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2. LE MANGANESE DANS L'ENVIRONNEMENT

Dans sa forme pure, le manganése (Mn) est un élément métallique cassant de couleur
blanc gris. Il ne se présente pas 4 1’état libre, sauf dans les météorites, quoiqu’il soit trés
répandu sur la planéte dans divers minéraux comme la dialogite (MnCO;), la franklinite
((MnZnFe)(FeMn);0,), le psilomélane (BaMn*Mn*"s0,4(OH), et la manganite
(MnO{OH)). Dans la crolite terrestre, le Mn est le douziéme élément en abondance et
compte pour environ 0,085 % de celle-ci. Le principal mineral de Mn se présente sous

forme de dioxyde la pyrolusite (MnQO,).

Le minerai de Mn sert a diverses fins industrielles. A I’heure actuelle, 1'industrie
sidérurgique consomme plus de 90 % de la production mondiale de Mn. Il se classe au
quatriéme rang des métaux utilisés en fonnage aprds le fer, I'aluminium et le cuivre. Le
marché des piles constitue le deuxiéme débouché du Mn, alors sous forme de dioxyde.

2.1 Spéciation des métaux dans les eaux naturelles

S'entend de la spéciation des métaux la distribution d’'un élément trace dans la suite de
lipands complexants inorganiques et organiques présents dans les eaux naturelles. Il
imporic de comprendre la spéciation des métaux dans les milicux aquatiques étant donné
gu’il est désormais reconnu que ce n'est pas tant la guantité totale de polluants
métalliques dans les milieux aquatiques qui importe dans ’évaluation des effets sur le
biote gue la concentration des espéces biologiques disponibles.

Les principaux ligands auxquels les métaux traces s’associent dans les milieux aguatiques
sont les OH", CI, CO,*, HCOy S0,%, les molécules organiques et les macromolécules,
les sites en surface et, dans une moindre mesure, le phosphate (HPO,™), Tacide silicique
(HiSi0,) et le nitrate (NO;) (Bourg, 1988). Les espéces sulfureuses réduites ou
mtermédiaires sont en outre importantes dans les milieux anaérobie. Les méfaux
complexés peuvent exister en solution vraie, en association avec des colloi des ou
absorbés par les surfaces de particules (figure 2-1). La capacité complexante varie en eau
douce et en eau de mer en fonction des concentrations de matiéres organiques dissoufes
présentes, de la présence de phases particulaires et des concentrations de ligands
inorganiques dans le systdme parficulier, En général, la capacité complexante de
sédiments est relativement forte en raison de sa teneur enrichie en composés arganiques
dissous (en grande partie des acides humiques et fulvigues) dans les eaux de porosité et

en raison de la présence abondante de surfaces particulaires,

Plusieurs auteurs, v compris Stumm et Morgan (1981), Silomons et Forsiner (1984) et
Bourg (1988) ont décrit des modeles de spéciation de métaux dans les eaux naturelles qui
prennent en compte les affinités relatives des ligands en solution et sur les surfaces, Dans
I’ensemble cependant, il appert de ces études que les spéciations des métaux dans les
milieux interstitiels et aquatiques sont une fonction complexe de 1a concentration et des
types de ligands inorganiques ¢t organiques ainsi que des matiéres particulaires présentes,
du pH, de la concentration totale des métaux, de 1’état ¢ oxydoréduction et du débit de la
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Figure 2-1. Résumé des principaux procédés et mécanismes des interactions entre
les espéces métalliques dissoutes et solides dans les eaux de surface (d’aprds
Salomeons et Forstner, 1984).
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LE MANGANESE DANS L'ENVIRONNEMENT

solution dans le réseau aquatique. De plus, la spéciation de divers métaux dans les
milieux aquatiques peut changer & la fois dans Pespace et dans le temps selon les
conditions environnementales ainsi que les concentrations de ligands organiques et

inorganiques présents dans le systéme.

2.2 Hydrochimie du manganése

Le manganese entre dans les eaux naturelles par ’atmosphérisation et la dissolution des
pierres et du sol ainsi que par dépdt atmosphérique. Egalement, les solutions
hydrothermales aux crétes des dorsales sont d’importantes sources de Mn dans les eaux
de I'océan. La géohydrochimie de cet élément est régie par des interactions complexes
enire les procédés physiques, biologiques et chjmi%ues. Le Mn peut exister a I’état
d’oxydes variant de -3 4+7. Les états de divalent (Mn*") et de tétravalent (Mn®*"} sont les
plus fréquents dans les milieux aquatiques. Vu son absence d’énergie de stabilisation sur
le terrain, Ie Mn** a tendance a engendrer de faibles complexes dans les milisux
aquatiques en épousant principalement la forme d’ion libre de Mn™ (Murray et af.,
1983). Le Mn*" est la forme stable en situation d’oxydation et donne lieu 2 une vaste
gamme de phases solides comportant diverses stoichiométries et structures. Les
permanganates (Mn’") ne sont pas persistants dans les milieux aquatiques, car ils oxydent
rapidement les matiéres organiques et s’en trouvent ainsi réduits (McKee et Wolf, 1963).

Certains sels de Mn, y compris les nitrates, les suifates ef les chlorures, sont trés solubles
dans I'eau. Par contre, les oxydes, les carbonates, les phosphates, les sulfures et les
hydroxydes ont tendance 41'&tre partiellement (Cotton et Wilkinson, 1980).

La géohydrochimie du Mn ressemble 4 celle du fer, et ces deux é&léments cohabitent
souvent dans la nature. Les deux prennent la forme d’oxydes hydratés non solubles
(appelés oxyhydroxydes) en situation d’oxygénation, tandis que le degré d’oxydation du
Mn est +4 et celui du fer +3. Ces oxyhydroxydes ont leur importance dans la régulation des
concentrations et la distribution des autres métaux traces dans les eaux douces et les eaux
de mer au moyen de la sorption et de la coprécipitation,

Divers facteurs déterminent la concentration du Mn dissous dans les eaux de surface, v
compris les conditions d’oxydoréduction, les concentrations d’oxygéne dissous, le pH et
les matiéres organiques (voir le CCME de 1987 et les références citées dans ce texte).

Comme il a ét¢ indiqué précédemment, en milieux oxygénés, le Mn’" est instable,
s’oxyde et se transforme en oxyhydroxydes de Mn, présents surtout en phases colloi dales
dans la colomne d’eau. Les phases colloi dales peuvent se stabiliser en solution par
complexation et liaison avec des matiéres organiques, ce qui leur permet de persister dans

les milieux aquatiques (CCME, 1987). En revanche, 1’agrégation d’oxyhydroxydes de

Mn entraine leur dépdt dans les sédiments. En un milieu ol I’oxygéne est peu dissous ou
en milieu anaérobie 4 faible pH, les formes solubles du Mn peuvent persister dans

I’environnement (Stumm et Morgan, 1970). Le Mn dissous et les oxyhydroxydes de Mn

ont tendance 4 étre retirés des sédiments par piégeage sous forme de particules.

Inco Limited
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LE MANGANESE DANS L’'ENVIRONNEMENT

2.3 Distribution du manganése dans les milieux marins

2.3.1 Procédés de la colonne d’eau

Le manganése enire dans |’environnement marin par divers procédes, y compris les eaux de
riviéres, le dépdt atmosphérique et les irruptions hydrothermales. Egalement, on estime
que, dans les océans, les mécanismes qui s’activent aux limites, y compris la marge
continentale et le plancher océanique, jouent wn réle important dans la régulation des
concentrations de Mn et des autres &léments dans "eau de mer (Murray ef of., 1983). Se
trouvent parmi les espéces probables de Mn dissous en mer le Mn’* et le MnCT (Chester,
1990). Les concentrations courantes de Mn dissous en pleine mer sont en moyenne de
0,028 pg/L 435 %o de salinité (Chester, 1990).

Le cycle du manganése dans les milieux marins est résumé 4 la figure 2-2. Les profils du
manganése dans Jles eaux océaniques se caractérisent par des maximums de surface qui
découlent surtout de 1’apport du ruissellement, de I’atmosphérisation ou de la diffusion
des sédiments du plateau (Jones et Murray, 1985). On a indiqué que la réduction du Mn
particulaite en Mn dissous sous Ueffet de la lumiére du soleil pouvait aussi contribuer aux
fortes concentrations de Mn dissous dans les caux de surface (Sunda er af., 1983), 1l s¢
trouve également des concentrations maximales dans la zone du mininnim d’oxygéne,
probablement 2 la suite de [a libération du manganése de particules biogéniques ou par
advection horizontale du Mn régénéré dans les marges continentales. De plus, les eaux
profondes prés des crétes hydrothermales actives affichent aussi de fortes concentrations
de manganése (Landing et Bruland, 1980; Jones et Murray, 1985).
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Figure 2-2. Cycle du manganése dans les milieux marins.
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LE MANGANESE DANS L’ENVIRONNEMENT

Une fois dans e milien marin, quel qu’en soit la source, le Mn s¢ voit retiré par diverses

inferactions biogéochimiques de la colonne d’eau (figure 2-2). Le Mn (& P’état de Mn*")

est instable en situation d’oxygénation et est extrait par oxydation et transformé en
oxyhydroxydes de mangangse, qui existent principalement sous forme de colloi des dans
les milieux aquatiques. Le Mn dissous peut aussi étre soustrait 4 la solution par

absorption biogénique pendant la production de phytoplancton. Tant le Mn" dissous que

les oxyhydroxydes manifestent la tendance a se voir retirer en particules par piégeage.

