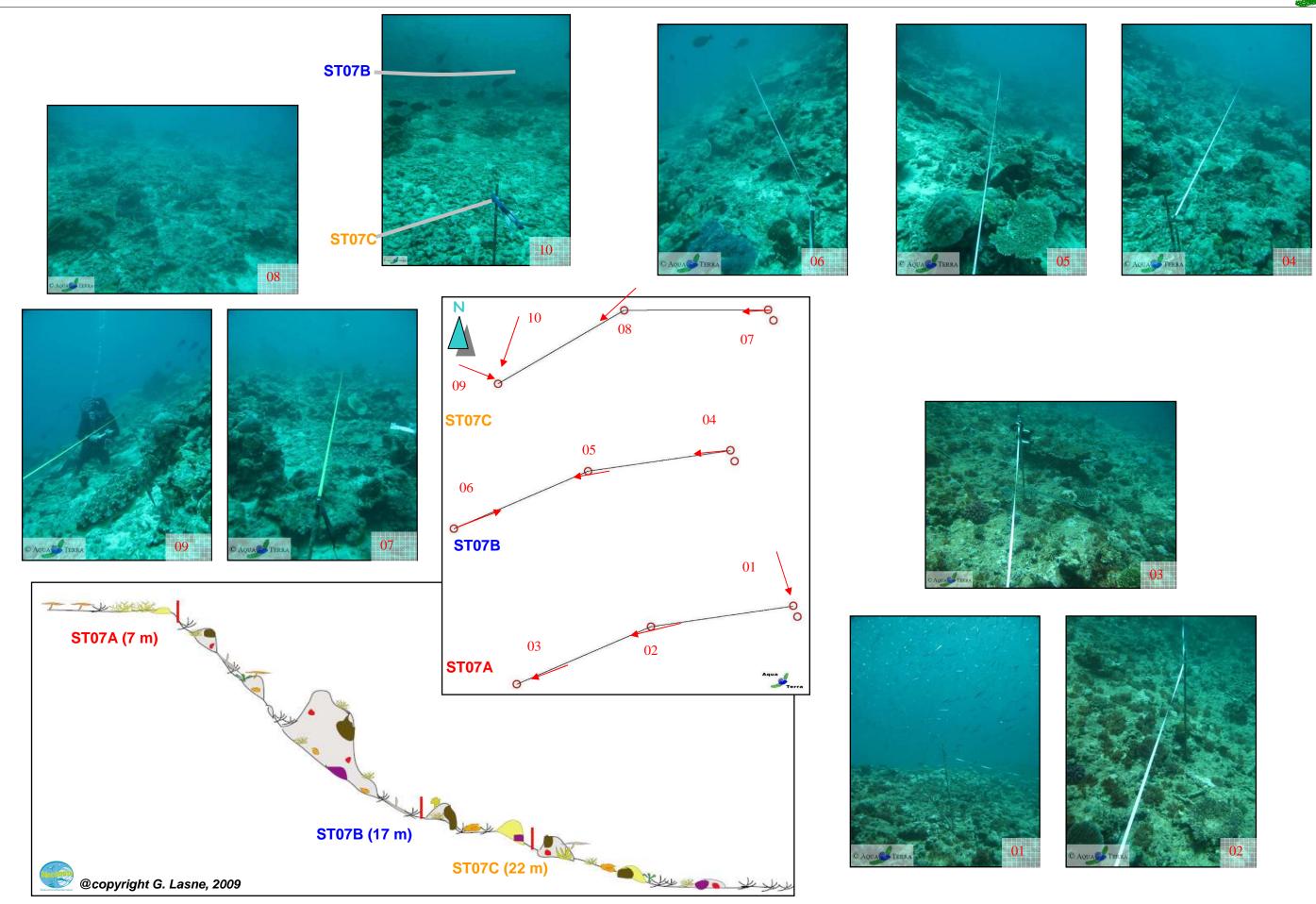


Figure n°38 : <u>Schéma structural, plan et photographies de la ST07</u>

4.7.1 Le substrat (ST07)

Le pourcentage de couverture de chaque composante est donné dans la figure 39 pour le transect A, dans la figure 40 pour le transect B et dans la figure 41 pour le transect C.

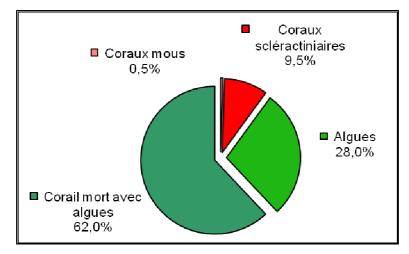


Figure n°39 : Représentation du recouvrement (en %) du substrat pour ST07A

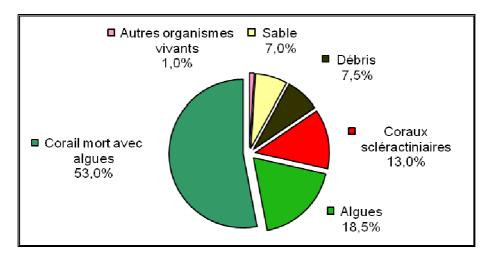


Figure n°40 : Représentation du recouvrement (en %) du substrat pour ST07B

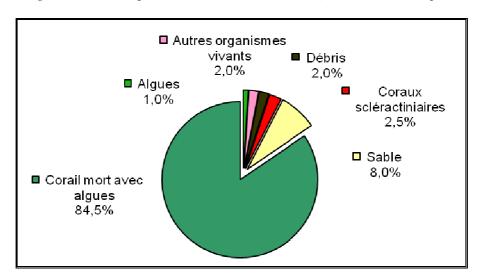


Figure n°41: Représentation du recouvrement (en %) du substrat pour ST07C

Cette station a un substrat qui est très biotique (notamment au 1^{er} transect : 100%). Pour cette mission, cela est dû en partie aux coraux morts - et aux débris, classés alors dans cette catégorie - recouverts d'algues et particulièrement d'algues calcaires encroûtantes, ainsi qu'à une augmentation des algues en elles-mêmes. Les coraux scléractiniaires sont faiblement représentés (respectivement 9.55%, 13% et 2.5%), malgré une très légère hausse aux deux transects supérieurs mais une baisse au transect du bas de pente. Mis à part l'explosion algale, la station est globalement stable.

A noter : plus de coraux blancs ni de cyanobactéries.

4.7.2 Le benthos (ST07)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.7.2.1 Benthos Transect 07 A

4.7.2.1.1 Les Scléractiniaires (ST07A)

Ce niveau bathymétrique est colonisé par 50 espèces coralliennes et les familles scléractiniaires (50 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (15 taxons), les Acroporidae (13 taxons), les Mussidae (6 taxons), les Pocilloporidae (6 taxons) et les Poritidae (3 taxons).

Famille Nombre de taxa Abondance (1 à 5) **Scléractiniaire** Acroporidae 13 5 Agaraciidae 1 1 Astrocoeniidae 0 0 Caryophyllidae 0 Dendrophyllidae 1 Faviidae 15 5 Fungiidae 2 2 Merulinidae 2 2 Mussidae 6 2 Oculinidae 1 3 Pectiniidae 0 0 Pocilloporidae 6 4 Poritidae Siderastreidae 0 0 Total scléractiniaire **50** Non Scléractiniaire Milleporidae 0 0 Tubiporidae 0 0 0 Gorgone 0 0 Antipathaire 0 **50 Total coraux** /

Tableau n°71 : Biodiversité et Abondance des coraux par famille (ST07A)

Les colonies scléractiniaires qui se développent en haut de récif, adoptent des morphoses robustes pour résister aux fréquents ressacs : formes branchues robustes (*Pocillopora eydouxi, P. damicornis, P. verrucosa, P. meandrina* et *Seriatopora calendrium*), formes encroûtantes (*Montipora* spp. et *Galaxea fascicularis*),

formes massives (*Symphyllia* cf. *recta*, *Hydnophora microconos*, *Porites* sp. et *Platygyra* spp.). La zone d'*Acropora* branchu (*Acropora* cf. *formosa*) monospécifique a été dégradée lors des événements cycloniques du début d'année 2011.

En mars 2011, les dégradations des communautés benthiques s'étendaient sur l'ensemble de la station et plus particulièrement pour les coraux scléractiniaires au transect A (cause : hydrodynamisme important). Désormais quelques petites colonies s'édifient mais le recouvrement va mettre du temps à se régénérer.

Variation entre mars 2011 et octobre 2011							
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien					
Présence nouvelle de 2 espèces <i>Tubastrea</i> sp. et <i>Alveopora spongiosa</i>	Aucune	Aucun dans le couloir					
Mortalité : 2 espèces <i>Turbinaria patula</i> et Symphyllia recta	Aucune	Aucun dans le coulon					

4.7.2.1.2 Les Macrophytes et les Invertébrés (ST07A)

Les macrophytes, les alcyonaires et les spongiaires ont un recouvrement faible. Les espèces qui se développent sont adaptées à un milieu balayé par les courants. L'évolution du recouvrement et de la diversité de ces organismes peut être attribuée aux cycles saisonniers amplifiés par des conditions hydrodynamiques exeptionnelles (tempête et cyclone).

D'une manière générale, les macrophytes montrent des variations saisonnières importantes (*Asparagopsis armata, Turbinaria ornata, Caulerpa* sp.1, *Neomeris van bosseae*). Les autres espèces d'algues sont minoritaires et représentées par quelques thalles d'algues vertes (*Halimeda, Chlorodesmis fastigiata*) et d'algues brunes (*Padina* sp.). D'une manière générale, les algues sont réparties à travers tous les substrats durs (dalle, débris, roches, coraux vivants) mais elles privilégient les anfractuosités pour être à l'abri du courant.

Les spongiaires, les alcyonaires, les ascidies ainsi que les zoanthaires (*Palythoa* sp.) ont beaucoup évolué depuis la dernière mission. Ces organismes ont été pour la plupart arrachés de leur substrat lors des évènements hydrodynamiques exeptionnels du début d'année 2011 mais désormais ils recolonisent les substrats durs et se diversifient.

Les crinoïdes privilégient ce type de biotope balayé par les courants de marée : leur abondance est plutôt modérée mais les individus de ce groupe normalement fixés sur les promontoires afin de capter au mieux leur nourriture, sont en fait cachés dans les cavités du récif (à cause du courant fort).

	Variation entre mars 2011 et octobre 2011						
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)					
Présence nouvelle de 2 espèces	Présence nouvelle de 2 espèces d'algue rouge Trichogloea requienii et Asparagopsis taxiformis Leur développement est modéré et concentré sur les colonies coralliennes dégradées et les nouveaux débris	Présence nouvelle de 1 espèce d'alcyonaire <i>Sinularia</i> sp., Elle avait été précédement arrachée de son substrat lors de la tempête					
requienii et Asparagopsis		Présence nouvelle de 2 espèces d'astéries <i>Celerina</i> heffernani et <i>Gomophia</i> sp.					
taxijormis		Présence nouvelle de 2 espèces de mollusques <i>Conus</i> miles, <i>Tridacna maxima</i>					

Groupe Macrophytes et Invertébrés Nombre de taxa Abondance (1 à 5) Alcyonaire 2 Algue brune 0 0 Algue rouge 2 5 Algue verte 1 2 Cyanobactéries 1 3 1 1 Anémone Ascidie 0 0 Bryozoaire 0 0 Astérie 2 2 3 Crinoïde 1 **Echinide** 0 0 0 0 Holothurie 2 Hydraire 1 Mollusque 3 2 2 4 **Spongiaire** 0 Zoanthaire 1 **TOTAL** 17

Tableau n°72 : Biodiversité et Abondance des macrophytes et invertébrés (ST07A)

4.7.2.2 Benthos Transect 07 B

4.7.2.2.1 Les Scléractiniaires (ST07B)

Ce niveau bathymétrique est colonisé par 67 espèces coralliennes dont deux espèces de *Millepora* branchu et encroûtant. Les familles scléractiniaires (65 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (14 taxons), les Mussidae (9 taxons), les Acroporidae (8 taxons), les Agaraciidae (7 taxons), les Pocilloporidae (6 taxons), les Poritidae (4 taxons), les Dendrophyllidae (4 taxons), les Fungiidae (4 taxons), les Merulinidae (3 taxons) et les Pectinidae (3 taxons).

La mortalité corallienne est importante au regard des nombreux débris coralliens. Cette dégradation mécanique est en relation directe avec l'exposition aux agents hydrodynamiques de cette zone et plus particulièrement avec les évènements exeptionnels du type cyclones et tempêtes. Les dégradations observées datent du cyclone Erica et ont été largement amplifiées depuis le début d'année 2011. De grandes colonies tabulaires d'Acroporidae de plus d'un mètre d'envergure gisent (tête retournée) sur cette pente. Elles ont été arrachées et transportées par des houles ou par des évènements exeptionnels Dans le même registre, à vingt mètre à l'ouest du transect, des couloirs d'avalanche sont le lieu d'accumulation importante de ces débris. Cependant, des colonies massives de *Porites* sp., *Pavona explanulata*, *P. duerdeni* s'édifient sur la pente récifale. Dans les zones protégées, des buissons branchus d'Acropora formosa et des colonies massives de *Porites* sp. sont encore en place. Et par place, quelques colonies s'édifient à travers les débris coralliens (*Turbinaria peltata*, *T stellulata*, *Seriatopora calendrium*, *Galaxea fascicularis*, *G. astreata*, *Leptoseris scabra*, *Montipora* cf. *verrucosa*, *M*. cf. *danae*, *Symphyllia radians*, *Mycedium elephantopus...*). De plus, quelques petites cuvettes de sable sont colonisées par les Fungides (*Sandalolitha robusta* et *Fungia* sp.).

En mars 2011, les dégradations des communautés benthiques s'étendaient sur l'ensemble de la station. Les colonies de coraux ont dévalées la pente récifale et de nombreux débris se sont accumulés au transect B.

Variation entre mars 2011 et octobre 2011								
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien						
Présence nouvelle de 3 espèces : Astreopora gracilis, Plerogyra sinuosa et Acanthastrea echinata	A							
Mortalité : 3 espèces : Merulina scabricula, Galaxea astreata, Pectinia paeonia	Augmentation légère de l'abondance de 1 espèce Pectinia lactuca	Aucun dans le couloir						
Mobilité : présence nouvelle de 2 espèces : Fungia granulosa et F. horrida	T cenna tacinca							

Tableau n°73 : Biodiversité et Abondance des coraux par famille (ST07B)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	8	4
Agaraciidae	7	3
Astrocoeniidae	0	0
Caryophyllidae	1	1
Dendrophyllidae	4	2
Faviidae	14	4
Fungiidae	4	3
Merulinidae	3	2
Mussidae	9	3
Oculinidae	1	2
Pectiniidae	3	2
Pocilloporidae	6	3
Poritidae	4	3
Siderastreidae	1	1
Total scléractiniaire	65	/
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	0	0
Gorgone	0	0
Antipathaire	0	0
Total coraux	67	1

4.7.2.2.2 Les Macrophytes et les Invertébrés (ST07B)

L'évolution du recouvrement et de la diversité de ces organismes peut être attribuée aux cycles saisonniers amplifiés par des conditions hydrodynamiques intenses et les effondrements coralliens du niveau bathymétrique supérieur.

Les macrophytes se sont developpées et particulièrement les algues rouges. L'abondance et la richesse spécifique des ascidies ont nettement augmenté par rapport à la dernière mission. Les éponges encroûtantes (*Cliona orientalis* et *C. jullienei*) colonisent la dalle, les débris coralliens et quelques coraux vivants comme *Pavona duerdeni*. Les organismes mobiles tels que les holothuries, les astéries et les mollusques, évoluent entre les niveaux bathymétriques. A noter la présence de *Holothuria flammea* qui est peu commune et des mollusques corrallivores (*Druppela cornus*) dévorant des colonies tabulaires d'*Acropora*.

Variation entre mars 2011 et octobre 2011								
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)						
Présence nouvelle de 2 espèces	Leur développement commence à être important et concentré sur les colonies coralliennes	Présence nouvelle de 5 espèces d'ascidies : Atrium robustum, Didemnum sp., Citorclidium laboutei, Polycarpa nigricans, Clavelina detorta						
d'algues rouges Trichogloea requienii et Asparagopsis taxiformis		Présence nouvelle de 1 espèce de mollusque : Pteristernia reincarnata						
	dégradées et les débris	Absence de 2 espèces d'holothuries : <i>Actinopyga</i> flammea et <i>Bohadschia argus</i>						

Tableau n°74 : Biodiversité et Abondance des macrophytes et invertébrés (ST07B)

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	4	3
Algue brune	0	0
Algue rouge	2	3
Algue verte	0	0
Cyanobactéries	1	2
Anémone	0	0
Ascidie	7	4
Bryozoaire	1	2
Astérie	1	1
Crinoïde	1	2
Echinide	1	1
Holothurie	1	2
Hydraire	1	3
Mollusque	7	2
Spongiaire	3	4
Zoanthaire	1	2
TOTAL	31	1

4.7.2.3 Benthos Transect 07 C

4.7.2.3.1 Les Scléractiniaires (ST07C)

Les coraux sont donc représentés par 43 espèces dont une espèce de *Millepora*, 1 espèce de gorgone et une espèce d'antipathaire. Les familles scléractiniaires (40 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (10 taxons), les Acroporidae (7 taxons), les Agaraciidae (5 taxons), les Mussidae (5 taxons), les Pocilloporidae (3 taxons) et les Pectiniidae (3 taxons).

Le recouvrement en coraux vivants reste faible, les colonies juvéniles ou bien de petite taille ont du mal à s'édifier car elles sont fragiles et ne résistent pas à l'accumulation de débris et de roches (tempête et cyclone). Cependant, les dégradations des communautés benthiques sont beaucoup moins importantes que pour les deux niveaux bathymétriques supérieurs. L'hydrodynamisme a peu d'influence à cette profondeur et les débris coralliens arrachés au sommet du récif ont dégradé principalement le transect B. Les communautés benthiques retrouvent leur stabilité et le groupe des ascidies et des algues rouges se développent particulièrement.

Les scléractiniaires adoptent des formes branchus robustes (*Pocillopora damicornis* et *P. verrucosa*), des formes massives (*Astreopora myriophtalma, Lobophyllia corymbosa, L. hemprichii, Symphyllia* sp., *Favia* spp, *Favites* spp), des formes encroûtantes (*Montipora* spp., *Galaxea fascicularis, Cyphastrea serailia, C. microphtalma*) et des formes libres (*Fungia* sp., *Halomitra pileus* et *Sandalolitha robusta*). Le blanchissement est relativement faible.

Variation entre mars 2011 et octobre 2011									
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien							
Présence nouvelle de 3 espèces <i>Blastomussa wellsi</i> , <i>Oxypora glabra</i> , et une gorgone sp.	Augmentation de	Rare, observé sur 1 espèce : <i>Porites</i> sp Cette							
Mortalité : 1 espèce Leptoseris yabei	l'abondance de 1 espèce Lobophyllia hemprichii	colonie était déjà blanchie lors de la mission de mars							
Mobilité : absence de 1 espèce Sandalolitha dentata	<i>Lovoрнуниа петристи</i>	2011							

Tableau n°75 : <u>Biodiversité et Abondance des coraux par famille (ST07C)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	7	4
Agaraciidae	5	2
Astrocoeniidae	0	0
Caryophyllidae	0	0
Dendrophyllidae	2	2
Faviidae	10	4
Fungiidae	2	2
Merulinidae	0	0
Mussidae	5	2
Oculinidae	1	2
Pectiniidae	3	2
Pocilloporidae	3	3
Poritidae	2	3
Siderastreidae	0	0
Total scléractiniaire	40	1
Non Scléractiniaire		
Milleporidae	1	1
Tubiporidae	1	2
Gorgone	0	0
Antipathaire	1	2
Total coraux	43	1

4.7.2.3.2 Les Macrophytes et les Invertébrés (ST07C)

Les macrophytes étaient rares lors de la mission de mars 2011 mais maintenant les algues rouges se sont très bien developpées.

Les alcyonaires ont une évolution très faible par rapport à la dernière mission. Les alcyonaires sont peu abondants et s'édifient sur les petits massifs coralliens (*Lobophytum*, *Sarcophyton* et *Drendronephthya*). Les ascidies se sont encore diversifiées et colonisent les substrats durs (débris, massifs coralliens et dalle). Les

spongiaires n'ont pas un recouvrement important, les éponges encroûtantes (*Cliona orientalis* et *C. jullienei*) colonisent des petites surfaces de la dalle, quelques colonies coralliennes et des débris. Les holothuries montrent des variations bathymétriques importantes, elles sont peu nombreuses et colonisent le sable et les débris coralliens. Les organismes mobiles évoluent entre les niveaux bathymétriques (astéries, échinides, holothuries, mollusques...).

A noter que les cyanobactéries sont toujours présentes et se développent sur les nouveaux débris coralliens.

Variation entre mars 2011 et octobre 2011								
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)						
Présence nouvelle de 2 espèces d'algues rouges <i>Trichogloea</i> requienii et Asparagopsis	Leur développement	Présence nouvelle de 5 espèces d'ascidies : Atrium robustum, Clavelina detorta, Polycarpa aurita, P. nigricans, Polycarpa sp.						
taxiformis	commence à être important et concentré sur les	Présence nouvelle de 3 espèces d'astéries <i>Celerina</i> heffernani, Gomophia sp., Nardoa gomophia						
Présence nouvelle de 1 espèce d'algue verte <i>Halimeda</i> sp.	colonies coralliennes dégradées et les	Présence nouvelle de 1 espèce d'holothurie <i>Holothuria</i> edulis						
d aigue veite Hailmead sp.	débris	Absence de 1 espèce d'holothurie Holothuria nobilis						
Présence nouvelle de 1 espèce d'algue brune <i>Dictyota</i> sp.		Augmentation de l'abondance de 1 espèce d'holothurie Holothuria atra						

Tableau n°76 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST07C)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	3	2
Algue brune	1	2
Algue rouge	2	5
Algue verte	1	2
Cyanobactéries	1	2
Anémone	1	1
Ascidie	7	5
Bryozoaire	1	2
Astérie	3	2
Crinoïde	1	2
Echinide	1	1
Holothurie	2	2
Hydraire	1	2
Mollusque	4	2
Spongiaire	4	3
Zoanthaire	1	2
TOTAL	34	/

4.7.3 Les poissons (ST07)

La liste des espèces observées¹⁰ sur les transects et les résultats bruts sont fournis dans le tableau 77.

Tableau n°77: <u>Données sur les poissons (ST07)</u>

1	Basse Chambeyron ST07		Transe	ct		Transe	ct		Transe	ct	Station		
	<u>.</u>		A		В			С			Total	Moyenne	
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom
Aca	Acanthurus mata							10	0,07	3,92	10	0,02	1,31
Aca	Ctenochaetus striatus	2	0,03	0,26							2	0,01	0,09
Aca	Naso brachycentron							10	0,07	61,25	10	0,02	20,42
Aca	Naso brevirostris							5	0,04	30,63	5	0,01	10,21
Aca	Naso lituratus							2	0,01	2,29	2	0,00	0,76
Aca	Naso tonganus							7	0,05	64,00	7	0,02	21,33
Aca	Naso unicornis							3	0,02	27,43	3	0,01	9,14
Aca	Zebrasoma scopas				3	0,04	0,26	3	0,04	0,38	6	0,03	0,21
Ble	Ecsenius bicolor				1	0,01	0,02				1	0,00	0,01
Can	Canthigaster valentini							1	0,01	0,02	1	0,00	0,01
Cha	Chaetodon citrinellus	3	0,04	0,26							3	0,01	0,09
Cha	Chaetodon kleinii	5	0,06	0,27							5	0,02	0,09
Cha	Chaetodon lunulatus				2	0,03	0,11	2	0,03	0,26	4	0,02	0,12
Cha	Chaetodon mertensii				2	0,03	0,26	2	0,03	0,26	4	0,02	0,17
Cha	Chaetodon pelewensis	2	0,03	0,36							2	0,01	0,12
Cha	Heniochus varius				2	0,03	1,37				2	0,01	0,46
Epi	Cephalopholis ongus				1	0,01	0,69				1	0,00	0,23
Lab	Cheilinus chlorourus	1	0,01	0,43				1	0,01	0,13	2	0,01	0,19
Lab	Coris gaimard	1	0,01	0,43							1	0,00	0,14
Lab	Gomphosus varius	6	0,08	1,09							6	0,03	0,36
Lab	Halichoeres hortulanus	2	0,03	0,86	1	0,01	0,55				3	0,01	0,47
Lab	Labroides dimidiatus				4	0,05	0,51				4	0,02	0,17
Lab	Stethojulis bandanensis	2	0,03	0,26							2	0,01	0,09
Lab	Thalassoma amblycephalum	15	0,19	1,29							15	0,06	0,43
Lab	Thalassoma lunare	5	0,06	0,43				7	0,09	0,90	12	0,05	0,44
Lab	Thalassoma lutescens	2	0,03	0,17							2	0,01	0,06
Lab	Thalassoma nigrofasciatum	10	0,13	0,86							10	0,04	0,29
Mul	Parupeneus barberinoides							3	0,04	1,30	3	0,01	0,43
Nem	Scolopsis bilineatus				4	0,05	1,73	4	0,05	1,73	8	0,03	1,15
Poc	Centropyge bicolor							2	0,03	0,01	2	0,01	0,00
Poc	Centropyge flavissima	3	0,04	0,09				2	0,03	0,03	5	0,02	0,04
Poc	Centropyge tibicen				2	0,03	0,03	2	0,03	0,01	4	0,02	0,02
Pom	Amphiprion clarkii	4	0,05	0,13							4	0,02	0,04
Pom	Chromis fumea				30	0,38	0,48				30	0,13	0,16
Pom	Chrysiptera rollandi				10	0,13	0,07				10	0,04	0,02
Pom	Dascyllus reticulatus	10	0,13	0,07							10	0,04	0,02
Pom	Dascyllus trimaculatus	10	0,13	0,02	-			10	0,13	0,02	20	0,08	0,01
Pom	Neopomacentrus azysron				20	0,25	0,63				20	0,08	0,21
Pom	Pomacentrus moluccensis				10	0,13	0,31	5	0,06	0,08	15	0,06	0,13

¹⁰ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

Pse	Pictichromis coralensis							2	0,03	0,06	2	0,01	0,02
Sca	Chlorurus sordidus							6	0,08	1,50	6	0,03	0,50
Sca	Scarus rubroviolaceus				3	0,04	2,53				3	0,01	0,84
Sig	Siganus puellus				2	0,03	0,86				2	0,01	0,29
							40.40	-00					
	Total	83	1,04	7,28	97	1,21	10,40	89	0,91	196,19	269	1,05	71,29
	Total Biodiversité	83	1,04	7,28	97	1,21	10,40	89	0,91	196,19	269	43	71,29
		5,029	17	7,28	97	,	10,40	89		196,19	269		71,29
		83		7,28	97	,	10,40	89		196,19	269		71

Sur l'ensemble des transects de la station, 269 individus appartenant à 43 espèces différentes (tableau 77) ont pu être observés. Ils représentent une densité de 1.05 poissons/m² pour une biomasse de 71.29 g/m². 91 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 78).

Tableau n°78 : <u>Liste des espèces complémentaires (ST07)</u>

Fam	Espèces	Fam	Espèces	Fam	Espèces
Aca	Ctenochaetus striatus	Lab	Bodianus perditio	Poc	Centropyge tibicen
Aca	Naso brachycentron	Lab	Cheilinus chlorourus	Pom	Abudefduf sexfasciatus
Aca	Naso brevirostris	Lab	Cheilinus fasciatus	Pom	Abudefduf whitleyi
Aca	Naso lituratus	Lab	Cheilinus trilobatus	Pom	Amblyglyphidodon curacao
Aca	Naso tonganus	Lab	Choerodon fasciatus	Pom	Amphiprion chrysopterus
Aca	Naso unicornis	Lab	Cirrhilabrus lineatus	Pom	Amphiprion clarkii
Aca	Zebrasoma scopas	Lab	Coris gaimard	Pom	Chromis amboinensis
Aul	Aulostomus chinensis	Lab	Gomphosus varius	Pom	Chromis atripectoralis
Ble	Cirripectes alboapicalis	Lab	Halichoeres argus	Pom	Chromis chrysura
Ble	Ecsenius bicolor	Lab	Halichoeres hortulanus	Pom	Chromis fumea
Can	Canthigaster valentini	Lab	Halichoeres prosopeion	Pom	Chromis margaritifer
Carc	Carcharhinus albimarginatus	Lab	Hemigymnus fasciatus	Pom	Chrysiptera rollandi
Carc	Carcharhinus amblyrhynchos	Lab	Hemigymnus melapterus	Pom	Dascyllus reticulatus
Cha	Chaetodon citrinellus	Lab	Hologymnosus annulatus	Pom	Dascyllus trimaculatus
Cha	Chaetodon kleinii		Labroides dimidiatus	Pom	
Cha	Chaetodon lunulatus	Lab	Stethojulis bandanensis	Pom	Neopomacentrus azysron Pomacentrus moluccensis
Cha	Chaetodon mertensii	Lab	Thalassoma amblycephalum	Pom	Pomacentrus nagasakiensis
Cha	Chaetodon pelewensis	Lab	Thalassoma lunare	Pom	Pomacentrus nigromarginatus
Cha	Heniochus varius	Lab	Thalassoma lutescens	Pom	Pomacentrus pavo
Epi	Cephalopholis ongus	Lab	Thalassoma nigrofasciatum	Pom	Pomacentrus vaiuli
Epi	Cephalopholis urodeta	Lut	Macolor niger	Pse	Pictichromis coralensis
Epi	Cromileptes altivelis	Mic	Ptereleotris evides	Sca	Chlorurus sordidus
Epi	Epinephelus coioides	Mon	Amanses scopas	Sca	Scarus altipinnis
Epi	Epinephelus cyanopodus	Mon	Oxymonacanthus longirostris	Sca	Scarus forsteni
Epi	Epinephelus polyphekadion	Mon	Pervagor melanocephalus	Sca	Scarus ghobban
Epi	Plectropomus leopardus	Mul	Parupeneus barberinoides	Sca	Scarus rivulatus
Fis	Fistularia commersonii	Nem	Scolopsis bilineatus	Sca	Scarus rubroviolaceus
Lab	Anampses femininus	Pin	Parapercis hexophtalma	Sco	Scomberomorus commerson
Lab	Anampses geographicus	Poc	Centropyge bicolor	Sig	Siganus puellus
Lab	Anampses neoguinaicus	Poc	Centropyge flavissima	Syn	Synodus variegatus

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 79 et spécifiquement pour la campagne d'octobre 2011 sur la figure 42.

Tableau n°79 :	Nombre d'espèces p	ar famille ichtyologique d	le 2007 à 2011 (S'	<i>Γ07</i>)

Familles	Basse Chambeyron ST07								
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b		
Acanthuridae	3	3	5	5	3	6	8		
Anthiinidae		3	1		1				
Blenniidae		1		1			1		
Caesionidae	1	1							
Canthigasteridae			1			1	1		
Carangidae						5			
Carcharhinidae	1			1		3			
Chaetodontidae	4	9	4	8	7	6	6		
Epinephelinae	2	3	5	5	5	5	1		
Labridae	6	6	4	7	6	11	10		
Lutjanidae				1	1	2			
Mullidae	2	1			1	1	1		
Nemipteridae	1	1	1	1	1	1	1		
Pomacanthidae	3	4	2	3	3	2	3		
Pomacentridae	4	6	2	7	6	6	7		
Pseudochromidae							1		
Scaridae	5	5	4	5	4	5	2		
Scombridae						1			
Siganidae	1	1		1			1		
Total espèces	33	44	29	45	38	55	43		
Total familles	12	13	10	12	11	14	13		

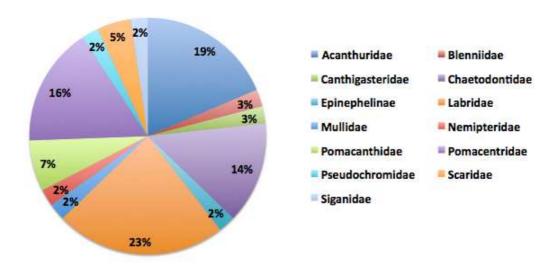


Figure n°42 : <u>Richesse spécifique par famille de poissons (ST07)</u>

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau

80), sous l'angle de vue de ce critère les sept campagnes sont hautement similaires.

Tableau n°80 : <u>Test du critère « Distribution du nombre d'espèces par famille », 2007 à 2011</u> (ST07)

Test χ2	ddl	Seuil de tolérance à 0,95
93.9	108	135.6

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 81 et la figure 43.

Tableau n°81: Synopsis des résultats 2011 et récapitulatif des années précédentes (ST07)

Basse Chambeyron ST07		Liste DENV					Toutes espèces
		Transect TLV				Station	Station
		Nb. ind.	Densité	Biom. g/m ²	Biodiv.1	Biodiv.2	Biodiv.3
2011 b	Transect A	83	1,04	7,28	17		
	Transect B	97	1,21	10,40	16		
	Transect C	89	0,91	196,19	21		
	Moy. ABC	89,67	1,05	71,29	43	55	91
2011 a	Moy. ABC	203,00	1,88	3101,07	55	58	97
2010 b	Moy. ABC	178	1,79	103,51	38	61	86
2010 a	Moy. ABC	79,67	2,66	84,96	45	73	113
2009	Moy. ABC	51,00	0,91	57,40	29	30	106
2008	Moy. ABC	85,33	2,73	146,76	44	49	82
2007	Moy. ABC	84,00	1,78	155,24	33	38	56

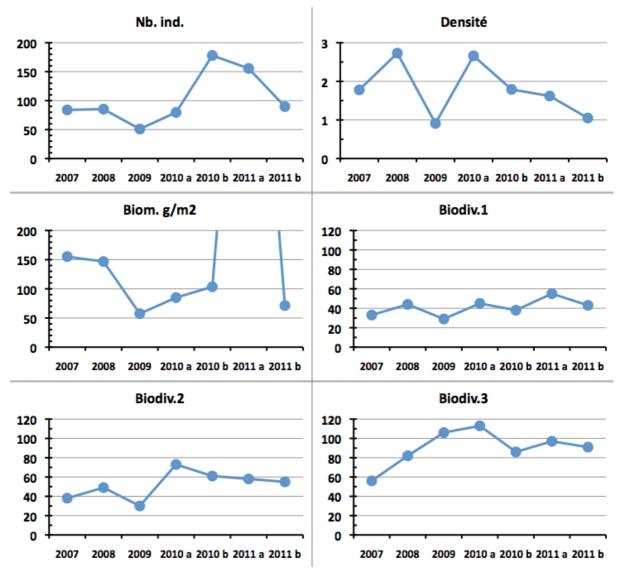


Figure n°43: <u>Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST07)</u>

4.8 Station 08 = Pointe Puka

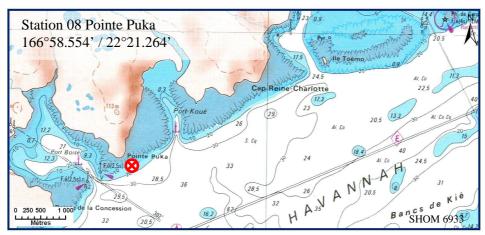
Localisation géographique	Bordure du récif frangeant de la pointe Puka, au droit d'un gros amas rocheux proéminent sur le rivage, avec une petite tâche blanche (photographie 15).			
Nombre transects	2 transects.			
Description transects	Ils ont été positionnés perpendiculairement à la pente du récif frangeant à 9 et 12 mètres de profondeur dans un alignement du sud-ouest vers le nordest.			
	Le transect A a été installé au pied de deux éperons et traverse un sillon. Le transect B est éloigné d'une cinquantaine de mètres vers le sud du 1 ^{er} transect. Il est positionné sur la pente sédimentaire qui est composée de sable et de débris coralliens plus importants par rapport au transect supérieur (rupture de faciès). De grandes colonies de <i>Porites lobata</i> de taille pluri métrique permettent de repérer ce transect.			

Description générale

La morphologie de cette station est composée de plusieurs éperons séparés par des vallées d'une dizaine de mètres de largeur jusqu'à 9 m de profondeur. Le recouvrement le plus important des madrépores se situe sur les flancs et le dessus des éperons mais la richesse spécifique est moindre. Sur le fond des vallées le sable et les débris dominent mais une multitude d'espèces coralliennes de petites tailles s'épanouissent.

Au-delà du système éperon-sillon, la pente sédimentaire recèle l'une des plus fortes richesses spécifiques coralliennes de toutes les stations du réseau de surveillance. Les colonies sont généralement de taille décimétrique et quelques grandes colonies pluri métrique de *Porites* s'éparpillent sur cette pente douce sédimentaire.

Ensuite sous le niveau bathymétrique de 11-15 mètres de profondeur, la pente sédimentaire est toujours peu inclinée. Elle est composée de sable coquillé et de grosses patates coralliennes dispersées (*Porites lobata* et *Acropora* tabulaire) ainsi que des petites colonies coralliennes adaptées à peu de luminosité et de nombreux blocs coralliens morts, de taille décimétrique.


Caractéristiques principales

- Richesse spécifique corallienne élevée au pied des éperons et au début de la pente sédimentaire.
- \$\text{Croissance de grandes colonies de *Porites lobata* (avec quelques tumeurs).
- ☼ Présence de *Tubipora musica* au deuxième transect.
- Encroûtement des quelques colonies coralliennes vivantes par les spongiaires (*Cliona jullienei* et *C. orientalis*).
- Mortalité importante des coraux depuis la mission de mars 2011 (tempête tropicale Vania).
- Recrutement corallien (colonies coralliennes juvéniles).

Variations entre mars 2011 et octobre 2011

- Dégradation des communautés benthiques sur l'ensemble de la station et plus particulièrement au transect A (à cause de l'hydrodynamisme important).
- ☼ Blanchissement corallien (14 espèces au transect A).
- 🔖 Coraux tabulaires retournés et nombreux débris coralliens.
- Diminution de la biodiversité des coraux (4 espèces au transect A, 3 espèces en B).
- Diminution du recouvrement en cyanobactéries.
- Prédation des mollusques (*Drupella cornus*) sur quelques colonies coralliennes Augmentation de la diversité des ascidies et B.
- Augmentation de la diversité des ascidies au transect A.

Carte n°010: Localisation de la station 08 (Pointe Puka)

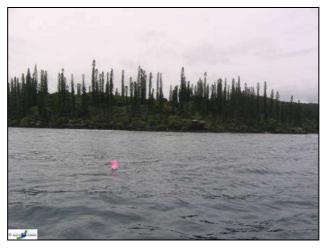
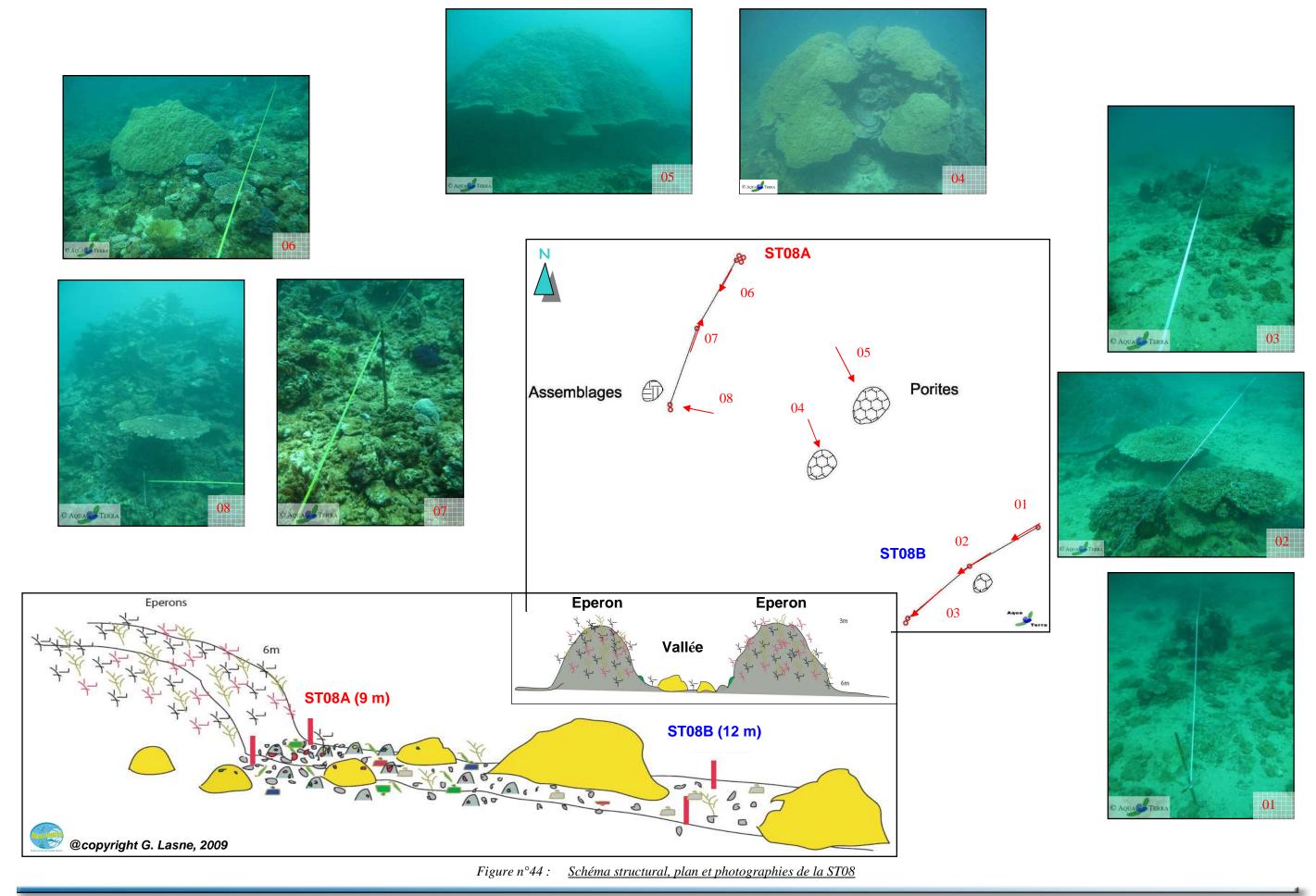



Photo n°015 : <u>Position en surface par rapport à la côte (ST08)</u>

SARL AQUA TERRA

4.8.1 Le substrat (ST08)

Le pourcentage de couverture de chaque composante est donné dans la figure 45 pour le transect A et dans la figure 46 pour le transect B.

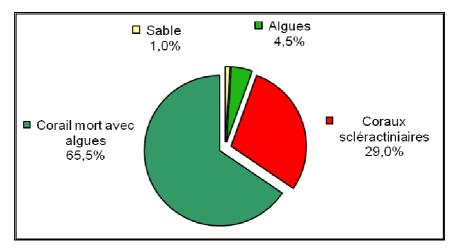


Figure n°45: Représentation du recouvrement (en %) du substrat pour ST08A

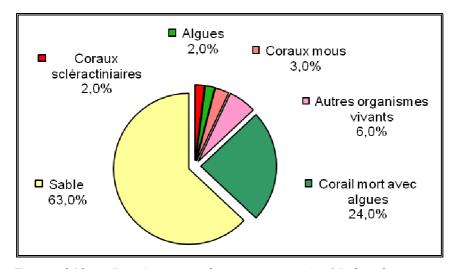


Figure n°46 : Représentation du recouvrement (en %) du substrat pour ST08B

Les deux transects sont très différents : le substrat du transect haut est composé d'une large part de coraux morts recouverts d'algues (65.5%) avec pour cette mission un retour « à la normale » des algues et le maintien des coraux scléractiniaires vivants (29%). Il présente pour cette mission 99% de recouvrement biotique.

Sur le transect B, on peut observer essentiellement du sable (63%) qui retrouve aussi les valeurs antérieures à la camapgne de mars 2011 car l'explosion de cyanobactériesn'est plus (il ne reste que 0.5% de cyanobactéries vs 24%). Ce transect ne possède que 2% de coraux scléractinaires (légère baisse). Globalement, la station retrouve des valeurs de 2010 et avant.

4.8.2 Le benthos (ST08)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.8.2.1 Benthos Transect 08 A

4.8.2.1.1 Les Scléractiniaires (ST08A)

Lors de la mission de mars 2011, les dégradations de ce niveau bathymétrique étaient importantes, de nombreuses colonies tabulaires étaient retournées et le recouvrement en débris coralliens avait augmenté. Le blanchissement corallien n'est pas isolé et affecte encore un bon nombre de colonies par espèce. De plus, quelques colonies coralliennes ont été observées mortes en place et recolonisées par du gazon algal.

La richesse spécifique a encore diminuée depuis la dernière mission, cependant, elle reste l'une des plus importantes des stations du réseau de surveillance biologique. On peut également noter la présence des espèces peu communes comme *Porites lichen, Caulastrea curvata, Caulastrea furcata, Isopora palifera, I. cuneata, Coeloseris mayeri, Hydnophora rigida, Psammocora digitata, Alveopora spongiosa, Polyphyllia novaehiberniae.*

Tableau n°82 : <u>Biodiversité et Abondance des coraux par famille (ST08A)</u>

Famille	Nombre de taxa	Abondance (1 à 5)		
Scléractiniaire				
Acroporidae	19	5		
Agaraciidae	4	2		
Astrocoeniidae	2	2		
Caryophyllidae	0	0		
Dendrophyllidae	4	2		
Faviidae	18	5		
Fungiidae	8	4		
Merulinidae	4	2		
Mussidae	7	3		
Oculinidae	2	2		
Pectiniidae	5	2		
Pocilloporidae	7	5		
Poritidae	6	5		
Siderastreidae	4	2		
Total scléractiniaire	90	1		
Non Scléractiniaire				
Milleporidae	2	2		
Tubiporidae	0	0		
Gorgone	1	2		
Antipathaire	0	0		
Total coraux	93	1		

Le nombre d'espèces coralliennes s'élève à 93 espèces dont deux espèces de Millepora (branchu et encroûtant) et une espèce de *Tubipora musica*. Les familles scléractiniaires (90 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Acroporidae (19 taxons), les Faviidae (18 taxons), les Fungiidae (8 taxons), les Pocilloporidae (7 taxons), les Poritidae (6 taxons), les Mussidae (7 taxons), les Pectiniidae (5 taxons), les Dendrophyllidae (4 taxons), les Agaraciidae (4 taxons), les Siderastreidae (4 taxons) et les Merulinidae (4 taxons).

Variation entre mars 2011 et octobre 2011								
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien						
Présence nouvelle de 2 espèces Oulophyllia crispa, Lobophyllia pachysepta	Diminution d'abondance pour 1 espèce : <i>Isopora palifera</i>	Observé sur 14 espèces : <i>Acropora</i> 3sp. (branchu), <i>Acropora</i> 2sp. (tabulaire), <i>Montipora</i> 1sp., <i>Fungia</i>						
Mortalité : 4 espèces Caulastrea furcata, C. curvata, Oxypora sp., Pectinia paeonia	Augmentation d'abondance pour 1 espèce : <i>Echinophyllia horrida</i>	sp., Merulina ampliata, M. scabricula, Lobophyllia pachysepta, Galaxea fascicularis,						
Mobilité : présence nouvelle de 1 espèce <i>Herpolitha limax</i>	Mobilité: augmentation d'abondance de 2 espèces <i>Polyphyllia</i> novaehiberniae, Sandalolitha robusta	Pocillopora verrucosa, Seriatopora histrix, S. calendrium. Ces deux dernières espèces ont été observées blanchies pour plusieurs colonies						

4.8.2.1.2 Les Macrophytes et les Invertébrés (ST08A)

L'abondance et la diversité des macrophytes varient selon les saisons et sont en augmentation pour cette dernière mission. Les cyanobactéries ont une évolution qui dépend aussi de la saisonnalité mais elles ont un recouvrement qui dépend également de l'état de santé des coraux. Elles vont se développer plus facilement sur des coraux affaiblis (blanchis, nécrosés ou nouveaux débris coralliens).

Les organismes mobiles comme les astéries, les holothuries et les échinides ne présentent pas de variation bathymétrique. Les mollusques corallivores (*Druppela cornus*) ont été observés sur plusieurs colonies coralliennes tabulaires.

Les spongiaires (*Cliona jullieni* et *Cliona orientalis*) ne sont pas prédominantes sur les coraux, elles encroûtent surtout la dalle et les débris coralliens, mais quelques colonies coralliennes sont en train de se faire recouvrir.

Variation entre mars 2011 et octobre 2011								
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)						
Diminution du recouvrement des <i>Amphiroa</i> sp. et de <i>Dictyota</i>	Pas d'évolution, leur développement est	Présence nouvelle de 5 espèces d'ascidies Didemnum sp., Clavelina detorta, Polycarpa aurita, P. nigricans, Polycarpa sp.						
sp.	dominant sur les colonies blanchies et	Présence nouvelle de 2 espèces d'holothuries <i>Holothuria</i> fuscopunctata, H. nobilis						
Présence nouvelle de 3 espèces	les nouveaux débris	Absence de 1 espèce d'holothurie Actinopyga palauensis						
Padina sp., Chlorodesmis fastigiata, Trichogloea requienii	coralliens	Présence nouvelle de 3 espèces de mollusques <i>Chicoreus</i> ramosus, <i>Latirolagena smaragdula</i> et <i>Drupa</i> sp.						

Abondance (1 à 5) Groupe Macrophytes et Invertébrés Nombre de taxa 3 Alcyonaire 5 2 Algue brune 2 Algue rouge 4 5 Algue verte 3 5 2 Cyanobactéries 1 Anémone 1 1 Ascidie 3 6 Bryozoaire 0 0 Astérie 1 Crinoïde 2 1 Echinide 1 1 3 2 Holothurie Hydraire 1 2 3 Mollusque 8 5 5 **Spongiaire** 2 Zoanthaire 1

Tableau n°83 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST08A)</u>

4.8.2.2 Benthos Transect 08 B

4.8.2.2.1 Les Scléractiniaires (ST08B)

Le recouvrement et la richesse spécifique des scléractiniaires sont nettement plus faibles que pour le transect supérieur. De grandes colonies de *Porites lobata* s'édifient sur cette pente sédimentaire (5 mètres de diamètre) ainsi que de grandes colonies d'*Acropora* tabulaire (1 m de diamètre) fixées sur des petits massifs coralliens (deux de ces colonies sont mortes en place depuis deux ans et ne sont pas recolonisées).

43

TOTAL

Le reste des colonies coralliennes sont de petite taille (*Leptoseris mycetoseroides, Pachyseris speciosa, Barabattoia amicorum, Favia maxima, Favites chinensis, Platygyra pini, Hydnophora pilosa,* et *Coscinaraea columna*). L'espèce *Tubipora musica* est présente dans cette partie de la pente.

Le blanchissement est rare : une grande colonie de *Porites lobata* présente quelques tumeurs et une surface blanche d'une quinzaine de centimètre de diamètre.

Les deux colonies de *Pocillopora damicornis* colonisant le 2^{ème} piquet du transect B mesurent désormais 10.5 et 11.5 cm, soit une croissance de 1 cm / 6 mois et un taux de croissance de 10% (9.5 et 11.5 cm en mars 2011.

Ce niveau bathymétrique est colonisé par 50 espèces coralliennes dont une espèce de *Tubipora musica* et une espèce de *Millepora* branchu. Les familles scléractiniaires (48 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (18 taxons), les Acroporidae (12 taxons) et les Pocilloporidae (4 taxons).

Variation entre mars 2011 et octobre 2011						
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien				
Présence nouvelle de 2 espèces <i>Turbinaria</i> reniformis et <i>Isopora cuneata</i>	Diminution d'abondance pour 1 espèce : <i>Mycedium elephantotus</i>					
Mortalité : 1 espèce <i>Turbinaria peltata</i> Mobilité : absence de 2 espèces <i>Fungia simplex</i> , <i>Polyphyllia talpina</i>	Augmentation d'abondance pour 1 espèce : <i>Goniastrea australensis</i>	Aucun				

Tableau n°84 : Biodiversité et Abondance des coraux par famille (ST08B)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	12	5
Agaraciidae	2	2
Astrocoeniidae	0	0
Caryophyllidae	0	0
Dendrophyllidae	2	2
Faviidae	18	5
Fungiidae	1	2
Merulinidae	2	2
Mussidae	2	2
Oculinidae	1	2
Pectiniidae	1	1
Pocilloporidae	4	2
Poritidae	2	5
Siderastreidae	1	2
Total scléractiniaire	48	/
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	0	0
Gorgone	1	2
Antipathaire	0	0
Total coraux	51	1

4.8.2.2.2 Les Macrophytes et les Invertébrés (ST08B)

Les macrophytes sont peu développées et leur abondance et la diversité varient selon les saisons (aucune algue verte ici). Le recouvrement a augmenté en cyanobactéries, elles se répartissent sur les débris et les coraux morts en place et quelques blocs coralliens.

Les éponges encroûtantes (*Cliona jullienei* et *Cliona orientalis*) n'ont pas un fort développement dans cette partie de récif, elles encroûtent généralement la dalle et quelques colonies coralliennes massives. La croissance de *Cliona jullienei* sur une colonie de *Platygyra* est estimée à 0.5 cm depuis la dernière mission (6 mois). Cette éponge a une croissance en régression au fur et à mesure des missions depuis juin 2009 (1.5cm/6mois entre septembre 2010 à mars 2011, 3 cm/6mois entre avril et septembre 2010 et de 6 cm/9.5mois entre juin 2009 et avril 2010) Les autres espèces de spongiaires présentent dans cette zone n'ont

pas d'influence notable sur les coraux, elles colonisent la dalle (éponge noire indéterminée) ou les débris coralliens (*Clathria rugosa*).

Les alcyonaires sont plus variés que pour le niveau supérieur. Ils sont dispersés sur la roche et les petits massifs coralliens. Le genre *Cladiella* n'a pas été recensé alors qu'il était abondant lors de la mission précédente. Sont présents : les genres *Lobophytum*, *Sinularia*, *Sarcophyton* et *Xenia* qui colonisent le substrat dur pour se fixer (petites massifs ou les débris).

Les mollusques corallivores (*Druppela cornus*) ont été observés sur plusieurs colonies coralliennes.

Les organismes mobiles comme les astéries, les holothuries et les échinides ne présentent pas de variations bathymétriques.

Variation entre mars 2011 et octobre 2011							
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)					
Présence nouvelle de 6 espèces	Rares: leur	Absence de 1 espèce d'alcyonaire Cladiella sp.					
Trichogloea requienii, Gibsmithia hawaiensiis, Asparagopsis	développement est en grande diminution, sur les débris coralliens	Augmentation d'abondance de 1 espèce d'alcyonaire Sarcophyton sp.					
taxiformis, Padina sp., Halimeda sp., Neomeris fastigiata		Présence nouvelle de 2 espèces de spongiaires <i>Leucetta</i> chagosensis et Cymbastella cantharella					

Tableau n°85 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST08B)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	4	5
Algue brune	2	0
Algue rouge	6	5
Algue verte	2	5
Cyanobactéries	1	1
Anémone	1	1
Ascidie	2	2
Bryozoaire	3	2
Astérie	2	2
Crinoïde	1	2
Echinide	0	0
Holothurie	2	2
Hydraire	1	2
Mollusque	5	2
Spongiaire	7	5
Zoanthaire	1	2
TOTAL	40	1

4.8.3 Les poissons (ST08)

La liste des espèces observées¹¹ sur les transects et les résultats bruts sont fournis dans le tableau 86.

Tableau n°86: <u>Données sur les poissons (ST08)</u>

	Puka ST08		Transe	ct		Transe	ct	Station		
		A		В			Total	Moyenne		
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom
Aca	Acanthurus nigricauda	3	0,04	2,03				3	0,02	1,01
Aca	Ctenochaetus striatus	2	0,03	0,20	1	0,01	0,20	3	0,02	0,20
Aca	Zebrasoma veliferum				1	0,01	0,55	1	0,01	0,27
Can	Canthigaster valentini	1	0,01	0,01				1	0,01	0,01
Cha	Chaetodon lunulatus				2	0,03	0,20	2	0,01	0,10
Cha	Chaetodon pelewensis				2	0,03	0,20	2	0,01	0,10
Cha	Chaetodon plebeius				1	0,01	0,04	1	0,01	0,02
Cha	Chaetodon ulietensis				1	0,01	0,10	1	0,01	0,05
Epi	Plectropomus leopardus				2	0,03	36,45	2	0,02	18,23
Lab	Bodianus loxozonus	1	0,01	0,68				1	0,01	0,34
Lab	Bodianus perditio	1	0,01	3,13				1	0,01	1,57
Lab	Gomphosus varius				1	0,01	0,10	1	0,01	0,05
Lab	Halichoeres hortulanus	1	0,01	0,20	1	0,01	0,20	2	0,01	0,20
Lab	Labroides dimidiatus	5	0,06	0,51				5	0,03	0,26
Lab	Stethojulis bandanensis				1	0,01	0,07	1	0,01	0,03
Lab	Thalassoma lunare	3	0,04	0,13	4	0,05	0,27	7	0,04	0,20
Mul	Parupeneus barberinoides	3	0,04	0,60				3	0,02	0,30
Mul	Parupeneus barberinus	2	0,03	0,40				2	0,01	0,20
Mul	Parupeneus ciliatus	2	0,03	0,40	2	0,03	0,40	4	0,03	0,40
Nem	Scolopsis bilineatus	4	0,05	2,20				4	0,03	1,10
Poc	Centropyge bicolor				2	0,03	0,05	2	0,01	0,03
Poc	Centropyge tibicen	2	0,03	0,05				2	0,01	0,03
Poc	Pomacanthus sexstriatus	6	0,08	9,60				6	0,04	4,80
Poc	Pygoplites diacanthus	1	0,01	0,68				1	0,01	0,34
Pom	Chrysiptera taupou	15	0,19	0,19				15	0,10	0,10
Pom	Dascyllus aruanus	20	0,25	0,11				20	0,13	0,05
Pom	Dascyllus reticulatus	30	0,38	0,16	50	0,83	0,36	80	0,60	0,26
Pom	Pomacentrus moluccensis	3	0,04	0,08	5	0,06	0,06	8	0,05	0,07
Sca	Chlorurus sordidus			, -	2	0,03	0,69	2	0,01	0,35
Sca	Scarus frenatus	1	0,01	0,68				1	0,01	0,34
Sca	Scarus ghobban	3	0,04	16,20				3	0,02	8,10
Sig	Siganus doliatus				2	0,03	0,69	2	0,01	0,35
Sig	Siganus puellus	1	0,01	0,68			, -	1	0,01	0,34
J	Total	110	1,39	38,89	80	1,21	40,66	190	1,30	39,78
	Biodiversité		22	9~-	17				33	9- 0
	Indice de Shannon =	3,493								
	Equitabilité =	0,692								

¹¹ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

Sur l'ensemble des transects de la station, 190 individus appartenant à 33 espèces différentes (tableau 86) ont pu être observés. Ils représentent une densité de 1.30 poissons/m² pour une biomasse de 39.78 g/m². 101 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 87).

Tableau n°87 : <u>Liste des espèces complémentaires (ST08)</u>

	Puka ST08								
Fam	Espèces	Fam	Espèces	Fam	Espèces				
Aca	Acanthurus dussumieri	Lab	Anampses neoguinaicus	Poc	Centropyge bicolor				
Aca	Acanthurus nigricans	Lab	Bodianus axillaris	Poc	Centropyge bispinosa				
Aca	Acanthurus nigricauda	Lab	Bodianus loxozonus	Poc	Centropyge tibicen				
Aca	Ctenochaetus striatus	Lab	Bodianus perditio	Poc	Pomacanthus sexstriatus				
Aca	Naso lituratus	Lab	Cheilinus chlorourus	Poc	Pygoplites diacanthus				
Aca	Naso unicornis	Lab	Cheilinus trilobatus	Pom	Abudefduf sexfasciatus				
Aca	Zebrasoma scopas	Lab	Choerodon graphicus	Pom	Abudefduf whitleyi				
Aca	Zebrasoma veliferum	Lab	Choerodon jordani	Pom	Amblyglyphidodon curacad				
Apo	Apogon doederleini	Lab	Coris batuensis	Pom	Amphiprion clarkii				
Apo	Cheilinodipterus macrodon	Lab	Coris centralis	Pom	Chromis atripectoralis				
Aul	Aulostomus chinensis	Lab	Coris gaimard	Pom	Chromis chrysura				
Bal	Sufflamen fraenatus	Lab	Gomphosus varius	Pom	Chromis margaritifer				
Ble	Ecsenius bicolor	Lab	Halichoeres hortulanus	Pom	Chromis viridis				
Ble	Meiacanthus atrodorsalis	Lab	Halichoeres prosopeion	Pom	Chromis weberi				
Cae	Caesio caerulaurea	Lab	Halichoeres trimaculatus	Pom	Chrysiptera rollandi				
Can	Canthigaster janthinoptera	Lab	Hemigymnus fasciatus	Pom	Chrysiptera taupou				
Can	Canthigaster valentini	Lab	Hemigymnus melapterus	Pom	Dascyllus aruanus				
Cha	Chaetodon baronessa	Lab	Labroides dimidiatus	Pom	Dascyllus reticulatus				
Cha	Chaetodon ephippium	Lab	Labropsis australis	Pom	Pomacentrus amboinensis				
Cha	Chaetodon flavirostris	Lab	Macropharyngodon meleagris	Pom	Pomacentrus moluccensis				
Cha	Chaetodon lunulatus	Lab	Oxycheilinus diagrammus	Pom	Pomacentrus philippinus				
Cha	Chaetodon mertensii	Lab	Stethojulis bandanensis	Pom	Stegastes nigricans				
Cha	Chaetodon pelewensis	Lab	Thalassoma lunare	Pri	Priacanthus hamrur				
Cha	Chaetodon plebeius	Lab	Thalassoma lutescens	Sca	Chlorurus sordidus				
Cha	Chaetodon ulietensis	Lab	Thalassoma nigrofasciatum	Sca	Scarus altipinnis				
Cha	Heniochus acuminatus	Mon	Amanses scopas	Sca	Scarus flavipectoralis				
Cir	Cirrhitichthys falco	Mon	Oxymonacanthus longirostris	Sca	Scarus frenatus				
Ech	Echeneis naucrates	Mul	Parupeneus barberinoides	Sca	Scarus ghobban				
Epi	Plectropomus laevis	Mul	Parupeneus barberinus	Sig	Siganus corallinus				
Epi	Plectropomus leopardus	Mul	Parupeneus ciliatus	Sig	Siganus doliatus				
Gra	Diploprion bifasciatum	Mul	Parupeneus indicus	Sig	Siganus puellus				
Hol	Neoniphon sammara	Nem	Scolopsis bilineatus	Sig	Siganus vulpinus				
Hol	Sargocentron caudimaculatum	Pin	Parapercis hexophtalma	Zan	Zanclus cornutus				
Hol	Sargocentron ensifer	Ple	Assessor macneilli						

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 88 et spécifiquement pour la campagne d'octobre 2011 sur la figure 47.

Familles				Puka S7	Γ08		
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
Acanthuridae	4	3	3	3	1	1	3
Blenniidae						1	
Caesionidae			1	1		1	
Canthigasteridae		1	1	1	1	1	1
Chaetodontidae	4	4	2	4	5	5	4
Epinephelinae	2	5	2	1	1	2	1
Haemulidae	1						
Labridae	5	7	5	7	3	4	7
Mullidae			2	1		1	3
Nemipteridae	1	1	1	1		1	1
Pomacanthidae	2	2	3	2	1		4
Pomacentridae	7	5	5	5	3	5	4
Scaridae	1	1	2	2		3	3
Siganidae			1	1		1	2
Zanclidae	1	1					
Total espèces	28	30	28	29	15	26	33
Total familles	10	10	12	12	7	12	11

Tableau n°88 : Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST08)

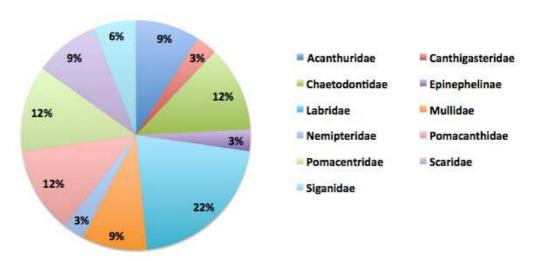


Figure n°47: Richesse spécifique par famille de poissons (ST08)

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 89), sous l'angle de vue de ce critère les sept campagnes sont hautement similaires.

Tableau n°89 : <u>Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 2011</u>
(ST08)

Test χ2	ddl	Seuil de tolérance à 0,95
53.18	84	106.9

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),

- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 90 et la figure 48.

Tableau n°90 : Synopsis des résultats 2011 et récapitulatif des années précédentes (ST08)

			Toutes espèces				
Pul	ka ST08		Tran	sect TLV		Station	Station
		Nb. ind.	Densité	Biodiv.2	Biodiv.3		
	Transect A	110	1,39	38,89	22		
2011 b	Transect B	80	1,21	40,66	17		
	Moy. ABC	85,00	1,30	39,80	33	62	101
2011 a	Moy. ABC	87,50	0,68	28,37	26	48	76
2010 b	Moy. ABC	31	0,46	11,73	14	32	41
2010 a	Moy. ABC	91,50	3,05	57,64	29	51	80
2009	Moy. ABC	55,00	3,50	53,22	28	48	66
2008	Moy. ABC	45,00	1,84	87,54	30	41	68
2007	Moy. ABC	64,50	2,32	67,39	28	31	44

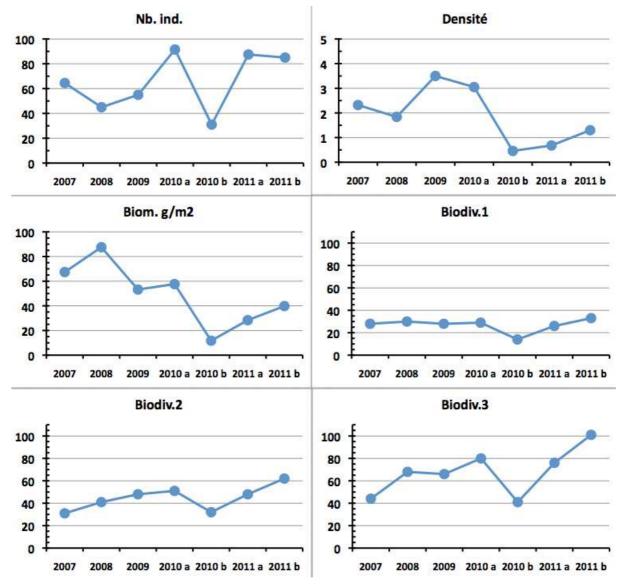


Figure n°48: <u>Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST08)</u>

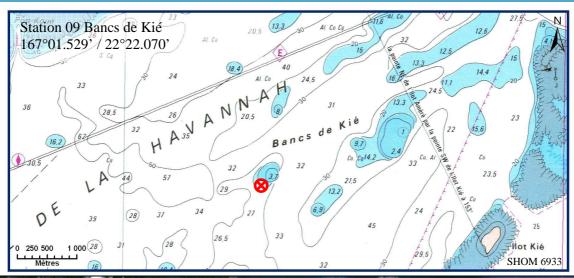
4.9 Station 09 = Bancs de Kié

Localisation géographique	Les bancs Kié sont isolés dans la partie centrale du canal de la Havannah. La station est située au sud du banc le plus ouest, qui est totalement immergé (cf. photographie 16).
Nombre transects	3 transects.
Description transects	Ils ont été positionnés à partir de la rupture de pente du récif à 7, 17 et 20 mètres de profondeur, avec une direction quasi sud-nord.
	Le transect A a été installé au pied de deux éperons et traverse un sillon. Au niveau du transect B les courants de marée sont encore conséquents mais le ressac n'a plus d'influence à cette profondeur. Le transect C est situé en bas de pente.

Description générale

La partie haute du banc est à 5 mètres de profondeur. On y retrouve de grandes superficies arasées, des colonies coralliennes robustes puis des algues résistantes au resssac et au courant comme l'espèce *Dictyosphaeria verluysii* qui est omniprésente et fixée à même la dalle puis, dans une moindre mesure, les autres genres *Asparagopsis*, *Amphiroa* et *Chlorodesmis* (caractérisant un milieu où l'hydrodynamisme est intense).

La pente est relativement abrupte (45°) et recouverte par de nombreux débris coralliens branchus. Seules les plus grosses colonies massives et branchues robustes semblent avoir résistées au cyclone « Erica » et à la série de tempêtes et cyclones du début d'année 2011.


Cette zone semble être soumise de manière quasi permanente aux très forts courants de marées auxquels se rajoutent de très violents ressacs dus aux houles fréquentes.

Caractéristiques principales

- La pente récifale est abrupte et la dalle est arasée par les courants de marée et la houle.
- La richesse spécifique des coraux est peu élevée.
- Les macrophytes ont un recouvrement et une richesse spécifique élevés.
- Saisonnalité des algues.
- \$\text{La richesse spécifique des ascidies est élevée.}
- \$\text{Les alcyonaires ont un recouvrement important (Lobophytum) et une richesse spécifique élevée.
- Les crinoïdes affectionnent ce milieu balayé par les courants de marée.
- Présence de cyanobactéries (*Phormidium* sp.).
- Absence des algues brunes.

Variations entre mars 2011 et octobre 2011

- Recolonisation des coraux depuis les dégradations observées lors de la dernière mission.
- Blanchissement corallien modéré (7 espèces au transect A, 6 espèces en B et 3 espèces en C).
- Augmentation du recouvrement des alcyonaires aux transects A et C.
- Augmentation du recouvrement des algues rouges.
- Recrudescence des ascidies pour tous les niveaux bathymétriques.
- Diminution du recouvrement des cyanobactéries.
- Absences des holothuries aux transects A et C et deux spécimens en B.

Carte n°011: Localisation de la station 09 (Bancs Kié)

Photo n°016: Position en surface (ST09)

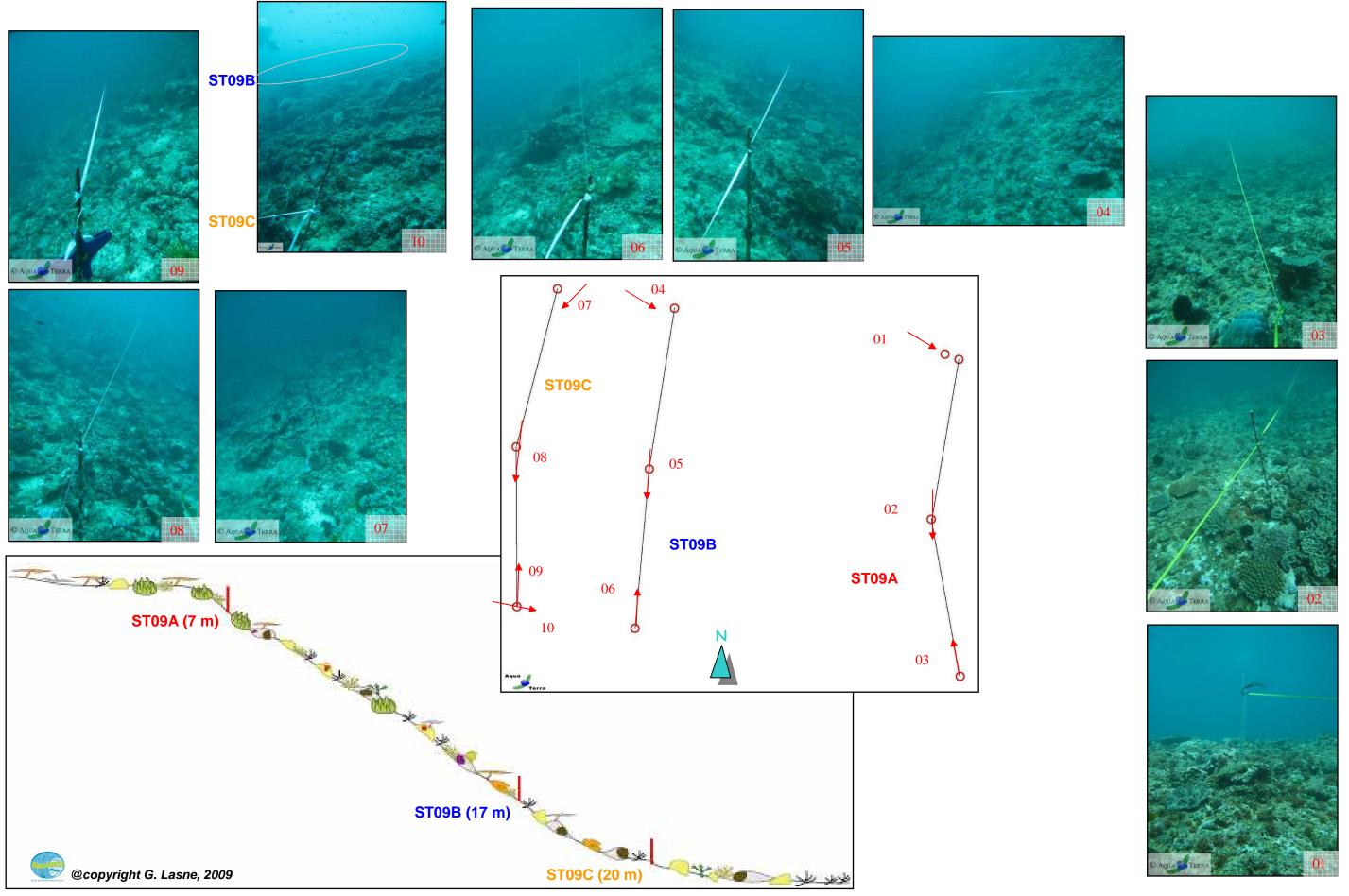


Figure n°49 : <u>Schéma structural, plan et photographies de la ST09</u>

4.9.1 Le substrat (ST09)

Le pourcentage de couverture de chaque composante est donné dans la figure 50 pour le transect A, dans la figure 51 pour le transect B et dans la figure 52 pour le transect C.

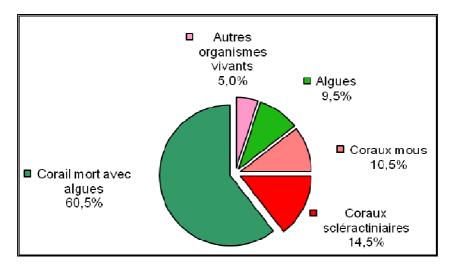


Figure n°50: Représentation du recouvrement (en %) du substrat pour ST09A

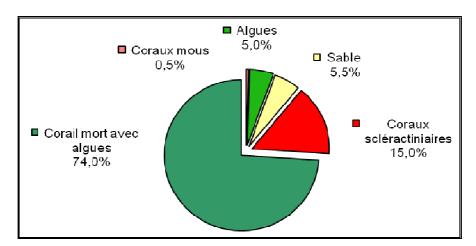


Figure n°51: Représentation du recouvrement (en %) du substrat pour ST09B

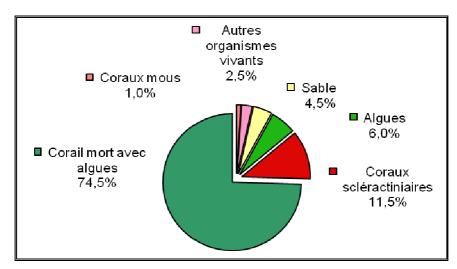


Figure n°52 : Représentation du recouvrement (en %) du substrat pour ST09C

Malgré une augmentation (déjà commencée lors de la mission précédente) dans leur recouvrement aux transects A et C, sur les 3 transects, les coraux scléractiniaires sont faiblement représentés avec respectivement 14.5%, 15% et 11.5%.

Le substrat est majoritairement composé de coraux morts encroûtés (respectivement 60.5%, 74%, 74.5%) par une multitude d'organismes vivants (dont des algues calcaires) : de ce fait, cette station est remarquable par sa couverture biotique, particulièrement sur le transect A (100%) mais aussi pour les deux autres transects (94.5% et 95.5%).

Globalement, la station est stable.

A noter : les cyanobatéries ne se trouvent plus qu'au transect médian (0.5%).

4.9.2 Le benthos (ST09)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.9.2.1 Benthos Transect 09 A

4.9.2.1.1 Les Scléractiniaires (ST09A)

Ce niveau bathymétrique est colonisé par 56 espèces coralliennes dont l'espèce de *Tubipora musica*. Les familles scléractiniaires (55 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (16 taxons), les Acroporidae (12 taxons), les Pocilloporidae (5 taxons), les Poritidae (4 taxons), les Siderastreidae (4 taxons), les Merulinidae (3 taxons) et les Mussidae (3 taxons).

Les colonies s'édifiant dans les conditions environnementales extrêmes de ce banc sont particulièrement résistantes et robustes : formes massives (*Porites* cf. *lobata*, *Platygyra daedalea*), formes encroûtantes (*Montipora* spp., *Galaxea fascicularis* et *G. astreata*), formes branchues courtes et robustes (*Acropora monticulosa*, *Seriatopora histrix* et *S. calendrium*), formes tabulaires courtes (*Acropora* spp.)., formes foliacées (*Turbinaria mesenterina*, *T. frondens*, *T. peltata*, *Pachyseris speciosa*).

Cependant, les dégradations coralliennes sont nombreuses (blanchissement de colonies en place, débris coralliens). Les évènements cycloniques du début de l'année 2011, ont eu un impact mécanique notable sur l'ensemble du récif. Des colonies ont été brisées par le ressac, d'autres ont été afflaiblies (expulsion des zooxanthelles) puis recolonisées par du tuff algal. Les mollusques corallivores ne sont pas mis en cause dans ces dégradations.

Désormais les coraux s'édifient à nouveau mais la perte de recouvrement est importante depuis le début de l'année.

Variation entre mars 2011 et octobre 2011			
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien	
Présence nouvelle de 7 espèces : <i>Alveopora spongiosa</i> , <i>Favia</i> 2 spp., <i>Montipora undata</i> , <i>Millepora</i> sub massif, <i>Millepora</i> branchu et une gorgone	Augmentation d'abondance de 4 espèces : Acanthastrea echinata, Leptoria phrygia, Pachyseris	Rare : observé sur 1 colonie par espèce : <i>Acropora</i>	
Mortalité : aucune, toutes les espèces ont été recensées	speciosa et Tubastrea sp.	3spp. (tabulaire)	

Tableau n°91 : <u>Biodiversité et Abondance des coraux par famille (ST09A)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	13	5
Agaraciidae	2	2
Astrocoeniidae	1	1
Caryophyllidae	0	0
Dendrophyllidae	3	2
Faviidae	17	4
Fungiidae	0	0
Merulinidae	2	2
Mussidae	3	2
Oculinidae	1	2
Pectiniidae	0	0
Pocilloporidae	5	3
Poritidae	5	3
Siderastreidae	3	2
Total scléractiniaire	55	1
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	1	2
Gorgone	1	2
Antipathaire	0	0
Total coraux	59	1

4.9.2.1.2 Les Macrophytes et les Invertébrés (ST09A)

Les conditions hydrodynamiques favorisent le développement de nombreuses espèces (adaptation) mais les évènements exeptionnels du début d'année 2011 ont dégradé la faune et la flore installées sur le sommet du récif. Désormais le développement le plus important concerne les espèces les plus résistantes et adaptées aux conditions hydrodynamiques intenses (alcyonaires, ascidies et macrophytes).

Les alcyonaires ont subi des dégradations mécaniques en début d'année 2011 (diminution du recouvrement et de la diversité). Ils sont toujours aussi variés (6 genres) mais leur recouvrement a augmenté rapidement. Le genre *Lobophytum* est le plus important puis dans une moindre mesure *Dendronephthya*, *Sinularia*, *Rhystima*, *Nephthea* et *Xenia* sont éparpillés sur la dalle.

Les macrophytes sont également variées et représentées par des espèces adaptées aux forts courants comme l'algue verte *Dyctiospheria verluyisii* omniprésente et fixée en petites plaques sur la dalle et les algues rouges qui ont une couverture qui varie énormèment selon les saisons.

Les ascidies sont très résistantes aux courants et leur développement est relativement rapide. Elles se sont très bien adaptées depuis les dégradations du debut d'année 2011 car 3 espèces sont nouvellement recensées et l'abondance des espèces préexistantes a augmenté.

Les spongiaires sont également variées mais leur recouvrement est faible, les éponges se développent sur la dalle. L'espèce la plus abondante est *Cliona orientalis* puis dans une moindre mesure *Cliona jullienei*, *Spheciospongia vagabunda* et une éponge noire indéterminée.

Les groupes biotiques ayant une certaine mobilité (mollusques, échinodermes...) colonisent de préférence les niveaux bathymétriques inférieurs du récif où les courants sont plus modérés. Leur abondance varie beaucoup selon les missions et les saisons.

Variation entre mars 2011 et octobre 2011			
Algues (variation saisonnière) Cyanobactéries		Invertébrés (mobilité et variation saisonnière)	
Présence nouvelle de 2 espèces		Augmentation du recouvrement de 3 genres d'alcyonaires Dendronephthya, Nephthya et Xenia	
d'algues rouges Asparagopsis armata et Gibsmithia	Aucune (malgré les dégradations coralliennes, les courants de marées sont trop important pour leur développement)	Présence nouvelle de 3 espèces d'ascidies <i>Polycarpa</i> nigricans, <i>Polycarpa</i> sp. et <i>Citorclinum laboutei</i>	
hawaiiensis (saisonnalité amplifiée avec		coralliennes, les	Augmentation d'abondance importante des crinoïdes
l'hydrodynamisme)		Présence nouvelle de 3 espèces d'échinides <i>Echinometrix</i> diadema, <i>Echinometra mathaei</i> et <i>Parasalenia gratiosa</i>	
Augmentation du recouvrement		Présence nouvelle de 3 espèces de mollusques <i>Conus</i> distans, C. leopardus, et C. milliaris	
de Chlorodesmis fastigiata		Augmentation d'abondance du mollusque <i>Tridacna</i> maxima	

Tableau n°92 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST09A)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	6	5
Algue brune	0	0
Algue rouge	3	5
Algue verte	4	4
Cyanobactéries	0	0
Anémone	1	1
Ascidie	8	5
Bryozoaire	1	3
Astérie	0	0
Crinoïde	1	5
Echinide	3	5
Holothurie	0	0
Hydraire	1	3
Mollusque	5	3
Spongiaire	4	5
Zoanthaire	1	2
TOTAL	28	/

4.9.2.2 Benthos Transect 09 B

4.9.2.2.1 Les Scléractiniaires (ST09B)

Ce niveau bathymétrique est colonisé par 57 espèces coralliennes dont l'espèce de *Tubipora musica*, deux espèces de *Millepora* (encroûtant et branchu) et deux espèces de gorgone indéterminée. Les familles scléractiniaires (52 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae

(10 taxons), les Acroporidae (9 taxons), les Dendrophyllidae (6 taxons), les Pocilloporidae (6 taxons), les Mussidae (5 taxons) et les Poritidae (4 taxons).

Tableau n°93 : Biodiversité et Abondance des coraux par famille (ST09B)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	10	3
Agaraciidae	3	2
Astrocoeniidae	0	0
Caryophyllidae	0	0
Dendrophyllidae	6	3
Faviidae	13	5
Fungiidae	1	2
Merulinidae	4	3
Mussidae	5	2
Oculinidae	2	2
Pectiniidae	3	2
Pocilloporidae	5	3
Poritidae	4	2
Siderastreidae	1	1
Total scléractiniaire	57	1
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	2	2
Gorgone	1	2
Antipathaire	0	0
Total coraux	62	/

Ce niveau bathymétrique de la pente récifale a été dégradé en début d'année 2011 par l'accumulation de débris et de coraux tabulaires retournés provenant du sommet du récif. Quelques colonies d'*Acropora* tabulaires sont mortes en place et sont certainement les vestiges récents d'une invasion de mollusques corallivores (*Druppela cornus*). D'autres espèces scléractiniaires sont recouvertes part du turf comme *Seriatopora histrix* et *Pocillopora verrucosa* (signe d'une dégradation du milieu des colonies mortes en place). Les plus grosses colonies sont de formes massives, tabulaires et foliacées. A noter la présence de grandes colonies de *Porites* sp.

Variation entre mars 2011 et octobre 2011			
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien	
Présence nouvelle de 6 espèces Astreopora myriophthalma, Favia maxima, Favia 3spp., Hydnophora grandis	Augmentation d'abondance de 3 espèces : <i>Leptoria</i>	Rare: observé	
Mobilité : présence nouvelle de <i>Fungia</i> sp.	phrygia, Cyphastrea	sur 2 colonies : Acropora 2spp.	
Mortalité : 1 espèce n'a pas été recensée <i>Pocillopora</i> subseriata	serailia, Alveopora spongiosa	(tabulaire)	

4.9.2.2.2 Les Macrophytes et les Invertébrés (ST09B)

L'abondance et la richesse spécifique des macrophytes varient selon les périodes de prospection (saisonnalité). Ce phénomène peut être amplifié par l'intensité des courants de marée qui arrachent plus rapidement les thalles algaux. Les algues brunes sont absentes, les algues rouges ont un recouvrement en forte augmentation pour cette mission (variation saisonnière). Les algues vertes sont variées (*Dictyosphaeria*, *Caulerpa* sp1, *Codium* sp., *Bornetella oligospora*, *Chlorodesmis fastigiata* et *Halimeda* sp.) mais leur recouvrement est faible et elles sont dispersées dans les anfractuosités de la dalle.

Tableau n°94 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST09B)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	5	4
Algue brune	0	0
Algue rouge	3	5
Algue verte	6	5
Cyanobactéries	0	0
Anémone	0	0
Ascidie	11	5
Bryozoaire	1	2
Astérie	2	2
Crinoïde	1	3
Echinide	4	3
Holothurie	2	1
Hydraire	1	3
Mollusque	3	2
Spongiaire	7	5
Zoanthaire	1	2
TOTAL	47	/

Les invertébrtés recolonisent peu à peu la zone d'étude. Les alcyonaires sont encore très variés malgré l'absence de *Cladiella* (5 genres : *Lobophytum*, *Dendronephthya*, *Sarcophyton*, *Sinularia*, *Xenia*). Leur recouvrement est moindre que pour le niveau bathymétrique supérieur notamment pour le genre *Lobophytum* qui ne forme plus de grandes plaques mais reste néanmoins étendu.

Les spongiaires sont de petite taille, généralement à l'abri du courant (cavité de la dalle).

Les ascidies ont un développement rapide et se sont très bien adaptées depuis les dégradations du début d'années 2011 car 5 espèces sont nouvellement recensées et l'abondance des espèces préexistantes à augmenté.

Variation entre mars 2011 et octobre 2011			
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)	
	Absentes depuis la dernière mission	Absence de 1 genre d'alcyonaire Cladiella	
		Présence nouvelle de 5 espèces d'ascidies Atriolum robustum, Didemnum sp., Polycarpa clavata, P. nigricans, Polycarpa sp.	
		Présence nouvelle de 1 espèce d'astérie Fromia indica	
		Présence nouvelle de 2 espèces d'échinides <i>Echinometra</i> mathaei et <i>Parasalenia gratiosa</i>	
		Présence nouvelle de 3 espèces de mollusques <i>Pteristernia</i> reincarnata, Conus distans et Turbo sp.	
		Présence nouvelle de 2 espèces de spongiaires Spheciospongia vagabunda et Hamigera strongylata	

4.9.2.3 Benthos Transect 09 C

4.9.2.3.1 Les Scléractiniaires (ST09C)

Ce niveau bathymétrique (comme les stations situées en bas de pente des autres bancs ennoyés) a l'une des plus faibles richesses spécifiques coralliennes des stations du canal de la Havannah : 54 espèces coralliennes dont l'espèce de *Tubipora musica*, deux espèces de *Millepora* (encroûtant et branchu) et trois espèces de gorgone indéterminée. Les familles scléractiniaires (48 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (12 taxons), les Acroporidae (10 taxons), les Dendrophyllidae (6 taxons), les Pocilloporidae (5 taxons), les Mussidae (4 taxons), les Poritidae (3 taxons) et les Merulinidae (3 taxons).

Les coraux vivants en bas de pente ont un taux de recouvrement faible et les colonies scléractiniaires sont de petite taille. Les espèces les plus abondantes sont Seriatopora histrix, Pachyseris speciosa, Turbinaria peltata, T. frondens, T. mesenterina, Favites spp., Pocillopora damicornis et Tubipora musica. A noter, la présence rare de Turbinaria reniformis, Goniopora sp., Echinopora lamellosa, Coscinaraea columna. Les plus grosses colonies sont de formes massives (Porites lobata, Platygyra daedalea) et les gorgones s'édifient perpendiculairement aux courants.