(Murray ez. al, 1983). La floculation de colloi des et leur dépdt éventuel ainsi que la
sédimentation de particules transportent en fin de compte le Mn de la colonne d’eau vers
les sédiments, Une fois le Mn dans les sédiments, des procédés physiques tels que les
mouvements des marées et le décapage par les vagues peuvent rendre le Mn 41a colonne

d’eau par une remise en suspension. De plus, les procédés biogéochimiques associés 4 la

dégradation des matiéres organiques peuvent aussi entrainer la diffusion du Mn des
sédiments (partie 2.3.2).

En somme, parce le Mn est fortement retiré de l'ensemble de le colonne d’eau, sa
distribution dans les eaux océaniques traduit essentiellement des apports externes. Ceux-
ci engendrent des maximums dans les eaux de surface, dans la zone de minimum
d’oxygéne et dans les profondeurs de I'océan prés des bouches hydrothermales, dans les
zones fouchées par la remise en suspension de sédiments,

2.3.2 Controles diagénétiques des distributions du manganése sédimentaire

Les concentrations d’éléments traces et des éléments secondaires dans les sédiments
marins rendent compte des facteurs chimiques, océaniques et sédimentaires qui régissent
leur entrée, leur distribution dans 1’océan et leur refrait de celui-ci. Ces facieurs tels que
la composition des détritus sédimentaires, le cycle des éléments entre leur phase dissoutes
et leur phase solide et leur comportement postérieur a leur dép6t dans les sédiments
jouent un grand rble dans la régulation des concentrations et des distributions des
¢iéments dans les solides des sédiments et les eaux interstiticlles. Ainsi, le complexe des
sédiments aqueux inferstitiels dans un site d’intenses réactions chimiques, physiques et
biologiques peut conduire 4 la formation de nouvelles phases minérales modifiées et 4
des modifications de la composition de l'eau elle-méme. Ces modifications sont
regroupées sous le terme de diagénése.

Les procédés diagénétiques dans les sédiments marins se produisent principalement sous
I'effet de I’oxydation bactérienne des matidres organiques. Celle-ci survient en une série
de réactions de transferts d’électrons sous I'effet d’enzymes qui se chevauchent, et dans
lesquelles les composés de carbone réduits et insiables sur le plan thermodynamique
servent de donneurs d’électrons et les divers oxydants d’accepteurs ultimes d’électrons
pendant le processus de dégradation. Pendant 'oxydation, les matidres organiques
donnent des électrons aux orbites ayant le moins d’énergie disponible tandis que le
phénomeéne donne lieu au gain d’énergic libre le plus fort par unité de matidres
organiques oxydées. La séquence de cefte réaction (tableau 2-1) se fait donc dans un
ordre déterminé par un dégagement net d’énergie libre, avec oxydation aérobie, la
réaction produisant le plus d’énergie (en ordre thermodynamique) suivant la séquence de
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LE MANGANESE DANS L’ENVIRONNEMENT

dénitrification, de réduction des oxyhydroxydes du Mn et du fer, de réduction des sulfates
et de méthanogénése (réduction du CO,) (Froelich ef, @, 1979,

Dans les systémes sédimentaires enrichis d’un apport constant de détritus organiques
réactifs (c.-&d. qui se dégradent), il s'établit une zonation & régime stabilisé avec la
profondeur si la demande bactérienne d’oxydants dépasse Ie taux d’approvisionnement
par diffusion ou advection. Dans ces cas, 3 diminue 4 une certaine profondeur sous
I'interface sédiments-ean ; 4 mesure que la concentration d’oxygéne tombe & de faibles
niveaux (sans atteindre le niveau nul), s’amorce la réduction du nitrate. Les autres
oxydants énumérés au tablean 2-1 se voient réduifs par la suite dans I"ordre illustré s°i
confinue d’exister une carence de 'approvisionnement d’oxydants relativernent i la

demande.

Dans les sédiments du littoral et dans ceux provenant de milieux océaniques fortement
productifs, la teneur en carbone organique suffit habituellement a créer des conditions
anoxiques aux profondeurs comprises entte quelgues millimétres et un décimétre. La
Zonation chimique qui en résulte se caractérise de ce fait par un potentiel
d’oxydoréduction en constante décroissance avec la profondeur et par la libération dans
les eaux interstitielles d'un certain nombre de produits de réaction (tableau 2-1, figure
2-3). Ainsi en I’absence de réactions de dissolution/précipitation secondaires et parce que
la séquence de réaction des oxydants s’appuie sur la thermodynamique, la distribution
relative des espéces dissoutes dans les eaux de porosité est constante d’un site 3 ['autre ;
seule I’échelle de profondeur change selon I'intensité de la diagénése.

Tableau 2-1. Réactions d’oxydation des matidres organiques sédimentaires'

1. Oxydation aérobie : [0G° = -475 kJ/mol
(CHzo)loﬁ(Nﬂg)]5(H3P0¢)+ 1380, =106 CO, + 16 HNOy +H,PO, + 122H20

2. Réduction de nitrate {dénitrification) ; [1G° = -448kJ/mol
(CH0)p5(NH3)16(H3POy) + 84.8 HNO; = 106 CO, +42.4 Ny + 16 NH; + H;PO, + 1484 H;O

3. Reduction de I’oxyde de manganése : [1G° = -349 k¥/mol
{CHLO)106(NHy) 16(HsPO,) + 236 MnOs + 472 H* =236 Mn?* + 106 CO4 + 8 Na + H;PO, + 366 H,O

4, Réduction d’oxyhydroxyde de fer ; CJG® = -114 kJ/mol
(CHzo)lgs(NH3)|6(H3PO4) +424 FeQOH + 848 H+ =424 F32+ + 106 COQ +16 NH3 + H3P04+ 742 H.ZO'

5. Réduction de sulfate: E1G° = 77 kl/mol
(CH,0)106(NH: )P0 + 53802 = 106 COy + 16 NH; + 53 8 -+ HyPO, + 106 H,0

6. Méthanogdnaése (fermentation) : OG® = -70kJ/mol
(CH,0)0s(NH,}15(H;POy) =53 CO, + 53 CHy + 16 NH; -+ HyPO,

1: Enumérées dans ['ardre de production d'énergie libre illustrée, établies d'aprés Froslich et al. (1979}, Bender
ef Heggle (1984} et Kadko ef al. {1987). Les productions d'énergie libre sont présentées en kJ par mole de
CHz20 oxydé, et la stoichiométrie des matiéres organigues choisie équivaut au rapport de Redfield pour le
plancton marin (Redfield, 1958}

inco Limited 2-6 Rescan Environmental Services Ltd.
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Figure 2-3. Zenation biogéochimique dans les sédiments (d’aprés Froelich ef al,, 1979).
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Le manganése est transporté au bas de la colonne d’eau a la faveur de réactions de
picgeage des particules comme il en a été question précédemment. Le tableau 2-1 et la
figure 2-3 montrent a 1'évidence que I'utilisation d’oxydes de manganése dans la
décomposition des matiéres organiques entraine la transformation des oxydes de Mn en
manganése réduit, qui devient soluble 2 I’état de Mn*” dans les sédiments du fond. Le
manganése dissous diffuse alors du site de réduction vers le haut vers I'interface eau-
sediments, et vers le bas dans les sédiments. Le manganése dissous en diffusion vers le
haut s’oxyde au contact de 1'oxygéne dissous a Pinterface ou prés de celle-ci. Ainsi, I
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LE MANGANESE DANS L'ENVIRONNEMENT

majeure partie du flux de diffusion du manganése est captée par les composantes des
sédiments et se trouve emprisonnée avant de traverser ['interface eau-sédiments sous
forme dissoute. II en résulie des concentrations de manganése plus élevées
caractéristiques des couches oxiques pres de !'interface relative aux sédiments profonds.
Les réactions comprises dans la diagénése du Mn peuvent éire lides aux changements de
Ia phase eau interstitielle — la phase solide et peuvent s’exprimer ainsi de maniére simple

{Chester, 1990) :

Mn**(soluble) Oxvdatiom\ MnOx (oxyde hydraté solide)
\ Réduction
équation dans laquelle x est généralement inférieur 22 (Chester, 1990).