Variation entre mars 2011 et octobre 2011			
Evolution de la richesse spécifique des coraux Variation d'abondance Blanchissement corallien			
Présence nouvelle de 7 espèces Favia 3spp., Galaxea fascicularis, Lobophyllia corymbosa, L. hattaii, Montipora undata Mortalité: aucune, toutes les espèces ont été recensées	Aucune	Rare : observé sur 2 colonies : <i>Acropora</i> 2sp. (tabulaire)	

Tableau n°95 : Biodiversité et Abondance des coraux par famille (ST09C)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	10	4
Agaraciidae	2	4
Astrocoeniidae	0	0
Caryophyllidae	0	0
Dendrophyllidae	6	3
Faviidae	12	4
Fungiidae	0	0
Merulinidae	3	2
Mussidae	4	2
Oculinidae	2	2
Pectiniidae	0	0
Pocilloporidae	5	3
Poritidae	3	2
Siderastreidae	1	1
Total scléractiniaire	48	1
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	3	2
Gorgone	1	2
Antipathaire	0	0
Total coraux	54	1

4.9.2.3.2 Les Macrophytes et les Invertébrés (ST09C)

Comme pour le transect supérieur l'abondance et la richesse spécifique des macrophytes varient énormément selon les périodes de prospection. Aucune algue brune n'est présente sur le récif. Les algues vertes sont très variées mais leur recouvrement est modéré (7 espèces). Les algues rouges *Asparagopsis armata* ont un recouvrement en augmentation (saisonnalité) et leur développement intéragit sur quelques colonies coralliennes

Le recouvrement des cyanobactéries reste modéré, elles sont éparpillées sur les débris coralliens qui s'accumulent en bas de la pente récifale. Les alcyonaires sont variés et représentés par les genres *Xenia*, *Lobophytum*, *Sinularia* et dans une moindre mesure par *Dendronephthya*, *Sarcophyton*, et *Nephthea*. Les zoanthaires (*Palythoa* sp.) ainsi que les spongiaires se développent modérement (*C. orientalis*, éponge noire indéterminée, *Spheciospongia vagabunda*). Ces organismes sont dispersés par petites plaques sur la dalle et les petits massifs coralliens.

Les ascidies ont un développement rapide et se sont très bien adaptées depuis les dégradations du debut d'années 2011 car 5 espèces sont nouvellement recensées.

Enfin, comme pour la mission précédente, les holothuries, les mollusques et les astéries n'ont pas été observés lors de cette mission.

Tableau n°96 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST09C)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	6	5
Algue brune	0	0
Algue rouge	2	5
Algue verte	7	4
Cyanobactéries	1	2
Anémone	2	2
Ascidie	11	5
Bryozoaire	1	3
Astérie	2	2
Crinoïde	1	3
Echinide	3	2
Holothurie	0	0
Hydraire	1	3
Mollusque	1	2
Spongiaire	7	5
Zoanthaire	1	3
TOTAL	46	1

Variation entre mars 2011 et octobre 2011					
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)			
		Absence de 1 genre d'alcyonaire Cladiella			
Augmentation du recouvrement de	Leur développement	Augmentation du recouvrement de 2 genres d'alcyonaires <i>Lobophytum</i> et <i>Xenia</i> sp.			
l'algue rouge Asparagopsis armata		Présence nouvelle de 5 espèces d'ascidies Atriolum robustum, Didemnum sp., Polycarpa clavata, P. nigricans, Polycarpa sp.			
(saisonnalité)		Diminution de l'abondance de 1 espèce d'ascidie <i>Didemnum molle</i>			
		Augmentation de l'abondance des crinoïdes			
Diminution du	reste modéré	Présence nouvelle de 2 espèces d'échinides <i>Echinometra mathaei</i> et <i>Parasalenia gratiosa</i>			
recouvrement de l'algue verte Dictyosphaeria		Présence nouvelle de 1 espèce de spongiaire <i>Spheciospongia</i> vagabunda			
verluysii		Présence nouvelle de 2 espèces d'astéries Celerina heffernani et Fromia milleporrela			

4.9.3 Les poissons (ST09)

La liste des espèces observées¹² sur les transects et les résultats bruts sont fournis dans le tableau 97.

Tableau n°97 : <u>Données sur les poissons (ST09)</u>

	Banc Kié ST09		Transe	ct		Transe	ct		Transe	et		Station	
		A		В		С			Total	Moyenne			
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom
Aca	Acanthurus nigricans				1	0,01	1,46				1	0,00	0,49
Aca	Acanthurus nigricauda	3	0,04	2,53							3	0,01	0,84
Aca	Acanthurus pyroferus	1	0,01	0,84							1	0,00	0,28
Aca	Ctenochaetus striatus	2	0,03	0,86	4	0,05	1,73				6	0,03	0,86
Aca	Naso brachycentron	7	0,05	42,88							7	0,02	14,29
Aca	Naso caesius	10	0,07	38,57							10	0,02	12,86
Ant	Pseudanthias dispar	20	0,25	1,08							20	0,08	0,36
Ant	Pseudanthias pleurotaenia							7	0,09	0,90	7	0,03	0,30
Ant	Pseudanthias squamipinnis				20	0,25	1,08				20	0,08	0,36
Ant	Pseudanthias ventralis							6	0,08	0,77	6	0,03	0,26
Can	Canthigaster valentini	1	0,01	0,01							1	0,00	0,00
Cha	Chaetodon citrinellus	2	0,03	0,11							2	0,01	0,04
Cha	Chaetodon kleinii	4	0,05	0,13	4	0,05	0,22				8	0,03	0,11
Cha	Chaetodon mertensii				2	0,03	0,11				2	0,01	0,04
Cha	Chaetodon pelewensis	2	0,03	0,26				2	0,03	0,26	4	0,02	0,17
Cha	Chaetodon plebeius				1	0,01	0,05				1	0,00	0,02
Cha	Chaetodon speculum	1	0,01	0,13							1	0,00	0,04
Cha	Heniochus acuminatus	2	0,03	7,81							2	0,01	2,60
Cha	Heniochus chrysostomus	1	0,01	3,91							1	0,00	1,30
Cha	Heniochus monoceros	2	0,03	2,92							2	0,01	0,97
Epi	Plectropomus leopardus				2	0,03	62,5				2	0,01	20,83
Lab	Bodianus perditio							1	0,01	2,00	1	0,00	0,67
Lab	Cheilinus chlorourus	1	0,01	0,84				1	0,01	2,00	2	0,01	0,95
Lab	Coris aygula	1	0,01	0,84							1	0,00	0,28
Lab	Coris gaimard							1	0,01	1,46	1	0,00	0,49
Lab	Gomphosus varius	5	0,06	0,64							5	0,02	0,21
Lab	Hemigymnus melapterus	1	0,01	1,46							1	0,00	0,49
Lab	Labroides dimidiatus				5	0,06	0,27				5	0,02	0,09
Lab	Thalassoma amblycephalum	20	0,25	1,72							20	0,08	0,57
Lab	Thalassoma lunare			,				6	0,08	0,77	6	0,03	0,26
Lab	Thalassoma nigrofasciatum	20	0,25	1,72				6	0,08	0,32	26	0,11	0,68
Lab	Thalassoma quinquevittatum	10	0,13	1,82						,	10	0,04	0,61
Mul	Parupeneus barberinus			7-				3	0,04	0,75	3	0,01	0,25
Mul	Parupeneus indicus	3	0,04	1,30					- ,	- ,, -	3	0,01	0,43
Poc	Centropyge bicolor	2	0,03	0,03				2	0,03	0,11	4	0,02	0,05
Poc	Centropyge tibicen		- ,		2	0,03	0,03	3	0,04	0,16	5	0,02	0,06
Poc	Pygoplites diacanthus	1	0,01	0,55		-,	.,,,,,		- ,	.,	1	0,00	0,18
Pom	Amphiprion clarkii	5	0,06	0,08							5	0,02	0,03
Pom	Chromis fumea				40	0,5	1,25	50	0,63	2,70	90	0,38	1,32
Pom	Chrysiptera taupou				15	0,19	0,47	10	0,13	0,31	25	0,10	0,26
Sca	Chlorurus microrhinos	5	0,06	80,00		0,17	~,··	10	0,10	0,51	5	0,02	26,67

¹² Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

	Indice de Shannon = 4,438 Equitabilité = 0,795												
Biodiversité 32				11			14			48			
	Total	156	1,81	271,02	96	1,21	69,16	99	1,25	16,41	351	1,42	118,86
Sig	Siganus vulpinus	2	0,03	1,10							2	0,01	0,37
Sig	Siganus spinus	5	0,06	1,25							5	0,02	0,42
Sca	Scarus rubroviolaceus	5	0,04	45,71							5	0,01	15,24
Sca	Scarus frenatus	3	0,02	18,38							3	0,01	6,13
Sca	Scarus forsteni							1	0,01	3,91	1	0,00	1,30
Sca	Scarus bleekeri	2	0,01	7,71							2	0,00	2,57
Sca	Chlorurus sordidus	7	0,09	3,84							7	0,03	1,28

Sur l'ensemble des transects de la station, 351 individus appartenant à 48 espèces différentes (tableau 97) ont pu être observés. Ils représentent une densité de 1.42 poissons/m² pour une biomasse de 118.86 g/m². 91 espèces supplémentaires (e.g. hors des transects et hors liste restreinte) ont été observées sur la station (cf. tableau 98).

Tableau n°98 : <u>Liste des espèces complémentaires (ST09)</u>

			Banc Kié ST09		
Fam	Espèces	Fam	Espèces	Fam	Espèces
Aca	Acanthurus mata	Cir	Cirrhichthys forsteri	Mon	Pervagor melanocephalus
Aca	Acanthurus nigricans	Cir	Cirrhitichthys falco	Mul	Parupeneus barberinus
Aca	Acanthurus nigricauda	Cir	Paracirrhites arcatus	Mul	Parupeneus cyclostomus
Aca	Acanthurus pyroferus	Cir	Paracirrhites hemistictus	Mul	Parupeneus indicus
Aca	Ctenochaetus striatus	Epi	Cephalopholis urodeta	Nem	Pentapodus aureofasciatus
Aca	Naso brachycentron	Epi	Epinephelus fasciatus	Pin	Parapercis hexophtalma
Aca	Naso brevirostris	Epi	Plectropomus leopardus	Ple	Assessor macneilli
Aca	Naso caesius	Fis	Fistularia commersonii	Poc	Centropyge bicolor
Aca	Naso tonganus	Lab	Anampses neoguinaicus	Poc	Centropyge bispinosa
Aca	Zebrasoma scopas	Lab	Bodianus perditio	Poc	Centropyge flavissima
Aca	Zebrasoma veliferum	Lab	Cheilinus chlorourus	Poc	Centropyge tibicen
Ant	Pseudanthias dispar	Lab	Choerodon jordani	Poc	Pomacanthus imperator
Ant	Pseudanthias pleurotaenia	Lab	Cirrhilabrus lineatus	Poc	Pygoplites diacanthus
Ant	Pseudanthias squamipinnis	Lab	Coris aygula	Pom	Amphiprion clarkii
Ant	Pseudanthias ventralis	Lab	Coris batuensis	Pom	Chromis fumea
Bal	Sufflamen fraenatus	Lab	Coris gaimard	Pom	Chrysiptera taupou
Ble	Cirripectes castaneus	Lab	Gomphosus varius	Pom	Dascyllus reticulatus
Ble	Ecsenius isos	Lab	Halichoeres argus	Pom	Pomacentrus chrysurus
Cae	Caesio caerulaurea	Lab	Halichoeres hortulanus	Pom	Pomacentrus coelestis
Can	Canthigaster valentini	Lab	Halichoeres melanurus	Pom	Pomacentrus nagasakiensis
Cha	Chaetodon citrinellus	Lab	Halichoeres ornatissimus	Pom	Pomacentrus nigromarginatu
Cha	Chaetodon kleinii	Lab	Hemigymnus melapterus	Sca	Chlorurus microrhinos
Cha	Chaetodon melannotus	Lab	Labroides dimidiatus	Sca	Chlorurus sordidus
Cha	Chaetodon mertensii	Lab	Thalassoma amblycephalum	Sca	Scarus bleekeri
Cha	Chaetodon pelewensis	Lab	Thalassoma lunare	Sca	Scarus forsteni
Cha	Chaetodon plebeius	Lab	Thalassoma nigrofasciatum	Sca	Scarus frenatus
Cha	Chaetodon speculum	Lab	Thalassoma quinquevittatum	Sca	Scarus rubroviolaceus
Cha	Chaetodon unimaculatus	Lut	Aprion virescens	Sig	Siganus spinus
Cha	Heniochus acuminatus	Lut	Lutjanus bohar	Sig	Siganus vulpinus
Cha	Heniochus chrysostomus	Mon	Oxymonacanthus longirostris	Syn	Synodus variegatus
Cha	Heniochus monoceros				

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 99 et spécifiquement pour la campagne d'octobre 2011 sur la figure 53.

Tableau n°99 :	Nombre d'espèces p	oar famille ichtyologique (de 2007 à 2011 (S	ST09)

Familles	Banc Kié ST09									
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b			
Acanthuridae	6	6	6	5	1	3	6			
Anthiinidae	3	4	2	2	3	3	4			
Canthigasteridae		1	2	1		1	1			
Carangidae				1		1				
Carcharhinidae						1				
Chaetodontidae	5	3	6	3	5	9	9			
Epinephelinae	2	4	2	3	2	1	1			
Labridae	6	6	6	6	6	9	11			
Lutjanidae	1		1			2				
Mullidae	1	1	1	1	1	2	2			
Nemipteridae			1	1		1				
Pomacanthidae	6	3	3	3	4	5	3			
Pomacentridae	4	3	2	3	4	3	3			
Scaridae	2	1	2	3	1	2	6			
Siganidae			1	2	1		2			
Total espèces	36	32	35	34	28	33	48			
Total familles	10	10	13	13	10	13	11			

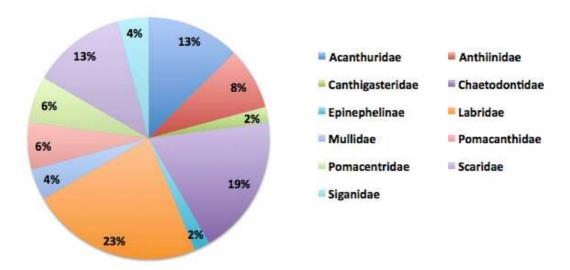


Figure n°53 : Richesse spécifique par famille de poissons (ST09)

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 100), sous l'angle de vue de ce critère les sept campagnes sont similaires.

Tableau n°100 : <u>Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 2011</u>
(ST09)

Test χ2	ddl	Seuil de tolérance à 0,95
52.49	84	106.86

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 101 et la figure 54.

Tableau n°101 : Synopsis des résultats 2011 et récapitulatif des années précédentes (ST09)

Peunleme	ent de poissons		Liste DENV								
	- Banc KIE		Transect TLV Station								
		Nb. ind.	Densité	Biom. g/m ²	Biodiv.1	Biodiv.2	Biodiv.3				
	Transect A	156	1,81	271,02	32						
2011 b	Transect B	96	1,21	69,16	11						
2011 0	Transect C	99	1,25	16,41	14						
	Moy. ABC	117,00	1,42	118,86	48	66	91				
2011 a	Moy. ABC	154,00	1,81	593,06	39	58	89				
2010 b	Moy. ABC	133	1,35	10,62	28	53	75				
2010 a	Moy. ABC	61,33	1,66	303,36	34	43	66				
2009	Moy. ABC	22	4,01	62,69	35	58	60				
2008	Moy. ABC	208,67	4,21	273,92	32	50	62				
2007	Moy. ABC	145,33	4,13	607,71	36	48	55				

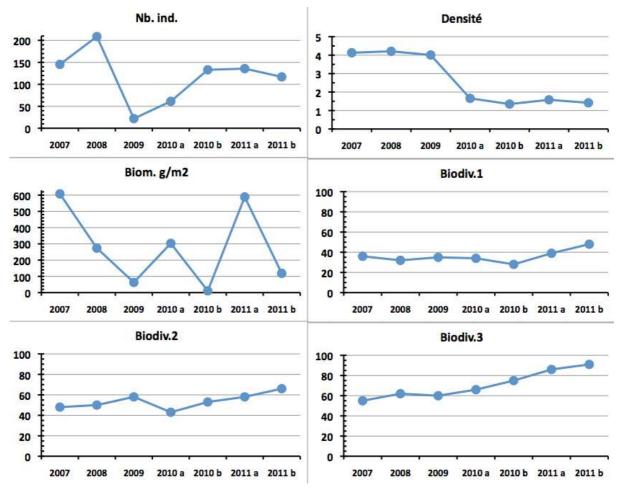


Figure n°54: <u>Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST09)</u>

4.10 Station 10 = Ilot Kié

Localisation géographique	Partie nord-ouest de l'îlot Kié (photographie 78). Un piquet placé sur un éperon à 3 m de profondeur permet de la repérer facilement depuis la surface à la nage (photographie 01 sur la figure 55).
Nombre transects	3 transects.
Description transects	Ils ont été positionnés sur le front récifal du récif frangeant de l'îlot à 10, 16 et 21 mètres de profondeur dans un alignement du nord-est vers le sud-ouest.
	Le transect A a été disposé perpendiculairement à la pente du récif frangeant au pied d'un éperon et d'un sillon. Le transect B est installé 5 ou 6 m avant la fin de la pente corallienne. Il s'agit d'une pente corallienne entre 10 et 22 m de profondeur inclinée à 40-45°. Le transect C se situe à la rupture entre le bas du tombant récifal et le début de la pente sédimentaire. C'est une zone d'accumulation de débris et de roches provenant du récif. La pente sédimentaire a une inclinaison douce. Cette dernière est composée de sable coquillé et de débris coralliens qui deviennent de moins en moins abondants en fonction de l'éloignement du récif. Quelques grands massifs se répartissent à proximité du tombant récifal mais leur recouvrement en organismes benthiques est faible.

Description générale

De nombreuses dégradations ont été constatées suite aux évènements cycloniques de ce début d'année 2011. Cependant, la station du récif frangeant de l'îlot Kié (transects A & B) est caractérisée par la plus grande richesse spécifique corallienne et le plus important taux de recouvrement corallien des 12 stations étudiées. La zone présente une alternance d'éperons et de sillons, atteignant 8 à 10 mètres de profondeur.


L'îlot Kié est situé dans le canal de la Havannah dans la réserve intégrale Yves Merlet. Il faut demander une dérogation à la Province Sud avant de pouvoir étudier cette station. Tout accès et tout passage de navire ou d'embarcation est interdit, *a fortiori* la récolte, la pêche ou la cueillette de tout minéral, animal ou végétal.

Caractéristiques principales

- La richesse spécifique et le recouvrement des coraux sont élevés.
- Recrutement corallien (colonies coralliennes juvéniles).
- 🖔 Présence rare de Gardineroseris planulata.
- Abondance du genre corallien *Goniopora*.
- ☼ Les crinoïdes sont abondantes.
- Marques de nécroses sur les alcyonaires *Lobophytum* (prédation présumée de *Ovula ovum*).

Variations entre mars 2011 et septembre 2011

- 🖔 La richesse spécifique des coraux a légèrement augmenté.
- Dégradation des communautés benthiques sur l'ensemble de la station lors des évènements dépressionaires du début d'année 2011.
- Mortalité des espèces coralliennes faible.
- 🖔 Edification des espèces coralliennes.
- Les cyanobactéries ont un développement modéré sur les nouveaux débris coralliens et en diminution depuis la dernière mission.
- Blanchissement corallien modéré mais sur plusieurs espèces (7 espèces au transect A, 5 espèces en B et 1 espèce en C).

Carte n°012: <u>Localisation de la station 10 (Ilôt Kié)</u>

Photo n°017 : <u>Position en surface par rapport à l'îlot Kié (ST10)</u>

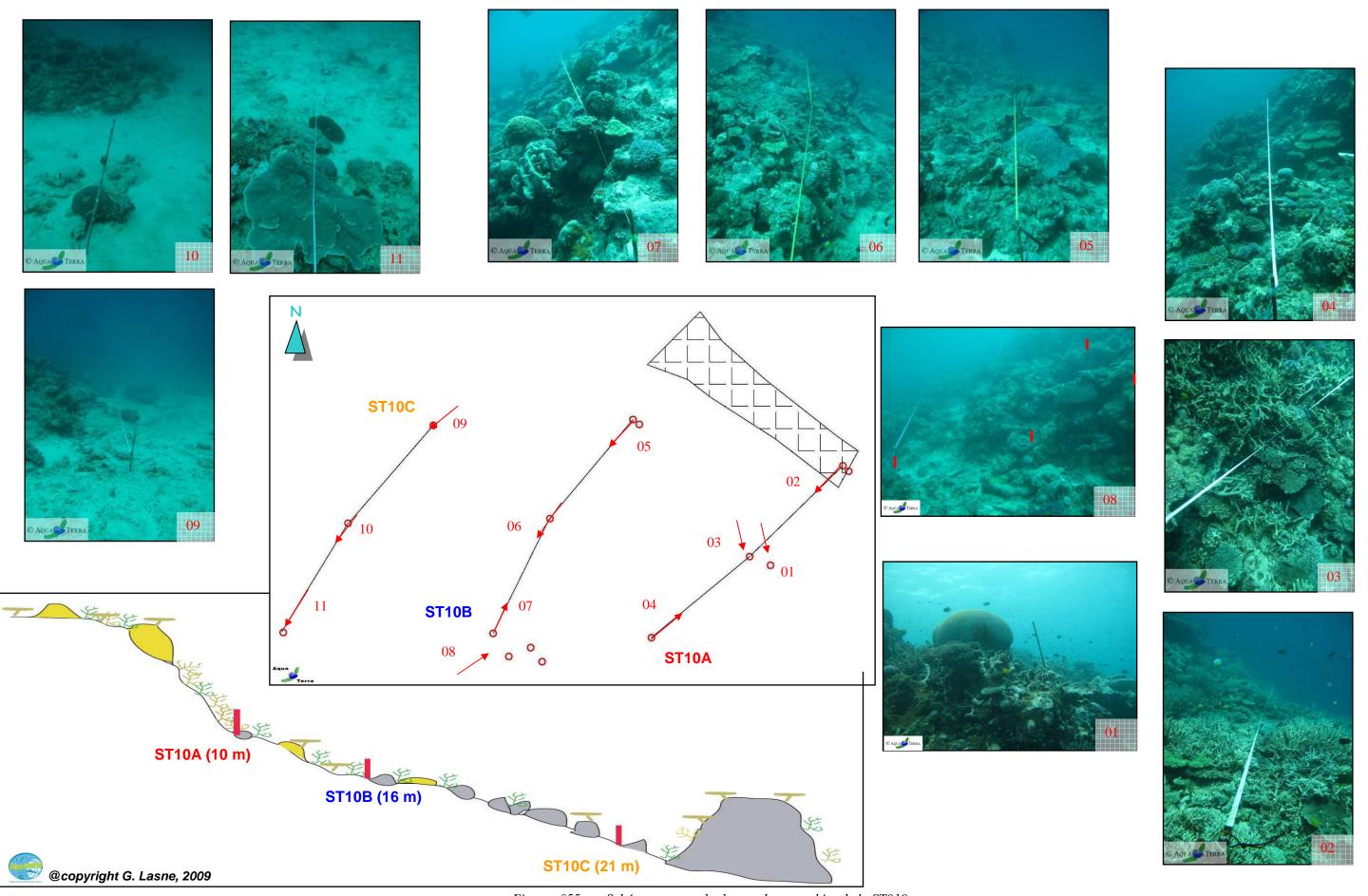


Figure n°55 : Schéma structural, plan et photographies de la ST010

4.10.1 Le substrat (ST10)

Le pourcentage de couverture de chaque composante est donné dans la figure 56 pour le transect A, dans la figure 57 pour le transect B et dans la figure 58 pour le transect C.

Figure n°56: Représentation du recouvrement (en %) du substrat pour ST10A

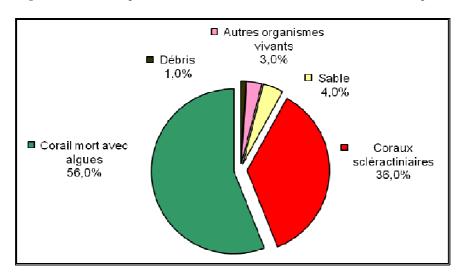


Figure n°57: Représentation du recouvrement (en %) du substrat pour ST10B

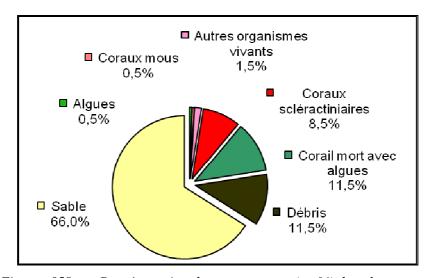


Figure n°58: Représentation du recouvrement (en %) du substrat pour ST10C

Cette station est toujours remarquable par sa couverture en coraux scléractiniaires qui reprèsentent 43 et 36% du substrat sur les transects A et B (un des plus fort taux de recouvrement de toutes les stations). Associés aux coraux morts recouverts d'algues (52.5% et 56%), ces deux transects obtiennent 99% et 95% de biotique.

Le substrat du transect C est constitué essentiellement de sable (66%) et les coraux scléractiniaires n'y sont plus présents qu'à 8.5%.

A noter : sur le transect A, il y a plus des coraux blancs et les cyanobactéries sont en baisse (0.5% vs 2%). Le recouvrement sur les différents transects reste stable.

4.10.2 Le benthos (ST10)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.10.2.1 Benthos Transect 10 A

4.10.2.1.1 Les Scléractiniaires (ST10A)

La richesse spécifique corallienne est la plus importante de toutes les stations.

Tableau n°102 : Biodiversité et Abondance des coraux par famille (ST10A)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	23	5
Agaraciidae	9	3
Astrocoeniidae	1	2
Caryophyllidae	0	0
Dendrophyllidae	1	1
Faviidae	20	5
Fungiidae	5	3
Merulinidae	8	3
Mussidae	8	3
Oculinidae	2	2
Pectiniidae	6	2
Pocilloporidae	5	3
Poritidae	5	4
Siderastreidae	4	2
Total scléractiniaire	97	/
Non Scléractiniaire		
Milleporidae	1	2
Tubiporidae	3	2
Gorgone	1	2
Antipathaire	1	2
Total coraux	103	/

Ce niveau bathymétrique a une richesse spécifique corallienne élevée avec 103 espèces coralliennes dont l'espèce de *Tubipora musica*, trois espèces de gorgone, une espèce de *Millepora* encroûtant et une espèce d'antipathaire. Les familles scléractiniaires (97 espèces) dont les taxons sont les plus nombreux sont par

ordre décroissant : les Acroporidae (23 taxons), les Faviidae (20 taxons), les Agaraciidae (9 taxons), les Merulinidae (8 taxons), les Mussidae (8 taxons), les Pectiniidae (6 taxons), les Fungiidae (5 taxons), les Pocilloporidae (5 taxons), les Siderastreidae (4 taxons).

Les coraux scléractiniaires dominent le substrat et ils sont composés en majorité par des coraux branchus. Les colonies coralliennes s'épanouissent et forment de grands buissons (*Acropora* spp., *Acropora florida*, *Echinophyllia horrida*, *Hydnophora rigida*, *Isopora palifera*) voir des colonies de taille métrique (*Scapophyllia cylindrica*, *Alveopora spongiosa*, *Porites lobata*, *Porites* spp., *Goniopora* sp., *Platygyra daedalea*). A noter, la présence de *Pavona maldiviensis*, *Stylophora pistillata*, *Acanthastrea echinata*, *Pectinia paeonia*, *Psammocora haimeana* et *P. digitata*.

Lors de la mission de mars 2011, les dégradations sur les coraux nétait pas négligeables (22 espèces avaient leur abondance en diminution et 3 espèces n'avaient pas été recensées). Désormais le récif tend à se stabiliser car les colonies coralliennes dégradées s'édifient à nouveau.

Variation entre mars 2011 et octobre 2011							
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien					
Présence nouvelle de 5 espèces Astreopora gracilis, Coeloseris mayeri, Favia abdita, Lobophyllia pachysepta, Pavona duerdeni	Augmentation de l'abondance pour 1 espèce <i>Montipora</i>	Observé sur 7 espèces <i>Acropora</i> 4sp. (branchu), <i>Acropora</i> 2sp.					
Mortalité : 1 espèce corallienne Isopora cuneata	tuberculosa	(tabulaire), Galaxea fascicularis					

4.10.2.1.2 Les Macrophytes et les Invertébrés (ST10A)

Les macrophytes et les invertébrés ont recolonisé le récif depuis la dernière mission.

Les macrophytes ont des variations saisonnières avec la disparition de l'algue rouge *Asparagopsis armata* et le développement dans les débris coralliens d'*Halimeda*, *Caulerpa racemosa* et *Padina* sp. Les cyanobactéries étaient déjà bien developpées lors de la dernière mission mais leur recouvrement est en nette diminution et se concentre sur les colonies scléractiniaires mortes et les débris coralliens.

Les ascidies ont un développement rapide et se sont très bien adaptées depuis les dégradations du début d'années 2011 car 5 espèces sont nouvellement recensées.

Les holothuries sont moins nombreuses, elles étaient venue coloniser le site aprés les dégradations du début d'année (les débris coralliens ne sont plus fraichement cassés).

Les spongiaires sont peu répendues mais se développent sur la dalle (*Cliona jullienei*, *C. orientalis* et *Chlatria rugosa*). Les mollusques inventoriés sont fixés sur la dalle à travers les colonies coralliennes. Ils sont représentés par quelques individus (*Tridacna derasa* « 42 cm », *T. maxima* « 23 cm », *Spondylus* sp., *Druppela cornus* et quelques *Hyotissa* sp.)

	Variation entre mars 2011 et octobre 2011						
Algues (variation saisonnière) Cyanobactéries		Invertébrés (mobilité et variation saisonnière)					
	Leur	Augmentation du recouvrement de 1 genre alcyonaire <i>Xenia</i> sp.					
est en net	développement est en nette	Présence nouvelle de 5 espèces d'ascidies <i>Didemnum</i> sp., <i>Polycarpa aurita</i> , <i>P. papilata</i> , <i>P. nigricans</i> , <i>Polycarpa</i> sp.					
Présence nouvelle de 2 espèces	diminution et concentré sur les	Augmentation de l'abondance des crinoïdes					
Padina sp. et	nouveaux débris	Absence de 1 espèce d'holothurie Stichopus chloronotus					
Caulerpa racemosa	coralliens et les colonies coralliennes mortes en place	Présence nouvelle de 1 espèce de mollusque <i>Druppela cornus</i> (prédateur de corail)					
		Diminution du recouvrement de l'éponge <i>Cliona jullienei</i> (éponge perforante)					

Tableau n°103 : Biodiversité et Abondance des macrophytes et invertébrés (ST10A)

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	4	4
Algue brune	1	1
Algue rouge	1	2
Algue verte	6	2
Cyanobactéries	1	2
Anémone	0	0
Ascidie	6	5
Bryozoaire	0	0
Astérie	1	1
Crinoïde	1	3
Echinide	0	0
Holothurie	1	1
Hydraire	1	2
Mollusque	5	2
Spongiaire	4	3
Zoanthaire	1	2
TOTAL	33	/

4.10.2.2 Benthos Transect 10 B

4.10.2.2.1 Les Scléractiniaires (ST10B)

La richesse spécifique corallienne est également élevée par rapport aux autres stations du canal de la Havannah. Ce niveau bathymétrique est colonisé par 96 espèces coralliennes dont l'espèce de *Tubipora musica*, deux espèces d'antipathaire, deux espèces de gorgone et une espèce de *Millepora* branchu. Les familles scléractiniaires (90 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Acroporidae (18 taxons), les Faviidae (17 taxons), les Agaraciidae (10 taxons), les Fungiidae (8 taxons), les Mussidae (6 taxons), les Merulinidae (5 taxons), les Pocilloporidae (5 taxons), les Pectinidae (5 taxons) les Poritidae (5 taxons), les Dendrophyllidae (4 taxons) et les Caryophyllidae (3 taxons).

Variation entre mars 2011 et octobre 2011			
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien	
Présence nouvelle de 1 espèce corallienne Leptastrea purpurea	Diminution de l'abondance pour 3 espèces : Leptoria phrygia, Alveopora sp., Lobophyllia corymbosa	Rare: observé sur 5 espèces: Acropora 2spp. (branchu), Acropora 2spp. (tabulaire), Galaxea fascicularis (ces espèces sont particulièrement sensibles aux variations des paramètres de l'environnement)	
Mortalité : 1 espèce corallienne <i>Isopora cuneata</i>	Augmentation de l'abondance de 3 espèces : <i>Scapophyllia cylindrica</i> , <i>Seriatopora calendrium</i> , <i>S. histrix</i>		

Le recouvrement par les scléractiniaires est plus faible que pour le niveau bathymétrique supérieur. De nombreux débris coralliens arrachés par les évènements cycloniques du début d'année 2011 sont venus s'accumulés dans cette zone. Cependant, quelques colonies de petite taille (inférieur au décimètre) et en bonne santé se répartissent encore sur la dalle et ont résisté aux évènements dépressionnaires. Elles laissent envisager que le récif va reprendre progressivement son état d'origine.

D'autre part, des espèces robustes se développent et s'épanouissent sur ce front récifal de récif frangeant (Pavona maldiviensis, P. minuta, P. clavus, Acropora florida, Isopora palifera, Montipora spp., Pachyseris speciosa, Echinopora lamellosa, Turbinaria peltata, Lobophyllia spp., Seriatopora histrix, S. calendrium et Porites lobata). A noter, la présence rare de Euphyllia ancora, Plerogyra sinuosa, Goniopora sp., Alveopora spongiosa, Pectinia lactuca et Gardineroseris planulata. La famille des Fungiidae affectionne particulièrement les petites zones d'accumulation de débris.

Le blanchissement était systématique sur une espèce du genre *Alveopora* sp1 lors de la mission de septembre 2010, ensuite en mars 2011 les colonies de cette espèce étaient en cours de recolonisation par les zooxanthelles. Désormais quelques colonies n'ont pas été recensées (mortalité) mais le reste a réintégré leurs zooxanthelles et sont en bonne santé.

Famille Nombre de taxa Abondance (1 à 5) Scléractiniaire Acroporidae 18 5 3 10 Agaraciidae 0 0 Astrocoeniidae Caryophyllidae 3 2 Dendrophyllidae 4 2 5 Faviidae 17 8 4 Fungiidae 3 5 Merulinidae Mussidae 3 6 2 3 Oculinidae 5 2 Pectiniidae 5 5 Pocilloporidae Poritidae 5 4 Siderastreidae 2 2 Total scléractiniaire 90 Non Scléractiniaire 2 Milleporidae 1 2 2 Tubiporidae 1 2 Gorgone 2 Antipathaire 2 / **Total coraux** 96

Tableau n°104 : Biodiversité et Abondance des coraux par famille (ST10B)

4.10.2.2.2 Les Macrophytes et les Invertébrés (ST10B)

Les macrophytes ont des variations d'abondance et de biodiversité qui se caractérisent par la saisonnalité et l'exposition aux agents hydrodynamiques du récif. Les algues vertes sont minoritaires et les algues rouges se développent particulièrement bien par l'augmentation de température de l'eau.

Au contraire, les variations d'abondance et de diversité des invertébrés seraient plutôt induites par leur mobilité et leur recherche de nourriture plutôt que par la saisonnalité.

Les cyanobactéries ont un recouvrement constant depuis la dernière mission et se concentrent sur les colonies scléractiniaires dégradées.

Les alcyonaires n'ont pas évolué depuis la dernière mission: les genres *Lobophytum, Sinularia* et *Sarcophyton* ont un recouvrement peu développé (petite taille). Les genres *Dendronephthya, Xenia* et *Nephthea* sont peu nombreux et leur répartition est hétérogène (petits groupes de deux ou trois individus).

Le groupe des spongiaires est bien développé sur les coraux morts et les débris coralliens (*Cliona orientalis*, *Cliona jullienei*, *Clathria rugosa* et l'éponge noire indéterminée), ainsi que les ascidies (*Polycarpa cryptocarpa*) et les zoanthaires (*Palythoa* sp.) qui s'étendent sur la dalle.

Les holothuries et les astéries varient selon les niveaux bathymétriques à la recherche de nourriture. Les crinoïdes sont nombreuses mais peu diversifiées, elles s'accrochent sur les promontoires du récif afin de pouvoir capter au mieux leur nourriture.

Les mollusques ont colonisé fortement le site depuis les dégradations coralliennes.

	Variation entre mars 2011 et octobre 2011											
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)										
Présence nouvelle		Absence de 1 espèce d'anémone Heteractis sp.										
de <i>Padina</i> sp. (algue		Absence de 1 espèce d'ascidie Didemnum molle										
brune), Trichogloea requienii (algue	développement est modéré et	Présence nouvelle de 2 espèces d'ascidies <i>Polycarpa nigricans</i> et <i>Didemnum</i> sp.										
rouge), Neomeris van bosseae (algue verte)	concentré sur les débris coralliens	Présence nouvelle de 2 espèces d'astéries <i>Fromia indica</i> et <i>Linckia multifora</i>										
Absence de <i>Halimeda</i>	et les colonies coralliennes	Augmentation de l'abondance 1 espèce d'astérie Holothuria atra										
en Chlorodosmis	mortes en place	Présence nouvelle de 5 espèces de mollusques <i>Conus</i> sp., <i>Drupa</i> sp., <i>Pinctata margaratifera</i> , <i>Pedum spondyloideum</i> , <i>Turbo</i> sp.										
vertes)		Absence de 1 espèce de mollusque <i>Tridacna squamosa</i>										

Tableau n°105 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST10B)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	6	4
Algue brune	1	1
Algue rouge	2	2
Algue verte	1	2
Cyanobactéries	1	2
Anémone	1	0
Ascidie	4	4
Bryozoaire	0	0
Astérie	2	2
Crinoïde	1	3
Echinide	0	0
Holothurie	3	2
Hydraire	1	2
Mollusque	8	3
Spongiaire	4	4
Zoanthaire	1	2
TOTAL	36	/

4.10.2.3 Benthos Transect 10 C

4.10.2.3.1 Les Scléractiniaires (ST10C)

Ce niveau bathymétrique recèle 62 espèces coralliennes dont l'espèce de *Tubipora musica*, deux espèces de *Millepora* (encroûtant et branchu) et une espèce d'antipathaire. Les familles scléractiniaires (53 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (12 taxons), les Acroporidae (10 taxons), les Mussidae (8 taxons), les Pocilloporidae (6 taxons), les Agaraciidae (5 taxons), les Poritidae (4 taxons) et les Pectinidae (3 taxons).

Variation entre mars 2011 et octobre 2011										
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien								
Présence nouvelle de 2 espèces coralliennes Isopora palifera, Pocillopora meandrina	Diminution de l'abondance pour 3 espèces : <i>Favites</i> spp., <i>Oulophyllia</i>									
Mortalité : 2 espèces coralliennes <i>Isopora</i> cuneata, Galaxea astreata	crispa et Millepora branchu	Rare : observé sur 1 espèce : Galaxea fascicularis								
Mobilité : absence de 2 espèces coralliennes Polyphyllia nivaehiberniae et P. talpina	Augmentation de l'abondance pour 1 espèce <i>Pachyseris speciosa</i>									

Tableau n°106 : Biodiversité et Abondance des coraux par famille (ST10C)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	10	3
Agaraciidae	5	3
Astrocoeniidae	0	0
Caryophyllidae	0	0
Dendrophyllidae	1	2
Faviidae	12	4
Fungiidae	1	2
Merulinidae	1	2
Mussidae	8	2
Oculinidae	1	2
Pectiniidae	3	2
Pocilloporidae	6	3
Poritidae	4	2
Siderastreidae	1	2
Total scléractiniaire	53	/
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	3	2
Gorgone	1	2
Antipathaire	1	2
Total coraux	60	/

La richesse spécifique corallienne est élevée par rapport aux autres transects situés à la même profondeur (canal de la Havannah) et les dégradations récifales sont minoritaires. Cependant, le recouvrement en coraux

vivants reste faible. Les colonies scléractiniaires sont majoritairement de petite taille et adoptent des formes encroûtantes (*Galaxea fascicularis*, *G. astreata*, *Montipora* spp., *Mycedium elephantotus*) et des formes massives (*Oulastrea crispa*, *Lobophyllia hemprichii*, *L. corymbosa*, *Symphyllia* spp., *Montastrea curva*). Seules deux colonies scléractiniaires sont de taille quasi métrique (*Pachyseris speciosa* et *Oulophyllia bennetae*). La colonie de *Scolymia vitiensis* de taille relativement importante pour cette espèce (environ 30 cm) présente de moins en moins de marques de nécroses.

4.10.2.3.2 Les Macrophytes et les Invertébrés (ST10C)

Les alcyonaires sont variés et se développent sur les petits massifs et les roches (*Sinularia, Sarcophyton, Lobophytum, Cladiella, Drendronephthya* et *Xenia*). La colonie de *Lobophytum* qui était nécrosée ne fait plus partie du recouvrement, les causes de mortalité peuvent être en relation avec la prédation du mollusque *Ovula ovum* (mollusque qui n'a pas été inventorié lors de cette mission).

Les macrophytes sont rares. Seuls les genres *Amphiroa* et *Chlorodesmis* (algues rouges) ont été inventoriés en bas de pente. Ils se développent à travers les débris coralliens ou sur la dalle.

Les mollusques se sont bien diversifiés car 6 espèces ont été nouvellement inventoriées. Ce chiffre de diversité est toutefois à nuancer car la plupart des mollusques sont mobiles. L'éponge noire indéterminée se disperse à travers les débris coralliens ; *Cliona orientalis* se développent sur la dalle mais son recouvrement tant à diminuer. La concentration en hydraires augmente avec la profondeur, ils s'installent sur les substrats durs où ils ne sont pas arrachés lors des forts évènements hydrodynamiques.

Les échinodermes sont diversifiés mais leur richesse specifique évolue beaucoup entre les missions (organismes mobiles à fortes variations bathymétriques). Les holothuries affectionnent les milieux sableux et les débris coralliens (selon les missions, on observe *Bohadschia argus*, *Holothuria atra*, *H. edulis*, *H. fuscopuntata* et *H. fuscogilva*). Les astéries sont généralement posées sur la dalle (*Fromia monilis*) et les oursins sont cachés dans les anfractuosités de la dalle (*Diadema setosum*).

	Variation entre mars 2011 et octobre 2011										
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)									
	l'algue rouge Leur	Diminution de l'abondance de 1 genre d'alcyonaire Sarcophyton									
Présence nouvelle de		Présence nouvelle de 4 espèces d'ascidies Atrium robustum, Didemnum sp., Polycarpa aurita, Polycarpa nigricans									
l'algue rouge Trichogloea requienii		Diminution de l'abondance de 1 espèce d'ascidie <i>Didemnum molle</i>									
		Absence de 3 espèces d'holothuries <i>Boadschia argus</i> , <i>Holothuria</i> fuscopuntata et H. fuscogilva									
Absence de l'algue verte <i>Chlorodesmis</i>	d' <i>Acropora</i> morte en place	Présence nouvelle de 6 espèces de mollusques <i>Arca ventricosa</i> , <i>Hyotissa hyotis, Lopha cristagalli, Pinctada margaratifera, Pedum spondyloidum, Astraea rhodostoma</i>									
fastigiata		Dimunution de l'abondance de l'éponge encroûtante <i>Cliona</i> orientalis									

Tableau n°107 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST10C)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	6	3
Algue brune	0	0
Algue rouge	2	5
Algue verte	0	0
Cyanobactéries	1	1
Anémone	0	0
Ascidie	8	4
Bryozoaire	0	0
Astérie	1	1
Crinoïde	1	2
Echinide	1	1
Holothurie	2	2
Hydraire	1	2
Mollusque	8	3
Spongiaire	4	5
Zoanthaire	1	3
TOTAL	36	/

4.10.3 Les poissons (ST10)

La liste des espèces observées¹³ sur les transects et les résultats bruts sont fournis dans le tableau 108.

Tableau n°108 : <u>Données sur les poissons (ST10)</u>

	Ilot Kié ST10		Transec	t		Transe	ct		Transe	ct		Station	
			A			В			С		Total	Moyenne	
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom
Aca	Acanthurus dussumieri							1	0,01	14,28	1	0,00	4,76
Aca	Acanthurus mata				10	0,13	8,44				10	0,04	2,81
Aca	Acanthurus xanthopterus							2	0,03	5,74	2	0,01	1,91
Aca	Naso brachycentron							7	0,09	99,96	7	0,03	33,32
Aca	Zebrasoma scopas	1	0,01	0,13	2	0,03	0,26				3	0,01	0,13
Ant	Pseudanthias pascalus	10	0,13	0,54				10	0,13	1,28	20	0,08	0,61
Ant	Pseudanthias squamipinnis				5	0,06	0,27				5	0,02	0,09
Ble	Meiacanthus atrodorsalis	2	0,03	0,06							2	0,01	0,02
Cae	Caesio teres	50	0,63	12,50							50	0,21	4,17
Car	Gnathanodon speciosus							3	0,04	93,75	3	0,01	31,25
Cha	Chaetodon baronessa	2	0,03	0,26	1	0,01	0,13				3	0,01	0,13
Cha	Chaetodon lunulatus	1	0,01	0,13							1	0,00	0,04
Cha	Chaetodon mertensii	2	0,03	0,26							2	0,01	0,09
Cha	Chaetodon ornatissimus	2	0,03	0,86							2	0,01	0,29
Cha	Chaetodon pelewensis				2	0,03	0,11				2	0,01	0,04
Cha	Chaetodon speculum	1	0,01	0,25							1	0,00	0,08
Cha	Chaetodon ulietensis				2	0,03	0,11				2	0,01	0,04
Cha	Heniochus varius	2	0,03	1,69							2	0,01	0,56
Epi	Cephalopholis miniata							1	0,01	10,72	1	0,00	3,57
Epi	Cephalopholis sonnerati	1	0,01	0,84							1	0,00	0,28
Epi	Epinephelus fasciatus				2	0,03	1,69				2	0,01	0,56
Epi	Epinephelus maculatus							1	0,01	54,00	1	0,00	18,00
Epi	Epinephelus merra	2	0,03	0,50							2	0,01	0,17
Epi	Plectropomus leopardus	3	0,04	68,34				7	0,09	378,00	10	0,04	148,78
Kyp	Kyphosus pacificus	1	0,01	10,72							1	0,00	3,57
Lab	Bodianus perditio	1	0,01	6,75							1	0,00	2,25
Lab	Cheilinus chlorourus	1	0,01	0,84							1	0,00	0,28
Lab	Coris aygula	1	0,01	0,84							1	0,00	0,28
Lab	Gomphosus varius	4	0,05	0,51							4	0,02	0,17
Lab	Hemigymnus melapterus	1	0,01	0,25							1	0,00	0,08
Lab	Labroides dimidiatus							3	0,04	0,09	3	0,01	0,03
Lab	Thalassoma hardwicke				4	0,05	0,51				4	0,02	0,17
Lab	Thalassoma lunare	4	0,05	0,51				2	0,03	0,36	6	0,03	0,29
Lab	Thalassoma lutescens	2	0,03	0,26							2	0,01	0,09
Let	Lethrinus atkinsoni							1	0,01	31,25	1	0,00	10,42
Let	Monotaxis grandoculis	1	0,01	2,00							1	0,00	0,67
Lut	Aprion virescens							1	0,01	22,78	1	0,00	7,59
Mul	Parupeneus barberinoides							1	0,01	0,43	1	0,00	0,14
Nem	Scolopsis bilineatus	7	0,09	1,75	5	0,06	2,16	7	0,09	3,02	19	0,08	2,31
Poc	Centropyge bicolor	2	0,03	0,11				3	0,04	0,09	5	0,02	0,07

¹³ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

	Equitabilité =	0,684											
	Indice de Shannon =	4,006											
	Biodiversité 38				17			21			58		
	Total	494	6,18	118,82	204	2,16	144,93	169	2,10	808,04	867	3,48	357,27
Sig	Siganus corallinus				2	0,03	0,50				2	0,01	0,17
Sco	Scomberomorus commerson				1	0,01	128,00	1	0,00	90,91	2	0,01	72,97
Sca	Scarus flavipectoralis	3	0,04	1,65							3	0,01	0,55
Sca	Chlorurus sordidus	4	0,05	1,00	3	0,04	0,75				7	0,03	0,58
Pom	Stegastes aureus	10	0,13	0,02							10	0,04	0,01
Pom	Pomacentrus moluccensis	5	0,06	0,16	5	0,06	0,08				10	0,04	0,08
Pom	Neoglyphidodon azysron	10	0,13	0,07				15	0,19	0,24	25	0,10	0,10
Pom	Dascyllus reticulatus	30	0,38	0,20	50	0,63	0,34	30	0,38	0,20	110	0,46	0,25
Pom	Chrysiptera rollandi	10	0,13	0,07	10	0,13	0,07	20	0,25	0,04	40	0,17	0,06
Pom	Chromis viridis	100	1,25	0,68							100	0,42	0,23
Pom	Chromis viridis				50	0,50	0,64				50	0,17	0,21
Pom	Chromis iomelas	100	1,25	1,60							100	0,42	0,53
Pom	Chromis fumea	100	1,25	1,60	50	0,36	0,89	50	0,63	0,80	200	0,74	1,10
Pom	Amphiprion melanopus	4	0,05	0,13							4	0,02	0,04
Pom	Abudefduf sexfasciatus	10	0,13	0,54							10	0,04	0,18
Poc	Centropyge tibicen							3	0,04	0,09	3	0,01	0,03
Poc	Centropyge flavissima	2	0,03	0,11							2	0,01	0,04
Poc	Centropyge bispinosa	2	0,03	0,11							2	0,01	0,04

Sur l'ensemble des transects de la station, 867 individus appartenant à 58 espèces différentes (tableau 108) ont pu être observés. Ils représentent une densité de 3.48 poissons/m² pour une biomasse de 357.27 g/m² (chiffre le plus important et sans aucune mesure avec les résultats des autres stations).

145 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 109).

Tableau n°109 : <u>Liste des espèces complémentaires (ST10)</u>

	Ilot Kié ST10											
Fam	Espèces	Fam	Espèces	Fam	Espèces							
Aca	Acanthurus albipectoralis	Epi	Plectropomus leopardus	Mon	Cantherhines dumerilii							
Aca	Acanthurus dussumieri	Hae	Plectorhinchus chaetodonoides	Mon	Oxymonacanthus longirostris							
Aca	Acanthurus lineatus	Hae	Plectorhinchus lessonii	Mul	Parupeneus barberinoides							
Aca	Acanthurus mata	Hae	Plectorhinchus picus	Nem	Pentapodus caninus							
Aca	Acanthurus pyroferus	Hol	Myripristis murdjan	Nem	Scolopsis bilineatus							
Aca	Acanthurus xanthopterus	Hol	Neoniphon sammara	Pin	Parapercis hexophtalma							
Aca	Ctenochaetus striatus	Kyp	Kyphosus pacificus	Ple	Assessor macneilli							
Aca	Naso brachycentron	Kyp	Kyphosus sydneyanus	Poc	Centropyge bicolor							
Aca	Naso caesius	Lab	Anampses femininus	Poc	Centropyge bispinosa							
Aca	Naso hexacanths	Lab	Anampses neoguinaicus	Poc	Centropyge flavissima							
Aca	Naso tonganus	Lab	Bodianus axillaris	Poc	Centropyge tibicen							
Aca	Naso tonganus	Lab	Bodianus perditio	Poc	Genicanthus watanabei							
Aca	Naso unicornis	Lab	Cheilinus chlorourus	Poc	Pomacanthus sexstriatus							
Aca	Zebrasoma scopas	Lab	Cheilinus trilobatus	Poc	Pygoplites diacanthus							
Aca	Zebrasoma veliferum	Lab	Cheilinus undulatus	Pom	Abudefduf sexfasciatus							
Ant	Pseudanthias bicolor	Lab	Choerodon jordani	Pom	Amblyglyphidodon curacao							
Ant	Pseudanthias pascalus	Lab	Coris aygula	Pom	Amblyglyphidodon orbicularis							
Ant	Pseudanthias squamipinnis	Lab	Coris batuensis	Pom	Amphiprion melanopus							

Apo	Archamia fucata	Lab	Coris dorsomacula	Pom	Chromis atripectoralis
Apo	Cheilodipterus macrodon	Lab	Gomphosus varius	Pom	Chromis atripes
Apo	Ostorhinchus angustatus	Lab	Halichoeres hortulanus	Pom	Chromis fumea
Apo	Ostorhinchus aureus	Lab	Halichoeres melanurus	Pom	Chromis iomelas
Aul	Aulostomus chinensis	Lab	Halichoeres ornatissimus	Pom	Chromis margaritifer
Bal	Odonus niger	Lab	Halichoeres prosopeion	Pom	Chromis viridis
Bal	Sufflamen fraenatus	Lab	Hemigymnus fasciatus	Pom	Chromis weberi
Ble	Meiacanthus atrodorsalis	Lab	Hemigymnus melapterus	Pom	Chrysiptera rex
Cae	Caesio teres	Lab	Labroides dimidiatus	Pom	Chrysiptera rollandi
Can	Canthigaster valentini	Lab	Labropsis australis	Pom	Dascyllus reticulatus
Car	Carangoides fulvoguttatus	Lab	Oxycheilinus celebicus	Pom	Neoglyphidodon azysron
Car	Caranx melampygus	Lab	Stethojulis strigiventer	Pom	Neoglyphidodon nigroris
Car	Gnathanodon speciosus	Lab	Thalassoma hardwicke	Pom	Neopomacentrus filamentosus
Cha	Chaetodon baronessa	Lab	Thalassoma lunare	Pom	Neopomacentrus violascens
Cha	Chaetodon lunulatus	Lab	Thalassoma lutescens	Pom	Plectroglyphidodon dickii
Cha	Chaetodon mertensii	Let	Gymnocranius euanus	Pom	plectroglyphidodon johnstonianus
Cha	Chaetodon ornatissimus	Let	Lethrinus atkinsoni	Pom	Plectroglyphidodon lacrymatus
Cha	Chaetodon pelewensis	Let	Monotaxis grandoculis	Pom	Pomacentrus chrysurus
Cha	Chaetodon plebeius	Let	Monotaxis heterodon	Pom	Pomacentrus moluccensis
Cha	Chaetodon speculum	Lut	Aprion virescens	Pom	Pomacentrus nagasakiensis
Cha	Chaetodon ulietensis	Lut	Lutjanus bohar	Pom	Pomacentrus spilotoceps
Cha	Heniochus varius	Lut	Lutjanus ehrenbergii	Pom	Stegastes aureus
Cir	Cirrhitichthys falco	Lut	Lutjanus fulviflamma	Sca	Chlorurus microrhinos
Cir	Paracirrhites forsteri	Lut	Lutjanus fulvus	Sca	Chlorurus sordidus
Epi	Cephalopholis argus	Lut	Lutjanus kasmira	Sca	Scarus altipinnis
Epi	Cephalopholis miniata	Lut	Lutjanus monostigma	Sca	Scarus flavipectoralis
Epi	Cephalopholis sonnerati	Lut	Lutjanus quinquelineatus	Sca	Scarus rubroviolaceus
Epi	Epinephelus fasciatus	Lut	Macolor niger	Sco	Scomberomorus commerson
Epi	Epinephelus maculatus	Mic	Gunnellichthys curiosus	Sig	Siganus corallinus
Epi	Epinephelus merra	Mon	Amanses scopas	Syn	Synodus variegatus
Epi	Plectropomus laevis				

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 110 et spécifiquement pour la campagne d'octobre 2011 sur la figure 59.

Tableau n°110 : Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST10)

Familles		Ilot Kié ST10										
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b					
Acanthuridae	3	6	3	4	8	8	5					
Anthiinidae	1	1	1	2	1	2	2					
Blenniidae			1	2	1		1					
Caesionidae	1	2	1		1	1	1					
Canthigasteridae			1	1	1	1						
Carangidae					2	1	1					
Chaetodontidae	6	4	8	13	9	8	8					
Epinephelinae	5	6	7	7	6	4	6					
Haemulidae	1					2						
Kyphosiidae					1	1	1					

Labridae	7	2	5	6	7	6	9
Lethrinidae	1	1	1		2	3	2
Lutjanidae	4		1	1	4	2	1
Mullidae			2	1	2	2	1
Nemipteridae	1	1	1	1	1	1	1
Pomacanthidae	4	4	3	4	3	3	4
Pomacentridae	8	6	8	6	9	6	11
Pseudochrominae						1	
Scaridae	3	4	5	3	8	4	2
Scombridae	1				1	1	1
Siganidae				1		1	1
Zanclidae						1	
Total espèces	46	37	49	52	67	59	58
Total familles	14	11	15	14	18	21	18

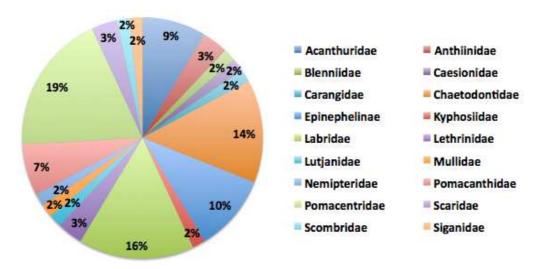


Figure n°59 : Richesse spécifique par famille de poissons (ST10)

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 111), sous l'angle de vue de ce critère les sept campagnes sont hautement similaires.

Tableau n°111 : <u>Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 2011</u>
(ST10)

Test χ2	ddl	Seuil de tolérance à 0,95
79.63	126	157.09

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 112 et la figure 60.

Tableau n°112 : <u>Synopsis des résultats 2011 et récapitulatif des années précédentes (ST10)</u>

Ilot Kié ST10		Liste DENV					Toutes espèces
		Transect TLV				Station	Station
		Nb. ind.	Nb. ind. Densité Biom. g/m ² Biodiv.1		Biodiv.2	Biodiv.3	
	Transect A	494	6,18	118,82	38		
2011 b	Transect B	204	2,16	144,93	17		
2011 0	Transect C	169	2,10	808,04	21		
	Moy. ABC	289,00	3,48	357,27	58	90	145
2011 a	Moy. ABC	461,67	5,47	1014,91	59	96	131
2010 b	Moy. ABC	384	3,46	576,45	67	78	113
2010 a	Moy. ABC	109,33	2,94	298,40	52	107	167
2009	Moy. ABC	120,00	8,30	291,10	49	92	116
2008	Moy. ABC	534,33	9,37	451,97	37	64	71
2007 ¹⁴	Moy. ABC	353,00	5,57	881,82	46	65	84

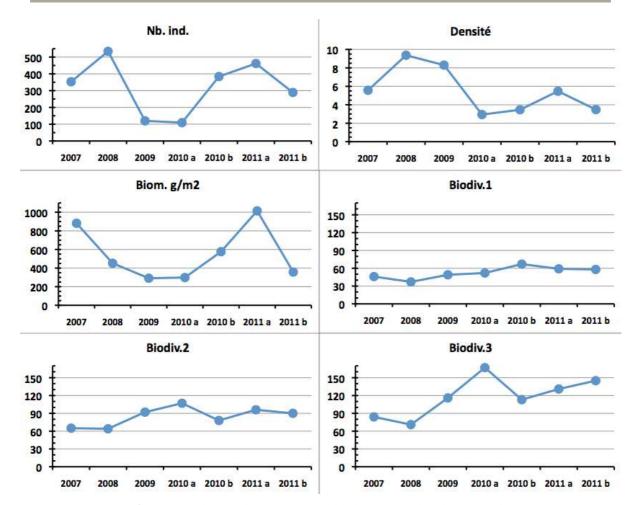


Figure n°60: Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST10)

¹⁴ Les données 2007 ont été reprises en éliminant les espèces qui ne figurent pas sur cette liste car le rapport 2007 ne tient pas compte de la liste DENV sur le TLV.

Rap 040-11_Ver01

4.11 Station 11 = Récif Toémo

Localisation géographique	A l'ouest de la passe du récif de Toémo, parallèlement au récif. Elle est repérable de la surface grâce à l'alignement d'un talweg sur la falaise du rivage avec le pic au sommet de la colline (photographie 18).
Nombre transects	3 transects.
Description transects	Ils ont été positionnés à 6, 11 et 20 mètres de profondeur, avec un alignement du nord-est vers le sud-ouest.
	Le transect A est positionné au sommet du récif: il se situe en amont de la pente et proche du bourrelet de débris coralliens. Un <i>Platygyra daedalea</i> d'un mètre de diamètre permet de repérer le début de ce transect. Le transect B est positionné sur la pente récifale. De nombreux débris et massifs coralliens ont dévalé la pente, détruisant une grande partie des communautés coralliennes. Cet événement a certainement comme origine le cyclone Erica (mars 2003). Toutefois de petites colonies coralliennes recolonisent ces débris. Le transect C se situe à la rupture entre le bas du tombant récifal et le début de la pente sédimentaire. C'est une zone d'accumulation de débris et de roches provenant du récif (dégradation des fortes houles et des cyclones).

Description générale

Le récif de Toémo est un récif intermédiaire de lagon, situé au nord-ouest du canal de la Havannah, à proximité de la grande passe de Goro. Sa position géographique et les conditions hydrodynamiques soutenues permettent d'assimiler ce récif à une pente externe.

Le sommet du récif est riche en coraux branchus et tabulaires (*Acropora*, *Pocillopora*, *Isopora* et *Seriatopora*). Un bourrelet composé de débris coralliens se démarque juste avant la cassure de la pente. Cette dernière est assez pentue (40°) et recouverte par endroits par de nombreux éboulis et des massifs coralliens retournés (coraux tabulaires et massifs). La majorité des débris coralliens finissent leur course en bas de pente.

La pente sédimentaire à une inclinaison douce, cette dernière est composée de sable coquillé et de débris coralliens qui deviennent de moins en moins abondants en fonction de l'éloignement du récif. Quelques grands massifs se répartissent à proximité du tombant récifal mais leur recouvrement en organismes benthiques est fragmentaire.

Caractéristiques principales

- \(\begin{align*} \text{Les conditions hydrodynamiques sont soutenues (courant, ressac, houle).} \end{align*}
- Dégradation des communautés benthiques sur l'ensemble de la station et plus particulièrement au transect A (cause à l'hydrodynamisme important en début d'année 2011).
- Accumulation des débris coralliens et de roches en bas de pente.
- Les scléractiniaires développent des morphologies robustes.
- La richesse spécifique des coraux est relativement élevée pour les niveaux bathymétriques supérieurs et plus importante au transect B que en A (dégradation en sommet de récif par les agents hydrodynamiques intenses).
- \$\text{Les ascidies sont variées et abondantes.}
- 🖔 Les spongiaires sont abondantes (*Cliona*) et variées surtout en bas de pente récifale.
- Les alcyonaires ont un recouvrement relativement élevé.
- 🔖 Présence de Gardineroseris planulata et Blastomussa wellsi (rare).
- Aucune holothurie ne colonise le haut du récif.

Variations entre mars 2011 et octobre 2011

- 🖔 Saisonnalité des algues rouges (recolonisation).
- Diminution du recouvrement des cyanobactéries.

- ☼ La mortalité corallienne s'est stabilisée.
- Recolonisation corallienne faible.
- Recolonisation et richesse spécifique importantes des ascidies, des astéries, des mollusques et échinides.
- 🖔 Blanchissement corallien faible.

Carte n°013: Localisation de la station 11 (Toémo)

Photo n°018 : <u>Position en surface par rapport à la côte (ST11)</u>

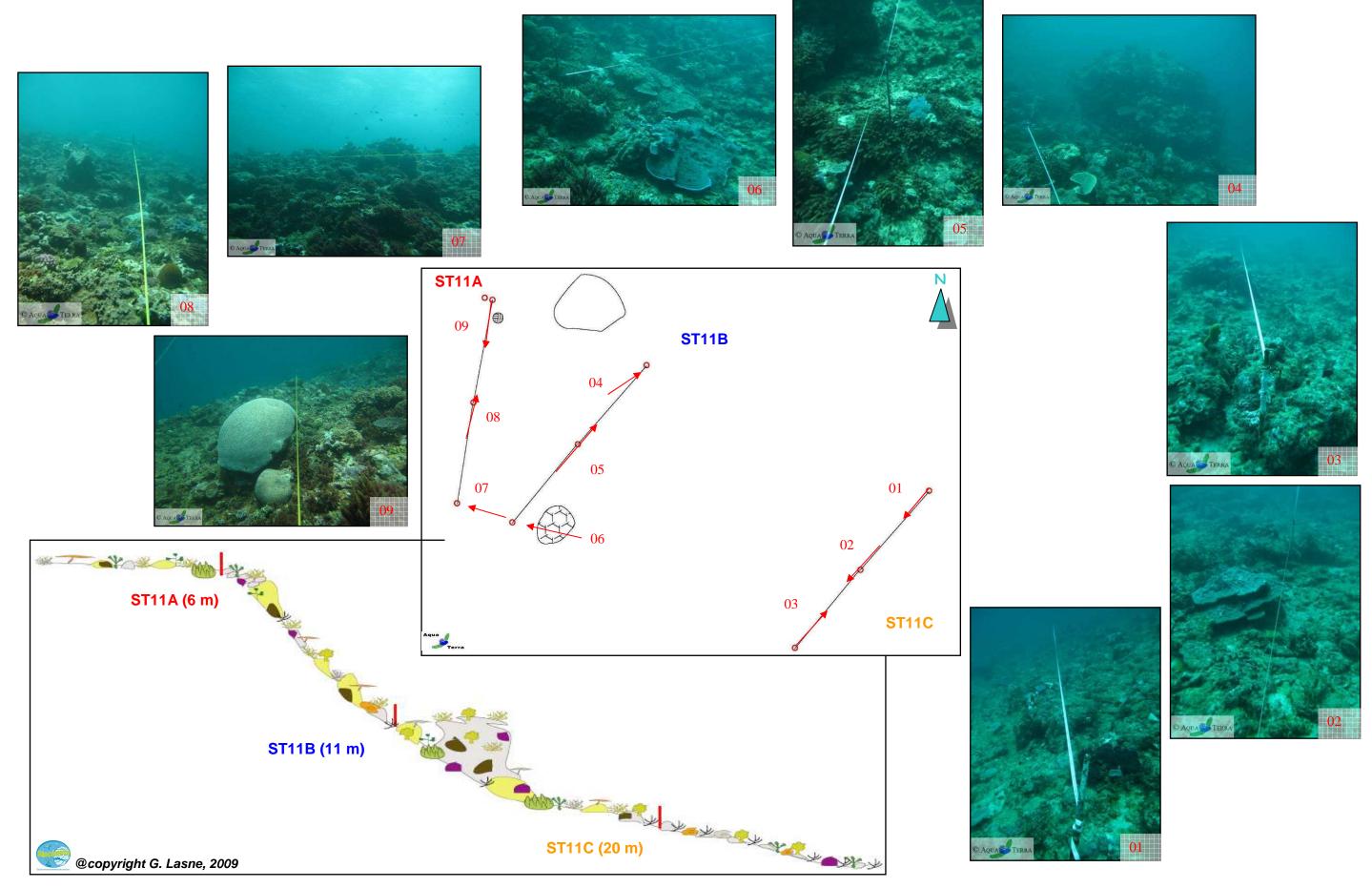


Figure n°61 : <u>Schéma structural, plan et photographies de la ST011</u>

4.11.1 Le substrat (ST11)

Le pourcentage de couverture de chaque composante est donné dans la figure 62 pour le transect A, dans la figure 63 pour le transect B et dans la figure 64 pour le transect C.

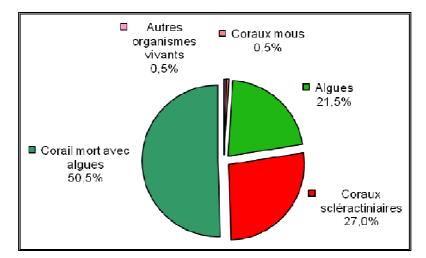


Figure n°62: Représentation du recouvrement (en %) du substrat pour ST11A

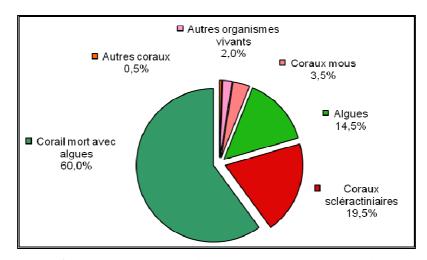


Figure n°63: Représentation du recouvrement (en %) du substrat pour ST11B

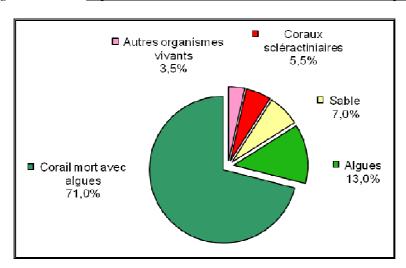


Figure n°64: Représentation du recouvrement (en %) du substrat pour ST03C

Cette station possède, les plus forts recouvrements biotiques : 100% pour les 2 transects supérieurs et 93% pour le transect C. Cela est dû essentiellement à la classe « coraux morts avec algues » qui est dominante. Mais les coraux scélractiniaires y sont particulièrement aussi bien représentés, surtout sur les 2 premiers transects (27% et 19.5%), résultats parmi les plus élevés de toutes les stations étudiées.

A noter : il ya toujours des cyanobactéries mais que sur 2 transects (0.5% en A et 1.5% en C).

4.11.2 Le benthos (ST11)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.11.2.1 Benthos Transect 11 A

4.11.2.1.1 Les Scléractiniaires (ST11A)

Les scléractiniaires dominent largement le haut du récif et les colonies sont de taille moyenne sauf la colonie de *Platygyra daedalea* qui atteint plus d'un mètre de diamètre. A cause des conditions hydrodynamiques soutenues, les scléractiniaires adoptent des formes qui épousent la dalle corallienne. Leur morphologie est majoritairement encroûtante (*Galaxea fascicularis*, *Porites* cf. *lichen, Montipora* cf. *verrucosa, Pavona varians, Favia speciosa, Favites* spp., *Echinopora lamellosa*), massive (*Porites lobata, Hydnophora microconos*), sub massive (*Isopora cuneata*) et branchue robuste (*Seriatopora calendrium, Acropora florida, A. monticulosa, Stylophora pistillata, Pocillopora damicornis* et *Isopora palifera*). Les espèces dominantes sont *Acropora* spp., *Seriatopora calendrium, Pocillopora damicornis, Isopora cuneata* et *Favites* spp.

Ce récif se distingue par l'abondance de petites colonies de *Galaxea fascicularis*, *Seriatopora calendrium*, *Acropora* tabulaire et *Porites lobata*.

Les évènements cycloniques du début d'année 2011 ont fortement endommagé les coraux scléractiniaires se répartissant sur le sommet du récif. Les dégradations ont été d'ordre mécanique dans un premier temps (débris coralliens, diminution d'abondance, absence d'espèce fixées). Le blanchissement corallien a fortement diminué depuis la dernière mission ainsi que le développement des cyanobactéries sur les colonies dégradées. Désormais le récif se restabilise, les colonies croissent et quelques espèces sont nouvellement recensées.

Ce niveau bathymétrique a une richesse spécifique corallienne de 78 espèces dont une espèce de *Millepora* (encroûtant). Les familles scléractiniaires (77 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (22 taxons), les Acroporidae (21 taxons), les Pocilloporidae (7 taxons), les Poritidae (6 taxons), les Agaraciidae (5 taxons), Les Merulinidae (5 taxons), les Musiidae (5 taxons) et les Siderastreidae (3 taxons).

Variation entre mars 2011 et octobre 2011					
Evolution de la richesse spécifique des coraux	Blanchissement corallien				
Présence nouvelle de 4 espèces coralliennes Cyphastrea serailia, Cyphastrea sp., Fungia sp., Leptastrea transversa	Augmentation de l'abondance pour 7 espèces : Coscinaraea columna, Galaxea fascicularis, Goniastrea australensis, Hydnophora exesa,	Rare: observé sur 4 espèces: <i>Acropora</i> 2sp. (branchu), <i>Acropora</i> 2sp.			
Mortalité : 2 espèces coralliennes <i>Platygyra</i> lamellina, <i>Millepora</i> branchu	Leptastrea inaequalis, Merulina ampliata, Montipora tuberculosa	(tabulaire)			

Tableau n°113 : Biodiversité et Abondance des coraux par famille (ST11A)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	21	5
Agaraciidae	5	2
Astrocoeniidae	0	0
Caryophyllidae	0	0
Dendrophyllidae	0	0
Faviidae	22	5
Fungiidae	1	1
Merulinidae	5	3
Mussidae	5	3
Oculinidae	2	5
Pectiniidae	0	0
Pocilloporidae	7	5
Poritidae	6	3
Siderastreidae	3	2
Total scléractiniaire	77	1
Non Scléractiniaire		
Milleporidae	1	1
Tubiporidae	0	0
Gorgone	0	0
Antipathaire	0	0
Total coraux	78	I

4.11.2.1.2 Les Macrophytes et les Invertébrés (ST11A)

Le recouvrement des macrophytes évolue beaucoup selon les missions (saisonnalité).

Pour cette dernière, les algues sont particulièrement bien developpées et représentées principalement par les algues rouges (*Asparagopsis taximormis*). Les espèces caractérisent un milieu balayé par les courants : les algues rouges (*Asparagopsis taxiformis, Trichogloea requienii* et *Amphiroa*) sont sur la dalle corallienne et les algues vertes (*Halimeda* sp., *Chlorodesmis fastigiata, caulerpa* et *Neomeris van bossea*) sont plutôt regroupées sur les amas de débris coralliens et les anfractuosité de la dalle (présence/absence saisonnière des algues vertes et rouges)

Le recouvrement des cyanobactéries est en diminution, elles se développent partiellement sur les colonies coralliennes mortes en place et les débris coralliens.

Les alcyonaires se développent à nouveau suite à une forte diminution du recouvrement lors des évènements dépressionnaire du début d'année 2011. Les genres *Lobophytum* et *Sinularia* se dispersent par plaques sur la dalle et les genres *Sarcophyton*, *Nephthya*, *Dendronephthya* et *Cladiella* sont de petite taille et se dispersent à travers les cavités du récif.

De même, les ascidies sont abondantes et leur richesse spécifique est très variée. Elles privilégient ce style de biotope balayé par les courants de marée. Les genres *Polycarpa*, *Clavelina* et *Didemnum*, restent abondants et se dispersent dans l'ensemble de la zone.

Les spongiaires (*Cliona jullienei*, *C. orientalis*) encroûtent la dalle corallienne mais leur développement n'est pas important. L'espèce *Dysidea herbacea* a un recouvrement qui évolue selon la saisonnalité et l'exposition aux agents hydrodynamiques.

Les mollusques ont également recolonisé les débris coralliens et les cavités de la dalle car 8 espèces ont été

nouvellement recensées.

Variation entre mars 2011 et octobre 2011				
Algues (variation saisonnière) Cyanobactéries		Invertébrés (mobilité et variation saisonnière)		
	Présence nouvelle de 2 genres d'alcyonaires Cladiella et Nephthea			
	_	Diminution de l'abondance de 1 genre d'alcyonaire <i>Lobophytum</i> qui avait subit de nombreuses dégradations lors de la dernière mission		
Présence nouvelle de <i>Trichogloea</i>		Augmentation de l'abondance de 1 genre d'alcyonaire Sarcophyton		
requienii, Caulerpa sp3, Neomeris van est en forte	développement	Présence nouvelle de 6 espèces d'ascidies Atrium robustum, Didemnum sp., Clavelina detorta, Polycarpa aurita, Polycarpa nigricans, Polycarpa sp.		
sp.	elles se dispersent sur les colonies mortes en place et les	elles se	elles se	Augmentation de l'abondance de <i>Didemnum molle</i> (variation saisonnière)
		Présence nouvelle de 5 espèces d'astéries Celerina heffernani, Fromia millepora, Gomophia sp., Nardoa gomophia, Neoferdina cumingi		
Augmentation du recouvrement de l'algue rouge	débris coralliens	Présence nouvelle de 9 espèces de mollusques Conus miles, Conus distans, Pteristernia reincarnata, Drupa sp., Pinctada margaritifera, Pedum spondyloidum, Astraea rhodostoma, Turbo sp., Vasum turbineus		
Asparagopsis armata		Diminution du recouvrement des spongiaires <i>Cliona orientalis</i> et <i>C. jullienei</i>		

Tableau n°114 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST11A)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	6	4
Algue brune	0	0
Algue rouge	3	5
Algue verte	4	5
Cyanobactéries	1	2
Anémone	1	1
Ascidie	9	5
Bryozoaire	1	2
Astérie	5	2
Crinoïde	1	2
Echinide	0	0
Holothurie	0	0
Hydraire	1	3
Mollusque	12	3
Spongiaire	5	4
Zoanthaire	1	2
TOTAL	50	1

4.11.2.2 Benthos Transect 11 B

4.11.2.2.1 Les Scléractiniaires (ST11B)

Lors des évènements dépressionaires du début d'année 2011, de nombreux débris et massifs coralliens ont dévalé la pente, détruisant de nombreuses colonies coralliennes et affaiblissant de nombreuses espèces (mortalité, diminution d'abondance, blanchissement). Cette partie du récif était en cours de recolonisation par les scléractiniaires depuis le cyclone Erica de 2003, mais les nouveaux épisodes cycloniques en début d'année 2011 ont dégradé cette zone par arrachage de quelques colonies coralliennes et l'effondrement des colonies de l'étage bathymétrique supérieur (accumulation de nouveaux débris).

Les scléractiniaires ont un recouvrement plus faible que pour le niveau bathymétrique supérieur, mais leur diversité est plus importante. Cependant, les colonies sont de plus grande taille et elles privilégient toujours les formes robustes : formes massives (*Symphyllia* cf. recta, Pavona minuta, Coscinareae exesa, Millepora sp.), formes sub massives (*Isopora cuneata*, Astreopora sp., Oulastrea crispa), formes encroûtantes (Pavona clavus, Montipora spp., Coeloseris mayeri, Hydnophora pilosa, Galaxea fascicularis), formes branchues robustes (Hydnophora rigida, Seriatopora calendrium et S. histrix) et les formes foliaires particulièrement bien représentées par les Dendrophyllidae (Turbinaria frondens, T. mesenterina, T. patula, T. peltata, T. stellulata et T. reniformis). Depuis la dernière mission quelques colonies dites fragiles n'ont pas été recensées (Euphyllia divisa et E. glabrescens) mais le reste des espèces ne présente pas de mortalité.

Tableau n°115 : <u>Biodiversité et Abondance des coraux par famille (ST11B)</u>

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	15	5
Agaraciidae	7	2
Astrocoeniidae	0	0
Caryophyllidae	0	0
Dendrophyllidae	7	3
Faviidae	25	4
Fungiidae	1	2
Merulinidae	6	4
Mussidae	7	3
Oculinidae	2	4
Pectiniidae	3	2
Pocilloporidae	8	4
Poritidae	4	2
Siderastreidae	5	2
Total scléractiniaire	90	1
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	1	1
Gorgone	0	0
Antipathaire	1	2
Total coraux	94	1

Ce niveau bathymétrique a une richesse spécifique corallienne élevée avec 94 espèces dont deux espèces de *Millepora* (encroûtant et sub massif), une espèce de gorgone et une espèces d'antipathaire. Les familles scléractiniaires (90 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae

(25 taxons), les Acroporidae (15 taxons), les Pocilloporidae (8 taxons), les Agariciidae (7 taxons), les Mussidae (7 taxons), les Dendrophyllidae (7 taxons), les Merulinidae (6 taxons), les Siderastreidae (5 taxons), les Poritidae (4 taxons) et les Pectiniidae (3 taxons).

Variation entre mars 2011 et octobre 2011					
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien			
Présence nouvelle 4 espèces Cyphastrea serailia, Favia maxima, Favites halicora, Tubastrea sp.	Augmentation d'abondance de 5 espèces Cyphastrea sp., Mycedium elephantotus, Pavona varians,	Rare: observé sur 3 espèces: <i>Acropora</i> 1sp. (branchu), <i>Acropora</i> 2sp.			
Mortalité : 2 espèces <i>Euphyllia divisa</i> et <i>E. glabrescens</i>	Platygyra sinensis, Scapophyllia cylindrica	(tabulaire)			

4.11.2.2.2 Les Macrophytes et les Invertébrés (ST11B)

Le recouvrement et la richesse spécifique des macrophytes évoluent selon les missions (saisonnalité). Pour cette dernière mission, les algues rouges sont particulièrement bien developpées et représentées principalement par *Asparagopsis taximormis* et dans une moindre mesure par *Trichogloea requienii*. Les algues vertes sont variées mais beaucoup plus dispersées comme l'espèce *Neomeris van bossea* qui se répartie par de nombreux petit thalles à travers l'ensemble des débris coralliens.

Les alcyonaires sont variés (6 genres dont *Lobophytum* en plaque est le plus abondant). Ils ont subi de nombreuses détériorations lors de la période cyclonique mais leur recouvrement tant à augmenter pour de nombreux genres.

Les ascidies sont abondantes et leur richesse spécifique est très variée. Elles privilégient ce style de biotope balayé par les courants de marée. Les genres *Atrium*, *Polycarpa*, *Clavelina* et *Didemnum* restent abondantes et se dispersent dans l'ensemble de la zone.

Les spongiaires ont un recouvrement plus important par rapport au transect supérieur, elles colonisent la dalle, les débris ou les coraux morts. Les espèces encroûtantes (*Cliona orientalis* dominant par rapport à *C. jullienei*) résistent mieux aux intempéries et de ce fait sont plus abondantes que *Clathria rugosa* et *Dysidea herbacea*.

Variation entre mars 2011 et octobre 2011					
Algues (variation saisonnière) Cyanobact		Invertébrés (mobilité et variation saisonnière)			
Présence nouvelle de 1 espèce d'algue rouge <i>Trichogloea requienii</i>	Leur	Augmentation de l'abondance de 3 genres d'alcyonaires Sarcophyton, Sinularia et Nephthea			
Augmentation de l'abondance 1 espèce d'algue rouge <i>Asparagopsis</i> taxiformis	développement a fortement diminué et elles se concentrent désormais sur les les débris	Présence nouvelle de 6 espèces d'ascidies Atrium robustum, Didemnum molle, Citorclinum laboutei, Clavelina detorta, Polycarpa aurita, Polycarpa nigricans			
		Présence nouvelle de 3 espèces d'astéries Celerina heffernani, Nardoa gomophia, Neoferdina cumingi			
Présence nouvelle de 1 espèce d'algue verte <i>Neomeris van bossea</i>	coralliens et quelques colonies tabulaires	Présence nouvelle de 7 espèces de mollusques <i>Hyotissa</i> hyotis, <i>Pteristernia reincarnata</i> , <i>Pinctada margaritifera</i> , <i>Pedum spondyloidum</i> , <i>Pedum spondyloidum</i> , <i>Astraea</i> rhodostoma, <i>Turbo</i> sp.			

Tableau n°116 : Biodiversité et Abondance des macrophytes et invertébrés (ST11B)

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	6	4
Algue brune	0	0
Algue rouge	4	5
Algue verte	4	4
Cyanobactéries	1	2
Anémone	1	3
Ascidie	9	5
Bryozoaire	2	2
Astérie	3	2
Crinoïde	2	2
Echinide	0	0
Holothurie	1	2
Hydraire	2	2
Mollusque	8	3
Spongiaire	5	4
Zoanthaire	1	2
TOTAL	49	1

Le recouvrement des cyanobactéries est en diminution, elles sont concentrées sur les débris coralliens et les coraux morts tabulaires.

Les mollusques ont également recolonisé les débris coralliens et les cavités de la dalle car 5 espèces ont été nouvellement recensées. A noter également, la présence de mollusques corallivores (*Druppela cornus*) agglutinés sur quelques colonies coralliennes vivantes.

4.11.2.3 Benthos Transect 11 C

4.11.2.3.1 Les Scléractiniaires (ST11C)

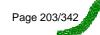
Le bas de pente est une zone d'accumulation de débris coralliens et de roches : les scléractiniaires sont dégradés mécaniquement par ce phénomène d'avalanche (augmentation des débris avec peu de blanchissement : une colonie de *Montipora* spp.). Cependant, quelques colonies robustes et libres résistent aux perturbations : colonies encroûtantes (*Pachyseris speciosa, Favia maxima, Favites abdita, Favites chinensis, Leptoria phrygia, Galaxea fascicularis, Montipora spp., Hydnophora pilosa*), massives (*Acanthastrea* sp., *Platygyra sinensis*) et de formes libres (*Sandalolitha robusta, Herpolitha limax, Polyphyllia talpina, Fungia* spp.).

Variation entre mars 2011 et octobre 2011					
Evolution de la richesse spécifique des coraux Variation d'abondance Blanchissement corall					
Présence nouvelle de 6 espèces <i>Coscinaraea columna, Favia</i> 2spp., <i>Pavona explanulata, P. varians, Tubastrea</i> sp.	Augmentation de l'abondance pour 1	A			
Mortalité : aucune, toutes les espèces ont été recensées	espèce : Gardineroseris	Aucun			
Mobilité : absence de 1 espèce corallienne <i>Herpolitha limax</i>	planulata				

Tableau n°117 : Biodiversité et Abondance des coraux par famille (ST11C)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	9	5
Agaraciidae	4	2
Astrocoeniidae	1	1
Caryophyllidae	0	0
Dendrophyllidae	3	2
Faviidae	13	3
Fungiidae	3	2
Merulinidae	4	2
Mussidae	6	3
Oculinidae	2	3
Pectiniidae	2	2
Pocilloporidae	6	3
Poritidae	3	3
Siderastreidae	1	1
Total scléractiniaire	57	/
Non Scléractiniaire		
Milleporidae	0	0
Tubiporidae	1	1
Gorgone	0	0
Antipathaire	1	2
Total coraux	59	/

A noter, la présence rare de *Blastomussa wellsi* (espèce rare) qui affectionne les milieux balayés par les courants de marée et soumis au ressac.


Ce niveau bathymétrique a une richesse spécifique corallienne de 59 espèces dont une espèce de gorgone et une espèce d'antipathaire. Les familles scléractiniaires (57 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant: les Faviidae (13 taxons), les Acroporidae (9 taxons), les Pocilloporidae (6 taxons), les Mussidae (6 taxons), les Agaraciidae (4 taxons), les Merulinidae (4 taxons), les Fungiidae (3 taxons), les Dendrophyllidae (3 taxons) et les Poritidae (3 taxons).

4.11.2.3.2 Les Macrophytes et les Invertébrés (ST11C)

Les macrophytes ont un recouvrement qui a augmenté depuis la derniere mission. Les algues rouges sont toujours dominantes (*Asparagopsis taxiformis* et *Trichogloea requienii* puis dans une moindre mesure *Plocamium sandvicense*). Les algues vertes sont beaucoup plus dispersées sur le récif (*Neomeris van bossea, Chlorodesmis fastigiata*) et l'algue brune (*Dictyota*) se répartie encore de façon fragmentaire à travers les débris coralliens.

Le recouvrement en cyanobactéries reste stable pour cette mission. Elles se développent de manière modérée sur les débris coralliens et quelques colonies coralliennes.

Les ascidies (12 espèces dont 4 nouvellement recensées) et les spongiaires (6 espèces) affectionnent les milieux où les coraux sont fragilisés. Les ascidies sont nombreuses et réparties de manière hétérogène sur la dalle et les débris coralliens. Les spongiaires ont une diversité et un recouvrement plus importants en bas de récif. Les éponges encroûtantes *Cliona orientalis* et *C. jullienei* se répartissent sur les massifs coralliens, les débris et sur quelques colonies coralliennes vivantes. Les espèces *Spheciospongia vagabunda* et l'éponge

noire indéterminée sont minoritaires.

Variation entre mars 2011 et octobre 2011								
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)						
Présence nouvelle de 1 espèce d'algue rouge <i>Trichogloea</i>	Leur	Présence nouvelle de 6 espèces d'ascidies <i>Atrium robustum</i> , <i>Clavelina detorta</i> , <i>Polycarpa aurita</i> , <i>Polycarpa nigricans</i> , <i>P</i> . 1sp., <i>P</i> . 2sp.						
requienii	développement est stable et elles	Présence nouvelle de 2 espèces d'astérie <i>Celerina heffernani</i> , Nardoa gomophia						
Présence nouvelle de 2 espèces	se répartissent de manière modérée sur les débris	Diminution d'abondance de 2 espèces d'holothuries <i>Holothuria</i> atra et <i>H. edulis</i>						
d'algues vertes Neomeris van bossea et Chlorodesmis	coralliens et	Présence nouvelle de 1 espèce d'échinide <i>Diadema setosum</i>						
fastigiata	quelques colonies coralliennes	Présence nouvelle de 2 espèces de mollusques <i>Hyotissa hyotis</i> , <i>Trochus niloticus</i>						
Augmentation d'abondance de Asparagopsis taxiformis		Augmentation de l'abondance de 1 espèce de spongiaire Spheciospongia vagabunda						

Tableau n°118 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST11C)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	4	3
Algue brune	1	2
Algue rouge	3	4
Algue verte	2	3
Cyanobactéries	1	2
Anémone	1	1
Ascidie	12	4
Bryozoaire	2	3
Astérie	2	2
Crinoïde	1	2
Echinide	1	2
Holothurie	2	2
Hydraire	1	2
Mollusque	3	2
Spongiaire	6	5
Zoanthaire	1	2
TOTAL	43	/

4.11.3 Les poissons (ST11)

La liste des espèces observées¹⁵ sur les transects et les résultats bruts sont fournis dans le tableau 119.