Cette réaction régit la mobilité diagénétique du Mn dans les sédiments, et les conditions
générales qui contrélent tant la phase de Mn solide que le Mn dissous dans les sédiments
peuvent 8tre exprimées selon le modéle proposé par Lynn et Bonatti (1965). On peut
essentiellement le résumer ainsi : les oxydes de mangandse premiére génération) se
déposent 4 la surface des sédiments et sont par la suite enterrés sous la limite
d’oxydoréduction ot ils se trouvent réduits. Cela entraine la production de Mn*" dissous,
qui diffuse alors vers le haut, en fonction d’un gradient de concentration dans ’eau
interstitielle, puis s’oxyde et précipite dans la couche supérieure des sédiments & I’état
d’oxydes hydratés de Mn (dewxiéme génération), 11 s’ensuit une sédimentation, les
oxydes de deuxiéme génération sont une fois encore emportés vers ie bas dans la zone de
réduction, et le cycle recommence. Le résultat général du recyclage du Mn est le piégeage
du Mn en phase solide dans une faible bande de la frontiére d’oxydoréduction. Clest
Froelich et. al. (1979) qui a mis au peint Je schéma général du comportement du Mn dans
leur article fécond sur Ia séquence diagénétique des sédiments des fords marins. Froelich
et al. (1979) ont proposé que la profondeur de la pointe du Mn est fonction de 1*équilibre
de I'oxygéne qui diffuse vers lc bas et du Mn** qui diffuse vers le haut, Dans un systéme
en équilibre, la concentration du Mn dans la pointe augmente jusqu’a ce que ['apport
sédimentaire de Mn réaciif soit équilibré par Vefficacité de la réduction et de la
remobilisation. Par conséquent, un tel systéme stable afficherait la poinfe de Mn la plus

concentrée prés du haut du gradient du Mn®" dissous.

En résumé, selon la diagénése du Mn dans les sédiments, il appert que la plupart du
manganése remobilisé dans les sédiments des grands fonds marins est piégé dans les

3

couches oxiques supérieures et ne traverse pas D'inferface pour donner un fort flux 2
Pextérieur des sédiments. De plus, le manganése qui arrive jusqu'aux couches
supérieures des sédiments est quelquefois intégré dans des nodules ferromanganésiferes.
En général, le cycle d’oxydoréduction dans les sédiments qui ont une couche supérieure
oxique méne 4 une ¢concentration de ’élément dans [a couche.

2.4 Distribution de fond du manganése dans la baie Kwé et
le canal de la Havannah

On a prélevé des échantillons d’eau de mer pour en mesurer la qualité prés du chantier
pendant les levés de base en 2000 (Rescan, 2000b). Les concentrations les plus fortes de
Mn se sont trouvées dans les zones les plus prés du litloral, en particulier 2 "'embouchure
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des cours d'eau qui irriguent le chantier. Par exemple, les concentrations de Mn dissous
dans ’estuaire de la riviere Kwé variaient de 2,78 a 594 pg/l. et tombaient de 0,13 a
0,18 11g/1. dans le canal de la Havannah.

Les profils verticaux du Mn dans les zones a proximité du littoral correspondent a "apport
fluvial de Mn. Des quantités plus marquées se retrouvent dans Jes eaux de surface dans la
plupart des sites (figure 2-4), Les profils verticaux 4 certains endroits donnent 4 penser que
le Mn peut aussi étre libéré et remobilisé & partir des sédiments de surface, ce qui peut
gonfler les chiffres prés des secteurs d’interface sédiments-eau.

2.5 Apport de manganése dans la baie Kwé

L apport annuel de Mn dans la baie Kwé par la riviere Kwé a &t¢ évalué au moyen de
mesures de concentration du Mn dans la riviere Kwé et par {'estimation de son apport
mensuel moyen dans la rividre Kwé (tableau 2-2). On a ¢valué les concentrations
saisonniéres de Mn d’aprés des échantillons prélevés en mai 2000 (six endroits) et en juin
2000 (cing endroits) (Rescan, 2000a). On a fait appel aux données de mai pour illustrer la
saison d’étiage tandis que les données de juin ont servi aillustrer la saison des crues.

Tableau 2-2. Débit de la riviere Kwé et données sur la manganése ufilisées pour
évaluer I’apport annuel du métal dans la baie Kwé,

Mots Débit moyen Concentration moyenne de Mn
(m’/s) (mg/L)*
Janvier 325 0,00476
Février 397 0,00476
Mars 435 0,00476
Avril 3,26 0,00476
Mai 2,28 0,00476
Juin 2,54 ' 0,00204
Juiliet 1,60 0,00204
Aoiit 1,49 0,00204
Septembre 0,94 0,00204
Octobre 1,20 0,00204
Novembre 1,90 0,00264
Dégembre 2,05 0,00204

1: Valeurs fondées sur deux années de contrdle du débit de la rividre Kwé ainsi que sur les données relatives
au débit at aux précipitations dans un bassin versant voisin.

2: Valeurs fondées sur les données de base sur le Mn recueillies en plusieurs endroits de la riviére Kwé en mai
el en juin 2000 (Rescan, 2000b). On a présumé que les valeurs moyennes de mai et de juin représentaient les
concantrations de Mn entrant dans 1a baie pendant la saison des pluies (de janvier a mai) ef la saison séche
(de juin & décembre) respectivement.
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Figure 2-4, Distribution dans la colonne d’ean du mangandse total et dissous dans Ia
baie Kwé et le canal de 1a Havannah.
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Il existe deux années de données sur le contrble du débit de la riviere Kwé, en aval de
toutes les grandes confluences, & environ six km en amont de la baie Kwé (SNC-Lavalin,
1995). Ces données liées au débit ont servi 4 évaluer le débit de la riviere Kwé 4 son
entrée dans la baic Kwé. Celles-ci ont été mises en corrélation avec celles de longue
durée liées au débit de la riviére des Lacs voisine, qui comportent une relation établie
entre les précipitations et le débit. L'évaluation du débit mensuel moyen a donc &té
étayée par une analyse de la corrélation entre deux ans d’écoulement de la riviére Kwé et
38 ans de données sur les précipitations dans la riviére des Lacs voisine (SRK, 2000),

D’aprés les données sur le débit et les concentrations présentées au tableau 2-2, I'apport
annuel moyen de Mn de la riviére Kwé dans la baie Kwé a été estimé 4295 kg/année. Les
débits minimum et maximum estimatifs de Mn sont de 53 kg/année et de 645 kg/année
respectivement. Parce que les concentrations de Mn ne s’appuient que sur deux périodes
de collecte de données et sur quelques postes dang la riviere Kwé et que 1’établissement
des valeurs de Mn participe de certaines autres incertitudes, il faut tenir ’estimation de
cet apport pour approximative. Elle fournit toutefois une indication utile de I’apport
naturel de Mn dans la baie Kwé.

2.6 Résume

Le Mn est omniprésent dans Ienvironnement et est un constituant commun 2 la fois de
’eau douce et des milicux marins. Le Mn entre dans les eaux de surface surtout par voie
atmosphérique et par les eaux de ruissellement au sol. II gagne les océans 2 la faveur de
procédés se produisant a leurs limites comme la marge continentale et le plancher
océanique.

La géohydrochimie du Mn est régie par des interactions complexes entre les procédés
physiques et chimiques. Le Mn se trouve dans les eaux douces et les eaux de mer
oxygénées surtout 4 1'état de tétravalent (Mn*") sous forme d’oxyhydroxydes de Mn non
solubles. Ceux-ci tendent 4 étre soustraits 4 la colonne d’ean par voie de sédimentation.

Dans les cas de faible teneur en oxygéne, les oxyhydroxydes de Mn sont réduits et
libérent le Mn divalent (Mn™), alors soluble et jouissant d’une grande mobilité dans
Penvironnement. Le Mn®" est instable en milien oxygéné et en est soustrait par piégeage
des surfaces particulaires ou par oxydation devenant alors oxyhydroxydes de Mn.

La distribution du Mn dans les eaux océaniques est essenticllement régie par des apports
extérienrs. Par exemple, les profils de Mn dans I’cau de mer prés du chantier mondrent
des quantiiés en hausse 4 ’approche des sources fluviales et du littoral. Le flux annuel de
Mn dans la baie Kwé par les rejets de la rividre Kwé est évalué 3 entre 53 et
645 kg/année.
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3. LIGNES DIRECTRICES SUR LE MANGANESE ET
LIMITES D’EFFLUENTS CHOISIES

Dans ce chapitre, nous passons en revue les réglements sur le manganése (Mn) de
diverses autorités ainsi que leur justification, leur dérivés et leur fondement. Le Mn est un
oligo-élément essentiel des plantes et des animaux et n’est généralement pas considéré
comme un polluant important (d’intérét prioritaire}. Ainsi, toutes les autorités n’ont pas
adopté de lignes directrices sur la qualité de 1’eau ou des limites d’effluents 4 I’égard de
cet €lément. Ce chapitre comprend les lignes directrices sur la qualité de I’eau douce et de

1’eau de mer de certaines autorités choisies.

Nous prenons en compte les normes francaises parce que la Nouvelle-Calédonie fait
partic de la République frangaise. Toutefois, les lois et réglements francais ne
s'appliquent en Nouvelle-Calédonie que s 'fIs sont promulgués par le Congiés de
Nouvelle-Calédonie. Nous avons aussi inclus les critdres de I’Union européenne (UE)
parce que la France est un Etat membre de I'UE. Nous examinons aussi en détail les
normes de I’Australie et de la Nouvelle-Zélande, car elles sont Iargement étayées par des
documents et visent une région fropicale. A titre de comparaison, nNOUs avons aussi

mentionné les normes nord-américaines des Ftats-Unis et du Canada.
3.1 La Nouvelle-Calédonie

3.1.1 Lignes directrices sur la qualité de I'eau du milieu récepteur

It n’existe pas 4 I'heure actuelle de critéres de qualité de ’eau du milieu récepteur en ce
qui concerne le Mn en Nouvelle-Calédonie.

3.1.2 Limites des rejets d'effluents

En 1999, la Province Sud de Nouvelle-Calédonie a autorisé GNi 4 exploiter une usine
pilote en vue du traitement des minerais latéritiques de nickel. L’Arrété 1542-99/PS
(Province Sud, 1999) a été pris pour réglementer les activités de 'usine pilote. Maints
critéres de rejet francais de 1’ Arrété du 2 février 1998 (MATE, 1998) ont été intégrés dans
I drrété 1542-99/PS de la Nouvelle-Calédonie. 1.’ Arréré 1542-99/PS a imposé aux fins de
Pexploitation de I"usine pilote une limite de concentration des rejets de 1 mg/l. de Mn.

3.2 France

3.2.1 Lignes directrices sur la qualité des eaux de réception

Le “Décret n° 91-1283 du 19 décembre 1991 (MATE, 1991) renferme les lignes
directrices frangaises sur la qualité de ’eau de mer. Elles précisent quels sont les critéres
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de la qualité de l'eau 2 1"égard de la protection des crustacés et cogquillages. Toutefois, y
figurent des énoncés circonstanciés au lieu de valeurs numériques pour la plupart des
paramétres de la qualité de l’ean. Ceux-ci comportent un ensemble de métaux qui
suscitent habituellement des inquiétudes écologiques (p. ex. l'arsenic, le cadmium, le
cuivre, le plomb, le mercure et le zinc), mais il n’existe pas actuellement de lignes
directrices sur le Mn, Cet élément est exclus de ce nombre sans doute parce qu'il est 'un

des métaux les moins toxiques.

Les lignes directrices frangaises sur la qualité de 1’eau douce comprises dans le Décref no
91-1283 (MATE, 1991) visent la protection des salmonidés et des cyprinidés. Les mises en
garde écologiques contre les métaux ne portent que sur le cadmitm, le cuivre et le zine. I
wexiste pas de lignes directrices sur la qualité de 1’ean douce relativement au Mn.

3.2.2 Limites des rejets d’effluents

Les limites de rejets d’effluents francgais sont mentionnées dans |’ drrété du 2 février 1998
(MATE, 1998). Les limites des concentrations des effluents sont fondées sur Ia quantité
globale de polluants rejetés dans l'environnement, Quant au Mn, la limite de rejet des
effluents est de 1 mg/L s'agissant d’une quantité totale de Mn rejetée supérieure 2

10 gfjour.
3.3 Union européenne

3.3.1 Lignes directrices sur les eaux de réception

Les normes mumériques sur la qualiié de Peau en vigueur dans ["Union européenne
concernant les eaux de surface visent le captage de I'eau potable. Ces valeurs vont de
0,05 41 mg/L, selon le mode de traifement de ['eau de surface, afin de la rendre potable
(communication personnelle, H. Bloech, chef de la Commission européenne de la

protection de 1’eau, janvier 2001).

1l n'existe pas dans I'UE de normes de qualité de I’ean douce de surface ou des eaux de
de mer. La Directive cadre sur I’eau adoptée récemment par I'UE fait valoir I’obligation
juridique d’assurer une bonme qualité de toutes les eaux (souterraines, de swface ou
ctiéres). Dans la directive, le terme bon éfarf est précisé par des définitions globales et
donnera Hieu & un ensemble de normes numériques prises sur la qualité de l'eau par les
Etats membres de I'UE. En revanche, dans I'établisscment de ces normes, les Btats
membres devront adopter des valeurs 4 partir essentiellement d’eaux en état originel et
pourront peu s’en ecarter (Parlement européen, 2000).

3.3.2 Limites des rejets d'effluents

- Il n’existe pas a 'heure actuelle dans I'UE de normes numériques régissant le Mn dans
les rejets d’eaux usées (communication personnel, H. Bloech).
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3.4 Australie

3.4.1 Lignes directrices sur la qualité des eaux de réception

En Ausfralie, ¢’est le Conseil de la conservation et de Penvironnement de [’ Australie et
de la Nouvelle-Zélande (Auvstralia and New Zealand Environment and Conservation
Council (ANZECC)) et le Conseil de I'agriculture et de gestion des ressources de
I’Australie et de la Nouvelle-Zélande (Agriculture and Resource Management Council of
Australia and New Zealand (ARMCANZ)) qui établissent les lignes directrices sur la
qualité de 'eau. Les lignes directrices actuelles sur la Stratégic de gestion nationale de la
qualité de l’eau (NWQMS) (ANZECC, 1992) sont en voie d’&tre mises A jour et
devraient étre publiées en mars 2001 tout comme les lignes directrices australiennes et
néo-zélandaises sur la qualité de I'sau douce et de I’'eau de mer.

Les lignes directrices australiennes sur la qualité de I'eau sont élaborées en fonction de
senils de déclenchement. Ces seuils sont des concentrations dont le dépassement révéle
un probléme écologique possible de sorte qu’il « déclenche » une enquéte et une
modification des lignes directrices en fonction des conditions locales. (ANZECC, 1999).
Il existe trois catégories de seuils selon les données disponibles : niveaun 1, niveau 2 et
nivean provisoire. Les seuils déclencheurs du niveau 1, la catégorie la plus élevée,
découlent de données liées a de multiples espices et de données chroniques
« concentration sans effet observable » (CSEO), 4 condition que soient respectées des
exigences minimales en matiére de quantité et de qualité des données. Les seuils
déclencheurs du niveaw 2, qui traduisent une confiance moindre dans les méthodes
d’extrapolation, découlent de données relatives 4 la toxicité, avec l'application de
rapports calculés ou de rapport d’aigus a chroniques (RAC). De nouveau, il existe peu
d’exigences relativement 4 la quantité et 4la qualité des données. Les seuils déclencheurs
provisoires découlent de ’absence de données d’ensemble de quanfité suffisante. Par
conire, on a établi qu’aucun seuil déclencheur ne découlerait d’un l'ensemble de données
minimales préalables 4 la mise en marché inférieur a celui de I’OCDE (1981) (poissons,
crustacés et algues). Les seuils déclencheurs provisoires permetient moins d’avoir
Passurance que les écosystémes aquatiques seront protégés et ils devront de nouvean é&tre

calculés lorsque de plus amples données seront disponibles.

Dans les nouvelles lignes directrices (ANZECC, sous presse), la valeur du Mn en eau
douce en ce qui a trait la protection des écosystémes aquatiques est 1,9 mg/L. La norme
pour P’eau douce est la valeur du nivean 2, établie au moyen d’une méthode relative au
facteur d’¢valuation (FE). Elle a été tirée d’essais de toxicité menés sur diverses espéces
de nombreux groupes taxinomiques (3 espéces de poissons, 1 espéce d’amphibie, 5
espéces de crustaces, 1 espéce d’annélidé, 1 espéce d’algue et 1 espéce de macrophyte.).

L’ensemble de domnées relatives 4 la mer se composait de renseignements sur
uniquement trois groupes taxinomiques (les crustacées, les mollusques et les algues) :

-+ 1 espece de crustacé, et une CELO de 7 jours quant A la mortalité de 70 mg/L,;

» 1 espéce de mollusque et une CES0 de 48 heures de 16 mg/L;
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+ 2 especes d’algues et une CB50 de 96 heures quant 3 la croissance de 25,7 a
53,8 mg/L.

Aucun poisson n’ayant été inclus, ces données ne peuvent donc servir qu’a déterminer un
niveau de préoccupation écologique (NPE). Le NPE est une valeur obterue au sujet de
produits chimiques pour lesquels il n’existe pas de seuil déclencheur et qui offie en
réalité peu de fiabilité en matiére de valeur de déclenchement. Le NPE ne constitue qu'un
seuil de travail en attendant d’obtenir de plus amples données ou de pouvoir élaborer des
lignes directrices de maniére indépendante. La concenfration efficace la plus basse au
sujet de ces trois groupes marins susmentionnés porte sur le mollusque (16 mg/L), et ells
a été divisée par un facteur de 200 afin d’cobtenir une valeur de déclenchement de peu de
fiabilité de 0,08 mg/L {ANZECC, sous presse).

3.4.2 Limites des rejets d’effluents

1l n'existe pas en ce moment en Ausiralie de limites de rejets d’effluents destinées &
Tindustric miniére, Les critdres des paramétres particuliers tablent sur les lignes
directrices sur la qualité de 1’eau dont il a été question précédemment.