Tableau n°119 : <u>Données sur les poissons (ST11)</u>

	Récif Toémo ST11		Transe	ct		Transe	ct		Transe	ct		Station	
			A			В			C			Moyenne	
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom
Aca	Acanthurus blochii							3	0,04	11,72	3	0,01	3,91
Aca	Acanthurus dussumieri							2	0,03	7,81	2	0,01	2,60
Aca	Acanthurus lineatus	1	0,01	3,13							1	0,00	1,04
Aca	Acanthurus nigricans							4	0,05	8,00	4	0,02	2,67
Aca	Ctenochaetus striatus	2	0,02	0,69							2	0,01	0,23
Aca	Naso brachycentron	3	0,02	18,38							3	0,01	6,13
Aca	Naso lituratus	2	0,02	3,20							2	0,01	1,07
Ant	Pseudanthias bicolor				10	0,13	0,86				10	0,04	0,29
Can	Canthigaster valentini							1	0,01	0,05	1	0,00	0,02
Cha	Chaetodon auriga							1	0,01	0,25	1	0,00	0,08
Cha	Chaetodon citrinellus	3	0,04	0,26							3	0,01	0,09
Cha	Chaetodon ephippium	2	0,03	0,17							2	0,01	0,06
Cha	Chaetodon kleinii							5	0,06	0,27	5	0,02	0,09
Cha	Chaetodon lunula	2	0,03	0,11							2	0,01	0,04
Cha	Chaetodon melannotus	2	0,03	0,50							2	0,01	0,17
Cha	Chaetodon mertensii	3	0,04	0,38							3	0,01	0,13
Cha	Chaetodon pelewensis	2	0,03	0,86							2	0,01	0,29
Cha	Chaetodon plebeius	1	0,01	0,03							1	0,00	0,01
Cha	Chaetodon speculum	1	0,01	0,13							1	0,00	0,04
Cha	Chaetodon unimaculatus	1	0,01	0,13							1	0,00	0,04
Cha	Chaetodon vagabundus	1	0,01	0,18							1	0,00	0,06
Epi	Cephalopholis urodeta				2	0,03	0,67				2	0,01	0,22
Lab	Bodianus perditio							1	0,01	6,75	1	0,00	2,25
Lab	Cheilinus chlorourus							1	0,01	0,84	1	0,00	0,28
Lab	Gomphosus varius	2	0,03	4,00							2	0,01	1,33
Lab	Hemigymnus melapterus	1	0,01	1,23							1	0,00	0,41
Lab	Labroides dimidiatus	5	0,06	0,16				4	0,05	0,13	9	0,04	0,09
Lab	Stethojulis bandanensis				1	0,01	0,09	1	0,01	0,09	2	0,01	0,06
Lab	Thalassoma amblycephalum	10	0,13	0,86							10	0,04	0,29
Lab	Thalassoma lunare							10	0,13	0,31	10	0,04	0,10
Lab	Thalassoma lutescens	10	0,13	1,28							10	0,04	0,43
Lab	Thalassoma nigrofasciatum	15	0,19	1,92							15	0,06	0,64
Mul	Parupeneus barberinus	4	0,05	1,00							4	0,02	0,33
Mul	Parupeneus multifasciatus							4	0,05	1,73	4	0,02	0,58
Nem	Scolopsis bilineatus				5	0,06	2,16				5	0,02	0,72
Poc	Centropyge bicolor							2	0,03	0,11	2	0,01	0,04
Poc	Centropyge flavissima	2	0,03	0,11				2	0,03	0,11	4	0,02	0,07
Pom	Chromis iomelas				30	0,38	0,20				30	0,13	0,07
Pom	Chrysiptera rollandi				5	0,06	0,03				5	0,02	0,01
Pom	Chrysiptera taupou							8	0,10	0,13	8	0,03	0,04

¹⁵ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

Rap 040-11_Ver01

Pom	Dascyllus reticulatus				15	0,19	0,10				15	0,06	0,03
Pom	Pomacentrus moluccensis	6	0,08	0,19				5	0,06	0,08	11	0,05	0,09
Pom	Stegastes nigricans	2	0,03	0,17							2	0,01	0,06
Pse	Pictichromis coralensis							1	0,01	0,03	1	0,00	0,01
Sca	Chlorurus sordidus	8	0,08	1,60							8	0,03	0,53
Sca	Scarus chameleon	2	0,02	3,20				2	0,03	7,81	4	0,02	3,67
Sca	Scarus frenatus	1	0,01	3,13							1	0,00	1,04
Sca	Scarus rubroviolaceus	3	0,02	18,38							3	0,01	6,13
	Total	97	1,14	65,35	68	0,85	4,11	57	0,71	46,22	222	0,90	38,56
	Biodiversité		28			7			18			48	
	Indice de Shannon =	4,936	5										
	Equitabilité =	0,884											

Sur l'ensemble des transects de la station, 222 individus appartenant à 48 espèces différentes (tableau 119) ont pu être observés. Ils représentent une densité de 0.90 poisson/m² pour une biomasse de 38.56 g/m². 109 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 120).

Tableau n°120 : <u>Liste des espèces complémentaires (ST11)</u>

_		_	Récif Toémo ST11		
Fam	Espèces	Fam	Espèces	Fam	Espèces
Aca	Acanthurus blochii	Epi	Plectropomus leopardus	Ple	Assessor macneilli
Aca	Acanthurus dussumieri	Fis	Fistularia commersonii	Poc	Centropyge bicolor
Aca	Acanthurus lineatus	Hae	Plectorhinchus chaetodonoides	Poc	Centropyge flavissima
Aca	Acanthurus nigricans	Hae	Plectorhinchus lineatus	Poc	Centropyge tibicen
Aca	Ctenochaetus striatus	Hae	Plectorhinchus picus	Pom	Chromis amboinensis
Aca	Naso brachycentron	Hol	Myripristis hexagona	Pom	Chromis chrysura
Aca	Naso lituratus	Hol	Sargocentron ensiferum	Pom	Chromis fumea
Aca	Naso tonganus	Lab	Anampses femininus	Pom	Chromis iomelas
Aca	Naso unicornis	Lab	Anampses neoguinaicus	Pom	Chromis margaritifer
Aca	Zebrasoma scopas	Lab	Bodianus perditio	Pom	Chromis weberi
Ant	Pseudanthias bicolor	Lab	Cheilinus chlorourus	Pom	Chrysiptera biocellata
Aul	Aulostomus chinensis	Lab	Cirrhilabrus lineatus	Pom	Chrysiptera rex
Bal	Sufflamen fraenatus	Lab	Coris batuensis	Pom	Chrysiptera rollandi
Ble	Atrosalarias fuscus	Lab	Gomphosus varius	Pom	Chrysiptera taupou
Ble	Meiacanthus atrodorsalis	Lab	Halichoeres argus	Pom	Dascyllus reticulatus
Can	Canthigaster valentini	Lab	Halichoeres hortulanus	Pom	Neoglyphidodon dickii
Cha	Chaetodon auriga	Lab	Halichoeres prosopeion	Pom	Neoglyphidodon nigroris
Cha	Chaetodon citrinellus	Lab	Hemigymnus fasciatus	Pom	Neoglyphidodon polyacanthus
Cha	Chaetodon ephippium	Lab	Hemigymnus melapterus	Pom	Plectroglyphidodon johnstoniant
Cha	Chaetodon kleinii	Lab	Labroides dimidiatus	Pom	Plectroglyphidodon lacrymatus
Cha	Chaetodon lunula	Lab	Labropsis australis	Pom	Pomacentrus bankanensis
Cha	Chaetodon melannotus	Lab	Macropharyngodon meleagris	Pom	Pomacentrus moluccensis
Cha	Chaetodon mertensii	Lab	Macropharyngodon negrosensis	Pom	Pomacentrus philippinus
Cha	Chaetodon pelewensis	Lab	Oxycheilinus unifasciatus	Pom	Stegastes nigricans
Cha	Chaetodon plebeius	Lab	Stethojulis bandanensis	Pse	Pictichromis coralensis
Cha	Chaetodon speculum	Lab	Thalassoma amblycephalum	Sca	Cetoscarus ocellatus
Cha	Chaetodon unimaculatus	Lab	Thalassoma lunare	Sca	Chlorurus sordidus
Cha	Chaetodon vagabundus	Lab	Thalassoma lutescens	Sca	Scarus chameleon
Cha	Forcipiger longirostris	Lab	Thalassoma nigrofasciatum	Sca	Scarus flavipectoralis

Cha	Heniochus monoceros	Mic	Nemateleotris magnifica	Sca	Scarus frenatus
Cha	Heniochus varius	Mic	Ptereleotris evides	Sca	Scarus longipinnis
Cir	Cirrhitichthys falco	Mul	Parupeneus barberinus	Sca	Scarus niger
Cir	Paracirrhites arcatus	Mul	Parupeneus cyclostomus	Sca	Scarus rivulatus
Cir	Paracirrhites forsteri	Mul	Parupeneus multifasciatus	Sca	Scarus rubroviolaceus
Epi	Cephalopholis urodeta	Nem	Scolopsis bilineatus	Syn	Synodus variegatus
Epi	Cromileptes altivelis	Pin	Parapercis hexophtalma	Zan	Zanclus cornutus
Epi	Epinephelus malabaricus				

Le nombre d'espèces pour chaque famille depuis 2007 est donné dans le tableau 121 et spécifiquement pour la campagne d'octobre 2011 sur la figure 65.

Tableau n°121 : Nombre d'espèces par famille ichtyologique de 2007 à 2011 (ST11)

Familles			R	écif Toém	o ST11		
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
Acanthuridae	2	1	3	5	7	4	7
Anthiinidae	1	2		1		2	1
Blenniidae			1	1			
Caesionidae		1		1	1		
Canthigasteridae					1		1
Chaetodontidae	6	7	5	6	8	11	12
Epinephelinae	2	3	1	3	1	1	1
Labridae	4	9	4	7	9	9	10
Mullidae	1	2	1	2	2	3	2
Nemipteridae		1	1	1	1	1	1
Pomacanthidae	3	4	5	4	5	4	2
Pomacentridae	5	3	6	5	6	6	6
Pseudochromidae							1
Ptereleotridae	1	1					
Scaridae	2	5	3	5	2	8	4
Scombridae	1						
Siganidae				1			
Zanclidae	1		1		1	1	
Total espèces	29	39	31	43	44	51	48
Total familles	12	12	11	14	12	11	12

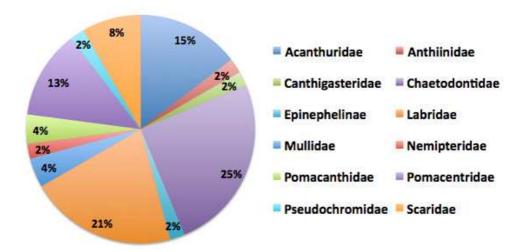


Figure n°65 : Richesse spécifique par famille de poissons (ST11)

Si la comparaison du nombre d'espèces par famille entre les années 2007 - 2011 est effectuée (cf. tableau 122), sous l'angle de vue de ce critère les sept campagnes sont hautement similaires.

Tableau n°122 : <u>Comparaison de l'évolution de la richesse spécifique par famille, 2007 à 2011</u> (ST11)

Test χ2	ddl	Seuil de tolérance à 0,95
70.43	102	128.39

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 123 et la figure 66.

Tableau n°123 : Synopsis des résultats 2011 et récapitulatif des années précédentes (ST11)

			Liste DENV							
Récif T	Toémo ST11	o ST11 Transect TLV Station				Station	Station			
		Nb. ind.	Densité	Biom. g/m ²	Biodiv.1	Biodiv.2	Biodiv.3			
	Transect A	97	1,14	65,35	28					
2011 b	Transect B	68	0,85	4,11	7					
2011 0	Transect C	57	0,71	46,22	18					
	Moy. ABC	74	0,90	38,56	48	67	109			
2011 a	Moy. ABC	129,33	2,50	188,39	51	79	116			
2010 b	Moy. ABC	180	1,59	75,10	44	61	88			
2010 a	Moy. ABC	93,33	1,86	75,42	43	65	95			
2009	Moy. ABC	74,67	3,12	79,63	31	50	74			
2008	Moy. ABC	111,33	1,90	61,85	39	57	71			
2007 ¹⁶	Moy. ABC	123,67	1,64	174,47	29	37	53			

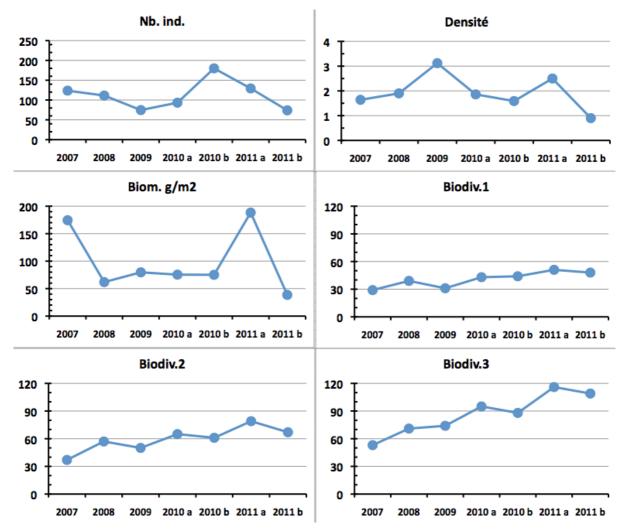


Figure n°66 : <u>Evolution des paramètres biologiques ichtyologiques depuis 2007 (ST11)</u>

¹⁶ Les données 2007 ont été reprises en éliminant les espèces qui ne figurent pas sur cette liste car le rapport 2007 ne tient pas compte de la liste DENV sur le TLV.

Rap 040-11_Ver01

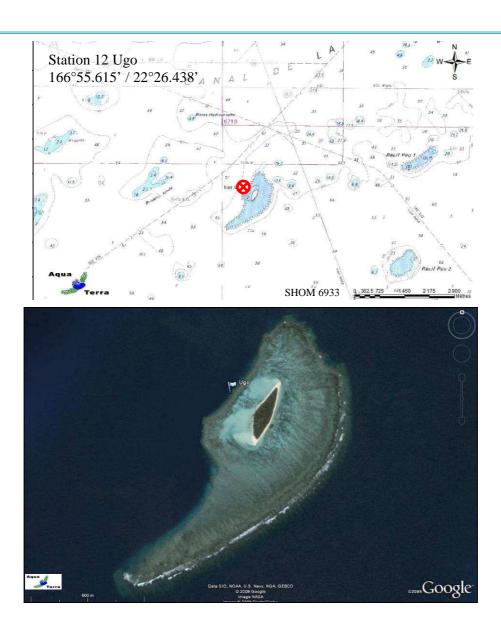
4.12 Station 12 = Ilot Ugo

Localisation géographique	Partie nord de la façade ouest du récif frangeant sous le vent de l'îlot Ugo (photographie 19).
Nombre transects	2 transects.
Description transects	Ils ont été positionnés à 5 et 13 mètres de profondeur, perpendiculairement à la pente du récif frangeant dans un alignement du nord-est vers le sudouest.
	Il n'y a que 2 transects car sous 14 m de profondeur, les constructions coralliennes deviennent de plus en plus restreintes (gros blocs rocheux et débris coralliens qui ont dévalés la pente). Puis, vers 17 m de profondeur, la pente sédimentaire, composée de sable et inclinée à 35°, est colonisée principalement par une grande variété d'holothuries (<i>Holothuria fuscopunctata</i> , <i>Bohadschia argus</i> , <i>Stichopus stichopus</i> , <i>S. variegatus</i> , <i>Thelenota ananas</i>). Ces dernières s'éparpillent à travers le substrat meuble et les quelques débris. Un transect à 20 m n'aurait donc pas été pertinent en termes de suivi (recouvrement biotique très faible et recouvrement corallien proche de nul). Le transect A a été installé dans le haut du tombant récifal. Un grand couloir d'avalanche traverse la pente récifale jusqu'au pied du 2ème transect. Le niveau bathymétrique du transect B se caractérise par un recouvrement important de débris, de blocs coralliens sur du sable coquillé, avec un couloir d'effondrement à la fin du transect. Un massif corallien du genre <i>Goniopora</i> de taille pluri métrique s'étale sur les débris coralliens. Les autres colonies de madrépores sont de taille décimétrique et sont dispersées de manière éparse.

Description générale

Ce récif est soumis aux courants de marées et subi sur sa façade sud-est l'assaut des vagues dues aux alizés, alors que sa façade nord et nord-ouest est plus protégée.

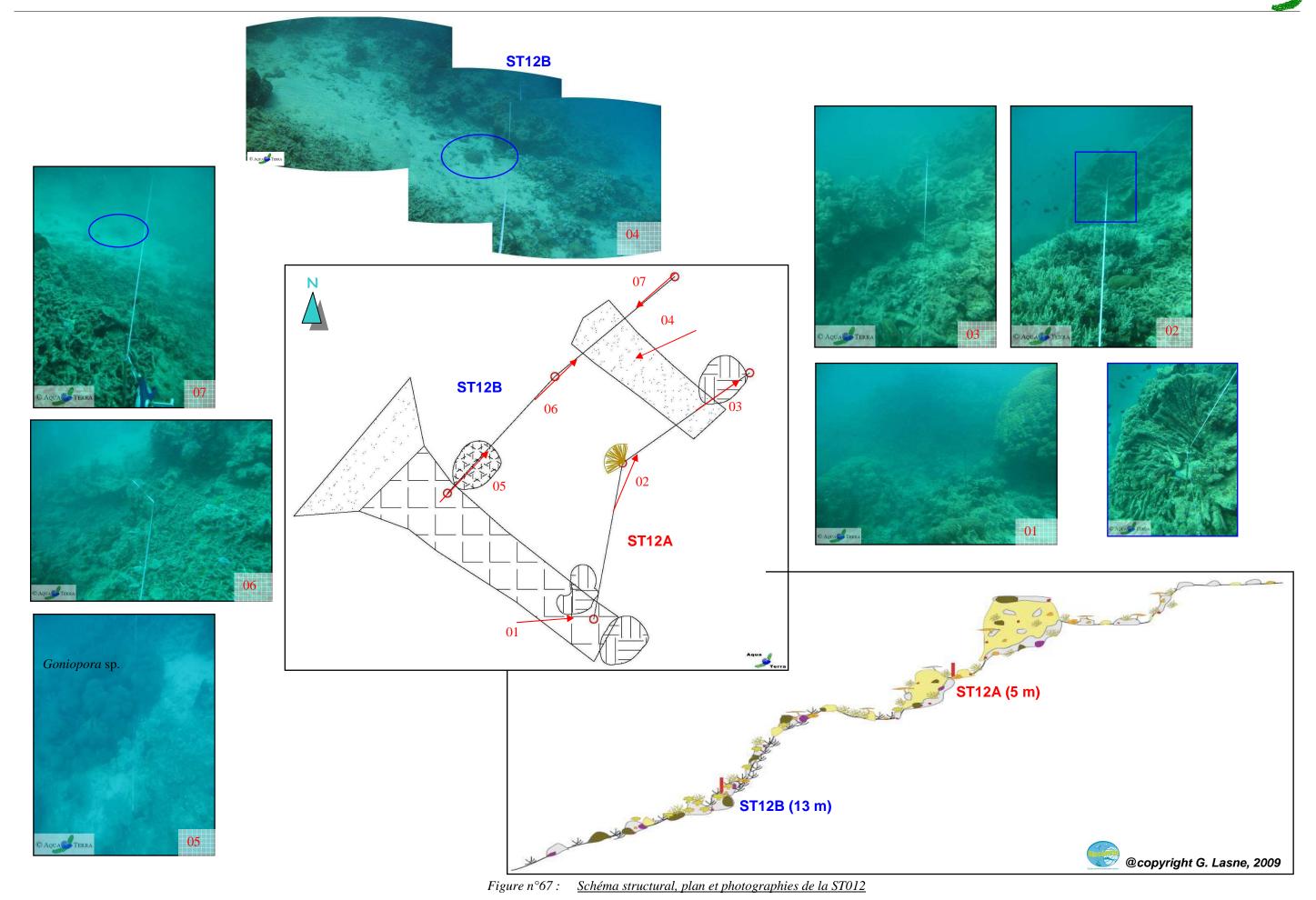
La station est positionnée sur le front récifal du récif frangeant. Le platier récifal est large, arasé et peu colonisé par les coraux.


Le haut du tombant récifal est structuré en marches d'escalier délimitées par de grandes colonies de *Porites* sp.. Ce niveau bathymétrique est bien colonisé par les scléractiniaire de tailles hétérogènes (décimétrique à pluri métrique). Les massifs coralliens de taille métrique et de forme massive se développent particulièrement en haut de récif jusqu'à mi pente, laissant la place au fur et à mesure aux coraux branchus. Cependant, la structure récifale présente des couloirs d'effondrement avec par place de grandes accumulations de débris coralliens et de roches. Ces derniers sont recouverts principalement par des corallines. De petites colonies coralliennes s'édifient et les *Cliona* encroûtent quelques coraux massifs.

Caractéristiques principales

- Croissance de grandes colonies de Poritidae (*Porites* sp., *Alveopora* sp et *Goniopora* sp.), Acroporidae (*Acropora* spp.) et Faviidae (*Lobophyllia corymbosa*).
- Mortalité corallienne et nombreux débris (couloir d'effondrement).
- Massifs de *Goniopora* sp. en bonne santé.
- Richesse spécifique des alcyonaires très faible mais recouvrement important de *Sarcophyton*.
- Les spongiaires (*Cliona jullienei* et *C. orientalis*) sont relativement bien développées et colonisent les massifs coralliens vivants et les blocs coralliens.
- ⇔ Pas d'*Acanthaster planci* sur la station.

Variations entre mars 2011 et octobre 2011


- 🔖 Stabilisation des communautés benthiques.
- ♥ Faible mortalité des coraux (1 espèce au transect A).
- Recouvrement algal très faible.
- 🖔 Diversité des ascidies faible.
- Absence des astéries et des holothuries (sur les 2 transects)
- 🖔 Régression des cyanobactéries (*Phormidium* sp.) sur l'ensemble de la station.
- Blanchissement corallien faible au transect A (4 espèces) et modéré en B (6 espèces).

Carte n°014: Localisation de la station 12 (Ilot Ugo)

Photo n°019 : <u>Position en surface par rapport à la côte (ST12)</u>

4.12.1 Le substrat (ST12)

Le pourcentage de couverture de chaque composante est donné dans la figure 68 pour le transect A et dans la figure 69 pour le transect B.

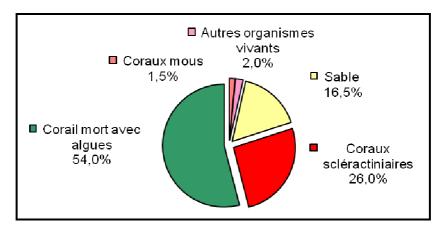


Figure n°68: Représentation du recouvrement (en %) du substrat pour ST12A

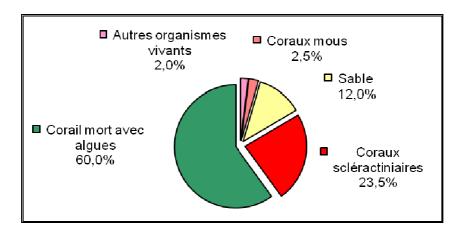


Figure n°69: Représentation du recouvrement (en %) du substrat pour ST12B

Les deux transects sont riches en coraux scléractiniaires vivants, avec 26% et 23.5% respectivement chacun (avec une diminution pour le transect inférieur qui ramène le recouvrement en coraux au niveau de la mission de septembre 2010).

Le reste du substrat majoritaire fait une large part aux coraux morts recouverts d'algues (54% et 60%). De ce fait, le recouvrement est surtout biotique avec plus de 80% pour chaque transect (respectivement 83.5% et 88%). Les 2 transects sont globalement stables.

A noter : il n'y a plus de cynaobactéries sur le transect A.

4.12.2 Le benthos (ST12)

La liste des taxons cibles (cf. § 3.2.3) échantillonnés sur cette station et la liste complète des résultats bruts sont données en annexe 05.

4.12.2.1 Benthos Transect 12 A

4.12.2.1.1 Les Scléractiniaires (ST12A)

En terme de recouvrement les familles scléractiniaires Poritidae, Acroporidae et Mussiidae sont particulièrement bien développées, elles forment des grandes colonies pluri métriques. Les colonies de Poritidae adoptent de grandes formes massives (*Porites* spp.), ainsi que des massifs de colonies avec de longs polypes (*Goniopora* sp., *Alveopora* sp.). Les Acroporidae sont plutôt de forme branchue et s'édifient en grands buissons (*Acropora* spp.) et en petites plaques de forme encroûtante (*Montipora* spp.).

Entre ces grands massifs le substrat est composé de nombreux débris et de sable ; les coraux libres (Fungiidae) affectionnent particulièrement ce substrat détritique et se concentrent par dizaine, ainsi, ce transect regroupe 11 espèces de la famille des Fungiidae (abondance des coraux libre par rapport aux autres stations).

Les autres colonies coralliennes sont de taille décimétrique et s'édifient sur la dalle ou colonisent les débris (Cyphastrea japonica, C. serailia, Favia spp., Favites spp., Merulina ampliata, Mycedium elephantotus, Stylocoeniella guentheri, Pavona decussata, Pectinia lactuca, P. paeonia, Turbinaria peltata, T. reniformis).

Tableau n°124 : Biodiversité et Abondance des coraux par famille (ST12A)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	17	5
Agaraciidae	7	3
Astrocoeniidae	1	1
Caryophyllidae	1	1
Dendrophyllidae	4	2
Faviidae	20	4
Fungiidae	11	4
Merulinidae	5	2
Mussidae	7	4
Oculinidae	1	2
Pectiniidae	3	2
Pocilloporidae	5	2
Poritidae	4	5
Siderastreidae	3	2
Total scléractiniaire	89	/
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	0	0
Gorgone	0	0
Antipathaire	0	0
Total coraux	91	/

La mortalité corallienne est importante au regard des nombreux débris coralliens, des gros blocs coralliens qui ont dévalé la pente, des grosses patates de *Porites* (encore à nu ou bien envahies par les éponges encroûtantes), d'une grande colonie de *Lobophyllia* disloquées mais encore en place.

Les dégradations sont de plusieurs types : dans le premier cas les conditions hydrodynamiques soutenues entraînent une casse importante des colonies branchues et déstabilisent des patates en haut de récif qui dévalent par la suite la pente abrupte cassant d'autres colonies sur leur passage. Puis, d'autre part on trouve du blanchissement corallien qui provient d'une variation plus ou moins importante des paramètres environnementaux ou de prédation.

Ce niveau bathymétrique est colonisé par 91 espèces coralliennes, dont deux espèces de *Millepora* (branchu et encroûtant). Les familles scléractiniaires (89 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (20 taxons), les Acroporidae (17 taxons), les Fungiidae (11 taxons), les Agariciidae (7 taxons), les Mussidae (7 taxons), les Pocilloporidae (5 taxons), les Merulinidae (5 taxons), les Poritidae (4 taxons), les Dendrophylliadae (4 taxons), les Pectiniidae (3 taxons) et les Siderastreidae (3 taxons).

Variation entre mars 2011 et octobre 2011					
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien			
Présence nouvelle de 3 espèces coralliennes Barabattoia amicorum, Hydnophora grandis, Physogyra lichtensteini	Augmentation d'abondance pour 2 espèces Merulina scabricula, Montastrea curta	Faible: observé sur 4 espèces: Acropora 3spp. (branchu), Seriatopora histrix. Ces colonies étaient déjà perturbées lors de la dernière mission			
Mortalité : 1 espèce : Pectinia paeonia	Mobilité : diminution d'abondance de 2 espèces <i>Fungia</i> 2spp.				

4.12.2.1.2 Les Macrophytes et les Invertébrés (ST12A)

Les macrophytes présentent un recouvrement très faible : seules les algues vertes du genre *Halimeda* et l'algue brune (*Turbinaria ornata*) se développent par thalles à travers les débris. Ces algues étaient déjà minoritaires pour la dernière mission.

Les spongiaires se développent surtout par encroûtement sur la dalle et les blocs coralliens de *Porites* et quelques débris coralliens ; le recouvrement du genre *Cliona* tant à diminuer mais l'espèce *Cliona orientalis* reste prédominante.

La richesse spécifique des alcyonaires est faible. Ils sont représentés par les genres *Sinularia* et *Sarcophyton*. Ce dernier est très abondant, de petite taille et fixé préférentiellement sur les débris coralliens.

Les mollusques recolonisent la zone, lors de la mission précédente leur richesse specifique avait diminuée à cause des perturbations du début d'année 2011 (effondrement de débris).

Aucune espèce d'astérie, ni d'holothurie n'a été recensée pour ce niveau bathymétrique.

Variation entre mars 2011 et octobre 2011				
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)		
était modéré lo	développement	Présence nouvelle de 1 genre d'alcyonaire Dendronephthya		
		Diminution d'abondance de 1 espèce d'alcyonaire Sarcophyton		
		Présence nouvelle de 1 espèce d'ascidie Polycarpa cryptocarpa		
		Absence de 1 espèce d'ascidie (Polycarpa clavata)		
	était modéré lors de la dernière	Diminution d'abondance des crinoïdes		
Diminution d'abondance de Turbinaria ornata		Présence nouvelle de 4 espèces de mollusques <i>Conus</i> sp., <i>Pedum spondyloideum, Spondylus</i> sp., <i>Turbo</i> sp.		
	Diminution d'abondance de 2 espèces de spongiaires <i>Cliona</i> orientalis et <i>C. jullienei</i>			

Tableau n°125 : Biodiversité et Abondance des macrophytes et invertébrés (ST12A)

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	3	3
Algue brune	1	1
Algue rouge	0	0
Algue verte	2	2
Cyanobactéries	0	0
Anémone	0	0
Ascidie	3	2
Bryozoaire	0	0
Astérie	0	0
Crinoïde	1	2
Echinide	1	2
Holothurie	0	0
Hydraire	0	0
Mollusque	6	5
Spongiaire	5	5
Zoanthaire	1	2
TOTAL	23	1

4.12.2.2 Benthos Transect 12 B

4.12.2.2.1 Les Scléractiniaires (ST12B)

Deux grands massifs (*Acropora* sp. et *Goniopora* sp.) représentent une part importante du recouvrement corallien. Les autres espèces coralliennes adoptent des morphologies diverses mais sont généralement de petite taille (*Montipora* spp., *Pachyseris speciosa, Pavona varians, Stylocoeniella armata, S. guentheri, Echinopora lamellosa, Favia* spp., *Favites* spp, *Turbinaria heronensis, T. reniformis, Porites cylindrica, Hydnophora microconos, Oxypora* sp.).

A noter la présence rare d'une colonie de *Blastomussa wellsi*.

Cette partie de pente récifale est très détériorée (observation sur plusieurs missions) : les colonies massives et branchues situées au sommet du récif sont venues dévaler la pente détruisant les coraux sur leur passage. L'accumulation de débris est très importante.

Ce niveau bathymétrique est colonisé par 72 espèces coralliennes dont deux espèces de *Millepora* (branchu et sub massif), une espèce d'antipathaire et une espèce de gorgone. Les familles scléractiniaires (68 espèces) dont les taxons sont les plus nombreux sont par ordre décroissant : les Faviidae (17 taxons), les Acroporidae (14 taxons), les Fungiidae (8 taxons), les Poritidae (5 taxons), les Agaraciidae (5 taxons), les Dendrophyllidae (4 taxons) et les Mussidae (4 taxons).

Variation entre mars 2011 et octobre 2011				
Evolution de la richesse spécifique des coraux	Variation d'abondance	Blanchissement corallien		
Présence nouvelle de 1 espèce corallienne <i>Euphyllia ancora</i>	Mobilité: diminution d'abondance pour 3 espèces <i>Cycloseris</i> sp., <i>Fungia</i> 2 spp.	Modéré: observé sur 6 espèces: <i>Acropora</i> 3spp. (branchu), <i>Acropora</i> 2spp. (tabulaire), <i>Galaxea fascicularis</i> . De nombreuses colonies coralliennes		
Mortalité : toutes les espèces ont été recensées		ont réintégré leurs zooxanthelles car 11 espèces étaient perturbées lors de la mission précédente		

Tableau n°126 : Biodiversité et Abondance des coraux par famille (ST12B)

Famille	Nombre de taxa	Abondance (1 à 5)
Scléractiniaire		
Acroporidae	14	5
Agaraciidae	5	3
Astrocoeniidae	2	2
Caryophyllidae	1	1
Dendrophyllidae	4	2
Faviidae	17	5
Fungiidae	8	4
Merulinidae	2	2
Mussidae	4	4
Oculinidae	1	2
Pectiniidae	2	2
Pocilloporidae	2	2
Poritidae	5	5
Siderastreidae	1	2
Total scléractiniaire	68	1
Non Scléractiniaire		
Milleporidae	2	2
Tubiporidae	1	2
Gorgone	0	0
Antipathaire	1	2
Total coraux	72	/

4.12.2.2.2 Les Macrophytes et les Invertébrés (ST12B)

Lors de la mission précédente les macrophytes représentaient un recouvrement très faible et seules subsistaient les algues vertes des genres *Halimeda* et *Chlorodesmis*. Désormais, on constate l'absence des macrophytes (algues brunes, rouges et vertes) au sein du couloir. Cependant quelques *Chlorodesmis* et *Halimeda* ont été observées en périphérie de la station.

Les alcyonaires sont principalement représentés par le genre *Sarcophyton*. Ce genre de petite taille a un recouvrement très important : il colonise préférentiellement les débris coralliens. Trois autres genres sont présents avec une faible abondance (*Nephthea*, *Dendronephthya* et *Sinularia*).

Les échinodermes (astéries, échinides et holothuries) sont absents des couloirs mais ont également été observés en périphérie de la station.

Les spongiaires se développent par encroûtement sur la dalle et les blocs coralliens (*Cliona jullienei*, *C. orientalis* sont bien développées).

Deux espèces de zoanthaires colonisent la dalle (Palythoa sp. et une espèce indéterminée).

Variation entre mars 2011 et octobre 2011								
Algues (variation saisonnière)	Cyanobactéries	Invertébrés (mobilité et variation saisonnière)						
_	•	Absence de 1 genre d'alcyonaire Cladiella						
Absence de 2 espèces d'algues	Leur développement est rare et a été	Absence de 1 espèce d'échinide <i>Diadema setosum</i> (variation bathymétrique)						
vertes Halimeda sp., et Chlorodesmis fastigiata	observé seulement sur un	Présence nouvelle de 2 espèces de mollusques <i>Conus milliaris</i> , <i>Drupa</i> sp.						
	débris corallien	Diminution d'abondance de 1 espèce de mollusque <i>Tridacna</i> maxima						

Tableau n°127 : <u>Biodiversité et Abondance des macrophytes et invertébrés (ST12B)</u>

Groupe Macrophytes et Invertébrés	Nombre de taxa	Abondance (1 à 5)
Alcyonaire	4	5
Algue brune	0	0
Algue rouge	0	0
Algue verte	0	0
Cyanobactéries	1	1
Anémone	0	0
Ascidie	3	3
Bryozoaire	0	0
Astérie	0	0
Crinoïde	1	2
Echinide	0	0
Holothurie	0	0
Hydraire	0	0
Mollusque	7	3
Spongiaire	5	5
Zoanthaire	2	2
TOTAL	23	/

4.12.3 Les poissons (ST12)

La liste des espèces observées¹⁷ sur les transects et les résultats bruts sont fournis dans le tableau 128.

Tableau n°128 : <u>Données sur les poissons (ST12)</u>

	Ugo ST12		Transe	ct		Transe	ct	Station		
			A			В		Total	Moy	enne
Fam	Espèces	Nb	Dens	Biom	Nb	Dens	Biom	Nb	Dens	Biom
Aca	Ctenochaetus striatus				1	0,01	0,25	1	0,01	0,13
Aca	Zebrasoma scopas	1	0,01	0,25	1	0,01	0,13	2	0,01	0,19
Ble	Ecsenius bicolor	1	0,01	0,03	1	0,01	0,01	2	0,01	0,02
Ble	Meiacanthus atrodorsalis				1	0,01	0,01	1	0,01	0,00
Can	Canthigaster valentini	1	0,01	0,02				1	0,01	0,01
Cha	Chaetodon baronessa	1	0,01	0,25				1	0,01	0,13
Cha	Chaetodon lunulatus	2	0,03	0,17	2	0,03	0,26	4	0,03	0,21
Epi	Cephalopholis boenak				1	0,01	0,09	1	0,01	0,04
Epi	Epinephelus ongus	1	0,01	0,84	1	0,01	1,23	2	0,01	1,04
Lab	Gomphosus varius				2	0,03	0,06	2	0,01	0,03
Lab	Hemigymnus melapterus	1	0,01	0,84				1	0,01	0,42
Lab	Thalassoma lunare	4	0,05	0,13				4	0,03	0,06
Mul	Parupeneus barberinoides	2	0,03	0,50				2	0,01	0,25
Nem	Scolopsis bilineatus	6	0,08	2,59	5	0,06	4,22	11	0,07	3,41
Poc	Centropyge bicolor	2	0,03	0,06				2	0,01	0,03
Poc	Centropyge tibicen	2	0,03	0,03	2	0,03	0,03	4	0,03	0,03
Poc	Pygoplites diacanthus	1	0,01	0,55				1	0,01	0,27
Pom	Abudefduf sexfasciatus	8	0,10	0,69				8	0,05	0,34
Pom	Abudefduf whitleyi	6	0,08	0,51	5	0,06	0,27	11	0,07	0,39
Pom	Chrysiptera rollandi	4	0,05	0,06				4	0,03	0,03
Pom	Chrysiptera taupou	5	0,06	0,08	5	0,06	0,08	10	0,06	0,08
Pom	Dascyllus reticulatus				10	0,13	0,16	10	0,06	0,08
Pom	Pomacentrus moluccensis	3	0,04	0,09	2	0,03	0,03	5	0,03	0,07
Sca	Chlorurus sordidus	4	0,05	2,74				4	0,03	1,37
Sca	Scarus flavipectoralis	2	0,03	10,98				2	0,01	5,49
	Total	57	0,71	21,43	39	0,49	6,82	96	0,60	14,12
	Biodiversité		20			14			25	
	Indice de Shannon =	4,16	7							
	Equitabilité =	0,89	7							

Sur l'ensemble des transects de la station, 96 individus appartenant à 30 espèces différentes (tableau 128) ont pu être observés. Ils représentent une densité de 0.60 poisson/m² pour une biomasse de 14.12 g/m². 80 espèces supplémentaires (e.g. hors des transects et hors liste restreinte [en bleu]) ont été observées sur la station (cf. tableau 129).

 $^{^{\}rm 17}$ Données par rapport à la liste restreinte du cahier des charges, cf. annexe 01.

_

Tableau n°129 : <u>Liste des espèces complémentaires (ST12)</u>

	Ugo ST12								
Fam	Espèces	Fam	Espèces	Fam	Espèces				
Aca	Acanthurus blochii	Hae	Plectorhinchus flavomaculatus	Poc	Centropyge tibicen				
Aca	Ctenochaetus striatus	Hae	Plectorhinchus lessonii	Poc	Pygoplites diacanthus				
Aca	Naso unicornis	Lab	Anampses femininus	Pom	Abudefduf sexfasciatus				
Aca	Zebrasoma scopas	Lab	Anampses neoguinaicus	Pom	Abudefduf whitleyi				
Aca	Zebrasoma veliferum	Lab	Bodianus axillaris	Pom	Amblyglyphidodon orbicularis				
Apo	Apogon doederleini	Lab	Bodianus mesothorax	Pom	Chromis chrysura				
Apo	Apogon fuscus	Lab	Cheilinus chlorourus	Pom	Chromis margaritifer				
Apo	Apogon sp	Lab	Cheilinus fasciatus	Pom	Chromis viridis				
Apo	Archamia leai	Lab	Cheilinus trilobatus	Pom	Chrysiptera rex				
Apo	Cheilodipterus macrodon	Lab	Choerodon fasciatus	Pom	Chrysiptera rollandi				
Apo	Ostorhinchus aureus	Lab	Epibulus insidiator	Pom	Chrysiptera taupou				
Aul	Aulostomus chinensis	Lab	Gomphosus varius	Pom	Dascyllus aruanus				
Ble	Ecsenius bicolor	Lab	Hemigymnus fasciatus	Pom	Dascyllus reticulatus				
Ble	Exallias brevis	Lab	Hemigymnus melapterus	Pom	Neoglyphidodon nigroris				
Ble	Meiacanthus atrodorsalis	Lab	Hologymnosus annulatus	Pom	Pomacentrus coelestis				
Cae	Caesio caerulaurea	Lab	Labrichthys unilineatus	Pom	Pomacentrus moluccensis				
Can	Canthigaster valentini	Lab	Labroides dimidiatus	Pom	Pomacentrus nagasakiensis				
Cha	Chaetodon baronessa	Lab	Labropsis xanthonota	Pri	Priacanthus hamrur				
Cha	Chaetodon lunulatus	Lab	Oxycheilinus celebicus	Sca	Chlorurus sordidus				
Cha	Chaetodon plebeius	Lab	Thalassoma lunare	Sca	Scarus dimidiatus				
Cha	Chaetodon ulietensis	Lei	Leiognathus equulus	Sca	Scarus flavipectoralis				
Cha	Heniochus varius	Let	Gnathodentex aureolineatus	Sca	Scarus ghobban				
Epi	Cephalopholis boenak	Let	Lethrinus atkinsoni	Sca	Scarus schlegeli				
Epi	Epinephelus maculatus	Mic	Gunnellichthys curiosus	Sig	Siganus doliatus				
Epi	Epinephelus ongus	Mul	Parupeneus barberinoides	Sig	Siganus puellus				
Epi	Plectropomus leopardus	Nem	Scolopsis bilineatus	Sig	Siganus vulpinus				
Gra	Diploprion bifasciatum	Poc	Centropyge bicolor						

Le nombre d'espèces pour chaque famille depuis 2009 est donné dans le tableau 130 et spécifiquement pour la campagne d'octobre 2011 sur la figure 70.

Tableau n°130 : Nombre d'espèces par famille ichtyologique de 2009 à 2011 (ST12)

Familles			U	go ST12			
	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
Acanthuridae	Pas d'écha	ıntillonnage	3	4	2	1	2
Anthiinidae				1			
Blenniidae			2	2	1	1	2
Caesionidae			1		1	1	
Canthigasteridae			1				1
Carangidae				1			
Chaetodontidae			3	6		7	2
Epinephelinae			2	2		3	2
Gobiidae				1			
Haemulidae						1	
Labridae			2	5	3	4	3
Lutjanidae				2			

Mullidae		1		1	1
Nemipteridae	1	1	1	1	1
Pomacanthidae	2	4	4	3	3
Pomacentridae	5	8	5	5	6
Scaridae	1	1	1	2	2
Siganidae		2			
Total espèces	23	41	18	30	25
Total familles	11	15	8	12	11

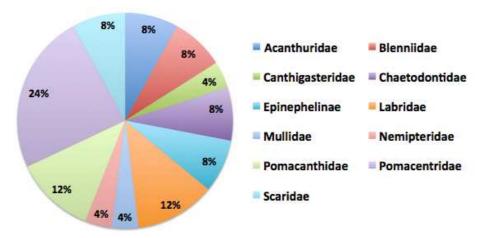


Figure n°70 : Richesse spécifique par famille de poissons (ST12)

Si la comparaison du nombre d'espèces par famille entre les années 2009 - 2011 est effectuée (cf. tableau 131), sous l'angle de vue de ce critère les cinq campagnes sont hautement similaires.

Tableau n°131 : Comparaison de l'évolution de la richesse spécifique par famille, 2009 à 2011 (ST12)

Test χ2	ddl	Seuil de tolérance à 0,95
43.20	102	128.39

Le récapitulatif des résultats en terme de :

- d'abondance (nombre d'individus, transects/liste restreinte),
- de densité (en poisson/m², transects/liste restreinte),
- de biomasse (en g/m², transects/liste restreinte),
- de biodiversité 1 (espèces observées sur les transects et de la liste restreinte),
- de biodiversité 2 (espèces observées sur la station (transects + complémentaires) et de la liste restreinte),
- de biodiversité 3 (toutes les espèces observées sur la station (transects + complémentaires / liste non restreinte)),

pour toutes les campagnes depuis 2007 sont présentés dans le tableau 132 et la figure 71.

Tableau n°132 : Synopsis des résultats 2011 et récapitulatif des années précédentes (ST12)

			Liste DENV							
Ug	o ST12		Tran	sect TLV		Station	Station			
		Nb. ind.	Densité	Biom. g/m ²	Biodiv.1	Biodiv.2	Biodiv.3			
	Transect A	57	0,71	21,43	20					
2011 b	Transect B	39	0,49	6,82	14					
	Moy. ABC	48,00	0,60	14,42	25	48	80			
2011 a	Moy. ABC	115,50	2,36	79,86	30	43	81			
2010 b	Moy. ABC	108	1,44	13,93	18	28	50			
2010 a	Moy. ABC	93,00	3,01	63,58	41	58	90			
2009	Moy. ABC	100,50	3,49	73,03	23	40	70			
2008	Moy. ABC			Pas d'éa	hantillonna	3.0				
2007	Moy. ABC	Pas d'échantillonnage								

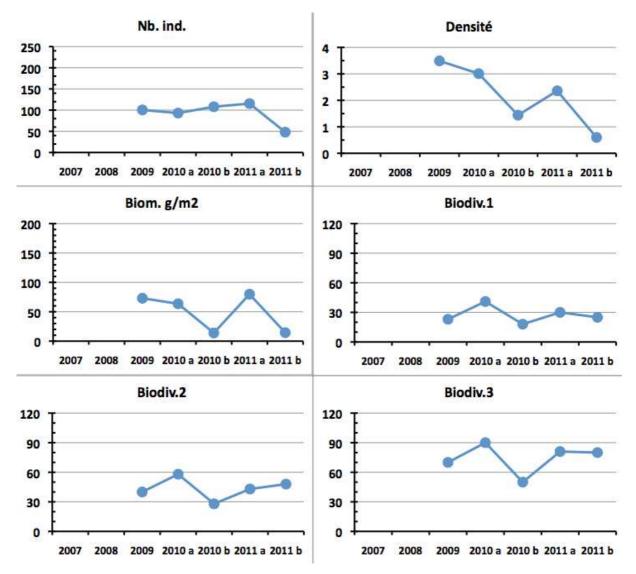


Figure n°71 : <u>Evolution des paramètres biologiques ichtyologiques depuis 2009 (ST12)</u>

5 Résultats généraux / Synthèse

Les cartes 15 et 16 présentent la synthèse des résultats bruts pour cette mission à chaque station, à savoir :

- pour le substrat : le pourcentage de recouvrement de 3 composantes clés : la partie abiotique et les coraux puis le reste (c'est-à-dire, les macrophytes, invertébrés, autres coraux, etc. regroupés sous « macrophytes & invertébrés »), ces deux groupes formant la partie biotique,
- pour les communautés benthiques : la richesse taxonomique (nombre d'espèces) des 3 groupes clés : les macrophytes et invertébrés, les coraux scléractiniaires et les autres coraux,
- pour la faune icthyologique : la diversité spécifique (nombre d'espèces observées, liste restreinte), la densité (nb. individus/m²) et la biomasse (g/m²).

Les résultats bruts de chaque thème sont détaillés par ailleurs ci-dessous.

5.1 Substrat

Les pourcentages de recouvrement du substrat, pour toutes les catégories, sont présentés dans le tableau 179 en annexe 04 (résultats par transect pour toutes les stations).

Le tableau 180 en annexe 04 et la figure 72 ci-dessous, récapitulent les pourcentages de couverture du substrat aux différents transects de chaque station pour :

- la partie biotique, qui est divisée en deux groupes : les coraux scléractiniaires et le reste (c'est-à-dire, les macrophytes, invertébrés, autres coraux, etc. regroupés sous « macrophytes & invertébrés »),
- ♦ la partie abiotique.

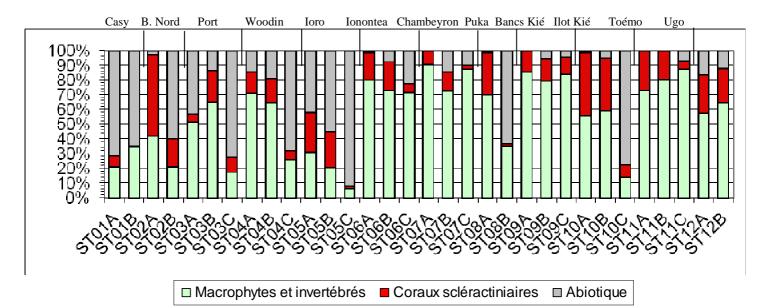


Figure n°72 : Représentation du recouvrement (en %) du substrat partie biotique/abiotique

Les stations situées en baie de Prony et canal Woodin (exception du transect ST02A et ST03B) ont un substrat à majorité abiotique (moyenne de 52%). Ces stations ont, par ailleurs, le taux de recouvrement corallien moyen le plus faible de toute la zone d'étude (15.6%), toujours en légère hausse par rapport à la mission précédente (13.65% en mars 2011).

Les stations (et les transects dans chaque station) dans le canal de la Havannah sont très diversifiées, avec une dominance du substrat biotique (excepté pour la station ST05 qui est installée sur une pente sédimentaire composée principalement de sable coquillé et pour les transect ST08B et ST10C qui sont positionnés en bas de tombant récifal sur le début de la pente sédimentaire). Malgré cela, l'abiotique représente moins de 20% en moyenne du recouvrement. La moyenne du taux de recouvrement corallien dans le canal de la Havannah est aussi plus élevée (17.4%).

La station présentant le plus fort taux de recouvrement corallien scléractiniaire est pour la 1^{ère} fois ST02 (Creek baie nord) avec un taux exceptionnel (55%) de coraux scléractiniaire sur le transect A; dû à une présence forte d'*Acropora*. Sinon, ST10 (îlot Kié, dans la réserve Merlet) présente toujours un bon score.

Tous les transects les plus profonds ont un taux de recouvrement biotique significativement plus bas que sur les transects supérieurs.

5.2 Benthos

Les résultats bruts (listing et abondance) du dénombrement du benthos, sont présentés en annexe 05 (résultats par transect pour toutes les stations).

Le tableau 185 en annexe 05 et la figure 73 ci-dessous, récapitulent la richesse spécifique par niveau bathymétrique (le nombre de taxa aux différents transects) de chaque station pour le benthos. Ce dernier a été réparti en 3 grands groupes :

- b les coraux scléractiniaires,
- ♦ les autres coraux,
- b le reste des organismes vivants, sous l'appellation « macrophytes et invertébrés ».

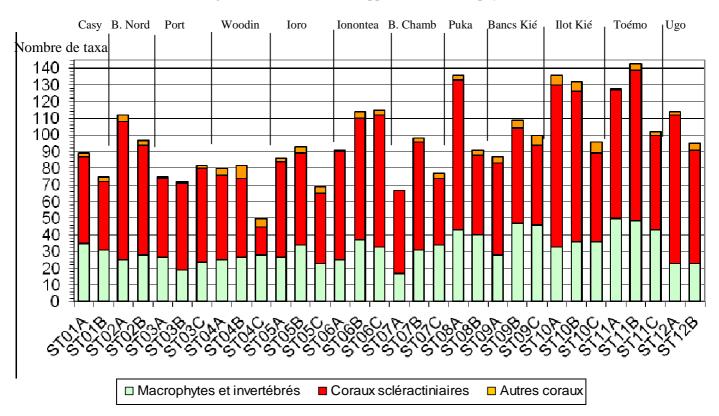


Figure n°73: Richesse taxonomique du benthos dans les 3 groupes clés

La biodiversité corallienne est très contrastée, notamment pour les scléractiniaires dont 17 à 97 espèces différentes ont été dénombrées selon les stations. La moyenne du nombre d'espèce corallienne pour l'ensemble de la zone (baie de Prony, canal Woodin et canal de la Havannah) est de 61 taxa (stable par rapport aux deux dernières missions), même si certaines espèces n'ont pas été répertoriées pour cette mission : leur disparition a été contrebalancée par l'apparition de nouvelles.

Les stations du canal de la Havannah sont globalement plus riches (moyenne de 66 taxa vs 51 taxa pour celles de la baie de Prony-Canal Woodin). Le transect où la richesse spécifique est la plus importante (97 espèces coralliennes inventoriées) est le ST10A (îlot Kié, situé dans la réserve Yves Merlet). Bien que cette richesse soit importante, les espèces présentent dans le canal de la Havannah sont relativement fréquentes dans le lagon Sud de Nouvelle-Calédonie.

A contrario, les espèces inféodées à la baie de Prony développent des morphoses particulières dans le monde, la conjonction des paramètres environnementaux de cette baie rendant le développement des coraux unique. Certaines espèces sont considérées comme rares dans les eaux calédoniennes (*Alveopora catalai*, *Blastomussa merleti...*). Si la richesse spécifique des stations de la baie de Prony est relativement plus faible que pour les stations du canal de la Havannah, ceci est à minorer car la ST02 (Creek baie Nord) recense un nombre très important d'espèces (83 et 66 espèces). Par ailleurs, la baie de Prony renferme une multitude de biotopes qui ne sont pas explorés dans le cadre de cette étude.

D'autre part, la richesse spécifique des macrophytes est comprise entre 17 à 50 taxa pour l'ensemble de la zone (avec une moyenne de près de 32 taxa par transect) (en nette augmentation par rapport à mars 2011 : que 24%). Généralement le nombre d'espèces de macrophytes d'un milieu ne va pas beaucoup varié, c'est plûtot leur abondance qui va évoluer selon les variations de température de l'eau et l'hydrodynamisme. Certaines espèces vont être typiques pour un biotope considéré et selon la saisonnalité elles vont plus ou moins dominer (l'hydrodynamisme important et la température de l'eau influencent leur développement).

De manière générale, la biodiversité est plus faible pour les niveaux bathymétriques les plus profonds. Cela s'expliquant entre autre par la baisse de la pénétration de la lumière dans l'eau par rapport à la profondeur. Ce phénomène entraîne une diminution de la photosynthèse, principalement pour les coraux scléractiniaires hermatypiques et les macrophytes qui représentent les habitats principaux de la faune récifale.

5.3 Ichtyologie

Les résultats bruts et traités du comptage des poissons, sont présentés dans chaque station et en annexe 06.

Les paramètres biologiques globaux concernant les stations sont présentés dans le tableau 133 et les figures 74 à 76 (rappel : liste restreinte).

STATION PARAMETRES BIOLOGIQUES	ST01 Casy	ST02 B. nord	ST03 Port	ST04 Wood.	ST05 Ioro	ST06 Ionon.	ST07 Chamb	ST08 Puka	ST09 B. Kié	ST10 I. Kié	ST11 Toémo	ST12 Ugo
Nombre individus	58	268	53	286	213	187	269	190	351	867	222	96
Richesse spécifique	13	16	13	42	43	46	43	33	48	58	48	25
Densité (nb ind/m²)	0,36	1,18	0,22	0,95	0,81	0,75	1,05	1,30	1,42	3,48	0,90	0,60
Biomasse (g/m²)	3,97	100,16	1,50	65,36	41,01	76,87	71,29	39,78	118,86	357,27	38,56	14,12
Indice de Shannon	3,23	2,62	2,92	4,44	4,98	4,91	5,03	3,49	4,44	4,01	4,94	4,17
Indice Equitabilité	0,87	0,66	0,79	0,82	0,86	0,89	0,87	0,69	0,80	0,68	0,88	0,90

Tableau n°133 : Récapitulatif des paramètres biologiques pour l'ichtyofaune

Cette fois-ci, contrairemenr aux missions précédentes, c'est la station 03 (Port) qui présente les plus faibles chiffres en abondance, richesse spécifique, densité et biomasse.

La ST12 (Ugo) possède l'indice d'équitabilité le plus élevé : c'est donc une station avec une structure des populations relativement homogène.

Pour cette mission, encore une fois c'est la station de l'îlot Kié qui est particulièrement riche en individus et donc en densité, ainsi qu'en diversité et biomasse. Par contre, elle présente un indice d'équitabilité relativement bas (certaines espèces comptent de très nombreux individus, contrairement à d'autres faiblement représentées).

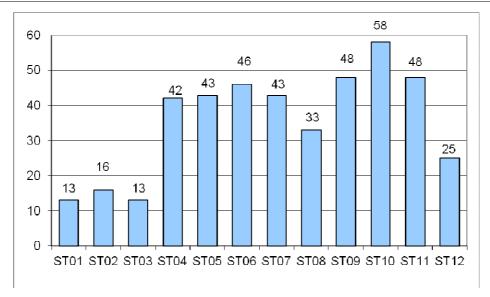
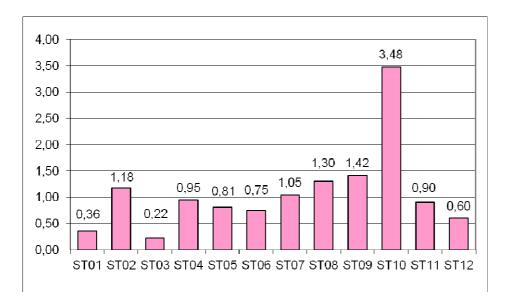



Figure n°74 : <u>Richesse spécifique de l'ichtyofaune par station</u>

ST01	Casy
ST02	B. Nord
ST03	Port
ST04	Woodin
ST05	Ioro
ST06	Ionontea
ST07	Chambeyron
ST08	Puka
ST09	Bancs Kié
ST10	Ilot Kié
ST11	Toémo
ST12	Ugo

Figure n°75 : <u>Densité (nb ind/m²) de l'ichtyofaune par station</u>

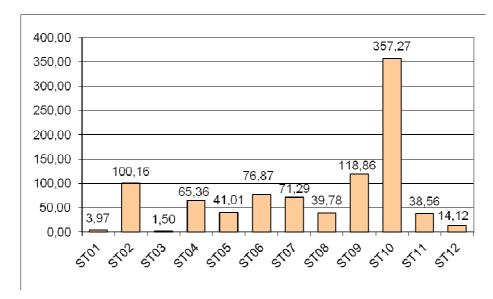
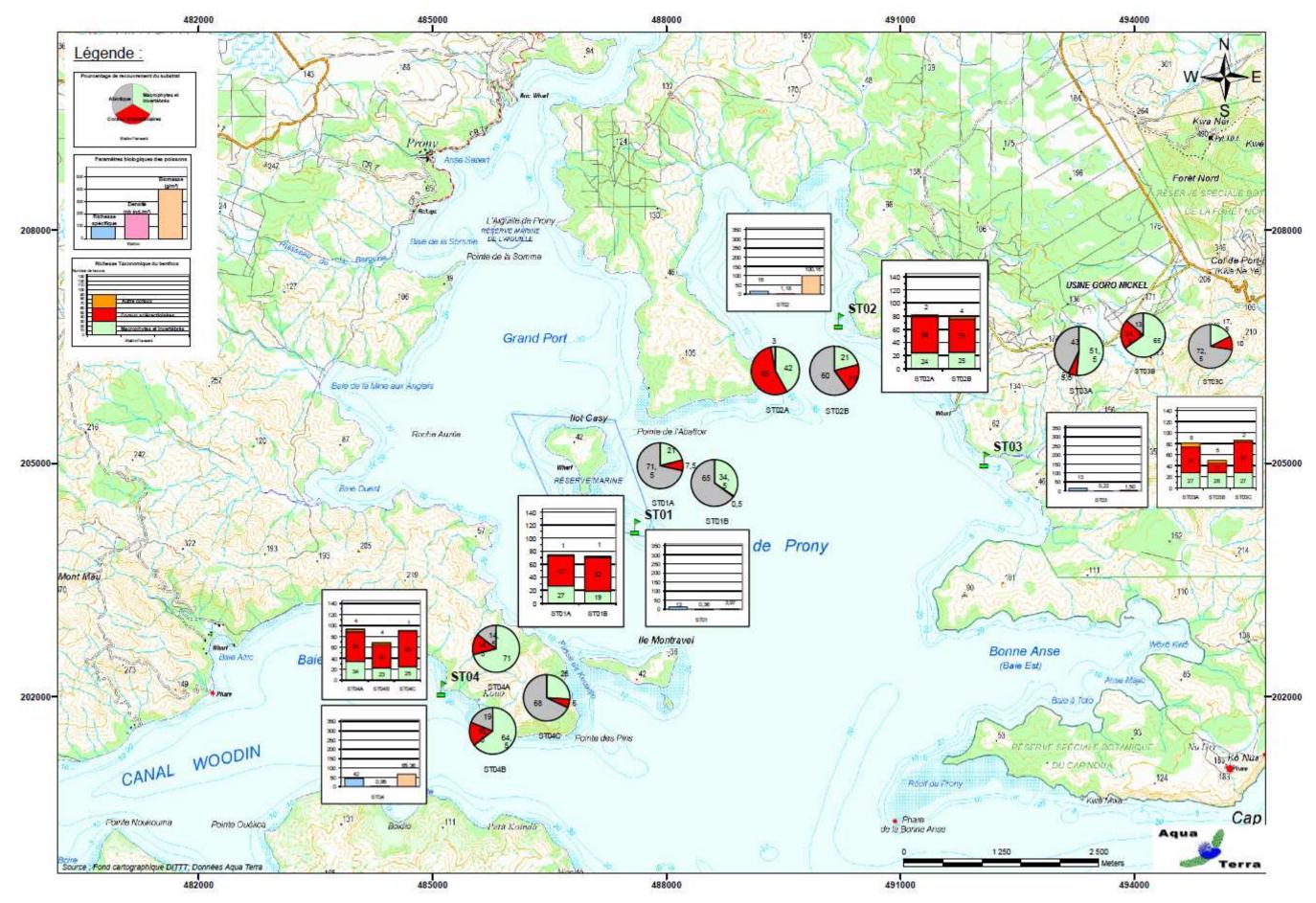
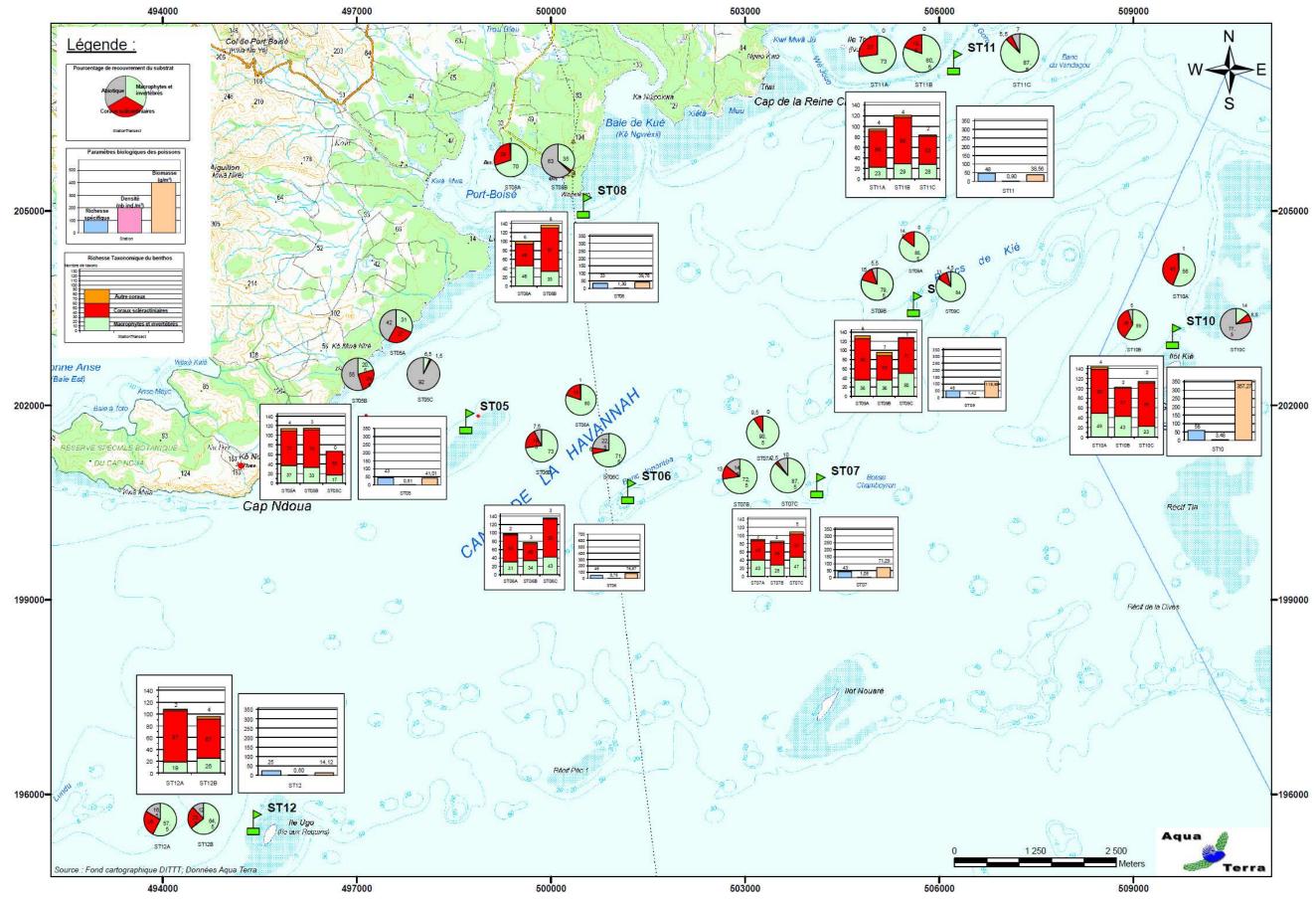


Figure n°76: <u>Biomasse (g/m²) de l'ichtyofaune par station</u>



5.4 Espèces exogènes


Au cours des différentes plongées, au fur et à mesure de la détermination des espèces rencontrées, quelle que soit l'embranchement, nous essayons de détecter la présence d'espèces exogènes.

Au vu de l'étendue de la zone géogaphique (baie de Prony, canal Woodin et canal de la Havannah) où se situent les stations, à la complexité et la multicité des habitats présents et à la diversité importante des taxons potentiels, nos observations sont à minorer et non représentatives.

Cependant, pour cette mission, comme précédemment, nous n'avons pas fait d'observation de ce type.

Carte n°015 : Résultats généraux : ichtyofaune, communautés benthiques, substrat par station de la baie de Prony – canal Woodin

Carte n°016 : Résultats généraux : ichtyofaune, communautés benthiques, substrat par station pour le canal de la Havannah

6 Comparaison avec les données historiques

En préalable, il faut présenter les points importants des travaux de 2005, 2007, 2008, 2009 et 2010 et les divergences entre les conditions météorologiques-périodes, techniques-matériels et/ou méthodologie.

Les différences relevées sont listées dans le tableau 175 en annexe 02 (non exhaustif) et ne tiennent pas compte des aléas humains (les comptages visuels et la précision dans l'identification des espèces tant ichthyologiques que coralliennes peuvent varier selon l'expertise des observateurs, les conditions météorologiques, le protocole utilisé et les moyens de respiration sous-marine par exemple).

En synthèse, succinctement, en 2005, le dénombrement des poissons par Mélanopus (canal de la Havannah) et A2EP (baie de Prony) s'est fait sur des transects à largeur fixe de 50 m de long, alors qu'A2EP en 2007 et AQUA TERRA en 2008, 2009 et 2010 ont fait les dénombrements sur des transects à largeur variable de 20 m de long comme l'impose le cahier des charges. Par ailleurs, en 2005 le plongeur de Mélanopus a travaillé au NITROX tandis que depuis 2007 les plongeurs d'A2EP puis d'AQUA TERRA travaillent à l'air comprimé. De plus, la mission 2007 s'est déroulée en hiver (fin août – début septembre) sous un très mauvais temps (vent fort et pluie) entretenant une eau très turbide. La mission de 2008 s'est déroulée au printemps (fin octobre – début novembre) sous un grand beau temps et donc une eau très claire. La mission 2009 s'est déroulée à la fin de l'automne (mi-juin) sous un régime d'alizés modérés. La mission de mars-avril 2010 a été réalisée à la toute fin de l'été (début saison fraîche), avec des conditions météorologiques moyennes (vent et pluies) puis la suivante a été réalisée à la fin de l'hiver (fin septembre 2010), avec des conditions météorologiques plutôt bonnes (soleil, peu de vent et peu de courants). La mission précédente a été réalisée en mars 2011, à nouveau à la toute fin de l'été (début saison fraîche), avec des conditions météorologiques plutôt moyennes (ciel assez couvert, vent autour de 15 nds, houle et clapot et courant plutôt marqué).

La mission objet de ce rapport a été réalisée à la fin de l'hiver (fin septembre début octobre 2011), avec des conditions météorologiques plutôt bonnes (soleil, peu de vent et peu de courants).

Tous les échantillonnages de cette mission ont été réalisés par les mêmes intervenants que pour les campagnes précédentes depuis 2008. L'écart temporel est d'environ 6 mois, avec la dernière mission (mars 2011) et les conditions climatologiques étaient meilleures.

6.1 Substrat

Pour suivre une évolution globale, nous avons comparé les résultats (en pourcentage de recouvrement) du biotique (en deux groupes : les coraux scléractiniaires et les autres organismes vivants, rangés sous le terme de « macrophytes et invertébrés ») et des fonds abiotiques (tableau 139).

Selon plusieurs études [05, 06], le LIT est une méthode présentant des variations moyennes de l'ordre de 20%, y compris pour un même opérateur.

Par ailleurs, pour les études à des fins de gestion (et non de recherche), les résultats d'enquête ne nécessite qu'une précision de 20% et les efforts pour parvenir à une plus grande précision sont considérés par certains comme «une perte de temps et d'argent » [07].

Pour ces raisons et les différences dans les conditions d'éxécution des différentes campagnes, nous n'avons donc gardé que la marge supérieure à 20% de fluctuation.

Dans l'ensemble, il y a peu de variations générales : les stations apparaissent relativement stables notamment en ce qui concerne le pourcentage de recouvrement en coraux scélractiniaires (fourchette entre - 10% et + 7.5%), même si la tendance générale semble être une légère hausse (+ 0.3% en tout en moyenne sur les 12 stations, soit 32 transects). Une exception toutefois pour le transect A de ST02: + 26% de recouvrement en coraux scléractiniaires.

Au niveau individuel, les variations qui apparaissent sont la résultante d'une explosion algale : ST03A et B, ST04A et B, ST06C et ST07C. Ces variations de recouvrement par les algues sont cycliques et ne paraissent pas avoir de source liée à une pollution ou une dégradation d'origine anthropique du milieu.

Seul le transect inférieur de la station 08 (Puka, ST08C) subit une variation inverse avec moins d'algues que lors de la mission précédente.

6.2 Benthos

Afin d'évaluer les dégradations éventuelles de la zone sous l'influence potentielle du projet, une étude sur la biodiversité des biocénoses benthiques a été réalisée. Pour ce faire, les biocénoses benthiques cibles (fixes et mobiles) ont été inventoriées. La présence des espèces mobiles est un indicateur du fonctionnement de l'écosystème; La diversité et l'abondance renseignent sur la vulnérabilité du site. Il est important de noter que l'absence ou la diminution d'abondance des espèces mobiles d'une mission à une autre n'est pas un indicateur de dégradation environnementale. Leur absence peut être momentanée et n'est pas synonyme de mortalité car leur mobilité leur permet de migrer du couloir d'inventaire pour rechercher de la nourriture ou un abri....

En considérant cette notion de variabilité saisonnière des macrophytes et de mobilité de certaines espèces (particulièrement les échinodermes et les mollusques), il est très important de s'attacher aux variations d'abondance et de richesse spécifique des organismes fixés et présentant des variations épisodiques relativement faibles (scléractiniaire, alcyonaire et spongiaire).

Par exemple, si les données de richesse spécifique et d'abondance concernant les groupes des scléractiniaires, des alcyonaires et des spongiaires sont en diminution, c'est qu'il y a eu inévitablement une dégradation du milieu (anthropique ou naturelle). Après avoir fait ce constat, il faut par la suite chercher les causes de ces dégradations (mécanique, chimique, variations des paramètres environnementaux : augmentation de température de l'eau, apport d'eau douce, apport de particules...).

Il faut également appréhender les variations sur plusieurs années afin d'enregistrer les variations naturelles de l'environnement.

Les biocénoses benthiques se sont adaptées aux conditions environnementales par la sélection d'espèces colonisant les milieux agités (canal de la Havannah et canal Woodin) et les milieux calmes et turbides (baie de Prony). Les macrophytes, spongiaires et alcyonaires sont en compétition spatiale avec les coraux scléractiniaires pour toutes les stations sauf en station 04 (Woodin) où le recouvrement biotique est particulièrement représenté par les coraux (les autres groupes sont très minoritaires). Ces observations rentrent dans le cycle naturel. Cependant, l'évolution de ces groupes biotiques est à surveiller au regard des perturbations potentielles dans cette zone (perturbations d'origine anthropique et/ou d'origine naturelle exceptionnelle).

Le degré d'exposition des habitats à l'hydrodynamisme conduit à distinguer les milieux de mode battu du mode calme. L'agitation de l'eau crée des forces variant en fonction de son intensité (courants de marées, de houle et ressac). De ce fait, les organismes sont sélectionnés sur les récifs du canal de la Havannah et du canal Woodin par leur capacité à résister aux forces d'arrachement. La zone de balancement des marées et de vagues constitue l'étage supérieur du système récifal.

D'autre part, la baie de Prony est un regroupement de rades (Grande Rade, Rade du Nord et Rade de l'Est), qui constitue une baie semi-fermée qui est particulièrement protégée des agents hydrodynamiques. De plus de nombreux creeks et rivières se déversent dans cette baie charriant des particules sédimentaires (apports conséquents). Les organismes sont sélectionnés sur ces récifs par leur capacité à résister aux dépôts sédimentaires, à la diminution de la pénétration de la lumière dans la colonne d'eau et par endroit à la dessalure des eaux de surface.

6.2.1 Variation de la richesse spécifique corallienne depuis 2009

- De juin 2009 à septembre 2010, les courbes comparatives de la richesse spécifique corallienne suivent les mêmes tendances selon les différentes stations avec une légère augmentation au fur et à mesure des missions (recrutement > mortalité).
- Puis **lors de la mission de mars 2011**, cette tendance est en diminution (recrutement < mortalité) avec des accentuations pour les couloirs exposés aux agents hydrodynamiques (canal Woodin et canal de la Havannah) et proches des creeks et rivières (baie de Prony).
- **Désormais**, les courbes comparatives de la richesse spécifique corallienne entre les missions de mars 2011 et de octobre 2011 reprennent progressivement une tendance à l'augmentation de la richesse spécifique (recrutement > mortalité). Les niveaux bathymétriques où la diversité augmente le plus (> 5 espèces) sont

généralement situés à mi pente ou en bas de pente (ST04B, ST06B, ST09B, ST09C, ST11C). Ces étages bathymétriques ont été les moins perturbés durant les évènements cycloniques (dégradation mécanique) et le phénomène « la Nina » (dessalure des eaux de surface). L'implantation et l'édification corallienne à ces profondeurs en est facilitée et moins perturbée.

La mortalité corallienne est relativement réduite (< 4 espèces par niveau) (ST05C : 4 ; ST07B : 3 et ST08A : 4). Quelques colonies affaiblies lors des perturbations du début d'année n'ont pas survécu. Cependant cette mortalité concerne un petit nombre d'individus pour chaque niveau bathymétrique.

Le déficit de la richesse spécifique (mortalité – nouvelle espèce) n'est jamais supérieur à 2 espèces. Cette anomalie est enregistrée pour les niveaux bathymétriques supérieurs ou intermédiaires (ST02B, ST08A) ayant subis le maximum de dégradations (arrachement mécanique du substrat, phénomène de blanchissement). Il est également important de noter que l'absence d'espèce peut également être induite par la mobilité de quelques coraux libres « famille des Fungiidae » et dans ce cas n'est pas considérée comme de la mortalité (exemple de ST01B, ST05B, ST08B, ST10C).

La station où la richesse spécifique est la plus élevée est encore le haut de l'éperon du récif frangeant de l'Ilot Kié (ST10A) qui dénombre 103 espèces coralliennes en octobre 2011.

La station où la richesse spécifique est la plus basse est encore le bas du récif frangeant dans le canal Woodin (ST04C) qui dénombre 22 espèces coralliennes en octobre 2011.

120 Coraux septembre 2011 Coraux mars 2011 Coraux septembre 2010 Coraux mars-avril 2010 Richesse spécifique (Nombre d'espèce) Coraux juin 2009 0 ST11A ST11B ST11C STIA STRA ST4A ST4B ST4C ST7B ST10B ST10C ST12A ST12B STEA 17m 20m 9m 11,5m 7m 17m 20m 7m 15m 20m 10m 20m 5m 10m 20m 9m 15m 20m 7m

Comparaison de la richesse spécifique des Coraux

Figure n°77: Compraison des richesses spécifiques (coraux), par station, depuis juin 2009

Numéro des stations et profondeur (m)

6.2.2 <u>Variation de la Richesse Spécifique (RS) et abondance (A) de mars 2011 à septembre 2011</u>

6.2.2.1 Rappels des principaux résultats de la mission précédente du mois de mars 2011

De nombreuses modifications dans la composition des biocénoses benthiques (diversité, abondance et état de santé) enregistrées en septembre 2010 et depuis 2008 pour les stations de suivi biologique de la zone avaient été observées. Ces dégradations étaient présentes dans les trois systèmes et particulièrement marquées pour les niveaux bathymétriques supérieurs du canal de la Havannah les plus soumis aux agents dynamiques.

Le blanchissement était également important pour les trois systèmes avec une corrélation indéniable pour les transects supérieurs à proximité des creeks et des rivières (baie de Prony) et les transects supérieurs les plus soumis aux agents hydrodynamiques du canal de la Havannah et du canal Woodin.

Les stations de suivi biologique ne montraient pas d'évolution qui aurait pu révéler des anomalies biologiques induites par l'activité anthropique mais plutôt d'ordre naturel (évènement climatique de longue période « La Niňa » et évènements dépressionnaires de courte période « Vania et Zelia »).

L'évènement « La Niňa » a pour conséquence une anomalie positive de températures des eaux de surface et une anomalie négative de salinité (abondance des précipitations) sur une longue période de 3 ou 4 mois. Ces anomalies ont influencé toute la zone d'étude dans les petites profondeurs et l'anomalie de salinité était d'autant plus importante aux embouchures des creeks et des rivières. Les colonies coralliennes les plus sensibles s'édifiant aux sommets des récifs ont ainsi expulsé leurs zooxanthelles (phénomène de blanchissement).

Les évènements dépressionnaires du début d'année 2011 se sont superposés au phénomène climatique « La Niňa » (principalement la dépression Vania qui a touché le sud du Territoire le 14 et 15 janvier 2011, puis dans une moindre mesure la dépression Zelia).

Les vents violant ont généré dans le canal de la Havannah, une forte houle, un ressac très important et des courants de marée supérieurs à la normale. Ces agents hydrodynamiques exceptionnels ont entrainé une dégradation mécanique sans conteste sur le sommet des récifs, arasant les biocénoses benthiques les plus fragiles, arrachant des colonies coralliennes et créant des effondrements de blocs et de débris le long des pentes récifales et du blanchissement corallien sur les colonies dégradées et/ou perturbées.

D'autre part, les précipitations induites par les dépressions étaient également bien au dessus des normales saisonnières et très abondantes sur une courte période. Ceci a généré une dessalure importante des eaux de surface à proximité des creeks et des rivières en baie de Prony (milieu par ailleurs très protégé des vents et des agents hydrodynamiques).

Dans le canal de la Havannah et le canal Woodin, les principales dégradations étaient d'origine mécanique : nombreux débris, mortalité importante et blanchissement corallien induit par les effondrements. Malgré les courants de marée conséquents dans le canal Woodin, les dégradations mécaniques ont été moindres que dans le canal de la Havannah car les récifs sont moins exposés au ressac et à la houle.

Dans la baie de Prony (milieu protégé), les principales dégradations étaient originaire d'une dessalure des eaux de surface (colonies blanchies encore en place, mortalité importante sur les récifs à proximité des embouchures des creeks et des rivières).

6.2.2.2 Variations de mars 2011 à octobre 2011

Les organismes benthiques recensés dans les stations de suivi environnemental peuvent varier du point de vue spécifique et de leur abondance selon les périodes d'inventaire (saisonnalité), le recrutement, la mortalité ou leur mobilité.

Les valeurs comparatives de la Richesse Spécifique (RS) sont annotées ci-dessous de la manière suivante : RS Octobre2011/RS Mars2011 (cf. tableaux 134 à 137).

Baie de Prony et Canal Woodin

Par rapport à la mission de mars 2011, l'inventaire des biocénoses benthiques de la mission d'octobre 2011 des stations biologiques recèle **157/158** espèces coralliennes dont **147/149** espèces scléractiniaires ; **65/56** espèces d'invertébrés (dont 14/15 espèces d'alcyonaires, 10/10 espèces de spongiaires, 19/11espèces de mollusques, 5/5 espèces d'holothuries et 5/5 espèces d'astéries) et 14/13 espèces de macrophytes.

Si l'on considère le système avec toutes les stations confondues de la baie de Prony et du canal Woodin (milieux protégés aux dépressions du début d'année 2011), la majorité des groupes benthiques des scléractiniaires, des alcyonaires, des algues rouges, des astéries, des holothuries, des échinides, des éponges

et des zoanthaires montrent une certaine stabilité sauf pour les mollusques, les ascidies et les algues vertes qui ont une forte augmentation de la RS et les algues brunes qui voient leur RS diminuer. Il faut noter qu'une attention particulière a été réalisée lors de cette mission pour l'inventaire des mollusques, c'est pourquoi les richesses spécifiques augmentent pour ce groupe (normalement le protocole du cahier des charges initial ne prend en compte que les bénitiers et trocas).

Les coraux ont peu d'évolution spécifique depuis la dernière mission. Le blanchissement a nettement diminué, laissant une mortalité réduite et de nombreuses colonies ont réintégré leurs zooxanthelles. La station ST03A recèle le plus grand nombre d'espèces ayant subi un stress (6 espèces sont encore blanchies).

Les alcyonaires ont peu d'évolution de diversité, par contre leur abondance tend à régresser. Le genre *Sinularia* est présent dans tous les couloirs et son recouvrement a diminué en ST01A & B, ST02B, ST03A. Le genre *Sarcophyton* est également bien réparti mais absent en ST04C et son recouvrement tend à diminuer également en ST01 mais où il reste tout de même dominant.

Les algues vertes sont particulièrement représentées par le genre *Halimeda* qui regroupe plusieurs espèces en baie de Prony. Les observations indiquent quelques variations de recouvrement selon les missions (saisonnalité) et trois espèces communes ont nouvellement été recensées dans les couloirs en faible proportion (*Chlorodesmis fastigiata*, *Neomeris van bossea* et *Caulerpa* sp.).

Les algues brunes sont très répandues dans la baie de Prony : les espèces *Lobophora variegata* et *Dictyota* colonisent l'ensemble des récifs frangeant mais leur recouvrement tend à diminuer avec l'élévation de la température des eaux. D'autre part, le genre *Sargassum* particulièrement abondant et diversifié (3spp.) en ST01 n'a pas été répertorié lors de cette mission (période de sénescence des algues brunes).

Les astéries varient de niveau bathymétrique selon les missions. Leur diversité est peu élevée et leur abondance dans les couloirs de comptage est souvent restreinte entre 1 et 3 individus par espèce. Les espèces prédatrices de corail : L'espèce *Culcita novaeguineae* a été observée en ST02A et ST03A (un seul spécimen) et l'espèce *Acanthaster planci* est absente.

Les cyanobactéries subissent une grande régression du recouvrement, seuls les niveaux ST01A et ST03A sont occupés en proportion réduite (absence en ST01B, ST02, ST03B & C par rapport à la mission de mars 2011).

Les holothuries sont aussi variées que la mission précédente. Ces organismes sont mobiles et des variations bathymétriques sont notables.

Les mollusques sont diversifiés mais lors de cette mission une intention particulière a été portée sur le recensement de ce groupe, c'est pourquoi la richesse spécifique a largement augmenté. Les proportions d'abondance sont réduites, ces derniers ont principalement colonisés les débris coralliens et les anfractuosités de la dalle et des massifs coralliens. Les marques de prédations sur les colonies coralliennes sont minoritaires.

Les spongiaires ont peu évolué pour leur diversité par contre le recouvrement des cliones tend a augmenté pour les niveaux ST01A, ST02B et ST04B.

Canal de la Havannah

Par rapport à la mission de mars 2011, l'inventaire des biocénoses benthiques de la mission d'octobre 2011 des stations biologiques recèle **209/207** espèces coralliennes dont **200/198** espèces scléractiniaires ; **111/84** espèces d'invertébrés (dont 14/13 espèces de spongiaires, 9/9 espèces d'alcyonaires, 34/15 espèces de mollusques et 6/11 espèces d'holothuries) et 22/17 espèces de macrophytes.

Si l'on considère le système avec toutes les stations confondues du canal de la Havannah, les groupes benthiques des scléractiniaires, des alcyonaires, des algues brunes et vertes, des anémones, des crinoïdes, des spongiaires et des zoanthaires montrent plutôt une stabilité alors que les groupes biotiques des mollusques, les ascidies, les algues rouges et les astéries sont en forte augmentation de la RS. Par contre, les holothuries voient leur RS fortement diminuer (milieux exposés aux dépressions du début d'année 2011). Il faut noter qu'une attention particulière a été réalisée lors de cette mission pour l'inventaire des mollusques, c'est pourquoi les richesses spécifiques augmentent autant pour ce groupe

Les coraux ont peu d'évolution spécifique depuis la dernière mission (légère amélioration). Le blanchissement a nettement diminué (de nombreuses colonies ont réintégré leurs zooxanthelles) et désormais concerne surtout les espèces les plus sensibles (*Acropora*, *Galaxea fascicularis* et *Seriatopora*). Si la mortalité est réduite au regard de la dernière mission, on note toutefois que les stations ST07, ST08 et ST10 ont du mal a retrouver leur stabilité (développement de cyanobactéries, blanchissement latent, mortalité corallienne).

Les alcyonaires sont diversifiés mais ont peu d'évolution de leur richesse spécifique à travers les différentes missions. Par contre, leur répartition et leur abondance tend à augmenter (particulièrement sur les récifs exposés aux agents hydrodynamiques : ST09A & C, ST10A, ST11A & B). Le genre *Xenia* s'est répandu en ST06A & C, adapté et multiplié en ST06B, ST09A & C, ST10A. Le genre *Sinularia* est présent dans tous les couloirs sauf en ST05A. Ce genre est apparu en ST06A, ST07A, ST09C et s'est développé en ST11C. Par contre, le genre *Cladiella* a subit des dégradations lors de la mission précédente et n'a pas été répertorié dans 5 couloirs lors de cet inventaire (ST05C, ST08B, ST09B & C et ST12B).

Les algues rouges sont abondantes mais peu variées. L'élévation de température des eaux favorise le développement et la répartition des *Asparagopsis taxiformis* et de *Trichogloea requienii* (saisonnalité dans le recouvrement). L'espèce *Asparagopsis taxiformis* peut envahir les récifs durant la saison chaude, elle croit sur tous les types de substrat dur même les colonies de coraux vivants. Durant cette mission elle était absente seulement en ST05 et ST12 et proliférait sur toutes les autres stations du canal de la Havannah en proportion conséquente (cependant, peu de colonies coralliennes étaient envahies).

Les cyanobactéries ont un recouvrement à la baisse et/ou reste stable selon les couloirs d'observation. Leur développement reste modéré voir plutôt faible pour l'ensemble des stations, seuls le ST07A demeure élevé avec un niveau 3. Ce niveau récifal a été particulièrement perturbé lors des évènements dépressionnaires et de nombreux coraux ont été cassés ou arrachés. Les cyanobactéries se sont développées sur les colonies affaiblies et sur les débris coralliens.

Les mollusques sont diversifiés mais lors de cette mission une intention particulière a été portée sur le recensement de ce groupe, c'est pourquoi la richesse spécifique a largement augmenté.

Leurs proportions d'abondance sont réduites. Ils ont principalement colonisés les débris coralliens et les anfractuosités de la dalle et des massifs coralliens. Les marques de prédations sur les colonies coralliennes sont minoritaires.

Les ascidies privilégient les milieux agités et elles se sont développées rapidement suite aux dégradations récifales du début d'années 2011. Elles sont très diversifiées et elles ont recolonisé l'ensemble des récifs du canal de la Havannah. Seuls les récifs de Ioro (ST05) et de l'îlot Ugo (ST12) présentent une faible diversité et le niveau bathymétrique ST07A de Chambeyron en est dépourvu.

Les astéries sont également diversifiées : elles ont recolonisé les espaces où les débris coralliens ont augmenté depuis les dégradations mécaniques du début d'année 2011. Cependant, leur abondance est restreinte à 1 ou 3 individus par espèce (variation bathymétrique et large répartition spatiale).

Les espèces prédatrices de corail : L'espèce *Culcita novaeguineae* est absente et l'espèce *Acanthaster planci* a été observée en ST05B (un seul spécimen).

Les holothuries sont moins diversifiées et moins abondanets : lors de la dernière mission, ces organismes étaient concentrés sur les nouveaux débris coralliens à la recherche de nourriture. Désormais ces débris sont recouverts par du turf algal ou des corallines alors ces organismes mobiles ont changé d'environnement (variation bathymétrique et large répartition spatiale).