3.5 Etats-Unis d’Amérique

3.5.1 Lignes directrices sur les eaui de réception

Le paragraphe 304(a) de la Clean Water Act Loi sur la gualité de ’eqau) exige que la
U.S. Environmental Protection Agency (USEPA) élabore, diffuse et mette 4 jour des
critéres recommandés sur ta qualité de I’eau. Pour la plupart des polluants, y compris les
métaux, les critéres sont numériques. Les critdres recommandés sur la qualité de 1’ean
sont établis pour protéger la vie aquatique et la santé humaine d'aprés des données sur la
toxicité et des jugements scientifiques, On g’attend que-les Etats, lorsqu’il adoptent des
normes sur la qualité de P'ean, fablent sur les critéres nationaux recommandés, les
modifient en fonction des conditions de lieux particuliers ou arrétent des critéres fondés
sur d’autres méthodes soutenables scientifiquement. 1>’habitude, les Etats se dotent de
normes de qualité de I'eau équivalentes aux critéres nationaux recommandés oun qui leur
sont inférieures.

La USEPA ne précise pas de limite relative au sujet du Mn en vue de la protection des
écosystémes en eau douce ou en eau de mer, méme si une valeur supériewre de 1 mg/L a
é1é proposée pour la protection du biote d’eau douce (McKee and Wolf, 1963). La valeur
a été fondée sur des données de toxicité limitées et ne prend pas en compte les facteurs de
modifications possibles comme la dureté de l'ean. Dans le regisire fedéral, 1a USEPA a
inscrit le Mn sur une liste de polluants pour lesquels elle entend élaborer des critéres.
Toutefois, rien n'est encore fait au sujet de critdres sur le Mn, et I'on a annoncé aucune
date d’échéance 4 ce propos.
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Le seul critére de qualité de 1’eau établi pour le Mn s’applique 4 la protection de la santé
humaine en ce qui a trait 3 la consommation d’organismes (USEPA, 1999). Quant 2 la

consommation d’un organisme et de l'eau, la norme secondaire pour le Mn est
0,050 mg/L. Elle s’appuie sur des caractéristiques esthétiques telles que la coloration, le
goit et I’odeur. En ce qui touche la consommation d’un organisme seul, le critére 1ié an

Mn est de 0,100 mg/L et est fondé sur le risque carcinogéne de 10°°.

3.5.2 Limites des rejets d’effluents

Les lignes directrices sur les effluents sont des normes nationales régissant le rejet des
eaux usées dans les eaux de surface, y compris les usines d’épuration des eaux usées des
municipalités et des entreprises. La USEPA publie des lignes directrices pour les
catégories de sources existantes et les nouvelles sources prévues par le Titre III de la
Clean Water Act. Les normes ont un fondement technologique, c'est-&-dire qu’elles tirent
lewr justification du rendement des techniques de traitement et de confrSle au lien du
risque pour les eaux de réception ou de I'impact sur elles. Clest la distinction entre les
lignes direetrices sur les cffluents et les normes sur la qualité de l'eau, gui tablent sur des

critéres sur la qualité de [’ean.

Des lignes directrices visent diverses activités, y compris 1'exploitation minidre, en vertu
des dispositions de la Clean Water Act. Les seules criféres d’effluents applicables au Mn
que nous avons frouvés sont ceux destinés aux charbonnages (Partie 434 - Coal Mining
Point Sowrce Category BPFT, BAT, BCT Limitations and New Source Performance
Standards). Les limites des effluents pour le mangandse total sont de 4,0 mg/L
(concentration maximale quotidienne) et de 2 mg/L (moyenne des valeurs quotidiennes
pour 30 jours consécutifs). Selon Kleinmann et Watzlaf (1988), la seule raison pour
laquelie on a établi un réglement sur le Mn est que I'on voulait en faire un élément
auxiliaire de métaux plus toxiques. Par exemple, lorsque le Mn est retité au cours du
traitement par adjonction d’alcalinité, d’autres métaux sont aussi précipités. Ces auteurs
faissent entendre qu'il faudrait augmenter les limites de I'effluent.

3.6 Canada

3.6.1 Lignes directrices sur la qualité de I'eau

A Porigine, les lignes directrices sur la qualité de 1’eau ont 6 arrétées par un groupe de
travail composé des ministres fédéral et provinciaux de 'Environnement (CCME, 1987).
Certaines lignes directrices ont été revues et mises 4 jour et elles se trouvent dans les
Lignes directrices canadiennes sur la qualité de I’environnement (CCME, 1999). Aucune
recommandation sur le Mn en vue de la protection de 1’environnement ne figure dans les
lignes directrices du CCME (1999). Les seules critéres sur la qualité de ’eau mentionnés
au sujet du Mn ont un objectif esthétique et visent I’eau potable (20,050 mg/L) et ’eau
destinée 41'irrigation (0,200 mg/L).
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Méme s’il n’existe pas de normes nationales sur le Mn en vue de la protection de la vie
aquatique, certaines provinces disposent de lignes directrices de travail ILa
Colombie-Britannique s’est dotée de lignes directrices provinciales sur la quatité de ’eau
méme si elles sont en révision. Quant 2 la protection de la vie en eau douce, la ligne
directrice de travail provinciale de la Colombie-Britannique est de 0,10 & 1 mg/L, tandis
que le critére pour la protection des consommateurs de crustacées et coquillages est de

0,10 mg/L.

3.6.2 Limite des rejets d’effiuents

Le Réglement sur les effluents liguides des mines de métaux (RELMM) est le seul
réglement national relatif au rejet des effluents des exploitations de mines de métaux. On
y précise les concentrations acceptables des divers paraméires, appelés substances
délétéres (arsenic, cuivre, plomb, nickel, zinc, matiéres totales en suspension et radium-
226). Le Mn ne figure pas dans la liste des substances délétéres.

3.7 Résumé

Dans le monde, le Mn n'est pas tenu pour un contaminant trés grave comme le montre
I'absence de lignes directrices sur Ia qualité de I’ean a1’égard de cet élément. Certaines
autorités étudient la possibilité de inclure dans leurs lignes directrices sur la qualité de
I’eau. Par contre, ¢ce point de vue commence 4 changer, car certaines autorités 1’ont porté
sur la liste des nouvelles substances a étudier, Parmi les quatre pays pris en compte
précédemment, seuls Ia France et les Etats-Unis se sont dotés de critéres nationaux sur le
Mn dans les rejets d’effluents et seules, I’ Australie et la Nouvelle-Zélande possédent des
normes relatives au Mn destinées 4 protéger la vie aquatique. Sonf énumérées au tableau
3-1 les normes du Mn dans ces pays.

Tableau 3-1. Normes sur le manganése dans certains pays.

Limite naticnale du Mn pour la
protection de la vie aquatique

Autorifé Limite nationale des effluents — Mn Eau douce Eau de mer
Nouvelle-Calédonie 1 mg!Ll aucune Aucune
France I mg/L! aucung Aucune
UE aucune Aucune Aucune
Australie (Nouvelle-Zélande) aucune 1,9 mg/L 0,08 mg/L
E-U. 224 mg/L2 aucune Aucune
Canada aucune aucune aucune

1 Limite applicable fondée sur un flux de Mn supérieur a 10 g/d.
2 Critére visant I'exploitation miniére.
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4. RECENSION DES ECRITS SUR LA TOXICITE DU
MANGANESE POUR LE BIOTE D'EAU DOUCE ET
D’EAU DE MER

Le manganése (Mn) est un élément essentiel aux organismes vivants, car il active de
nombreuses enzymes, en particulier celles engagées dans la phosphorylation ainsi que
dans la synthése du cholestérol et des acides gras. Le Mn co-active des enzymes, y
compris les transférases et les décarboxylases et est aussi un constituant de plusieurs
métalloenzymes, y compris les carboxylases de pyruvates et superoxydes-dismutases, qui
sont indispensables 4 la détoxification des radicaux des superoxydes, sous-produifs
réactifs de la photosynthése (Sunda et Huntsman, 1998a). Le Mn est nécessaire 2 la
croissance de tous organismes de photosynthése ef se trouve &tre une composante
essentielle du photosystéme II. Satoh ef al. (1987) ont découvert que des carences de Mn
dans 1’alimentation occasionnaient le nanisme et I’apparition de cataractes chez la carpe.
La carence en Mn peut aussi donner lieu 4 la perte d’appétit, 4 la perte de I’équilibre, peut
freiner la croissance st occasionner la malformation des os (Adam et al, 1997).

Le Mn est I'un des méfaux les moins toxiques 4 'égard des organismes aquatiques, On le
conszdere geénéralement comme non toxique dans sa forme colloi dale (MnQ), tandis que
le Mn™* ou le Mn organique peut &tre biodisponible (Luoma, 1983). Les concentrations de
Mn dissous dans des cours d’eau non touchés par des activités miniéres sont généralement
bien au-dessous des senils de toxicité parce que le Mn est oxydé et précipite rapidement
lorseue le pH est prés du point neutre.

4.1 Bioconcentration et bioaccumulation du manganése

La bioconcentration du Mn est chose comtmune dans la plupart des organismes aquatiques
(Stokes et al., 1988). Les poissons ef les plantes marines affichent des concentrations de
Mn ades facteurs de 100 et de 100 000 respectivement (WHO, 1981). Les concentrations
courantes de Mn dans les algues, les herbes marines, le corail et les invert€brés vont de 5
450 pg/g (Florence et al., 1991) alors que les tissus des poissons d’eau douce et d’eau de
mer contiennent de 0,1 410 pg/g de Mn.

Méme si les métaux peuvent influsr sur les organismes a la surface de la cellule o des
branchies, la toxicité se manifeste généralement aprés que le métal a été absorbé par
Porganisme. La bioconcentration est 'accumulation d'un métal dans le tissu d'un
organisme a la suite de ’absorption du métal de [eau, tandis que la bioaccumulation
renvoie généralernent 4 I’absorption du métal par voie alimentaire. Les deux phénoménes
ne peuvent se produire que si le taux d’absorption dépasse le taux d’élimination. Les deux
procédés dépendent de maints facteurs, y compris la concentration et la spéciation du
métal dans I’eau et les aliments, les caractéristiques de la qualité de I’ean, le temps
d’exposition, le type de tissu ainsi que I4ge et Iétat physiologique de 1’organisme.

11 existe des rapports contradictoires sur la biomagnification ou non du manganése (c.-&-d.
des concentrations croissantes dans la chaine alimentaire). Kwasnik er al. (1978) ont
trouvé qu’il n’existait pas de biomagnification dans une chaine alimentaire simple en eau
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RECENSION DES ECRITS SUR LE MANGANESE

douce, tandis que les facteurs de concentration maximale (BCF) de 911, de 65 et de 23
touchaient les algues, Daphnia magna et les vairons & grosse téte respectivement. En
revanche, d’autres auteurs ont noté une faible biomagnification (Stokes ef al, 1988).

4.1.1 Organismes d’eau douce

4.1.1.1

Les facteurs habituels de bioaccurnulation (BCF) touchant les organismes d'eau douce
sont exposés & ['annexe 4-1. Le tableau comprend aussi les concentrations de Mn

mesurées dans les tissus des organismes tropicaux.

Microorganismes et plantes

Kwasnik ef al. (1978) ont étudié la bioconcentration de Mn (au moyen du radio-isotope
**Mn) dans I'algue Protococcoidal Chiorella. Le maximum de BCF aprés 48 heures &tait
de 911 et chutait 4 575 aprés 72 heures. : '

La bicconcentration de Mn dans les algues se produit en deux étapes :

« en surface, une liaison rapide, réversible et indépendante du métabolisme avec les
groupes réactits de la parci de la cellule;

» une accumulation indépendante du métabolisme, irréversible et intracellulaire du Mn.

An moyen d’une analyse & dispersion en énergie & rayons X, Abu-Shammala (1999) a
constaté que le Mn s’accumule dans les granules chargés d’électrons dans les algues
vertes Chlamydomonas et Chlorella ainsi que les algues bleu-vert Anabaena, 4 la suite
d’une exposition jusqu’i un niveau de 200 mg de Mn/L en 24 hewres. Dans les Anabaena,
il a aussi découvert de grandes quantités de Mn dans la gangue gélatineuse. La
concentration de Mn était plus forie dans les Chlamydomonas et représentait en moyenne
10 % du poids. H a supposé que les corps intracellulaires étaient des corps polyphosphatés
“en raison de leurs grandes concentrations de phosphore et d’oxygéne; toutefois, les
granules de Chiorelln contenaient aussi du magnésium, du carbone, du soufre et des

protéines.

Sinha ef «l (1994) ont mesuré des populations sur le terrain de macrophytes aquatiques
Spiradela polyrrhiza et v ont découvert des concentrations de Mn atfeignant jusqu’a
1,225 mgfg. Dans des expériences en laboratoire, les plandes ont accumulé jusqu’a
0,253 mg/g sur une période de 14 jours 4 partir de solutions contenant 10 mg de Mn/L. La
biomasse et les taux de multiplication des frondes & 1a fin étaient réduits de 30 % et de

49 % respectivement.

Rai et Chandra (1992) ont montré que le filet d’ean Hydrodictyon reticulatum accumule le
Mn jusqu’aune concentration maximale de 2,483 mig/g en poids sec, aprés 10 jours dans
une solution de 10 mg/L. Les BCF (le poids sec en mg de Mivkg : mg Mn/L) étaient de 3
715- dans les conditions du laboratoire et de 4 945 sur le terain. Dans les mémes
conditions expérimentales, ils ont noté une certaine toxicité ainsi qu’une croissance
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RECENSION DES ECRITS SUR LE MANGANESE

ralentie et une teneur en chlorophylle. La plante accusait une forte capacité
d’accumulation de Mn en regard des autres algues vertes et des autres métaux.

4.1.1.2 Invertébrés

La plupart des études sur la bioconcentration du manganése dans les invertébrés ont été

réalisées au moyen du **Mn. Un BCF de 65 a1'égard du Mn dans Daphnia magna aprés §
heures d’exposition a été souligné par Kwasnik et al. (1978). Pentreath (1973a) a constaté

une absorption de **Mn dans la moule Mytilus edulis. Tl a trouvé que les concentrations de

Mn étaient plus élevées dans P’estomac et la glande digestive de la moule. Ingle et al.

(1997) ont relevé I'accumulation de Mn dans le bivalve Lamellidens corrianus capturé

dans la rivi¢re Patalganga, en Inde. Les concentrations les plus élevées ont &té notées dans

le muscle adducteur et I'hépatopancréas du bivalve une fois exposé a 0,250 mg/L et &
0,500 mg Mn/L pendant 60 jours.

Les demi-vies du **Mn signalées dans les tissus des bivalves varient, car certaines études
ont ét€ menées au moyen d’injection directe de Mn dans les tissus au lien d’exposition &
I'eaw. Harrison (1969) a indiqué une demi-vie biologique moyenne de 1310 jours pour le
*'Mn dans la longue durée de Anodonta nuttaliana. Brown ef al. (1996) ont signalé une
demi-vie biologique de >320 jours pour le Mn dans le bivalve Velesunio angasi. Ces
auteurs ont découvert que la demi-vie biologique des métaux dans le tissu mou était lide 3

sa solubilité lorsqu’ils se déposent dans les granules extra-cellulaires du bivalve.

Weinstein et al. (1992) ont noté que les crabes bleus dans un estuaire contaming de la
Caroline du Nord aux Ftats-Unis accusaient des concentrations de Ma de trois ou quatre
fois supérieures a celles des crabes se trouvant dans une zone voisine non contaminée.
Dans des conditions hypoxiques, le Mn é&tait libéré des sédiments et devenait
biodisponible pour les organismes benthiques. Cependant, Baden et @/, (1995) ont
remarqué que I'absorption du Mn chez le homard N. norvegicus ne changeait, qu’il
s’agisse de conditions hypoxiques ou de eonditions oxiques normales, que si le Mn se
trouvait dissous. Les homards étaient exposés & <0,06 (de fond), 3 5 et 4 10 mg Mn/L
(ajouté sous forme de chlorure de manganése) pendant 20 jours, suivis par 20 jours dans
'ean de mer aux fins d’excrétion. A ces niveaux de concentration de M, il y avait
accumulation nette de Mn dans tous les tissus, sauf le muscle. Les BCF (poids humide
moyen maximal du tissu exposé moins le contrdle, divisé par le Mn dans P'eau) allaient de
1 23,2 dans les divers tissus, y compris le cerveau, les ganglions, ’hémolymphe, le tube
digestif, les branchies et I'exosquelette. La demi-vie de I’accumulation de Mn était de un
ou deux jours dans le cerveau, le ganglion ventral, les branchies et 1’hémolymphe en ce
qui concerne des expositions tant 45 qu'a 10 mg de Mn/L. Le facteur d’accumulation {c.-
&d. la concentration moyenne du Mn dans le tissu, divisée par le concentration de
confrole) était plus élevé dans I’hémolymphe touchée par le traitement de 10 mg/lL, les
valews étant 90 fois supérieures 4 celle du contrdle. Le Mn posséde une faible constante
d’association aux protéines et, ainsi, le taux d’accumulation et celui d’élimination étaient
relativement faibles. La concentration naturelle du Mn dans Ie homard était forte en raison
de 'incorporation de Mn dans la structure du carbonate de calcium de 1’exosquelette du
homard, cela étant dt & I'adhésion ‘du précipité de Mn dans 1’exosquelette. Le cerveau
avait accumulé de fortes concentration de Mn, Les auteurs ont avancé que le Mn était pris
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directement de la solution par D'intermédiaire des poils chimiosensibles ou de
I'hémolymple pour &tre acheminé au récepteur olfactif et, de 13 aux neurones primaires
du cerveau.

On a relevé un écart considérable dans les concentrations de manganése dans les divers
tissus du crabe d’ean douce Potamonautes warreni (Steenkamp et al., 1994). Les BCF de
la carapace passaient de 28 4743 (de 'eau) et de 0,1 20,7 (des sédiments). Les BCF du
muscle étaient les plus faibles de tous les types de tissus étudiés, allant de 8 4 40 pour
I’eau et se situatent 40,1 des sédiments.