Les spongiaires ont peu d'évolution (abondance et diversité). Le recouvrement des cliones a tendance à diminuer pour de nombreuses stations (sauf pour ST05B et ST08A). Ces deux stations ont subies de nombreuses dégradations coralliennes en début d'année 2011 et présentent des espèces coralliennes sensibles au développement des cliones (*Porites, Platygyra* et *Acropora*).

Comparaison de la richesse spécifique des Biocénoses (hors coraux)

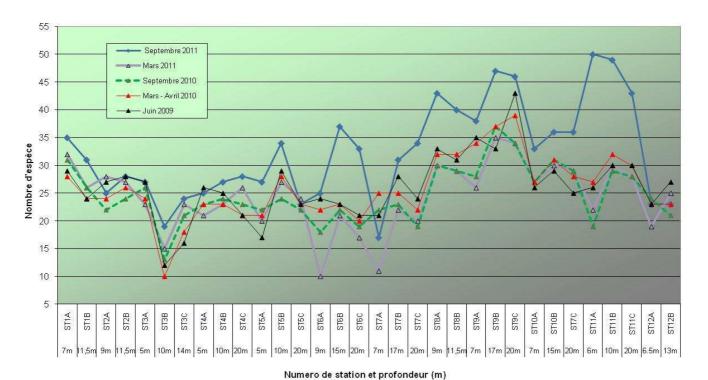


Figure n°78 : <u>Compraison des richesses spécifiques (biocénoses, hors coraux), par station, depuis</u> <u>juin 2009</u>

Tableau n°134 : <u>Récapitulatif du nombre d'espèces inventoriées pour les biocénoses (hors coraux)</u>
dans le canal de la Havannah depuis 2008

Groupe benthique	Octobre 2011	Mars 2011	Depuis 2008
Alcyonaire	9	9	10
Algue brune	3	2	5
Algue rouge	7	4	11
Algue verte	12	11	15
Cyanobactérie	1	1	1
Anémone	5	6	7
Ascidies	17	12	19
Bryozoaire	3	1	3
Astérie	9	7	11
Crinoide	3	3	3
Echinides	5	2	6
Holothurie	6	11	15
Hydraire	3	3	4
Mollusque	34	15	41
Spongiaire	14	13	18
Zoanthaire	2	2	2
TOTAL	133	102	171

Tableau n°135 : <u>Récapitulatif du nombre d'espèces inventoriées de coraux dans le canal de la Havannah depuis 2008</u>

Famille Scléractiniaires	Octobre 2011	Mars 2011	Septembre 2010	Depuis 2008		
Acroporidae	35	35	44	45		
Agaraciidae	14	14	15	16		
Astrocoeniidae	3	3	3	3		
Caryophyllidae	5	5	6	6		
Dendrophyllidae	10	10	10	10		
Faviidae	54	54	56	57		
Fungiidae	18	19	20	20		
Merulinidae	8	7	8	8		
Mussidae	15	15	15	15		
Oculinidae	2	2	2	2		
Pectiniidae	10	9	10	10		
Pocilloporidae	9	9	10	10		
Poritidae	9	9	9	10		
Siderastreidae	8	7	8	8		
Total	200	198	216	220		
Non Scléractiniaires						
Milleporina	3	3	3	3		
Gorgone	3	3	2	3		
Stolonifera	1	1	1	1		
Antipathaire	2	2	2	2		
Total coraux	209	207	224	229		

Tableau n°136 : <u>Récapitulatif du nombre d'espèces inventoriées pour les biocénoses (hors coraux)</u> <u>dans la baie de Prony et le canal Woodin depuis 2008</u>

Groupe benthique	Octobre 2011	Mars 2011	Depuis 2008
Alcyonaire	14	15	16
Algue brune	5	8	8
Algue rouge	3	2	6
Algue verte	6	3	9
Cyanobactérie	1	1	1
Anémone	1	1	1
Ascidies	3	1	6
Bryozoaire	1	1	1
Astérie	5	5	8
Crinoide	2	2	2
Echinides	2	2	2
Holothurie	5	5	10
Hydraire	1	1	1
Mollusque	19	11	23

Spongiaire	10	10	13
Zoanthaire	2	2	2
TOTAL	80	70	109

Tableau n°137 : <u>Récapitulatif du nombre d'espèces inventoriées de coraux dans la baie de Prony et le canal Woodin depuis 2008</u>

Famille Scléractiniaires	Octobre 2011	Mars 2011	Septembre 2010	Depuis 2008		
Acroporidae	28	28	29	33		
Agaraciidae	13	14	14	16		
Astrocoeniidae	2	2	2	2		
Caryophyllidae	2	2	1	3		
Dendrophyllidae	8	8	8	9		
Faviidae	31	32	34	36		
Fungiidae	13	14	14	17		
Merulinidae	5	5	5	5		
Mussidae	10	10	10	11		
Oculinidae	3	2	2	3		
Pectiniidae	8	8	7	10		
Pocilloporidae	7	7	5	7		
Poritidae	9	9	9	9		
Siderastreidae	8	8	8	9		
Total	147	149	148	170		
Non Scléractiniaires						
Milleporina	4	4	4	4		
Gorgone	3	2	2	3		
Stolonifera	1	1	1	1		
Antipathaire	2	2	2	2		
Total coraux	157	158	157	180		

6.2.2.3 « Indicateur de l'état de santé » des récifs de la zone d'étude

Les indicateurs de l'état de santé des récifs de la zone d'étude : les taux d'abondance, mortalité, recrutement et blanchissement sont donnés dans le tableau 138 et la figure 79.

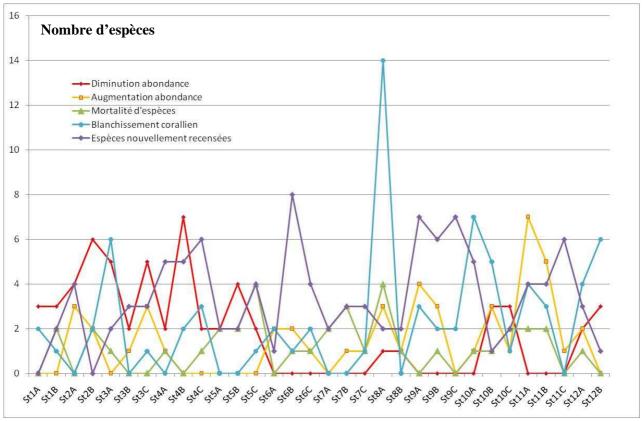


Figure n°79 : <u>Indicateurs de l'état de santé des coraux (abondance, mortalité, recrutement et</u> blanchissement) entre mars 2011et octobre 2011

Le recrutement corallien est estimé à deux niveaux :

- 1) les nouvelles espèces dans le couloir,
- 2) l'augmentation de l'abondance d'une espèce «recrutement de colonies». Le recrutement corallien caractérise l'état de santé des récifs. Les colonies juvéniles (taille inférieur à 5cm) assurent le maintien des populations à l'échelle décennale (capacité de recolonisation et de résilience).
- 1) Les transects présentant le plus de nouvelles espèces coralliennes recensées sont situés dans les niveaux bathymétriques intermédiaire ou bas de pente (ST04C: 6; ST05C: 4, ST06B: 8; ST09B: 6; ST09C: 7; ST11C: 6). On note toutefois du recrutement assez fort de nouvelles espèces pour le transect supérieur du banc Kié (ST09A: 7) qui est très exposé aux agents hydrodynamique mais les espèces nouvellement recensées sont très bien adaptées à ces contraintes comme les gorgones, les millepores et les Faviidae.
- 2) L'augmentation de l'abondance « recrutement de colonies » est interprétée comme étant du recrutement mais les espèces ont déjà été recensées lors du dernier inventaire. Ces variations positives sont réduites et concernent très peu d'espèces en baie de Prony (ST2A et ST3C: 3). Par contre, dans le canal de la Havannah les espèces qui se développent sont plus nombreuses (ST09A: 4, StT1A: 11 et ST11B: 5). Ces espèces sont caractérisées par des formes encroûtantes (Galaxea fascicularis, Hydnophora exesa, Montipora sp., Coscinaraea columna...) ou massives (Cyphastrea serailia, Cyphastrea sp., Leptoria phrygia, Goniastrea australiensis...) pour les niveaux positionnés au sommet des récifs alors que pour les transects intermédiaires les espèces peuvent être également branchues (Seriatopora histrix) ou sub massives (Scapophyllia cylindrica).

La mortalité des coraux est estimée à deux niveaux :

1) la mortalité totale des colonies d'une espèce,

- 2) la diminution d'abondance d'une espèce (l'absence induite par la mobilité des coraux libres est prise en compte et n'est pas considérée comme de la mortalité si les exosquelettes ne sont pas retrouvés).
- 1) La mortalité d'espèces est faible dans les trois systèmes récifaux. Lorsque cette catégorie varie c'est l'intégralité des colonies d'une espèce qui disparait du couloir, généralement les espèces concernées sont en faible proportion : en baie de Prony le maximum est (ST01B : 3), dans le canal Woodin (ST04A et ST04C : 1) et dans le canal de la Havannah le maximum est (ST05C : 4 ; ST07C : 3 ; ST8A : 3)
- 2) La diminution de l'abondance « mortalité de colonies » est interprétée comme étant de la mortalité au sein d'une espèce mais il reste toujours une ou plusieurs colonies dans le couloir. Les couloirs les plus concernés par cette catégorie concernent les trois systèmes récifaux avec une occurrence plus importante dans en baie de Prony et canal Woodin (ST02B : 6; ST03A :5; ST03C : 5; ST04B : 7; ST05B : 4; ST10B :3; ST10C : 3 et ST12B : 3). Les colonies coralliennes de la baie de Prony et du canal Woodin ont été perturbées sur une plus longue période de temps avec un stress beaucoup moins brutal que la destruction mécanique induite par les agents hydrodynamiques dans le canal de la Havannah. C'est pourquoi la réponse de l'état de santé des colonies coralliennes aux perturbations est également décalée entre les trois systèmes.

Le nombre d'espèce influencée par le blanchissement corallien donne des indications de l'état de santé et de l'affaiblissement des récifs. Les colonies blanchies ne sont pas vouées à mourir car leur résilience est importante et elles peuvent réintégrées rapidement leurs zooxanthelles si les conditions environnementales redeviennent « normales ». Des espèces sont également plus résistantes que d'autres et auront également une résilience plus rapide. Cependant il arrive que les espèces subissant un stress durant une période de temps relativement longue ne survivent pas.

Les stations encore concernées par le blanchissement dans la baie de Prony sont située à proximité du port de Goro (petit creek) (ST03A: 6) et dans les niveaux bathymétriques supérieurs soumis aux agents hydrodynamiques dans le canal Havannah (ST08A: 14, ST10A: 10 et ST12B: 6). Ces valeurs sont relativement importantes lorsque l'on considère qu'il n'y a pas eu de nouvel évènement perturbateur depuis le début d'année 2011, hormis une augmentation normale de la température de l'eau (période estivale). Les colonies coralliennes colonisant ces stations ont du mal à retrouver un bon état de santé. Le développement de cyanobactéries sur quelques colonies est également un facteur de ralentissement de la résilience.

Cependant, plusieurs niveaux récifaux montrent des améliorations concernant l'état de santé des colonies corallienne (ST02, ST04A, ST07B, ST09A, ST10B, ST11A & B et ST12A).

Les dégradations récifales dans les trois systèmes sont bien moins importantes que pour la mission de mars 2011 où l'évènement climatique « la Nina » et les évènements dépressionnaires « Vania et Zelia » avaient perturbé considérablement la santé des récifs. Désormais, les récifs se stabilisent avec toutefois de nombreuses séquelles. De tels stigmates sont difficiles à rétablir. Les stations colonisées par des coraux en plus mauvaise état de santé sont ST03, ST04B, ST07A, ST08A, ST10A & B et ST12B (avec des proportions plus importantes dans le canal de la Havannah). A noter que la station ST07A n'est plus caractérisée par du blanchissement ni par une forte mortalité. Cependant, cette station est ajoutée à cette liste car elle a subi de très forts arrachements coralliens lors des dépressions et de nombreux coraux sont désormais à l'état de débris.

Tableau n°138 : <u>Indicateurs de l'état de santé des coraux (abondance, mortalité, recrutement et blanchissement) entre mars 2011et octobre 2011</u>

Station	Diminution abondance coraux	Augmentation abondance coraux	Mortalité corallienne	Recrutement corallien	Blanchissement corallien
01A	0	0	1	1	5
01B	2	0	2	4	1
02A	1	0	3	2	3
02B	1	1	1	3	8
03A	1	1	0	1	7
03B	1	1	0	1	0
03C	0	1	0	4	0
04A	2	2	2	8	6
04B	0	1	0	3	3
04C	0	0	0	0	3
05A	6	0	2	0	3
05B	1	0	0	0	3
05C	0	0	1	2	1
06A	17	0	12	1	3
06B	16	0	1	1	0
06C	6	0	1	6	3
07A	13	0	3	0	3
07B	9	0	1	0	5
07C	1	0	1	3	2
08A	10	0	5	0	10
08B	5	0	3	1	4
09A	10	0	4	0	7
09B	9	0	0	2	6
09C	3	3	0	2	3
10A	22	0	9	4	6
10B	12	0	3	1	6
10C	2	0	1	4	2
11A	6	0	4	1	7
11B	11	0	2	1	8
11C	8	0	1	0	1
12A	7	0	1	4	7
12B	8	0	3	3	11

6.2.3 Evolution globale des stations par rapport à mars 2011

Les particularités de chaque station de suivi environnemental et les variations entre la mission de mars 2011 et celle d'octobre 2011 sont présentées dans le tableau 141.

Tableau n°139 : Evolution du taux de recouvrement du substrat de mars 2011 à octobre 2011 (différence en %)

	S	T01	ST	Γ02		ST03			ST04			ST05			ST06	j		ST07		S	T08		ST09			ST10			ST11		ST	712
	A	В	A	В	A	В	C	A	В	С	A	В	С	A	В	С	A	В	С	Α	В	A	В	C	Α	В	С	Α	В	C	A	В
Macrophytes et invertébrés	-1	14,5	-26	0,5	21,5	5	7,5	32	26	15,5	1,5	-1	0	1	2	50	-3	6,5	38,5	1	-20,5	-7,5	-1	2,5	9	1,5	1	7,5	1	-2	-7	15,5
Coraux sléractinaires	1	0	26,5	3	-2	6	2,5	-7	-6,5	-4	3	4	1,5	-0,5	0	-0,5	4,5	3	-3,5	-1	-2,5	7,5	-2,5	5,5	-8,5	-3,5	0	-7,5	0,5	0	1	-10
Abiotique	0	-14,5	-0,5	-10,5	-19,5	-11	-10	-25	-19,5	-11,5	-4,5	-3	-1,5	-0,5	-2	-49,5	-1,5	-9,5	-35	0	23	0	3,5	-8	-0,5	2	-1	0	-1,5	2	6	-5,5

Code couleur:

Le taux de recouvrement a augmenté en octobre 2011 par rapport à mars 2011

Le taux de recouvrement est équivalent (à +/-20%) entre octobre 2011 et mars 2011

Le taux de recouvrement a diminué en octobre 2011 par rapport à mars 2011

ST01	ST02	ST03	ST04	ST05	ST06	ST07	ST08	ST09	ST10	ST11	ST12
Casy	B. Nord	Port	Woodin	Ioro	Ionontea	Chambeyron	Puka	Bancs Kié	Ilot Kié	Toémo	Ugo

Tableau n°140 : <u>Evolution de la richesse spécifique du benthos de mars 2011 à octobre 2011 (gain/perte en taxa)</u>

	ST	701	S	Γ02		ST03			ST04			ST05	i		ST06			ST07		ST	708		ST09)		ST10			ST11		ST	12
	A	В	A	В	A	В	С	A	В	С	A	В	С	A	В	С	A	В	С	Α	В	A	В	С	A	В	С	Α	В	С	A	В
Macrophytes et invertébrés	7	7	1	2	4	9	6	2	4	7	7	7	-1	15	16	16	6	9	14	13	11	2	10	11	6	6	7	29	20	15	4	-2
Coraux sléractinaires	0	-2	4	-1	1	3	3	3	4	3	0	-3	0	1	7	3	0	2	-1	-1	-1	0	5	7	4	0	-2	3	2	4	2	1
Autres coraux	0	1	0	0	-1	0	1	1	1	1	1	1	0	0	1	0	0	0	1	0	1	3	0	0	0	0	0	-1	0	0	0	0
Richesse taxonomique totale	7	6	5	1	4	12	10	6	9	11	8	5	-1	16	24	19	6	11	14	12	11	5	15	18	10	6	5	31	22	19	6	-1

Code couleur:

La richesse taxonomique a augmenté en octobre 2011 par rapport à mars 2011

La richesse taxonomique est équivalente (à +/-2 taxa prêt) entre octobre 2011 et mars 2011

La richesse taxonomique a diminué en octobre 2011 par rapport à mars 2011

Tableau n°141 : <u>Particularités de chaque station et évolution entre mars 2011 et octobre 2011</u>

Localisation		Station	Particularités des stations	Variations entre la mission de mars 2011 et celle d'octobre 2011
	ST01	Casy	-Hyper sédimentation -Recouvrement corallien faible -Richesse spécifique importante des macrophytes et des alcyonaires -Abondance des algues brunes <i>Lobophora</i> cf. <i>variegata</i> -Compétition spatiale entre les alcyonaires, les éponges encroûtantes et les coraux - Suivi de croissance de 7 colonies de <i>Pocillopora damicornis</i> sur les piquets du transect A	 Richesse spécifique des coraux varie peu Mortalité du genre Caulastrea qui était déjà auparavant peu commun dans cette station Blanchissement corallien faible des espèces sensibles (Seriatopora histrix et Acropora tabulaire) L'ensemble des colonies de Pocillopora damicornis s'édifiant sur les 3 piquets ont une croissance moyenne estimée à 3.35 cm/6 mois Recouvrement de cyanobactéries faible Richesse spécifique des ascidies a augmenté (Polyphyllia aurita et P. nigricans) Richesse spécifique des mollusques a légèrement augmenté (Strombus et Spondylus). Augmentation du recouvrement des éponges du genre Cliona Augmentation saisonnière de Trichogloea requienii (algue rouge) Absence de l'algue brune du genre Sargassum
Baie de Prony	ST02	Creek baie Nord	-Hyper sédimentation : les petites colonies coralliennes ont tendance à s'envaser -Originalité des espèces coralliennes adaptées à un milieu turbide (faible pénétration de la lumière dans l'eau) : croissance rapide, secrétions de mucus et/ou grands polypes pour se dégager de la sédimentation - Présence du genre Anacropora -Richesse spécifique importante des coraux (la plus importante de toutes les stations de suivi environnemental la baie de Prony - STA : 87 espèces ; STB : 69 espèces) -Le recouvrement corallien du transect A est particulièrement représenté par des grands massifs de coraux branchus et celui du transect B est plutôt constitué de petites colonies scléractiniaires éparpillées sur les blocs coralliens -Recouvrement des alcyonaires important (Sarcophyton) -Compétition spatiale importante entre les alcyonaires et les algues brunes et les coraux	 Evolution de la richesse spécifique des coraux : -Nouvelles espèces coralliennes (4 espèces au transect A) -Mortalité de 2 espèces en B, qui n'ont pas été recensées Blanchissement des espèces coralliennes sensibles à l'hypersédimentation : 2 espèces en B Légère augmentation de la richesse spécifique des invertébrés (ascidies et mollusques) Présence de 1 spécimen de Culcita novaeguinea en B Absence de cyanobactéries
	ST03	Port	-Hyper sédimentation -Originalité des espèces coralliennes adaptées à un milieu turbide -Présence en grand nombre de <i>Alveopora</i> spp., <i>Alveopora catalai</i> , <i>Goniopora</i> spp. et <i>Acropora</i> sp. à mi pente -Mortalité corallienne dû à l'envasement et nombreux débris -Blanchissement corallien au niveau bathymétrique supérieur	 Richesse spécifique des coraux a très légèrement augmenté Blanchissement corallien pour le niveau bathymétrique supérieur (8 espèces en A comme en mars 2011) Recrutement corallien plus important (6 espèces sur l'ensemble de la station) Peu de mortalité corallienne Présence de Culcita novaeguineae en C (alternance cyclique de l'étoile de mer en cousin prédatrice des coraux) Recouvrement des cyanobactéries rare en A et absent sur les deux autres transects.
Canal Woodin	ST04	Canal Woodin	-Richesse spécifique des coraux diminue avec la profondeur -Originalité des espèces benthiques adaptées à un milieu d'hydrodynamisme important -Présence en grand nombre de Millepora, Seriatopora histrix et Tubastrea micrantha -Mortalité corallienne et nombreux débris (hydrodynamisme important) -Les colonies coralliennes (Pocilloporidae) ont une croissance importante (Seriatopora histrix, Pocillopora damicornis, Stylophora pistillata)	 Recrutement important d'espèces nouvellement recensées pour les niveaux bathymétriques supérieurs : 5 espèces en A, 5 espèces en B, 6 espèces en C Croissance importante des Millepora, Seriatopora histrix et de Tubastrea micrantha Mortalité et effondrement de quelques colonies de Tubastrea micrantha en B et C Blanchissement corallien modéré pour les niveaux bathymétriques médian et inférieur (Montipora sp. et Tubastrea micrantha) Augmentation de l'abondance des éponges Cliona à la défaveur des coraux en B et C Développement devenu modéré de Cymbastella cantharella (éponge), de Hamigera strongylata (éponge) et de Alcyionidium sp. (bryozoaire) Les hydraires se développent de manière homogène sur l'ensemble du récif L'abondance des crinoïdes est très importante en C

Localisation		Station	Particularités des stations	Variations entre la mission de mars 2011 et celle d'octobre 2011								
	ST05	Ioro	-Originalité des peuplements coralliens adaptés à un milieu d'hydrodynamisme soutenu (courants de marée) -Présence en grand nombre de <i>Porites</i> massifs et branchus (diversité des Poritidae), <i>Millepora</i> , <i>Tubastrea micrantha</i> et d'une grande colonie pluri métrique de <i>Diploastrea heliopora</i> et <i>Turbinaria reniformis</i> - Mortalité corallienne et nombreux débris -Sédimentation (pluie carbonatée) -Colonisation spatiale des spongiaires sur les coraux. Les spongiaires (<i>Cliona jullienei</i> et <i>C. orientalis</i>) sont relativement bien développées et colonisent les massifs coralliens vivants et les blocs coralliens	 Recrutement d'espèces nouvellement recensées : 2 espèces en A, 2 espèces en B et 4 espèces en C Mortalité des scléractiniaires : 4 espèces en A, 2 espèces en A et 4 espèces en C Diminution de l'abondance des coraux : 5 espèces en A, 6 espèces en B et 2 espèces en C Le blanchissement est observé en petite proportion sur le transect inférieur (1 espèce en C) Présence rare des cyanobactéries (transects A et B) Variation de niveau bathymétrique des échinodermes (échinides, holothuries) Présence d'Acanthaster planci en B (également présente lors de la dernière mission et attaquancienne à plusieurs années) Diminution de la richesse spécifique des holothuries 								
đ	ST06	Ionotea	-Originalité des peuplements coralliens adaptés à un milieu d'hydrodynamisme important (courants de marée) -Présence de grandes colonies de Porites massifs à mi pente (10 m de profondeur) -Nombreux coraux tabulaires retournés -Mortalité corallienne et nombreux débris -Les spongiaires (Cliona jullienei et C. orientalis) se développent relativement bien et colonisent les blocs coralliens et les massifs coralliens vivants	 Lors de la mission de mars 2011 les communautés benthiques étaient dégradées sur l'ensemble de la station et plus particulièrement en A (cause hydrodynamisme important) Augmentation de la biodiversité des coraux (1 espèce en A, 8 espèce en B, 4 espèce en C) Les coraux recolonisent progressivement la dalle et les débris corallien Diminution de la biodiversité des coraux : 1 espèce en B (mobilité), 1 espèce en C Blanchissement corallien (2 espèces en A, 1 espèce en B et 2 espèces en C) Richesse spécifique des macrophytes varie selon la saison Légère augmentation du recouvrement de cyanobactéries <i>Phormidium</i> sp (transect A : absence) Prédation des mollusques (<i>Drupella cornus</i>) sur 2 colonies coralliennes en B Evolution bathymétrique et spécifique des holothuries et astéries Augmentation de la biodiversité des ascidies 								
Canal Havannah	ST07	Basse Chambeyron	-Originalité des peuplements coralliens adaptés à un milieu d'hydrodynamisme important (courants de marée) et taille relativement petite des colonies -Mortalité corallienne importante: couloir d'avalanche avec nombreux débris et coraux tabulaires retournés de chaque côté des transects -Les spongiaires (Cliona jullienei et C. orientalis) sont relativement bien développées et colonisent les blocs coralliens et les massifs coralliens vivants -Présence de Blastomussa wellsi aux transects B et C (espèce rare) -Mobilité bathymétrique des échinodermes (astéries, holothuries, échinides) et des mollusques -Richesse spécifique des macrophytes varie selon la saison -Prédation des mollusques (Druppela cornus) sur quelques coraux tabulaires en B et C	 Durant la dernière mission de mars 2011, les dégradations coralliennes étaient importantes de nombreuses holothuries se répartissaient sur les nouveaux débris. Maintenant les holothuries sont déplacées et on note une baisse de la diversité pour ce groupe biotique Recolonisation des communautés benthiques sur l'ensemble de la station et plu particulièrement des algues rouges, des ascidies, des crinoïdes et des mollusques Présence de colonies coralliennes juvéniles sur les 3 transects Blanchissement corallien rare observé sur une colonie de <i>Porites</i> en C Les cyanobactéries ont un développement modéré sur l'ensemble de la station 								
	ST08	Puka	-Richesse spécifique corallienne élevée au pied des éperons et au début de la pente sédimentaire -Croissance de grandes colonies de Porites lobata (avec quelques tumeurs) -Présence de Tubipora musica au transect B -Mortalité importante des coraux depuis la mission de mars 2011 (tempête tropicale Vania) -Recrutement corallien (colonies coralliennes juvéniles) -Encroûtement de quelques colonies coralliennes vivantes par les spongiaires (Cliona jullienei et C. orientalis)	 Dégradation des communautés benthiques sur l'ensemble de la station et plus particulièrement en A (cause hydrodynamisme important) Blanchissement corallien (14 espèces en A) Coraux tabulaires retournés et nombreux débris coralliens Diminution de la biodiversité des coraux (4 espèces en A, 3 espèce en B) Diminution du recouvrement en cyanobactéries Prédation des mollusques (Drupella cornus) sur quelques colonies coralliennes en A et B Augmentation de la diversité des ascidies en A 								
	ST09	Banc de Kié	-La pente récifale est abrupte et la dalle est arasée par les courants de marée et la houle	 Recolonisation des coraux depuis les dégradations observées lors de la dernière mission Planchissement corallien modéré (7 espèces en A 6 espèces en B et 3 espèces en C) 								

Localisation		Station	Particularités des stations	Variations entre la mission de mars 2011 et celle d'octobre 2011
			-Les macrophytes ont un recouvrement et une richesse spécifique élevée -Saisonnalité des algues (vertes, brunes et rouges) -La richesse spécifique des ascidies est très élevée -Les alcyonaires ont un recouvrement important (Lobophytum) et une richesse spécifique élevée -Les crinoïdes affectionnent ce milieu balayé par les courants de marée -Présence de cyanobactéries (Phormidium sp.) -Absence des algues brunes	 Augmentation du recouvrement des algues rouges Recrudescence des ascidies pour tous les niveaux bathymétriques Diminution du recouvrement des cyanobactéries Absences des holothuries en A et C et deux spécimens en B
	ST10	Ilot Kié	-La richesse spécifique et le recouvrement des coraux sont élevés -Recrutement corallien (colonies coralliennes juvéniles) -La richesse spécifique des coraux a légèrement augmenté -Présence rare de Gardineroseris planulata -Abondance du genre corallien Goniopora -Les crinoïdes sont abondantes -Marques de nécroses sur les alcyonaires Lobophytum (prédation présumé de Ovula ovum) -Dégradation des communautés benthiques sur l'ensemble de la station lors des évènements dépressionnaires du début d'année 2011	 Régénérescence du récif par les communautés benthiques Mortalité des espèces coralliennes faible Edification de nouvelles espèces coralliennes Les cyanobactéries ont un développement modéré sur les nouveaux débris coralliens et en diminution depuis la dernière mission Blanchissement corallien modéré mais sur plusieurs espèces (7 espèces en A, 5 espèces en B et 1 espèce en C)
	ST11	Toémo	-Dégradation des communautés benthiques sur l'ensemble de la station et plus particulièrement en A (cause hydrodynamisme important en début d'année 2011) -Présence de Gardineroseris planulata et Blastomussa wellsi -Les conditions hydrodynamiques sont soutenues (courant, ressac, houle) -Accumulation des débris corallien et de roches en bas de pente -Les scléractiniaires développent des morphologies robustes -La richesse spécifique des coraux est relativement élevée pour les niveaux bathymétriques supérieurs et plus importante en B que en A (dégradation en sommet de récif par les agents hydrodynamiques intenses) -Les ascidies sont variées et abondantes -Les spongiaires sont abondantes (Cliona) et variées surtout en bas de pente récifale -Les alcyonaires ont un recouvrement relativement élevé -Aucune holothurie ne colonise le haut du récif	 Saisonnalité des algues rouges (recolonisation) Diminution du recouvrement des cyanobactéries La mortalité corallienne s'est stabilisée Recolonisation corallienne faible Recolonisation et richesse spécifique importante des ascidies, des astéries, des mollusques et échinides Blanchissement corallien faible
	ST12	Ugo	-Croissance de grandes colonies des Poritidae (Porites sp., Alveopora sp et Goniopora sp.), Acroporidae (Acropora spp.) et Faviidae (Lobophyllia corymbosa) -Mortalité corallienne et nombreux débris (couloir d'effondrement) -Massifs de Goniopora sp. en bonne santé -Richesse spécifique des alcyonaires faible mais recouvrement important de Sarcophyton -Les spongiaires (Cliona jullienei et C. orientalis) sont relativement bien développées et colonisent les massifs coralliens vivants et les blocs coralliens -Pas d'Acanthaster planci sur la station	 Stabilisation des communautés benthiques Faible mortalité des coraux (1 espèces en A) Recouvrement algale très faible Diversité des ascidies faible Absence des astéries et des holothuries (A et B) Régression des cyanobactéries (<i>Phormidium</i> sp.) sur l'ensemble de la station Blanchissement corallien faible en A (4 espèces) et modéré en B (6 espèces)

6.3 Ichtyologie

Les pages qui suivent présentent les résultats obtenus en mars 2011 sur le peuplement de poissons et les comparent aux résultats des missions précédentes qui lui sont comparables (avec quelques réserves : cf. tableau 175 annexe 02) à savoir celles de 2007, 2008, 2009, 2010 et mars 2011.

Les données 2005 ne sont pas reprises ici, mais elles sont disponibles toutefois dans un des rapports précédents (de 2008 [08]).

La méthode est celle demandée par la DENV. C'est-à-dire la méthode des Transects à Largeur Variable (TLV). Bien que la DENV n'impose le repérage que de quelques espèces (cf. tableau 174 annexe 01), nous avons procédé à un repérage exhaustif et retiré dans un premier temps les espèces qui ne sont pas dans la liste.

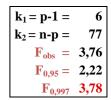
La première partie du travail porte sur cette liste restreinte. La deuxième partie porte sur la liste totale et développe plus particulièrement les aspects de biodiversité.

Dans tous les tests suivants la station Ugo (ST12) est incluse en donnant aux missions 2007 et 2008, alors qu'elle n'était pas encore échantillonnée, la valeur moyenne des missions suivantes.

6.3.1 Comparaisons temporelles « liste restreinte »

Les données quantitatives par station de la partie précédente sont des données conjoncturelles uniques, donc non statistiques et de plus affectées d'une forte variabilité et de nombreux biais, dus aux comportements des poissons. Cela obère toute comparaison spatiale annuelle signifiante.

En revanche, la prise en considération de l'ensemble des stations de la zone donne une série statistique exploitable permettant une analyse temporelle. Toutefois, la puissance de cette analyse est lourdement entravée par un choix de stations très hétérogènes : baie de Prony contre canal de la Havannah, et même au sein du canal de la Havannah, des stations sur des bancs à fort courant, des stations exposées aux alizés et d'autres au contraire protégées et donc à plus faible hydrodynamisme.


Analyse temporelle (ANOVAR)

6.3.1.1 La densité

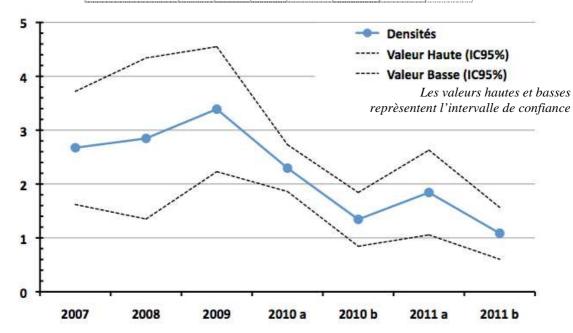

L'analyse des variances de la densité pour les 7 campagnes (cf. tableau 142) montre une similarité, mais que à une valeur de F à 0.997.

Tableau n°142 : <u>Analyse de la Variance des densités moyennes (ind./m²) par station sur toutes les campagnes</u>

Années	2007	2008	2009	2010 a	2010 b	2010 a	2010 b
Stations		D	ensité	moy. (tr	ansects	ABC)	
Ilot CASY	2,63	0,87	3,5	0,93	0,33	0,30	0,36
CREEK	1,12	1,76	1,49	1,68	1,41	0,61	1,18
Le PORT	1,59	0,92	3,03	1,95	0,31	0,86	0,22
WOODIN	5,45	2,71	4,07	3,38	0,84	2,11	0,95
Banc IORO	0,73	2,02	4,09	2,37	1,23	1,56	0,81
IONONTEA	2,45	2,99	1,17	2,05	1,91	2,23	0,75
Banc B. CHB	1,78	2,73	0,91	2,66	1,79	1,62	1,05
Point PUKA	2,32	1,84	3,5	3,05	0,46	0,68	1,30
Banc KIE	4,13	4,21	4,01	1,66	1,35	1,81	1,42
Ilot KIE	5,57	9,37	8,3	2,94	3,46	5,47	3,48
Récif TOEMO	1,64	1,9	3,12	1,86	1,59	2,50	0,90
Ilot UGO	2,18	2,18	3,49	3,01	1,44	2,36	0,60
n	11	11	12	12	12	12	12

Moy.	2,67	2,85	3,39	2,30	1,34	1,84	1,09
Ecart type	1,66	2,36	1,92	0,73	0,864	1,36	0,834
Int. de conf ±	1,05	1,49	1,16	0,44	0,499	0,79	0,481
Coef. de Var	0,62	0,83	0,57	0,32	0,64	0,74	0,77

Cet exercice peut être refait en séparant les stations en deux lots : celles de la baie de Prony et celles situées dans la Canal de la Havannah.

Pour les 3 stations de la baie de Prony, l'analyse des variances de la densité pour les différentes campagnes (cf. tableau 143) montre une similarité, mais que à une valeur de F à 0.990.

Pour les 9 stations du Canal de la Havannah, l'analyse des variances de la densité pour les différentes campagnes (cf. tableau 144) montre une similarité, à une valeur de F à 0.985.

Tableau n°143 : <u>Analyse de la Variance des densités moyennes (ind./m²) pour les stations de la baie</u>
<u>de Prony sur toutes les campagnes</u>

Baie de PRONY	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
n	3	3	3	3	3	3	3
Moy.	1,78	1,18	2,67	1,52	0,68	0,59	0,59
Ecart type	0,77	0,50	1,05	0,53	0,63	0,28	0,52
Int. de conf ±	0,89	0,58	1,21	0,61	0,73	0,32	0,60

$k_1 = p-1 =$	6
$\mathbf{k}_2 = \mathbf{n} - \mathbf{p} =$	14
$\mathbf{F}_{\mathbf{obs}} =$	4,19
$\mathbf{F}_{0,950} =$	2,85
$\mathbf{F}_{0,990} =$	4,46

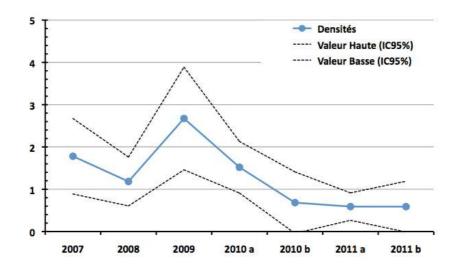
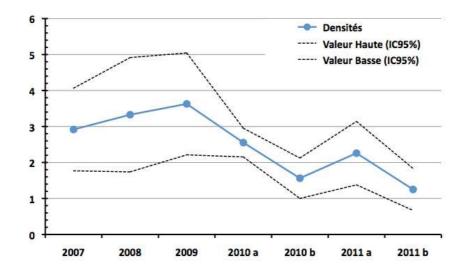
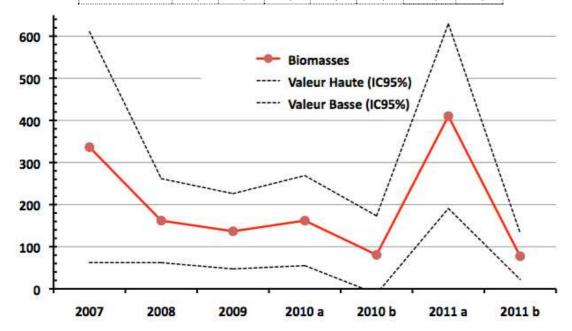



Tableau n°144 : <u>Analyse de la Variance des densités moyennes (ind./m²) pour les stations du canal de la Havannah sur toutes les campagnes</u>

Canal	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
n	9	9	9	9	9	9	9
Moy.	2,92	3,33	3,63	2,55	1,56	2,26	1,25
Ecart type	1,72	2,38	2,12	0,60	0,84	1,32	0,87
Int. de conf ±	1,15	1,59	1,42	0,40	0,56	0,88	0,58

$k_1 = p-1 =$	6
$\mathbf{k}_2 = \mathbf{n} - \mathbf{p} =$	56
$\mathbf{F}_{\mathrm{obs}} =$	2,90
$\mathbf{F}_{0,950} =$	2,27
$\mathbf{F}_{0,985} =$	2,92


6.3.1.2 La biomasse

L'analyse des variances de la biomasse pour les 7 campagnes (cf. tableau 145) montre une similarité, mais que à une valeur de F à 0.997.

Tableau n°145 : <u>Analyse de la Variance des biomasses (g/m²) moyennes par station sur toutes les campagnes</u>

Années	2007	2008	2009	2010 a	2010 b	2010 a	2010 b
Stations		Bio	masse r	noy. (tra	nsects A	BC)	
Ilot CASY	14,86	6,68	13,08	5,79	2,30	1,01	3,97
CREEK	5,46	26,05	6,73	6,71	4,23	60,95	100,16
Le PORT	14,73	14,05	4,55	5,13	1,26	19,13	1,50
WOODIN	408,31	267,8	456,26	460,91	38,60	730,66	65,36
Banc IORO	47,65	57,97	315,96	93,78	37,89	661,47	41,01
IONONTEA	1322,4	385,65	226,52	487,76	92,96	687,65	76,87
Banc B. CHB	155,24	146,76	57,4	84,96	103,51	855,00	71,29
Point PUKA	67,39	87,54	53,22	57,64	11,73	28,27	39,78
Banc KIE	607,71	273,92	62,69	303,36	10,62	593,06	118,86
Ilot KIE	881,82	451,97	291,1	298,4	576,45	1014,91	357,27
Récif TOEMO	174,47	61,85	79,63	75,42	75,08	188,39	38,56
Ilot UGO	57,60	57,60	73,03	63,58	13,93	79,86	14,12
n	11	11	12	12	12	12	12
Moy.	336,37	161,84	136,68	161,95	80,71	410,03	77,40
Ecart type	433,55	157,78	148,28	177,31	160,26	379,75	95,42
Int. de conf ±	274,20	99,79	89,41	106,92	92,53	219,25	55,09
Coef. de Var	1,29	0,97	1,08	1,09	1,99	0,93	1,23

 $k_1=p-1$ 6 $k_2=n-p$ 77 $F_{obs} = 3,01$ $F_{0,950} = 2,22$ $F_{0,997} = 3,78$

Cet exercice peut être refait en séparant les stations en deux lots : celles de la baie de Prony et celles situées dans la Canal de la Havannah.

Pour les 3 stations de la baie de Prony, l'analyse des variances de la biomasse pour les différentes campagnes (cf. tableau 146) montre une similarité, à une valeur de F à 0.950.

Pour les 9 stations du Canal de la Havannah, l'analyse des variances de la biomasse pour les différentes campagnes (cf. tableau 147) montre une similarité, mais que à une valeur de F à 0.997.

Tableau n°146 : <u>Analyse de la Variance des biomasses (g/m²) moyennes pour les stations de la baie de Prony sur toutes les campagnes</u>

Baie de PRONY	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
n	3	3	3	3	3	3	3
Moy.	11,68	15,59	8,12	5,88	2,59	27,03	35,21
Ecart type	5,39	9,78	4,43	0,79	1,51	30,74	56,26
Int. de conf ±	6,22	11,29	5,12	0,92	1,74	35,50	64,97

$$\begin{array}{lll} k_1 = p\text{-}1 = & 6 \\ k_2 = n\text{-}p = & 14 \\ F_{obs} = & 0.70 \\ F_{0.950} = & 2.85 \end{array}$$

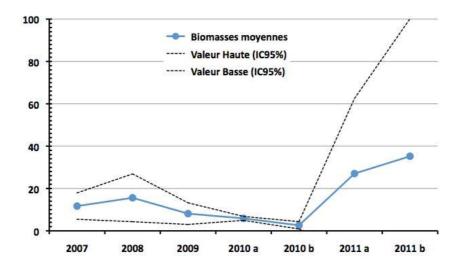
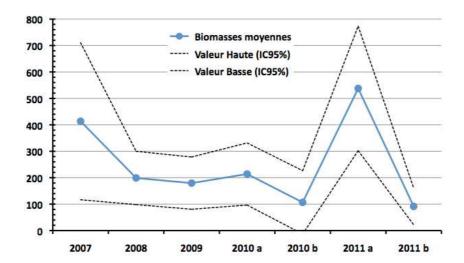



Tableau n°147 : <u>Analyse de la Variance des biomasses (g/m²) moyennes pour les stations du canal de la Havannah sur toutes les campagnes</u>

40000000000000000000000000000000000000							
Canal	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
n	9	9	9	9	9	9	9
Moy.	413,62	199,01	179,53	213,98	106,75	537,70	91,46
Ecart type	445,44	151,25	148,19	176,21	179,62	353,14	104,10
Int. de conf ±	296,96	100,84	98,80	117,47	119,74	235,43	69,40

$$\begin{aligned} k_1 &= p\text{-}1 = & 6 \\ k_2 &= n\text{-}p = & 56 \\ F_{\text{obs}} &= & 3,90 \\ F_{0,950} &= & 2,27 \\ F_{0,997} &= & 3,91 \end{aligned}$$

6.3.1.3 La biodiversité

Définitions:

La biodiversité est une donnée semi-quantitative.

On définit 3 niveaux de biodiversité :

- $\$ La biodiversité dite α (B α) est le nombre d'espèces n présentes sur une station i : B α i = ni
- La biodiversité β (B_{β}) est la diversité des valeurs de diversités α ; soit en d'autres termes la diversité des stations qui caractérisent la zone étudiée
- La biodiversité γ (B $_{\gamma}$) est la biodiversité totale de la zone, en d'autres termes, la réunion des biodiversités α obtenues sur l'ensemble p des stations choisies pour caractériser la zone :

 $B\gamma = \bigcup B\alpha ii$

Nous ne considérons ici toujours que les espèces repérées figurant dans la liste restrictive du cahier des charges. La portée informative de cette liste volontairement tronquée est bien sûr très limitée et ne représente pas une réelle biodiversité.

L'analyse des variances de la biodiversité pour les 7 campagnes (cf. tableau 148) montre une similarité (valeur de F).

Cet exercice peut être refait en séparant les stations en deux lots : celles de la baie de Prony et celles situées dans la Canal de la Havannah.

Pour les 3 stations de la baie de Prony, l'analyse des variances de la biodiversité pour les différentes campagnes (cf. tableau 149) montre une similarité, à une valeur de F à 0.950.

Pour les 9 stations du Canal de la Havannah, l'analyse des variances de la biodiversité pour les différentes campagnes (cf. tableau 150) montre une similarité, à une valeur de F à 0.980.

Tableau n°148 : <u>Analyse de la Variance des biodiversités par station sur toutes les campagnes</u>

Années	2007	2008	2009	2010 a	2010 b	2010 a	2010 a
Stations		Biod	liversit	é moy. (1	transects	s ABC)	
Ilot CASY	16	9	11	13	11	12	13
CREEK	6	12	9	10	8	13	16
Le PORT	15	14	9	10	11	16	13
WOODIN	37	39	35	54	26	64	42
Banc IORO	22	30	44	42	24	56	43
IONONTEA	45	41	31	44	37	51	46
Banc B. CHB	33	44	29	45	38	46	43
Point PUKA	28	30	28	29	14	26	33
Banc KIE	36	32	35	34	28	39	48
Ilot KIE	46	37	49	52	67	59	58
Récif TOEMO	29	39	31	43	44	51	48
Ilot UGO	28	28	23	41	18	30	25
n	11	11	12	12	12	12	12
Moy.	28,45	29,73	27,83	34,75	27,17	38,58	35,67
Ecart type	12,71	12,46	12,97	15,81	17,17	18,67	15,35
Int. de conf \pm	8,04	7,88	7,82	9,54	9,91	10,78	8,86
Coef. de Var	0,45	0,42	0,47	0,45	0,63	0,48	0,43

 $k_1=p-1$ 6 $k_2=n-p$ 77 $F_{obs} = 1,09$ $F_{0.05} = 2.22$



Tableau n°149 : <u>Analyse de la Variance des biodiversités pour les stations de la baie de Prony sur toutes les campagnes</u>

Baie de PRONY	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
n	3	3	3	3	3	3	3
Moy.	12,33	11,67	9,67	11,00	10,00	13,67	14,00
Ecart type	5,51	2,52	1,15	1,73	1,73	2,08	1,73
Int. de conf ±	6,36	2,91	1,33	2,00	2,00	2,40	2,00

$k_1 = p-1 =$	6
$\mathbf{k}_2 = \mathbf{n} - \mathbf{p} =$	14
$\mathbf{F}_{\mathbf{obs}} =$	1,16
$\mathbf{F}_{0,950} =$	2,85

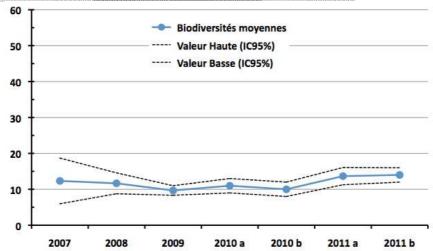
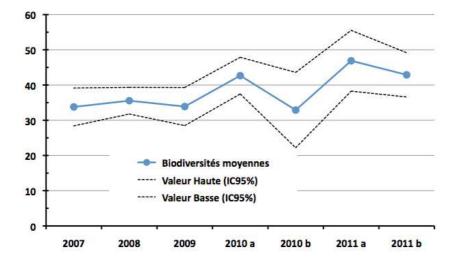



Tableau n°150 : <u>Analyse de la Variance des biodiversités pour les stations du canal de la Havannah sur toutes les campagnes</u>

Canal	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
n	9	9	9	9	9	9	9
Moy.	33,78	35,56	33,89	42,67	32,89	46,89	42,89
Ecart type	8,06	5,68	8,12	7,81	16,04	12,95	9,41
Int. de conf \pm	5,37	3,79	5,41	5,21	10,69	8,63	6,28

$$\begin{aligned} \mathbf{k}_1 &= \mathbf{p}\text{-}\mathbf{1} = & \mathbf{6} \\ \mathbf{k}_2 &= \mathbf{n}\text{-}\mathbf{p} = & \mathbf{56} \\ \mathbf{F}_{\mathrm{obs}} &= & \mathbf{2,71} \\ \mathbf{F}_{0,950} &= & \mathbf{2,27} \\ \mathbf{F}_{0,980} &= & \mathbf{2,71} \end{aligned}$$

Les données quantitatives sont obtenues sans répliquat et sont donc sans intervalle de confiance. Les stations ne peuvent donc être comparées individuellement, ni entre elles, ni d'une année sur l'autre.

Seule la considération de l'ensemble des stations de la zone comme une série statistique permet le calcul d'un intervalle de confiance. Avec ce subterfuge la comparaison temporelle de la zone (et uniquement temporelle) peut alors être faite. Toutefois, la puissance de cette analyse est lourdement entravée par l'hétérogénéité des stations et les fortes variances que cette hétérogénéité entraîne.

Les 2 analyses précédentes sur la densité et la biomasse montrent une dissemblance entre les variances en colonne et la variance globale du tableau : $F_{obs} > F_{0.95}$. Cela indique de grandes fluctuations interannuelles.

- En ce qui concerne la <u>densité</u>, ce résultat nouveau est dû au fait qu'avec cette dernière mission la série historique se divise résolument en deux, une partie avec des valeurs hautes 2007-08-09 et une partie avec des valeurs basses 2010b-11a-11b. Compte tenu de la méthode TLV c'est essentiellement la position des bancs, de *Caesio* notamment, par rapport à la ligne de transect qui est responsable de ce résultat. Les Sprats, abondant en 2011 a, ne sont pas dans la liste restreinte.
- En ce qui concerne la <u>biomasse</u> ce résultat n'est pas nouveau et il est dû en partie au poids des années 2007 et surtout à 2011a, où de nombreux prédateurs ont été attirés par les Sprats. Mais comme nous le développons en fin de conclusion de cette première partie, toutes ces fluctuations n'ont peut-être aucune explication rationnelle attendu qu'elles seraient le résultat artéfactuel du rythme des missions et de la méthode.

Nous avons dissocié les résultats de la baie de Prony de ceux du Canal de la Havannah. Seule la biomasse en baie de Prony semble stable. Mais ce résultat statistique ne porte que sur trois stations, donc trois valeurs et les deux dernières mission 2011 sont entachées d'une variance énorme ce qui minore considérablement la portée heuristique de ces résultats.

Le paramètre de biodiversité est stable sur l'ensemble de la zone. Mais la décomposition entre baie de Prony et Canal de la Havannah, montre en fait que dans ce dernier cas la biodiversité n'est stable qu'en baie de Prony. Elle l'est moins dans le Canal de la Havannah.

Tests non paramétriques

Deux types de tests de rangs sont utilisés ici : celui de Kruskal & Wallis (test inscrit dans le cahier des charges) et celui de Friedman. Le premier considère *a priori* qu'il n'y a pas de structure en ligne ou en colonne dans le tableau de données et vise à vérifier cette hypothèse, c'est-à-dire à montrer que toutes les stations, ou toutes les années, selon le sens du tableau, sont identiques et les valeurs mesurées interchangeables. Le second considère *a priori* qu'il y a une structure en ligne (par station) ou en colonne (par année) et vise à vérifier cette hypothèse.

6.3.1.4 Test de X² de rangs Kruskal-Wallis

Le test de Kruskal & Wallis n'est praticable que dans le cas de plusieurs échantillons indépendants. On peut considérer en effet, que les échantillons « stations » (test en ligne sur les tableaux 142, 145 et 148) sont indépendants. Et l'on peut également considérer que les échantillons « années» (test en colonne sur les mêmes tableaux) sont indépendants... ou pas (cf. alors le § 6.3.1.5 sur le test de Friedman).

Dans sa finalité, ce test de rangs double en théorie les ANOVAR précédentes. Le classement en rang est global sur l'ensemble du tableau et la somme des rangs est faite en colonne (années) ou en ligne (stations). Ce test est donc sensé révéler l'homogénéité du tableau, soit en d'autres termes la similarité des séries de données annuelles (somme en colonne), ou la similarité des séries de données stations (somme en ligne). La similarité étant le cas où les rangs seraient distribués dans le tableau de manière aléatoire.

C'est donc une analyse de la variance, mais contrairement au test paramétrique précédent (ANOVAR), les valeurs mesurées, qui peuvent s'échelonner de 1 à 1 000 pour les biomasses par exemple ou au contraire de 0,5 à 5,0 pour les densités, seront ici et quel que soit le paramètre, échelonnées de 1 à 84, ce qui n'est pas sans effet sur la sensibilité du test. C'est un peu comme si on transformait en % les valeurs d'un tableau d'occurrences avant de pratiquer un test de $\chi 2$ classique.

Tableau n°151 : <u>Analyse non-paramétrique sur la densité, biomasse, biodiversité ichtyologiques (en colonnes)</u>

Paramètres de	DENSITE	BIOMASSE	BIODIVERSITE		
$\chi_{2 \text{ obs}} =$	26.3	9.8	7.6		
Le χ2 tabulé à 95% -	12.6	pour un ddl de $p-1 = 6$			
Le χ2 tabulé à 99,99% -	24.1	pour un ddl de $p-1 = 6$			

Sous l'angle de vue temporel (colonnes) la biomasse et la biodiversité sur la zone apparaissent stables (cf. tableau 145) d'année en année. En revanche, le test sur les densités montre une distribution organisée, sans doute due au contraste entre les valeurs obtenues lors des 3 dernières missions et celles obtenues au cours des 3 premières. Ce n'est pas le cas pour la biomasse et la biodiversité.

 $Tableau\ n°152: \underline{Analyse\ non-param\'etrique\ sur\ la\ densit\'e,\ biomasse,\ biodiversit\'e\ ichtyologiques\ (en\underline{lignes})}$

Paramètres de	DENSITE	BIOMASSE	BIODIVERSITE		
$\chi_{2 \text{ obs}} =$	26.4	56.3	62.8		
Le χ2 tabulé à 95% -	19.7	pour un ddl de p-1 = 11			
Le χ2 tabulé à 99,99% -	28.8	pour un ddl de p-1 = 11			

Sous l'angle de vue spatial (lignes), l'hypothèse Ho d'homogénéité est rejetée pour les 3 paramètres.

6.3.1.5 Test de X² de rangs Friedman

Le test de Friedman [09] est adapté aux cas de plusieurs échantillons *non-indépendants*. On peut considérer en effet, que les échantillons « stations » (test en ligne sur les tableaux 142, 145 et 148) ne sont pas indépendants, dans la mesure où ils sont issus d'un dispositif expérimental faisant un choix aléatoire complet. C'est-à-dire que, par exemple, les stations de la Havannah ont été positionnées au hasard autour du tuyau et pas choisies pour des critères d'indépendance les unes par rapport aux autres. Et l'on peut également considérer que les échantillons « années» (test en colonne sur les mêmes tableaux) ne sont pas indépendants si l'on suppose que la présence d'un poisson quelque part n'est pas un phénomène éphémère, mais la conséquence de causes qui s'établissent sur plusieurs années. L'année étant notre unité de temps.

Le test de Friedman a donc sans doute dans notre cas plus d'intérêt que celui de Kruskal & Wallis.

Ce test, appelé «test en blocs aléatoires complets », a pour préalable d'ordonner les résultats des différents traitements à l'intérieur de chaque bloc préétablis. Dans notre cas, nous considèrerons :

- soit (1) que les « traitements » sont les conditions environnementales propres à chacune des années de la série historique et que les « blocs » sont les stations qui sont chaque année réévaluée, et dans ce cas, ce sera une analyse en colonnes,
- soit (2) en prenant le tableau dans l'autre sens, et les « traitements » sont alors les disparités que présentent chaque station et les « blocs » les années et dans ce cas ce sera une analyse en lignes.

$$\chi_{\text{obs}} = 12/pq(p+1). \Sigma Y_i^2 - 3q(p+1)$$

p et q désignant respectivement le nombre d'années (donc de colonnes) et le nombre de stations (donc de lignes).

Le degré de liberté ddl = p-1 donc soit 6 pour (p) soit 11 pour (q)

L'hypothèse (H₀) du test (1) est donc de s'assurer que les variations observées d'année en année au niveau de chacune des stations sont bien aléatoires et donc pour chacune, le fruit du hasard et non qu'il existerait au cours du temps, une tendance globale à la hausse ou à la baisse des valeurs des paramètres choisis pour caractériser ces stations.

Pratiquement, et contrairement au test de Kruskal-Wallis pour lequel les rangs sont effectués chaque année, donc en colonne, les rangs sont ici effectués en ligne, ce qui ordonne chaque station dans le temps.

Tableau n°153 : <u>Analyses non paramétriques Friedman (analyse en colonne)</u>

Paramètres de	DENSITE	BIOMASSE BIODIVERSI				
$\chi_{2 \text{ obs}}$	5,7	29,1	28,2			
χ2 tab 0,95	12,6	pour un ddl de $p-1=6$				
χ2 tab 0,999	22,5	pour un ddl de $p-1=6$				

L'Ho d'identité de colonnes n'est vérifiée que sur la densité et ce test rejette lourdement l'Ho des deux autres paramètres. Bien que ce ne soit pas franchement en contradiction avec le tableau 151, puisque l'analyse de Kruskal-Wallis ordonne tout le tableau, l'interprétation comparative est malgré tout, difficile.

L'hypothèse (Ho) du test (2) est de s'assurer que les variations observées de station en station au niveau de chacune des années sont aléatoires ... et pas, qu'il existerait dans l'espace, une différence ou gradient à la hausse ou à la baisse des valeurs des paramètres choisis pour caractériser ces années.

Tableau n°154 : <u>Tableau n°17-2 : Analyses non paramétriques Friedman (analyse en ligne)</u>

Paramètres de	DENSITE	BIOMASSE	BIODIVERSITE			
χ2 obs	34,9	58,4	60,9			
χ2 tab 0,95	19,7	pour un ddl de p-1 = 11				
χ2 tab 0,999	31,3	pour un ddl de p-1 = 11				

En revanche, ici le rejet est total et le résultat s'accorde avec celui du tableau 152. Le suivi temporel montre des stations très différentes les unes des autres.

Etant donné ce dernier résultat, nous avons cherché à regrouper les stations « logiquement » similaires, c'està-dire celles de la baie de Prony et celles du canal de la Havannah.

Tableau n°155 : Analyses non paramétriques Friedman (analyse en ligne) sur les stations de Prony

Paramètres de	DENSITE	BIOMASSE	BIODIVERSITE			
$\chi_{2 \text{ obs}}$	0,3	1,9	0,1			
χ2 tab 0,95	5,99	pour un ddl de p-1 = 2				

Tableau n°156 : <u>Analyses non paramétriques Friedman (analyse en ligne) sur les stations du canal</u> de la Havannah

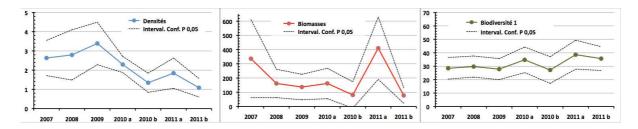
Paramètres de	DENSITE	BIOMASSE BIODIVERSIT				
$\chi_{2 \text{ obs}}$	19,7	0,6	1,0			
χ2 tab 0,95	15,5	pour un ddl de $p-1=8$				
χ2 tab 0,977	19,7	pour un ddl de $p-1=8$				

Tableau n°157 : <u>Analyses non paramétriques Friedman (analyse en ligne) sur le premier groupe de 4</u>
<u>stations du canal : Banc IORO ; Pointe PUKA ; TOEMO ;UGO</u>

Paramètres de	DENSITE	BIOMASSE	BIODIVERSITE
$\chi_{2 \text{ obs}}$	1,6	-	
χ2 tab 0,95	7,81	pour un d	dl de $p-1 = 3$

Tableau n°158 : <u>Analyses non paramétriques Friedman (analyse en ligne) sur le deuxième groupe de 5 stations du canal : WOODIN ; IONONTEA ; B. CHAMBEYRON ; Banc KIE ; îlot KIE.</u>

Paramètres de	DENSITE	BIOMASSE BIODIVERSITE
$\chi_{2 \text{ obs}}$	12,8	-
$\chi_{2 \text{ tab } 0,975}$	12,8	pour un ddl de $p-1=4$


Ainsi, le regroupement des stations de la Baie de Prony avec celles du canal de la Havannah crée un ensemble très hétérogène et cette hétérogénéité disparaît dès lors que l'on considère séparément les stations de Prony d'une part et celles du Canal d'autre part. Toutefois, toujours en ce qui concerne le paramètre de densité, il faudrait dans le canal de la Havannah, pour que les analyses soient plus heuristiques, distinguer les stations des bancs et de l'îlot Kié des autres stations côtières et de l'îlot Ugo.

6.3.1.6 Conclusion

Les paramètres de densité et de biomasse des poissons (cf. tableau 159) de la zone étudiée sont revenus aux valeurs qu'ils avaient lors de la mission de septembre 2010, tandis que la biodiversité (cf. tableau 159) garde une valeur proche de celle obtenue en mars dernier et s'inscrit dans la tendance progressive que nous observons depuis le début de cette série historique en 2007.

Tableau n°159 : Moyennes des paramètres étudiés et calculées sur l'ensemble des stations

Dates	Densité (ind/m²)	Biomasse (g/m²)	Biodiversité
	moyenne	moyenne	moyenne
2007 Aout	$2,67 \pm 1,1$	$336,37 \pm 274,2$	$28,5 \pm 08,0$
2008 Oct.	$2,85 \pm 1,5$	$161,84 \pm 99,8$	$29,7 \pm 07,9$
2009 Juin	$3,39 \pm 1,2$	$136,68 \pm 89,4$	$27,8 \pm 07,8$
2010 a Mars	$2,30 \pm 0,4$	$161,95 \pm 106,9$	$34,8 \pm 09,5$
2010 b Sept.	$1,80 \pm 0,9$	$86,54 \pm 91,2$	$27,9 \pm 10,3$
2011 a Mars	$1,84 \pm 1,4$	$410,03 \pm 219,3$	$38,6 \pm 10,8$
2011 b Sept.	$1,09 \pm 0,5$	$77,40 \pm 55,1$	$35,7 \pm 08,9$

Compte tenu des intervalles de confiance importants, les résultats quantitatifs de densité et de biodiversité sont à considérer comme stables depuis 2007. La biomasse qui présentait une valeur très élevée en mars 2011, due à la présence conjoncturelle de sprats (*Spratelloides gracilis*) est revenue à un niveau habituel.

Maintenant que la longueur de la série historique présente un recul appréciable, nous avons procédé à des calculs séparés distinguant le groupe des stations de la Baie de Prony et de celles du canal de la Havannah afin de voir s'il existait une disparité entre ces groupes.

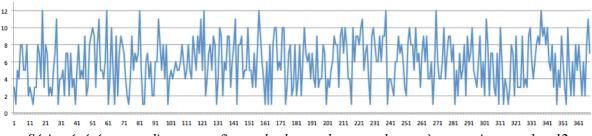
Le résultat montre que :

- Les stations de la Baie de Prony sont très homogènes et très différentes de celles du Canal. Cependant, elles sont trop peu nombreuses pour que l'on puisse se satisfaire de tests qui ne prennent en compte qu'elles seules. Bien entendu, le faible nombre de stations serait moins une entrave à l'analyse si chacune d'elle présentait de réels répliquats, permettant de calculer pour chaque valeur caractérisant une station, une variance et donc l'intervalle de confiance qui lui est associé.
- Les stations du canal de la Havannah sont moins homogènes. Mais cette disparité n'apparaît nettement que sur le paramètre de densité. La biomasse est un paramètre trop instable. Ses variations intra et inter stations sont pour la plupart des stations, d'importance similaire. Ici aussi, l'existence de répliquats dans la méthode imposée permettrait une analyse, notamment spatiale, plus intéressante et heuristique. Leur absence se traduit par un manque de rigueur et aboutit au fait que les résultats n'autorisent que des avis.

**

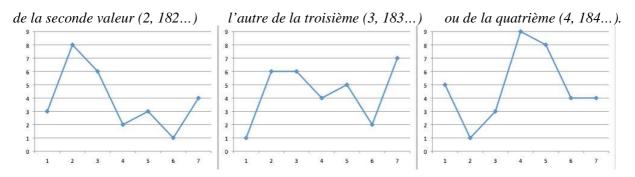
Quoi qu'il en soit, les paramètres de densité et surtout de biomasse sont intrinsèquement biaisés (cf. rapports précédents). Ce biais vient du comportement des poissons et de la méthode du TLV.

Ces défauts sont moins sensibles dans la baie de Prony et d'une façon générale dans les zones côtières et/ou protégées tant physiquement que juridiquement, que dans le canal de la Havannah et plus généralement que dans les zones à fort hydrodynamisme et ouvertes. Car ces zones présentent d'une part des foyers agrégatifs contaminants (blocs coralliens isolés, veines de courant, ...) et d'autre part une faune où les grosses espèces et les poissons adultes et plus mobiles sont majoritaires.

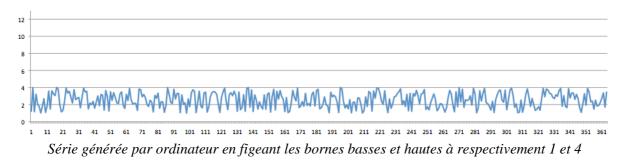

Mais...

... une autre facette de l'inadéquation des paramètres de densité et de biomasse, apparaît si l'on prend en considération les échelles de temps, c'est-à-dire la contradiction entre la durée de nos observations sous l'eau : classiquement environ 1 heure, et la période que ces observations sont censées renseigner : 6 mois (4380 heures !). Cette différence entre ces deux échelles de temps rend malheureusement dérisoire notre travail sur les poissons. Notre « outil de travail » ne convient pas à la réalité de l'objet à évaluer. Et puisqu'il n'est pas envisageable d'avoir un temps de surveillance subaquatique plus en adéquation avec la période qu'il est censé représenter, il faut donc choisir un ou d'autres paramètres dont la stabilité s'accommode de cette contradiction.

Nous pensons donc que densité et biomasse de poissons surtout sont de mauvais paramètres, car les variations que nous présentons dans nos rapports comme annuelles ou semi-annuelles sont, probablement en réalité, les mêmes que celles que nous pourrions présenter si nos observations avaient un autre pas temporel. En clair, la méthode influence notre perception et les graphiques que nous obtenons sont artéfactuels.


Illustration:

• Voici une simulation de la variation quotidienne d'un paramètre supposé très variable, tel que l'est la biomasse sur une station du Canal de la Havannah ¹⁸. Il s'agit de simuler ce que verrait un observateur sous marin longuement immobile en un point précis comme un transect de 20 m. En un tel point, le passage d'un ou deux carangidés par exemple accroît la biomasse totale d'un facteur 10 ou plus encore, rendant alors dérisoire la part que prennent les poissons résidents dans l'évaluation de ce paramètre comme les Pomacentridés, Labridés... Donc chaque jour au rythme des passages la biomasse en un point varie comme cela:

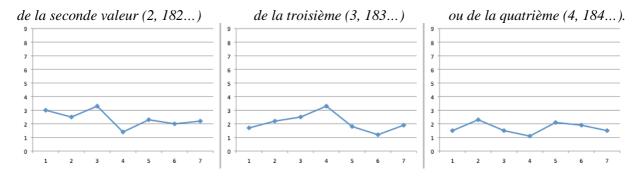

Série générée par ordinateur en figeant les bornes basses et hautes à respectivement 1 et 12

Et voici la représentation que l'on peut obtenir, si l'on extrait du graphique précédent une valeur toutes les 180 valeurs afin de simuler une visite semestrielle, comme le prévoit notre protocole. Voici donc 3 graphiques obtenus de la même manière, mais l'un en partant par exemple :

Nous obtiendrons toujours un graphique différent et nous aurons toujours bonne conscience à en donner une interprétation « sérieuse » basée sur l'idée d'un état stable au niveau du semestre, ce qui est faux.

• Voici une autre simulation de la variation quotidienne, celle d'un paramètre supposé varier entre des bornes plus rapprochées tel que la densité sur une station de site protégé comme par exemple la baie de Prony. Il s'agit donc de simuler ce que verrait un observateur longuement immobile en un point précis comme un transect de 20 m. En un tel point, le passage occasionnel ou le simple déplacement d'un petit banc de *Caesio* par rapport au point d'observation peut faire croître ou décroître la densité totale d'un facteur 4 ou plus, rendant alors dérisoire la part que prennent les poissons résidents dans l'évaluation de ce paramètre.

¹⁸ Et nous avons représenté une variation quotidienne alors qu'elle est certainement semi-quotidienne.



A TERRA Rap 040-11_Ver01

_

Et voici la représentation que l'on peut obtenir, si l'on extrait du graphique précédent une valeur toutes les 180 valeurs pour simuler une visite semestrielle.

En partant par exemple :

Nous obtiendrons toujours un graphique différent et nous aurons toujours bonne interprétation faite en bonne conscience donc « sérieuse » et basée sur l'idée a priori d'un état stable au niveau du semestre.

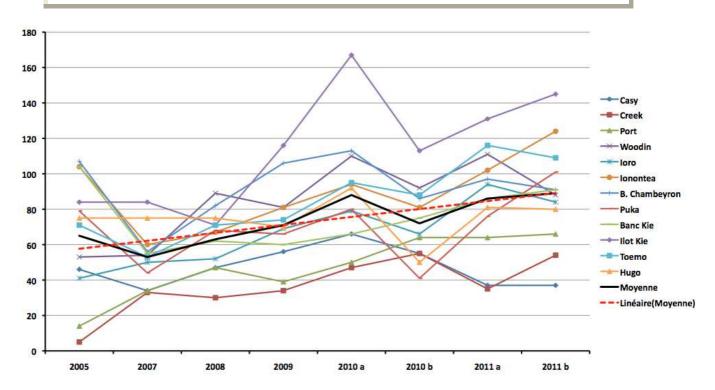
Ces simulations relativisent nos premières conclusions. Et comme elles reflètent la réalité – et aucun plongeur expérimenté n'infirmera ces assertions - par voie de conséquences, les interprétations des résultats sur la densité et la biomasse sont probablement illusoires, au vrai sens du terme. Elles reposent sur un protocole totalement inadapté, un protocole dyschronique qui génère lui-même et de façon aléatoire, le pattern des graphiques qui sont censés illustrer les phénomènes que nous souhaiterions évaluer.

6.3.2 Comparaisons temporelles « liste complète »

Les études présentées ci-dessous portent sur la liste plus exhaustive du peuplement en poissons (exceptées les espèces cryptiques ou < 2 cm de long).

Les listes complètes des espèces observées pour chaque station sont données en annexe 06.

Rappels


- 1 Rappelons que ...
 - ... le paramètre « biodiversité », sous son aspect quantitatif, est peu fluctuant, donc l'évolution se déroule sur des pas de temps en rapport avec l'espacement de nos campagnes de suivi. De plus, les biais comportementaux des poissons, comme celui de la « curiosité » des poissons vis à vis des plongeurs, devient ici un atout.
 - ... le paramètre « biodiversité », sous son aspect qualitatif, basé sur la présence ou l'absence d'une espèce, est entravé par (i) une limitation de la liste d'espèces à prendre en compte, (ii) par la limitation de l'espace d'observation et (iii) par la limitation du temps d'observation.
- 2 Rappelons que l'on définit 3 niveaux de biodiversité :
 - ... la biodiversité α (**B\alpha**) est le nombre d'espèces n_i présentes sur une station $i : B\alpha_i = n_i$
 - ... la biodiversité γ (Bγ) est la biodiversité totale de la zone, en d'autres termes, la réunion des Bα_i sur l'ensemble p des stations.B_γ = ∪_p Bα_i
 - ... la biodiversité β (\mathbf{B}_{β}) est une représentation de la diversité des stations caractérisées par leur $B\alpha$ respective.

6.3.2.1 Biodiversité α

Les biodiversités α pour chaque station, depuis 2005, sont données dans le tableau 160.

2010 a 2010 b 2011 a 2011 b MOYENNE Casy Creek Port Woodin Ioro Ionontea **B.** Chbey Puka Bc Kie Ilot Kie Toemo Hugo MOYENNE

Tableau n°160 : <u>Biodiversité α pour chaque station, depuis 2005</u>

Quelques points peuvent être soulignés :

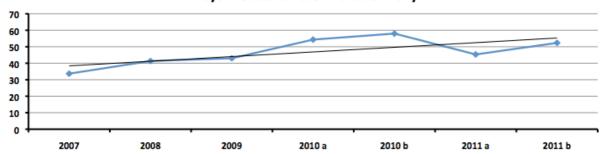
- Les $B\alpha_i$ des stations de Prony en octobre 2011 sont toujours en moyenne deux fois plus faibles que celles des stations du canal de la Havannah. Respectivement 52 et 101 ;
- Les stations de Prony, notamment ST02 (creek baie nord) et ST03 (port) abritent de nombreux juvéniles ;
- Les structures en espèces (cf § 6.3.1) sont très sensiblement différentes de celle de mars. Y compris sur les stations de Prony. Il n'y a que la station de Ugo qui reste stable tant quantitativement que qualitativement.
- La station 06 (Ionontea) ne présente toujours pas de Carangidae.
- Il n'y a toujours aucune espèce nomade à Ugo comme les Carangidae, ni même de Lutjanidae.
- La biodiversité de L'Ilot Kié est toujours la plus forte.

Tableau n°161 : <u>Tests sur les Bα.</u>

	Te	est F	Test χ2				
	ANOVAR		K&	W	FRIEDMAN		
	Σ colonnes	lonnes Σ lignes		Σlignes	Σ colonnes	Σlignes	
Val Observées	3,73	9,09	19,39	48,37	59,9	40,75	
Val Tabulées 0,95	2,22	1,94	12,60	19,70	12,60	19,70	
d.d.l.	k1=6; k2=77	k1=11; k2=72	ddl = 6	ddl de 11	ddl = 6	ddl de 11	

L'hypothèse d'identité des variances n'est donc pas vérifiée. Et loin s'en faut, puisque F en colonne est à la $P_{0.97}$ et en ligne $> P_{0.9999}$. Les tests non paramétriques rejettent également les Ho à de fortes probabilités.

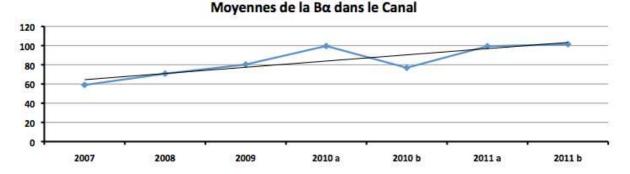
Considéré en lignes comme en colonnes le tableau 160 a donc des valeurs significativement différentes les unes des autres.


Les valeurs de l'été 2010 présentent un record (88 espèces en moyenne) presque égalé en été 2011 (86 espèces en moyenne).

Les Bα_i en Baie de Prony ont pratiquement retrouvé les valeurs qu'elles avaient en 2010 (cf.tableau 162).

Tableau n°162 : Moyennes temporelles Ba. en baie de Prony

Βα	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
moyennes	33,67	41,33	43,00	54,33	58,00	45,33	52,33
Ecart type	0,58	9,81	11,53	10,21	5,20	16,20	14,57
Int. de conf ±	0,67	11,33	13,32	11,79	6,00	18,70	16,83


Moyennes de la Bα en Baie de Prony

Les $B\alpha_i$ dans le canal de la Havannah et Woodin ont augmenté à des valeurs qu'elles n'avaient en moyenne jamais atteintes.

Tableau n°163 : <u>Moyennes temporelles Ba. en canal de la Havannah</u>

Βα	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
moyennes	58,96	70,73	80,33	99,56	76,89	99,33	101,44
Ecart type	12,56	10,75	18,79	29,32	22,05	17,73	21,29
Int. de conf ±	8,37	7,17	12,53	19,55	14,70	11,82	14,19

Ce dernier test permet de faire un classement global des stations pour leur biodiversité (cf. tableau 164).

Rangs **Stations** 2010 a 2010 b 2011 a 2011 b Moy. **Ilot KIE** Banc B. CHB **WOODIN Récif TOEMO IONONTEA Ilot UGO Banc IORO Banc KIE** Point PUKA Le PORT **Ilot CASY CREEK**

Tableau n°164 : <u>Classement des stations par Ba décroissante</u>

Bien qu'original, notamment avec une station Woodin inhabituellement pauvre, le classement des stations de cette dernière mission n'a pas modifier les trois groupes que nous avions proposé précédemment.

Les stations de la baie de Prony sont toujours nettement en queue de classement avec une moyenne de 52 espèces. Les stations du Canal dans leur ensemble, ont toujours une biodiversité moyenne près de 2 fois plus élevée que celles de Prony avec toujours les mêmes 3 stations en tête : l'Ilot Kié avec plus de 145 espèces (moy. 118), Basse Chambeyron et Woodin.

6.3.2.2 Biodiversité y

Cette biodiversité peut être exprimée de différentes manières :

 $\$ B γ_1 : en considérant le nombre d'espèces total de la zone,

¬□ Bγ₃: en considérant aussi les effectifs par espèces (Indice de Shannon H).

Tableau n°165 : <u>Espèces rencontrées sur les 12 stations en octobre 2011 et nombre de stations où chacune d'elles a été rencontrée (Σ).</u>

Fam	Espèces	Σ	Fam	Espèces	Σ	Fam	Espèces	Σ
Aca	Acanthurus achilles	1	Epi	Plectropomus laevis		Mul	Upeneus tragula	2
Aca	Acanthurus albipectoralis	3	Epi	Plectropomus leopardus		Nem	Pentapodus aureofasciatus	4
Aca	Acanthurus annulatus	1	Fis	Fistularia commersonii		Nem	Pentapodus caninus	1
Aca	Acanthurus blochii	8	Gob	Amblygobius phalaena	1	Nem	Scolopsis bilineatus	11
Aca	Acanthurus dussumieri	5	Gob	Gunnellichthys curiosus	1	Nem	Scolopsis lineatus	1
Aca	Acanthurus lineatus	2	Gob	Gunnellichthys monostgma	1	Ost	Ostracion cubicus	2
Aca	Acanthurus mata	5	Gob	Valenciennea decora	1	Pin	Parapercis hexophtalma	9

Aca	Acanthurus nigricans	3	Gob	Valenciennea strigata	1	Pin	Parapercis xanthozona	1
Aca	Acanthurus nigricauda	ģanarana	Gra	Diploprion bifasciatum	2	Ple	Assessor macneilli	6
Aca	Acanthurus pyroferus	ļ	Hae	Plectorh. chaetodonoides	6	Poc	Centropyge bicolor	10
Aca	Acanthurus xanthopterus	ļ	Hae	Plectorh. flavomaculatus	2	Poc	Centropyge bispinosa	4
Aca	Ctenochaetus striatus		Hae	Plectorhinchus gibbosus	2	Poc	Centropyge flavissima	6
Aca	Naso brachycentron	ļumama	Hae	Plectorhinchus lessonii	2	Poc	Centropyge tibicen	10
Aca	Naso brevirostris	3	İ	Plectorhinchus lineatus	1	Poc	Chaetodontoplus conspicillatus	10
	Naso caesius	•	Hae	Plectorhinchus pictum	1	Poc	Genicanthus watanabei	2
Aca			<u> </u>	1				!i
Aca	Naso hexacanths			Plectorhinchus picus	3	Poc	Pomacanthus imperator	2
Aca	Naso hexacanthus		Hol	Myripristis hexagona	1	Poc	Pomacanthus semicirculatus	1
Aca	Naso lituratus	4	Hol	Myripristis kuntee	1	Poc	Pomacanthus sexstriatus	3
Aca	Naso tonganus	5	Hol	Myripristis murdjan	1	Poc	Pygoplites diacanthus	5
Aca	Naso unicornis	9	ļ	Neoniphon sammara	2	Pom	Abudefduf sexfasciatus	7
Aca	Zebrasoma scopas	9	Hol	Sargo. caudimaculatum	1	Pom	Abudefduf whitleyi	7
Aca	Zebrasoma veliferum	9	Hol	Sargocentron ensifer	4	Pom	Amblyglyphidodon curacao	5
Ant	Pseudanthias bicolor	2	Hol	Sargocentron rubrum	1	Pom	Amblyglyphidodon leucogaster	1
Ant	Pseudanthias dispar	1	Kyp	Kyphosus pacificus	2	Pom	Amblyglyphidodon orbicularis	3
Ant	Pseudanthias pascalus	3	Kyp	Kyphosus sydneyanus	2	Pom	Amphiprion chrysopterus	1
Ant	Pseudanthias pictilis	3	Lab	A. caeruleopunctatus	1	Pom	Amphiprion clarkii	4
Ant	Pseudanthias pleurotaenia	1	Lab	Anampses femininus	6	Pom	Amphiprion melanopus	1
Ant	Pseudanth. squamipinnis	2	Lab	Anampses geographicus	1	Pom	Chromis amboinensis	3
Ant	Pseudanthias ventralis	1	Lab	Anampses neoguinaicus	8	Pom	Chromis atripectoralis	4
Apo	Apogon angustatus	1	Lab	Bodianus axillaris	6	Pom	Chromis atripes	1
Apo	Apogon aureus	1	Lab	Bodianus loxozonus	2	Pom	Chromis chrysura	5
Apo	Apogon doederleini	2	Lab	Bodianus mesothorax	1	Pom	Chromis fumea	5
Apo	Apogon fuscus	1	ļ	Bodianus perditio	7	Pom	Chromis iomelas	3
Apo	Apogon sp	1	ļ	Cheilinus chlorourus	11	Pom	Chromis margaritifer	10
Apo	Archamia fucata		Lab	Cheilinus fasciatus	3	Pom	Chromis nitida	1
Apo	Archamia leai		Lab	Cheilinus trilobatus	6	Pom	Chromis viridis	5
Apo	Cheilodipterus macrodon	ļ	Lab	Cheilinus undulatus	1	Pom	Chromis weberi	3
	Ostorhinchus angustatus		Lab	Choerodon fasciatus	4	Pom	Chrysiptera biocellata	1
Apo	ļ	ļ		<u> </u>	2	Pom		4
Apo	Ostorhinchus aureus	ļ		Choerodon graphicus			Chrysiptera rex	ļ
Aul	Aulostomus chinensis		Lab	Choerodon jordani	3	Pom	Chrysiptera rollandi	11
Bal	Balistoides conspicillum	1	Lab	Cirrhilabrus lineatus	3	Pom	Chrysiptera taupou	8
Bal	Odonus niger	1	Lab	Coris aygula	5	Pom	Dascyllus aruanus	6
Bal	Sufflamen chrysopterus		Lab	Coris batuensis	8	Pom	Dascyllus reticulatus	10
Bal	Sufflamen fraenatus	7	Lab	Coris centralis	1	Pom	Dascyllus trimaculatus	3
Ble	Atrosalarias fuscus	1	Lab	Coris dorsomacula	2	Pom	Neoglyphidodon azysron	1
Ble	Cirripectes alboapicalis	1	Lab	Coris gaimard	3	Pom	Neoglyphidodon dickii	1
Ble	Cirripectes castaneus	1	Lab	Epibulus insidiator	3	Pom	Neoglyphidodon nigroris	4
Ble	Ecsenius bicolor	8	Lab	Gomphosus varius	7	Pom	Neoglyphi. polyacanthus	1
Ble	Ecsenius isos	1	Lab	Halichoeres argus	7	Pom	Neoglyphydodon melas	1
Ble	Exallias brevis	1	Lab	Halichoeres hortulanus	6	Pom	Neoglyphydodon nigroris	1
Ble	Meiacanthus atrodorsalis	6	Lab	Halichoeres melanurus	4	Pom	Neopomacentrus azysron	2
Cae	Caesio caerulaurea	7	Lab	Halichoeres ornatissimus	2	Pom	Neopomacentrus bankieri	1
Cae	Caesio cuning	2	Lab	Halichoeres prosopeion	8	Pom	Neopoma. filamentosus	3
Cae	Caesio teres	2	Lab	Halichoeres trimaculatus	1	Pom	Neopomacentrus nemurus	1
Can	Canth. janthinoptera	2	Lab	Hemigymnus fasciatus	7	Pom	Neopomacentrus violascens	1
Can	Canthigaster valentini	10	Lab	Hemigymnus melapterus	10	Pom	Plectroglyphidodon dickii	1
Car	Alepes vari		Lab	Hologymnosus annulatus	2	Pom	Plectrogly.imparipennis	1
Car	Carangoides fulvoguttatus	<u> </u>	Lab	Labrichthys unilineatus	1	Pom	Plectrogly.johnstonianus	2
Car	Caranx melampygus	Çanananını Ç	Lab	Labroides dimidiatus	11	Pom	Plectrogly. lacrymatus	4
Car	Gnathanodon speciosus	ļ	Lab	Labropsis australis	4	Pom	Pomacentrus adelus	1
Carc	Carcharh.albimarginatus	<u> </u>	Lab	Labropsis xanthonota	1	Pom	Pomacentrus amboinensis	1
					2			
Cho	Chartedon auriga		Lab	Macropharyn, meleagris	•••• <u>•</u> ••••••	Pom	Pomacentrus aurifrons	3
Cha	Chaetodon auriga	3	Lab	Macropharyn. negrosensis	1	Pom	Pomacentrus bankanensis	2

,	·		,	·	·	,	·	
Cha	Chaetodon baronessa	7	Lab	Oxycheilinus celebicus	2	Pom	Pomacentrus chrysurus	4
Cha	Chaetodon bennetti	4	Lab	Oxycheilinus diagrammus	2	Pom	Pomacentrus coelestis	3
Cha	Chaetodon citrinellus	4	Lab	Oxycheilinus rhodochrous	1	Pom	Pomacentrus moluccensis	10
Cha	Chaetodon ephippium	5	Lab	Oxycheilinus unifasciatus	3	Pom	Pomacentrus nagasakiensis	7
Cha	Chaetodon flavirostris	5	Lab	Stethojulis bandanensis	5	Pom	Pomac. nigromarginatus	2
Cha	Chaetodon kleinii	4	Lab	Stethojulis strigiventer	1	Pom	Pomacentrus pavo	3
Cha	Chaetodon lunula	1	Lab	Thalas.amblycephalum	4	Pom	Pomacentrus philippinus	3
Cha	Chaetodon lunulatus	8	Lab	Thalassoma hardwicke	2	Pom	Pomacentrus pilotoceps	1
Cha	Chaetodon melannotus	4	Lab	Thalassoma lunare	11	Pom	Pomacentrus spilotoceps	1
Cha	Chaetodon mertensii	6	Lab	Thalassoma lutescens	5	Pom	Pomacentrus vaiuli	2
Cha	Chaetodon ornatissimus	2	Lab	Thalassoma nigrofasciatum	4	Pom	Stegastes aureus	2
Cha	Chaetodon pelewensis	6	Lab	Thalassoma nigrofascitus	1	Pom	Stegastes nigricans	3
Cha	Chaetodon plebeius	7	Lab	Thalas. quinquevittatum	1	Pri	Priacanthus hamrur	4
Cha	Chaetodon speculum	5	Lab	Wetmorella albofasciata	1	Pse	Pictichromis coralensis	3
Cha	Chaetodon trifascialis	1	Lei	Leiognathus equulus	1	Pse	Pictichromis porphyreus	1
Cha	Chaetodon ulietensis	5	Let	Gnathodentex aureolineatus	1	Sca	Cetoscarus ocellatus	3
Cha	Chaetodon unimaculatus	3	Let	Gymnocranius euanus	1	Sca	Chlorurus microrhinos	2
Cha	Chaetodon vagabundus	4	Let	Lethrinus atkinsoni	4	Sca	Chlorurus sordidus	9
Cha	Coradion altivelis	2	Let	Lethrinus harak	1	Sca	Hipposcarus longiceps	1
Cha	Forcipiger flavissimus	1	Let	Lethrinus nebulosus	1	Sca	Scarus altipinnis	7
Cha	Forcipiger longirostris	1	Let	Monotaxis grandoculis	2	Sca	Scarus bleekeri	3
Cha	Heniochus acuminatus	4	Let	Monotaxis heterodon	2	Sca	Scarus chameleon	2
Cha	Heniochus chrysostomus	2	Lut	Aprion virescens	3	Sca	Scarus dimidiatus	1
Cha	Heniochus monoceros	2	Lut	Lutjanus adetii	1	Sca	Scarus flavipectoralis	10
Cha	Heniochus varius	5	Lut	Lutjanus bohar	4	Sca	Scarus forsteni	3
Cir	Cirrhitichthys falco	4	Lut	Lutjanus ehrenbergii	1	Sca	Scarus frenatus	5
Cir	Paracirrhites arcatus	3	Lut	Lutjanus fulviflamma	2	Sca	Scarus ghobban	8
Cir	Paracirrhites forsteri	5	Lut	Lutjanus fulvus	4	Sca	Scarus globiceps	1
Cir	Paracirrhites hemistictus	1	Lut	Lutjanus kasmira	1	Sca	Scarus longipinnis	1
Dio	Diodon hystrix	1	Lut	Lutjanus monostigma	1	Sca	Scarus niger	1
Ech	Echeneis naucrates	1	Lut	Lutjanus quinquelineatus	2	Sca	Scarus psittacus	1
Epi	Aethaloperca rogaa	2	Lut	Lutjanus russellii	1	Sca	Scarus rivulatus	2
Epi	Anyperodon leucogram.	2	Lut	Macolor macularis	1	Sca	Scarus rubroviolaceus	7
Epi	Cephalopholis argus	2	Lut	Macolor niger	4	Sca	Scarus schlegeli	2
Epi	Cephalopholis boenak	5	Mic	Gunnellichthys curiosus	4	Sca	Scarus spinus	2
Epi	Cephalopholis miniata	1	Mic	Nemateleotris magnifica	1	Sco	Scomberoides tol	1
Epi	Cephalopholis ongus	1	Mic	Ptereleotris evides	3	Sco	Scomberomorus commerson	2
Epi	Cephalopholis sonnerati	1	Mic	Ptereleotris heteroptera	1	Scr	Synanceia verrucosa	1
Epi	Cephalopholis urodeta	4	Mon	Amanses scopas	3	Sig	Siganus corallinus	6
Epi	Cromileptes altivelis	4	Mon	Cantherhines dumerilii	1	Sig	Siganus doliatus	7
Epi	Epinephelus coioides	1	Mon	Oxymonacan. longirostris	4	Sig	Siganus puellus	6
Epi	Epinephelus cyanopodus	1		Pervagor melanocephalus	2	Sig	Siganus punctatus	1
Epi	Epinephelus fasciatus	3	Mul	Parupeneus barberinoides	8	Sig	Siganus spinus	1
Epi	Epinephelus howlandi	2	Mul	Parupeneus barberinus	5	Sig	Siganus vulpinus	5
Epi	Epinephelus maculatus	2		Parupeneus bifasciatus	1	Syn	Saurida gracilis	1
Epi	Epinephelus malabaricus	2	Mul	Parupeneus ciliatus	3	Syn	Synodus dermatogenys	1
Epi	Epinephelus merra	2	Mul	Parupeneus cyclostomus	2	Syn	Synodus variegatus	7
Epi	Epinephelus ongus	3		Parupeneus indicus	6	Tet	Arothron meleagris	1
Epi	Epine. polyphekadion	ļ	Mul	Parupeneus multifasciatus	1	Zan	Zanclus cornutus	2
Epi	Epinephelus tauvina		Mul	Parupeneus spilurus	1		Tota	
	i					£	i	

La By observée sur toute la zone en octobre 2011 est de 338 espèces réparties dans 43 familles (/55).