Peu d’anteurs d’études se sont penchés sur Deffet de la température sur la
bioconcentration de Mn. L’absorption de Mn par les mollusques pris des eaux ne variait

pas, dont Ia température allait de 27 435 °C.

4.1.1.3 Poissons

On 2 indiqué que les BCF relatifs au Mn dans les poissons (téléostéens) passaient de 200
4 1 000 (Pentreath, 1973b). En se fondant sur le carrelet (Pleuronectes platessa), |'auteur
a frouvé gue la voie principale de P"absorption dn Mn était 1*alimentation au lieu de I'eau.
Des résuliats semblables ont été constatés chez la raie bouclée Raja clavata et Pachigan
Micropterus salmoides (Pentreath, 1973¢).

Rouleau er al. (1995) ont montré que la truite de mer Salmo frutta) effectue facilement
une bicaccumulation de Mn®* dans 1’eau lorsqu’elle est exposée & une faible concentration
(0,1 pg/L 21'4tat de **Mmn) pour une durée de une A six semaines. Aprés une exposition de
six semaines, e BCF de tout le corps était de 17,8 en comparaison de 22,6 pour le vairon
& grosse téte (Pimephales promelas) aprés cing jours et de 12 pour la perche jaune (Perca
flavescens) aprés sept jours. Le Mn dans les branchies, les viscéres et les yeux possédait
une demi-vie de <9 jours, tandis que dans le muscle, le cerveau et le mucus épidermique
et d’autres organes, elle était de 15 4 26 jowrs. Le cervean présentait une demi-vie plus
longue, et le Mn dans le cerveau avait &ié absorbé par les organes olfactifs. Adam et al.
(1997 a montré que le **Mn se fixe de préférence dans les os, les branchies, la peau et le
cerveau chez la truite arc-en-ciel (Oncorhynchus mikiss).

Des facteurs trés divers influent sur la bioaccumulation du manganése chez le poisson.
Nussey et al. (2000} ont mesuré la bioaccumulation de Mn chez le cyprinidé Cabeo
umbratus) en fonction de la taille et du sexe du poisson. On a npoté la plus grande
concentration dans les branchies, puis dans le foie, les muscles et la peau. Le BCF de l'san
passait de 24 dans les muscles a2 670 dans les branchies, et s'agissant du sédiment, de
0,01 dans les muscles et la peau 40,68 dans les branchies. La principale voie d’absorption
et d’excrétion du Mn était les branchies. Plus le poisson était petit, plus la charge de Mn
dans le comps était élevée A cause des taux plus élevés d’activités métaboliques et
d’aération.

Weiner et Giesy (1979) ont trouvé que 1’absorption du manganese par les poissons pris
dans un étang d’eau douce riche en matiéres organiques et contenant 0,091 mg de Mn/L
dépendait de P'espéce. Les prédatewrs comme 1'achigan et le brochet affichait des poids
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moindres de Mn dans le corps que les poissons s’alimentant aux sources dispom'bles
comme Je crapet arlequin. On a relevé des concentrations de Mn plus marquées dans le
muscle, le BCF dans le muscle du crapet arlequin étant de 220,

On a aussi constaté que les paramétres de Ia quahté de l'eau influent sur Iabsorption du
Mn. Miller et af. (1980) ont mesuré l’absorptwn du **Mn par les fretins du crapet arlequin
(Lepomis macrochirus) a divers niveaux d’oxygéne dissous et de température.

L’absorption de Mn ne subissait pas I'influence des niveaux d’oxygéne dissous, en
revanche le taux d’absorption et d’évacuation du Mn était plus bas 4 10° C qu'a 20 et &
30° C, auxquels les taux d’absorption étaient les mémes. Rouleau ef al. (1992) ont
découvert que les acides humiques et fulviques exercaient pen d&effet swr Ia
bioconcentration du Mn chez la truite de mer exposée 4 0,1 ug de Mn/L pendant une
semaine. D’autres agents de chélation tels que ['éthylxanthate de potassium et le
diéthyldithiophosphate de sodium réduisaient Ia bioconcentration de Mn de 40 %.

4.1.2 Organismes marins

Les BCF habituels des organismes marins figurent 4 I"annexe 4-2. S’y trouvent aussi les
concentrations de Mn dans les tissus d’organismes tropicaux.

4.1.2.1 Plantes

Le Mn se concentre facilement dans les plantes de mer, dont les BCF peuvent atteindre
100 000 (WHO, 1981). La plupart des espéces arrivent 3 une régulation partielle ou
compléte dans une fourchette de concentrations de Mn observées dans le milieu naturel
(Stokes et al., 1988). Ichikawa (1961) a enregistré des BCF variant de 300 pour
Laminaria saccharina 47 500 pour Fucus serratus. Goldberg ef al. (1971) mentionnent

aussi des BCF de plantes de mer se situant autour de 3 000.

Murugadas et al. (1995) ont mesuré une bioconcentration de Mn dans des algues marines
recueillies dans les eaux de la Malaisie et exposées en laboratoire 4 des concentrations de
0,1, 5 et 10 mg de Mo/L (ajouté sous forme de chlorure de manganése) sur une durée de
24 heures. Quant aux algues vertes Chaetomorpha linum, ¥absorption du Mn était rapide
au début et déclinait graduellement quelles que fussent les concentrations de Mn. Les
algues brunes et vertes accumulaient toutes deux le Mn, tandis que les algues rouges

(toutes les espéces Gracilaria) n’en faisaient rien.

Khristoforova et Bogdanova (1981) ont mesuré le Mn dans les thalles des algnes marines
tropicales Caulerpa urvilliana prélevées dans des atolls de corail 41’état d’origine dans le
sud-ouest du Pacifique. Les thalles contenaient 9,5 et 7,3 g de Mn/g en poids sec.

Sept des douze genres d’algues marines étaient de climats tropicaux, y compris Halodule,
Cymodocea, Syringodium, Thallassodendrum, Enhalus, Thalassia et Halophila. Par
confre, la majorité des travaux sur la bioconcentration des métaux ont été exécutés sur des
especes de climat tempéré, comme Zostera et Posidonia. Brinkhuis ef al. (1980) ont
frouvé que les zostéres mmarines Zostera marina accumulent le Mn dans le tissu des
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feuilles. Le Mn éfait fortement retenu dans le cytoplasme des cellules vivantes. Les
feuilles des algues matines offrent d’importantes passerelles au cycle du Mn entre divers

milieux. (Peters ef al., 1997).

11 est probable que le Mn ait une incidence limitée sur les mangroves, car elles excellent 4
séquestrer les métaux et a les immobiliser dans les sédiments anoxiques. De Laune ef al.
(1981) ont révélé que les métaux, y compris le Mn, sont expulsés des mangroves par les
détritus. Nye (1990) a estimé que 9 130 kg de Mn ont été rejetés chaque année des foréts
de mangroves dans le sud-est de la Floride. Les concentrations de Mn dans les sédiments
de mangroves vont de 1 4 640 pg/g en poids sec, de 0,4 & 500 pg/g chez ia mangrove

rouge Rhizophora sp. etde 5431 pgfg chez les invertébrés.

4.1.2.2 Invertébrés

On a signalé une accumulation de Mn dans un grand éventail d’invertébrés marins ainsi
quun grand écart de bioaccumulation entre les especes. Les pétoncles semblent avoir la
plus grande aptitude 4 concentrer le Mn, affichant des BCF atteignant 55 500 (Stokes et

al., 1988).

Dcuta et Nakahara (1986) ont mesuré I’absorption de Mn par le buccin Folutharpa
ampullacea perryi, qui se nourrit de nécrophores des eaux peu profondes de 1’océan
Pacifique et de la mer du Japon. Ses BCF a état constant allaient de 800 a 1 900, la
moyenne se situant & 1 330 £ 310 chez les femelles et 4 1 450 = 260 chez les méiles. 11
n’existait pas de différence importante en matiére d’absorption du Mn entre les méles et
les femelles. L’absorption étaient d’environ quatre 4 huit fois supérieure & celle des

haliotides noires.

Hansen et Bjerregaard (1995) ont trouvé que du **Mn dissous était accumnulé de maniére
linéaire avec le temps dans 1’étoile de mer Asterias rubens, son BCF étant de 19 aprés 23
jours, Le Mn était surfout concentré dans les pieds ambulacraires (de 10 4 20 %) ef dans
Pautre tissu (70 %). Aprés exposition & 0,4 mg de Mun/L, les concentrations ont été aussi
plus élevées dans les pieds ambulacraires. Les étoiles de mer n’ont accusé aucune
mortalité quand elles ont ét¢ mises en présence de 10 & 25 mg de Mn/L. L’efficacité
d’assimilation des aliments g'est située 4 69 % et était supérieure 4 celle provenant de
I’ean. La plupart du Mn conceniré dpartir de Pean se trouvait dans les surfaces externes —
les pieds ambulacraires, la peau — tandis que le Mn assimilé & partir de [’alimentation se

retrouvait dans le caecum pylorique.