Leur répartition en familles est donnée dans le tableau 166.

Tableau n°166 : <u>Nombre d'espèces par famille</u>

Années	05	07	08	09	10 a	10 b	11 a	11 b	Années	05	07	08	09	10 a	10 b	11 a	11 b
Acanthuridae	22	14	20	19	23	16	19	22	Leiognathidae	0	0	0	0	0	0	1	1
Anthiinidae	0	0	7	3	4	6	4	7	Lethrinidae	3	4	4	3	7	7	10	7
Apogonidae	3	2	5	10	17	9	13	10	Lutjanidae	5	8	6	10	14	12	13	12
Atherinidae	0	0	0	0	0	0	1	0	Microdesmidae	0	2	3	3	3	4	4	4
Aulostomidae	1	1	1	1	1	1	1	1	Monacanthidae	4	2	2	3	4	0	3	4
Balistidae	6	3	4	4	5	2	5	4	Mullidae	5	4	4	7	9	9	10	9
Blenniidae	9	4	6	7	7	2	5	7	Muraenidae	0	1	1	1	2	0	0	0
Caesionidae	3	4	2	2	3	2	3	3	Nemipteridae	2	1	3	2	3	3	3	4
Canthigasteridae	1	1	1	2	2	1	2	2	Ophidiidae	1	0	0	0	0	0	0	0
Carangidae	2	1	3	3	6	4	11	4	Ostraciidae	1	0	1	0	1	1	1	1
Carcharhinidae	2	1	3	2	1	2	4	2	Pinguipedidae	7	4	5	3	1	3	3	2
Centricidae	0	1	0	0	0	0	1	0	Platacidae	1	0	0	0	0	0	0	0
Chaetodontidae	20	18	18	25	25	28	27	26	Plesiopidae	0	0	0	0	0	0	1	1
Cirrithidae	3	3	3	6	5	4	4	4	Plotosidae	1	0	0	0	0	0	0	0
Dasyatidae	1	1	1	1	1	1	1	0	Pomacanthidae	11	12	11	10	12	12	11	10
Diodontidae	1	1	1	1	0	0	1	1	Pomacentridae	50	46	48	45	46	46	51	56
Dussumieriinae	0	0	0	0	0	0	1	0	Priacanthidae	1	0	2	0	0	1	1	1
Echeneidae	0	1	0	0	0	0	0	1	Pseudochromidae	1	2	1	0	0	0	2	2
Engraulidae	0	0	1	0	0	0	0	0	Scaridae	18	13	15	16	17	16	19	20
Ephippidae	0	0	0	0	0	1	0	0	Scombridae	0	1	2	1	1	1	3	2
Epinephelinae	18	19	17	18	23	19	18	21	Scorpaenidae	1	1	0	1	1	1	0	1
Fistulariidae	0	0	1	0	0	0	1	1	Siganidae	6	3	5	7	7	6	10	6
Gobiidae	3	6	4	7	4	7	7	5	Sphyraenidae	0	0	0	1	1	1	0	0
Grammistidae	1	1	1	1	1	1	1	1	Synodontitae	1	1	1	1	2	2	1	3
Haemulidae	5	3	5	5	4	7	5	7	Tetraodontidae	0	0	2	1	1	0	0	1
Holocentridae	5	2	3	4	2	2	5	7	Zanclidae	0	0	1	1	0	1	1	1
Kyphosidae	0	0	0	1	1	1	2	2	Leiognathidae	0	0	0	0	0	0	1	1
Labridae	62	54	55	47	50	46	53	52	Lethrinidae	3	4	4	3	7	7	10	7
Latridae	0	0	0	0	1	0	0	0									
									Total ou Βγ	287	246	279	285	318	288	343	338
									Nb familles	37	37	40	38	38	38	44	43

Toutes ces distributions se ressemblent : $\chi 2_{obs} = 252,36$ (ddl = 385 - $\chi 2_{95\%} = 466,77$).

La structure par famille est représentée dans la figure 80 : la répartition des espèces par famille en octobre 2011 n'est pas différente de la moyenne 2005-2011.

En revanche le peuplement de Prony est significativement différent de celui du Canal (cf. figure 81). Le pattern reste le même : $\chi 2_{\text{obs}} = 25,05$ (ddl = 42 - $\chi 2_{95\%} = 56,65$) mais les valeurs sont toutes plus petites.

Un point doit être souligné : non seulement la B_{γ} pour une mission n'a jamais été aussi élevée, mais la liste totale d'espèces observées depuis 2005 s'est accrue en octobre 2011 de 15 espèces nouvelles.

Le nombre d'espèces observées depuis la 1^{ière} mission en 2005 est de **589**. Cela concerne les espèces diurnes non cryptiques de taille > 2 cm. Par ailleurs, les substrats meubles et herbiers étant rares sur les stations retenues, certaines familles sont donc exclues (Soleidae , Syngnathidae...) par exemple ou mal représentées (Gobiidae, Blenniidae...).

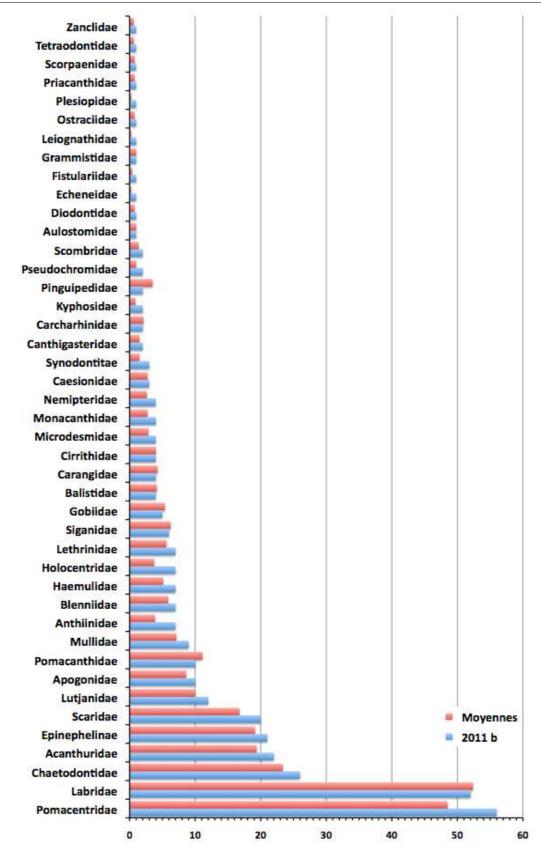


Figure n°80 : Nombre d'espèces par famille en octobre 2011 et comparaison avec la moyenne 2005-2011

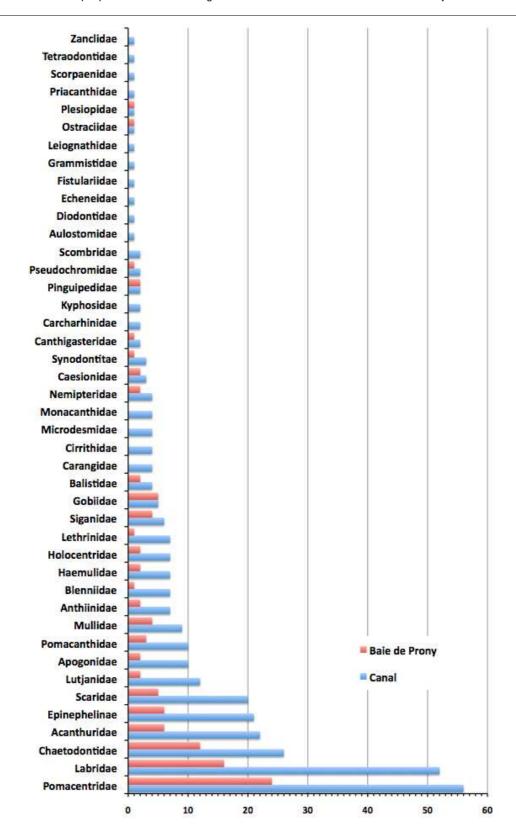


Figure n°81: Nombre d'espèces par familles et comparaison entre le canal et la baie de Prony

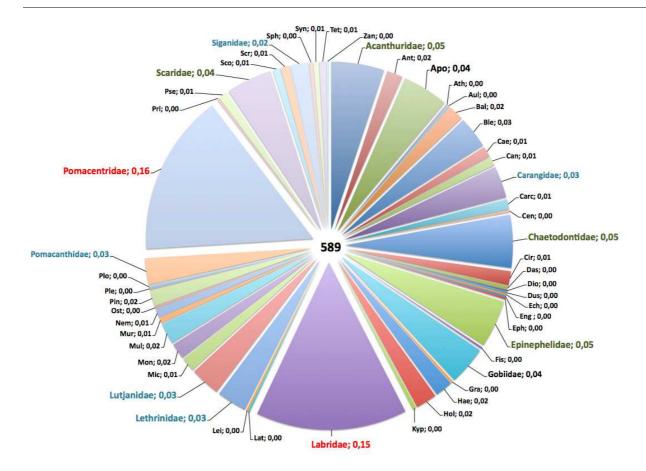
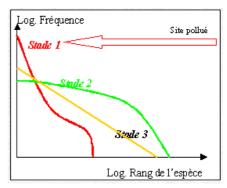


Figure n°82 : <u>Proportion d'espèces par familles dans le peuplement total</u>

6.3.2.3 Modélisation de la structure


Les peuplements naturels ont une organisation qui peut toujours être décrite par des diagrammes « Rangs-Fréquences ». Ceux-ci évoluent au cours du temps quand le peuplement devient de plus en plus mature ou lorsqu'il est agressé par une pollution. Toutefois, l'interprétation visant à donner une explication de cette organisation, notamment celle des stades matures ou climaciques, ont toujours fait polémique chez les scientifiques. Quoi qu'il en soit, le constat de base, lui, est indiscutable : tous les peuplements ont une structure qui peut être modélisée de différentes façons expliquées ici et que ces structures seront affectées en cas de pollution [10] (mais ce qui ne se rapporte pas à notre étude).

Modèle selon Frontier

Pour Frontier [11] (et beaucoup d'autres auteurs dont Mendelbrot et le cas particulier de Zipf), il y a 3 stades au développement d'un peuplement :

- le stade 1 immature et c'est aussi le stade d'un site pollué,
- le stade 3 mature
- ou en voie de l'être ; stade 2.

En réalité les peuplements sont toujours naturellement bouleversés et présentent donc un pattern 2 plus ou moins proche du stade 3, lequel est censé être le stade ultime ou climacique (lequel, on le sait, n'est qu'une vue de l'esprit idéalisée.).

Le modèle de Frontier est représenté sur la figure 83 : les points bleus sont les transformées Log_e- Log_e des valeurs du nombre d'espèces par famille. (Il serait préférable de les classer par régimes alimentaires).

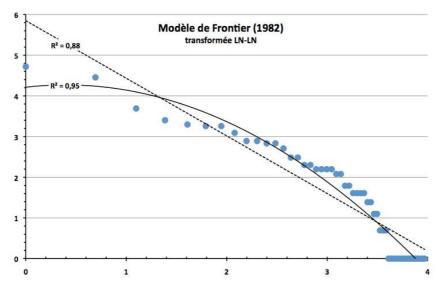


Figure n°83 : Structure du peuplement selon le modèle de Frontier

En pointillé l'ajustement « climacique » qui donne tout de même un coefficient de détermination $R^2 = 0.88$ et la courbe en trait plein est le meilleur ajustement possible avec un $R^2 = 0.95$. Selon Frontier, un tel résultat correspond à un peuplement proche de l'état mature maximal.

Modèle selon Motomura

Le modèle de Motomura [12] (« plus rustique ») propose une constante qui est le coefficient par lequel on progresse dans le pattern du peuplement lorsque l'on passe d'une famille à l'autre. Cette constante est comprise entre 0 et 1. Une faible constante traduit une structuration assez plate, inversement, une forte constante traduira une structure contrastée où quelques familles sont très présentes et beaucoup d'autres peu représentées. C'est un peuplement où il y a place pour des espèces faiblement représentées ce qui est le cas de peuplements peu ou pas perturbés.

Dans notre cas l'ajustement est très bon ($R^2 = 0.87$) avec une constante proche de 1 : m = 0.92

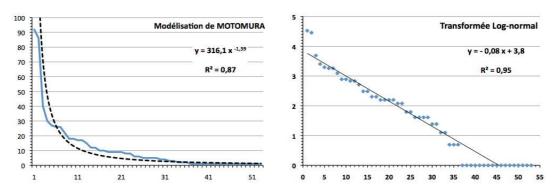


Figure n°84 : <u>Structure du peuplement selon le modèle de Motomura</u>

6.3.2.4 Biodiversité β

La biodiversité β mesure l'hétérogénéité entre stations. Elle rend compte du contraste entre les stations d'une zone, décrites par la liste d'espèces qu'elle abrite $(B_{\alpha i})$. Elle souligne en quelques sortes la variance des $B\alpha_i$. L'idée est de dire que si un facteur environnemental majeur (une pollution par exemple) venait à envahir la zone, les stations tendraient à se ressembler (faisant chuter la B_{β}), y compris des stations aux environnements naturels très différents comme peuvent l'être les stations du canal de la Havannah et les stations de la baie de Prony. La chute de la B_{β} est en principe accompagnée d'une chute des $B_{\alpha i}$, donc si seules les $B_{\alpha i}$ chutent, c'est qu'il faut plutôt chercher d'autres causes, comme la pêche par exemple.

Les écologues marins ont mis quelques années à suivre sur ce thème leurs collègues écologues terrestres. La

 B_{β} est utilisée pour les coraux par exemple par [13, 14, 15, 16, 17, 18]. Elle fut formulée à l'occasion de travaux sur les forêts équatoriales [par Whittaker 19, 20, 21] à l'aide d'un indice simple utilisant l'Indice de Shannon (donc le nombre d'espèces et les effectifs par espèce). L'idée fut reprise récemment [par Arias-Gonzales et al. 22] pour les poissons du Yucatan. Ces auteurs retiennent l'idée utile de la variance des diversités α des stations et analysent la variance des diversités (ANOVA) et celle des structures de peuplement (MANOVA) pour mettre ces structures en relation avec le substrat.

La B_{β} s'exprime alors de la manière suivante :

Biodiv. Obs. cumulée

$$B_{\beta} \equiv B_{\gamma} - 1/p \; \sum\! B_{\alpha i}$$

où B_{γ} est le nombre d'espèces total, $B_{\alpha i}$ le nombre d'espèces à la station i et p le nombre de stations.

Cette B_{β} varie donc entre 0 si toutes les stations sont identiques et $B_{\beta max}$ dans le cas contraire, laquelle dépend de B_{γ} ainsi que de p.

 $B_{\beta max}$ est la valeur de B_{β} lorsque toutes les stations sont différentes. Elle vaut donc :

$$B_{\beta max} = ((p-1)/p). B_{\gamma}$$

Un indice d'Equitabilité bêta (E_{β}) indépendant de p peut alors être obtenu en faisant le rapport :

237

$$E_{\beta} = 1 - (B_{\beta} / B_{\beta max})$$

Cet indice est plus facile à conceptualiser et à suivre dans le temps puisqu'il varie entre 0 (les stations sont toutes différentes $B_{\beta} = B_{\beta max}$) et 1 (les stations sont identiques $B_{\beta} = 0$).

				-	-		
Diversités	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
Βγ	237	279	285	318	288	343	338
Bβ max	215	258	263	295	264	314	310
Вβ	180	220	219	242	216	257	249
Bα moyenne/station	57	59	66	76	72	86	89
Εβ	0,167	0,144	0,166	0,179	0,182	0,182	0,197
P = nb de stations	11	13	13	14	12	12	12

315

Tableau n°167 : <u>Biodiversités et Equitabilités par mission</u>

489

525

533

574

588

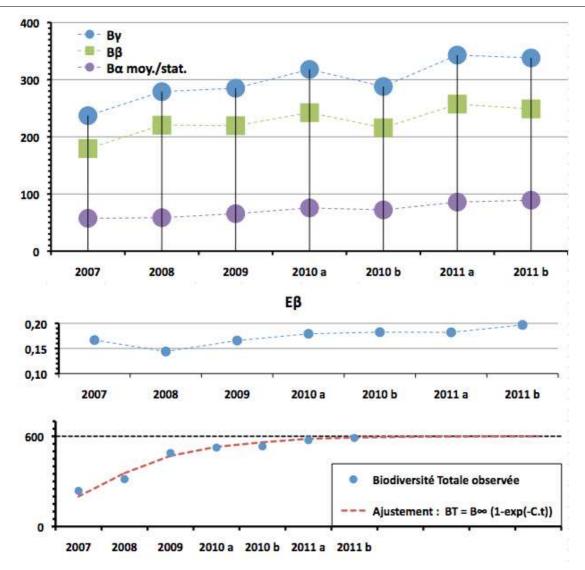


Figure $n^{\circ}85$: Evolution des biodiversités α , β , γ , de l'indice d'Equitabilité E_{β} et de la biodiversité totale observée

La succession des biodiversités totales cumulées observées a été ajustée au modèle $BT = B \infty . (1-e^{-Ct})$ où $B \infty$ est la valeur asymptotique vers laquelle tend la biodiversité totale observée sur les stations du suivi au fur et à mesure des missions, C est l'accroissement moyen du nombre de nouvelles espèces observées de mission en mission et t est le nombre de missions successives.

$B\infty = 602$

A chaque mission nous rencontrons entre 300 et 350 espèces depuis 2010. Nous en notions autour de 280 les années précédentes. En revanche, à part l'année 2008, les valeurs de l' $E\beta$ sont d'une part, stables et d'autres part, faibles (<0,2) montrant que les stations du suivi sont très différentes les unes des autres sous l'angle de vue de leur $B\alpha_i$.

6.3.2.5 Ubiquité ou occurrence spatiale et Permanence temporelle des espèces

La comparaison spatiale et temporelle des peuplements de poissons amène à se poser la question de **l'ubiquité** des espèces et de leur **permanence** sur la zone :

- **Dans l'espace**: Quelle est **l'ubiquité** des espèces ou la proportion d'espèces présentes sur toutes les stations? Et plus généralement la proportion de chaque cas d'ubiquité, à savoir celles qui sont présentes 1, 2, 3 ..., p fois dans le cas de p stations?
- Dans le temps : Quelle est la permanence des espèces ou la proportion d'espèces présentes chaque année sur la zone ou la permanence des espèces sur la zone ou à chaque station ? Et plus

généralement, la proportion d'espèces présentes (vues) 1, 2, 3 ... ou q fois dans le cas d'un suivi de q années. La somme de toutes ces espèces indiquant le nombre d'espèces jusqu'à ce jour rencontrées sur la zone.

Pour avoir de l'intérêt, l'indice d'ubiquité (I_U) doit revêtir deux qualités :

- ...Pouvoir être comparé à lui-même d'année en année et cela quel que soit le nombre p de stations réalisées. Rappelons qu'il y a eu 11 stations de réalisées en 2005 et 2007, 13 en 2008, 14 en 2009 et 12 en 2010 a et b et 2011 a et b.
- ...Par ailleurs, pour être interprété aisément, cet indice doit donner une ubiquité nulle à une espèce présente qu'une seule fois et une ubiquité maximale (égale à 1) pour une espèce toujours présente quel que soit le nombre de stations p.

La fonction qui répond à ces exigences est le logarithme à base p: $\log_p(x)$. (p = nb de stations) en effet, pour tout p, $\log_p(1) = 0$ et $\log_p(p) = 1$

L'ubiquité (spatiale)

La fonction qui permet de répondre à toutes ces exigences est le logp (Xi).

Soit X_i le nombre de fois où l'espèce i est présente $(1 \le X_i \le p)$, et p le nombre de stations réalisées lors d'une mission j, l'index pour j sera la moyenne des valeurs de l'ubiquité de chacune des espèces.

Pour n espèces : $I_U = (1/n) \cdot \sum_n log_p(X_i)$ $0 \le I_U \le 1$

Tableau n°168 : <u>Ubiquité spatiale depuis 2007</u>

Années	2007	2008	2009	2010 a	2010 b	2011 a	2011 b
Stations (p)	11	13	14	12	12	12	12
I_{U}	0,32	0,28	0,24	0,35	0,33	0,32	0,34
Uc _{95%}	0,03	0,03	0,03	0,03	0,03	0,03	0,03

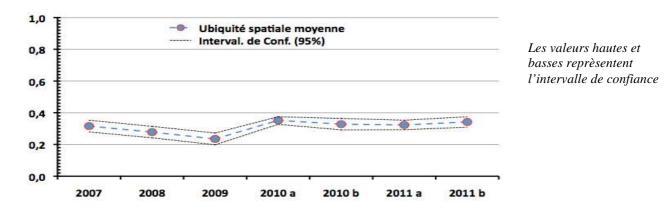


Figure n°86 : Evolution de l'Indice d'Ubiquité moyen et de son intervalle de confiance à 95%

Bien que sensible, ce paramètre n'a pas beaucoup changé depuis 2007. Il reste autour de la valeur 0,3 qui traduit, typiquement, un peuplement où une grande majorité des espèces (les 2/3 environ) ont été vues au plus 3 fois depuis 2007 et où, seules, moins de 10 % d'entre-elles ont été vues plus d'une fois sur deux.

Dans le détail, la présence des espèces sur les différentes stations se répartie de la manière décrite dans le tableau 169.

Nb d'espèces présentes à <i>p</i> stations	2007	2008	2009	2010 a	2010 b	2011 a	2011 b	Moy. (%)
1 fois	73	66	123	118	94	130	124	36,24
2 fois	66	69	38	54	43	70	60	19,91
3 fois	22	31	33	33	39	37	41	11,75
4 fois	15	20	20	21	30	35	35	8,76
5 fois	17	15	23	32	22	19	22	7,47
6 fois	7	11	15	15	10	10	14	4,08
7 fois	5	7	7	12	4	14	15	3,19
8 fois	4	8	6	4	10	8	9	2,44
9 fois	3	1	7	10	8	14	6	2,44
10 fois	4	7	5	10	5	3	8	2,09
11 fois		1	4	7	4	1	5	1,28
12 fois			1	1	0	2	1	0,35
Total	216	236	282	317	269	343	340	1,00
Nb de stations	11	13	14	12	12	12	12	

Tableau n°169 : <u>Présence des espèces aux stations</u>

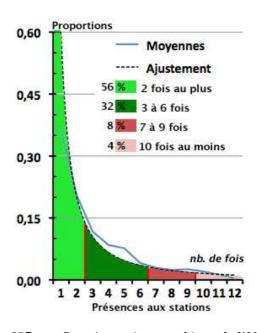


Figure n°87 : <u>Représentation graphique de l'Ubiquité spatiale</u>

Le graphique de la figure 87, issu des valeurs du tableau 169, n'a pas changé (cf. rapport de mars 2011 [23]). Il montre que très peu d'espèces sont ubiquistes (en rose). Dans notre liste, il n'y a que trois espèces qui soient parfaitement ubiquistes : *Thalassoma lunare*, *Plectropomus leopardus* et *Scolopsis bilineatus*. Près de 60 % n'ont été vues que sur une ou deux stations (vert pâle) et près de 90 % des espèces n'ont été vues que sur la moitié au plus des stations (vert).

La Permanence (temporelle)

L'indice d'Ubiquité temporelle (\mathbf{I}_{Ut}) d'une station au cours du temps est un indice synthétique calculé de la même manière que l'indice d'Ubiquité spatiale. La base du logarithme sera dans ce cas le nombre d'années de suivi : ici 7.

Tableau n°170 : Nombre de fois et proportion où une espèce a été vue par station depuis 2007

	En	7 missi	ons, no	mbre (d'espèc	es vue	s	Total espèces	U temp.	U temp.
Nb de fois	7	6	5	4	3	2	1	vues	2011 b	2011 a
Casy	9	5	8	12	8	30	64	136	0,32	0,32
Creek	2	10	6	11	12	25	56	122	0,33	0,34
Port	5	6	6	17	22	22	82	160	0,30	0,27
Woodin	13	18	19	21	26	48	73	218	0,42	0,40
Ioro	12	14	13	12	25	36	107	219	0,33	0,33
Ionontea	19	14	15	23	20	43	79	213	0,41	0,39
B. Chbey	23	12	17	20	30	31	82	215	0,42	0,43
PUKA	12	13	11	12	25	33	72	178	0,38	0,37
Banc KIE	12	11	19	16	17	27	78	180	0,38	0,42
Ilot KIE	30	19	27	25	36	36	86	259	0,47	0,46
ТОЕМО	13	21	18	15	24	52	88	231	0,39	0,38
UGO			17	26	20	35	52	150	0,45	0,33
			Pou	ırcenta	iges					
	7	6	5	4	3	2	1			
Casy	0,07	0,04	0,06	0,09	0,06	0,22	0,47	1,00		
Creek	0,02	0,08	0,05	0,09	0,10	0,20	0,46	1,00		
Port	0,03	0,04	0,04	0,11	0,14	0,14	0,51	1,00		
Woodin	0,06	0,08	0,09	0,10	0,12	0,22	0,33	1,00		
Ioro	0,05	0,06	0,06	0,05	0,11	0,16	0,49	1,00		
Ionontea	0,09	0,07	0,07	0,11	0,09	0,20	0,37	1,00		
B. Chbey	0,11	0,06	0,08	0,09	0,14	0,14	0,38	1,00		
PUKA	0,07	0,07	0,06	0,07	0,14	0,19	0,40	1,00		
Banc KIE	0,07	0,06	0,11	0,09	0,09	0,15	0,43	1,00		
Ilot KIE	0,12	0,07	0,10	0,10	0,14	0,14	0,33	1,00		
ТОЕМО	0,06	0,09	0,08	0,06	0,10	0,23	0,38	1,00		
UGO			0,11	0,17	0,13	0,23	0,35	1,00		
Moyennes	0,07	0,07	0,08	0,09	0,11	0,19	0,41		0,38	0,37

L'Indice d'Ubiquité temporelle global est de 0.38, donc similaire à celui des missions précédentes, avec un coefficient de variation (entre stations) faible - CV = 0.14 - montrant que toutes les stations présentent un profil similaire au profil moyen représenté dans la figure 88.

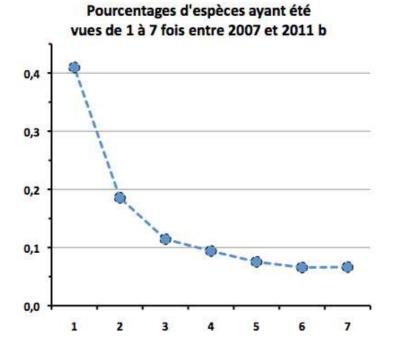


Figure n°88 : <u>Représentation graphique de l'Ubiquité temporelle</u>

Ainsi, selon la station entre 33 % (Ilot Kié) et 51 % (Port) des espèces n'ont été vues qu'une seule fois et seulement 3% (Port) à 13 % (Ilot Kié) ont été présentes à chaque mission (cf. tableau 170).

C'est en baie de Prony (notamment Creek baie nord et Port) que le peuplement est le plus instable et c'est à l'Ilot Kié que le peuplement est le plus stable. Cette stabilité est toutefois, relative puisqu'1/3 des espèces seulement ont été vues plus d'une fois sur deux et près de 50% n'ont été vues qu'1 à 2 fois. La baie de Prony, rappelons le, fonctionne plus comme nursery et les stations sont donc fréquentées en grande proportion par des stades juvéniles éphémères et dépendant des aléas des pontes.

6.3.2.6 Conclusion

La biodiversité aux différentes stations et la biodiversité totale montrent une progression légère mais régulière.

Le nombre total d'espèces observées sur toute la zone depuis 2005 s'est accru de 15 espèces et il atteint maintenant 588 espèces.

7 Synthèse bibliographique, de la zone étudiée

Lors du rapport de la mission d'octobre 2008 [08], une synthèse bibliographique avait été réalisée sur ces sujets :

- \$\text{la bio-géographie et les complexes récifaux de la zone,}
- 🖔 les particularités des baies calédoniennes,
- b les causes de dégradations de ces récifs,
- \$\\$\\$ le recrutement et les taux de croissance corallien,
- 🖔 les proliférations de cyanobactéries.

Pour le suivi de la fuite d'acide dans le Creek baie nord, trois missions ont été réalisées, et à cette occasion, une synthèse bibliographique (rapport [24]) a été réalisée sur ces sujets :

- \$\\ \!\ l'acide sulfurique et ses principales caractéristiques,
- les accidents historiques liés à de l'acide sulfurique, avec des simulations de scénarios d'accident et les résultats de l'étude environnementales du « Bahamas »,
- b le blanchissement corallien: les zooxanthelles, la physiologie coralienne et les paramètres influant sur le blanchissement.

Puis, pour la 2^{ème} mission (rapport [25]):

- des explications sur deux phénomènes pouvant influer sur la couverture corallienne, que nous avons observés lors de la mission : les cyanobactéries et les étoiles de mer *Culcita*,
- un relevé des données pluviométriques de la zone.

Et enfin, lors des 3^{ème} et 4^{ème} missions (rapport [26, 27]):

- réactualisation des données météorologiques,
- impacts potentiels des conditions météorologiques sur l'état de santé des communautés marines.

Lors du rapport de la mission de juin 2009 [28], une synthèse bibliographique avait été réalisée sur ces sujets :

- b les causes de dégradations des récifs de la zone étudiée,
- \$\text{les proliférations de cyanobactéries,}
- ♦ les algues et leurs variabilités,
- b le recrutement et les taux de croissance coralliens.

Lors du rapport de la mission de mars-avril 2010 [29], une synthèse bibliographique avait été réalisée sur ces sujets :

- by pourquoi étudier les biocénoses benthiques,
- les particularités de la baie de Prony,
- b le recrutement et les taux de croissance coralliens : Pocilloporidae.

Lors du rapport de la mission de septembre 2010 [30], puis de mars 2011 [23], une synthèse bibliographique avait été réalisée sur ces sujets :

- b le recrutement et les taux de croissance coralliens : exemple des Pocilloporidae sur les transects de la station 01,
- \$\text{ les algues et leurs variabilités depuis 2008,}
- b les proliférations de cyanobactéries et leurs fluctuations observées depuis 2008.

Nous ne reprenons pas dans ce présent rapport toutes ces thématiques et ne présentons que le point de de suivi sur le recrutement et les taux de croissance coralliens : exemple des Pocilloporidae sur les transects de la station 01.

7.1 Recrutement et taux de croissance corallien : Pocilloporidae, généralités

Sur plusieurs stations étudiées, on a pu observer des taux de recrutement corallien important et des taux de croissance assez élevés.

L'exemple le plus frappant est la station 01 (Casy) où de jeunes colonies se sont fixées sur des piquets de transects depuis la mission de 2007 (pose des piquets le 31/08/07), nous permettant ainsi de bien mesurer leur accroissement à chaque campagne.

Dans ce cas, ces juvéniles sont des *Pocillopora damicornis* de la famille des Pocilloporidae (cf. tableau 171). Les Pocilloporidae sont des coraux abondants sur les récifs néo-calédoniens. Ils s'adaptent très bien aux variations de lumière et aux divers mouvements de l'eau (hydrodynamisme).

Classe	Anthozoa Ehrenberg, 1819
Sous classe	Hexacorallia
Ordre	Scleractinia Bourne, 1900
Genre	Pocillopora Lamarck, 1816
Espèce	damicornis
1ère Description	Linné 1758
Distribution	Indo-Pacifique, de la côte est de l'Afrique à la côte ouest de l'Amérique Centrale, au nord du Japon et d'Hawaii, sud de Durban, vers les îles de Lord et Howe et les îles de Pâques. Entre 1 et 38 mètres.
Description	Petites colonies de taille moyenne. Coloration : brun, vert ou rose.
Caractéristiques	Corail qui vit du produit de ses zooxanthelles. Intensité lumineuse importante requise.
Maintenance	Espèce à croissance rapide mais attention aux algues filamenteuses.
Remarques	Se subdivise en 4 écomorphes (Veron & Pichon, 1976).

Tableau n°171 : <u>Systématique / Description de Pocillopora damicornis</u>

La morphologie de ce corail est très variable et est étroitement lié à l'hydrodynamisme et à la lumière reçue (pénétration de la lumière dans l'eau liée au taux de sédimentation). Des branches fines et largement espacées sont un signe d'eau moyennement brassée. Tandis que des branches compactes et épaisses témoignent d'un environnement intensément brassé.

Une étude en laboratoire montre que les jeunes *Pocillopora damicornis* survivent mieux dans des microhabitats, non affectés par la sédimentation directe, non exposés au broutage direct et non occupés par des algues filamenteuses à croissance rapide [31].

7.2 Recrutement et taux de croissance corallien : Pocilloporidae, cas de la station 01

Des planulas¹⁹ de *Pocillopora damicornis* ont réussi à se fixer sur les piquets (posés lors de la mission du 31/08/07) du transect supérieur de la station 01 (Casy), et, de ce fait, aucune autre espèce ne les a perturbées dans leur édification. Elles se sont développées dans de bonnes conditions environnementales avec un apport en nutriment important (apport des rivières) et une pénétration de la lumière suffisante pour la photosynthèse de leurs symbiotes (zooxanthelles). Lors de chaque mission de suivi les colonies sont mesurées ce qui permet d'appréhender leur croissance.

Cette colonisation des colonies de *Pocillopora damicornis* sur les 3 piquets du transect A est observée depuis :

- octobre 2008 pour les colonies E, F, G (piquet XX),
- juin 2009 pour les colonies B et C (piquet 0),

¹⁹ Planula : larve ciliée résultant de la fécondation d'un gamète femelle par un gamète male chez les éponges et les cnidaires.

Rap 040-11_Ver01

- avril 2010 pour les colonies A et D (piquets 0 et X).

Les colonies coralliennes ne sont donc pas issues de la même phase de ponte :

- les colonies E, F et G sont résultantes de la ponte de novembre 2007,
- les colonies B et C sont résultantes de la ponte de novembre 2008,
- les colonies A et D sont résultantes de la ponte de novembre 2009.

Désormais les trois piquets du transect A sont donc colonisés par 7 colonies de *Pocillopora damicornis* dont les tailles en cm sont indiquées dans le tableau 172.

Les colonies E, F et G sont suivies depuis la plus longue période de temps (octobre 2008 à septembre 2011), et leur développement se réparti dans le temps de la manière suivante (cf. tableau 172) :

- entre 5 et 8 cm de diamètre en octobre 2008,
- puis entre 9 et 16 cm pour la mission de juin 2009,
- entre 10 et 21 cm pour la mission d'avril 2010
- entre 15 et 22 cm pour la mission de septembre 2010,
- entre 16.5 et 26.5 cm pour la mission de mars 2011,
- et enfin entre 22 et 29 cm pour la mission d'octobre 2011.

En estimant que les planulas se sont fixées sur les piquets durant la ponte de novembre 2007, la croissance moyenne des colonies E, F et G est estimée à :

- pour la première mission en octobre 2008 : 6.33 cm/11 mois soit 6.9 cm/an (taux de croissance : 100%),
- pour la deuxième mission de juin 2009 : 4.66 cm/7.5 mois soit 7.46 cm/an (taux de croissance : 73.68%),
- pour la troisième mission de mars-avril 2010 : 3.33 cm/9.5 mois soit 4.2 cm/an (taux de croissance : 30.30%),
- pour la quatrième mission de septembre 2010 : 3.67 cm/6 mois soit 7.33 cm/an (taux de croissance : 25.58%),
- pour la cinquième mission de mars 2011 : 2.5 cm/6 mois soit 5 cm/an (taux de croissance : 13.89%),
- pour la sixième mission de septembre 2011 : 4 cm/6 mois soit 8 cm/an (taux de croissance : 19.51%).

Bien que toutes les colonies (A à G) ne soient pas issues de la même phase de ponte, la croissance moyenne de l'ensemble des colonies sur les 3 piquets peut être calculée : la croissance moyenne des colonies A à G est estimée à :

- pour la première mission en octobre 2008 : 6.33 cm/11 mois soit 6.9 cm/an (taux de croissance : 100%),
- pour la deuxième mission de juin 2009 : 2.67 cm/7.5 mois soit 4.27 cm/an (taux de croissance : 42.10%),
- pour la troisième mission de mars-avril 2010 : 3.28 cm/9.5 mois soit 4.15 cm/an (taux de croissance : 36.51%),
- pour la quatrième mission de septembre 2010 : 3 cm/6 mois soit 6 cm/an (taux de croissance : 24.41%),
- pour la cinquième mission de mars 2011 : 3.43 cm/6 mois soit 6.86 cm/an (taux de croissance : 22.43%),
- pour la sixième mission de septembre 2011 : 3.36 cm/6 mois soit 6.71 cm/an (taux de croissance : 17.94%).

D'une manière générale le taux de croissance diminue au fur et à mesure du temps.

	(cm)	Oct. 2008	Juin 2009	Mars 2010	Sept. 2010	Mars 2011	Oct. 2011
	Colonie A	/	/	6	10	16	21
Piquet 0	Colonie B	/	7	15	18	22	23
	Colonie C	/	5	12	14	17,5	21
Piquet X	Colonie D	/	/	10	11	14	16
Piquet XX	Colonie E	8	16	21	22	26,5	29
	Colonie F	5	8	12	15	16,5	22
	Colonie G	6	9	10	17	18,5	22,5
Nb mois entre les missions		11	7.5	9.5	6	6	6
Date supposée de la ponte		11/2007	11/2008	11/2009	/	/	/
Croissance moyenne		6.33	4.67	3.33	3.67	2,5	4
Croissance annuelle	Moyenne	6.91	7.47	4.21	7.33	5	8
Taux accroissement moyen (%)	colonies E, F, G	100	73,68	30,30	25,58	13,89	19,51
Croissance moyenne		6,33	2,67	3,29	3	3,43	3,36
Croissance annuelle	Moyenne	6,91	4,27	4,15	6	6,86	6,72
Taux accroissement moyen (%)	colonies A à G	100	42,11	36,51	24,42	22,43	17,94

Tableau n°172 : <u>Taille des colonies coralliennes fixées sur les piquets de la ST01A</u>

En général, la vitesse de croissance des colonies scléractiniaires est toujours plus importante les premiers mois (stade juvénile) voir les premières années, puis elle diminue au fur et à mesure du temps. Cependant, les taux de croissance peuvent également varier selon les conditions environnementales et la saisonnalité (tableau 172 et figure 89).

Un ralentissement de croissance est noté pour les premières colonies (E, F et G) pour deux principales périodes : de juin 2009 à avril 2010 et de septembre 2010 à mars 2011.

Cette diminution de croissance pourrait être corrélée à un dérèglement de l'environnement lié aux pluies abondantes de la saison estivale (saison humide) et renforcé par les événements dépressionnaires et climatiques du mois de février 2010 (dépression Jasper) puis du mois de janvier 2011 (dépression Vania et Zelia ainsi que le phénomène la Nina).

Ces perturbations environnementales ont une influence directe sur l'apport d'eau douce et de matières en suspension à l'embouchure des rivières dans la baie de Prony. Les conséquences sont une anomalie négative de salinité, une anomalie négative de températures et une anomalie positive de turbidité. Ces trois facteurs peuvent être en partie à l'origine d'un affaiblissement des coraux (blanchissement, diminution de la croissance corallien, stress).

De la même manière, les nouvelles recrues (colonies A et D) ont une croissance très importante durant leur première phase de croissance (à partir de novembre 2009) mais à la suite de la dépression Jasper de février 2010, les colonies subissent un fort ralentissement de croissance jusqu'en avril 2010.

D'autre part, à la suite du rétablissement dit « normal » des paramètres environnementaux, le taux de croissance des colonies a augmenté. On remarque donc que la croissance n'est pas linéaire durant l'année et que les périodes hivernales (mai-septembre 2010 et avril-septembre 2011) sont plus favorables au développement des colonies de *Pocillopora damicornis*.

D'un point de vue général, les courbes de croissance (cf. figure 89) ont relativement les mêmes tendances entre les différentes colonies sauf pour les colonies G et D. Cette différence peut être mise en évidence par le positionnement des colonies sur les piquets:

- la colonie G est à proximité de la colonie F sur le 3e piquet : les deux colonies s'édifient l'une à côté de l'autre donc elles vont se gêner mutuellement dans leur développement (lutte chimique et variabilité du développement intra-spécifique),
- la colonie D s'édifie toute seule sur le piquet X : sa croissance est très rapide le premier semestre puis redevient dans des proportions dites « normales » par la suite.

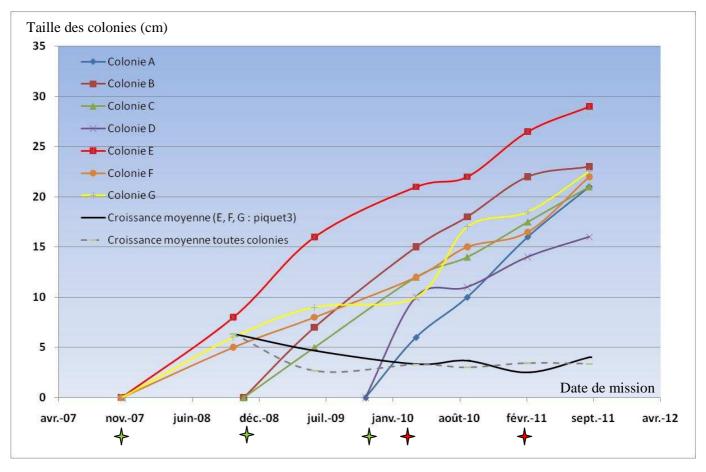


Figure n°89 : <u>Courbes de croissance des colonies coralliennes fixées sur les piquets du transect A</u> <u>de la station 01</u>

Les trois croix vertes indiquent les phases de ponte de novembre 2007, novembre 2008 et novembre 2009. Et les croix rouges indiquent les grandes phases dépressionnaires de Jasper (février 2010) et Vania, Zelia et la Niña (janvier 2011)

En conclusion, l'édification corallienne va être la plus importante durant les premiers stades de croissance, puis va diminuer progressivement au fur et à mesure du temps avec des fluctuations saisonnières.

Durant l'année la croissance corallienne n'est pas linéaire, la période hivernal (saison sèche et saison fraiche) à l'air favorable à la construction de l'exosquelette calcaire. Puis la période estivale (saisons humide et chaude) induit des anomalies de salinité, températures et turbidité dans l'environnement ce qui va stresser les colonies coralliennes dites adultes. De plus, ces anomalies sont encore plus accentuées lors des phénomènes dépressionnaires ou climatiques durant l'été austral. Cependant, au début de la saison estivale se produit le phénomène de ponte corallienne (généralement le mois de novembre) et la croissance des colonies juvéniles va être très rapide (1ère phase de croissance).

Les variations de croissance entre individus sont également bien remarquables ; Elles vont être induites par la compétition spatiale et la sensibilité propre de chaque colonie aux conditions environnementales.

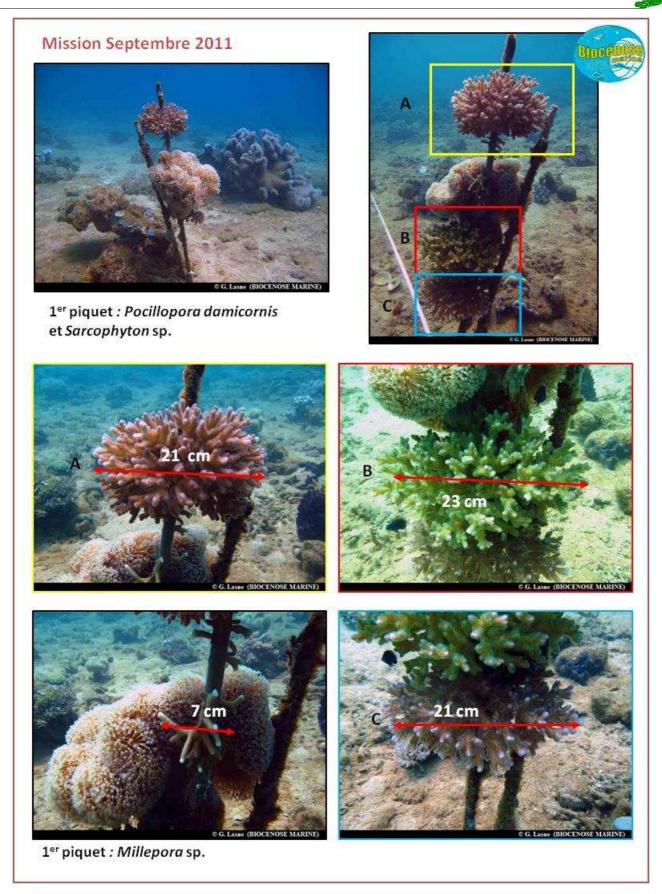


Photo n°020: Colonies A, B, C en octobre 2011 (piquet 0 ST01A)

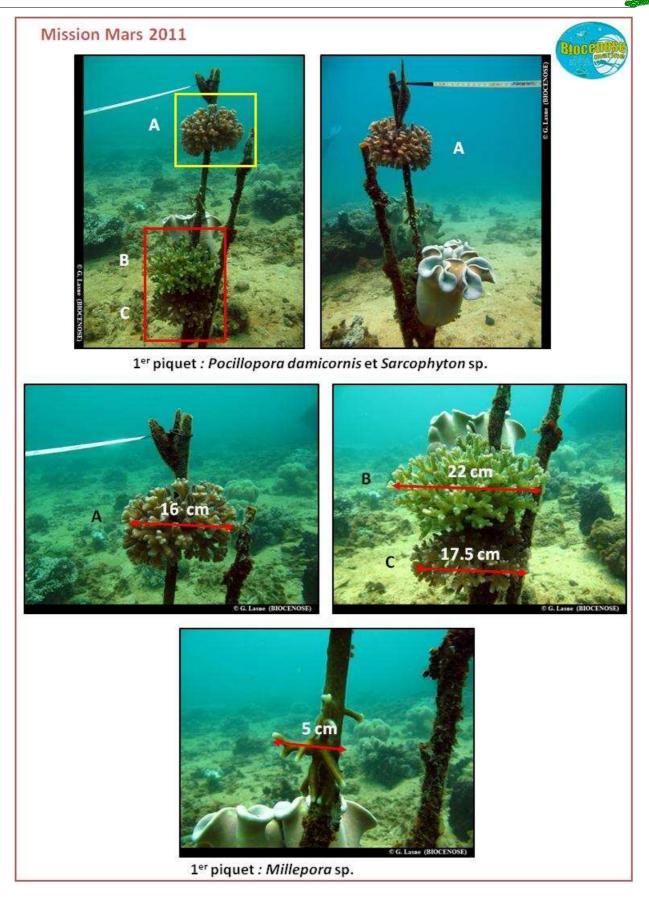


Photo n°021: Colonies A, B, C en mars 2011 (piquet 0 ST01A)

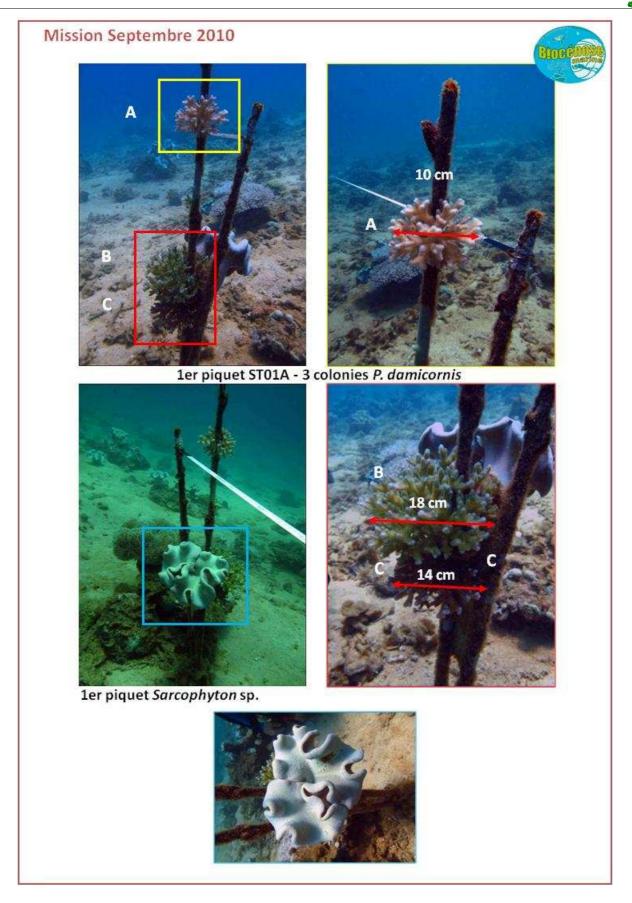


Photo n°022: Colonies A, B, C en septembre 2010 (piquet 0 ST01A)

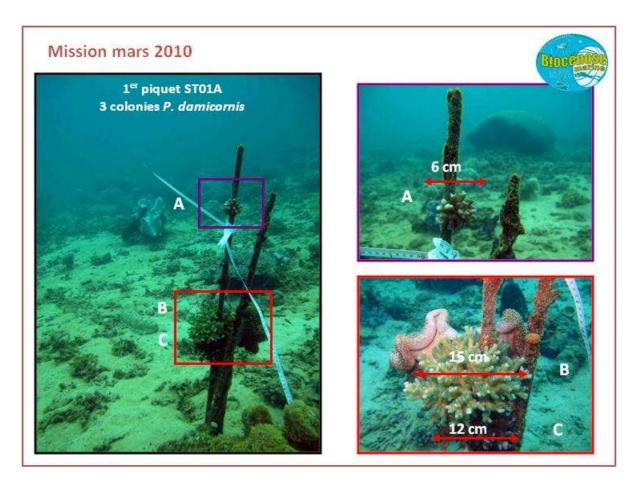


Photo n°023: Colonies A, B, C en mars 2010 (piquet 0 ST01A)

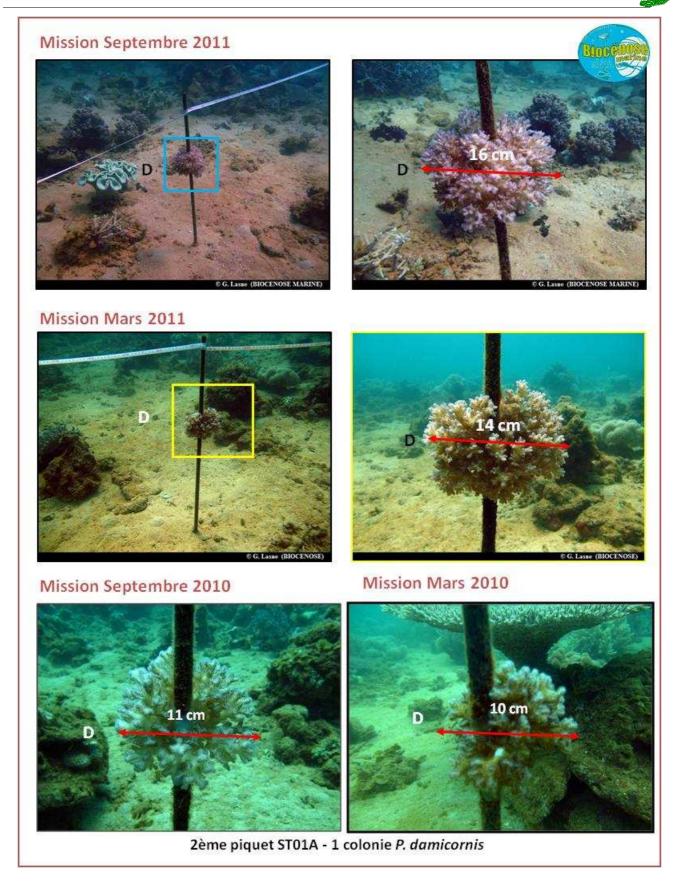


Photo n°024 : Colonie D en mars, octobre 2011, mars, septembre 2010 (piquet X ST01A)

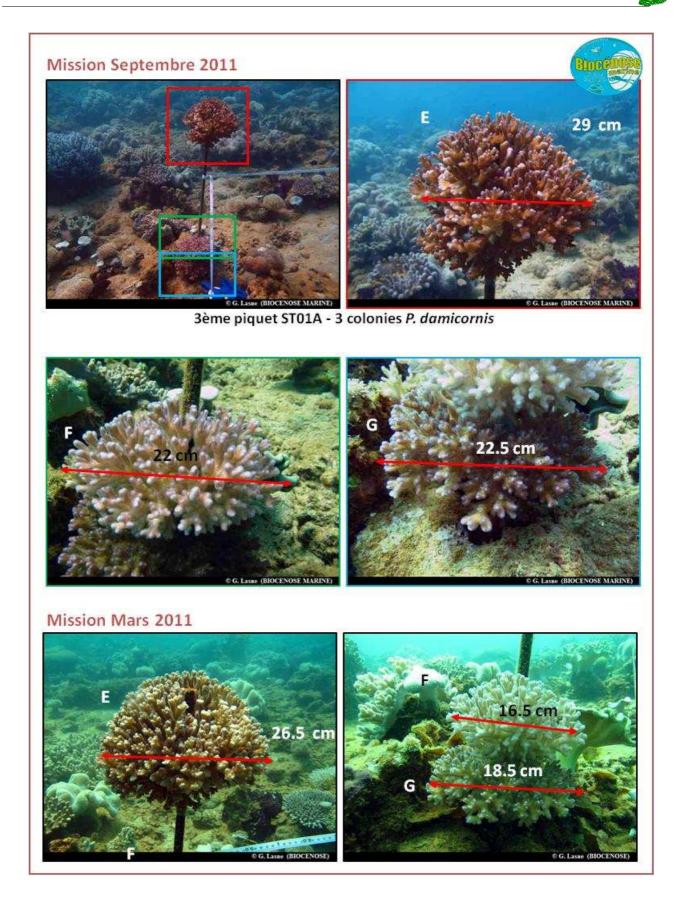


Photo n°025: Colonies E, F, G en mars, octobre 2011 (piquet XX ST01A)

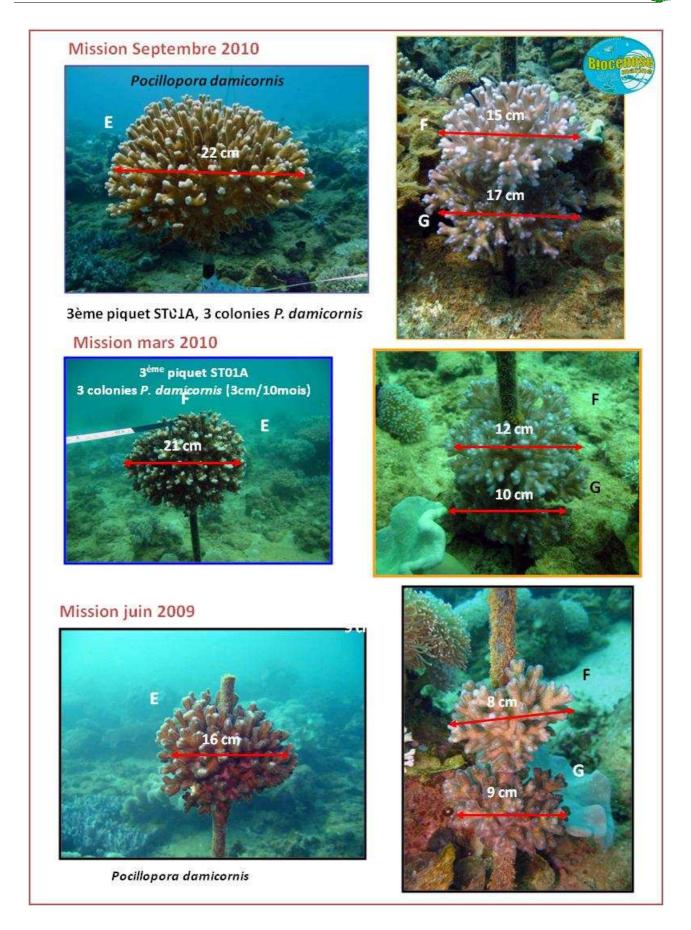


Photo n°026: Colonies E, F, G en mars, septembre 2010, juin 2009 (piquet XX ST01A)

8 Conclusion

Le substrat

L'étude des substrats par le LIT a montré que leur composition est très variée d'une station à l'autre (ce qui est normal par rapport à la géomorphologie du récif qui diffère selon les localisations géographiques) mais aussi au sein même d'une station, avec notamment une influence certaine de la profondeur (diminution du recouvrement par les scléractiniaires et les groupes biotiques en général).

Il n'y a pas à relever de grandes variations temporelles: les pourcentages des différentes composantes sont relativement stables par rapport à la mission précédente. Les variations, quand il y en a, sont dûes à des fluctuations de l'abondance des algues (augmentation en ST03A, ST05A, ST04A&B, ST06C, ST07C et diminution en ST02A, ST08B). Il faut par ailleurs noter la présence toujours faible ou nulle sur la majorité des stations des coraux blancs ainsi que des cyanobactéries, exception faîte du transect ST03B (Port)où le substrat est couvert (6.5%) de quelques tapis de cyanobactéries et surtout du transect ST01B (Casy) à hauteur de 18%.

<u>Les communautés benthiques</u>

Les zones d'étude de la baie de Prony, du canal de la Havannah et du canal Woodin sont sous l'influence potentielle de l'usine Vale Nouvelle-Calédonie. Le suivi environnemental de la faune et de la flore récifale depuis 2008 montre que cette zone est très diversifiée.

<u>Durant la mission de mars 2011</u>, nous avons observé de nombreuses perturbations dans la composition et la structuration des biocénoses benthiques (diversité, abondance et état de santé) enregistrées par rapport aux missions de septembre 2010 et depuis 2008 pour les stations de suivi biologique de la zone.

Dans le canal de la Havannah et le canal Woodin, les principales dégradations étaient d'origine mécanique (dépressions Vania) : nombreux débris, mortalité importante et blanchissement corallien induit par les effondrements. Malgré les courants de marées conséquents dans le canal Woodin, les dégradations mécaniques étaient moindres que dans le canal de la Havannah car les récifs sont moins exposés au ressac et à la houle.

Dans la baie de Prony (milieu protégé), les principales dégradations étaient originaire d'une dessalure des eaux de surface (précipitation abondante induites par l'évènement « La Niňa » et les dépressions). Les conséquences sur les récifs étaient des colonies blanchies encore en place, une mortalité importante sur les récifs à proximité des embouchures des creeks et des rivières.

Les dégradations constatées dans l'ensemble les stations de suivi biologiques n'étaient pas caractérisées par des anomalies biologiques induite par l'activité anthropique mais étaient plutôt d'ordre naturel (évènement climatique de longue période « La Niňa » et évènements dépressionnaires de courte période « Vania et Zelia »).

<u>Durant la mission d'octobre 2011</u>, des améliorations sont constatées au regard des dégradations observées lors de la mission précédente de mars 2011.

Le phénomène de blanchissement tend à s'amoindrir et n'est plus généralisé. Les colonies coralliennes réintègrent pour un grand nombre leurs zooxanthelles. Ces perturbations ont engendré peu de mortalité mais sont encore visibles pour les stations les plus dégradées en mars 2011 et concernent les espèces coralliennes les plus sensibles aux variations de l'environnement.

Les phénomènes de proliférations n'ont pas été constatés :

- Les cyanobactéries tendent vers une stabilité ou une légère diminution de leur recouvrement, malgré la hausse de température des eaux de surface qui peut accélérer leur développement.
- -Les astéries corallivores *Acanthaster planci* et *Culcita novaeguineae* (prédatrices de corail) ont une fréquence et une abondance très faible.
- -Les mollusques corallivores (ex : *Druppela cornus* et *Coralliophilla*) n'ont pas profité de l'affaiblissement corallien pour se développer.

Le phénomène de compétition spatiale :

- Les éponges encroûtante *Cliona orientalis* et *C. jullienei* ont un développement réduit au regard des dégradations coralliennes. Cependant, dans les zones où leur abondance était déjà importante leur amplification s'est renforcée.
- Les algues rouges *Asparagopsis taxiformis* se développent en abondance dans le canal de la Havannah et colonisent tous les types de substrat. Par chance les coraux ne sont pas encore vulnérables et ont des défenses chimiques pour lutter contre cette spatialisation à court terme car les algues rouges subissent de grandse variations saisonnières, leur développement se faisant durant la période estivale.

Désormais les récifs se stabilisent avec toutefois de nombreux stigmates. Il faudra du temps pour que les scléractiniaires s'édifient mais pour l'instant les signes précurseurs d'un non retour ne sont pas observés. Les colonies coralliennes de la baie de Prony et du canal Woodin ont été perturbées sur une plus longue période de temps avec un stress beaucoup moins brutal que la destruction mécanique induite par les agents hydrodynamiques dans le canal de la Havannah. C'est pourquoi la réponse de l'état de santé des colonies coralliennes aux perturbations est également décalée entre les trois systèmes.

Les stations colonisées par des coraux en état de santé latente sont ST03A, ST04B, ST07A, ST08A, ST10A & B et ST12B (avec des proportions plus importantes de blanchissement dans le canal de la Havannah et une mortalité plus conséquente en baie de Prony et canal Woodin). Ces stations sont à surveiller avec attention lors du prochain suivi biologique (mars 2012).

La ponte corallienne s'est déroulé 13 au 16 novembre 2011. Le recrutement corallien caractérise l'état de santé des récifs, les colonies juvéniles assurant le maintien des populations à l'échelle décennale. La capacité de recolonisation des coraux et de résilience des récifs peuvent être importante si les conditions environnementales restent stables.

Les populations ichtyologiques

Les valeurs de :

- La biodiversité α se sont accrues sensiblement aux 3 stations de la baie de Prony. Dans le canal de la Havannah en revanche, rien n'a changé que de façon aléatoire : 4 stations ont une biodiversité en hausse et 4 en baisse pour une moyenne globale inchangée (99 en mars 2011 contre 101 en octobre 2011). La Bα de Woodin est également inchangée.
- La biodiversité γ sur la zone reste forte : 338 espèces dont 15 nouvelles, ce qui porte le nombre total d'espèces vues dans la zone depuis 2005 à 588 espèces.
- La biodiversité β est quasi stable ainsi que l'équitabilité β. Cette dernière est d'ailleurs stable depuis 2007. Il n'y a que l'année 2008 qui se distingue légèrement des autres.

Le seul contraste de biodiversité marqué est celui qui existe entre les stations de la Baie de Prony et celles du canal de la Havannah et Woodin.

Nous avons encore cette fois-ci calculé l'ubiquité des espèces, d'une part parce que cela nous paraît intéressant en soit de se faire une idée de l'instabilité spatiale et temporelle du peuplement de poissons et d'autre part pour permettre d'orienter d'éventuels choix d'espèces à conserver, dans le cas où le nouveau protocole limiterait les espèces à prendre en compte lors des missions de suivi.

- En ce qui concerne l'Ubiquité spatiale (entre stations), et cela s'est vérifié à chaque mission, très peu d'espèces (3) sont présentes à toutes les stations. En fait, 56% ne sont vues qu'une ou deux fois sur les 12 stations et 88% ne se rencontrent que sur moins de la moitié des stations. Seulement 12 % peuvent être qualifiées d'ubiquistes car elles se rencontrent sur au moins 7 des 12 stations, dont 6% (soit une vingtaine d'espèces) sur au moins 9 stations.
- En ce qui concerne l'Ubiquité temporelle (entre années), c'est le même schéma contrasté. 41% des espèces n'ont été vues qu'une seule fois depuis 2007. 60% ont été vues 1 ou 2 fois et à l'inverse seulement 14 % ont été vues 6 ou 7 fois, est peuvent donc être qualifiées de permanentes sur la zone.

La première partie de ce rapport conclut que la zone étudiée a retrouvé les valeurs de densité et de biomasse qu'elle présentait jusqu'à présent et que le cyclone Vania avait quelque peu modifiées. Ces paramètres sont

revenus aux valeurs qu'ils avaient lors de la mission de septembre 2010, tandis que la biodiversité garde une valeur proche de celle obtenue en mars dernier et s'inscrit dans une tendance à la progression que nous observons peu à peu depuis le début de cette série historique débutée en 2005.

La deuxième partie montre que le peuplement présente toujours les mêmes caractéristiques, à savoir une grande instabilité naturelle de la présence ou l'absence des espèces, mais cette instabilité est enserrée dans un schéma structurel toujours identique :

- Toujours une grande plasticité du peuplement ;
- Un nombre d'espèces présentes sur les 12 stations autour de 300 espèces, dont moins de 40 d'entre elles sont habituelles :
- Un petit nombre de familles bien représentées : 7 familles sur 55 comportent 208 espèces sur 338 et les Pomacentridae et la Labridae contiennent à elles deux un tiers des espèces observées.

Signalons en exergue que les phases juvéniles de nombreuses espèces notamment de Chaetodontidae, Labridae, Siganidae, Epinephelinae, Pomacentridae, Pomacantidae, Haemulidae, Mullidae, etc. sont toujours bien présentes en baie de Prony notamment aux stations 02 (Port) et 03 (creek baie nord). Ce repérage des stades juvéniles devrait faire partie du cahier des charges.

Toutes les observations et photographies de ce document ont été réalisées du du 25 septembre au 06 octobre 2011. Un réseau de suivi environnemental (piquets permanents) a été installé et permettra de revenir sur les mêmes sites. Les données 2011 recueillies ne peuvent en aucun cas être considérées comme pérennes. Ceci implique le renouvellement de cette étude, à six mois d'intervalle, afin de percevoir les changements éventuels.

9 Discussion

L'objectif de cette étude est d'effectuer un suivi de l'état des communautés coralliennes sur un ensemble de stations de mesures afin d'alimenter une base de données qui permettra de :

- Evaluer la variabilité naturelle des stations et d'optimiser l'effort d'échantillonnage par une étude de puissance ;
- Suivre dans le temps les effets potentiels des activités industrielles du projet Goro Nickel (Vale Nouvelle-Calédonie).

Pour ce faire, le choix des stations et des transects est primordial.

Choix efficient des stations

Ce suivi se fait à travers l'échantillonnage de 3 thèmes (le substrat, le benthos et les poissons), de taxons cibles et de paramètres biologiques clés.

L'un de ces paramètres est le recouvrement en scléractiniaires. En effet ces coraux sont :

- les constructeurs des récifs et donc à la base de l'écosystème corallien (habitat, nourriture, ...),
- sensibles aux perturbations du milieu.

Or, pour pouvoir suivre l'évolution de ce taux de recouvrement, les stations doivent donc « naturellement » (c'est-à-dire pendant la phase de référence), posséder des taux moyens (pouvant varier, dans les deux sens). En effet, une station possédant un taux de recouvrement proche de « 0 » ne pourra voir ses pourcentages qu'augmenter, et ne pourra pas servir de marqueur si une dégradation se produit. A l'inverse, des taux trop élevés ne pourront que diminuer.

Il est donc recommandé de choisir pour ce type d'étude des stations possédant entre 30 et 60% de recouvrement corallien.

Pour la mission de mars 2011, la moyenne de recouvrement des scléractiniaires est de 16.5% (stable par rapport à matrs 2011) (tableau 180 annexe 04).

Cela varie de 0.5% (ST01B, Casy) pour les plus faibles à 55% (ST02A, Creek baie nord) pour les plus fortes. Le déplacement de certaines stations ou transects, pendant qu'il en est encore temps (avant le démarrage définitif de l'usine) est à étudier.

Choix efficient des transects et réplicats

Les transects fixes existants (trois théoriquement pour chaque station) permettent, sous réserve d'être échantillonnés exactement au même endroit chaque année, de quantifier la stabilité ou non de la zone, **mais considérée globalement**.

C'est un suivi global, dans le temps, car c'est la « différence annuelle » qui sert de variable aléatoire. La variable statistique sera donc l'ensemble des différences « année n-1/année n » obtenues à chaque station, chacune des stations donnant donc une valeur et une seule, à cette variable.

Pour permettre un suivi statistique temporel station par station, il faut une variable aléatoire par station. Pour ce faire, l'échantillonnage de transects en réplicats aléatoires - en plus des transects existants - est nécessaire.

La mise en œuvre de ces réplicats est donc à étudier, car ils permettront d'une part d'affiner la probabilité de l'avis donné pour l'ensemble de la zone (dans le temps), et d'autre part de préciser (dans l'espace) s'il y a des différences spatiales et donc juger de ces différences le long d'un gradient d'éloignement des sources potentielles de pollution de manière à préciser si, dans le cas où l'on détecterait des variations, ces variations sont dues ou non à l'usine.

10 Recommandations / Améliorations

L'équipe qui a effectué ce travail possède de solides connaissances dans le domaine de l'échantillonnage et en particulier sur la résolution des problèmes sur le terrain, qui peuvent entacher les résultats finaux.

Pour faciliter tant le travail terrain qu'ensuite le traitement des données, un certain nombre de recommandations est donné dans ce paragraphe.

10.1 Améliorations propres à ce suivi

Marquage des piquets

La méthode de suivi temporel statistique retenue par Vale Nouvelle-Calédonie, exige que les échantillonnages soient toujours réalisés sur les mêmes zones.

Cette précision implique la matérialisation physique de la station sous l'eau.

Or, les conditions en mer ne sont pas toujours favorables et de plus, de nombreuses études ont été réalisées dans la zone, ce qui laisse plusieurs autres piquets de marquage, en sus de ceux devant être trouvés (exemple : photographie 27).

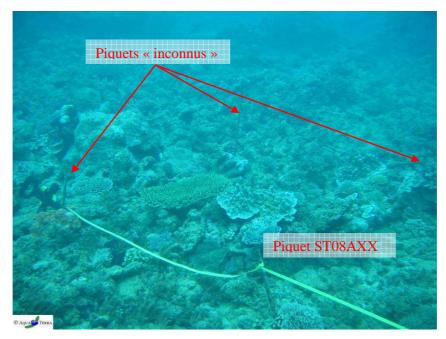


Photo $n^{\circ}027$: Station 08: fin de transect A: 3 autres piquets formant un quadrat

Pour mieux retrouver les stations devant être étudiées et donc les bons piquets (pour éviter notamment la perte de temps et diminuer les risques de dérouler le ruban sur un mauvais piquet), nous proposons de faire marquer les piquets à la prochaine campagne.

Cette identification pourrait être une étiquette (métallique, plastique) poinçonnée, avec un code correspondant à chaque piquet, du type : numéro de la station, lettre du transect, métrage sur le transect (en lettre romaine pour éviter de confondre avec la profondeur)

Exemple comme pour la photographie 27 : c'est le piquet de fin du transect le plut haut station Puka = ST08AXX.

Positionnement et description des stations

Toujours pour permettre de mieux retrouver les stations et de s'orienter dans l'eau, nous proposons depuis plusieurs années de faire réaliser un schéma - horizontal - descriptif de chaque station (exemple succinct figure 90).

En effet, ce type d'outil permet, une fois arrivés sur zone avec le GPS et qu'un 1er piquet est trouvé (surtout

s'il est identifié), de savoir exactement où on se positionne sur la station et d'aller alors directement à la bonne profondeur et dans la bonne direction pour dérouler les rubans métrés.

Ce type de schéma doit comporter : la disposition des transects, des piquets, des points remarquables du paysage, le sens de déroulement des rubans, les profondeurs, etc. avec un métré le plus précis possible et les orientations.

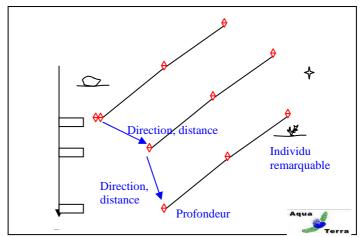


Figure n°90 : <u>Exemple de schéma descriptif d'une station</u>

Cet outil (associé au marquage des piquets) serait particulièrement utile pour permettre à d'autres équipes de retrouver les sites. Car à l'heure actuelle pour des intervenants nouveaux, il est quasiment impossible de retrouver tous les transects avec la seule indication du point GPS surface.

Cela conférerait à Vale Nouvelle-Calédonie une autonomie certaine pour les missions terrain.

Pour faciliter notre travail et augmenter sa qualité, nous avons commencé à réaliser, bénévolement, ce travail. Ces différents schémas devront bien sur être améliorés/précisés au cours des missions futures.

10.2 Améliorations au cahier des charges

Avec le recul de plusieurs campagnes (avec celles de suivis et les autres, une dizaine en tout), le cahier des charges, qui date de 2006, devrait être revu, notamment dans le nombre et l'emplacement des stations. Mais d'autres améliorations pourraient être apportées, sur la méthodologie, dont :

Taxons cibles

Dans le cahier des charges, un certain nombre de taxons cibles ont été listés, car ils sont identifiés comme indicateurs biologiques de l'état du milieu naturel.

Ils doivent donc être échantillonnés.

Nous proposons de rajouter :

- les scléractiniaires qui constituent l'habitat essentiel d'un écosystème récifal et qui sont très sensibles aux variations de l'environnement marin tropical,
- les alcyonaires qui représentent un recouvrement biotique conséquent dans les stations d'études et qui sont en compétition territoriale constante avec les macrophytes et les scléractiniaires,
- les cyanobactéries, qui sont les marqueurs d'un déséquilibre du milieu (eutrophisation) et qui sont directement alors en compétition avec les coraux,
- les espèces particulières qui sont prédatrices du corail : Acanthaster, Culcita, Drupella, etc.,
- les espèces exogènes.

Ce travail sur ces taxons, même s'ils ne sont pas inscrits au cahier des charges imposé par le suivi règlementaire, est réalisé de façon volontaire de notre part ainsi que de celle de Vale Nouvelle-Calédonie depuis 2008.

Prises de photographie de spécimens remarquables

Le cahier des charges ne prévoit pas la surveillance des stations par un suivi photographique, comme cela est possible par différentes méthodes.

Cependant, certains spécimens, à certaines stations étant remarquables (par leur taille, leur emplacement, leur espèce, etc.), leur identification est facilitée et leur évolution temporelle peut donc être envisagée facilement par photographie.

Nous proposons de faire établir une liste (avec leur position, et notamment sur les schémas descriptifs des stations) de ces spécimens, pour ensuite les photographier à chaque mission.

10.3 Suggestions au niveau provincial ou territorial

Guide d'échantillonnage

L'étude de 2008 avait permis de montrer que les chiffres globaux biotiques/abiotiques de certaines stations avaient beaucoup évolué par rapport à la campagne précédente de 2007.

Cependant, cette évolution n'était pas du fait d'un changement dans la structure des fonds des stations étudiées, mais plutôt de la différence d'appréciation et d'interprétation du substrat par les opérateurs sous l'eau lors de l'échantillonnage LIT.

C'est pourquoi nous suggérons la réalisation d'un « Guide de l'interprétation des catégories pour le LIT », qui comprendrait le listing des classes, leur description précise et surtout des photos prises *in situ*, sur les stations concernées. Ce travail pourrait être entrepris au niveau de toute la Nouvelle-Calédonie (ou au moins la Province Sud) et par exemple sous pilotage de l'ŒIL.

Cela permettrait ainsi à Vale Nouvelle-Calédonie mais aussi à tous les autres intervenants (autres miniers, décideurs, etc.) de limiter les risques d'interprétations différentes selon les échantillonneurs et d'obtenir une base de données générale et comparable.

Ces outils seraient d'une aide précieuse dans le bon déroulement des futures missions, tant sur le plan de la sécurité des opérateurs, que sur la qualité des données récoltées.

11 Sources

Les différentes sources ayant servie à la rédaction du rapport sont présentées ci-dessous, avec, le cas échéant, les numéros qui rappellent les références citées dans le texte de cette étude.

	Andréfouët S., Torres-Pulliza D., 2004. Atlas des récifs coralliens de Nouvelle-Calédonie, IFRECOR Nouvelle-Calédonie, IRD, Nouméa, Avril 2004, 26p + 22 planches
8	Aqua Terra: Rapport final pour « Suivi de l'état des peuplements récifaux et organismes associés en baie de Prony et canal de la Havannah » Projet Goro Nickel, Vale Inco NC. Mission Octobre 2008. Contrat 1996.
	Document: AquaTerra_Rap_047-08_V02. 222p
	Aqua Terra : Atlas photographique pour « Suivi de l'état des peuplements récifaux et organismes associés en baie
	de Prony et canal de la Havannah » Projet Goro Nickel, Vale Inco NC. Mission Octobre 2008. Contrat 1996. Document: AquaTerra_AtlasPho_047-08_V01. 96p
<u></u>	Aqua Terra: Rapport final pour « Evaluation de l'impact d'une fuite acide sur le milieu marin » Projet Goro
24	Nickel, Vale Inco NC. Mission avril 2009. Purchase Order E13690. Document: AquaTerra_Rap_009-09_V02. 176p
	Aqua Terra : Atlas photographique pour « Evaluation de l'impact d'une fuite acide sur le milieu marin » Projet
	Goro Nickel, Vale Inco NC. Mission avril 2009. Purchase Order E13690. Document : AquaTerra_AtlasPho_009-09_V01. 104p
	Aqua Terra : Rapport final pour « Evaluation de l'impact d'une fuite acide sur le milieu marin » Projet Goro
25	Nickel, Vale Inco NC. Mission juin 2009. Purchase Order E15217. Document: AquaTerra_Rap_018-09_V03. 182p
	Aqua Terra: Atlas photographique pour « Evaluation de l'impact d'une fuite acide sur le milieu marin » Projet Goro Nickel, Vale Inco NC. Mission juin 2009. Purchase Order E15217. Document: AquaTerra_ AtlasPho
ļ	018-09_V01.96p Aqua Terra : Rapport final pour « Suivi de l'état des peuplements récifaux et organismes associés en baie de
28	Prony et canal de la Havannah » Projet Goro Nickel, Vale Inco NC. Mission juin 2009. Contrat 1996 av1. Document: AquaTerra_Rap_006-09_V01. 256p
<u></u>	Aqua Terra : Atlas photographique pour « Suivi de l'état des peuplements récifaux et organismes associés en baie
	de Prony et canal de la Havannah » Projet Goro Nickel, Vale Inco NC. Mission juin 2009. Contrat 1996 av1.
	Document: AquaTerra_AtlasPho_006-09_V01. 190p
26	Aqua Terra: Rapport final pour « Evaluation de l'impact d'une fuite acide sur le milieu marin » Projet Goro Nickel, Vale Inco NC. Mission décembre 2009. Purchase Order E18597. Document: AquaTerra_Rap_048-09_V02. 205p
	Aqua Terra : Atlas photographique pour « Evaluation de l'impact d'une fuite acide sur le milieu marin » Projet Goro Nickel, Vale Inco NC. Mission décembre 2009. Purchase Order E18597. Document : AquaTerra_ AtlasPho _048-09_V01. 98p
	Aqua Terra : Rapport final pour « Suivi de l'état des peuplements récifaux et organismes associés en baie de
29	Prony et canal de la Havannah » Projet Goro Nickel, Vale Inco NC. Mission mars-avril 2010. Contrat C2415. Document: AquaTerra_Rap_064-09_V01. 271p
	Aqua Terra : Atlas photographique pour « Suivi de l'état des peuplements récifaux et organismes associés en baie
	de Prony et canal de la Havannah » Projet Goro Nickel, Vale Inco NC. Mission mars-avril 2010. Contrat C2415.
	Document: AquaTerra_AtlasPho_064-09_V01. 90p
20	Aqua Terra : Rapport final pour « Suivi de l'état des peuplements récifaux et organismes associés en baie de
30	Prony et canal de la Havannah » Projet Goro Nickel, Vale Inco NC. Mission septembre 2010. Contrat C2415.
	Document : AquaTerra_Rap_058-10_V01. 276p Aqua Terra : Atlas photographique pour « Suivi de l'état des peuplements récifaux et organismes associés en baie
	de Prony et canal de la Havannah » Projet Goro Nickel, Vale Inco NC. Mission septembre 2010. Contrat C2415.
	Document: AquaTerra_AtlasPho_058-10_V01. 100p
	Aqua Terra : Rapport final pour « Suivi de l'état des peuplements récifaux et organismes associés en baie de
23	Prony et canal de la Havannah » Projet Goro Nickel, Vale NC. Mission mars 2011. Contrat C2415. Document :
	AquaTerra_Rap_001-11_V01. 320p
	Aqua Terra : Atlas photographique pour « Suivi de l'état des peuplements récifaux et organismes associés en baie
	de Prony et canal de la Havannah » Projet Goro Nickel, Vale NC. Mission mars 2011. Contrat C2415.
<u></u>	Document: AquaTerra_AtlasPho_001-11_V01. 100p
27	Aqua Terra : Rapport final pour « Suivi de l'impact d'une fuite acide sur le milieu marin » Projet Goro Nickel,
	Vale NC. Mission avril 2011. Purchase Order E29830. Document: AquaTerra_Rap_019-11_V01. 205p

	9000
	Aqua Terra: Atlas photographique pour Suivi de l'impact d'une fuite acide sur le milieu marin » Projet Goro Nickel, Vale Inco NC. Mission avril 2011. Purchase Order E29830. Document: AquaTerra_ AtlasPho _019-
	11_V01. 96p
	Aqua Terra : Atlas photographique pour « Suivi de l'état des peuplements récifaux et organismes associés en baie
2	de Prony et canal de la Havannah » Projet Goro Nickel, Vale NC. Mission octobre 2011. Contrat C2415. Document : AquaTerra_AtlasPho_040-11_V01. 111p
22	Arias-González J.E., Legendre P., Rodríguez-Zaragoza F. A., 2008. Scaling up beta diversity on Caribbean coral
22	reefs Journal of Experimental Marine Biology and Ecology 366, 28–36
	Avias J., 1959. Les récifs coralliens de la Nouvelle-Calédonie et quelques-uns de leurs problèmes. Extrait du Bul. Soc. Géo. Fr, 7è série, t.I, p 424-430
10	Bellwood D.R., Hughes T.P., 2001. Regional-scale assembly rules and biodiversity of coral reefs. Science 292,
13	1532–1534
14	Bellwood D.R., Hughes T.P., Connolly S.R., Tanner J., 2005. Environmental and geometric constraints on Indo_Pacific coral reef biodiversity. Ecology Letters 8, 643–651
	Cabioch G., 1988. Récifs frangeants de Nouvelle-Calédonie (Pacifique sud-ouest). Structure interne et influences
	de l'eustatisme et de la néotectonique. Publications de l'Université de Provence (ed.), Aix en Provence : 291 p. +
	25 planches-photos
	Cabioch G., Payri C. & Pichon M., 2002. Mission Nouvelle-Calédonie. Octobre–novembre 2001. Forages îlot Bayes. Morphologie générale et Communautés algo-coralliennes. In : Cabioch G., Payri C., Pichon M., Corrège T., Butscher J., Dafond N., Escoubeyrou K, Ihilly C., Laboute P., Menou J.L. & Nowicki L., 2002. Forages sur
	l'Ilot Bayes sur le récif barrière de Poindimié (côte Est de Nouvelle-Calédonie) du 7 septembre au 27 octobre
	2001. Rapports de mission, Sciences de la Terre, Géologie - Géophysique, Centre de Nouméa, n° 47 : 22 p. +
<u></u>	annexes
	Catala R., 1950. Contribution à l'étude écologique des îlots coralliens du Pacifique Sud. Bull. Biol. France,
	Belgique, t. 84, p.234- 310, pl. 1-2, 11 fig. Paris
ļ	Catala R., 1964. Carnaval sous la mer. 141p. 48fig. (ed.) Sicard, Paris
	Catala R., 1992. Offrandes de la mer. 336 p. Papeete.: Ed. du Pacifique
	CEDRE, 2006. Guide d'intervention chimique, Acide sulfurique. 64p
	Chauhan V. D. & Krishnamurthy V., 1967. Observations on the output of zoospores, their liberation, viability
	and germination in <i>Sargassum swartzii</i> (Turner) C. Ag.; Proceedings of the seminar on sea salt and plants, CSMCRI, Bhavnagar, pp. 197–201
	Chauhan V. D. & Krishnamurthy V., 1967. Ecology and seasonal succession of <i>Sargassum swartzii</i> (Turner) C.
	Ag. in Indian waters; Phykos 10 1–11
	Chauhan V. D., 1972. Physiological ecology of the early stages of <i>Sargassum swartzii</i> (Turner) C. Ag.; <i>Bot. Mar.</i>
	15 49–51
<u> </u>	Chauhan V. D. & Mairh O. P., 1978. Report on the survey of marine algae resources of Saurashtra coast; Salt
	Res. India 14(2) 21–41
	Chevalier J.P., 1964. Compte-rendu des missions effectuées dans le Pacifique en 1960 et 1962 (Mission d'étude
	des récifs coralliens de Nouvelle Calédonie). Cah. Pac., 6 : 172-175
	Chevalier J.P., 1973. Coral reefs of New Caledonia. in: JONES O.A, ENDEAN R. (ed.): Biology and geology
	of coral reefs. New York: Acad. Press. Vol 1, Geol. 1: 143-166
7**************************************	Chevalier J.P., 1975. Les Scléractiniaires de la Mélanésie française. 2ème partie. in : Expéd. fr. sur les récifs
	coralliens de la Nouvelle-Calédonie. Paris : Singer-Polignac. Vol. 7 : 407 p
	Chevalier J.P., 1980. Les coraux du lagon de la Nouvelle-Calédonie. in : DUGAS F., DEBENAY J.P. Carte
	sédimentologique et carte annexe du lagon de Nouvelle-Calédonie à 1/50 000. Feuille la Tontouta. Paris :
	ORSTOM. Not. Explic., 86: 17-22
	Chorus I. & Bartram J., 1999. Toxic Cyanobacteria in Water: A guide to their public health consequences,
ļ	monitoring and management. Geneva: World Health Organization, 416
	Condit R., Pitman N., Leigh Jr. E.G., Chave J., Terborgh J., Foster R.B., Núñe, P., Aguilar S., Valencia R., Villa
15	G., Muller-Landau H.C., Losos E., Hubbell S.P., 2001. Beta-diversity in tropical forest trees. Science 295, 666–
,	669
	Dagnelie P., 1975. Théorie et méthodes statistiques, Les Presses Agronomiques de Gembloux, (Vol II) 463 p
	Dooley J. K., 1972. Fishes associated with the pelagic <i>Sargassum</i> complex, with a discussion of the <i>Sargassum</i>
	community; Contrib. Mar. Sci. 16 1–32
1	English S. and al., 1997. Survey manual for tropical marine resources (2nd Edition). Australian Institute of
<u></u>	Marine Science. 390p
	Faure G., Thomassin B., Vasseur P., 1981. Reef coral assemblages on the windward slopes in the Noumea
	Lagoon (New Caledonia). Proc. 4th int. Coral Reef Symp., Manila, 18-22 May 1981. 293-301
6	Fisk D. 2009 Best practice for LIT survey. Coral list Vol4 Issue 28
9	Friedman M., 1937. The use of ranks to avoid the normality implicit in the analysis of variance. J. Amer. Statist.

	Ass. (32) 675-701p
11	Frontier S., 1982. Réflexions pour une théorie des écosystèmes. Bull. Ecol. 8 (4) : 445-464
	Garrigue C., 1985. Répartition et production organique et minérale de macrophytes benthiques du lagon de
	Nouvelle Calédonie. Thèse, Université des Sciences et Techniques du languedoc, Montpellier, 270 pp
	Garrigue C. & Tsuda R.T., 1988. Catalog of marine benthic algae from New Caledonia. Micronesico, 21, 53-70
	Garrigue C. & Di Matteo A., 1991. La biomasse végétale benthique du lagon sud-ouest de Nouvelle-Calédonie.
	Résultats bruts : liste taxonomique, biomasses, pigments chlorophylliens. Arch. Sci. Mer, Biol. iiiur., ORSTOM,
	Nouniea, 1, 143 pp
	Goldman J.C. & Carpenter E.J., 1974. A kinetic approach to the effect of temperature on algal growth. Limnol.
	Oceanogr. 19: 756-66
	Guille A., Menou J. L., Laboute P., 1986. Guide des étoiles de mer, oursins et autres échinodermes du lagon de
	Nouvelle-Calédonie. Edition de l'ORSTOM. 238p
	Harada KI., Tsuji K. & Wanatabe M.F., 1996. Stability of microcystins from cyanobacteria. III. Effect of pH
<u> </u>	and temperature. Phycologia, 35 (6 Supplement), 83-88
16	Harborne A.R., Mumby P.J., Zychaluk K., Hedley J.D., Blackwell P.G., 2006. Modeling the beta diversity of
10	coral reefs. Ecology 87, 2871–2881
	Harmelin-Vivien M.L., J.G. Harmelin, C. Chauvet, C. Duval, R. Galzin, P. Lejeune, G. Barnabé, F. Blanc, R.
	Chevalier, J. Duclerc, G. Lasserre, 1985 – Evaluation visuelle des peuplements et populations de poissons :
	méthodes et problèmes. Revue d'Ecologie (Terre et Vie), vol. 40 : 80p
17	Hatcher B.G., 1997. Coral reef ecosystems: how much greater is the whole than the sum of the parts? Coral Reefs
17	16, S77–S91
	Kirkman H. & Kendrick G. A., 1997. Ecological significance and commercial harvesting of drifting and
	beachcast macroalgae and seagrasses in Australia: A review; J. Appl. Phycol. 9 311–326
	Krishnamurthy V., 1967. Seaweed drift on the Indian coast. Proceedings of the Symposium "Indian Ocean";
	Bull. Nat. Inst. Sci. India 38 657–666
	Kruskal W., Wallis W.A., 1952. Use of ranks in one-criterion variance analysis. Journal of the American
	Statistical Association 47 (260): 583–621
4	Kulbicki M., Guillemot N., Amand M., 2005 - A general approach to length-weight relationships for New
	Caledonian lagoon fishes. Cybium 2005, 29 (3): 235-252
	Laboute P., Grandperrin R. 2000. Poissons de Nouvelle-Calédonie, Nouméa : Catherine Ledru, 519 p
	Lasne G., 2007. Les coraux de Nouvelle-Calédonie : Synthèse bibliographique. Cellule de coordination CRISP,
	IRD, WWF, MNHN, EPHE. 93p
	Lasne G., Menou J.L., Geoffray C., 2006. Description des biocénoses marines et la morphologie baie de Ouémo.
	Rapport de mission confidentiel, Centre IRD de Nouméa, 26p
	Lasne G., Payri C, Menou J.M., 2006. Description des biocénoses marines et la morphologie à Poindimié.
	Rapport de mission confidentiel, Centre IRD de Nouméa, 23 p
	Lasne G., Geoffray C., Folcher E., 2007. Description des biocénoses marines et la morphologie à la Pt de Mouly,
	Ouvéa. Rapports de mission confidentiel, Centre IRD de Nouméa, 26 p
	Lasne G., Menou J.M., Folcher E., 2007. Description des biocénoses marines et la morphologie à Xépénéhé,
	Lifou. Rapport de mission confidentiel, Centre IRD de Nouméa, 28 p
<u> </u>	Lasne G., 2010. Inventaire des coraux scléractiniaires du Grand Lagon Nord de la Nouvelle-Calédonie –
	Campagne CORALCAL III, 10-30 mars 2009. 122p
}	Lenanton R. C. J., Robertson A. I. and Hansen J. A., 1982. Nearshore accumulations of detached macrophytes as
	nursery areas for fish; Mar. Ecol. Prog. Series 9 51–57
<u></u>	Levi C., Bargibant G., Menou J.L., Laboute P., 1998. Sponges of the New Caledonian Lagoon. Edition de
	1'ORSTOM. 214p
12	Motomura I., 1932. A statistical treatment of associations, Jpn. J. Zool. 44: 379–383
5	Mundy C. These about accuracy and precision of the LIT method. James Cook University Townsville 1985
ر	
	Norton A. C., Mathieson A. C. and Neushul M., 1982. A review of some aspects of form and function in
<u> </u>	seaweeds; Bot. Mar. 25 501–510
18	Ormond R.F.G., Roberts C., 1997. The biodiversity of coral reef fishes. In: Ormond, R.F.G., Gage, J.D., Angel,
 	M.V. (Eds.), Marine Biodiversity: Patterns and Processes. Cambridge University Press, pp. 216–257
	Payri C.E., 1988. <i>Halimeda</i> contribution to organic and inorganic production in a Tahitian reef system. Coral
<u> </u>	Reefs, 6,251-262
	Payri C.E. & N'Yeurt A.D.R., 1997. A revised Checklist of Polynesian benthic Marine Algae, Australian
	Systematic Botany, 10: 867-910
	Payri C. et Richer de Forges B., 2006. Compendium of marine species from New Caledonia. Doc. Sci. Tech. II7
L	volume spécial, IRD
	Pearson E.S. et Hartley H.O., 1966. Biometrika tables for statisticians (Vol I) University Press, Cambridge, 264p
[Pichon M., 2006. Biodiversité des coraux scléractiniaires de Nouvelle-Calédonie. Rapport sur la mission

-	-
	effectuée à Nouméa Nouvelle-Calédonie du 4 au 21 mai 2006. Rapports de mission confidentiels
	Pichon M. 2006. Scleractinia of New-Caledonia. Check list of reef dwelling species. Rapports de mission
	confidentiels
	Pichon M. 2006. Scleractinia of New-Caledonia.in Payri C. et Richer de Forges B., (eds). Compendium of
	marine species from New Caledonia. Doc. Sci. Tech. II7 volume spécial, IRD: 148-155
	Pichon M. et al., 2007 Biodiversité des coraux scléractiniaires de Nouvelle-Calédonie. Rapport de mission
	confidentiel du Diahot du 17 novembre au 12 décembre 2006 (EPHE), 26p
<u> </u>	Randall J.E., Allen G.R. and R.C. Steene, 1990. Fishes of the Great Barrier Reef and Coral Sea. University of
	Hawaii Press, Honolulu, Hawaii. 506 p
3	Randall J.E., 2005. Reef and shore fishes of the South Pacific. University of Hawaii, Press book. 707 p
<u> </u>	Richer de Forges B., Laboute P., 2004. Lagons et récifs de Nouvelle-Calédonie, 1600 espèces. Edition Catherine
	Ledru-IRD
	Risk M.J., Risk A.C., 1997. Reef surveys as an aid in management. Proc. 8th Intl. Coral Reef Sym. 2,
7	
<u> </u>	1471±1474.
31	Sato M., 1984. Mortality and growth of juvenile coral Pocillopora damicornis (Linnaeus) Univ. Ryukyus, dep.
	marine sci., Okinawa 903 01, JAPON
<u> </u>	Spalding M.D., Ravilious C. & Green E.P., 2001. World atlas of coral reefs. University of California Press, 424 p
	Veron J.E.N., Pichon M., 1980. Scleractinia of Eastern Australia. Part 3. Families Agaricidae, Siderastreidae,
	Fungiidae, Oculinidae, Merulinidae, Mussidae, Pectinidae, Caryophyllidae, Dendrophylliidae. Mem. Austral.
<u> </u>	Inst. Marine Sci. 4. 422 pp
	Veron J.E.N., Wallace C.C., 1984. Scleractinia of eastern Australia. IV Familly Acroporidae. Aust. Inst. Mar.
<u></u>	Sci. Monogr. Ser. 6. 485p
	Veron J.E.N., 1986. Coral of Australia and the Indo-Pacific. Angus and Robertson Publishers. 644 p
	Veron J.E.N., 1995; Corals in space and time, the biogeography and evolution of the Scleractinia. UNSW Press,
	Sydney. 321p
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Wells J.W., 1959. Notes on Indo-Pacific Scleractinian corals. Part 1 and 2. Pac. Sci., 13 (3): 286-290
	Wells J.W., 1961. Notes on Indo-Pacific Scleractinian corals, Part 3. A new reef coral from New Caledonia. Pac.
ļ	Sci., 15: 189-191
	Wells J.W., 1964. The recent solitary Mussid Scleractinian corals. Zool. Meded., Leiden, 39: 375-384
	Wells J.W., 1968. Notes on Indo-Pacific Scleractinian corals. Parts 5 and 6. Pac. Sci., 22 (2): 274-276
	Wells J.W., 1971. Notes on Indo-Pacific Scleractinian corals. Part 7. Pac. Sci., 25 (3): 368-371
	Wells J.W., 1984. Notes on Indo-Pacific Scleractinian corals. Part 10. Pac. Sci., 38 (3): 205-219
20	Whittaker R.H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30,
20	279–338
19	Whittaker, R. H. (1972) Evolution and measurement of species diversity Taxon 21: 213-51
21	Whittaker R.H., 1977. Species diversity in land communities. Evolutionary Biology 10, 1–67
	Wijsman-Best M., 1972. Systematics and ecology of New Caledonia Faviidae (Coelenterata, Scleractinia). Bijdr.
	Dierk., 42 (1): 1-90
	Wijsman-Best M., 1973. A new species of the Pacific coral genus Blastomussa from New Caledonia. Pac. Sci.,
	27 (2): 154-155
	Wijsman-Best M., 1974. Habitat-induced modification of reef corals (Faviidae) and its consequences for
	taxonomy. In: Proceedings of the Second international coral reef symposium (Cameron-A-M editor), Volume 2;
	coral settlement and growth: 217-228
	http://coordination-maree-noire.eu/spip.php?article9029
\$0000000000000000000000000000000000000	http://www.bonnagreement.org/fr/html/recent-incidents/accidents_chimiques.htm
	www.cnrs.fr
	www.com.univ-mrs.fr/IRD
	http://www.com.univ-mrs.fr/IRD/atollpol/ecorecat/recifs.htm
	http://www.com.univ-mrs.fr/IRD/atollpol/ecorecat/algues.htm
	www.coraux.univ-reunion.fr
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	www.crisponline.net/Portals/1/PDF/CRISP_Synthese_bibliographique_coraux.pdf
	www.ird.fr
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	www.sealifebase.org/
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	http://www.sgnis.org/
10	http://en.wikipedia.org/wiki/Relative_species_abundance et
	http://seme.uqar.qc.ca/18 effets communautes/effets communautes.htm
<u> </u>	www. wikipedia.org

Annexes

Annexe n°1	:	Méthodologie générale d'échantillonnage des communautés benthiques	p 301
Annexe n°2	:	Conditions d'échantillonnage des différentes missions	p 304
Annexe n°3	:	Caratéristiques terrain de la campagne d'échantillonnage d'octobre 2011	p 305
Annexe n°4	:	Résultats bruts de l'échantillonnage LIT d'octobre 2011	p 306
Annexe n°5	:	Résultats bruts de l'échantillonnage du benthos d'octobre 2011	p 307
Annexe n°6	:	Résultats bruts de l'échantillonnage ichtyologique d'octobre 2011	p 321

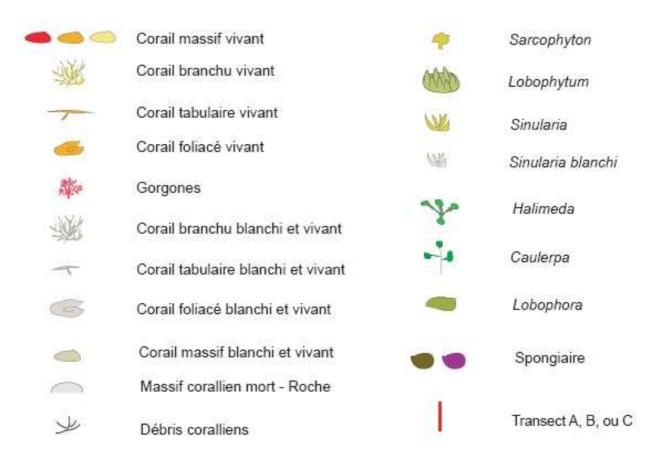


Figure n°91 : <u>Signification de symboles utilisés dans les schémas structuraux</u>

Méthodologie générale d'échantillonnage des communautés récifales

Les classes retenues pour la détermination du substrat sont celles préconisées par English et al. 1994 pour le « Line Intersept Transect » (« life forms ») et présentées dans le tableau 173 ci-dessous.

Tableau n°173 : <u>Annexe 01 : Catégories et composantes de substrat retenues pour l'échantillonnage</u> et le traitement des données

	COMPOSANTES (12)	CATEGORIES (28)	CODE	DESCRIPTION
		Acropora Branchu	ACB	Au moins 2 niveaux de branches
		Acropora Encroûtant	ACE	
		Acropora Submassif	ACS	
		Acropora Digité	ACD	Branches en forme de doigts
		Acropora Tabulaire	ACT	Branches aplaties horizontalement
	Coraux scléractiniaires	Non-Acropora Branchu	СВ	Au moins 2 niveaux de branches NB: les non acropora digité ont été placés ici
		Non-Acropora Encroûtant	CE	
		Non-Acropora Foliaire	CF	Corail en forme de feuille
		Non-Acropora Massif	CM	
		Non-Acropora Submassif	CS	
Diotiono		Fungia	CMR	Corail solitaire
Biotique	Autres coraux	Millepora	CME	Corail de feu
	Coraux mous	Corail mou	SC	
	Autres	Éponges	SP	
	organismes	Zoanthaires	ZO	
	vivants	Autres	OT	Ascidies, Anémones, Gorgones, Bénitiers
		Assemblages	AA	
		Calcaire	CA	
	Algues	Halimeda	HA	
		Macroalgue	MA	
		Filamenteuse	F	NB : les cyanobactéries ont été placées ici
	Corail mort avec algues	Corail mort avec algues	DCA	Corail mort recouvert d'algues
	Corail mort	Corail mort	DC	Couleur blanche
	Sable	Sable	S	Particules < 2 cm
Abiotique	Débris	Débris	R	Particules > 2 cm
ADIOHQUE	Vase	Vase	SI	
	Eau	Eau	W	Crevasse de plus de 50 cm
	Dalle - Roche	Dalle - Roche	RC	

Les cellules grisées correspondent à ce qui est noté « macrophytes et invertébrés » pour le suivi du benthos.

Tous les poissons seront comptabilisés avec un traitement particulier pour ceux qui sont listés dans le tableau 174 ci-dessous, car ils correspondent aux taxons indicateurs de la santé des récifs, ainsi qu'aux espèces comestibles.

Tableau n°174 : <u>Annexe 01 : Liste des poissons indicateurs</u>

FAMILLE	GENRE	ESPECE	GENRE	ESPECE
Requins		spp		
Raies		spp		
Scorpaenidae	Rascasses "poules"	spp		
Serranidae	Anthias et Pseudanthias	spp	Autres loches	spp
	Cromileptes	altivelis	Plectropomus	spp
	Epinephelus	cyanopodus		
Pseudchromidae	Pictichromis	coralensis		
Carangidae		spp		
Lutjanidae	Aphareus	furca	Lutjanus	sebae
	Aprion	virescens	Lutjanus	spp
	Lutjanus	adetii	Symphorus	nematophorus
Caesionidae		spp		
Haemulidae	Diagramma	pictum	Plectorhinchus	spp
Lethrinidae	Lethrinus	nebulosus	Autres bossus et bec	spp
Nemipteridae	Scolopsis	bilineatus		
Mullidae		spp		
Kyphosidae		spp		
Ephippidae	Platax	spp		
Chaetodontidae	Chaetodon	auriga	Chaetodon	speculum
	Chaetodon	baronessa	Chaetodon	semeion
	Chaetodon	bennetti	Chaetodon	trifascialis
	Chaetodon	citrinellus	Chaetodon	lunulatus
	Chaetodon	ephippium	Chaetodon	ulietensis
	Chaetodon	flavirostris	Chaetodon	unimaculatus
	Chaetodon	kleinii	Chaetodon	vagabundus
	Chaetodon	lineolatus	Coradion	altivelis
	Chaetodon	lunula	Forcipiger	flavissumus
	Chaetodon	melannotus	Forcipiger	longirostris
	Chaetodon	mertensii	Hemitaurichthys	polylepis
	Chaetodon	ornatissimus	Heniochus	acuminatus
	Chaetodon	pelewensis	Heniochus	chrysostomus
	Chaetodon	plebeius	Heniochus	monoceros
	Chaetodon	rafflesi	Heniochus	singularis
	Chaetodon	reticulatus	Heniochus	varius
Pomacanthidae	Centropyge	bicolor	Chaetodontoplus	conspicillatus
	Centropyge	bispinosus	Pomacanthus	imperator
	Centropyge	flavissima	Pomacanthus	semicirculatus

	Centropyge	heraldi	Pomacanthus	sextriatus
	Centropyge	tibicen	Pygoplites	diacanthus
	Centropyge	vroliki		
Pomacentridae	Abudefduf	spp	Dascyllus	reticulatus
	Amphiprion	perideraion	Dascyllus	trimaculatus
	Amphiprion	spp	Neopomacentrus	azysron
	Chromis	viridis	Neopomacentrus	violascens
	Chromis	fumea	Pomacentrus	coelestis
	Chrysiptera	taupou	Pomacentrus	moluccensis
	Chrysiptera	rollandi	Pomacentrus	aurifrons
	Dascyllus	aruanus	Stegastes	spp
Labridae	Bodianus	loxozonus	Halichoeres	trimaculatus
	Bodianus	perditio	Hemigymnus	melapterus
	Cheilinus	chlorourous	Labroides	dimidiatus
	Cheilinus	trilobatus	Novaculichthys	taeniourus
	Cheilinus	undulatus	Stethojulis	bandanensis
	Choerodon	graphicus	Stethojulis	strigiventer
	Coris	aygula	Thalassoma	amblycephalum
	Coris	gaimard	Thalassoma	hardwicke
	Gomphosus	varius	Thalassoma	lunare
	Halichoeres	hortulanus	Thalassoma	lutescens
	Halichoeres	margaritaceus		
Scaridae	Bolbometopon	muricatum	Chlorurus	microrhinos
	Scarus	ghobban	Scaridae	spp
Blennidae	Ecsenius	bicolor	Meicanthus	atrodorsalis
Gobbidae	Amblygobius	phalaena		
Ptereleotridae	Ptereleotris	evides	Ptereleotris	microlepis
Acanthuridae	Acanthurus	dussumieri	Ctenochaetus	spp
	Acanthurus	blochii	Naso	unicornis
	Acanthurus	triostegus	Naso	spp
	Acanthurus	spp	Zebrasoma	spp
Siganidae	Siganus	argenteus	Siganus	spp
Zanclidae	Zanclus	cornutus		
Scombridae	Scomberomorus	commerson		
Balistidae	Balistoides	conspicillum	Rhinecanthus	aculeatus
	Oxymonacanthus	longirostris	Rhinecanthus	rectangulus

Conditions d'échantillonnage des différentes missions

Tableau n°175 : Annexe 02 : Différences dans les conditions d'exécution des différentes campagnes d'échantillonnages

	2005	2007	2008	2009	2010	2010	2011	2011
Période	Non communiqué	Fin août, début septembre	Fin octobre	Début juin	Fin mars – Début avril	Fin septembre	Fin mars	Fin septembre – début octobre
Météorologie	Non communiqué	Mauvaise / eau turbide	Clémente / eau claire	Clémente / eau claire	Nuageux / eau moyennement claire	Clémente / eau assez claire	Nuageux / eau moyennement claire	Clémente / eau assez claire
Nb stations	9	11 (dont 4 même qu'en 2005)	11 (même qu'en 2007)	11 (même qu'en 2008) + 1 nouvelle (Ugo))	12 (même qu'en 2009)			
Nb transects	2				3 sauf exceptions	S		
Longueur transect (m)	50				20			
Technique de plongée	Nitrox / Air comprimé. Recycleur				Air comprimé			
Méthode ichtyologie	Transect à Largeur Fixe	TLVariable						
Intervenants	Melanopus (Laboute & al) / A2EP (Vaillet -LIT Benthos- , Chauvet -Poissons-)	A2EP (Gerbault -LIT-, Lasne - Benthos- Chauvet - Poissons-)	AQUA TERRA (Vaillet -LIT-, Lasne -Benthos-, Chauvet -Poissons-)					

Caractéristiques terrain de la campagne d'échantillonnage d'octobre 2011

Tableau n°176 : <u>Annexe 03 : Rapport de plongée</u>

Date	Heure *	Marée **	Station	Etat station/maintenance	Météo			Sous eau		
Date	début/fin Nom		Ltat Station/maintenance	courant (force/dir)	visibilité (m)	température (℃, Prof)				
25/09/2011	12h/14h	Début flot	Casy	ОК	Couvert 50%	O 20 nds	Vague O SO 0,6 m	Nul	12 m	23℃ à 6,8 m
28/09/2011	08h/10h	Etal flot	Creek baie nord	OK	Beau, couvert 20%	O 15 nds	Clapot O SO 0,2 m	Nul	8-9 m	24,2℃ à 9,6 m
28/09/2011	11h/13h	Fin jusant	Port	OK	Couvert 70%	O 16 nds	Vague O 0,7 m	Nul	6 à 10 m	23℃ à 8,2 m
27/09/2011	12h/14h	Etal jusant	Woodin	OK	Beau, couvert 30%	SO 12 nds	Clapot O SO 0,2 m	Faible à moyen	8 à 12 m	23,1℃ à 10,5 m
06/10/2011	11h/13h	Mi flot	loro	OK	Beau, couvert 20%	SO 5 nds	Clapot 0,1 m	Faible	10-11 m	23,4℃ à 8,8 m
03/10/2011	10h/12h	Etal flot	Ionontea	OK, piquet TBXX changé, et celui avant TB0 enlevé		0 12 nds	Grande houle + clapot 0,1 m	Moyen	12 à 14 m	22,3℃ à 14,1 m
04/10/2011	11h/13h	Etal flot	Basse Chambeyron	OK	Beau, couvert 20%	O 15 nds	Vague O 0,6 m	Faible à moyen	18 m	22,8℃ à 14 m
06/10/2011	8h/10h	Début flot	Puka	OK	Beau, couvert 20%	S SO 5 nds	Clapot S SO 0,2 m	Faible latéral	10 à 12 m	22,9℃ à 9,1 m
05/10/2011	12h30/14h30	Fin flot	Banc Kié	2 piquets TA0 + TAXX changés	Couvert 30%	S SE 10 nds	Clapot 0,2 m SE	Faible à moyen	13 m	22,8℃ à 14,1 m
				Piquet TB0 remis			·	-		
				2ème piquet ajouté en TC0						
04/10/2011	8h30/10h30	Mi flot	Ilot Kié	OK	Beau, couvert 10%	O 10 nds	Vague O 0,5 m	Faible	14-16 m	22,2℃ à 12,3 m
05/10/2011	9h30/11h30	Mi flot	Toémo	OK, piquet TA0 changé	Couvert 50%	S0 18 nds	Vague SO 0,6 m	Faible	12 à 14 m	22,8℃ à 11,4 m
27/09/2011	15h/17h	Mi flot	Ugo	OK	Beau	O 10-12 nds	Clapot 0,1 m	Nul	10 m	24,5℃ à 8,6 m

^{*} cela comprend le temps sur site, sans les trajets

Tableau n°177 : <u>Annexe 03 : Corrections des marées</u>

	Heure	Hauteur (m)		Niveau moyen
	PM / BM	PM	BM	(m)
Baie de Prony	- 40 mn	- 0,4	- 0,1	0,7
Port Boisé	- 55 mn	- 0,4	- 0,1	0,68
Nouméa	0,95			

Tableau n°178 : <u>Annexe 02 : Agenda des marées (corrigées selon le lieu)</u>

	Date	Heure	Hauteur
Lundi	03/10/2011	4:35	0,2
		11:28	1
		17:40	0,6
		23:03	0,8
Mardi	04/10/2011	5:27	0,3
		12:40	0,9
		18:57	0,65
Mercredi	05/10/2011	0:08	0,7
		6:38	0,4
		14:01	0,9
		20:20	0,65
Jeudi	06/10/2011	1:40	0,65
		8:06	0,15
		15:12	0,9
		21:32	0,3

	Date	Heure	Hauteur
Dimanche	25/09/2011	23:40	0,5
		5:17	0,85
		12:26	0,3
		17:52	1,1
Mercredi	27/09/2011	0:49	0,25
		6:54	1,1
		12:59	0,2
		19:12	1,2
Jeudi	28/09/2011	1:28	0,15
		7:39	1,15
		13:44	0,2
		19:51	1,2

^{**} par rapport à l'agenda corrigé (voir tableaux suivants)

Résultats bruts de l'échantillonnage LIT octobre 2011

Tableau n°179 : <u>Annexe 04 : Recouvrement du susbtrat (en %) pour toutes les catégories</u>

	Station	CA	ASY	CREEK B	AIE NORD		PORT		Can	AL WOO	DING		Ioro			IONANTE	A	Сн	IAMBEYF	RON	Pu	KA	Е	BANCS KI	E]	Ісот Кіі	Е		Тоемо	1	Ud	GO
Substrat	/ Transect	A	В	A	В	A	В	С	A	В	С	A	В	С	A	В	С	A	В	С	A	В	A	В	С	A	В	С	A	В	С	A	В
Code	Catégories																																
ACB	Acropora branchu	4		49	5,5	2	18,5	3	3	3		2	0,5		3	1		4	3	1	8		3	4	2,5	25,5	6,5	0,5	5	1,5		13,5	14
ACE	Acropora encroûtant																																
ACS	Acropora submassif																																
ACD	Acropora digité																																
ACT	Acropora tabulaire	1																			1	1											
СВ	Corail branchu	0,5				0,5	1		11	12	6	1,5	0,5	0,5	3,5	3	1,5	1,5	2,5	0,5	5		1	0,5	2	5,5	2,5		6,5	4			
CE	Corail encroûtant	2		2,5	8		1	4		1		12	6	1	9	5	1,5	0,5	5	0,5	9	1	4,5	5,5	6	9,5	17	6	11	11,5	3,5	2	1,5
CF	Corail foliaire			1	2			0,5				0,5																		1,5			
CM	Corail massif		0,5	2	3,5	3	1	2,5	0,5			9,5	17,5		3,5	10,5	3	3,5	2,5	0,5	6		5,5	5	1	2,5	8	2	4,5	0,5	2	8	6
CS	Corail submassif																																
CMR	Fungia			0,5						0,5		1,5											0,5				2			0,5		2,5	2
CME	Millepora			3,5	0,5				15,5	6																				0,5			
SC	Coraux mous	9	4	9,5	10	1	2	0,5		3,5				0,5				0,5				3	10,5	0,5	1			0,5	0,5	3,5		1,5	2,5
SP	Éponges	0,5	0,5		0,5	1,5	0,5	0,5		0,5	5	1,5	3	1	2	6	1,5		1	2		6	1		2		3	1,5		1,5	2,5	2	2
ZO	Zoanthaires																																
OT	Autres organismes									1,5	2			0,5									4		0,5				0,5	0,5	1		
AA	Assemblages algales																	12,5		1			9			3							
CA	Algue calcaire						0,5								14	12,5	21	15,5	15				0,5						5,5		8		
HA	Halimeda	0,5	1	5,5		4,5		0,5								0,5	0,5				1,5			0,5	2,5								
MA	Macroalgue			19		2	40	3							9	7	7,5		3,5		2,5	1,5		4	3,5			0,5	15,5	14,5	3,5		
F	Algue filamenteuse		18				6,5										1				0,5	0,5		0,5		0,5			0,5		1,5		
DCA	Corail mort avec algues	11	11	4,5	10	42,5	15,5	13	55,5	53	19	29,5	17,5	4,5	55	47	40	62	53	84,5	65,5	24	60,5	74	74,5	52,5	56	11,5	50,5	60	71	54	60
DC	Corail mort					0,5									1																		
S	Sable	71,5	65						9,5	14	66,5	42	52,5	92		3,5	13,5		7	8	1	63		5,5	4,5	1	4	66			7	16,5	12
R	Débris								5	5	1,5					4	9		7,5	2							1	11,5					
RC	Dalle - Roche																																
SI	Vase			3	60	42,5	13,5	72,5																									
W	Eau												2,5																				
	Abiotique	71,5	65	3	60	43	13,5	72,5	14,5	19	68	42	55	92	1	7,5	22,5	0	14,5	10	1	63	0	5,5	4,5	1	5	77,5	0	0	7	16,5	12
	Biotique	28,5	35	97	40	57	86,5	27,5	85,5	81	32	58	45	8	99	92,5	77,5	100	85,5	90	99	37	100	94,5	95,5	99	95	22,5	100	100	93	83,5	88
	Dont coraux scléractiniaitres	7,5		55	19	5,5	21,5	10	14,5	28	6	27		1,5		19,5	6	9,5	13	2,5	29	2	14,5		11,5	43	36	8,5	27		5,5	26	23,5
	Done coraux scicracumatues	7,5	0,5	33	17	5,5	21,3	10	17,5	20	U	21	24,3	1,5	17	17,5	U	7,5	13	2,5	2)		14,5	13	11,5	73	50	0,5	21	17,5	ا کری		25,5

Tableau n°180 : Annexe 04 : Répartition du recouvrement (en %) du substrat, partie biotique/abiotique

	ST0	ST0	ST0	ST0	ST0	ST0	ST03	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0 7B	ST0	STO	ST0	ST0 9A	ST0	ST0	ST1	ST1	ST1	ST1	ST1	ST1	ST1	ST12
	1A	1B	2A	2B	3A	3B	С	4A	4B	4C	5A	5B	5C	6A	6B	6C	7A	7B	7C	8A	STO 8B	9A	9B	9C	0A	0B	0C	1A	1B	1C	2A	В
Macrophytes et invertébrés	21	34,5	42	21	51,5	65	17,5	71	64,5	26	31	20,5	6,5	80	73	71,5	90,5	72,5	87,5	70	35	85,5	79,5	84	56	59	14	73	80,5	87,5	57,5	64,5
Coraux sléractinaires	7,5	0,5	55	19	5,5	21,5	10	14,5	16,5	6	27	24,5	1,5	19	19,5	6	9,5	13	2,5	29	2	14,5	15	11,5	43	36	8,5	27	19,5	5,5	26	23,5
Abiotique	71,5	65	3	60	43	13,5	72,5	14,5	19	68	42	55	92	1	7,5	22,5	0	14,5	10	1	63	0	5,5	4,5	1	5	77,5	0	0	7	16,5	12

Résultats bruts de l'échantillonnage du benthos d'octobre 2011

Tableau n°181 : <u>Annexe 05 : Inventaire des coraux et leur abondance (1 à 5) (stations de la baie de Prony et du canal Woodin)</u>

Passes Composition Compo				llot Casy	Sud	Creek Ba	aie Nord	Wh	arf Prony		Car	nal Woodi	in
Acceptation Accept	Famille	Genre	Espece							ST3C			ST4C
Acceptantial Acceptant Accep	Acroporidae	_	13										
Acceptance of Ac		•	Ü	- (2	- (-)				- / / · · · ·	. (5	-(-)		
Accepted		•	** '						`				4
Acceptable Acc		•		2(2spp.)(B1)	2(2spp.)			1	2	2			1
Activation Act		•	* *			3	3		2(2snn)	2			
Acceptotike Autregenery growth of the Autregenery growth of the Autregenery and Autregenery an		•				1			2(25pp)				
Acceptable Acceptable		_		1	1		2	1	2		1	2	
Acceptancials Acceptance and Accepta	Acroporidae		Ü					2					1
Acceptables Astrongemen up. 2 1 1 2 2 1 1 1 2 2	Acroporidae	_	moretonensis			2							
Accepted Policy	Acroporidae	Astreopora	myriophthalma			2	2		2				1
Acceptable Montipore S. Source weeks	Acroporidae	_					1		1				
Accepanishe Montiporal dance Accepanishe Montiporal spensors Accepanishe Legoueris Palantini Spensors Accepanishe Legoueris Palantini Spensors Accepanishe Legoueris Information Spensors Accepanishe Accepanishe Spensors Accepanishe Parones Information Spensors Acceptanishe Spensors Ac			1 7	2								1	
Accepanielle Montgoons speg. 2 2 3 (3690) 1 1 (2000) 3 (3690) 2 (365) Accepanielle Montgoons artificia (1000) 3 (3600) 2 (365) Accepanielle Montgoons artificia (1000) 3 (3600) 3 (3600) 2 (365) Accepanielle Montgoons artificia (1000) 3 (3600) 3 (3600) 2 (365) Accepanielle Montgoons artificia (1000) 3 (3600) 3 (3600) 2 (365) Accepanielle Montgoons artificia (1000) 3 (3600) 3 (3600) 3 (3600) 2 (365) Accepanielle Montgoons artificia (1000) 3 (3600) 3 (3600) 3 (3600) 2 (365) Accepanielle Montgoons artificia (1000) 3 (3600) 3		_	, v										
Accepted Montperm Special Montperm Accepted Accepted Montperm Accepted		_				0 (0)		0/0 \/D4)	0(0)	0(0)		0/54)	
Accepted Montporn Accepted		_		2	2	3 (3spp)	1	3(2spp)(B1)	3(3spp)	3(3spp)	2	3(B1)	ļ
Accepted Montgorm Accepted Montgorm Accepted Montgorm Accepted Montgorm Accepted Montgorm Accepted Montgorm Accepted Accepted Montgorm Accepted		_					1	1					
Accepted Mostiporo melalos 1		_				1		1	1		2	2	
Accepted a Montgoron Section		_	Ü	1		1							
Accordants	•	_		'		'							
Agameidae Leptoseris Colons				2		1					1		
Agamentable Leptoweris Southwest Leptoweris Southwest Leptoweris Description	Agaraciidae	•						1			<u> </u>		
Agamesidae Legisoaris Investment Legisoaris Agamesidae Legisoaris Investment Legisoaris Investment Inv	Agaraciidae	•				1		1	2	2			
Agameridae Legoveris Developments Legoveris	Agaraciidae	•	V										
Agameilidae Fejinarris Agameilidae Fejinarris Agameilidae Lepinarris Scobra	Agaraciidae	•											
Agamenidade Leptoperis substitives	Agaraciidae	•	,			1							
Agameilidae Personeris September Personeris September Personeris September Persone September Persone September September Persone September Septe	Agaraciidae	•					1		•				
Agaraciidae Pachyseris regona	Agaraciidae	•	Ü				2		2				
Abstractidae Pachweris speciess 2 2 2 2 2 2 2 2 2		_				2							
Alexanciidae				_		_	_				_	_	
Abaraciide			*	2	2	2				2	2	2	2
Agaraciidae						4	1	-	2				
Agaraciidas							4	2				4	
Agaraciidae						1	1				4	1	
Agaracidade						1			2	2			
Astroceniide Sphoconiella ammaa 2 2 2 2 2 2 2 2 1 1 1	Ŭ					'	2						
Astroconcilula Caryophyllidae Eaphyllida Caryophyllidae Eaphyllida Caryophyllidae Eaphyllida Caryophyllidae Caryophyllidae Physogyra Iteliteusteini				2	2	2		2	2	2	1	1	
Caryophyllidae		•						_					
Caryophyllidae		•						-1			1		
Caryophyllidae													
Dendrophylliidae	Caryophyllidae	Physogyra										1	
Dendrophylliidae Turbinaria Frondens	Dendrophylliidae		micrantha								1	2(B1)	4(B2)
Dendrophylliidae	Dendrophylliidae										4	3	2
Dendrophylliidae Turbinaria mesenterina 2 1 2 2 3 1 1	Dendrophylliidae					1							
Dendrophylliidae Turbinaria peluta	Dendrophylliidae												
Dendrophylliidae				2	1	2	2			3	1	1	
Dendrophyllidae Turbinaria Turbinaria Turbinaria Stellulata			•										
Dendrophyllidae					1							-	
Faviidae Barabattoia amicorum 3 2 2 2(B1) 1			Ü		4					2	2	2	1
Faviidae Caulastrea Caula					-	1	•	2/D4)		1			
Faviidae Caulastrea furcata furcata				3				2(D1)		1			
Faviidac									1	2			
Faviidae Cyphastrea japonica 1 1 2 2 2 3 3 1 2 Faviidae Cyphastrea sep. 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 3 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>'</td> <td></td> <td></td> <td></td> <td>1</td>									'				1
Faviidae	Faviidae			1	1	2	2	2	3	3	1	2	<u> </u>
Faviidae Cyphastrea sp. 1 2	Faviidae			•				<u> </u>	<u> </u>				1
Faviidae Echinopora gemmacea 1 2 2 2 2 Faviidae Echinopora Iamellosa 1 2 2 2 2 Faviidae Echinopora sp. 1 2 3 2(4spp) 2(2spp) 2	Faviidae	Cyphastrea											1
Faviidae Echinopora lamellosa 1 2 2 2 5 6 7 7 8 1 2 <td>Faviidae</td> <td>Echinopora</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td></td> <td></td>	Faviidae	Echinopora				1		2	2	2	2		
Faviidae Echinopora sp. 1 2 2 Section Faviidae Favia speciosa 2 3 2 3 2(4spp) 2(2spp) 2 Faviidae Favia spp. 2 2 2 2 2 2 3 2(4spp) 2(2spp) 2 Faviidae Favia stelligera 1 3 3 2(4spp) 2(2spp) 2 2 2 2 2 3 2(4spp) 2(2spp) 2 2 2 2 2 3 2(4spp) 2(2spp) 2 2 2 3 2(4spp) 2(2spp) 2 2 2 3 2(4spp) 2(2spp) 2 2 2 3 3(4spp) 2(2spp) 2 2 2 2 2 3 3(4spp) 2(2spp) 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Faviidae	Echinopora				1	2						
Favidae Favia speciosa 2 Favidae Favia spp. 2 2 2 2 2 2 3 2(4spp) 2(2spp) 2 Faviidae Favies abdita 2 2 1	Faviidae	Echinopora					1		2	2			
Favidae Favia spp. 2 2 2 2 2 2 2 3 2(4spp) 2(2spp) 2 Favidae Favia stelligera 1	Faviidae												<u> </u>
Faviidae Favia stelligera 1 2 2 1 3 4 4 5 4 5 4 5 5 5 6 5 6 7					_		.=					0/5	
Faviidae Favites abdita 2 2 1 1 1 1 1 1 Faviidae Favites halicora 2 2 3 (3spp) 2 2 2 2 2 (3spp) 2 2 2 Faviidae Goniastrea australiensis 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					2	2	2	2	2	3	2(4spp)	2(2spp)	2
Faviidae Favites halicora 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											1	4	
Faviidae Favites spp. 2 2 3 (3spp) 2 2 2 2 (3spp) 2 2 Faviidae Goniastrea australiensis 2 2 2 1							4	4					
Faviidae Goniastrea australiensis 2 2 2 1 1 1 1 1 1 1 Faviidae Goniastrea pectinata					2	3 (3cnn)	•		2	2	2/3cm)		2
Faviidae Goniastrea pectinata Faviidae Goniastrea reniformis Faviidae Leptastrea inaequalis Faviidae Leptastrea purpurea 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											2(35pp) 1		
Faviidae Goniastrea reniformis 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								1					
Faviidae Leptastrea inaequalis Faviidae Leptastrea purpurea 1 1 2 1 1 1 1 Faviidae Leptastrea transversa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1	2	 				1	
Faviidae Leptastrea purpurea 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						,	_				1	'	
Faviidae Leptastrea transversa 1 1 1	Faviidae		-	1	1	2		1			1	1	
Faviidae Leptoria phrygia	Faviidae	•		1		_							
Faviidae Montastrea curta 1 2 1 1 1 1 Faviidae Montastrea sp. 1 1 2 2 2 2	Faviidae	•			<u> </u>						1	•	
Faviidae Montastrea sp. 1 1 2 2 2	Faviidae			1	2						1	1	
	Faviidae			1		1	2	2	2				
	Faviidae	Oulophyllia			1								

Faviidae	Platygyra	pini	1 1	Î		1	I	ĺ		I		
Faviidae	Platygyra	daedalea								1		
Faviidae	Platygyra	sinensis	1	1						· ·		
Faviidae	Platygyra	sp.		•	1							
Fungiidae	Cantharellus	jebbi		-2								
Fungiidae	Cantharellus	поитеае		-2					3			
Fungiidae	Ctenactis				+				3			
		sp.			+							
Fungiidae	Cycloseris	sinensis	4	4	-	0	0		3	_		
Fungiidae	Cycloseris	sp.	1	1	2	2	2	2	2	2		
Fungiidae	Fungia	horrida										
Fungiidae	Fungia	simplex						2		2		
Fungiidae	Fungia	sp.	2	2	3(4spp)	2	2	3	3	2	2	1
Fungiidae	Halomitra	pileus										
Fungiidae	Lithophyllon	mokai		2	2	3	2	2	3			
Fungiidae	Polyphyllia	novaehiberniae	2									
Fungiidae	Polyphyllia	talpina	2	-1						1	1	-1
Fungiidae	Sandalolitha	dentala	_		1					<u> </u>		•
Fungiidae	Sandalolitha	robusta			2					1	1	
Merulinidae					3	1		1	2	1	1	
	Hydnophora	exesa			3	ı		1		1		
Merulinidae	Hydnophora	pilosa				2						
Merulinidae	Hydnophora	rigida			2	2						
Merulinidae	Merulina	ampliata	2	1	2	2	1	2	2(B1)	2	2	1
Merulinidae	Merulina	scabricula	1		1	2	1(B1)			1	1	
Mussidae	Acanthastrea	echinata	2	1						2	2	
Mussidae	Acanthastrea	sp.										
Mussidae	Blastomussa	merleti			1	1						
Mussidae	Lobophyllia	corymbosa	4	2	2	1		1	1	2		
Mussidae	Lobophyllia	hemprichii	7		2	2	1	1	<u> </u>		2	+
Mussidae		•	2	1			4			1		
	Lobophyllia	pachysepta	2	1			1			1 1	_	
Mussidae	Lobophyllia	sp.			_	_	1	1			2	<u> </u>
Mussidae	Scolymia	australis			2	2		1	1			2
Mussidae	Scolymia	vitiensis	2	1	2	2	1		2		2	
Mussidae	Symphyllia	sp.					1					
Mussidae	Symphyllia	valenciennesii					1		1			
Oculinidae	Acrhelia	horrescens										
Oculinidae	Galaxea	astreata	1	1	2	3	2(B1)	1	3	1	2	
Oculinidae	Galaxea	fascicularis	2	2	3	2	2		3	2	2	2
Oculinidae	Galaxea	paucisepta			2	2		1	2			
Pectiniidae	Echinophyllia				1	2						
		aspera			<u> </u>							
Pectiniidae	Echinophyllia	horrida			1				_			
Pectiniidae	Echinophyllia	orpheensis				1	_		1			
Pectiniidae	Echinophyllia	sp.				-2	2		2			
Pectiniidae	Mycedium	elephantotus			2	2(B1)			2		1	
Pectiniidae	Oxypora	glabra			1	2						-1
Pectiniidae	Oxypora	lacera				2						
Pectiniidae	Oxypora	sp.							2		1	
Pectiniidae	Pectinia	lactuca										
Pectiniidae	Pectinia	paeonia			1		1					
Pocilloporidae	Palauastrea	ramosa			<u>'</u>		2	2	2			
Pocilloporidae	Pocillopora	damicornis	3	2	2	2	2	2	2	3	3	
	_		<u> </u>							3	3	
Pocilloporidae	Pocillopora	verrucosa		2								
Pocilloporidae	Seriatopora	calendrium	1	2	1	_	_			_	_	
Pocilloporidae	Seriatopora	histrix	2(B1)	2	2	2	2			5	2	
Pocilloporidae	Stylophora	mordax									1	
Pocilloporidae	Stylophora	pistilata				2				3	2	<u> </u>
Poritidae	Alveopora	catalai			2		1	3	3			
Poritidae	Alveopora	sp.	2		2	2	2	5	3			
Poritidae	Alveopora	spongiosa			2							
Poritidae	Goniopora	sp.	1	2	1		2		3			
Poritidae	Porites	cylindrica			2	2	2	1				
Poritidae	Porites	nigrescens						2		<u> </u>		<u> </u>
Poritidae	Porites				2		2	2	2	2	2	
		sp.		4		 						
Poritidae	Porites	lichen		1	-			_	4	1		
Poritidae	Porites	lobata	1	2	3	2	2	2	1			
Siderastreidae	Coscinaraea	columna				2				2		ļ
Siderastreidae	Coscinaraea	exesa								1		
Siderastreidae	Coscinaraea	marshae										
Siderastreidae	Psammocora	contigua			2	-1		<u> </u>				
Siderastreidae	Psammocora	digitata				1						
Siderastreidae	Psammocora	haimeana	1	1							1	
Siderastreidae	Psammocora	profundacella		-					1	1	-	
Siderastreitiae		sp.							<u> </u>	1		
	Psammocora				2	2		1		-	1	+
Siderastreidae	Psammocora	cuparficialia	1				<u> </u>	<u> </u>		<u>İ</u>	<u> </u>	
	Psammocora Psammocora	superficialis										
Siderastreidae Siderastreidae	Psammocora				1 ^	_				_	_	_
Siderastreidae Siderastreidae Milleporidae	Psammocora Millepora	encroutant			3	2			2	3	2	2
Siderastreidae Siderastreidae Milleporidae Milleporidae	Psammocora Millepora Millepora	encroutant sub massif								3	3	
Siderastreidae Siderastreidae Milleporidae Milleporidae Milleporidae	Psammocora Millepora Millepora Millepora	encroutant sub massif branchu	1		3 4(2spp)	2 2(2spp)	2	2	2	3 3 5	3	2
Siderastreidae Siderastreidae Milleporidae Milleporidae Milleporidae Plexauridae	Psammocora Millepora Millepora	encroutant sub massif	1				2	2		3	3	
Siderastreidae Siderastreidae Milleporidae Milleporidae Milleporidae	Psammocora Millepora Millepora Millepora	encroutant sub massif branchu	1	1			2	2		3	3	2
Siderastreidae Siderastreidae Milleporidae Milleporidae Milleporidae Plexauridae	Psammocora Millepora Millepora Millepora Astrogorgia sp.	encroutant sub massif branchu mangolia sp.	1	1			2	2		3 5	3 3 1	2
Siderastreidae Siderastreidae Milleporidae Milleporidae Milleporidae Plexauridae indéterminées Melithaeaidae	Psammocora Millepora Millepora Millepora Astrogorgia sp. Melithaea	encroutant sub massif branchu mangolia sp. ochracea		-				2		3 5	3 3 1	2
Siderastreidae Siderastreidae Milleporidae Milleporidae Milleporidae Plexauridae indéterminées Melithaeaidae Tubiporidae	Psammocora Millepora Millepora Millepora Astrogorgia sp. Melithaea Tubipora	encroutant sub massif branchu mangolia sp. ochracea musica	3	1 2 1	4(2spp)		2	2		3 5	3 3 1 1	2 1 1 1
Siderastreidae Siderastreidae Milleporidae Milleporidae Milleporidae Plexauridae indéterminées Melithaeaidae	Psammocora Millepora Millepora Millepora Astrogorgia sp. Melithaea	encroutant sub massif branchu mangolia sp. ochracea		2				2		3 5	3 3 1	2

Tableau n°182 : <u>Annexe 05 : Inventaire des Macrophytes et des Invertébrés et leur abondance (1 à 5) (stations de la baie de Prony et du canal Woodin)</u>

Alcyonaire Alcyonaire Alcyonaire	Famille Alcyoniidae Alcyoniidae	Genre Cladiella	Espece sp.	ST1A	Sy Sud ST1B	ST2A	B. Nord ST2B	ST3A	harf Pror ST3B	ST3C	Can ST4A	al Wood ST4B	in ST4C
Alcyonaire Alcyonaire Alcyonaire	·		-	SIIA	SI1B		SIZB	SI3A	S13B	S13C	S14A	SI4B	1514C
Alcyonaire Alcyonaire	·		Sp.			2							0
Alcyonaire		klyxum	sp.		2	2							
	Alcyoniidae	Lobophytum	sp.	3	2	1	2				2	2	2
Alcyonaire	Alcyoniidae	Rhytisma	sp.				-2				_		
Alcyonaire	Alcyoniidae	Sarcophyton	sp.	4(3spp.)	3(2spp)	5(3spp)	5(2spp)	2	3	3	2	2	
Alcyonaire	Alcyoniidae	Sinularia	cf. leptoclados			3	3						
Alcyonaire	Alcyoniidae	Sinularia	dura				2						
Alcyonaire	Alcyoniidae	Sinularia	flexibilis	3	3		3						
Alcyonaire	Alcyoniidae	Sinularia	sp.	3(3spp.)	2	3(2pp)	2	2(2spp.)	2(2spp.)	3(3spp.)	2	2	2
Alcyonaire	Nephtheidae	Dendronephthya	sp.			4		1		2		2	2
Alcyonaire	Nephtheidae	Nephthea	sp.		•	1	2	0	•	0	2	2	
Algue brune	Dicyotaceae	Dictyota Distromium	sp.	2	2			2	2	2			
Algue brune Algue brune	Dicyotaceae Dicyotaceae	Lobophora	sp. variegata	4	3	3	3	3	5	5			
Algue brune	Dicyotaceae	Padina	sp.	1	2	3	3	2	5	3			-
Algue brune	Dicyotaceae	Spatoglossum	sp.	<u>'</u>									
Algue brune	Sargassaceae	Sargassum	sp.		-3								
Algue brune	Sargassaceae	Turbinaria	ornata	1	2								
Algue rouge	Coralinaceae	Amphiroa	sp.			3	3	3	4	2	2	2	1
Algue rouge	Dumontiaceae	Gibsmithia	hawaiiensis	2	2								
Algue rouge	Galaxauraceae	Actinotrichia	sp.										
Algue rouge	Galaxauraceae	Galaxaura	marginata										
Algue rouge	indeterminée	sp.	sp.										
Algue rouge	Liagoraceae	Trichogloea	requienii	3	2								
Algue verte	Caulerpaceae	Caulerpa	sp2					2					
Algue verte	Codiaceae	Codium	mamillosum										
Algue verte	Dasycladacea	Neomeris	van bosseae		2	0/0	0(0:)	4/0:	0/0: `	0.70	0/0	0(0:)	
Algue verte	Halimedaceae	Halimeda	sp.	2	2	ತ(3spp)	2(3spp)	4(2spp)	3(2spp)	∠ (∠spp)	2(3spp)	∠(∠spp)	
Algue verte	Siphonocladaceae Udodeaceae	Dictyosphaeria Chlorodesmis	verluysii fastigiata								2		
Algue verte Anémone	Actinodiscidae	Discosoma	fastigiata sp.							2			
Ascidies	indeterminée	sp.	sp.										-
Ascidies	Polycitoridae	Clavelina	detorta										
Ascidies	Styelidae	Polycarpa	aurita		3								
Ascidies	Styelidae	Polycarpa	clavata										
Ascidies	Styelidae	Polycarpa	cryptocarpa	2	2		2	2					
Ascidies	Styelidae	Polycarpa	nigricans		2								
Astérie	Acanthasteridae	Acanthaster	planci										
Astérie	Ophiasteridae	Celerina	heffernani							-2	1	1	1
Astérie	Ophiasteridae	Fromia	monilis	1					1	2			
Astérie	Ophiasteridae	Fromia	sp.										
Astérie	Ophiasteridae	Linckia	multifora										1
Astérie	Ophiasteridae	Nardoa	sp.		4	4		4		4			
Astérie	Ophiasteridae	Nardoa Culcita	gomophia	2	1	-1	1	1	-1	-1 1		-1	1
Astérie Bryozoaire	Oreasterridae Alcyonidiidae	Alcyionidium	novaeguineae				1		-1	1	2	3	5
Crinoïde	Colobometridae	Cenometra	sp.								2	3	5
Crinoïde	indeterminé	sp.	sp.	3	3						2	3	5
	Phormidiaceae	Phormidium	sp.	2	-2	-1	-2	1	-2	-1		0	
Echinides	Diadematidae	Diadema	savignyi	_	_	-	_	1	_				
Echinides	Diadematidae	Diadema	setosum	1		-1	2	2		1	-2	2	2
Holothurie	Holothuriidae	Bohadschia	argus										
Holothurie	Holothuriidae	Holothuria	atra										
Holothurie	Holothuriidae	Holothuria	coluber										
Holothurie	Holothuriidae	Holothuria	edulis	3	2			2			2		2
Holothurie	Holothuriidae	Holothuria	flovomaculata			3	2		3	2			
Holothurie	Holothuriidae	Holothuria	fuscopunctata	1	2			-1					
Holothurie Holothurie	Holothuriidae	Holothuria Holothuria	hilla nobilis	2	4								
Holothurie	Holothuriidae Holothuriidae	Holothuria Holothuria	nobilis scabra		-1								
Holothurie	Stichoporidae	Stichopus	variegatus			-1	1						-1
Hydraire	indeterminé	sp.	sp.	2	3	3	3		2	2	3	3	3
Mollusque	Arcidae	Arca	ventricosa			2	2	2	_	2	T		
Mollusque	Conitidae	Conus	miles	1		_	_			_	1		
Mollusque	Conitidae	Conus	ratus					1					
Mollusque	Coralliophillidae	Coralliophila	sp.						1				
Mollusque	Coralliophillidae	Coralliophila	violacea									2	
Mollusque	Fasciolariidae	Latirolagena	smaragdula								2		
Mollusque	Fasciolariidae	Pteristernia	reincarnata				1		2				
Mollusque	Gryphaeidae	Hyotissa	hyotis						1			1	2
Mollusque	Gryphaeidae	Hyotissa	sp.										2
Mollusque	Isognomonidae	Isognomon	isognomon	2	2	2	2	2	3	3			2
Mollusque	Muricidae	Murex	sp.	4				1		4		4	
Mollusque	Pinnidae	Athrina	sp.	1	_				•	1		1	_
Mollusque	Pteridae	Pteria	sp.	2	2				2	2	2	2	2
Mollusque	Pteriidae	Pinctada Podum	margaritifera		0	0	0					0	1
Mollusque	Spondylidae Spondylidae	Pedum Spondylus	spondyloidum	2	2	2	2	1		2		2	
LIVIOHUGGUG	Spondylidae		sp.			ı				2			
Mollusque	Strombidae	Strombus	lancemile					n l	i i	•			1
Mollusque	Strombidae Strombidae	Strombus Strombus	latissimus		2								
Mollusque Mollusque	Strombidae	Strombus	sp.		2								
Mollusque					2		-1						

Mollusque	Tridacniidae	Tridacna	squamosa	1	1		1	1			1	1	1
Mollusque	Trochidae	Trochus	niloticus										
Spongiaire	Anchinoidae	Hamigera	strongylata						2	2	2	2	3
Spongiaire	Ancorinidae	Stellata	sp.										2
Spongiaire	Axinellidae	Cymbastella	cantharella									2	2
Spongiaire	Callyspongiidae	Dactylia	delicata									2	2
Spongiaire	Clionidae	Cliona	jullienei	4	3	3	3	3	2	2	3	3	3
Spongiaire	Clionidae	Cliona	orientalis	3	2	2	2	2	2	2	2	4	3
Spongiaire	Dysideidae	Dysidea	sp.										2
Spongiaire	jaune	indeterminé	sp.										
Spongiaire	Leucettidae	Leucetta	chagosensis			2							
Spongiaire	marron	indeterminé	sp.										
Spongiaire	noire	indeterminé	sp.								2	3	3
Spongiaire	Spirastrellidae	Spheciospongia	vagabunda	3	2	2	2	2				2	2
Spongiaire	Thorectidae	Petrosaspongia	nigra										
Synapse	Synaptidae	Euapta	godeffroyi										
Zoanthaire	Zoanthidae	indeterminé	sp.			2	2						2
Zoanthaire	Zoanthidae	Palythoa	sp.								2	2	2

Tableau n°183 : <u>Annexe 05 : Inventaire des coraux et leur abondance (1 à 5) (stations du canal de la Havannah)</u>

				Ioro		Ros	nc Ionotea			Chambeyro	n .	Puk	0		Banc de Kié		1	Ilot Kié			Récif Toémo		По	t Ugo
Famille	Genre	Espece	ST5A	ST5B	ST5C	ST6A	ST6B	ST6C	ST7A		ST7C	ST8A	ST8B	ST9A	ST9B	ST9C	ST10A	ST10B	ST10C	ST11A	ST11B	ST11C	ST12A	ST12B
Acroporidae	Acropora	cytherea	51011	БТСВ	5100	51011	5102	5100	51711	5172	5170	510.1	DIOD	51711	5172	5170	511011	2	51100	BIIII	51112	51110	511211	51125
Acroporidae	Acropora	florida				2						2					2	2		2	2			
Acroporidae	Acropora	formosa							2			2								2			2	
Acroporidae	Acropora	gemmifera																						
Acroporidae	Acropora	humilis																						
Acroporidae	Acropora	hyacynthus															2	2	2					
Acroporidae	Acropora	millepora							1					1 2			2	2		1				
Acroporidae Acroporidae	Acropora	monticulosa robusta							2					2			3	2		2				-
Acroporidae	Acropora Acropora	spp. (branchu)	3(3spp)	2(4enn)	2(2spp)	2(4spp)	2(2enn)	2(2spp)	3(3enn)	2(2spp)	2(2spp)	3(5spp)(B1)	2(2spp)	2(4spp)	2(4spp)	2(3spp)	5(8spp)(B1)	3(3spp)(B1)	2(3spp)	3(4spp)(B1)	3(3spp)(B1)	2(3spp)	5(6spp)(B1)	5(5spp)(B2)
Acroporidae	Acropora	spp. (branchu)	2 (3spp)	2(4spp) 2	2(2spp)	2(3spp)(B1)	2(2spp) 2(2spp)			3(2spp)	2(2spp) 2	2(4spp)(B1)	3(2spp)	3(3spp)(B1)	3(2spp)(B1)	3(2spp)(B1)		3(4spp)(B1)	2(2spp)		3(4spp)(B1)	2(3spp) 2(3spp)	3(4spp)	3(3spp)(B1)
Acroporidae	Astreopora	gracilis		1		2(33pp)(D1)	2(23pp)	2(2spp)	2	3(23pp)	2	2(+3pp)(D 1)	3(23pp) 1	2	3(23pp)(D1)	3(23pp)(D 1)	1	э(т зрр)(Б 1)	2(2spp)	1	2	2(33pp)	э(тэрр)	2
Acroporidae	Astreopora	listeri		-		_				-		1	1				_			-	_			
Acroporidae	Astreopora	moretonensis										1												
Acroporidae	Astreopora	myriophthalma				2	2	1	1	1	2	2	2		1	2	2	2		2	2		2	2
Acroporidae	Astreopora	sp.		1	1									2	2	1	1	2	1		2		2	
Acroporidae	Isopora	cuneata	1									2	1				-2	-2	-1	2	2			
Acroporidae	Isopora	palifera	2	2								2	2				2	2	1	2			1	
Acroporidae	Montipora	caliculata																_						
Acroporidae	Montipora	danae	1			1				2		1					2	2	1		1			1
Acroporidae	Montipora	lamelosa	4(4cmm)	2(2000)	2	2(4spp)	2(4amm)	2(4amm)	2	2	2	1 2(B1)	2(4amm)	2.	2	2	2	2	2	2(2000)	2(2000)	2(2000)	2(2,555)	2(2am)(D1)
Acroporidae Acroporidae	Montipora Montipora	spp. stellata	4(4spp)	3(2spp.)	2	2(4spp)	2(4Spp)	2(4spp)	2	2	2	2(B1)	3(4spp)			2	3	3	2	3(2spp)	3(2spp)	3(2spp)	3(3spp)	3(2spp)(B1)
Acroporidae	Montipora	tuberculosa	2				1					1					3	1		2	1			1
Acroporidae	Montipora	undata		2								1		1		1	2.	2.		1				1
Acroporidae	Montipora	verrucosa		1							1			-	1	1	2	2		2		1		†
Agaraciidae	Coeloseris	mayeri	1		1							1					1	1			1			
Agaraciidae	Gardineroseris	planulata				1		1									1	1		2	2	2	1	
Agaraciidae	Leptoseris	explanata						1			1													
Agaraciidae	Leptoseris	hawaiiensis																						
Agaraciidae	Leptoseris	mycetoseroides								1	1		1					1	1				1	
Agaraciidae	Leptoseris	scabra			1			1		1														
Agaraciidae	Leptoseris	yabei								1	-1						1							
Agaraciidae	Pachyseris	rugosa	2	2	2	2	2	2		2		2	2	2	3	3	2	2	3	2	2	2	2	2
Agaraciidae Agaraciidae	Pachyseris Pavona	speciosa clavus				1	2	2							3	3	2	1	1	2	2			2
Agaraciidae	Pavona	decussata	2	2		1		1				2					2	2	1				2	1
Agaraciidae	Pavona	duerdeni	-1			1	2	1		1	1						1	2			1			1
Agaraciidae	Pavona	explanulata		1	1	_	1	1		2	1				1	1	2	2	1	1	1	1	1	1
Agaraciidae	Pavona	maldivensis	1	1	1	1	1			1							1	2		1	1		1	1
Agaraciidae	Pavona	sp.																						
Agaraciidae	Pavona	varians	2	2	1	2	2	1	1		1	2		2	2		2	2	2	2	2	2	2	3
Astrocoeniidae	Stylocoeniella	armata	2	2								2											1	2
	Stylocoeniella	guentheri										1					_							1
Astrocoeniidae	Stylocoeniella	sp.												1			2					1		
Caryophyllidae	Euphyllia	ancora	1	1	1		1		1	1								1	1					1
Caryophyllidae	Euphyllia Euphyllia	cristata divisa		-	1		1		-									1	+		-1			+
Caryophyllidae Caryophyllidae	Euphyllia Euphyllia	glabrescens																1			-1 -1			+
Caryophyllidae	Physogyra Physogyra	lichtensteini	<u> </u>	<u> </u>	†			1	 										+		-1		1	
Caryophyllidae	Plerogyra	sinuosa			1			-		1								1	1				•	
	Tubastraea	micrantha		1	3(B1)		1		1										1					
Dendrophylliidae	Tubastraea	sp.				2	2	2	2	1	2			2	2	2			2		2	2	1	1
Dendrophylliidae		frondens		1										2	2	2					1			
	Turbinaria	heronensis																	<u> </u>					2
Dendrophylliidae		mesenterina	1	1	1		2	2		2	2	2			2	2	1	2	1		2	2	1	
	Turbinaria	patula			1				-1	1		1			2	1		2			1	1		
	Turbinaria	peltata	1	1	1	2	2	2	 			2	-2		2	2	-	2	1		2	1	2	1
Dendrophylliidae	Turbinaria	radicalis reniformis	2	2	1		2	1	<u> </u>			1	1			1		2	+		2		2	2
	Turbinaria Turbinaria	reniformis stellulata			1	1		1	1	1	1	1	1	1	1	1	1		1		1			
Faviidae	Barabattoia	amicorum	1	1	1	2	2	1	2	1			1	1	1		1		+		1		11	<u> </u>
Faviidae	Caulastrea	curvata	1		-1			1				-2	1	1									1	+
Faviidae	Caulastrea	furcata										-1												
Faviidae	Cyphastrea	chalcidicum	1	<u> </u>	1		1		1										1					1
Faviidae	Cyphastrea	japonica	2	2			2	1	Ì								1						2	2
Faviidae	Cyphastrea	microphtalma									1						2							1
Faviidae	Cyphastrea	serailia	2	2	2	2		2		2	2	2	2	1	2	1		2	2	2	2		2	2
Faviidae	Cyphastrea	sp.	1	1					1			2		2						2	2	1		
Faviidae	Diploastrea	heliopora		3											1		1						1	

The content of the																									
Supple Company Compa	Faviidae		0															_							
Trigger Trig					2	2	2	2	-1				2	1		1	1		2		2	2		2	
Company Comp			-							1			1	1			1	2							2
Property Property			V							1			1				1			1			1		
Transfer Figure							1						1										1		
Problem								2	2	1	1			1		1			1	1		1	1	1	1
Second April Apr							_		_					1	1				2			-		-	1
Fig. Fig.			speciosa			2	2	1	2		1										3	2			
Finish	Faviidae	Favia	spp.	3	2	2		2		2	2	2	3	2	2(2spp)	3(3spp)	2(3spp)	1	2	2	3	2 (4spp)	2(2spp.)	3 (2spp)	3(3spp)
Final		Favia																			2			1	
Description Company				1				2				1	1		2			1	2		1	1	2		
Freedom											- 1			1		1					_		1	_	
From Process P				1			2		2					2		2	2			2		1	2		2 (2
From Professor				1	2			2	1	2	2	2	3	2	2	2	3	1	2	2	4	2 (5spp)	2	3(4spp)	3 (2spp)
Frankling				1		1			1																
Section Company			· · ·					2																	
Problem						1			1	1			1	2				1			2				
Second S				1		-			-	-			-								_			1	-
Secondary Seco			-														1	1			2				2
Secondary Seco						1		1		1			1	1		1		1	1		2	1	1		
Problem Prob				1		2			1		1	1	2	1	1			1	1			1			
Finds			*			1		2		1		1	ļ		 				1	1					
Part Management Managemen				4		1	_	2			<u> </u>	<u> </u>		1 2	_	•					1	2	4	1	1
Finds			1 10	1			2		1	1	2	2	1	2	2	2	1	1	1	2		2	1		
Frontière Colored Co				1		1	 	1	1	1	2	+	1	1		2	2	1		1	-	2	2	2	1
Problem				1			1		2	2		1		1	2	2	2			1		1	2	1	1
Probable Probable			-	-			•		1					1								1		•	
Problem Problem Property Problem Problem Property Problem Problem Property Problem			•																2			-			
Provide Prov						1	1		1		2		1			1			1	1			1		
Evolution Party Marchan Party Marchan Party Part	Faviidae								1		1							2	2		1				
Particle Party P									1						_										
Freidisc Phagyon point				2			2	+	-	2			1	1	2	2	2	2	2	1		2			
Fivelance Playagers Play		Platygyra				4	2	1	1												-1				
Five Free			1.			-1		2		1		-	1	1	1		1	1			2	2	1	1	
Fevilate Periodace Perio							1	2		1			1	1	1		1	2	2	2	2	2	1	1	
Firefields Principles Princ														1	1			2							
Progrigide Pro			*												1					1	1				
Fragishe Fragish Annie Fragishe Fr			*										2					2	2					2	2
Fungiske Fungisk Fungiske							1																		
Fragishe Progrigo Semigranian Progrigo Progri			echinata																					2	
Fragiske Fuegia passed process Fuegia Species	Fungiidae	Fungia						1	1		2								2					1	
Fungishe Fungish Fungishe Fungish Fungishe							1		2		1							2	2						
Fungiside Fung			*						2		2		0/2 \(\rangle\)	2		2		2	2	2	4	2	2	1	2(4
Fungishe Holonian				2	2	2		-		1	2	2	(2(3spp)(B1))			2		2		2	1	2	2		
Fungitida								—	1					-1					2					2	
Fungislace Podabacia Pod								1	1				1						1				-1		1
Fungiidae Polaphilia Pola							†		1				1		1			1	•						-
Fungiidae Polyphylia											1	1			1				1						
Fungidace Sandalolitha Sandalo	Fungiidae												2							-1					
Fungiidae Sandalolilida robusta 1 1 1 2 2 1 1 2 2 1 1					-1				1				2	-1						-1			2	2	
Merulinidae Hydnophora Revalunidae Hydnophora Hydnophora Revalunidae Hydnophora Hyd									_				_		1					<u> </u>					
Merulinidae Hydnophora gradis				1			•	2	2	1	1	2	2	1	1	1	1	*	1	1	2	2	1	2	1
Merulinidae Hydnophora microconos 1					1		2		1		-	+			1		1			-	2		1	1	
Merulinidae Hydnophora pilosa				1	<u> </u>		2	2	2	2	1	+	1		2	2	1		2	1	2	2	1	1	1
Merulinidae Hydnophora rigida				1			†					1	•	1	1 -	1	-	*				1 -	1	1	
Merulinidae Merulinidae		^ _			1						İ		2					2	2	İ		2	1	1	
Merulinidae Scapophyllia cylindrica				2	2	2	2	3	2	1	2			2		2	2	2	2	2	2	2		2	2
Mussidae Acanthastrea bowerbanki 1 1 2 2 2 2 2 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2				1	2		2	2			-2		2(B1)					2	2			2		2	
Mussidae Acanthastrea echinata -1 1 1 2 2 2 2 1 2<							1	1			1							2	2			2			
Mussidae Acanthastrea sp. 1 2 3 2 1 2 Mussidae Blastomussa wellsi 1 1 1 1 2 3 2 1 2 Mussidae Lobophyllia corymbosa 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 Mussidae Lobophyllia hattaii 1												1		1 -	1			2	_	<u> </u>					
Mussidae Blastomussa wellsi 1 1 2 Mussidae Lobophyllia corymbosa 2 2 2 2 2 2 2 2 2 2 2 3 4 Mussidae Lobophyllia hattaii 1 2 1 1						-1	1	-	1	1	2			2	2	2	1	2	2	1	2	2		1	
Mussidae Lobophyllia corymbosa 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 Mussidae Lobophyllia hattaii 1 2 1 1 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>1</td><td></td><td>1</td><td>1</td><td>2</td><td></td><td> </td><td></td><td></td><td></td><td></td><td>1</td><td>2</td><td>3</td><td>t</td><td>1</td><td></td></td<>							-		1		1	1	2		 					1	2	3	t	1	
Mussidae Lobophyllia hattaii 1 1 1 Mussidae Lobophyllia hemprichii 2 1 2 1 <t< td=""><td></td><td></td><td></td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td></td><td>+</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>-</td><td>3</td><td></td></t<>				2	2	2	2	2	2	2	2	2	2		+	2	2	2	2	2	2	2	-	3	
Mussidae Lobophyllia hemprichii 2 1 2<															1			<u> </u>	<u> </u>		<u> </u>			J	4
Mussidae Lobophyllia pachysepta 1 2(B1) 1 2 Mussidae Lobophyllia sp. 1 1 2 1 1 1 1 2						2.	1	2.	2.	2.	2.	2	1	1	1	1	1	2.	2.	2.	2.	2.	1	2.	2.
Mussidae Lobophyllia sp. 1 2 1 1 1 2						1	† •	 				1 -			†	•			-	 	-	1 -		~	
											1		\ /					2	1	1		1		2	-
	Mussidae	Scolymia				1												1						1	

Lvc	G 1 :	1	1	1	1	1	1 2	2		1 2	1 2	1 2	1	l	1	1	1 2	1 2	2.	l	1 2	1	1 1	2
Mussidae	Scolymia	vitiensis		1	1	-	2	2		2	2	2	1			1	2	2			2	1	1	2
Mussidae	Symphyllia	radians				2	1		1	1									1	1				
Mussidae	Symphyllia	recta	_				1		-1											_	1			
Mussidae	Symphyllia	sp.	2		1	1	2	2	2	2	1	1			2		1	1	1	2	1			
Mussidae	Symphyllia	valenciennesii							1	1					1									
Oculinidae	Galaxea	astreata	-3	-2	-2		2	2		-2		1			1	1	1	1	-1	2	2	1		
Oculinidae	Galaxea	fascicularis	2	2	2	3	3	2	2	2	2	2(B1)	2	2	2	2	2(B1)	3(B1)	2(B1)	5	4	3	2	2(B1)
Pectiniidae	Echinophyllia	aspera					1	1			1				1		2							
Pectiniidae	Echinophyllia	echinoporoides										1			1									
Pectiniidae	Echinophyllia	horrida	2	2								2					2	2					2	1
Pectiniidae	Echinophyllia	sp.			1							2					2	1	2		1	1		
Pectiniidae	Mycedium	elephantotus					2	1		1	1	2	1				1	1	2		2	1	1	1
Pectiniidae	Oxypora	glabra				1		1		-	1		1				-	-			_	-	-	-
Pectiniidae	Oxypora	lacera				1					1		1					1	1					
Pectiniidae	Oxypora	sp.						1		1		-1						-	-					
Pectiniidae	Pectinia	lactuca	1	1			2	2		2		2			2		2	2			2.		2	
Pectiniidae	Pectinia	paeonia	2	2		1	2	1		-1		-1			2		1	2			2		-2	
			2	2	2	2	2		2	2	2	2	2	2	2	3	2	2	2	2	2	2	2	
Pocilloporidae	Pocillopora	damicornis						1		<u> </u>	<u> </u>		<u> </u>			3							۷	
Pocilloporidae	Pocillopora	eydouxi		-1		2	2		2			2	1	2	2	2				2	2			
Pocilloporidae	Pocillopora	meandrina							3				1		2	2			1	2	2			
Pocilloporidae	Pocillopora	subseriata						1		1		2			-1							1		
Pocilloporidae	Pocillopora	verrucosa		2		2	2	2	2	2	2	2(B1)		2	2	2	2	2	2	2	2	2	1	
Pocilloporidae	Pocillopora	woodjensis																						
Pocilloporidae	Seriatopora	calendrium				2	2	2	2	1		3(B2)	1	2	2	2	2	3	2	4	3	2		
Pocilloporidae	Seriatopora	histrix	2	2	2	2	2	2	2	2	2	4(B2)	2	2	3	2	2	3	2	2	2	2	2(B1)	1
Pocilloporidae	Stylophora	mordax				1														2	2		1	
Pocilloporidae	Stylophora	pistilata	2	2	2	1	2	2	2	2		2	2				2	2	2		2	1	2	2
Poritidae	Alveopora	sp.	2	2			1	1	1			2					2	2	2	2				2
Poritidae	Alveopora	spongiosa			1				1	2		2		1	2	1	2	2	2	1	1	2		
Poritidae	Goniopora	sp.	1	2	2					1		2	2	2	2	2	2	2	1	1	2		3	4
Poritidae	Porites	cylindrica	1	1																			2	2
Poritidae	Porites	lichen	2	1								2	1							2			_	_
Poritidae	Porites	lutea	2	2		2	2						1	1						_				
Poritidae	Porites	nigrescens	2	2									1	1								-	2	2
Poritidae	Porites	rus											1										2	
Poritidae	Porites	sp.		5	2			2(B1)	2	3	2(B1)	3		1	2		2	2		1	2.	2	5	2.
Poritidae	Porites	lobata	4	3		2	3(B1)			2	2	4	5		2	2	3	3	2	2	2	2	3	
				-		1	- ()	2(D 1)		1		1		2	1	1	1	3	2	2	2		2	2
Siderastreidae	Coscinaraea	columna	2	2	1	1	1	-		1		1	2	1	1	1	-	1	2	2	2	1	2	
Siderastreidae	Coscinaraea	exesa			1	1		1			-	1	-				1		1	I	1			
Siderastreidae	Psammocora	claudiela			ļ	 					1		1								1			
Siderastreidae	Psammocora	contigua		2		1	2	1				1						ļ	1		1		1	
Siderastreidae	Psammocora	digitata				1						1					2	2			2			
Siderastreidae	Psammocora	haimeana															2							
Siderastreidae	Psammocora	profundacella			1									1									1	
Siderastreidae	Psammocora	superficialis										1		1						1				
Milleporidae	Millepora	encroutant		2			2	2		2	1	1			2	2	2		2	1	2		2	
Milleporidae	Millepora	sub massif												1							2			1
Milleporidae	Millepora	branchu	2	2	2	1	2	1		2	†	2	1	1	2	2		2	1	-2	_		2	2
Gorgone	indeterminé		1	2	2	1	2	2		† -	2		† 	2.	2(2spp)	2(3spp)	2(3spp)	2(2spp)	2(3spp)		1	1		2
Tubiporidae	Tubipora	musica	1			+					2	2	2	2	2(2spp) 2	2(3spp) 2	2(3spp) 2	2(2spp) 2	2(3spp) 2		1	1		
Antipathidae	Antipathus	sp.		1	2	2	2	2			2		+			2	2	2	2		2	2		2
	типриниз	op.		1	1					1		-	ļ		ļ	ļ			- 4		<u> </u>			<u> </u>
Antipathidae	Cirripathes	sp.			2													2						

Tableau n°184 : <u>Annexe 05 : Inventaire des Macrophytes et des Invertébrés et leur abondance (1 à 5) (stations du canal de la Havannah)</u>

Graupa	Famille	Comre	Fanasa		loro			Ionote	а	Cł	hambeyı	on	Р	uka		Banc de Kie	é		llot Kié			Toémo		llot	t Ugo
Groupe	ramille	Genre	Espece	ST5A	ST5B	ST5C	ST6A	ST6B	ST6C	ST7A	ST7B	ST7C	ST8A	ST8B	ST9A	ST9B	ST9C	ST10A	ST10B	ST10C	ST11A	ST11B	ST11C	ST12A	ST12B
Alcyonaire	Alcyoniidae	Cladiella	sp.			-1							2	-2		-2	-2			2	2	2			-2
Alcyonaire	Alcyoniidae	klyxum	sp.																						
Alcyonaire	Alcyoniidae	Lobophytum	sp.			1	2	2	2	2	1	2	2	2	5	2	3	2	2	2	2	2	2		
Alcyonaire	Alcyoniidae	Rhytisma	sp.												2										
Alcyonaire	Alcyoniidae	Sarcophyton	sp.	2	2	2					2	2	2	3		2	2	2	2	1	2	2	2	3	5
Alcyonaire	Alcyoniidae	Sinularia	sp.		2		2	2	2	2	2		2	2	2	2	3	2	2	2	2	3	2	2	2
Alcyonaire	Nephtheidae	Dendronephthya	sp.			2			2		1	1			3	2	2		2	2	1	1		1	1
Alcyonaire	Nephtheidae	Nephthea	sp.												2		2		2		2	3			2
Alcyonaire	Nidaliidae	Chironephthya	sp.			2																			
Alcyonaire	Xenidae	Xenia	sp.				1	2	2				2	2	4	2	4	3	2	2			2		
Algue brune	Dicyotaceae	Dictyota	sp.					2	2			2	2	2									2		
Algue brune	Dicyotaceae	Lobophora	variegata																						
Algue brune	Dicyotaceae	Padina	sp.										2	2				1	1						

1	10			1	1	1	1	ı	1	1				1		1	1		1	1				
Algue brune	Sargassaceae	Sargassum	sp.																				<u> </u>	
Algue brune	Sargassaceae	Turbinaria	ornata																				1	
Algue rouge		, , ,	taxiformis			5	5	3	5	3	3		3	5	4	4		2		5	5	4		
Algue rouge	Coralinaceae	Amphiroa	sp.	3	2 2	2	2	2				2	2	3	4	4	2		2	3	3			
Algue rouge	Coralinaceae	Amphiroa	vanbosseae			2	2	2				2	2											
Algue rouge	Dumontiaceae	Gibsmithia	hawaiiensis				1	1					1	2	2									
Algue rouge	Florideophyceae	Plocamium	armatum																					
Algue rouge	Florideophyceae	Plocamium	sandvicense																			2		
Algue rouge	Galaxauraceae	Actinotrichia	fragilis																					
Algue rouge	Galaxauraceae	Actinotrichia	sp.									2	1								2			
Algue rouge	Liagoraceae	Liagora	sp.																					
	Liagoraceae	Trichogloea	requienii			3	4	3	4	4	3	3	3					2	2	3	3	2	 	
Algue rouge			'			3	4	3	4	4	3	3	3							3	3	2	+	
Algue rouge	Peyssonneliaceae	Peyssonnelia	sp.				-			-						-	0						++	
Algue verte	Caulerpaceae	Caulerpa	racemosa				+			1						1	2				-		<u> </u>	
Algue verte	Caulerpaceae	Caulerpa	sp1												2	1	2				2		<u> </u>	
Algue verte	Caulerpaceae	Caulerpa	sp2																				<u> </u>	
Algue verte	Caulerpaceae	Caulerpa	sp3													3				2			<u> </u>	
Algue verte	Codiaceae	Codium	mamillosum																					
Algue verte	Codiaceae	Codium	platyclados																					
Algue verte	Codiaceae	Codium	sp.												2	2								
Algue verte	Codiaceae	Codium	spongiosum													2								
Algue verte	Dasycladacea	Bornetella	oligospora											2	2	2								
Algue verte	Dasycladacea	Neomeris	van bosseae									4	5	2				2		5	4	3		
Algue verte	Halimedaceae	Halimeda	sp.	2(2spp.)		2	2	2			2	3	2		2	2	3(3spp)	-3		2	2	J	2(2spp.)	-2
Algue verte	Siphonocladaceae	Dictyosphaeria	verluysii	Z(ZOPP.)										5	2	2	о(оорр)						2(2000.)	
Algue verte	Udodeaceae	Chlorodesmis	fastigiata	2	2 -				2			2		3	2	2	2	-2	-1	2	2	2	-2	-1
Anémone	Actinodiscidae	Discosoma	cf. rhodostoma		2		1							3				2	-1		3		-2	- 1
	indeterminé												4							1	3	1	+	
Anémone		Sp.	sp.		-1		-			-	4	4	ı			-				ı			++	
Anémone	Stichodactylidae	Heteractis	aurora	1							1	1		4									<u> </u>	
Anémone	Stichodactylidae	Heteractis	sp.	1					1					1		1		-1					<u> </u>	
Anémone	Stichodactylidae	Macrodactyla	doreensis													1							_	
Anémone	Stichodactylidae	Stichodactyla	sp.													1							<u> </u>	
Anémone	Thalassianthidae	Cryptodendrum	adhaesivum																					
Ascidies	Diazonidae	Atriolum	robustum				2	2		2	1				2	2			2	1	2	2		
Ascidies	Didemnidae	Didemnum	cf. minisculum																					
Ascidies	Didemnidae	Didemnum	molle											5	4	4	-2	-2	2	4	2	2		
Ascidies	Didemnidae	Didemnum	sp.(blanche)			2	3	3		2		1			3	3	1	2	2	2	1	2		
Ascidies	Indeterminé	Encroutante	verte											5	2	2								
Ascidies	Indeterminé	Encroutante	violet blanc											5	2	2				2		2		
Ascidies	Polycitoridae	Citorclinum	laboutei				1	1		1				2							1			
Ascidies	Polycitoridae	Clavelina	detorta			2	2	3		3	3	2		2	2	2				3	3	2		
Ascidies	Polycitoridae	Clavelina	flava			_	_			U	J	_		_	2	2				J	U	_		
Ascidies	Polyclinidae	Aplidium	flavolineatum																			2	+	
Ascidies	Polyclinidae	Aplidium	flavolineatum				1														2			
	-	•				4	2	2			2	2					2		2	2		2	1	
Ascidies	Styelidae	Polycarpa	aurita			1	2	2			3	2			4	4	3			2	3	2	1	2
Ascidies	Styelidae	Polycarpa	clavata	_	0 5		2	2	1	2	2	_	_		7	1		1	1		_	2	-1	
Ascidies	Styelidae	Polycarpa	cryptocarpa	2	2 2		2	2	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Ascidies	Styelidae	Polycarpa	nigricans	2	2	5	3	2		3	3	2	2	5	5	3	3	3	3	3	4	2	2	2
Ascidies	Styelidae	Polycarpa	papilata														2							
Ascidies	Styelidae	Polycarpa	sp1. (blanche)	1	2						2	1		2	3	3	2		2			2		
			sp2.																					
Ascidies	Styelidae	Polycarpa	(transparante)				<u> </u>						<u> </u>						<u> </u>	1	<u> </u>	1		
Ascidies	Styelidae	Symplegma	alterna																					
Astérie	Acanthasteridae	Acanthaster	planci		1																			
Astérie	Ophiasteridae	Celerina	heffernani		1 1				1		1					1				1	1	1		
Astérie	Ophiasteridae	Fromia	indica									1	2		1			1						
Astérie	Ophiasteridae	Fromia	milleporrella				1		1			•	_			1				1			+	
Astérie	Ophiasteridae	Fromia	monilis																1	•			+	
	•	Gomophia	+		1		1	1	1		1								+ '	1		-	+	
Astérie	Ophiasteridae		sp.		I 4		1	1	1				2					1					+	
Astérie	Ophiasteridae	Linckia	multifora		1			T		4	4		2					T		4	4		 	
Astérie	Ophiasteridae	Nardoa	gomophia				1			1	1				1	1				1	1	2		

	1	1	1	1	1		1	1 1		1	1 1				ı	1	1	ı	ı	ı	ı	ı		ess	T i
Astérie	Ophiasteridae	Nardoa	sp.																						
Astérie	Ophidiasteridae	Neoferdina	cumingi															1			1	1			
Astérie	Oreasterridae	Culcita	novaeguineae													_						_	_		
Bryozoaire	Alcyonidiidae	Alcyionidium	sp.		3	3					2	2		2	3	2	3				_	2	3		
Bryozoaire	indéterminée	sp.	sp.					1						1							2	2			
Bryozoaire	Phidoloporidae	Reteporellina	sp.											1									1		
Crinoïde	Colobometridae	Cenometra	sp.																			2			
Crinoïde	Comasteridae	Comathus	bennetti		2																				
Crinoïde	indeterminé	sp.	sp.		2	1	3	2	2	3	2	2	2	2	5	3	3	3	3	2	2	2	2	2	2
Cyanobactérie	Phormidiaceae	Phormidium	sp.	1	1		-2	2	2	3	2	2	2	1		-2	2	2	2	1	2	2	2	-2	1
Echinides	Diadematidae	Diadema	setosum	2	2	-2		2	1		1	1				1	2			1			2	2	-2
Echinides	Diadematidae	Echinometrix	diadema				1								3	2	2								
Echinides	Echinometridae	Echinometra	mathaei	2											3	2									
Echinides	Echinometridae	Echinostrephus	aciculatus	2	2								1												
Echinides	Echinometridae	Heterocentrotus	mammillatus																						
Echinides	Echinometridae	Parasalenia	gratiosa												3	2	2								
Holothurie	Holothuriidae	Actinopyga	flammea								-1														
Holothurie	Holothuriidae	Actinopyga	lecanora																						
Holothurie	Holothuriidae	Actinopyga	palauensis							-1			-1						1						
Holothurie	Holothuriidae	Bohadschia	argus								-1									-1					
Holothurie	Holothuriidae	Holothuria	atra		-1			1	2		2	2							2	1			1		
Holothurie	Holothuriidae	Holothuria	edulis					2	2			1		2					1	1		2	1		
Holothurie	Holothuriidae	Holothuria	fuscogilva									•								-1					
Holothurie	Holothuriidae	Holothuria	fuscopunctata		1								2	2				1		-1					
Holothurie	Holothuriidae	Holothuria	nobilis					-1				-1	1			1		•		•					
Holothurie	Holothuriidae	Holothuria	scabra										•												
Holothurie	Stichopodidae	Stichopus	chloronotus		-1	-1												-1							
Holothurie	Stichopodidae	Stichopus	pseudhorrens		-1																				
Holothurie	Stichopodidae	Stichopus	variegatus																						
	Stichopodidae	Thelenota	ananas	-1	1								1			1						-1			
Holothurie Holothurie	Stichopodidae	Thelenota	anax	-1		-							'	-1		'						-1			
	Aglaophenidae	Aglaophenia			2									-1											
Hydraire			cupressina																						
Hydraire	Aglaophenidae	Aglaophenia	phillippina																			2			
Hydraire	Aglaophenidae	Macrorhynchia	phoenicea		2	2		2		_	2		_		2	2	2	2	2	0	2	2	0		
Hydraire	indeterminé	sp.	sp.	0	2	3		2	2	2	3	2	2	2	3	3	3	2	2	2	3	2	2	4	
Mollusque	Arcidae	Arca	ventricosa	2	3		2	2	2		2	2	2	2	4	4				2	4			4	2
Mollusque	Conitidae	Conus	distans				1				1				1	1					1				
Mollusque	Conitidae	Conus	leopardus												1						4				
Mollusque	Conitidae	Conus	miles		1					1					_						1				
Mollusque	Conitidae	Conus	milliaris					1							2										1
Mollusque	Conitidae	Conus	sp.				1							2					1					11	
Mollusque	Conitidae	Conus	vexilium																						
Mollusque	Coralliophillidae	Coralliophila	violacea						2																
Mollusque	Fasciolariidae	Latirolagena	smaragdula										2												
Mollusque	Fasciolariidae	Latirus	gibbulus			ļ	1																		
Mollusque	Fasciolariidae	Pleuroploca	sp.	1																					
Mollusque	Fasciolariidae	Pteristernia	reincarnata	1	2			1			2					2					2	2			
Mollusque	Gryphaeidae	Hyotissa	hyotis	1	2															1		1	1		
Mollusque	Gryphaeidae	Hyotissa	sp.															2							
Mollusque	Isognomonidae	Isognomon	isognomon			2																			2
Mollusque	Muricidae	Chicoreus	ramosus	1									1												
Mollusque	Muricidae	Drupa	sp.		1						1		1	2					1		2				1
Mollusque	Muricidae	Druppela	cornus					2			2	2	2	1				2			-2	2			
Mollusque	Muricidae	Murex	ramosus	1																					
Mollusque	Muricidae	Murex	sp.																						
Mollusque	Ostreidae	Lopha	cristagalli			2														1					
Mollusque	Ostreidae	Lopha	sp.														1								
Mollusque	Ovulidae	Ovula	ovum																						
Mollusque	Pteridae	Pteria	peguin			1																			
Mollusque	Pteridae	Pteria	sp.		2	2													1	1			2		2
Mollusque	Pteriidae	Pinctada	margaritifera																2	2	2	2	_		_
Mondoque	. tornado	. motada	marganarora	L	1	1	1	1		1	1				ı	1	1		_	_	_	_			

Mollusque	Spondylidae	Pedum	spondyloidum	2	2		3	2			2	2							2	2	2	2		2	Ĺ
Mollusque	Spondylidae	Spondylus	sp.		1	1												2	1	1				1	1
Mollusque	Stombidae	Lambis	lambis							1			2								1				1
Mollusque	Stombidae	Lambis	truncata																						
Mollusque	Strombidae	Strombus	latissimus																						
Mollusque	Strombidae	Strombus	sp.																						
Mollusque	Strombidae	Tricornis/Strombus	sinuatus									1													
Mollusque	Tridacniidae	Tridacna	crocea												2										
Mollusque	Tridacniidae	Tridacna	derasa															1	1	1					
Mollusque	Tridacniidae	Tridacna	maxima	1						1			2		2			1			2			1	1
Mollusque	Tridacniidae	Tridacna	squamosa	1							2								-1					1	
Mollusque	Trochidae	Trochus	niloticus	2									1	1							2	2	2		
Mollusque	Turbinidae	Astraea	rhodostoma					2												2	2	2			
Mollusque	Turbinidae	Turbo	sp.					1								2	2		1		2	2		1	
Mollusque	Vasidae	Vasum	turbinelus																		1				
Spongiaire	Anchinoidae	Hamigera	strongylata		2	2										2	2				2	2	2		
Spongiaire	Ancorinidae	Stellata	globostellata													-3									
Spongiaire	Axinellidae	Cymbastella	cantharella											2											
Spongiaire	Axinellidae	Stylissa	flabelliformis																						
Spongiaire	Callyspongiidae	Dactylia	delicata													2									
Spongiaire	Chalinidae	Haliclona	olivacea																						
Spongiaire	Clathrinidae	Clathria	bargibanti																						
Spongiaire	Clionidae	Cliona	jullienei	3	2	2	1	2	2	2	2	2	3	3	2	2	2	2	2	2	1	2	3	2	3
Spongiaire	Clionidae	Cliona	orientalis	2	5	3	3	4	4	3	3	3	3	3	3	4	3	2	3	3	2	4	3	4	4
Spongiaire	Dysideidae	Dysidea	herbacea																		3	2			
Spongiaire	indeterminé	beige , lamelle	sp.									2					2								
Spongiaire	indeterminé	noire	sp.		3	2	2	2	2		2	2	1	2	2	4	3	2	2	3			2	2	2
Spongiaire	indeterminé	orange																						2	2
Spongiaire	indeterminé	rouge				2																			
Spongiaire	Leucettidae	Leucetta	chagosensis				2							2	2	1					2				
Spongiaire	Microcionidae	Clathria	rugosa	1	2	3							2	2			2	2	2	3		-2	-2	1	2
Spongiaire	Phoriospongiidae	Strongylodesma	sp.																				2		
Spongiaire	Spirastrellidae	Spheciospongia	vagabunda										2	2		2	2					2	3		
Zoanthaire	Zoanthidae	indeterminé																							2
Zoanthaire	Zoanthidae	Palythoa	sp.	2	2	2	2	2	2	2	2	2	2	2	2	2	3	2	2	3	2	2	2	2	2

Tableau n°185 : <u>Annexe 05 : Richesse spécifique du benthos par groupe</u>

	ST0	ST01	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST0	ST1	ST1	ST1	ST1	ST1	ST11	ST12	ST12
	11	B B	2A	2B	310	310 2D	310 2C	310	4B	310 4C	510	5B	510 5C	6A	6B	6C	7A	7B	7C	8A	8B		9B	9C	211	0B	0C	1 1 1	311 1D	5111	3112	D D
	IA	Б	ZA	ZB	ЭA	ЭБ	3C	4A	4D	40	JA	ЭБ	JC	UA	OD	oc	/A	/ D	/C	oA	ов	9A	90	90	UA	UD	UC	IA	ID		A	D
Macrophytes et																																
invertébrés	35	31	25	28	27	19	24	25	27	28	27	34	23	25	37	33	17	31	34	43	40	28	47	46	33	36	36	50	49	43	23	23
Coraux																																
sléractinaires	52	41	83	66	47	52	56	51	47	17	57	55	42	65	73	79	50	65	40	90	48	55	57	48	97	90	53	77	90	57	89	68
Autres coraux	2	3	4	3	1	1	2	4	8	5	2	4	4	1	4	3	0	2	3	3	3	4	5	6	6	6	7	1	4	2	2	4
Total	89	75	112	97	75	72	82	80	82	50	86	93	69	91	114	115	67	98	77	136	91	87	109	100	136	132	96	128	143	102	114	95

Tableau n°186 : <u>Annexe 05 : Liste des espèces cibles (CdC) et leur abondance (1 à 5) (stations de la baie de Prony et du canal Woodin)</u>

Crouns	Famille	Commo	Famous	llot Ca	sy Sud	Creek	B. Nord	W	/harf Proi	าy	Ca	nal Wood	lin
Groupe	Famille	Genre	Espece	ST1A	ST1B	ST2A	ST2B	ST3A	ST3B	ST3C	ST4A	ST4B	ST4C
Algue brune	Dicyotaceae	Dictyota	sp.	2	2			2	2	2			
Algue brune	Dicyotaceae	Distromium	sp.	2	2								
Algue brune	Dicyotaceae	Lobophora	variegata	4	3	3	3	3	5	5			
Algue brune	Dicyotaceae	Padina	sp.	1	2			2	_				
Algue brune	Dicyotaceae	Spatoglossum	sp.										
Algue brune	Sargassaceae	Sargassum	sp.		-3								
Algue brune	Sargassaceae	Turbinaria	ornata	1	2								
Algue rouge	Coralinaceae	Amphiroa	sp.		_	3	3	3	4	2	2	2	1
Algue rouge	Dumontiaceae	Gibsmithia	hawaiiensis	2	2			_	-				
Algue rouge	Galaxauraceae	Actinotrichia	sp.		_								
Algue rouge	Galaxauraceae	Galaxaura	marginata										
Algue rouge	indeterminée	sp.	sp.										
Algue rouge	Liagoraceae	Trichogloea	reguienii	3	2								
Algue verte	Caulerpaceae	Caulerpa	sp2		_			2					
Algue verte	Codiaceae	Codium	mamillosum					_					
Algue verte	Dasycladacea	Neomeris	van bosseae		2								
Algue verte	Halimedaceae	Halimeda	sp.	2	2	3(3spp)	2(3spp)	4(2spp)	3(2spp)	2 (2spp)	2(3snn)	2(2spp)	
Algue verte	Siphonocladaceae	Dictyosphaeria	verluysii			О(ОЗРР)	Z(00PP)	+(20pp)	0(20pp)	2 (23pp)	Z(03pp)	Z(23pp)	
Algue verte	Udodeaceae	Chlorodesmis	fastigiata								2		
Ascidies	indeterminée	sp.	sp.										
Ascidies	Polycitoridae	Clavelina	detorta										
Ascidies	Styelidae	Polycarpa	aurita		3								
Ascidies	Styelidae	Polycarpa	clavata		3								
Ascidies	Styelidae	Polycarpa	cryptocarpa	2	2		2	2					
Ascidies	Styelidae	Polycarpa	nigricans		2		2						
Astérie	Acanthasteridae	Acanthaster	planci		2								
Astérie	Ophiasteridae	Celerina	heffernani							-2	1	1	1
Astérie	Ophiasteridae	Fromia	monilis	1					1	2	-	l l	'
Astérie	Ophiasteridae	Fromia		<u>'</u>					I				<u> </u>
Astérie	Ophiasteridae	Linckia	sp. multifora										1
Astérie	Ophiasteridae	Nardoa											1
Astérie	Ophiasteridae	Nardoa	sp. gomophia	2	1	-1	1	1		1		-1	1
Astérie	Oreasterridae	Culcita				- 1	1	ı	-1	-1 1		-1	 ' '
Crinoïde	Colobometridae	Cenometra	novaeguineae				I		-1	l	2		<u> </u>
Crinoïde		SD.	sp.	3	3						2	3	5
	indeterminé	-1	sp.	2	_	4	2	1	2	1		3	3
	Phormidiaceae	Phormidium	sp.		-2	-1	-2	1	-2	-1			<u> </u>
Echinides	Diadematidae	Diadema	savignyi	4		4		0		4	0		0
Echinides	Diadematidae	Diadema	setosum	1		-1	2	2		1	-2	2	2
Holothurie	Holothuriidae	Bohadschia	argus										ļ'
Holothurie	Holothuriidae	Holothuria	atra										<u> </u>
Holothurie	Holothuriidae	Holothuria	coluber		0			0					
Holothurie	Holothuriidae	Holothuria	edulis	3	2			2			2		2
Holothurie	Holothuriidae	Holothuria	flovomaculata			3	2		3	2			<u> </u>
Holothurie	Holothuriidae	Holothuria	fuscopunctata	1	2			-1					
Holothurie	Holothuriidae	Holothuria	hilla										<u> </u>
Holothurie	Holothuriidae	Holothuria	nobilis	2	-1			ļ					<u> </u>
Holothurie	Holothuriidae	Holothuria	scabra		ļ								
Holothurie	Stichoporidae	Stichopus	variegatus			-1	1						-1
Mollusque	Arcidae	Arca	ventricosa			2	2	2		2			 '
Mollusque	Conitidae	Conus	miles	1							1		<u> </u>
Mollusque	Conitidae	Conus	ratus					1					<u> </u>
Mollusque	Coralliophillidae	Coralliophila	sp.						1				<u> </u>
Mollusque	Coralliophillidae	Coralliophila	violacea			1						2	
Mollusque	Fasciolariidae	Latirolagena	smaragdula								2		
Mollusque	Fasciolariidae	Pteristernia	reincarnata				1		2				
Mollusque	Gryphaeidae	Hyotissa	hyotis						1			1	2

Mollusque	Gryphaeidae	Hyotissa	sp.										2
Mollusque	Isognomonidae	Isognomon	isognomon	2	2	2	2	2	3	3			2
Mollusque	Muricidae	Murex	sp.					1					
Mollusque	Pinnidae	Athrina	sp.	1						1		1	
Mollusque	Pteridae	Pteria	sp.	2	2				2	2	2	2	2
Mollusque	Pteriidae	Pinctada	margaritifera										1
Mollusque	Spondylidae	Pedum	spondyloidum	2	2	2	2					2	
Mollusque	Spondylidae	Spondylus	sp.		1	1		1		2			
Mollusque	Strombidae	Strombus	latissimus										
Mollusque	Strombidae	Strombus	sp.		2								
Mollusque	Tridacniidae	Tridacna	crocea										
Mollusque	Tridacniidae	Tridacna	derasa				-1						
Mollusque	Tridacniidae	Tridacna	maxima					1			1		
Mollusque	Tridacniidae	Tridacna	squamosa	1				1			1	1	
Mollusque	Trochidae	Trochus	niloticus										
Spongiaire	Anchinoidae	Hamigera	strongylata						2	2	2	2	3
Spongiaire	Ancorinidae	Stellata	sp.										2
Spongiaire	Axinellidae	Cymbastella	cantharella									2	2
Spongiaire	Callyspongiidae	Dactylia	delicata									2	2
Spongiaire	Clionidae	Cliona	jullienei	4	3	3	3	3	2	2	3	3	3
Spongiaire	Clionidae	Cliona	orientalis	3	2	2	2	2	2	2	2	4	3
Spongiaire	Dysideidae	Dysidea	sp.										2
Spongiaire	jaune	indeterminé	sp.										
Spongiaire	Leucettidae	Leucetta	chagosensis			2							
Spongiaire	marron	indeterminé	sp.										
Spongiaire	noire	indeterminé	sp.								2	3	3
Spongiaire	Spirastrellidae	Spheciospongia	vagabunda	3	2	2	2	2				2	2
Spongiaire	Thorectidae	Petrosaspongia	nigra										

Tableau n°187 : <u>Annexe 05 : Liste des espèces cibles (CdC) et leur abondance (1 à 5) (stations du canal de la Havannah)</u>

				1			1														_	_ ,			
Groupe	Famille	Genre	Espece	ST5A	loro	CTEC		lonotea	ST6C	_	ambeyr			uka ST8B	ST9A	Banc de Ki ST9B	e ST9C	ST10A	Ilot Kié ST10B	CT40C		Toémo	CT44C		Ugo ST12B
Algue brune	Dicyotaceae	Dictyota	sp.	SISA	3136	3130	SIGA	2	2	317A	3176	2	2 2	2	SIBA	3190	3190	STIUA	31105	31100	SITIA	31116	2	SIIZA	31126
Algue brune	Dicyotaceae	Lobophora	variegata																						
Algue brune	Dicyotaceae	Padina	sp.										2	2				1	1						
Algue brune	Sargassaceae	Sargassum	sp.																						
Algue brune	Sargassaceae	Turbinaria	ornata																					1	
Algue rouge	Bonnemaisonniaceae	Asparagopsis	taxiformis				5	5	3	5	3	3		3	5	1	4		2		5	5	1	<u>'</u>	
Algue rouge	Coralinaceae	Amphiroa	sp.	3	2	2	2	2	2	J	3	J	2	2	3	<u> </u>	4	2		2	3	3	7		
Algue rouge	Coralinaceae	Amphiroa	vanbosseae				2	2	2				2	2	3		7				-	<u> </u>			
Algue rouge	Dumontiaceae	Gibsmithia	hawaiiensis					1	1					1	2	2									
Algue rouge	Florideophyceae	Plocamium	armatum					<u>'</u>						'											
Algue rouge	Florideophyceae	Plocamium	sandvicense																				2		
Algue rouge	Galaxauraceae	Actinotrichia	fragilis																						
Algue rouge	Galaxauraceae	Actinotrichia	sp.										2	1								2			
Algue rouge	Liagoraceae	Liagora	sp.											'											
Algue rouge	Liagoraceae	Trichogloea	requienii				3	4	3	4	4	3	3	3					2	2	3	3	2		
Algue rouge	Peyssonneliaceae	Peyssonnelia	sp.				-	-	U	-	-	0		0							U	U			
Algue verte	Caulerpaceae	Caulerpa	racemosa															2							
Algue verte	Caulerpaceae	Caulerpa	sp1													2		2				2			
Algue verte	Caulerpaceae	Caulerpa	sp2																						
Algue verte	Caulerpaceae	Caulerpa	sp3														3				2				
Algue verte	Codiaceae	Codium	mamillosum														<u> </u>				_				
Algue verte	Codiaceae	Codium	platyclados																						
Algue verte	Codiaceae	Codium	sp.													2	2								
Algue verte	Codiaceae	Codium	spongiosum														2								
Algue verte	Dasycladacea	Bornetella	oligospora												2	2	2								
Algue verte	Dasycladacea	Neomeris	van bosseae										4	5	2				2		5	4	3		
Algue verte	Halimedaceae	Halimeda	sp.	2(2spp.)			2	2	2			2	3	2		2	2	3(3spp)	-3		2	2		2(2spp.)	-2
Algue verte		Dictyosphaeria	verluysii	(-1 1-7									-		5	2	2	(11-7						<u> </u>	

										1			_						•						
Algue verte	Udodeaceae	Chlorodesmis	fastigiata	2	2	-1				2			2		3	2	2	2	-2	-1	2	2	2	-2	-1
Astérie	Acanthasteridae	Acanthaster	planci		1																			ļ	,
Astérie	Ophiasteridae	Celerina	heffernani		1	1				1		1					1				1	1	1		,
Astérie	Ophiasteridae	Fromia	indica										1	2		1			1						,
Astérie	Ophiasteridae	Fromia	milleporrella														1				1				
Astérie	Ophiasteridae	Fromia	monilis																	1					
Astérie	Ophiasteridae	Gomophia	sp.		1				1	1		1									1				
Astérie	Ophiasteridae	Linckia	multifora			1			1					2					1						
Astérie	Ophiasteridae	Nardoa	gomophia					1			1	1				1					1	1	2	ı	ı
Astérie	Ophiasteridae	Nardoa	sp.																					1	ı
Astérie	Ophidiasteridae	Neoferdina	cumingi															1			1	1			j
Astérie	Oreasterridae	Culcita	novaeguineae	1																					j
Crinoïde	Colobometridae	Cenometra	sp.																			2			1
Crinoïde	Comasteridae	Comathus	bennetti		2																			1	1
Crinoïde	indeterminé	sp.	sp.		2	1	3	2	2	3	2	2	2	2	5	3	3	3	3	2	2	2	2	2	2
Cyanobactérie	Phormidiaceae	Phormidium	sp.	1	1		-2	2	2	3	2	2	2	1		-2	2	2	2	1	2	2	2	-2	1
Echinides	Diadematidae	Diadema	setosum	2	2	-2		2	1		1	1				1	2			1			2	2	-2
Echinides	Diadematidae	Echinometrix	diadema				1								3	2	2							1	
Echinides	Echinometridae	Echinometra	mathaei	2											3	2									1
Echinides	Echinometridae	Echinostrephus	aciculatus	2	2								1												1
Echinides	Echinometridae	Heterocentrotus	mammillatus																					i	
Echinides	Echinometridae	Parasalenia	gratiosa												3	2	2							, 	
Holothurie	Holothuriidae	Actinopyga	flammea								-1					_									
Holothurie	Holothuriidae	Actinopyga	lecanora								•													, 	
Holothurie	Holothuriidae	Actinopyga	palauensis							-1			-1						1						
Holothurie	Holothuriidae	Bohadschia	argus							•	-1		•							-1				i	
Holothurie	Holothuriidae	Holothuria	atra		-1			1	2		2	2							2	1			1	i 	
Holothurie	Holothuriidae	Holothuria	edulis		-1		-	2	2			1		2					1	1		2	1	,	
Holothurie	Holothuriidae	Holothuria	fuscogilva									<u> </u>								-1					
	Holothuriidae	Holothuria	fuscogiiva		1								2	2				1		-1					
Holothurie Holothurie	Holothuriidae	Holothuria	nobilis		•			-1				-1	1			1		ı		-1					
	Holothuriidae	Holothuria	scabra					-1				-1	'			ı									
Holothurie					1	-1				-	-							-1							
Holothurie	Stichopodidae	Stichopus	chloronotus		-1	-1												-1							
Holothurie	Stichopodidae	Stichopus	pseudhorrens																						
Holothurie	Stichopodidae	Stichopus	variegatus	4									1			4						4			i
Holothurie	Stichopodidae	Thelenota	ananas	-1	1								1	4		1						-1		,	i
Holothurie	Stichopodidae	Thelenota	anax				•							-1						-					
Mollusque	Arcidae	Arca	ventricosa	2	3		2	2	2		2	2	2	2		_				2				4	2
Mollusque	Conitidae	Conus	distans				1				1				1	1					1				
Mollusque	Conitidae	Conus	leopardus												1										
Mollusque	Conitidae	Conus	miles		1					1											1				
Mollusque	Conitidae	Conus	milliaris					1							2										1
Mollusque	Conitidae	Conus	sp.				1							2					1					1	,
Mollusque	Conitidae	Conus	vexilium																						1
Mollusque	Coralliophillidae	Coralliophila	violacea						2																1
Mollusque	Fasciolariidae	Latirolagena	smaragdula										2												L
Mollusque	Fasciolariidae	Latirus	gibbulus				1																		
Mollusque	Fasciolariidae	Pleuroploca	sp.	1																				1	j
Mollusque	Fasciolariidae	Pteristernia	reincarnata	1	2			1			2					2					2	2			1
Mollusque	Gryphaeidae	Hyotissa	hyotis	1	2															1		1	1		1
Mollusque	Gryphaeidae	Hyotissa	sp.															2						1	1
Mollusque	Isognomonidae	Isognomon	isognomon			2																			2
Mollusque	Muricidae	Chicoreus	ramosus	1									1											1	
Mollusque	Muricidae	Drupa	sp.		1						1		1	2					1		2				1
Mollusque	Muricidae	Druppela	cornus					2			2	2	2	1				2			-2	2			
Mollusque	Muricidae	Murex	ramosus	1						1	1													-	
Mollusque	Muricidae	Murex	sp.							1	1									1	1			1	
Mollusque	Ostreidae	Lopha	cristagalli			2				1	1									1				 	
Mollusque	Ostreidae	Lopha	sp.		<u> </u>					1	†														
Mollusque	Ovulidae	Ovula	ovum							1	1														
Mollusque	Pteridae	Pteria	peguin			1				1	1									1					
www.usque	i toridae	1 10114	i pogani	1		•				1	1	1	1	1	1		1		1	1	ı		l		

Mollusque	Pteridae	Pteria	sp.		2	2													1	1			2		2
Mollusque	Pteriidae	Pinctada	margaritifera																2	2	2	2			
Mollusque	Spondylidae	Pedum	spondyloidum	2	2		3	2			2	2							2	2	2	2		2	
Mollusque	Spondylidae	Spondylus	sp.		1	1												2	1	1				1	1
Mollusque	Stombidae	Lambis	lambis							1			2								1			i	
Mollusque	Stombidae	Lambis	truncata																					i	
Mollusque	Strombidae	Strombus	latissimus																						
Mollusque	Strombidae	Strombus	sp.																					i	
Mollusque	Strombidae	Tricornis/Strombus	sinuatus									1												i	
Mollusque	Tridacniidae	Tridacna	crocea												2									i	
Mollusque	Tridacniidae	Tridacna	derasa															1	1	1				i	
Mollusque	Tridacniidae	Tridacna	maxima	1						1			2		2			1			2			i	1
Mollusque	Tridacniidae	Tridacna	squamosa	1							2								-1					1	
Mollusque	Trochidae	Trochus	niloticus	2									1	1							2	2	2	i	
Mollusque	Turbinidae	Astraea	rhodostoma					2												2	2	2			
Mollusque	Turbinidae	Turbo	sp.					1								2	2		1		2	2		1	
Mollusque	Vasidae	Vasum	turbinelus																		1			i	
Spongiaire	Anchinoidae	Hamigera	strongylata		2	2										2	2				2	2	2	i	
Spongiaire	Ancorinidae	Stellata	globostellata													-3								i	
Spongiaire	Axinellidae	Cymbastella	cantharella											2										i	
Spongiaire	Axinellidae	Stylissa	flabelliformis																					i	
Spongiaire	Callyspongiidae	Dactylia	delicata													2								i	
Spongiaire	Chalinidae	Haliclona	olivacea																					i	
Spongiaire	Clathrinidae	Clathria	bargibanti																					i	
Spongiaire	Clionidae	Cliona	jullienei	3	2	2	1	2	2	2	2	2	3	3	2	2	2	2	2	2	1	2	3	2	3
Spongiaire	Clionidae	Cliona	orientalis	2	5	3	3	4	4	3	3	3	3	3	3	4	3	2	3	3	2	4	3	4	4
Spongiaire	Dysideidae	Dysidea	herbacea																		3	2		i	
Spongiaire	indeterminé	beige , lamelle	sp.									2					2							i	
Spongiaire	indeterminé	noire	sp.		3	2	2	2	2		2	2	1	2	2	4	3	2	2	3			2	2	2
Spongiaire	indeterminé	orange																						2	2
Spongiaire	indeterminé	rouge				2																			
Spongiaire	Leucettidae	Leucetta	chagosensis				2							2	2	1					2				
Spongiaire	Microcionidae	Clathria	rugosa	1	2	3							2	2			2	2	2	3		-2	-2	1	2
Spongiaire	Phoriospongiidae	Strongylodesma	sp.																				2	1	
Spongiaire	Spirastrellidae	Spheciospongia	vagabunda					_					2	2		2	2	-				2	3	i	

Résultats bruts de l'échantillonnage ichtyologique octobre 2011

Tableau n°188 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST01)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Acanthurus blochii	6	Sca	Scarus schlegeli	2
Aca	Zebrasoma veliferum	6	Sig	Siganus doliatus	2
Gob	Amblygobius phalaena	6	Aca	Ctenochaetus striatus	1
Lab	Coris batuensis	6	Ant	Pseudanthias pascalus	1
Lab	Thalassoma lunare	6	Ant	Pseudanthias pictilis	1
Pin	Parapercis hexophtalma	6	Apo	Apogon aureus	1
Pom	Chrysiptera rollandi	6	Apo	Apogon doederleini	1
Pom	Pomacentrus moluccensis	6	Apo	Apogon selas	1
Epi	Anyperodon leucogrammicus	5	Apo	Cheilodipterus quinquelineatus	1
Epi	Cephalopholis boenak	5	Apo	Ostorhinchus flavus	1
Epi	Plectropomus leopardus	5	Bal	Sufflamen chrysopterus	1
Hol	Sargocentron spiniferum	5	Ble	Ecsenius bicolor	1
Lab	Cheilinus chlorourus	5	Cha	Chaetodon mertensii	1
Lab	Halichoeres prosopeion	5	Cha	Coradion altivelis	1
Pom	Dascyllus aruanus	5	Cir	Cirrhitichthys oxycephalus	1
Pom	Dascyllus reticulatus	5	Epi	Cromileptes altivelis	1
Aca	Acanthurus mata	4	Epi	Diploprion bifasciatum	1
Can	Canthigaster valentini	4	Epi	Epinephelus cyanopodus	1
Cha	Heniochus acuminatus	4	Gob	Amblyellotris diagonalis	1
Gob	Amblyeleotris rubrimarginata	4	Gob	Coryphopterus neophytus	1
Lab	Halichoeres melanurus	4	Gob	Ctenogobiops feroculus	1
Lab	Oxycheilinus diagrammus	4	Gob	Gunnellichthys monostgma	1
Mul	Parupeneus barberinoides	4	Gob	Valenciennea puellaris	1
Nem	Pentapodus aureofasciatus	4	Gob	Valenciennea sexguttata	1
Poc	Centropyge bicolor	4	Hae	Plectorhinchus orientalis	1
Pom	Chromis margaritifer	4	Hae	Plectorhinchus vittatus	1
Sca	Chlorurus sordidus	4	Lab	Anampses neoguinaicus	1
Bal	Sufflamen fraenatus	3	Lab	Cheilinus fasciatus	1
Cha	Chaetodon baronessa	3	Lab	Chelinus chlorourus	1
Epi		3	Lab	Cirrhilabrus laboutei	
Hae	Epinephelus ongus Plectorhinchus lessonii	3	Lab	Cirrhilabrus lineatus	1
Lab	Labroides dimidiatus	3			1
Nem	Scolopsis bilineatus	3	Lab	Cirrhilabrus punctatus	1
Ost	1	3	Lab	Halichoeres argus	1
	Ostracion cubicus	3	Lab	Halichoeres sp	1
Poc	Centropyge tibicen		Lab	Labropsis australis	1
Pom	Pomacentrus aurifrons	3	Lab	Oxycheilinus celebicus	1
Pom	Pomacentrus chrysurus	3	Lab	Oxycheilinus oxyaphalus	1
Sca	Scarus flavipectoralis	3	Lab	Pteragogus cryptus	1
Sca	Scarus frenatus	3	Mic	Gunnellichthys curiosus	1
Sca	Scarus ghobban	3	Mic	Gunnellichthys monostigma	1
Sig	Siganus vulpinus	3	Mon	Cantherines fronticintus	1
Aca	Naso lopezi	2	Mul	Parupenaeus indicus	1
Aca	Naso unicornis	2	Mul	Parupeneus barberinus	1
Cha	Chaetodon auriga	2	Mul	Parupeneus indicus	1
Cha	Chaetodon flavirostris	2	Mul	Parupeneus spilurus	1
Cha	Chaetodon melannotus	2	Nem	Scolopsis lineatus	1
Cha	Chaetodon ulietensis	2	Pin	Parapercis multiplicata	1
Cha	Chaetodon vagabundus	2	Poc	Pomacanthus sexstriatus	1
Epi	Cephalopholis sonnerati	2	Pom	Amblyglyphidodon orbicularis	1
Epi	Epinephelus Howlandi	2	Pom	Amphiprion perideraion	1
Gob	Valenciennea randalli	2	Pom	Chromis amboinensis	1

Gra	Diploprion bifasciatum	2	Pom	Chromis chrysura	1
Lab	Anampses femininus	2	Pom	Chromis viridis	1
Lab	Cheilinus trilobatus	2	Pom	Chrysiptera taupou	1
Lab	Choerodon fasciatus	2	Pom	Plectroglyphidodon lacrymatu	s 1
Lab	Choerodon graphicus	2	Pse	Ogilbyina sp	1
Lab	Cirrhilabrus temmenckii	2	Pse	Pictichromis coralensis	1
Lab	Halichoeres biocellatus	2	Sca	Scarus rivulatus	1
Lab	Hemigymnus melapterus	2	Sca	Scarus rubroviolaceus	1
Mic	Ptereleotris microlepsis	2	Sca	Scarus flavipectoralis	1
Mul	Upeneus tragula	2	Sco	Dendrochirus zebra	1
Pin	Parapercis millipunctata	2	Sco	Pterois volitans	1
Pom	Amblyglyphidodon aureus	2	Scom	Scomberomorus commerson	1
Pom	Neopomacentrus nemurus	2	Sig	Siganus fuscescens	1
Sca	Scarus altipinnis	2	Sig	Siganus punctatus	1
Sca	Scarus bleekeri	2	Syn	Synodus variegatus	1
					132 espèces

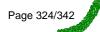
Tableau n°189 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST02)</u>

Cha Heniochus acuminatus 6 Pom Chromis agilis 2 Epi Plectropomus leopardus 6 Pom Popomacentrus nemurus 2 Pom Chromis margaritifer 6 Pom Pom Cormis margaritifer 2 Pom Chrysiptera rollandi 6 Sca Scarus ghobban 2 Aca Zebrasoma veliferum 5 Sca Scarus rubroviolaceus 2 Cha Chaetodon flavirostris 5 Aca Acanthurus nigricauda 1 Cha Chaetodon ulietensis 5 Aca Acanthurus nigricauda 1 Cha Chaetodon ulietensis 5 Bel Ecsenius bicolor 1 Epi Anyperodon leucogrammicus 5 Cae Caesio cuming 1 Epi Anyperodon leucogrammicus 5 Cae Caesio cuming 1 Epi Epinaphelus ongus 5 Cae Caesio cuming 1 Epi Epinaphelus ongus 5 Cha Chaetodon uurula	Fam	Espèces	Somme	Fam	Espèces	Somme
PomChromis margaritifer6PomPomacentrus chrysurus2PomChrysiptera rollandi6ScaScarus ghobban2AcaZebrasoma veliferum5ScaScarus rubroviolaceus2ChaChaetodon flavirostris5AcaAcanthurus nigricauda1ChaChaetodon melamotus5AcaAcanthurus xanthopterus1ChaChaetodon ulietensis5BleEcsenius bicolor1EpiAnyperodon leucogrammicus5CaeCaesio cuning1EpiCephalopholis boenak5CaeCaesio cuning1EpiEpinephelus ongus5ChaChaetodon duriga1NemScolopsis bilineatus5ChaChaetodon auriga1PomPomacentrus aurifrons5ChaChaetodon unida1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaCoradion altivelis1ChaChaetodon bennetti4ChaCromileptes altivelis1ChaChaetodon plebeius4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4Hol <td>Cha</td> <td>Heniochus acuminatus</td> <td>6</td> <td>Pom</td> <td>Chromis agilis</td> <td>2</td>	Cha	Heniochus acuminatus	6	Pom	Chromis agilis	2
PomChrysiptera rollandi6ScaScarus ghobban2AcaZebrasoma veliferum5ScaScarus rubroviolaceus2ChaChaetodon flavirostris5AcaAcanthurus nigricauda1ChaChaetodon ulietensis5BleEcsenius bicolor1EpiAnyperodon leucogrammicus5CaeCaesio cuming1EpiCephalopholis boenak5CaeCaesio teres1EpiEpinephelus ongus5CnaAcaliscus strigastus1NemScoloysis bilineatus5ChaAcaliscus strigastus1NemScoloysis bilineatus5ChaChaetodon lumula1ChaChaetodon baronessa4ChaChaetodon lumula1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon benetti4ChaHeniochus monoceros1ChaChaetodon lumulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1HaePlectorhinchus picus14GobValenciennea decora1PomAbudefdy whitleyi4GobValenciennea decora1ScaScarus flavipectoralis4HolSargocentron rubrum1ScaScarus flavipectoralis4Hol	Epi	Plectropomus leopardus	6	Pom	Neopomacentrus nemurus	2
AcaZebrasoma veliferum5ScaScarus rubroviolaceus2ChaChaetodon flavirostris5AcaAcanthurus nigricauda1ChaChaetodon melamotus5AcaAcanthurus xanthopterus1EpiChaetodon ulietensis5BleEcsenius bicolor1EpiAnyperodon leucogrammicus5CaeCaesio cuning1EpiEpinephelus ongus5CaeCaesio teres1EpiEpinephelus ongus5CenAeoliscus strigastus1NemScolopsis bilineatus5ChaChaetodon auriga1PomPomacentrus aurifrons5ChaChaetodon lunula1ChaChaetodon baronessa4ChaChaetodon lunula1ChaChaetodon bennetti4ChaCoradion altivelis1ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpimephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1ScaScarus flavipectoralis4 <td< td=""><td>Pom</td><td>Chromis margaritifer</td><td>6</td><td>Pom</td><td>Pomacentrus chrysurus</td><td>2</td></td<>	Pom	Chromis margaritifer	6	Pom	Pomacentrus chrysurus	2
ChaChaetodon flavirostris5AcaAcanthurus nigricauda1ChaChaetodon melannotus5AcaAcanthurus xanthopterus1ChaChaetodon ulietensis5BleEcsenius bicolor1EpiAnyperodon leucogrammicus5CaeCaesio cuning1EpiCephalopholis boenak5CaeCaesio teres1EpiEpinephelus ongus5CenAcoliscus strigastus1NemScolopsis bilineatus5ChaChaetodon auriga1PomPomacentrus aurifrons5ChaChaetodon lunula1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon plebeius4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpimephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1ScaScarus flavipectoralis4HolSargocentron rubrum1AcaAcanthurus blochii3LabCheilinus chlorourus1AcaAcanthurus blochii3L	Pom	Chrysiptera rollandi	6	Sca	Scarus ghobban	2
ChaChaetodon melannotus5Aca BleAcanthurus xanthopterus1ChaChaetodon ulietensis5BleEcsenius bicolor1EpiAnyperodon leucogrammicus5CaeCaesio cuning1EpiCephalopholis boenak5CaeCaesio teres1EpiEpinephelus ongus5CenAeoliscus strigastus1NemScolopsis bilineatus5ChaChaetodon auriga1PomPomacentrus aurifrons5ChaChaetodon unula1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistuaria commersonii1HaePlectorhinchus picus4FistFistuaria commersonii1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaAcanthurus striatus3LabCheilinus chlorourus1AcaAreochaetus striatus3LabCheilinus chlorourus1ApoApogon sp3Lab	Aca	Zebrasoma veliferum	5	Sca	Scarus rubroviolaceus	2
ChaChaetodon ulietensis5BleEcsenius bicolor1EpiAnyperodon leucogrammicus5CaeCaesio cuning1EpiCephalopholis boenak5CaeCaesio teres1EpiEpinephelus ongus5CenAeoliscus strigastus1NemScolopsis bilineatus5ChaChaetodon auriga1PomPomacentrus aurifrons5ChaChaetodon lunula1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1HaePlectorhinchus picus4FistFistularia commersonii1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1ApoApogon sp3LabCheilinus chlorourus1LabCheilinus fasciatus3LutLut	Cha	Chaetodon flavirostris	5	Aca	Acanthurus nigricauda	1
EpiAnyperodon leucogrammicus5CaeCaesio cuning1EpiCephalopholis boenak5CaeCaesio teres1EpiEpinephelus ongus5CenAeoliscus strigastus1NemScolopsis bilineatus5ChaChaetodon auriga1PomPomacentrus aurifrons5ChaChaetodon lunula1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefdif whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnamyses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1AcaArso unicornis3LabCheilinus chlorourus1ApoApogon sp3LabThalassoma lunare1LabCheilinus fiasciatus3LutLutjanus adet	Cha	Chaetodon melannotus	5	Aca	Acanthurus xanthopterus	1
EpiCephalopholis boenak5CaeCaesio teres1EpiEpinephelus ongus5CenAeoliscus strigastus1NemScolopsis bilineatus5ChaChaetodon auriga1PomPomacentrus aurifrons5ChaChaetodon lunula1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlororurs1AcaArenochaetus striatus3LabChoerodon graphicus1ApoApogon sp3LabThalassoma lunare1LabCheilinus trilobatus3LutLutjanus ehrenbergii1LabCheilinus unifasciatus3LutLut	Cha	Chaetodon ulietensis	5	Ble	Ecsenius bicolor	1
EpiEpinephelus ongus5CenAeoliscus strigastus1NemScolopsis bilineatus5ChaChaetodon auriga1PomPomacentrus aurifrons5ChaChaetodon lunula1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1ApoApogon sp3LabCheilinus chlorourus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus trilobatus3LutLutjanus adetii1LabCheilinus unifasciatus3LutLutjanus pluvus1LabChoerodon fasciatus3LutLutjanus vi	Epi	Anyperodon leucogrammicus	5	Cae	Caesio cuning	1
NemScolopsis bilineatus5ChaChaetodon auriga1PomPomacentrus aurifrons5ChaChaetodon lunula1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabCheerodon graphicus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus trilobatus3LabThalassoma lunare1LabCheilinus trilobatus3LutLutjanus adetii1LabCheirodon fasciatus3LutLutjanus chrenbergii1LabCheerodon fasciatus3LutLutja	Epi	Cephalopholis boenak	5	Cae	Caesio teres	1
PomPomacentrus aurifrons5ChaChaetodon lunula1ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCetenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabCheilinus chlorourus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LabThalassoma lunare1LabCheilinus trilobatus3LutLutjanus adetii1LabCheilinus trilobatus3LutLutjanus fulvus1LabCheilinus unifasciatus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutL	Epi	Epinephelus ongus	5	Cen	Aeoliscus strigastus	1
ChaChaetodon baronessa4ChaCoradion altivelis1ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSigamus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCetenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabCheilinus chlorourus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LabStethojulis bandanensis1LabCheilinus frasciatus3LutLutjanus adetii1LabCheilinus trilobatus3LutLutjanus ehrenbergii1LabCheilinus unifasciatus3LutLutjanus fulvus1LabCherodon fasciatus3LutLutjanus vittus1LabOxycheilinus unifasciatus3Mul <td>Nem</td> <td>Scolopsis bilineatus</td> <td>5</td> <td>Cha</td> <td>Chaetodon auriga</td> <td>1</td>	Nem	Scolopsis bilineatus	5	Cha	Chaetodon auriga	1
ChaChaetodon bennetti4ChaHeniochus monoceros1ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaAcanthurus blochii3LabCheilinus chlorourus1AcaNaso unicornis3LabCheilinus chlorourus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LabThalassoma lunare1LabCheilinus trilobatus3LutLutjanus adetii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus vitrus1LabOxycheilinus unifasciatus3LutLutjanus vitrus1PocPomacanthus sexstriatus3MulParupeneus barberinus1PomNeoglyphidodon melas3Mul<	Pom	Pomacentrus aurifrons	5	Cha	Chaetodon lunula	1
ChaChaetodon lunulatus4EpiCromileptes altivelis1ChaChaetodon plebeius4EpiEpinephelus polyphekadion1HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabChoerodon graphicus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LutLutjanus adetii1LabCheilinus trilobatus3LutLutjanus ehrenbergii1LabChoerodon fasciatus3LutLutjanus fluvus1LabChoerodon fasciatus3LutLutjanus fluvus1LabChoerodon fasciatus3LutLutjanus privus1LabChoerodon fasciatus3LutLutjanus privus1LabOxycheilinus unifasciatus3LutLutjanus privus1PomAmblyglyphidodon melas3MulParupeneus	Cha	Chaetodon baronessa	4	Cha	Coradion altivelis	1
Cha Chaetodon plebeius 4 Epi Epinephelus polyphekadion 1 Hae Plectorhinchus picus 4 Fist Fistularia commersonii 1 Pom Abudefduf whitleyi 4 Gob Valenciennea decora 1 Pom Neoglyphidodon nigroris 4 Hae Plectorhinchus pictum 1 Sca Scarus flavipectoralis 4 Hol Sargocentron rubrum 1 Sig Siganus vulpinus 4 Kyp Kyphosus sydneyanus 1 Aca Acanthurus blochii 3 Lab Anampses meleagrides 1 Aca Ctenochaetus striatus 3 Lab Cheilinus chlorourus 1 Aca Naso unicornis 3 Lab Choerodon graphicus 1 Apo Apogon sp 3 Lab Stethojulis bandanensis 1 Lab Cheilinus fasciatus 3 Lut Lutjanus adetii 1 Lab Cheilinus trilobatus 3 Lut Lutjanus adetii 1 Lab Choerodon fasciatus 3 Lut Lutjanus pilvus 1 Lab Hemigynnus melapterus 3 Lut Lutjanus filvus 1 Lab Oxycheilinus unifasciatus 3 Lut Lutjanus pilvus 1 Lab Oxycheilinus unifasciatus 3 Mon Oxymonacanthus longirostris 1 Pom Amblyglyphidodon orbicularis 3 Mul Parupeneus barberinus 1 Sca Chlorurus sordidus 3 Mul Parupeneus multifasciatus 1 Sca Scarus schlegeli 3 Mul Parupeneus multifasciatus 1 Apo Apogon doederleini 2 Pom Acanthochromis polyacanthus 1 Apo Apogon doederleini 2 Pom Amblyglyphidodon curacao 1	Cha	Chaetodon bennetti	4	Cha	Heniochus monoceros	1
HaePlectorhinchus picus4FistFistularia commersonii1PomAbudefduf whitleyi4GobValenciennea decora1PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabCheilinus chlorourus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LutLutjanus adetii1LabCheilinus trilobatus3LutLutjanus adetii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2 <td< td=""><td>Cha</td><td>Chaetodon lunulatus</td><td>4</td><td>Epi</td><td>Cromileptes altivelis</td><td>1</td></td<>	Cha	Chaetodon lunulatus	4	Epi	Cromileptes altivelis	1
Pom Pom Neoglyphidodon nigroris4Gob Valenciennea decora1Sca Scarus flavipectoralis4Hae Plectorhinchus pictum1Sig Siganus vulpinus4Kyp Kyphosus sydneyanus1Aca Acanthurus blochii3Lab Anampses meleagrides1Aca Ctenochaetus striatus3Lab Cheilinus chlorourus1Aca Apo Apogon sp3Lab Ab Cheilinus fasciatus1Lab Cheilinus fasciatus3Lab Stethojulis bandanensis1Lab Cheilinus trilobatus3Lut Lutjanus adetii1Lab Choerodon fasciatus3Lut Lutjanus ehrenbergii1Lab Choerodon fasciatus3Lut Lutjanus ehrenbergii1Lab Choerodon fasciatus3Lut Lutjanus fulvus1Lab Daycheilinus unifasciatus3Lut Lutjanus vittus1Lab Downacanthus sexstriatus3Mon Oxymonacanthus longirostris1Pom Amblyglyphidodon orbicularis3Mul Parupeneus barberinus1Pom Neoglyphidodon melas3Mul Parupeneus indicus1Sca Scarus schlegeli3Mul Parupeneus multifasciatus1Aca Acanthurus mata2Ple Assessor macneilli1Apo Apogon doederleini2Pom Acanthochromis polyacanthus1Ble Meiacanthus atrodorsalis2Pom Amblyglyphidodon curacao1	Cha	Chaetodon plebeius	4	Epi	Epinephelus polyphekadion	1
PomNeoglyphidodon nigroris4HaePlectorhinchus pictum1ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabChoerodon graphicus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LutLutjanus adetii1LabCheilinus trilobatus3LutLutjanus adetii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus multifasciatus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2	Hae	Plectorhinchus picus	4	Fist	Fistularia commersonii	1
ScaScarus flavipectoralis4HolSargocentron rubrum1SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabChoerodon graphicus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LutLutjanus adetii1LabCheilinus trilobatus3LutLutjanus ehrenbergii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Pom	Abudefduf whitleyi	4	Gob	Valenciennea decora	1
SigSiganus vulpinus4KypKyphosus sydneyanus1AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabChoerodon graphicus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LutLutjanus adetii1LabCheilinus trilobatus3LutLutjanus ehrenbergii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus multifasciatus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Pom	Neoglyphidodon nigroris	4	Hae	Plectorhinchus pictum	1
AcaAcanthurus blochii3LabAnampses meleagrides1AcaCtenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabChoerodon graphicus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LabThalassoma lunare1LabCheilinus trilobatus3LutLutjanus adetii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus multifasciatus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Sca	Scarus flavipectoralis	4	Hol	Sargocentron rubrum	1
AcaCtenochaetus striatus3LabCheilinus chlorourus1AcaNaso unicornis3LabChoerodon graphicus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LabThalassoma lunare1LabCheilinus trilobatus3LutLutjanus adetii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Sig	Siganus vulpinus	4	Kyp	Kyphosus sydneyanus	1
AcaNaso unicornis3LabChoerodon graphicus1ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LabThalassoma lunare1LabCheilinus trilobatus3LutLutjanus adetii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Aca	Acanthurus blochii	3	Lab	Anampses meleagrides	1
ApoApogon sp3LabStethojulis bandanensis1LabCheilinus fasciatus3LabThalassoma lunare1LabCheilinus trilobatus3LutLutjanus adetii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Aca	Ctenochaetus striatus	3	Lab	Cheilinus chlorourus	1
LabCheilinus fasciatus3LabThalassoma lunare1LabCheilinus trilobatus3LutLutjanus adetii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Aca	Naso unicornis	3	Lab	Choerodon graphicus	1
LabCheilinus trilobatus3LutLutjanus adetii1LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Apo	Apogon sp	3	Lab	Stethojulis bandanensis	1
LabChoerodon fasciatus3LutLutjanus ehrenbergii1LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Lab	Cheilinus fasciatus	3	Lab	Thalassoma lunare	1
LabHemigymnus melapterus3LutLutjanus fulvus1LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Lab	Cheilinus trilobatus	3	Lut	Lutjanus adetii	1
LabOxycheilinus unifasciatus3LutLutjanus vittus1PocPomacanthus sexstriatus3MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Lab	Choerodon fasciatus	3	Lut	Lutjanus ehrenbergii	1
PocPomacanthus sexstriatus3 MonOxymonacanthus longirostris1PomAmblyglyphidodon orbicularis3 MulParupeneus barberinus1PomNeoglyphidodon melas3 MulParupeneus ciliatus1ScaChlorurus sordidus3 MulParupeneus indicus1ScaScarus schlegeli3 MulParupeneus multifasciatus1AcaAcanthurus mata2 PleAssessor macneilli1ApoApogon doederleini2 PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2 PomAmblyglyphidodon curacao1	Lab	Hemigymnus melapterus	3	Lut	Lutjanus fulvus	1
PomAmblyglyphidodon orbicularis3MulParupeneus barberinus1PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Lab	Oxycheilinus unifasciatus	3	Lut	Lutjanus vittus	1
PomNeoglyphidodon melas3MulParupeneus ciliatus1ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Poc	Pomacanthus sexstriatus	3	Mon	Oxymonacanthus longirostris	1
ScaChlorurus sordidus3MulParupeneus indicus1ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Pom	$Ambly glyphidodon\ or bicular is$	3	Mul	Parupeneus barberinus	1
ScaScarus schlegeli3MulParupeneus multifasciatus1AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Pom	Neoglyphidodon melas	3	Mul	Parupeneus ciliatus	1
AcaAcanthurus mata2PleAssessor macneilli1ApoApogon doederleini2PomAcanthochromis polyacanthus1BleMeiacanthus atrodorsalis2PomAmblyglyphidodon curacao1	Sca	Chlorurus sordidus	3	Mul	Parupeneus indicus	1
Apo Apogon doederleini 2 Pom Acanthochromis polyacanthus 1 Ble Meiacanthus atrodorsalis 2 Pom Amblyglyphidodon curacao 1	Sca	Scarus schlegeli	3	Mul	Parupeneus multifasciatus	1
Ble Meiacanthus atrodorsalis 2 Pom Amblyglyphidodon curacao 1	Aca	Acanthurus mata	2	Ple	Assessor macneilli	1
7651	Apo	Apogon doederleini	2	Pom	$A can tho chrom is\ polyacan thus$	1
Cha Chaetodon trifascialis 2 Pom Chromis atripectoralis 1	Ble	Meiacanthus atrodorsalis	2	Pom	Amblyglyphidodon curacao	1
Cia Ciacioan il gascians 2 1 sin Cironis air peciorais	Cha	Chaetodon trifascialis	2	Pom	Chromis atripectoralis	1

Epi	Epinephelus howlandi	2	Pom	Chromis fumea	1
Gra	Diploprion bifasciatum	2	Pom	Chrysiptera taupou	1
Hol	Myripristis murdjan	2	Pom	Neopomacentrus azysron	1
Hol	Sargocentron spiniferum	2	Pom	Neopomacentrus taeniurus	1
Lab	Anampses femininus	2	Pom	Pomacentrus moluccensis	1
Lab	Bodianus fasciatus	2	Sca	Scarus bleekeri	1
Lab	Epibulus insidiator	2	Sca	Scarus globiceps	1
Lab	Halichoeres argus	2	Sca	Scarus psittacus	1
Lab	Halichoeres melanurus	2	Sca	Scarus sp	1
Lab	Labroides dimidiatus	2	Sig	Siganus doliatus	1
Lab	Labropsis australis	2	Sig	Siganus puellus	1
Lab	Oxycheilinus diagrammus	2	Zan	Zanclus cornutus	1
					104 espèces

Tableau n°190 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST03)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Acanthurus blochii	6	Ath	Atherinomorus lacunosus	1
Aca	Zebrasoma veliferum	6	Bal	Sufflamen chrysopterus	1
Lab	Coris batuensis	6	Cae	Caesio caerulaurea	1
Lab	Thalassoma lunare	6	Cae	Paracaesio digramma	1
Pom	Chrysiptera rollandi	6	Cen	Aeoliscus strigastus	1
Can	Canthigaster valentini	5	Cha	Chaetodon ephippium	1
Epi	Cephalopholis boenak	5	Cha	Chaetodon mertensii	1
Nem	Scolopsis bilineatus	5	Cha	Chaetodon trifascialis	1
Pin	Parapercis hexophtalma	5	Cir	Cirrhitichthys oxycephalus	1
Pom	Chromis margaritifer	5	Dio	Diodon hystrix	1
Pom	Pomacentrus moluccensis	5	Dus	Spratelloides gracilis	1
Sca	Scarus ghobban	5	Epi	Cephalopholis ongus	1
Cha	Chaetodon plebeius	4	Epi	Cephalopholis sonnerati	1
Nem	Pentapodus aureofasciatus	4	Epi	Diploprion bifasciatum	1
Sca	Scarus flavipectoralis	4	Epi	Epinephelus cyanopodus	1
Sig	Siganus doliatus	4	Epi	Epinephelus maculatus	1
Sig	Siganus puellus	4	Epi	Plectropomus laevis	1
Ble	Ecsenius bicolor	3	Gob	Amblyeleotris fontanesii	1
Ble	Meiacanthus atrodorsalis	3	Gob	Amblyeleotris sp	1
Cae	Caesio cuning	3	Gob	Amblyellotris diagonalis	1
Cha	Chaetodon baronessa	3	Gob	Amblygobius phalaena	1
Cha	Chaetodon lunulatus	3	Gob	Coryphopterus neophytus	1
Cha	Chaetodon melannotus	3	Gob	Gobiodon okinawae	1
Cha	Chaetodon ulietensis	3	Gob	Gunnellichthys monostigma	1
Cha	Chaetodon vagabundus	3	Gob	Valenciennea randalli	1
Epi	Plectropomus leopardus	3	Gob	Valenciennea sexguttata	1
Lab	Anampses femininus	3	Gob	Valenciennea sp	1
Lab	Cheilinus chlorourus	3	Gob	Valenciennea strigata	1
Lab	Halichoeres melanurus	3	Gra	Diploprion bifasciatum	1
Lab	Halichoeres prosopeion	3	Hae	Plectorhinchus orientalis	1
Lab	Oxycheilinus diagrammus	3	Hae	Plectorhinchus vittatus	1
Lab	Oxycheilinus unifasciatus	3	Hol	Sargocentron spiniferum	1
Mul	Parupeneus barberinoides	3	Lab	Anampses neoguinaicus	1
Pin	Parapercis xanthozona	3	Lab	Chelinus chlorourus	1
Pom	Amblyglyphidodon Orbicularis	3	Lab	Choerodon graphicus	1
Pom	Chromis viridis	3	Lab	Cirrhilabrus laboutei	1
Pom	Dascyllus aruanus	3	Lab	Cirrhilabrus punctatus	1
Pom	Neopomacentrus nemurus	3	Lab	Halichoeres argus	1
Pom	Pomacentrus aurifrons	3	Lab	Labropsis australis	1
Sca	Chlorurus sordidus	3	Lab	Oxycheilinus celebicus	1
Sca	Scarus schlegeli	3	Lab	Oxycheilinus oxyaphalus	1
Sig	Siganus vulpinus	3	Lab	Pteragogus cryptus	1
Aca	Naso unicornis	2	Lab	Thalassoma lutescens	1

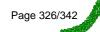


Bal	Sufflamen fraenatus	2	Mic	Gunnellichthys curiosus	1
Cha	Chaetodon auriga	2	Mic	Gunnellichthys viridescens	1
Cha	Chaetodon bennetti	2	Mic	Ptereleotris microlepsis	1
Cha	Chaetodon speculum	2	Mon	Cantherines fronticintus	1
Cha	Heniochus acuminatus	2	Mul	Parupeneus multifasciatus	1
Epi	Anyperodon leucogrammicus	2	Mul	Parupeneus pleurostigma	1
Epi	Epinephelus Howlandi	2	Nem	Scolopsis lineatus	1
Gob	Amblydobius phaleana	2	Pen	Parapercis hexophtalma	1
Gob	Valenciennea puellaris	2	Pin	Parapercis millipunctata	1
Lab	Cheilinus trilobatus	2	Pin	Parapercis multiplicata	1
Lab	Choerodon fasciatus	2	Poc	Centropyge tibicen	1
Lab	Cirrhilabrus temmenckii	2	Poc	Pomacanthus sexstriatus	1
Lab	Hemigymnus melapterus	2	Pom	Amblyglyphidodon curacae	9 1
Lab	Labroides dimidiatus	2	Pom	Chromis amboinensis	1
Let	Lethrinus harak	2	Pom	Chromis analis	1
Mul	Parupeneus barberinus	2	Pom	Chromis atripectoralis	1
Mul	Parupeneus indicus	2	Pom	Chromis fumea	1
Ost	Ostracion cubicus	2	Pom	Chromis xanthura	1
Poc	Centropyge bicolor	2	Pom	Dascyllus reticulatus	1
Pom	Abudefduf sexfasciatus	2	Pom	Neopomacentrus azysron	1
Pom	Abudefduf whitleyi	2	Pom	Pomacentrus amboinensis	1
Pom	Chromis chrysura	2	Pom	Pomacentrus chrysurus	1
Pom	Chrysiptera taupou	2	Pom	Pomacentrus coelestis	1
Sca	Scarus rivulatus	2	Pom	Stegastes aureus	1
Sig	Siganus argenteus	2	Pse	Ogilbyina sp	1
Aca	Ctenochaetus striatus	1	Sca	Scarus altipinnis	1
Aca	Zebrasoma scopas	1	Sca	Scarus bleekeri	1
Ant	Pseudanthias pictilis	1	Sca	Scarus dimidiatus	1
Apo	Apogon aureus	1	Sca	Scarus frenatus	1
Apo	Apogon doederleini	1	Sca	Scarus spinus	1
Apo	Ostorhinchus compressus	1	Sco	Dendrochirus zebra	1
Apo	Ostorhinchus cookii	1	Sig	Siganus corallinus	1
Apo	Ostorhinchus cyanosoma	1			151 espèces

Tableau n°191 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST04)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Zebrasoma scopas	6	Lab	Cirrhilabrus lineatus	2
Cha	Chaetodon vagabundus	6	Lab	Gomphosus varius	2
Cha	Coradion altivelis	6	Lab	Halichoeres hortulanus	2
Cha	Heniochus acuminatus	6	Lab	Hemigymnus fasciatus	2
Epi	Epinephelus merra	6	Lab	Labroides bicolor	2
Lab	Cheilinus fasciatus	6	Let	Monotaxis heterodon	2
Lab	Choerodon graphicus	6	Lut	Lutjanus monostigma	2
Lab	Labroides dimidiatus	6	Mic	Ptereleotris evides	2
Lab	Thalassoma lunare	6	Mul	Parupenaeus multifasciatus	2
Lut	Lutjanus fulviflamma	6	Ost	Ostracion cubicus	2
Poc	Centropyge bicolor	6	Poc	Centropyge bispinosa	2
Poc	Centropyge tibicen	6	Pom	Chromis iomelas	2
Pom	Chrysiptera rollandi	6	Pom	Neoglyphidodon melas	2
Pom	Pomacentrus moluccensis	6	Pom	Neopomacentrus azysron	2
Sca	Chlorurus sordidus	6	Pom	Pomacentrus bankanensis	2
Sca	Scarus ghobban	6	Pom	Pomacentrus cælestis	2
Aca	Acanthurus blochii	5	Pom	Pomacentrus nagasakiensis	2
Aca	Ctenochaetus striatus	5	Pri	Priacanthus hamrur	2
Apo	Apogon aureus	5	Sca	Scarus bleekeri	2
Ble	Meiacanthus atrodorsalis	5	Sca	Scarus frenatus	2
Cae	Caesio cuning	5	Sca	Scarus rivulatus	2
Cha	Chaetodon flavirostris	5	Sca	Scarus schlegeli	2
Epi	Plectropomus leopardus	5	Sig	Siganus lineatus	2
	v			· ·	

Lab	Cheilinus chlorourus	5	Syn	Synodus variegatus	2
Lab	Cheilinus trilobatus	5	Aca	Acanthurus nigricauda	1
Lab	Halichoeres prosopeion	5	Aca	Naso brachycentron	1
Lut	Lutjanus argentimaculatus	5	Aca	Naso caesius	1
Lut	Lutjanus ehrenbergii	5	Aca	Naso hexacanthus	1
Mul	Parupenaeus ciliatus	5	Aca	Naso lituratus	1
Nem	Scolopsis bilineatus	5	Ant	Pseudanthias pictilis	1
Poc	Chaetodontoplus conspicillatus	5	Bal	Sufflamen fraenatus	1
Poc	Pomacanthus semicirculatus	5	Ble	Astrosalarias fuscus	1
Poc	Pygoplites diacanthus	5	Ble	Cirripectes stigmaticus	1
Pom	Abudefduf whitleyi	5	Car	Alepes vari	1
Ble	Ecsenius bicolor	4	Car	Carangoides plagiotaenia	1
Cha	Chaetodon auriga	4	Car	Caranx papuensis	1
Cha	Chaetodon baronessa	4	Carc	Trianodon obesus	1
Cha	Chaetodon bennetti	4	Cha	Chaetodon lunula	1
Cha	Chaetodon lunulatus	4	Cha	Chaetodon melannotus	1
Cha	Chaetodon ulietensis	4	Cha	Chaetodon trifascialis	1
Epi	Epinephelus maculatus	4	Cha	Heniochus monoceros	1
Gra	Diploprion bifasciatum	4	Cha	Heniochus singularus	1
Lab	Anampses femininus	4	Dio	Diodon hystrix	1
Lab	Choerodon fasciatus	4	Eng	Stolephorus spp	1
Lab	Coris batuensis	4	Epi	Cromileptes altivelis	1
Lab	Epibulus insidiator	4	Epi	Epinephelus coioides	1
Lab	Halichoeres melanurus	4	Epi	Epinephelus howlandi	1
Lab	Hemigymnus melapterus	4	Epi	Epinephelus malabaricus	1
Lab	Oxycheilinus diagrammus	4	Epi	Epinephelus rivulatus	1
Lut	Aprion virescens	4	Epi	Epinephelus tauvina	1
Poc	Pomacanthus sexstriatus	4	Gob	Valenciennea puellaris	1
Pom	Amblyglyphidodon orbicularis	4	Hae	Plectorhinchus flavomaculatus	1
Pom	Chromis margaritifer	4	Hae	Plectorhinchus lessonii	1
Pom	Chrysiptera taupou	4	Hae	Plectorhinchus picus	1
Pom	Dascyllus reticulatus	4	Hol	Sargocentron rubrum	1
Pom	Dascyllus trimaculatus	4	Hol	Sargocentron spiniferum	1
Sig	Siganus doliatus	4	Lab	Choerodon anchorago	1
Sig	Siganus puellus	4	Lab	Cirrhilabrus punctatus	1
Sig	Siganus vulpinus	4	Lab	Halichoeres argus	1
Aca	Acanthurus mata	3	Lab	Labropsis australis	1
Aca	Naso brevirostris	3	Lab	Oxycheilinus celebicus	1
Aca	Naso unicornis	3	Lab	Oxycheilinus unifasciatus	1
Aca	Zebrasoma veliferum	3	Lab	Pteragogus cryptus	1
Can	Canthigaster valentini	3	Lab	Thalassoma lutescens	1
Epi	Anyperodon leucogrammicus	3	Let	Gymnocranius euanus	1
Epi	Epinephelus ongus	3	Let	Lethrinus miniatus	1
Hae	Plectorhinchus chaetodonoides	3	Let	Lethrinus olivaceus	1
Lab	Anampses neoguinaicus	3	Lut	Lutjanus adetii	1
Lab	Bodianus axillaris	3	Lut	Lutjanus fulvus	1
Lab	Bodianus mesothorax	3	Lut	Lutjanus gibbus	1
Lab	Coris aygula	3	Lut	Lutjanus quinquelineatus	1
Let	Gymnocranius grandoculis	3	Lut	Lutjanus rivulatus	1
Let	Lethrinus nebulosus	3	Lut	Lutjanus russellii	1
Lut	Lutjanus bohar	3	Mul	Parupenaeus barberinoides	1
Mul	Parupenaeus indicus	3	Mul	Parupenaeus cyclostomus	1
Pin	Parapercis hexophtalma	3	Mul	Parupenaeus spilurus	1
Pom	Amblyglyphidodon aureus	3	Mul	Parupeneus indicus	1
Pom	Amblyglyphidodon curacao	3	Mur	Gymnothorax javanicus	1
Pom	Neoglyphidodon nigroris	3	Poc	Centropyge nox	1
Pom	Neopomacentrus nemurus	3	Poc	Pomacanthus imperator	1
Pom	Pomacentrus aurifrons	3	Pom	Abudefduf sexfasciatus	1
Sca	Scarus altipinnis	3	Pom	Amblyglyphidodon melanopterus	1
Sca	Scarus flavipectoralis	3	Pom	Amblyglyphidodon ternatensis	1



Sca	Scarus rubroviolaceus	3	Pom	Chromis analis	1
Sig	Siganus argenteus	3	Pom	Chromis atripectoralis	1
Sig	Siganus corallinus	3	Pom	Chromis chrysura	1
Aca	Acanthurus dussumieri	2	Pom	Chromis xanthura	1
Aca	Naso tonganus	2	Pom	Chrysiptera rex	1
Apo	Ostorhinchus flavus	2	Pom	Neoglyphydodon melas	1
Ble	Plagiotremus laudantus	2	Pom	Neoglyphydodon nigroris	1
Cae	Caesio caerulaurea	2	Pom	Pomacentrus philippinus	1
Car	Caranx ignobilis	2	Pom	Stegastes nigricans	1
Car	Caranx melampygus	2	Pse	Pictichromis coralensis	1
Car	Caranx sexfasciatus	2	Pse	Pseudochromis paccagnellae	1
Car	Scomberoides lysan	2	Sca	Cetoscarus ocellatus	1
Cha	Chaetodon ephippium	2	Sca	Chlorurus microrhinos	1
Cha	Chaetodon kleinii	2	Sca	Hipposcarus longipes	1
Cha	Chaetodon plebeius	2	Sca	Scarus chameleon	1
Cha	Chaetodon speculum	2	Sca	Scarus niger	1
Cha	Chaetodon unimaculatus	2	Sca	Scarus psittacus	1
Epi	Cephalopholis boenak	2	Sco	Pterois antennata	1
Epi	Cephalopholis sonnerati	2	Sco	Scomberoides tol	1
Hae	Plectorhinchus gibbosus	2	Scr	Pterois volitans	1
Hol	Myripristis murdjan	2	Sig	Siganus canaliculatus	1
Kyp	Kyphosus pacificus	2	Sig	Siganus fuscescens	1
Kyp	Kyphosus sydneyanus	2	Sig	Siganus punctatus	1
					212 espèces

Tableau n°192 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST05)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Zebrasoma scopas	6	Syn	Synodus variegatus	2
Lab	Anampses neoguinaicus	6	Aca	Acanthurus dussumieri	1
Lab	Choerodon graphicus	6	Aca	Acanthurus lineatus	1
Lab	Coris batuensis	6	Aca	Acanthurus mata	1
Lab	Labroides dimidiatus	6	Aca	Naso brevirostris	1
Lab	Thalassoma lunare	6	Aca	Naso caesius	1
Nem	Scolopsis bilineatus	6	Aca	Naso hexacanthus	1
Poc	Centropyge bicolor	6	Aca	Naso lituratus	1
Poc	Centropyge tibicen	6	Aca	Naso tonganus	1
Pom	Abudefduf whitleyi	6	Ant	Pseudanthias pictilis	1
Pom	Chrysiptera rollandi	6	Apo	Apogon aureus	1
Pom	Dascyllus trimaculatus	6	Apo	Apogon doederleini	1
Sca	Chlorurus sordidus	6	Apo	Apogon fuscus	1
Aca	Acanthurus blochii	5	Apo	Apogon indicus	1
Aca	Ctenochaetus striatus	5	Ble	Meiacanthus phaeus	1
Aca	Naso unicornis	5	Cae	Caesio cuning	1
Ble	Ecsenius bicolor	5	Car	Alepes vari	1
Can	Canthigaster valentini	5	Car	Atule mate	1
Epi	Epinephelus maculatus	5	Car	Carangoides coeruleopinnatus	1
Epi	Plectropomus leopardus	5	Car	Carangoides dinema	1
Lab	Cheilinus chlorourus	5	Car	Carangoides ferdau	1
Lab	Halichoeres melanurus	5	Car	Carangoides plagiotaenia	1
Lab	Halichoeres prosopeion	5	Car	Caranx sexfasciatus	1
Lab	Hemigymnus melapterus	5	Cha	Chaetodon citrinellus	1
Poc	Pomacanthus sexstriatus	5	Cha	Chaetodon kleinii	1
Poc	Pygoplites diacanthus	5	Cha	Chaetodon melannotus	1
Pom	Chromis margaritifer	5	Cha	Chaetodon pelewensis	1
Pom	Pomacentrus moluccensis	5	Cha	Chaetodon trifascialis	1
Sca	Scarus schlegeli	5	Cha	Chaetodon ulietensis	1
Sig	Siganus doliatus	5	Cha	Chaetodon unimaculatus	1
Cae	Caesio caerulaurea	4	Cha	Heniochus monoceros	1
Cha	Chaetodon plebeius	4	Cha	Heniochus singularus	1

Cha	Heniochus acuminatus	4	Cha	Heniochus varius	1
Lab	Epibulus insidiator	4	Eng	Stolephorus spp	1
Lab	Thalassoma lutescens	4	Epi	Cephalopholis sonnerati	1
Let	Lethrinus nebulosus	4	Epi	Epinephelus cyanopodus	1
Lut	Lutjanus ehrenbergii	4	Epi	Epinephelus ongus	1
Pin	Parapercis hexophtalma	4	Epi	Epinephelus rivulatus	1
Poc	Centropyge bispinosa	4	Hae	Plecto. flavomaculatus	1
Pom	Amblyglyphidodon orbicularis	4	Hae	Plectorhinchus chaetodonoides	1
Pom	Chrysiptera taupou	4	Hae	Plectorhinchus lineatus	1
Pom	Dascyllus aruanus	4	Hae	Plectorhinchus pictum	1
Pom	Dascyllus reticulatus	4	Hae	Plectorhinchus picus	1
Sca	Scarus ghobban	4	Lab	Anampses caeruleopunctatus	1
Aul	Aulostomus chinensis	3	Lab	Anampses femininus	1
Ble	Meiacanthus atrodorsalis	3	Lab	Bodianus perditio	1
Cha	Chaetodon auriga	3	Lab	Cheilinus trilobatus	1
Cha	Chaetodon baronessa	3	Lab	Cirrhilabrus punctatus	1
Cha	Chaetodon bennetti	3	Lab	Coris centralis	1
Cha	Chaetodon flavirostris	3	Lab	Epibulus incidiator	1
Cha	Chaetodon lunulatus	3	Lab	Labropsis australis	1
Cha	Coradion altivelis	3	Lab	Oxycheilinus diagrammus	1
Das	Dasyatis kuhlii	3	Lab	Oxycheilinus unifasciatus	1
Epi	Cephalopholis boenak	3	Lab	Pteragogus cryptus	1
-	Epinephelus merra	3	Lab	Thalassoma hardwicke	1
Epi Gob	• •	3	Lat		
Lab	Amblygobius phalaena Bodianus axillaris	3		Gymnocranius euanus Lethrinus atkinsoni	1
			Let		1
Lab	Halichoeres hortulanus	3	Let	Lethrinus miniatus	1
Mul	Parupeneus spilurus	3	Lut	Lutjanus argentimaculatus	1
Poc	Chaetodontoplus conspicillatus	3	Lut	Lutjanus bohar	1
Pom	Amblyglyphidodon aureus	3	Lut	Lutjanus fulvus	1
Pom	Amphiprion chrysopterus	3	Lut	Lutjanus monostigma	1
Sca	Scarus altipinnis	3	Mic	Ptereleotris evides	1
Aca	Acanthurus nigricauda	2	Mon	Aluterus scriptus	1
Bal	Sufflamen fraenatus	2	Mul	Parupenaeus ciliatus	1
Ble	Plagiotremus atrodorsalis	2	Mul	Parupenaeus multifasciatus	1
Car	Scomberoides lysan	2	Mul	Parupenaeus spilurus	1
Cha	Chaetodon speculum	2	Mul	Parupeneus barberinoides	1
Cha	Chaetodon vagabundus	2	Mul	Parupeneus multifasciatus	1
Epi	Epinephelus coioides	2	Mur	Gymnothorax javanicus	1
Gob	Valenciennea puellaris	2	Mur	Siderea picta	1
Gra	Diploprion bifasciatum	2	Ost	Ostracion cubicus	1
Hae	Plectorhinchus flavomaculatus	2	Pin	Parapercis flavissima	1
Hol	Sargocentron spiniferum	2	Poc	Centropyge nox	1
Lab	Bodianus loxozonus	2	Poc	Pomacanthus semicirculatus	1
Lab	Bodianus mesothorax	2	Poc	Pomacentrus moluccensis	1
Lab	Cheilinus fasciatus	2	Pom	Abudefduf sexfasciatus	1
Lab	Coris aygula	2	Pom	Amblyglyphidodon curacao	1
Lab	Labroides bicolor	2	Pom	Amblyglyphidodon melanopterus	1
Lab	Oxycheilinus celebicus	2	Pom	Amblyglyphidodon ternatensis	1
Lab	Stethojulis bandanensis	2	Pom	Chromis fumea	1
Lut	Aprion virescens	2	Pom	Chromis iomelas	1
Lut	Lutjanus fulviflamma	2	Pom	Chromis xanthura	1
Mul	Mulloidichthys flavolineatus	2	Pom	Neopomacentrus taeniurus	1
Mul	Parupeneus ciliatus	2	Pom	Pomacentrus bankanensis	1
Mul	Parupeneus cyclostomus	2	Pom	Pomacentrus brachialis	1
Mul	Parupeneus indicus	2	Pom	Pomacentrus chrysurus	1
Poc	Centropyge flavissima	2	Pom	Pomacentrus nagasakiensis	1
Pom	Chromis atripectoralis	2	Pom	Pomacentrus philippinus	1
Pom	Neopomacentrus nemurus	2	Pom	Stegastes albifasciatus	1
Pom	Pomacentrus cœlestis	2	Pse	Cypho purpurascens	1
Pom	Stegastes aureus	2	Pse	Pictichromis coralensis	1

Sca	Scarus chameleon	2	Pse	Pseudochromis paccagnellae	1
Sca	Scarus flavipectoralis	2	Sca	Cetoscarus ocellatus	1
Sca	Scarus frenatus	2	Sca	Hipposcarus longiceps	1
Sca	Scarus rivulatus	2	Sca	Hipposcarus longipes	1
Sca	Scarus rubroviolaceus	2	Sca	Scarus niger	1
Sig	Siganus argenteus	2	Sca	Scarus spinus	1
Sig	Siganus puellus	2	Sco	Scomberomorus commerson	1
Sig	Siganus vulpinus	2	Sig	Siganus canaliculatus	1
					200 espèces

Tableau n°193 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST06)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Acanthurus blochii	6	Mul	Parupeneus cyclostomus	2
Aca	Ctenochaetus striatus	6	Mul	Parupeneus multifasciatus	2
Aca	Naso unicornis	6	Nem	Pentapodus aureofasciatus	2
Ant	Pseudanthias pascalus	6	Pin	Parapercis clathrata	2
Bal	Sufflamen fraenatus	6	Poc	Apolemichthys trimaculatus	2
Epi	Cephalopholis urodeta	6	Poc	Pomacanthus sexstriatus	2
Epi	Plectropomus leopardus	6	Pom	Chromis amboinensis	2
Lab	Anampses neoguinaicus	6	Pom	Chromis xanthura	2
Lab	Gomphosus varius	6	Pte	Ptereleotris evides	2
Lab	Halichoeres hortulanus	6	Sca	Scarus bicolor	2
Lab	Labroides dimidiatus	6	Sca	Scarus flavipectoralis	2
Lab	Thalassoma lunare	6	Sca	Scarus psittacus	2
Lab	Thalassoma lutescens	6	Scom	Scomberomorus commerson	2
Lab	Thalassoma nigrofascitus	6	Aca	Acanthurus achilles	1
Nem	Scolopsis bilineatus	6	Aca	Acanthurus albipectoralis	1
Poc	Centropyge bicolor	6	Aca	Acanthurus lineatus	1
Pom	Chrysiptera rollandi	6	Aca	Acanthurus olivaceus	1
Pom	Chrysiptera taupou	6	Aca	Acanthurus xanthopterus	1
Pom	Dascyllus reticulatus	6	Aca	Naso caesius	1
Pom	Pomacentrus moluccensis	6	Aca	Naso hexacanthus	1
Aca	Acanthurus mata	5	Aca	Naso lituratus	1
Aca	Zebrasoma scopas	5	Aca	Naso maculatus	1
Aca	Zebrasoma veliferum	5	Aca	Naso vlamingii	1
Cha	Chaetodon pelewensis	5	Aca	Prionurus maculatus	1
Epi	Epinephelus maculatus	5	Apo	Cheilodipterus quinquelineatus	1
Epi	Plectropomus laevis	5	Bal	Sufflamen chrysopterus	1
Hae	Plectorhinchus chaetodonoides	5	Ble	Atrosalarias fuscus	1
Lab	Bodianus perditio	5	Car	Alectis ciliaris	1
Let	Lethrinus nebulosus	5	Car	Carangoides gymnostethus	1
Lut	Lutjanus adetii	5	Car	Caranx ignobilis	1
Poc	Centropyge bispinosa	5	Car	Caranx sexfasciatus	1
Poc	Centropyge tibicen	5	Car	Gnathanodon speciosus	1
Pom	Chromis fumea	5	Carc	Triaenodon obesus	1
Sca	Scarus schlegeli	5	Cha	Chaetodon auriga	1
Sig	Siganus punctatus	5	Cha	Chaetodon bennetti	1
Aca	Acanthurus dussumieri	4	Cha	Chaetodon citrinellus	1
Aca	Naso tonganus	4	Cha	Chaetodon guentheri	1
Cha	Chaetodon kleinii	4	Cha	Chaetodon lunulatus	1
Cha	Chaetodon mertensii	4	Cha	Chaetodon trifascialis	1
Cha	Chaetodon speculum	4	Cha	Chaetodon unimaculatus	1
	Cromileptes altivelis	4	Cha	Heniochus christosomus	
Epi Epi		4	Dus		1
Epi Lob	Epinephelus fasciatus Cheilinus chlorourus			Spratelloides gracilis	1
Lab		4	Epi Eni	Cephalopholis argus	1
Lab	Halichoeres prosopeion	4	Epi Eni	Cephalopholis miniata	1
Lut	Aprion virescens	4	Epi Eni	Epinephelus coioides	1
Pom	Chromis margaritifer	4	Epi C-1	Epinephelus cyanopodus	1
Pom	Pomacentrus chrysurus	4	Gob	Bryaninops ampulus	1

Pom	Pomacentrus imitator	4	Hae	Plectorhinchus albovittatus	1
Pom	Pomacentrus unuaior Pomacentrus nagasakiensis	4	Hae	Plectorhinchus pictum	1
Sig	Siganus corallinus		Hol	Sargocentron spiniferum	1
Ant	Pseudanthias pictilis		Lab	Anampses geographicus	1
Bal	Balistoides conspicillum		Lab	Anampses meleagrides	1
Ble	Meiacanthus atrodorsalis		Lab	Bodianus diana	1
Cae	Caesio caerulaurea		Lab	Cheilinus fasciatus	1
Cha	Chaetodon ulietensis		Lab	Oxycheilinus celebicus	1
Cha	Chaetodon vagabundus		Lab	Stethojulis bandanensis	1
Cha	Forcipiger flavissima		Lab	Thalassoma hardwicke	1
Cha	Heniochus varius		Let	Aprion virescens	1
Cir	Cirrhitichthys falco		Let	Lethrinus miniatus	1
Cir	Paracirrhites arcatus		Let	Monotaxis grandoculis	1
Cir	Paracirrhites forsteri		Let	Monotaxis heterodon	1
Hae	Plectorhinchus picus		Lut	Lutjanus fulvus	1
Lab	Bodianus axillaris		Lut	Lutjanus gibbus	1
Lab	Coris aygula		Lut	Lutjanus quinquelineatus	1
Lab	Coris batuensis		Lut	Macolor niger	1
Lab	Halichoeres melanurus		Lut	Lutjanus bohar	1
Lab	Labroides bicolor	3	Mic	Gunnellichthys curiosus	1
Let	Lethrinus atkinsoni	3	Mon	Aluterus scriptus	1
Lut	Lutjanus bohar	3	Mul	Parupeneus barberinoides	1
Mul	Parupenaeus multifasciatus	3	Mul	Parupeneus barberinus	1
Poc	Centropyge flavissima	3	Mul	Parupeneus crassilabris	1
Poc	Pomacanthus semicirculatus	3	Mur	Gymnothorax meleagris	1
Pom	Chromis iomelas	3	Nem	Pentapodus sp	1
Pom	Chrysiptera unimaculata	3	Poc	Genicanthus melanospilos	1
Pom	Plectroglyphidodon lacrymatus		Poc	Genicanthus watanabei	1
Pom	Pomacentrus bankanensis	3	Poc	Pomacanthus chrysurus	1
Sca	Cetoscarus ocellatus	3	Poc	Pygoplites diacanthus	1
Sca	Chlorurus sordidus	3	Pom	Abudefduf sexfasciatus	1
Sca	Scarus altipinnis	3	Pom	Amblyglyphidodon aureus	1
Sca	Scarus rubroviolaceus	3		Chrysiptera brownriggii	1
Aca	Naso brevirostris	2	Pom	Chrysiptera rex	1
Bal	Sufflamen bursa	2	Pom	Dascyllus trimaculatus	1
Ble	Ecsenius bicolor	2	Pom	Neopomacentrus filamentosus	1
Can	Canthigaster valentini	2	Pom	plectroglyphidodon johnstonianus	1
Cha	Chaetodon flavirostris	2	Pom	Pomacentrus amboinensis	1
Epi	Anyperodon leucogrammicus	2	Sca	Chlorurus microrhinos	1
Epi	Epinephelus howlandi	2	Sca	Scarus chameleon	1
Lab	Anampses femininus	2	Sca	Scarus forsteni	1
Lab	Bodianus loxozonus	2	Sca	Scarus frenatus	1
Lab	Epibulus insidiator	2	Sca	Scarus ghobban	1
Lab	Halichoeres biocellatus	2	Sca	Scarus globiceps	1
Lab	Hemigymnus fasciatus	2	Sca	Scarus rivulatus	1
Lab	Hemigymnus melapterus	2	Sca	Scarus frenatus	1
Lab	Oxycheilinus sp	2	Syn	Saurida gracilis	1
Lut	Lutjanus argentimaculatus	2	Syn	Synodus variegatus	1
Mic	Ptereleotris evides	2		191 esp	pèces

Tableau n°194 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST07)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Ctenochaetus striatus	6	Epi	Cephalopholis miniata	2
Aca	Zebrasoma scopas	6	Epi	Epinephelus merra	2
Bal	Sufflamen fraenatus	6	Epi	Variola louti	2
Cha	Chaetodon baronessa	6	Hae	Plectorhinchus picus	2
Cha	Chaetodon mertensii	6	Lab	Cheilinus trilobatus	2
Epi	Cromileptes altivelis	6	Lab	Chelinus chlorourus	2
Epi	Plectropomus leopardus	6	Lab	Chelinus fasciatus	2

Lab	Anampses femininus	6	Lab	Coris gaimard	2
Lab	Anampses neoguinaicus	6	Lab	Halichoeres argus	2
Lab	Bodianus axillaris	6	Lab	Macropharyngodon meleagris	2
Lab	Halichoeres prosopeion	6	Mon	Oxymonacanthus longirostris	2
Lab	Hemigymnus fasciatus	6	Mon	Pervagor melanocephalus	2
Lab	Hemigymnus melapterus	6	Mul	Parupeneus barberinus	2
Lab	Thalassoma lunare	6	Nem	Pentapodus caninus	2
Lab	Thalassoma lutescens	6	Poc	Centropyge bispinosa	2
Lab	Thalassoma nigrofasciatum	6	Poc	Pomacanthus sexstriatus	2
Nem	Scolopsis bilineatus	6	Pom	Abudefduf sexfasciatus	2
Poc	Centropyge bicolor	6	Pom	Amblyglyphidodon curacao	2
Poc	Centropyge tibicen	6	Pom	Amblyglyphidodon orbicularis	2
Pom	Amphiprion chrysopterus	6	Pom	Chromis amboinensis	2
Pom	Chromis margaritifer	6	Pom	Chromis atripectoralis	2
Pom	Dascyllus reticulatus	6	Pom	Chromis leucura	2
Sca	Chlorurus sordidus	6	Pom	Pomacentrus chrysurus	2
Sca	Scarus rubroviolaceus	6	Sca	Chlorurus microrhinos	2
Sca	Scarus schlegeli	6	Sca	Scarus altipinnis	2
Aca	Acanthurus mata	5	Sig	Siganus punctatus	2
Aca	Naso unicornis	5	Aca	Naso brevirostris	1
Cha	Chaetodon kleinii	5	Aca	Naso hexacanthus	1
Cha	Chaetodon pelewensis	5	Aca	Naso lituratus	1
Cir	Paracirrhites forsteri	5	Aca	Naso lopezi	1
Epi	Cephalopholis urodeta	5	Ant	Pseudanthias hypselosoma	1
Lab	Gomphosus varius	5	Ant	Pseudanthias pasqualus	1
Lab	Oxycheilinus unifasciatus	5	Bal	Sufflamen chrysopterus	1
Lut	Aprion virescens	5	Ble	Exallias brevis	1
Mul	Parupeneus barberinoides	5	Cae	Pterocaesio diagramma	1
Pom	Dascyllus trimaculatus	5	Car	Caranx ignobilis	1
Pom	Plectroglyphidodon lacrymatus	5	Car	Caranx melampygus	1
Aca	Acanthurus blochii	4	Car	Elagatis bipinnulata	1
Aca	Naso tonganus	4	Carc	Carcharhinus amblyrhynchos	1
Ant	Pseudanthias pascalus	4	Carc	Carcharhinus plumbeus	1
Cha	Heniochus varius	4	Cha	Chaetodon lunula	1
Epi	Epinephelus maculatus	4	Cha	Chaetodon ornatissimus	1
Epi	Epinephelus polyphekadion	4	Cha	Chaetodon speculum	1
Epi	Plectropomus laevis	4	Cha	Chaetodon trifascialis	1
Lab	Anampses caeruleopunctatus	4	Cha	Forcipiger flavissima	1
Lab	Bodianus perditio	4	Cha	Forcipiger longirostris	1
Lab	Cheilinus chlorourus	4	Cha	Heniochus chrisostomus	1
Lab	Coris aygula	4	Cha	Heniochus monoceros	1
Lab	Epibulus insidiator	4	Dus	Spratelloides gracilis	1
Lab	Halichoeres melanurus	4	Epi	Cephalopholis sonnerati	1
Lab	Labroides dimidiatus	4	Epi	Epinephelus coioides	1
Lut	Lutjanus bohar	4	Epi	Epinephelus ongus	1
Lut	Macolor niger	4	Hae	Plectorhinchus flavomaculatus	1
Mic	Ptereleotris evides	4	Hol	Myripristis berndti	1
Pin	Parapercis hexophtalma	4	Lab	Choerodon graphicus	1
Poc	Pomacanthus semicirculatus	4	Lab	Cirrhilabrus dumminckii	1
Pom	Chromis fumea	4	Lab	Coris dorsomacula	1
Pom	Chromis weberi	4	Lab	Coris pictoides	1
Pom	Chrysiptera rollandi	4	Lab	Halichoeres pallidus	1
Pom	Chrysiptera taupou	4	Lab	Halichoeres trimaculatus	1
Pom	Pomacentrus bankanensis	4	Lab	Hologymnosus annulatus	1
Pom	Pomacentrus moluccensis	4	Lab	Hologymnosus doliatus	1
Pom	Pomacentrus nagasakiensis	4	Lab	Pseudocheilinus (ocellatus)	1
Sca	Scarus bleekeri	4	Lab	Pseudojuloides cerasinus	1
Ant	Pseudanthias pictilis	3	Lab	Thalassoma amblycephalum	1
Ble	Meiacanthus atrodorsalis	3	Lab	Thalassoma hardwicke	1
Can	Canthigaster valentini		Let	Gymnocranius euanus	1
				- /	-

Cha	Chaetodon auriga	3	Let	Lethrinus nebulosus	1
Cha	Chaetodon lunulatus	3	Let	Lethrinus olivaceus	1
Cha	Chaetodon ulietensis	3	Lut	Lutjanus adetii	1
Cir	Cirrhitichthys falco	3	Lut	Lutjanus argentimaculatus	1
Epi	Anyperodon leucogrammicus	3	Mic	Gunnellichthys curiosus	1
Epi	Epinephelus cyanopodus	3	Mic	Ptereleostris evides	1
Hae	Plectorhinchus chaetodonoides	3	Mon	Cantherhines fronticintus	1
Hol	Sargocentron spiniferum	3	Mul	Parupeneus indicus	1
Lab	Bodianus loxozonus	3	Mul	Parupeneus multifasciatus	1
Lab	Cheilinus fasciatus	3	Mur	Gymnothorax javanicus	1
Lab	Choerodon fasciatus	3	Ost	Ostracion cubicus	1
Lab	Coris batuensis	3	Pin	Parapercis millipunctata	1
Lab	Halichoeres biocellatus	3	Pom	Abudefduf sordidus	1
Lab	Halichoeres hortulanus	3	Pom	Amphiprion perideraion	1
Lab	Halichoeres marginatus	3	Pom	Chromis retrofasciata	1
Poc	Centropyge flavissima	3	Pom	Chromis ternatensis	1
Poc	Genicanthus watanabei	3	Pom	Chrysiptera rex	1
Pom	Amblyglyphidodon aureus	3	Pom	Dascyllus aruanus	1
Pom	Chromis iomelas	3	Pom	Neoglyphidodon melas	1
Pom	Plectroglyphidodon johnstonianus	3	Pom	Neoglyphidodon polyacanthus	1
Sca	Scarus forsteni	3	Pom	Plectroglyphidodon dickii	1
Scom	Scomberomorus commerson	3	Pom	Plectroglyphidodon leucozonus	1
Aca	Acanthurus dussumieri	2	Sca	Scarus flavipectoralis	1
Aca	Acanthurus xanthopterus	2	Sca	Scarus ghobban	1
Aca	Zebrasoma veliferum	2	Sca	Scarus longipinnis	1
Aul	Aulostomus chinensis	2	Sca	Scarus pisittacus	1
Cae	Caesio caerulaurea	2	Sca	Scarus rivulatus	1
Car	Caranx sexfasciatus	2	Sca	Scarus spinus	1
Car	Gnathanodon speciosus	2	Scom	Euthynnus affinis	1
Carc	Carcharhinus albimarginatus	2	Sig	Siganus argenteus	1
Cha	Chaetodon citrinellus	2	Sig	Siganus corallinus	1
Cha	Coradion altivelis	2	Sig	Siganus spinus	1
Cha	Heniochus acuminatus	2	Syn	Synodus variegatus	1
Cir	Oxycirrhites typus	2		201 espè	eces

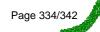
Tableau n°195 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST08)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Zebrasoma veliferum	6	Micr	Ptereleotris monoptera	2
Bal	Sufflamen fraenatus	6	Mon	Oxymonacanthus longirostris	2
Cha	Chaetodon plebeius	6	Mul	Parupeneus indicus	2
Epi	Plectropomus leopardus	6	Pom	Amblyglyphidodon orbicularis	2
Lab	Bodianus perditio	6	Pri	Priacanthus hamrur	2
Lab	Thalassoma lunare	6	Sca	Scarus altipinnis	2
Lab	Thalassoma lutescens	6	Sca	Scarus flavipectoralis	2
Poc	Centropyge bicolor	6	Zan	Zanclus cornatus	2
Pom	Chrysiptera taupou	6	Aca	Acanthurus dussumieri	1
Pom	Dascyllus reticulatus	6	Apo	Apogon doederleini	1
Pom	Pomacentrus moluccensis	6	Apo	Apogon novemfasciatus	1
Sca	Chlorurus sordidus	6	Apo	Apogon selas	1
Aca	Acanthurus blochii	5	Apo	Cheilinodipterus macrodon	1
Aca	Zebrasoma scopas	5	Bal	Pseudobalistes flavimarginatus	1
Can	Canthigaster valentini	5	Bal	Sufflamen chrysopterus	1
Cha	Chaetodon mertensii	5	Ble	Meiacanthus atrodorsalis	1
Lab	Anampses neoguinaicus	5	Cha	Chaetodon citrinellus	1
Lab	Gomphosus varius	5	Cha	Chaetodon ephippium	1
Lab	Halichoeres prosopeion	5	Cha	Chaetodon lunula	1
Lab	Hemigymnus melapterus	5	Cha	Chaetodon melannotus	1
Lab	Labroides dimidiatus	5	Cha	Chaetodon pelewensis	1
Nem	Scolopsis bilineatus	5	Cha	Chaetodon reticulatus	1

Poc	Centropyge tibicen	5	Cha	Chaetodon trifasciatus	1
Pom	Chromis margaritifer	5	Cha	Heniochus chrysostomus	1
Pom	Chrysiptera rollandi	5	Epi	Epinephelus coioides	1
Sig	Siganus doliatus	5	Epi	Epinephelus fasciatus	1
Aca	Ctenochaetus striatus	4	Epi	Epinephelus malabaricus	1
Ble	Cirripectes stigmaticus	4	Gob	Amblygobius sp	1
Cae	Caesio caerulaurea	4	Hae	Plectorhinchus chaetodonoides	1
Cha	Chaetodon baronessa	4	Hae	Plectorhinchus lineatus	1
Cha	Chaetodon ulietensis	4	Hol	Myripristis hexagona	1
Cha	Heniochus monoceros	4	Hol	Myripristis murdjan	1
Cha	Heniochus varius	4	Hol	Sargocentron ensiferum	1
Gra	Diploprion bifasciatum	4	Lab	Bodianus bilunulatus	1
Lab	Bodianus loxozonus	4	Lab	Cheilinus trilobatus	1
Lab	Cheilinus chlorourus	4	Lab	Cheilinus undulatus	1
Lab	Coris batuensis	4	Lab	Coris dorsomacula	1
Pin	Parapercis hexophtalma	4	Lab	Epibulus insidiator	1
Pom	Amphiprion clarkii	4	Lab	Halichoeres argus	1
Aca	Naso unicornis	3	Lab	Halichoeres hortulanus	1
Ble	Cirripectes speculum	3	Lab	Labrichthys unilineatus	1
Cha	Chaetodon lunulatus	3	Lab	Labropsis australis	1
Cha	Chaetodon speculum	3	Lab	Macropharyngodon negrosensis	1
Cha	Chaetodon vagabundus	3	Lab	Oxycheilinus sp	1
Cir	Cirrhitichthys falco	3	Lab	Thalassoma nigrofasciatum	1
Epi	Epinephelus maculatus	3	Lat	Goniistius vestitus	1
Lab	Anampses femininus	3	Mic	Nemateleotris magnifica	1
Lab	Halichoeres melanurus	3	Mon	Pervagor janthinosoma	1
Lab	Oxycheilinus diagrammus	3	Mul	Parupeneus barberinoides	1
Lab	Oxycheilinus unifasciatus	3	Nem	Pentapodus aureofasciatus	1
Mul	Parupeneus multifasciatus	3	Ost	Ostracion cubicus	1
Poc	Centropyge bispinosa	3	Ple	Assessor macneilli	1
Poc	Centropyge flavissima	3	Poc	Pomacanthus sexstriatus	1
Pom	Chromis viridis	3	Poc	Pygoplites diacanthus	1
Pom	Dascyllus aruanus	3	Pom	Abudefduf whitleyi	1
Pom	Neoglyphidodon nigroris	3	Pom	Amblyglyphidodon aureus	1
Sca	Scarus frenatus	3	Pom	Chromis agilis	1
Sca	Scarus ghobban	3	Pom	Chromis amboinensis	1
Aca	Acanthurus olivaceus	2	Pom	Chromis analis	1
Aul	Aulostomus chinensis	2	Pom	Chromis atripectoralis	1
Cha	Chaetodon flavirostris	2	Pom	Chromis chrysura	1
Cha	Chaetodon trifascialis	2	Pom	Chromis leucura	1
Cha	Heniochus acuminatus	2	Pom	Chrysiptera unimaculata	1
Epi	Epinephelus howlandi	2	Pom	Pomacentrus bankanensis	1
Epi	Epinephelus merra	2	Pom	Pomacentrus chrysurus	1
Epi	Plectropomus laevis	2	Pom	Pomacentrus coelestis	1
Hae	Plectorhinchus pictus	2	Pom	Pomacentrus nagasakiensis	1
Lab	Bodianus axillaris	2	Pom	Pomacentrus pavo	1
Lab	Chelinus chlorourus	2	Pom	Pomacentrus vaiuli	1
Lab	Choerodon graphicus	2	Sca	Chlorurus microrhinos	1
Lab	Cirrhilabrus exquisitus	2	Sca	Scarus bleekeri	1
Lab	Cirrhilabrus laboutei	2	Sca	Scarus rivulatus	1
Lab	Coris aygula	2	Sca	Scarus schlegeli	1
Lab	Coris gaimard	2	Sca	Scarus spinus	1
Lab	Hemigymnus fasciatus	2	Sig	Siganus corllinus	1
Lab	Pseudodax moluccanus	2	Sig	Siganus vulpinus	1
Mic	Gunnellichthys curiosus	2	Sph	Sphyraena barracuda	1
Mic	Ptereleotris evides	2	Syn	Synodus variegatus	1
					156 espèces

Tableau n°196 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST09)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Ctenochaetus striatus	6	Cir	Cyprinocirrhites polyactis	2
Bal	Sufflamen fraenatus	6	Lab	Anampses caeruleopunctatus	2
Cha	Chaetodon kleinii	6	Lab	Cheilinus fasciatus	2
Cir	Cirrhitichthys falco	6	Lab	Halichoeres prosopeion	2
Epi	Cephalopholis urodeta	6	Poc	Genicanthus watanabei	2
Lab	Anampses neoguinaicus	6	Pom	Amphiprion chrisopterus	2
Lab	Thalassoma lunare	6	Pom	Chromis iomelas	2
Lab	Thalassoma lutescens	6	Pom	Chromis ternatensis	2
Lab	Thalassoma nigrofasciatum	6	Pom	Chrysiptera starcki	2
Mul	Parupeneus barberinoides	6	Pom	Pomacentrus chrysurus	2
Poc	Centropyge bicolor	6	Sca	Scarus altipinnis	2
Poc	Centropyge bispinosa	6	Sca	Scarus ghobban	2
Poc	Centropyge tibicen	6	Sig	Siganus spinus	2
Pom	Chrysiptera taupou	6	Aca	Acanthurus pyroferus	1
Aca	Acanthurus blochii	5	Aca	Acanthurus xanthopterus	1
Aca	Naso tonganus	5	Aca	Naso brevirostris	1
Aca	Naso unicornis	5	Aca	Prionurus maculatus	1
Aca	Zebrasoma veliferum	5	Aca	Zebrasoma scopas	1
Ant	Pseudanthias pascalus	5	Bal	Balistoides viridescens	1
Ant	Pseudanthias pictilis	5	Bal	Odonus niger	1
Can	Canthigaster valentini	5	Ble	Cirrhipectes castaneus	1
Cha	Chaetodon mertensii	5	Ble	Cirrhipectes stigmaticus	1
Cir	Paracirrhites forsteri	5	Cae	Pterocaesio trilineata	1
Lab	Bodianus perditio	5	Can	Canthigaster janthinoptera	1
Lab	Coris batuensis	5	Car	Caranx ignobilis	1
Lab		5	Car		
	Macropharyngodon meleagris			Caranx melampygus	1
Pom	Chromis fumea	5	Car	Pseudocaranx dentex	1
Pom	Pomacentrus bankanensis	5	Carc	Carcharhinus albimarginatus	1
Sca	Chlorurus sordidus	5	Cha	Chaetodon melannotus	1
Aca	Acanthurus mata	4	Cha	Chaetodon speculum	1
Ant	Pseudanthias dispar	4	Cha	Heniochus acuminatus	1
Ant	Pseudanthias squamipinnis	4	Cha	Heniochus varius	1
Bal	Sufflamen chrysopterus	4	Dio	Diodon hystrix	1
Cha	Chaetodon auriga	4	Epi	Cephalopholis argus	1
Cha	Chaetodon citrinellus	4	Epi	Epinephelus cyanopodus	1
Cha	Chaetodon pelewensis	4	Epi	Epinephelus howlandi	1
Cha	Chaetodon plebeius	4	Gob	Valenciennea strigata	1
Epi	Epinephelus fasciatus	4	Lab	Anampses meleagrides	1
Epi	Plectropomus leopardus	4	Lab	Bodianus axillaris	1
Epi	Variola louti	4	Lab	Bodianus diana	1
Lab	Cheilinus chlorourus	4	Lab	Bodianus loxozonus	1
Lab	Cheilinus undulatus	4	Lab	Choerodon jordani	1
Lab	Coris dorsomacula	4	Lab	Cirrhilabrus laboutei	1
Lab	Gomphosus varius	4	Lab	Diproctacanthus xanthurus	1
Lab	Halichoeres hortulanus	4	Lab	Halichoeres argus	1
Lab	Labroides dimidiatus	4	Lab	Halichoeres melanurus	1
Lab	Oxycheilinus diagrammus	4	Lab	Labroides bicolor	1
Mic	Ptereleotris evides	4	Lab	Labropsis xanthonota	1
Nem	Pentapodus aureofasciatus	4	Lab	Oxycheilinus unifasciatus	1
Pom	Dascyllus reticulatus	4	Lab	Stethojulis bandanensis	1
Aca	Acanthurus albipectoralis	3	Lab	Thalassoma amblycephalum	1
Aca	Acanthurus dussumieri	3	Lab	Thalassoma hardwicke	1
Aca	Acanthurus nigricans	3	Let	Lethrinus olivaceus	1
Aul	Aulostomus chinensis	3	Mon	Aluterus scriptus	1
Cha	Chaetodon vagabundus	3	Mul	Parupeneus cyclostomus	1
Cir	Paracirrhites arcatus	3	Mul	Parupeneus multifasciatus	1
Lab	Anampses femininus	3	Mur	Gymnothorax javanicus	1
	• *				



Lab	Chelinus chlorourus	3	Nem	Pentapodus sp	1
Lut	Aprion virescens	3	Poc	Centropyge flavissima	1
Lut	Lutjanus bohar	3	Pom	Amphiprion akyndinos	1
Nem	Scolopsis bilineatus	3	Pom	Chromis amboinensis	1
Pin	Parapercis hexophtalma	3	Pom	Chromis xanthura	1
Poc	Pomacanthus imperator	3	Pom	Neoglyphidodon polyacanthus	1
Poc	Pomacanthus semicirculatus	3	Pom	Plectroglyphidodon johnstonianus	1
Poc	Pomacanthus sexstriatus	3	Pom	Plectroglyphidodon leucozonus	1
Pom	Amphiprion clarkii	3	Pom	Pomacentrus amboinensis	1
Pom	Chromis margaritifer	3	Pom	Pomacentrus coelestis	1
Pom	Chrysiptera biocellata	3	Pom	Pomacentrus philippinus	1
Pom	Pomacentrus nagasakiensis	3	Pom	Pomacentrus spilotoceps	1
Sca	Chlorurus microrhinos	3	Sca	Cetoscarus ocellatus	1
Sca	Scarus schlegeli	3	Sca	Hipposcarus longipes	1
Sig	Siganus argenteus	3	Sca	Scarus rivulatus	1
Aca	Acanthurus olivaceus	2	Sca	Scarus spinus	1
Ant	Pseudanthias pleurotaenia	2	Sig	Siganus doliatus	1
Apo	Cheilodipterus macrodon	2	Sig	Siganus punctatus	1
Cha	Chaetodon unimaculatus	2	Syn	Synodus variegatus	1
					152 espèces

Tableau n°197 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST10)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Ctenochaetus striatus	6	Aca	Naso lituratus	2
Aca	Zebrasoma scopas	6	Ble	Ecsenius bicolor	2
Ant	Pseudanthias pascalus	6	Cae	Pterocaesio trilineata	2
Bal	Sufflamen fraenatus	6	Car	Gnathanodon speciosus	2
Cae	Caesio caerulaurea	6	Car	Pseudocaranx dentex	2
Cha	Chaetodon lunulatus	6	Cha	Chaetodon ephippium	2
Cha	Chaetodon mertensii	6	Cha	Chaetodon vagabundus	2
Cha	Chaetodon pelewensis	6	Cha	Heniochus chrysostomus	2
Cha	Chaetodon plebeius	6	Cir	Paracirrhites forsteri	2
Epi	Epinephelus merra	6	Epi	Anyperodon leucogrammicus	2
Epi	Plectropomus laevis	6	Epi	Cephalopholis argus	2
Epi	Plectropomus leopardus	6	Epi	Cromileptes altivelis	2
Lab	Anampses neoguinaicus	6	Epi	Epinephelus fasciatus	2
Lab	Halichoeres prosopeion	6	Hae	Plectorhinchus picus	2
Lab	Hemigymnus fasciatus	6	Hol	Myripristis murdjan	2
Lab	Labroides bicolor	6	Lab	Bodianus axillaris	2
Lab	Labroides dimidiatus	6	Lab	Coris gaimard	2
Lab	Thalassoma lunare	6	Lab	Halichoeres biocellatus	2
Let	Monotaxis grandoculis	6	Lab	Halichoeres melanurus	2
Lut	Lutjanus bohar	6	Lab	Thalassoma hardwicke	2
Nem	Scolopsis bilineatus	6	Lab	Thalassoma nigrofasciatum	2
Poc	Centropyge bicolor	6	Let	Gymnocranius euanus	2
Poc	Centropyge bispinosa	6	Let	Lethrinus atkinsoni	2
Poc	Centropyge tibicen	6	Let	Monotaxis heterodon	2
Pom	Chromis iomelas	6	Lut	Lutjanus ehrenbergii	2
Pom	Chromis margaritifer	6	Mon	Paraluteres prionurus	2
Pom	Chromis viridis	6	Poc	Pomacanthus sexstriatus	2
Pom	Chrysiptera rollandi	6	Poc	Pygoplites diacanthus	2
Pom	Dascyllus reticulatus	6	Pom	$Ambly glyphidodon\ leucogaster$	2
Sca	Chlorurus sordidus	6	Pom	Amphiprion chrysopterus	2
Sca	Scarus flavipectoralis	6	Pom	Chromis agilis	2
Sca	Scarus schlegeli	6	Pom	Chromis atripectoralis	2
Aca	Naso tonganus	5	Pom	Neoglyphidodon nigroris	2
Aca	Naso unicornis	5	Pom	Plectroglyphidodon lacrymatus	2
Can	Canthigaster valentini	5	Sca	Cetoscarus ocellatus	2
Cha	Forcipiger longirostris	5	Sca	Scarus altipinnis	2

Cir	Cirrhitichthys falco	5	Sca	Scarus rubroviolaceus	2
Epi	Cephalopholis miniata	5	Sig	Siganus punctatus	2
Epi	Cephalopholis sonnerati	5	Sph	Sphyraena jello	2
Epi	Cephalopholis urodeta	5	Aca	Acanthurus blochii	1
Lab	Bodianus perditio	5	Aca	Acanthurus dussumieri	1
Lab	Epibulus insidiator	5	Aca	Acanthurus triostegus	1
Lab	Gomphosus varius	5	Aca	Naso lopezi	1
Lab	Oxycheilinus celebicus	5	Aca	Zebrasoma veliferum	1
Lab	Oxycheilinus diagrammus	5	Ant	Pseudanthias pictilis	1
Lab	Thalassoma lutescens	5	Ant	Pseudanthias regalis	1
Lut	Aprion virescens	5	Ant	Pseudanthias squamipinnis	1
Lut	Lutjanus quinquelineatus	5	Apo	Archamia fucata	1
Mon	Oxymonacanthus longirostris	5	Car	Alectis ciliaris	1
Pin	Parapercis hexophtalma	5	Car	Carangoides gymnostethus	1
Pom	Chromis analis	5	Car	Trachinotus blochii	1
Pom	Chromis retrofasciata	5	Carc	Carcharhinus albimarginatus	1
Pom	Chrysiptera starcki	5	Carc	Carcharodon carcharias	1
Pom	Chrysiptera taupou	5	Cha	Chaetodon auriga	1
Pom	Plectroglyphidodon johnstonianus	5	Cha	Chaetodon bennetti	1
Pom	Pomacentrus bankanensis	5	Cha	Chaetodon lineolatus	1
Pom	Pomacentrus moluccensis	5	Cha	Chaetodon speculum	1
Aca	Acanthurus albipectoralis	4	Cha	Chaetodon trifascialis	1
Aca	Naso brachycentron	4	Cha	Chaetodon unimaculatus	1
Apo	Apogon aureus	4	Cha	Heniochus acuminatus	1
Apo	Archamia sp2	4	Dus	Spratelloides gracilis	1
Apo	Ostorhinchus angustatus	4	Epi	Aethaloperca rogaa	1
Aul	Aulostomus chinensis	4	Epi	Epinephelus cyanopodus	1
Cha	Heniochus varius	4	Epi	Epinephelus fuscoguttatus	1
Hae	Plectorhinchus chaetodonoides	4	Epi	Epinephelus rivulatus	1
Lab	Anampses femininus	4	Epi	Epinephelus tauvina	1
Lab	Bodianus loxozonus	4	Epi	Variola louti	1
Lab	Cheilinus fasciatus	4	Fis	Fistularia commersonii	1
Lab	Cheilinus undulatus	4	Hem	Plectorhinchus chaetodonoides	1
Lab	Halichoeres ornatissimus	4	Lab	Anampses meleagrides	1
Lab	Hemigymnus melapterus		Lab	Bodianus anthioides	1
Lab	Labropsis australis	4	Lab	Bodianus bilunulatus	1
Lab	Macropharyngodon meleagris		Lab	Chelinus fasciatus	1
Lut	Lutjanus fulviflamma	4	Lab	Chelinus undulatus	1
Mic	Gunnellichthys curiosus Parupeneus barberinoides		Lab	Cirrhilabrus lineatus	1
Mul	ž.	4	Lab	Cirrhilabrus punctatus	1
Pom	Abudefduf whitleyi		Lab	Halichoeres argus Halichoeres hortulanus	1
Pom	Amblyglyphidodon aureus Chromis atripes	4	Lab Lab	Hologymnosus doliatus	1 1
Pom	*		Lab	0,0	1
Pom	Chromis chrysura Chromis fumea	4	Lab	Labropsis xanthonota Oxycheilinus unifasciatus	1
Pom Pom	Pomacentrus chrysurus	4	Lab	Pseudocheilinus hexataenia	1
Pom	Pomacentrus philippinus	4	Lab	Pseudocoris yamashiroi	1
Sca	Chlorurus microrhinos		Let	Lethrinus nebulosus	1
Sca	Hipposcarus longipes	4	Lut	Lutjanus monostigma	1
Scom	Scomberomorus commerson	4	Mic	Gunnellichthys monostigma	1
Aca	Acanthurus achilles	3	Mon	Aluterus scriptus	1
Aca	Naso vlamingii	3	Mul	Parupeneus cyclostomus	1
Apo	Archamia sp1	3	Mul	Parupeneus pleurostigma	1
Apo	Ostorhinchus aureus	3	Ost	Ostracion cubicus	1
Ble	Meiacanthus atrodorsalis	3	Ple	Assessor macneilli	1
Cha	Chaetodon baronessa	3	Poc	Centropyge flavissima	1
Cha	Chaetodon ornatissimus	3	Poc	Centropyge multifasciata	1
Epi	Epinephelus maculatus	3	Poc	Pomacanthus imperator	1
Ері Ері	Plectropomus areolatus	3	Poc	Pomacanthus semicirculatus	1
Gob	Valenciennea parva	3	Pom	Amphiprion clarkii	1
_00				T	•

Kyp	Kyphosus sydneyanus	3	Pom	Amphiprion melanopus	1
Lab	Cheilinus chlorourus	3	Pom	Chrysiptera rex	1
Lab	Coris batuensis	3	Pom	Dascyllus aruanus	1
Lab	Coris centralis	3	Pom	Neopomacentrus filamentosus	1
Let	Lethrinus miniatus	3	Pom	Plectroglyphidodon dickii	1
Lut	Lutjanus fulvus	3	Pom	Pomacentrus aurifrons	1
Lut	Lutjanus gibbus	3	Pom	Pomacentrus brachialis	1
Lut	Lutjanus kasmira	3	Pom	Pomacentrus nagasakiensis	1
Lut	Macolor niger	3	Pom	Pomacentrus spilotoceps	1
Mul	Parupeneus multifasciatus	3	Pom	Stegastes aureus	1
Pom	Abudefduf sexfasciatus	3	Pom	Stegastes lividus	1
Pom	Amblyglyphidodon curacao	3	Pse	Pictichromis coralensis	1
Pom	Amblyglyphidodon Orbicularis	3	Sca	Scarus bleekeri	1
Pom	Chromis amboinensis	3	Sca	Scarus dimidiatus	1
Pom	Chrysiptera notialis	3	Sca	Scarus frenatus	1
Sca	Scarus chameleon	3	Sca	Scarus oviceps	1
Sig	Siganus corallinus	3	Sca	Scarus psittacus	1
Aca	Acanthurus lineatus	2	Sca	Scarus rivulatus	1
Aca	Acanthurus mata	2	Sig	Siganus doliatus	1
Aca	Acanthurus pyroferus	2	Zan	Zanclus cornutus	1
Aca	Acanthurus xanthopterus	2			235 espèces
Aca	Ctenochaetus tominiensis	2			

Tableau n°198 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST11)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Ctenochaetus striatus	6	Mon	Oxymonacanthus longirostris	2
Aca	Zebrasoma scopas	6	Mon	Paraluteres prionurus	2
Bal	Sufflamen fraenatus	6	Ost	Ostracion cubicus	2
Cha	Chaetodon mertensii	6	Poc	Pomacanthus imperator	2
Epi	Cephalopholis urodeta	6	Poc	Pomacanthus semicirculatus	2
Lab	Labroides dimidiatus	6	Pom	Abudefduf sexfasciatus	2
Nem	Scolopsis bilineatus	6	Pom	Amblyglyphidodon aureus	2
Poc	Centropyge tibicen	6	Pom	Amblyglyphidodon leucogaster	2
Pom	Chromis margaritifer	6	Pom	Chromis analis	2
Pom	Chrysiptera rollandi	6	Pom	Chromis retrofasciatus	2
Pom	Chrysiptera taupou	6	Pom	Chrysiptera starcki	2
Pom	Dascyllus reticulatus	6	Pom	Plectroglyphidodon lacrymatus	2
Sca	Scarus schlegeli	6	Sca	Scarus chameleon	2
Aca	Acanthurus blochii	5	Sca	Scarus ghobban	2
Aca	Naso unicornis	5	Syn	Synodus variegatus	2
Aul	Aulostomus chinensis	5	Aca	Acanthurus albipectoralis	1
Cha	Chaetodon pelewensis	5	Aca	Naso lituratus	1
Cha	Chaetodon plebeius	5	Aca	Naso vlamingii	1
Cir	Cirrhitichthys falco	5	Ant	Pseudanthias squamipinnis	1
Epi	Plectropomus leopardus	5	Apo	Apogon apogonides	1
Hae	Plectorhinchus chaetodonoides	5	Bal	Balistoides viridescens	1
Lab	Anampses neoguinaicus	5	Bal	Sufflamen bursa	1
Lab	Bodianus perditio	5	Bal	Sufflamen chrysopterus	1
Lab	Epibulus insidiator	5	Ble	Cirripectes castaneus	1
Lab	Halichoeres hortulanus	5	Ble	Meiacanthus atrodorsalis	1
Lab	Hemigymnus fasciatus	5	Can	Arothron meleagris	1
Lab	Thalassoma lunare	5	Carc	Triaenodon obesus	1
Lab	Thalassoma lutescens	5	Cha	Chaetodon citrinellus	1
Lab	Thalassoma nigrofasciatum	5	Cha	Chaetodon melannotus	1
Pin	Parapercis hexophtalma	5	Cha	Chaetodon ornatissimus	1
Poc	Centropyge bicolor	5	Cha	Chaetodon trifascialis	1
Poc	Centropyge bispinosa	5	Cir	Paracirrhites arcatus	1
Poc	Pomacanthus sexstriatus	5	Epi	Epinephelus fuscoguttatus	1
Pom	Abudefduf whitleyi	5	Epi	Epinephelus howlandi	1

Pom Pomeentrins moluccensis 5 Hol Myripristis backehe 1 Sca Chlorurus sordidus 5 Hol Myripristis backehe 1 Cae Caesio caerulcurea 4 Lab Bodianus aculturiste 1 Cae Caesio caerulcurea 4 Lab Bodianus aculturiste 1 Cha Chaerdom speculum 4 Lab Bodianus aculturiste 1 Cha Chaerdom vagebundus 4 Lab Cheilinus fasciatus 1 Cha Chaerdom vagebundus 4 Lab Cheilinus fasciatus 1 Cha Heniochus varius 4 Lab Cheilinus sunduatus 1 Lab Gomphosus varius 4 Lab Cheilinus sunduatus 1 Lab Heniochus varius 4 Lab Cheilinus sunduatus 1 Lab Halichoeres prosopeion 4 Lab Cheilinus sunduatus 1 Lab Halichoeres prosopeion 4 Lab Cheilinus sunduatus 1 Lab Humigmus melapterus 4 Lab Cheilinus sunduatus 1 Lab Humigmus melapterus 4 Lab Cheilinus sunduatus 1 Lab Labroides bicolor 4 Lab Cirrhilabrus labourei 1 Lab Davelenius mijuscianus 1 Lab Dovelenius mijuscianus 1 Lab Ovelenius mijuscianus 1 Lab Ovelenius mijuscianus 1 Lab Dovelenius mijuscianus 1 Lab Ovelenius mijuscianus 1 Lab Ovelenius mijuscianus 1 Lat Latjamus bohar 1 Lat Latjamus bohar 1 Lat Latjamus bohar 1 Lat Centropyeg flovisisma 1 Lab Dovelenius mijuscianus 1 Lab Ovelenius 1 Lab Ovelenius mijuscianus 1 Lab Ovelenius mijuscianus 1 Lab Carantiguster valenius 1 Lab Labroidon luniustius 1 Lab Ovelenius meatus 1 Lab Ovelenius mijuscianus 1 Lab Ovelenius	Pom	Chromis iomelas	5	Hae	Plectorhinchus lineatus	1
Sca Chlorurus sortidus Aca Acamhurus lineatus Aca Acamhurus lineatus Aca Camburus lineatus Aca Acamhurus lineatus Aca Chaerodon speculom Aca Chaerodon speculom Aca Chaerodon speculom Aca Chaerodon vagahundus Aca Acamhurus warius Aca Acamhurus warius Aca Holichochus varius Aca Acamburus warius Aca Acamburus mata Aca Acamburus						
Aca Acanthurus lineatus					* *	
Case Caesio caerulourea 4 Lab Bodianus anthioides 1 Cha Chaetodon vagedualms 4 Lab Bodianus actilaris 1 Cha Hentochus varius 4 Lab Cheilitus facciaus 1 Hol Sargocentron spiniferum 4 Lab Cheilitus sinciduatus 1 Lab Gomphosus varius 4 Lab Cheilius sinudidatus 1 Lab Halichoeres prosopeiom 4 Lab Cheilius sinudidatus 1 Lab Halichoeres prosopeiom 4 Lab Cheilius sinudidatus 1 Lab Lab Corvides bicolor 4 Lab Cherinidabrus labautet 1 Lab Dativides bicolor 4 Lab Corribidabrus punctatus 1 Lab Oxycheilinus unifasciatus 4 Lab Corrisa gyala 1 Lab Oxycheilinus unifasciatus 4 Lab Corrisa gyala 1 Lab Corrisa gyala 4 Lab Corrisa gyala 1 Lab Corrisa gyala 4 Lab Halichoeres melaurus 1 Mic Gumellichthys curious 4 Lab Halichoeres melaurus 1 Mic Gumellichthys curious 4 Lab Halichoeres						
Chae Chaetodon speculum 4 Lab Bodiumus axillaris 1 Cha Chaetodon vagubundus 4 Lab Chellinus fisacianus 1 Hol Sargocentron spiniferum 4 Lab Chellinus undulatus 1 Lab Gomphosus varius 4 Lab Chellinus undulatus 1 Lab Holecores prosopeion 4 Lab Chelinus undulatus 1 Lab Harbordes bicolor 4 Lab Chrendon jordani 1 Lab Labroroles bicolor 4 Lab Cirrhilabrus punctatus 1 Lab Oxychellimus unifasciatus 4 Lab Cirrhilabrus punctatus 1 Lab Oxychellimus unifasciatus 4 Lab Currhilabrus punctatus 1 Lab Lab oxychellimus unifasciatus 4 Lab Currhilabrus punctatus 1 Lab Oxycheilimus infasciatus 4 Lab Halogymnous admutatus 1 Mic Perrelevoirs vides 4 Lab <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Chae Chaetodon vagabundus 4 Lab Cheilinus fraciatus 1 Cha Heniochus varius 4 Lab Cheilinus irilobatus 1 Lab Gomphosus varius 4 Lab Cheilinus indulatus 1 Lab Halichoeres prospecion 4 Lab Cheilmus indulatus 1 Lab Henigymus melapetrus 4 Lab Cherordoni jordani 1 Lab Macropharyngodon meleagris 4 Lab Cirrhilabrus punctatus 1 Lab Oxybechilinus inflaciscians 4 Lab Circrhilabrus punctatus 1 Lut Luijamus bohar 4 Lab Halichoeres argus 1 Mic Gunnellichthys curiosus 4 Lab Halichoeres argus 1 Mic Gunnellichtys curiosus 4 Lab Halichoeres argus 1 Mic Centropyse flavissima 4 Lab Halichoeres argus 1 Por Centropyse flavissima 4 Lab Hal						
Cha Henlochus varius 4 Lab Cheilinus sundulanus 1 Lab Sargocentron spiniferum 4 Lab Cheilinus sundulanus 1 Lab Halichoeres prosopeion 4 Lab Chelinus undulatus 1 Lab Halichoeres prosopeion 4 Lab Cheinus undulatus 1 Lab Lordielos bicolor 4 Lab Cherrihidarus labauteti 1 Lab Oxycheilmus unifasciatus 4 Lab Cirrihidarus labauteti 1 Lab Oxycheilmus unifasciatus 4 Lab Cirrihidarus labauteti 1 Lab Oxycheilmus unifasciatus 4 Lab Hallchoeres argus 1 Mic Perelectrius vides 4 Lab Halichoeres argus 1 Mic Perelectris vides 4 Lab Hologymnosus annulatus 1 Mic Perelectris vides 4 Lab Hologymnosus annulatus 1 Perelectris vides 4 Lab Hologymnosus adolit		•				
Hol Sargocentron spiniferum		•			*	
Lab Gomphosus varius						
Lab Halichoeres prosopeion 4 Lab Cheorodon fordani 1 Lab Hemigymmus melapterus 4 Lab Chroerodon fordani 1 Lab Macropharyngodon meleagris 4 Lab Cirrhilabrus punctatus 1 Lab Oxycheilmus unifasciatus 4 Lab Coris ayuda 1 Lut Lutjanus bohar 4 Lab Halichoeres argus 1 Mic Perelectoris evides 4 Lab Halichoeres melanurus 1 Mic Perelectoris evides 4 Lab Halichoeres melanurus 1 Poc Centropyge flavissima 4 Lab Hologymnosus adniatus 1 Pom Chromis fumea 4 Lab Labropist santhonota 1 Pom Plectroglyphidodon johnstoniamus 4 Lab Labropist santhonota 1 Pom Pomacentrus bankanensis 4 Lab Labropist santhonota 1 Aca Aca bering flavipectoralis 4 Lab Acavaritamus 1 Aca Aso bering flavipectoralis <t< td=""><td></td><td>* *</td><td></td><td></td><td></td><td></td></t<>		* *				
Lab Hemigymus melapterus 4 Lab Choerodon jordani 1 Lab Labroides bicolor 4 Lab Cirrhilabrus Laboutei 1 Lab Macropharyngodon meleagris 4 Lab Cirrhilabrus Laboutei 1 Lab Asporbeilinus unifasciatus 4 Lab Cirrhilabrus punctatus 1 Mic Gumellichthys curiosus 4 Lab Halichoeres argus 1 Mic Gumellichthys curiosus 4 Lab Hologymnosus annulatus 1 Poc Centropyse flavissima 4 Lab Hologymnosus dolitatus 1 Pom Chromis funea 4 Lab Labrichtys unilineatus 1 Pom Petrejophylidodon johnstonianus 4 Lab Labropsis samthonota 1 Pom Pletrogyphylidodon johnstonianus 4 Lab Labropsis samthonota 1 Aca Canthurus 4 Lab Labropsis samthonota 1 Aca Asa Acanthurus 4 <td></td> <td>•</td> <td></td> <td></td> <td>· ·</td> <td></td>		•			· ·	
Lab Lab macropharyngodom meleagris 4 Lab Cirrhilabrus punctutus 1 Lab Oxycheilimus unifasciatus 4 Lab Coris aygula 1 Lut Lutjanus bohar 4 Lab Halichoeres melanurus 1 Mic Gumellichthys curiosus 4 Lab Hologymnosus annulatus 1 Poc Centropyge flavissima 4 Lab Hologymnosus doliatus 1 Pom Chromis fumea 4 Lab Labrichthys unilineatus 1 Pom Plectroglyphidodon johnstonianus 4 Lab Labropsis santhonota 1 Pom Pomecarentus bankamensis 4 Lab Doxycheilinus lineatus 1 Sca Scarus flavipectoralis 4 Lab Doxycheilinus lineatus 1 Aca Acathurus mata 3 Lab Doxycheilinus lineatus 1 Aca Acathurus santhopterus 3 Lab Doxycheilinus lineatus 1 Aca Acathurus santhopterus 3 Lab Doxycheilinus lineatus 1 Aca Acathurus santhopterus 3 Lab Doxycheilinus lineatus 1 Aca Acathurus santhopterus <t< td=""><td></td><td>• •</td><td></td><td></td><td></td><td></td></t<>		• •				
Lab Macropharyngodon meleagris 4 Lab Cirrhilabrus punctatus 1 Lab Oxycheilinus unifasciatus 4 Lab Coris avgula 1 Mic Gumellichtilys curiosus 4 Lab Halichoeres melamurus 1 Mic Pereleotris evides 4 Lab Halichoeres melamurus 1 Poc Centropyge fluvissima 4 Lab Hologymnosus dolatus 1 Pom Chromis funea 4 Lab Labropsis xanthonota 1 Pom Plectroglyphidodon johnstonianus 4 Lab Labropsis xanthonota 1 Pom Pomestantus bankanensis 4 Lab Macropharyngodon negrosensis 1 Aca Carathurus 1 Lab Macropharyngodon negrosensis 1 Aca Aca Acanthurus mata 3 Lab Pseudocheilinus lineatus 1 Aca Acanthurus mata 3 Lab Pseudocheilinus lineatus 1 Aca Acanthurus sunthopterus 3 Lab Stethojulis bandamensis 1 Aca Asos brev					· ·	
Lab Oxycheilinus mifasciatus 4 Lab Coris aygula 1 Lut Lut Jutjanus bohar 4 Lab Halichoerees argus 1 Mic Gumellichthys curiosus 4 Lab Halichoerees melanurus 1 Mic Preveleoris evides 4 Lab Hologymnosus adulatus 1 Pom Centropyge flavissima 4 Lab Hologymnosus adulatus 1 Pom Peterroglyphilodon johnstonianus 4 Lab Hologymnosus adulatus 1 Pom Peterroglyphilodon johnstonianus 4 Lab Labropois xanthonota 1 Pom Peterroglyphilodon johnstonianus 4 Lab Labropois xanthonota 1 Sca Scarus flavipectoralis 4 Lab Develocoris vanthonota 1 Aca Acan Manual 1 Lab Pseudocoris yamashiroi 1 Aca Acan Manual 1 Lat Aprion virescens 1 Aca Naso tonganus 3 Lut						
Lut Lujamus bohar 4 Lab Halichoeres argus 1 Mic Gurnellichtys curiosus 4 Lab Halichoeres melanurus 1 Mic Pereleotris evides 4 Lab Hologymnosus annulatus 1 Pom Chetropyge flavissima 4 Lab Labrichtys unilineatus 1 Pom Pomacentrus bankanensis 4 Lab Labropsis xanthonota 1 Pom Pomacentrus bankanensis 4 Lab Datropsis xanthonota 1 Sca Scarus flavipectoralis 4 Lab Macropharygodon negrosensis 1 Aca Acanthurus mata 3 Lab Desudocoris xumashiroa 1 Aca Acanthurus xanthopterus 3 Lab Pseudochelilirus kextaenia 1 Aca Acanthurus xanthopterus 3 Lat Gymnocranius euanus 1 Aca Acasto soviriostris 3 Lut Ayrion virescens Ant Pseudochelilirus kexamiro 1 Lab <th< td=""><td></td><td></td><td></td><td></td><td>•</td><td></td></th<>					•	
Mic Gumellichthys curiosus 4 Lab Halichoeres melanurus 1 Mic Prereleorris evides 4 Lab Hologymnosus annulatus 1 Por Chromis fumea 4 Lab Labrichthys unilineatus 1 Pom Plectroglyphilodon johnstonianus 4 Lab Labropsis xanthonota 1 Pom Pomacentrus bankanensis 4 Lab Macropharyngodon negrosensis 1 Scan Saras flavipectoralis 4 Lab Aucropharyngodon negrosensis 1 Aca Acanthurus mata 3 Lab Pseudocheilinus hexataenia 1 Aca Acanthurus mata 3 Lab Pseudocris yamashiroi 1 Aca Axas ornganus 3 Lat Pseudocheilinus hexataenia 1 Aca Axas ornganus 3 Lat Stethojulis bandanensis 1 Aca Axas ornganus 3 Lat Cymnocranius euanus 1 Ant Pseudoathikas pascalus 3 Lat <		•				
Mic Pereleotris evides 4 Lab Hologymmosus annulatus 1 Poc Centropyze flavissima 4 Lab Hologymmosus dolialus 1 Pom Phectroglyphilodon johnstonianus 4 Lab Labrophis xanthonota 1 Pom Pomacentrus bankanensis 4 Lab Oxycheilimus lineatus 1 Sca Scarus flavipectoralis 4 Lab Oxycheilimus lineatus 1 Aca Acanthurus mata 3 Lab Pseudocheilimus lineatus 1 Aca Acanthurus xanthopterus 3 Lab Pseudocheilimus hexatenia 1 Aca Acanthurus xanthopterus 3 Lat Pseudocheilimus hexatenia 1 Aca Asso tonganus 3 Lat Cythocheilimus hexatenia 1 Aca Asso tonganus 3 Lut Aprino viruseseus 1 Aca Asso tonganus 3 Lut Aprino viruseseus 1 Aca Asso tonganus 3 Lut		·			· ·	
Poc Centropyge flavissima 4 Lab Hologymnosus doliatus 1 Pom Chromis fumea 4 Lab Labrichthys unilineatus 1 Pom Plectroglyphidodon johnstonianus 4 Lab Labropsis xanthonota 1 Sca Scarus flavipectoralis 4 Lab Macropharyngodon negrosensis 1 Aca Acanthurus mata 3 Lab Pseudocheilinus hexataenia 1 Aca Acanthurus mata 3 Lab Pseudocheilinus hexataenia 1 Aca Aca bor bevirostris 3 Lab Pseudochilis sandamensis 1 Aca Naso tonganus 3 Let Gymnocranius euanus 1 Aca Naso tonganus 3 Lut Lujanus fulvijlamma 1 Aca Aso borganus 3 Lut Lujanus fulvijlamma 1 Cha Chaedodn flavirostris 3 Lut Lujanus fulvijlamma 1 Cha Chaetodon launulatus 3 Lut <td< td=""><td></td><td>·</td><td></td><td></td><td></td><td></td></td<>		·				
Pom Chromis fumea 4 Lab Labrichthys unilineatus 1 Pom Plectroglyphidodon johnstonianus 4 Lab Labropsis xunthonota 1 Pom Pomacentrus bankamensis 4 Lab Macropharyngodon negrosensis 1 Sca Scaris flavipectoralis 4 Lab Oxychelilmus lineatus 1 Aca Acanthurus mata 3 Lab Pseudocheilinus hexataenia 1 Aca Acanthurus xanthopterus 3 Lab Pseudocheilinus hexataenia 1 Aca Acanthurus xanthopterus 3 Lab Pseudocheilinus hexataenia 1 Aca Asao brorganus 3 Lut Europerus versumanticus 1 Aca Asao tonganus 3 Lut Lutjanus quinquelineatus 1 Cha Chaedodon flavirostris 3 Lut Lutjanus guinquelineatus 1 Cha Chaetodon flavirostris 3 Lut Lutjanus guinquelineatus 1 Cha Chaetodon lunulatus					••	
Pom Plectroglyphidodon johnstonianus 4 Lab Labropsis xanthonota 1 Pom Pomacentrus bankamensis 4 Lab Macropharyngodon negrosensis 1 Sca Scarus flavipectoralis 4 Lab Oxycheilinus lineatus 1 Aca Acanthurus mata 3 Lab Pseudoceris yamashiroi 1 Aca Acanthurus xanthopterus 3 Lab Pseudocris yamashiroi 1 Aca Naso tonganus 3 Lat Cymnocranius euanus 1 Aca Naso tonganus 3 Lut Gymnocranius euanus 1 Aca Naso tonganus 3 Lut Aprion virescens 1 Ant Pseudanthias pascalus 3 Lut Aurinus suânuacus 1 Cha Chaetodon flavirostris 3 Lut Lutjamus kasmira 1 Cha Chaetodon flavirostris 3 Lut Lutjamus quânquelineatus 1 Cha Chaetodon lunulatus 3 Lut <t< td=""><td></td><td>1.0 0</td><td></td><td></td><td>••</td><td></td></t<>		1.0 0			••	
Pom Pomacentrus bankanensis 4 Lab Macropharyngodon negrosensis 1 Sca Scarus flavipectoralis 4 Lab Oxycheilimus lineatus 1 Aca Acanthurus mata 3 Lab Pseudocheilimus hexataenia 1 Aca Acanthurus xanthopterus 3 Lab Pseudocheilimus hexataenia 1 Aca Axaso brevirostris 3 Lab Stehojulis bandamensis 1 Aca Naso tonganus 3 Let Gymnocranius euanus 1 Aca Naso tonganus 3 Lut Aprion virescens 1 Aca Asao tonganus 3 Lut Aprion virescens 1 Cha Chaedodon lumitatus 3 Lut Lutjanus quinquellinentus 1 Cha Chaedodon kleinii 3 Lut Lutjanus quinquellineatus 1 Cha Chaetodon lumulatus 3 Lut Mul parupeneus kamenius 1 Cha Heniochus acuminatus 3 Mul <		·				
Sca Scarus flavipectoralis 4 Lab Oxycheilinus ineatus 1 Aca Acanthurus mata 3 Lab Pseudocheilinus hexataenia 1 Aca Acanthurus xanthopterus 3 Lab Pseudocris yamashiroi 1 Aca Naso brevirostris 3 Lat Stethojulis bandanensis 1 Aca Naso tonganus 3 Lut Aprion virescens 1 Ant Pseudanthias pascalus 3 Lut Aprion virescens 1 Can Canthigaster valentini 3 Lut Lutjanus kasmira 1 Cha Chaetodon flavirostris 3 Lut Lutjanus kasmira 1 Cha Chaetodon lunulatus 3 Lut Lutjanus quinquelneatus 1 Cha Chaetodon lunulatus 3 Lut Lutjanus quinquelneatus 1 Cha Chaetodon lunulatus 3 Mut Parupeneus barberinatus 1 Cha Heniochus accuminatus 3 Mut Parupeneus barberinus 1 Epi Aryperodon leucogrammicus 3<		• • • • • • • • • • • • • • • • • • • •				
AcaAcanthurus mata3LabPseudocheilinus hexataenia1AcaAcanthurus xanthopterus3LabPseudocoris yamashiroi1AcaNaso brevirostris3LabStethojulis bandanensis1AcaNaso tonganus3LetGymnocranius euanus1AntPseudanthias pacsalus3LutLutjanus fulviflamma1CanCanthigaster valentini3LutLutjanus fulviflamma1ChaChaetodon flavirostris3LutLutjanus quinquelineatus1ChaChaetodon kleinii3LutLutjanus quinquelineatus1ChaChaetodon kleinii3LutMacolor niger1ChaChaetodon kleinii3LutMacolor niger1ChaChaetodon kleinii3MulParupeneus barberinus1ChaChaetodon kleinii3MulParupeneus barberinus1ChaHeniochus acuminatus3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus bifasciatus1EpiEpinephelus fasciatus3MulParupeneus crassilabris1GraDiploprion bifasciatum3MulParupeneus crassilabris1GraDiploprion bifasciatum3MulParupeneus spilurus1LabCoris batuensis3MulParupeneus spilurus1LabCoris batuensis					1 . 0 0	
AcaAcanthurus xanthopterus3LabPseudocoris yamashiroi1AcaNaso brevirostris3LabStethojulis bandamensis1AcaNaso tonganus3LetGymnocranius euanus1AntPseudanthias pascalus3LutAprion virescens1CanCanthigaster valentini3LutLutjanus fulviflamma1ChaChaetodon flavirostris3LutLutjanus quinquelineatus1ChaChaetodon kleinii3LutLutjanus quinquelineatus1ChaChaetodon kleinii3LutMacolor niger1ChaHeniochus acuminatus3MicGumellichthys monostigma1ChaHeniochus acuminatus3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus rassilabris1EpiEpinephelus fasciatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus crassilabris1GraDiploprion bifasciatum3MulParupeneus crassilabris1LabAnampses femininus3MulParupeneus spilurus1LabCoris batuensis3MulParupeneus spilurus1LabCoris batuensis3MulParupeneus spilurus1LabCoris batuensis3PomAmphiprion clarkii1MulParupeneus barberinoides		* *			•	
AcaNaso brevirostris3LabStethojulis bandanensis1AcaNaso tonganus3LetGymnocranius euanus1AntPseudanthias pascalus3LutAprion virescens1CanCanthigaster valentini3LutLut janus fulviflamma1ChaChaetodon flavirostris3LutLutjanus quinquelineatus1ChaChaetodon lunulatus3LutLutjanus quinquelineatus1ChaChaetodon lunulatus3LutMacolor niger1ChaHeniochus acuminatus3MicGumellichthys monostigma1ChaHeniochus monoceros3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus bifasciatus1EpiEpinephelus fasciatus3MulParupeneus bifasciatus1EpiEpinephelus maculatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus crassilabris1GraDiploprion bifasciatum3MulParupeneus crassilabris1LabAnamyses femininus3MulParupeneus indicus1LabCoris batuensis3MulParupeneus parlierus1MulParupeneus barberinoides3PomAmphiprion clarkii1MulParupeneus barberinoides3PomAmphiprion melanopus1ScaCet						
AcaNaso tonganus3LetGymnocranius euanus1AntPseudanthias pascalus3LutAprion virescens1CanCanthigaster valentini3LutLutjanus falvițlamma1ChaChaetodon Ilavirostris3LutLutjanus quinquelineatus1ChaChaetodon lundatus3LutMacolor niger1ChaHeniochus acuminatus3MicGunnellichthys monostigma1ChaHeniochus monoceros3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus barberinus1EpiEpinephelus fasciatus3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus syllurus1LabAnamyses femininus3MulParupeneus syllurus1LabCoris batuensis3PomAmphiprion clarkii1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1ScaCetoscarus ocellatus3PomChromis abripes1ScaCetoscarus ocellatus3PomChromis abripes1ScaScarus rubroviolaceus3PomPomoacentrus adelus1AcaNaso brachycentron2 <td< td=""><td></td><td>•</td><td></td><td></td><td>•</td><td></td></td<>		•			•	
AntPseudanthias pascalus3LutAprion virescens1CanCanthigaster valentini3LutLutjanus fulviflamma1ChaChaetodon Idavirostris3LutLutjanus kasmira1ChaChaetodon kleinii3LutLutjanus quinquelineatus1ChaChaetodon lunulatus3LutMacolor niger1ChaHeniochus acuminatus3MicGunnellichthys monostigma1ChaHeniochus monoceros3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus barberinus1EpiEpinephelus fasciatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus indicus1LabAnampses femininus3MulParupeneus indicus1LabCoris batuensis3PleAssessor macneilli1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis abripes1ScaScarus rubroviolaceus3PomChromis atripes1ScaScarus rubroviolaceus3 <td< td=""><td></td><td></td><td></td><td></td><td>·</td><td></td></td<>					·	
CanCanthigaster valentini3LutLutjanus fulviflamma1ChaChaetodon flavirostris3LutLutjanus kasmira1ChaChaetodon kleinii3LutLutjanus quinquelineatus1ChaChaetodon lunulatus3LutMacolor niger1ChaHeniochus acuminatus3MicGunnellichthys monostigma1ChaHeniochus monoceros3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus brifasciatus1EpiEpinephelus fasciatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus spilurus1LabAnamyses femininus3MulParupeneus spilurus1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis atripes1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ScaScarus rubroviolaceus3PomChromis chrysura1AcaNaso brachycentron2 <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td>		•			•	
Cha Chaetodon flavirostris 3 Lut Lutjanus kasmira 1 Cha Chaetodon kleinii 3 Lut Lutjanus quinquelineatus 1 Cha Chaetodon lunulatus 3 Lut Macolor niger 1 Cha Heniochus acuminatus 3 Mul Parupeneus briberinus 1 Cha Heniochus monoceros 3 Mul Parupeneus bribasciatus 1 Epi Anyperodon leucogrammicus 3 Mul Parupeneus bribasciatus 1 Epi Epinephelus fasciatus 3 Mul Parupeneus crassilabris 1 Epi Epinephelus maculatus 3 Mul Parupeneus crassilabris 1 Epi Epinephelus fasciatus 3 Mul Parupeneus crassilabris 1 Lab Andmyses femininus 3 Mul Parupeneus crassilabris 1 Lab Coris batuensis 3 Pul Assessor macneilli 1 Lab Coris batuensis 3 Pun		•			•	
ChaChaetodon kleinii3LutLutjanus quinquelineatus1ChaChaetodon lunulatus3LutMacolor niger1ChaHeniochus acuminatus3MicGunnellichthys monostigma1ChaHeniochus monoceros3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus bifasciatus1EpiEpinephelus fasciatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus sindicus1LabAnampses femininus3MulParupeneus sindicus1LabCoris batuensis3PleAssessor macneilli1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis arripes1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ScaScarus rubroviolaceus3PomChromis chrysura1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2 <t< td=""><td></td><td></td><td></td><td></td><td>* * *</td><td></td></t<>					* * *	
ChaChaetodon lunulatus3LutMacolor niger1ChaHeniochus acuminatus3MicGunnellichthys monostigma1ChaHeniochus monoceros3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus bifasciatus1EpiEpinephelus fasciatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus spilurus1LabAnampses femininus3MulParupeneus spilurus1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus coelestis1ChaChaetodon auriga2<		· ·			· ·	
ChaHeniochus acuminatus3MicGunnellichthys monostigma1ChaHeniochus monoceros3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus bifasciatus1EpiEpinephelus fasciatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus indicus1LabAnampses femininus3MulParupeneus spilurus1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomChromis viridis3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis amboinensis1ScaScarus rubroviolaceus3PomChromis chrysura1ScaScarus rubroviolaceus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus coelestis1ApoApogon aureus2PomPomacentrus coelestis1ChaChaetodon auriga2<					* * *	
ChaHeniochus monoceros3MulParupeneus barberinus1EpiAnyperodon leucogrammicus3MulParupeneus bifasciatus1EpiEpinephelus fasciatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus crassilabris1GraDiploprion bifasciatum3MulParupeneus indicus1LabAnampses femininus3MulParupeneus spilurus1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis atripes1ScaScarus rubroviolaceus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaNaso brachycentron2PomPomacentrus adelus1AntPseudanthias pictilis2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus coelestis1ApoApogon aureus2PomPomacentrus coelestis1ChaChaetodon auriga2					· ·	
EpiAnyperodon leucogrammicus3MulParupeneus bifasciatus1EpiEpinephelus fasciatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus indicus1LabAnampses femininus3MulParupeneus spilurus1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis chrysura1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus brachialis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2 <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td>					,	
EpiEpinephelus fasciatus3MulParupeneus crassilabris1EpiEpinephelus maculatus3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus indicus1LabAnampses femininus3MulParupeneus spilurus1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus coelestis1BleEcsenius bicolor2PomPomacentrus miniator1CaePterocaesio trilineata2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus philippinus1ChaChaetodon unimaculatus2 <t< td=""><td></td><td></td><td></td><td></td><td>•</td><td></td></t<>					•	
EpiEpinephelus maculatus3MulParupeneus cyclostomus1GraDiploprion bifasciatum3MulParupeneus indicus1LabAnampses femininus3MulParupeneus spilurus1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus brachialis1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus magasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2Pom <td>•</td> <td>.,</td> <td></td> <td></td> <td>* *</td> <td></td>	•	.,			* *	
GraDiploprion bifasciatum3MulParupeneus indicus1LabAnampses femininus3MulParupeneus spilurus1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus brachialis1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus imitator1ChaChaetodon auriga2PomPomacentrus payo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomPoma	-	· · ·			*	
LabAnampses femininus3MulParupeneus spilurus1LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AntPseudanthias pictilis2PomPomacentrus amboinensis1ApoApogon aureus2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus imitator1ChaeChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus vaiuli1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes l	•	* *			· ·	
LabCoris batuensis3PleAssessor macneilli1MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus imitator1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2Sca <t< td=""><td></td><td>* * *</td><td></td><td></td><td>_</td><td>1</td></t<>		* * *			_	1
MulParupeneus barberinoides3PomAmphiprion clarkii1PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AntPseudanthias pictilis2PomPomacentrus amboinensis1ApoApogon aureus2PomPomacentrus brachialis1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus nagasakiensis1ChaChaetodon auriga2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon uninaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1						1
PomChromis viridis3PomAmphiprion melanopus1PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus brachialis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus initator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon baronessa2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2Sca<	Lab	Coris batuensis		Ple	Assessor macneilli	1
PomNeoglyphidodon nigroris3PomChromis amboinensis1ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus imitator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Mul	*				1
ScaCetoscarus ocellatus3PomChromis atripes1ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus initator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Pom	Chromis viridis	3	Pom		1
ScaScarus rubroviolaceus3PomChromis chrysura1ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus imitator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Pom			Pom	Chromis amboinensis	1
ZanZanclus cornutus3PomDascyllus aruanus1AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus imitator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Sca	Cetoscarus ocellatus	3	Pom	*	1
AcaNaso brachycentron2PomPomacentrus adelus1AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus initator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Sca	Scarus rubroviolaceus	3	Pom	Chromis chrysura	1
AcaZebrasoma veliferum2PomPomacentrus amboinensis1AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus initator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Zan	Zanclus cornutus	3	Pom	· ·	1
AntPseudanthias pictilis2PomPomacentrus brachialis1ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus imitator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Aca	Naso brachycentron	2	Pom	Pomacentrus adelus	1
ApoApogon aureus2PomPomacentrus chrysurus1BleEcsenius bicolor2PomPomacentrus coelestis1CaePterocaesio trilineata2PomPomacentrus imitator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Aca	Zebrasoma veliferum	2	Pom	Pomacentrus amboinensis	1
Ble Ecsenius bicolor 2 Pom Pomacentrus coelestis 1 Cae Pterocaesio trilineata 2 Pom Pomacentrus imitator 1 Cha Chaetodon auriga 2 Pom Pomacentrus nagasakiensis 1 Cha Chaetodon baronessa 2 Pom Pomacentrus pavo 1 Cha Chaetodon bennetti 2 Pom Pomacentrus philippinus 1 Cha Chaetodon unimaculatus 2 Pom Pomacentrus vaiuli 1 Cha Forcipiger longirostris 2 Pom Stegastes lividus 1 Cir Paracirrhites forsteri 2 Sca Chlorurus microrhinos 1 Epi Cephalopholis miniata 2 Sca Hipposcarus longipes 1	Ant	Pseudanthias pictilis	2	Pom	Pomacentrus brachialis	1
CaePterocaesio trilineata2PomPomacentrus imitator1ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Apo	Apogon aureus	2	Pom	Pomacentrus chrysurus	1
ChaChaetodon auriga2PomPomacentrus nagasakiensis1ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Ble	Ecsenius bicolor	2	Pom	Pomacentrus coelestis	1
ChaChaetodon baronessa2PomPomacentrus pavo1ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Cae	Pterocaesio trilineata	2	Pom	Pomacentrus imitator	1
ChaChaetodon bennetti2PomPomacentrus philippinus1ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Cha	Chaetodon auriga	2	Pom	Pomacentrus nagasakiensis	1
ChaChaetodon unimaculatus2PomPomacentrus vaiuli1ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Cha	Chaetodon baronessa	2	Pom	Pomacentrus pavo	1
ChaForcipiger longirostris2PomStegastes lividus1CirParacirrhites forsteri2ScaChlorurus microrhinos1EpiCephalopholis miniata2ScaHipposcarus longipes1	Cha	Chaetodon bennetti	2	Pom	Pomacentrus philippinus	1
Cir Paracirrhites forsteri 2 Sca Chlorurus microrhinos 1 Epi Cephalopholis miniata 2 Sca Hipposcarus longipes 1	Cha	Chaetodon unimaculatus	2	Pom	Pomacentrus vaiuli	1
Epi Cephalopholis miniata 2 Sca Hipposcarus longipes 1	Cha	Forcipiger longirostris	2	Pom	Stegastes lividus	1
	Cir	Paracirrhites forsteri	2	Sca	Chlorurus microrhinos	1
Epi Cephalopholis sonnerati 2 Sca Scarus altipinnis 1	Epi	Cephalopholis miniata	2	Sca	Hipposcarus longipes	1
	Epi	Cephalopholis sonnerati	2	Sca	Scarus altipinnis	1

Epi	Epinephelus merra	2	Sca	Scarus bleekeri	1
Epi	Plectropomus laevis	2	Sca	Scarus forsteni	1
Epi	Variola louti	2	Sca	Scarus frenatus	1
Hae	Plectorhinchus picus	2	Sca	Scarus globiceps	1
Hol	Myripristis murdjan	2	Sca	Scarus longipinnis	1
Lab	Bodianus loxozonus	2	Sca	Scarus niger	1
Lab	Cheilinus chlorourus	2	Sca	Scarus rivulatus	1
Lab	Coris gaimard	2	Scom	Scomberomorus commerson	1
Lab	Gomphosius varius	2	Sig	Siganus canaliculatus	1
Lab	Labropsis australis	2	Sig	Siganus doliatus	1
Lab	Oxycheilinus celebicus	2	Sig	Siganus punctatus	1
Lab	Oxycheilinus diagrammus	2	Tet	Arothron hispidus	1
Let	Monotaxis grandoculis	2			213 espèces

Tableau n°199 : <u>Annexe 06 : Liste des espèces de poissons (et nombre de fois vues) depuis 2007 (ST12)</u>

Fam	Espèces	Somme	Fam	Espèces	Somme
Aca	Acanthurus blochii	4	Lab	Halichoeres melanurus	2
Aca	Ctenochaetus striatus	4	Lab	Hemigymnus melapterus	2
Aca	Zebrasoma scopas	4	Lab	Oxycheilinus unifasciatus	2
Apo	Apogon doederleini	4	Lab	Stethojulis bandanensis	2
Apo	Apogon fuscus	4	Lut	Lutjanus fulviflamma	2
Bal	Sufflamen fraenatus	4	Mon	Pervagor melanocephalus	2
Cae	Caesio caerulaurea	4	Pom	Chromis amboinensis	2
Lab	Hemigymnus fasciatus	4	Pom	Pomacentrus bankanensis	2
Lab	Labroides dimidiatus	4	Pri	Priacanthus hamrur	2
Lab	Thalassoma lunare	4	Sca	Chlorurus sordidus	2
Nem	Scolopsis bilineatus	4	Sig	Siganus corallinus	2
Poc	Centropyge bicolor	4	Syn	Saurida gracilis	2
Poc	Centropyge tibicen	4	Ant	Pseudanthias pascalus	1
Pom	Chromis fumea	4	Can	Canthigaster valentini	1
Pom	Chromis margaritifer	4	Cha	Chaetodon ephippium	1
Pom	Chromis viridis	4	Cha	Chaetodon kleinii	1
Pom	Chrysiptera rollandi	4	Cha	Chaetodon plebeius	1
Sca	Scarus flavipectoralis	4	Cha	Chaetodon speculum	1
Aca	Naso unicornis	3	Cha	Chaetodon trifasciatus	1
Apo	Apogon sp	3	Cha	Chaetodon ulietensis	1
Apo	Cheilodipterus macrodon	3	Cha	Forcipiger longirostris	1
Aul	Aulostomus chinensis	3	Epi	Epinephelus cyanopodus	1
Ble	Ecsenius bicolor	3	Epi	Epinephelus howlandi	1
Ble	Meiacanthus atrodorsalis	3	Epi	Epinephelus maculatus	1
Cha	Chaetodon baronessa	3	Gob	Amblygobius phalaena	1
Cha	Chaetodon lunulatus	3	Gob	Valenciennea randalli	1
Cha	Heniochus acuminatus	3	Hae	Plectorhinchus lessonii	1
Cha	Heniochus varius	3	Hae	Plectorhinchus lineatus	1
Epi	Plectropomus leopardus	3	Lab	Anampses caeruleopunctatus	1
Lab	Anampses femininus	3	Lab	Bodianus bilunulatus	1
Lab	Anampses neoguinaicus	3	Lab	Bodianus mesothorax	1
Lab	Cheilinus chlorourus	3	Lab	Choerodon graphicus	1
Lab	Choerodon fasciatus	3	Lab	Gomphosus varius	1
Lab	Labroides bicolor	3	Lab	Halichoeres prosopeion	1
Lab	Oxycheilinus celebicus	3	Lab	Hologymnosus annulatus	1
Mic	Gunnellichthys curiosus	3	Lab	Labropsis australis	1
Mul	Parupeneus indicus	3	Lab	Oxycheilinus diagrammus	1
Poc	Centropyge bispinosa	3	Lab	Thalassoma hardwicke	1
Poc	Pomacanthus sexstriatus	3	Lab	Thalassoma nigrofasciatum	1
Pom	Abudefduf whitleyi	3	Lab	Cirrhilabrus punctatus	1
Pom	Amblyglyphidodon curacao	3	Lab	Oxycheilinus celebicus	1
Pom	Amblyglyphidodon orbicularis	3	Lei	Leiognathus equulus	1
Pom	Chromis atripectoralis	3	Let	Gnathodentex aureolineatus	1
					-

Pom	Dascyllus aruanus	3	Let	Lethrinus erythracanthus	1
Pom	Dascyllus reticulatus	3	Let	Lethrinus nebulosus	1
Pom	Neoglyphidodon nigroris	3	Lut	Aphareus furca	1
Pom	Pomacentrus coelestis	3	Lut	Lutjanus fulvus	1
Pom	Pomacentrus moluccensis	3	Lut	Lutjanus monostigma	1
Sca	Scarus bleekeri	3	Mul	Parupeneus barberinoides	1
Sig	Siganus doliatus	3	Mul	Parupeneus ciliatus	1
Sig	Siganus vulpinus	3	Mul	Parupeneus multifasciatus	1
Aca	Zebrasoma veliferum	2	Poc	Pomacanthus diacanthus	1
Apo	Apogon indicus	2	Pom	Abudefduf sexfasciatus	1
Apo	Archamia leai	2	Pom	Amblyglyphidodon aureus	1
Apo	Ostorhinchus aureus	2	Pom	Chromis lepidolepsis	1
Car	Trianodon obesus	2	Pom	Chromis retrofasciata	1
Cha	Chaetodon bennetti	2	Pom	Chrysiptera rex	1
Cha	Chaetodon flavirostris	2	Pom	Chrysiptera taupou	1
Cha	Chaetodon unimaculatus	2	Pom	Dascyllus trimaculatus	1
Epi	Anyperodon leucogrammicus	2	Pom	Neoglyphidodon polyacanthus	1
Epi	Cephalopholis boenak	2	Pom	Pomacentrus amboinensis	1
Epi	Epinephelus merra	2	Pom	Pomacentrus nagasakiensis	1
Hol	Sargocentron spiniferum	2	Sca	Cetoscarus ocellatus	1
Lab	Bodianus axillaris	2	Sca	Scarus altipinnis	1
Lab	Cheilinus fasciatus	2	Sca	Scarus frenatus	1
Lab	Cheilinus trilobatus	2	Sca	Scarus globiceps	1
Lab	Cirrhilabrus punctatus	2	Scom	Scomberomorus commerson	1
Lab	Coris batuensis	2	Sig	Siganus argenteus	1
Lab	Epibulus insidiator	2	Sig	Siganus spinus	1
Lab	Halichoeres biocellatus	2	Syn	Synodus variegatus	1
				1	40 espèces

Tableau n°200 : <u>Annexe 06 : Liste de toutes les espèces de poissons observées depuis 2005</u>

573 espèces en 7 missions, avec 11 à 14 stations

Fam	Espèces	Fam	Espèces	Fam	Espèces
Aca	Acanthurus achilles	Epi	Epinephelus merra	Mul	Parupenaeus indicus
Aca	Acanthurus albipectoralis	Epi	Epinephelus ongus	Mul	Parupenaeus spilurus
Aca	Acanthurus blochii	Epi	Epinephelus polyphekadion	Mul	Parupeneus barberinoides
Aca	Acanthurus dussumieri	Epi	Epinephelus rivulatus	Mul	Parupeneus barberinus
Aca	Acanthurus lineatus	Epi	Epinephelus tauvina	Mul	Parupeneus bifasciatus
Aca	Acanthurus mata	Epi	Gracila albomarginata	Mul	Parupeneus ciliatus
Aca	Acanthurus nigricans	Epi	Plectropomus areolatus	Mul	Parupeneus crassilabris
Aca	Acanthurus nigricauda	Epi	Plectropomus laevis	Mul	Parupeneus cyclostomus
Aca	Acanthurus nigrofuscus	Epi	Plectropomus leopardus	Mul	Parupeneus indicus
Aca	Acanthurus olivaceus	Epi	Variola louti	Mul	Parupeneus multifasciatus
Aca	Acanthurus pyroferus	Fis	Fistularia commersonii	Mul	Parupeneus pleurostigma
Aca	Acanthurus triostegus	Gob	Amblyeleotris fontanesii	Mul	Parupeneus spilurus
Aca	Acanthurus xanthopterus	Gob	Amblyeleotris randalli	Mul	Upeneus tragula
Aca	Ctenochaetus striatus	Gob	Amblyeleotris rubrimarginata	Mur	Gymnothorax javanicus
Aca	Ctenochaetus tominiensis	Gob	Amblyeleotris wheeleri	Mur	Gymnothorax meleagris
Aca	Naso brachycentron	Gob	Amblyellotris diagonalis	Mur	Siderea picta
Aca	Naso brevirostris	Gob	Amblygobius decussatus	Nem	Pentapodus aureofasciatus
Aca	Naso caesius	Gob	Amblygobius nocturnus	Nem	Pentapodus caninus
Aca	Naso hexacanthus	Gob	Amblygobius phalaena	Nem	Pentapodus trilineatus
Aca	Naso lituratus	Gob	Bryaninops ampulus	Nem	Scolopsis bilineatus
Aca	Naso lopezi	Gob	Bryaninops nathans	Nem	Scolopsis lineatus
Aca	Naso maculatus	Gob	Coryphopterus neophytus	Ost	Ostracion cubicus
Aca	Naso tonganus	Gob	Ctenogobiops aurocingulus	Pin	Parapercis clathrata
Aca	Naso unicornis	Gob	Ctenogobiops feroculus	Pin	Parapercis cylindrica
Aca	Naso vlamingii	Gob	Gobiodon okinawae	Pin	Parapercis flavissimus
Aca	Paracanthurus hepatus	Gob	Gunnellichthys monostgma	Pin	Parapercis hexophtalma
Aca	Prionurus maculatus	Gob	Valenciennea decora	Pin	Parapercis lineopunctata

Aca	Zebrasoma scopas	Gob	Valenciennea parva	Pin	Parapercis millepunctata
Aca	Zebrasoma veliferum	Gob	Valenciennea puellaris	Pin	Parapercis multiplicata
Ant	Pseudanthias bicolor	Gob	Valenciennea randalli	Pin	Parapercis tetracantha
Ant	Pseudanthias dispar	Gob	Valenciennea sexguttata	Pin	Parapercis xanthozona
Ant	Pseudanthias hypselosoma	Gob	Valenciennea strigata	Ple	Assessor macneilli
Ant	Pseudanthias pascalus	Gra	Diploprion bifasciatum	Plo	Plotosus anguillaris
Ant	Pseudanthias pictilis	Hae	Plectorhinchus albovittatus	Poc	Apolemichthys trimaculatus
Ant	Pseudanthias pleurotaenia	Hae	Plectorhinchus chaetodonoides	Poc	Centropyge bicolor
Ant	Pseudanthias regalis	Hae	Plectorhinchus flavomaculatus	Poc	Centropyge bispinosa
Ant	Pseudanthias squamipinnis	Hae	Plectorhinchus gibbosus	Poc	Centropyge flavissima
Apo	Apogon angustatus	Hae	Plectorhinchus lessonii	Poc	Centropyge multifasciata
Apo	Apogon apogonides	Hae	Plectorhinchus lineatus	Poc	Centropyge nox
Apo	Apogon aureus	Hae	Plectorhinchus orientalis	Poc	Centropyge tibicen
Apo	Apogon doederleini	Hae	Plectorhinchus pictum	Poc	Chaetodontoplus conspicillatus
Apo	Apogon doryssa	Hae	Plectorhinchus picus	Poc	Genicanthus melanospilos
Apo	Apogon fuscus	Hae	Plectorhinchus vittatus	Poc	Genicanthus watanabei
Apo	Apogon indicus	Hol	Myripristis amaena	Poc	Pomacanthus chrysurus
Apo	Apogon leptacanthus	Hol	Myripristis berndti	Poc	Pomacanthus imperator
Apo	Apogon nigrofasciatum	Hol	Myripristis botsche	Poc	Pomacanthus semicirculatus
Apo	Apogon novemfasciatus	Hol	Myripristis hexagona	Poc	Pomacanthus sexstriatus
Apo	Apogon selas	Hol	Myripristis murdjan	Poc	Pygoplites diacanthus
Apo	Apogon sp1	Hol	Neoniphon sammara	Pom	Abudefduf sexfasciatus
Apo	Archamia fucata	Hol	Sargocentron caudimaculatum	Pom	Abudefduf sordidus
Apo	Archamia leai	Hol	Sargocentron ensiferum	Pom	Abudefduf vaigensis
Apo	Archamia macroptera	Hol	Sargocentron praslin	Pom	Abudefduf whitleyi
Apo	Archamia sp1	Hol	Sargocentron rubrum	Pom	Acanthochromis polyacanthus
Apo	Cheilodipterus macrodon	Hol	Sargocentron spiniferum	Pom	Amblyglyphidodon aureus
Apo	Cheilodipterus quinquelineatus	Кур	Kyphosus pacificus	Pom	Amblyglyphidodon curacao
Apo	Ostorhinchus angustatus	Кур	Kyphosus sydneyanus	Pom	Amblyglyphidodon leucogaster
Apo	Ostorhinchus aureus	Lab	Anampses caeruleopunctatus	Pom	Amblyglyphidodon melanopterus
Apo	Ostorhinchus compressus	Lab	Anampses femininus	Pom	Amblyglyphidodon orbicularis
Apo	Ostorhinchus cookii	Lab	Anampses geographicus	Pom	Amblyglyphidodon ternatensis
Apo	Ostorhinchus cyanosoma	Lab	Anampses meleagrides	Pom	Amphiprion akyndinos
Apo	Ostorhinchus flavus	Lab	Anampses neoguinaicus	Pom	Amphiprion chrysopterus
Apo	Ostrorhinchus aureus	Lab	Bodianus anthioides	Pom	Amphiprion clarkii
Ath	Atherinomorus lacunosus	Lab	Bodianus axillaris	Pom	Amphiprion melanopus
Aul	Aulostomus chinensis	Lab	Bodianus bilunulatus	Pom	Amphiprion perideraion
Bal	Balistapus undulatus	Lab	Bodianus diana	Pom	Chromis agilis
Bal	Balistoides conspicillum	Lab	Bodianus fasciatus	Pom	Chromis amboinensis
Bal	Balistoides viridescens	Lab	Bodianus loxozonus	Pom	Chromis analis
Bal	Odonus niger	Lab	Bodianus mesothorax	Pom	Chromis atripectoralis
Bal	Pseudobalistes flavimarginatus	Lab	Bodianus perditio	Pom	Chromis atripes
Bal	Pseudobalistes fuscus	Lab	Cheilinus chlorourus	Pom	Chromis caudalis
Bal	Sufflamen bursa	Lab	Cheilinus fasciatus	Pom	Chromis chrysura
Bal	Sufflamen chrysopterus	Lab	Cheilinus trilobatus	Pom	Chromis fumea
Bal	Sufflamen fraenatus	Lab	Cheilinus undulatus	Pom	Chromis jamea Chromis iomelas
Ble	Aspidontus taeniatus	Lab	Choerodon anchorago	Pom	Chromis lepidolepsis
Ble	Atrosalarias fuscus	Lab	Choerodon fasciatus	Pom	Chromis leucogaster
Ble	Blenniella chrysospilos	Lab	Choerodon graphicus	Pom	Chromis leucura
Ble	Cirrhipectes castaneus	Lab	Choerodon jordani	Pom	Chromis margaritifer
Ble	Cirrhipectes stigmaticus	Lab	Cirrhilabrus exquisitus	Pom	Chromis nitida
Ble	Cirripectes castaneus	Lab	Cirrhilabrus laboutei	Pom	Chromis phillippinus
Ble	Cirripectes chelomatus	Lab	Cirrhilabrus lineatus	Pom	Chromis retrofasciata
Ble	Cirripectes speculum	Lab	Cirrhilabrus punctatus	Pom	Chromis ternatensis
Ble	Cirripectes stigmaticus	Lab	Cirrhilabrus scottorum		Chromis vanderbilti
Ble	Crossossalarias macrospilus	Lab	Coris aygula	Pom Pom	Chromis vanderouu Chromis viridis
Ble	Ecsenius bicolor	Lab	Coris ayguta Coris batuensis	Pom	Chromis viriais Chromis weberi
Ble	Exallias brevis	Lab	Coris centralis	Pom	Chromis xanthura
Ble	Meiacanthus atrodorsalis	Lab	Coris dorsomacula	Pom	Chrysiptera biocellata
Ble	Meiacanthus phaeus	Lab	Coris gaimard	Pom	Chrysiptera brownriggii
DIC	лененины ринень	Lau	com gamara	1 0111	c.a. ysipici a biowiniggu

Ble	Plagiotremus laudandus	Lab	Coris pictoides	Pom	Chrysiptera notialis
Ble	Plagiotremus rhinorhynchos	Lab	Diproctacanthus xanthurus	Pom	Chrysiptera parasema
Ble	Plagiotremus tapeinosom	Lab	Epibulus insidiator	Pom	Chrysiptera rex
Ble	Salarias alboguttatus	Lab	Gomphosus varius	Pom	Chrysiptera rollandi
Cae	Caesio caerulaurea	Lab	Halichoeres argus	Pom	Chrysiptera starcki
Cae	Caesio cuning	Lab	Halichoeres biocellatus	Pom	Chrysiptera taupou
Cae	Caesio teres	Lab	Halichoeres chloropterus	Pom	Chrysiptera unimaculata
Cae	Paracaesio digramma	Lab	Halichoeres chrysus	Pom	Dascyllus aruanus
Cae	Pterocaesio diagramma	Lab	Halichoeres dorsomaculata	Pom	Dascyllus melanurus
Cae	Pterocaesio pisang	Lab	Halichoeres hortulanus	Pom	Dascyllus reticulatus
Cae	Pterocaesio trilineata	Lab	Halichoeres margaritaceus	Pom	Dascyllus trimaculatus
Can	Canthigaster compressa	Lab	Halichoeres marginatus	Pom	Neoglyphidodon melas
Can	Canthigaster coronata	Lab	Halichoeres melanurus	Pom	Neoglyphidodon nigroris
Can	Canthigaster janthinoptera	Lab	Halichoeres ornatissimus	Pom	Neoglyphidodon polyacanthus
Can	Canthigaster ocellicincta	Lab	Halichoeres pallidus	Pom	Neopomacentrus azysron
Can	Canthigaster valentini	Lab	Halichoeres prosopeion	Pom	Neopomacentrus filamentosus
Car	Alectis ciliaris	Lab	Halichoeres trimaculatus	Pom	Neopomacentrus nemurus
Car	Alepes vari	Lab	Hemigymnus fasciatus	Pom	Neopomacentrus taeniurus
Car	Atule mate	Lab	Hemigymnus melapterus	Pom	Plectroglyphidodon dickii
Car	Carangoides coeruleopinnatus	Lab	Hologymnosus annulatus	Pom	Plectroglyphidodon johnstonianus
	•	Lab	••	Pom	* * * * * * * * * * * * * * * * * * * *
Car	Carangoides dinema		Hologymnosus doliatus		Plectroglyphidodon lacrymatus
Car	Carangoides ferdau	Lab	Labrichthys unilineatus	Pom	Plectroglyphidodon leucozonus
Car	Carangoides gymnostethus	Lab	Labroides bicolor	Pom	Pomacentrus adelus
Car	Carangoides plagiotaenia	Lab	Labroides dimidiatus	Pom	Pomacentrus amboinensis
Car	Caranx ignobilis	Lab	Labropsis australis	Pom	Pomacentrus aurifrons
Car	Caranx melampygus	Lab	Labropsis xanthonota	Pom	Pomacentrus bankanensis
Car	Caranx papuensis	Lab	Macropharyngodon meleagris	Pom	Pomacentrus brachialis
Car	Caranx sexfasciatus	Lab	Macropharyngodon negrosensis	Pom	Pomacentrus chrysurus
Car	Elagatis bipinnulata	Lab	Macropharyngodon ornatus	Pom	Pomacentrus coelestis
Car	Gnathanodon speciosus	Lab	Oxycheilinus bimaculatus	Pom	Pomacentrus grammorhynchus
Car	Pseudocaranx dentex	Lab	Oxycheilinus celebicus	Pom	Pomacentrus imitator
Car	Scomberoides lysan	Lab	Oxycheilinus diagrammus	Pom	Pomacentrus lepidogenys
Car	Trachinotus blochii	Lab	Oxycheilinus lineatus	Pom	Pomacentrus moluccensis
Carc	Carcharhinus albimarginatus	Lab	Oxycheilinus oxyaphalus	Pom	Pomacentrus nagasakiensis
Carc	Carcharhinus amblyrhynchos	Lab	Oxycheilinus rhodochrous	Pom	Pomacentrus neidi
Carc	Carcharhinus melanopterus	Lab	Oxycheilinus unifasciatus	Pom	Pomacentrus pavo
Carc	Carcharhinus plumbeus	Lab	Pseudocheilinus evanidus	Pom	Pomacentrus philippinus
Carc	Carcharodon carcharias	Lab	Pseudocheilinus hexataenia	Pom	Pomacentrus proteus
Carc	Triaenodon obesus	Lab	Pseudocheilinus ocellatus	Pom	Pomacentrus spilotoceps
Cen	Aeoliscus strigastus	Lab	Pseudocheilinus octotaeni	Pom	Pomacentrus vaiuli
Cha	Chaetodon auriga	Lab	Pseudocoris yamashiroi	Pom	Stegastes albifasciatus
Cha	Chaetodon baronessa	Lab	Pseudodax moluccanus	Pom	Stegastes aureus
Cha	Chaetodon bennetti	Lab	Pseudojuloides cerasinus	Pom	Stegastes gascoynei
Cha	Chaetodon citrinellus	Lab	Pteragogus cryptus	Pom	Stegastes lividus
Cha	Chaetodon ephippium	Lab	Stethojulis bandanensis	Pom	Stegastes nigricans
Cha	Chaetodon flavirostris	Lab	Stethojulis interrupta	Pri	Priacanthus hamrur
Cha	Chaetodon guentheri	Lab	Thalassoma amblycephalum	Pse	Cypho purpurascens
Cha	Chaetodon kleinii	Lab	Thalassoma hardwicke	Pse	Ogilbyina salvati
Cha	Chaetodon lineolatus	Lab	Thalassoma lunare	Pse	Pictichromis coralensis
Cha	Chaetodon lunula	Lab	Thalassoma lutescens	Pse	Pseudochromis paccagnellae
Cha	Chaetodon lunulatus	Lab	Thalassoma nigrofasciatum	Sca	Bolbometopon muricatum
Cha	Chaetodon melannotus	Lab	Thalassoma quinquevittatum	Sca	Calotomus carolinus
Cha	Chaetodon mertensii	Lat	Goniistius vestitus	Sca	Cetoscarus ocellatus
Cha	Chaetodon ornatissimus	Lei	Leiognathus equulus	Sca	Chlorurus microrhinos
Cha	Chaetodon pelewensis	Let	Gnathodentex aureolineatus	Sca	Chlorurus sordidus
Cha	Chaetodon plebeius	Let	Gymnocranius aureolineatus	Sca	Hipposcarus longiceps
Cha	Chaetodon reticulatus	Let	Gymnocranius euanus	Sca	Leptoscarus vaigiensis
Cha	Chaetodon speculum	Let	Gymnocranius grandoculis	Sca	Scarus altipinnis
Cha	Chaetodon trifascialis	Let	Lethrinus atkinsoni	Sca	Scarus bicolor
Cha	Chaetodon trifasciatus	Let	Lethrinus erythracanthus	Sca	Scarus bleekeri
	- y		y		** *

Cha	Chaetodon ulietensis	Let	Lethrinus genivittatus	Sca	Scarus chameleon
Cha	Chaetodon unimaculatus	Let	Lethrinus harak	Sca	Scarus dimidiatus
Cha	Chaetodon vagabundus	Let	Lethrinus laticaudus	Sca	Scarus flavipectoralis
Cha	Coradion altivelis	Let	Lethrinus lentjan	Sca	Scarus forsteni
Cha	Forcipiger flavissimus	Let	Lethrinus miniatus	Sca	Scarus frenatus
Cha	Forcipiger longirostris	Let	Lethrinus nebulosus	Sca	Scarus ghobban
Cha	Heniochus acuminatus	Let	Lethrinus obsoletus	Sca	Scarus globiceps
Cha	Heniochus chrysostomus	Let	Lethrinus olivaceus	Sca	Scarus longipinnis
Cha	Heniochus monoceros	Let	Lethrinus xanthochilus	Sca	Scarus niger
Cha	Heniochus singularus	Let	Monotaxis grandoculis	Sca	Scarus oviceps
Cha	Heniochus varius	Let	Monotaxis heterodon	Sca	Scarus psittacus
Cir	Cirrhichthys forsteri	Lut	Aphareus furca	Sca	Scarus rivulatus
Cir	Cirrhitichthys falco	Lut	Aprion virescens	Sca	Scarus rubroviolaceus
Cir	Cirrhitichthys oxycephalus	Lut	Lutjanus adetii	Sca	Scarus schlegeli
Cir	Cyprinocirrhites polyactis	Lut	Lutjanus argentimaculatus	Sca	Scarus spinus
Cir	Oxycirrhites typus	Lut	Lutjanus bohar	Sca	Scarus xanthopleura
Cir	Paracirrhites arcatus	Lut	Lutjanus ehrenbergii	Sco	Euthynnus affinis
Cir	Paracirrhites forsteri	Lut	Lutjanus fulviflamma	Sco	Rastrelliger kanagurta
Cir	Paracirrhites hemistictus	Lut	Lutjanus fulvus	Sco	Scomberoides tol
Cir	Paracirrhites multiplicata	Lut	Lutjanus gibbus	Sco	Scomberomorus commerson
Das	Dasyatis kuhlii	Lut	Lutjanus Kasmira	Scr	Dendrochirus zebra
Das	Taeniura melanospilos	Lut	Lutjanus monostigma	Scr	Pterois antennata
Dio	Diodon hystrix	Lut	Lutjanus quinquelineatus	Scr	Pterois volitans
Dus	Spratelloides gracilis	Lut	Lutjanus rivulatus	Scr	Scorpaenopsis oxycephala
Ech	Echeneis naucrates	Lut	Lutjanus russellii	Sig	Siganus argenteus
Eng	Stolephorus sp	Lut	Lutjanus vittus	Sig	Siganus canaliculatus
Eph	Platax teira	Lut	Macolor niger	Sig	Siganus corallinus
Epi	Aethaloperca rogaa	Mic	Gunnellichthys curiosus	Sig	Siganus doliatus
Epi	Anyperodon leucogrammicus	Mic	Gunnellichthys monostigma	Sig	Siganus fuscescens
Epi	Cephalopholis argus	Mic	Gunnellichthys viridescens	Sig	Siganus lineatus
Epi	Cephalopholis boenak	Mic	Nemateleotris magnifica	Sig	Siganus puellus
Epi	Cephalopholis miniata	Mic	Ptereleotris evides	Sig	Siganus punctatus
Epi	Cephalopholis ongus	Mic	Ptereleotris microlepsis	Sig	Siganus spinus
Epi	Cephalopholis sonnerati	Mic	Ptereleotris monoptera	Sig	Siganus vulpinus
Epi	Cephalopholis urodeta	Mon	Aluterus scriptus	Sph	Sphyraena barracuda
Epi	Cromileptes altivelis	Mon	Cantherhines fronticintus	Sph	Sphyraena jello
Epi	Diploprion bifasciatum	Mon	Oxymonacanthus longirostris	Syn	Saurida gracilis
Epi	Epinephelus coioides	Mon	Paraluteres prionurus	Syn	Synodus dermatogenys
Epi	Epinephelus cyanopodus	Mon	Pervagor alternans	Syn	Synodus variegatus
Epi	Epinephelus fasciatus	Mon	Pervagor janthinosoma	Tet	Arothron hispidus
Epi	Epinephelus fuscoguttatus	Mon	Pervagor melanocephalus	Tet	Arothron meleagris
Epi	Epinephelus howlandi	Mul	Mulloidichthys flavolineatus	Tet	Arothron nigropunctatus
Epi	Epinephelus maculatus	Mul	Parupenaeus ciliatus	Tet	Arothron stellatus
Epi	Epinephelus malabaricus	Mul	Parupenaeus cyclostomus	Zan	Zanclus cornutus

Mission terrain: campagne courantologique, mesures de bruits, prélèvements eaux et sédiments,

...

Indices biotiques: IBNC, IBS

Etats initiaux: inventaire floristique et faunistique (milieux marins, littoral, miniers...), hydrologie, géologie, zones dégradées

Etudes de Faisabilité technique et environnementale : projets agricoles, aquacoles, carrière et mine

Etudes d'impact sur l'Environnement

Dossier d'Autorisation d'Occupation du Domaine Public Maritime (DAODPM)

Dossier Installations Classées pour la Protection de l'Environnement (ICPE) : déclaration et autorisation

Plans de restauration et de réhabilitation : carrière, mine, milieu marin (récifs), mangroves et rivières

Conception pour les aménagements touristiques : jardins paysagers sous-marins

Maîtrise d'œuvre / suivi de chantier en terrassement, gestion des eaux et revégétalisation

Consulting en revégétalisation de sites miniers

Formation, sensibilisation: environnement,

normes, réglementations, audits internes

Management qualité – Norme ISO 9001

Management environnemental – Norme ISO 14001