Parmi les rares rapports sur 'accumulation du Mn par les invertébrés tropicaux, on
dénombre ceux de Khristoforova et Bogdanova (1981), qui ont déterminé les
concentrations de Mn dauns le tridacne géant tropical Tridacra squamosa capturé dans les
atolls de corail du sud-ouest du Pacifique. Ces auteurs ont découvert que les.
concentrations de Mn étaient identiques dans les tridacnés des atolls avec populations et -
sans populations. Ils ont trouvé de faibles concentrations de Mn dans le muscle

(<0,05 p/g), 3-4 pglg dans les branchies et 12-15 pg/g en poids sec dans le foie.
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Des études sur la transplantation sur le terrain d’huitres et de balanes illustrent comment
I’absorption, I’élimination et le poids du métal qui en résulte dans le tissu des invertébrés
peuvent étre fonction de I'dge (la taille) et 1’état de 1'organisme. Par exemple, les
concentrations de Mn dans les huitres (Crassostrea gigas) atteignaient un état constant en
quatre mois de la transplantation tandis que, pour des individus plus imposants, il fallait
au moins cinq mois pour y arriver (Boyden et Phillips, 1981). Les variations saisonnidres
du Mn sont largement soumises aux changements de poids du corps, qui & leur tour
dépendent du cycle de gamétogénése-frai, De plus, e sexe est un facteur déterminani des
concentrations de Mn dans la moule Mp#ilus edulis, car celles-ci sont plus fortes dans les
gonades des femelles en regard des méles.

Ichikawa (1961) a précisé que les BCF s*étendaient de 80 chez Scomber sp. & 50 000
chez Octopus vulgaris capturée sur la cdte du Japon. Il n’existait aucun signe de forte
biomagnification. En revanche, Patrick et Loutit (1978) ont écrit qu’il y avait une faible
biomagnification (42 %) chez Hyphessobrycon serpae,

Il a été impossible de trouver des rapports sur la bioconcentration de Mn dans les coraux.
Les métaux peuvent s’accumuler dans les tissus ou les squelettes des coraux, et les coraux
peuvent produire du mucus pour Lier les métaux et les réguler. Le Mn est essentiel aux
coraux, el I'un des effets toxiques des autres métaux est qu’ils remplacent le Mn,

particuliérement dans les eaux faibles en nutriants (Peters et al., 1997).

4.1.2.3 Poissons

Les poissons n’accumulent pas de Mn dans la méme mesure que les organismes
appartenant aux niveaux trophiques inférieurs, leurs BCF ordinaires étant d’environ 100
(WHO, 1981). Ichikawa (1961} a indiqué un BCF de 70 chez Plewronectes sp du littoral
du Japon.

Sharif et al. (1993) ont mesuré le Mn de dix especes de poissons iropicaux dans Ia baie de
Bengale. L.a concenfration moyenne dans les tissus des poissons se situait 2 5,4 mg/kg en
poids sec avec une étendue de 1,5 39 mp/ke.

- Les concentrations de manganése dans le barramundi tropical Lates calcarifer) capturé

dans le lac Muwrray en Papouasie-Nouvelle-Guinée en aoiit 1988 variaient de 0,07 a
0,14 pg/g, en poids humide, la moyenne se situant 40,095 pg/g. Plusieurs mois plus tard,
la moyenne dans 27 échantillons de tissu était similaire (0,054 pg/g) et ’écart allait de
0,027 4 0,096 pg/g (Currey et al, 1992). Les concentrations de Mn dans le barramundi
étaient plus faibles que celles signalées chez d’autres poissons de mer comme les poissons
4 ailerons (moyenne de 0,14 pg de Mn/g en poids sec) dans les eaux de la

Nouvelle -Zélande (Vlieg ef al., 1991).

4.2 Toxicité du manganése

On'a toujours indiqué que le manganése était 1'un des métaux les moins toxiques pour le
biote d’eau de mer et d’eau douce.
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4.2.1 Organismes d’eau douce

4.2.1.1

Se trouve A I'annexe 4-3 un regroupement de données sur la toxicité du Mn pour le biote
d’eaun douce. :

Microorganismes et plantes

Le manganése est ['un des métaux les moins toxiques pour les microalgues et les plantes
d’eau douce. Les effets toxiques sur la croissance, la synthése de la chlorophylle et la
photosynthése peuvent 8tre généralement observées uniquement 4 de fortes concentrations
de manganése (>10 mg/L), bien au-deld des niveaux qui se trouvent méme dans les eaux
douces fortement touchées par les activités miniéres. A cause des conditions différentes
de culture qui entourent les essais de toxicité des algues, en particulier les milieux de
croissance différents, il est difficile de comparer les résultats de toxicité des diverses
éiudes. 1l n’existe pas de données sur la toxicité du Mn pour les algues ou les plantes
d’eau douce des tropiques, mais certaines études ont été menées 3 des températures de

1’ean de 25°C.

Les algues bleu-vert (cyanobactéries) sont relativement insensibles au manganése; en
effet, on a indiqué des valeurs de CL50 pour une durée de 48 heures de 100 &5 500 mg/L
(annexe 4-3), Les concentrations de Mn allant jusqu’a 10 mg/L (ajouté sous forme de
chlorure de manganése) n'avaient pas d'effet toxique sur Aracystis nidulans dans des
essais chroniques (Christensen et al., 1979). Des concentrations plus élevées entrainaient
un décalage tandis que, 3 200 mg/L, Ia croissance éfait entidrement interrompus sur une
durée de 30 jours. Aucun effet lié au pH sur 1'échelle du pH de 6,7 4 & n’a été décelé. De
méme, Ahluwalla et Kaur (1998) ont trouvé que Ie Mn n'avait un effet toxique sur
Anabaena variabilis qu*a de trds fortes concenfrations. Le Mn®* 21 000 mg/L a fortement
entravé la croissance pendant cquaire jours d’exposition et a anssi influé sur la
différenciation des hétérocystes, qui manifestaient un taux de réduction de 70 % & 200-

1 000 mg de Mn/L aprés huit jouss.

Wong et al. (1979) ont étudié 'effet du Mn sur la survie et la croissance de trois algues
veries, Chlorella pyrenoidosa, Chlorella salina et Scenedesmus quadicauda dans un
milieu Bristols 4 25° C. Les deux espéces Chlorella montraient des taux plus marqués
d’absorption de Mn une fois exposées 4 des concentrations de Mn supérieures, C.
Pyreniodosa ayant absorbé 5000 fois plus de Mn 4 30 mg/l. en regard des groupes
témoins non exposés. Des concentrations pius faibles de Mn (5 et 10 mg/L) étaient sans
effet sur les taux de croissance des algues sur une durée de 14 jours, tandis que les
concentrations supérieures 4 30 mg/L rédusaient passablement les rythmes de croissance.
Les temps léthaux moyens étaient respectivernent de 1,6, 5,4 et 6 lorsque chaque algue
était exposée 4 50 mg/L de Mn, alors que les valeurs de CL50 de 96 heures se situaient a
28, 100 et 190 mg/EL. de Mn. Ce métal 430 et 50 mg/L occasicnnait une augmentation de
la taille de Ia cellule de C. saling, car les cellnles ne pouvaient pas se diviser.

Comme pour les autres métaux, on a signalé des augmentations dans Ia taille des cellules
des algues en réaction au Mn. Singh et Kashyap (1978) ont noté que le Mn empéchait la
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formation de Chroococcus limneticus, qui continuait 3 gagner du volume sans se diviser.
Irmer (1984) a observé que, 4 32 mg de Mn/L, les volumes moyens des cellules de
Chlamydomonas reinhardii et de Chiorella fusca étaient réduits quoiqu’il n'y ait eu
aucune inhibition du taux de croissance ou de la photosynthése. Christensen et al. (1979)
ont découvert que 3,1 mg de Mn/L (ajouté sous forme de chiorure de manganése)
causaient une réduction de 50 % du volume totale des cellules de Selenastrum
capricornutum, tandis que 50 mg de Mn/L avaient un effet semblable sur Chlorella sp.
Des expériences faisant appel 4 des mélanges de cuivre, de plomb et de manganése ont
revéle des effets de synergie relativement au Mn et au Cu, alors qu’un antagonisme s’ était
manifesté entre le Mn et le Pb. Un ajout de Mn contribuait & accentuer effet inhibiteur
du Pb sur la division de la cellule de Selenastrum et supprimait enti¢rement la toxicité du
Pb chez Chilorella.

FargaSova ef al. (1999) ont souligné que le Mn (ajouté sous forme de sulfate de
manganése) comportait une faible toxicité pour la croissance des algues Scenedesmus
quadricauda, selon une CE50 de 12 jours 4 5 mg/L. En revanche, le Mn influait sur les
concentrations de chlorophylle totale, avec une CE50 de 12 jours 1,9 mg de Mn/L.. Les
concenfrations élevées de Mn étaient aussi 4 ’origine d’une hausse liée 3 la concentration
dans le rapport entre la caroténoi de et la chlorophylle dans Chlorella vulgaris,
1 000 mg/L provoquaient la mort de la cellule aprés huit jours d’exposition (Ahluwalla et

Kaur, 1998).

Les études sur le terrain effectuées par Patrick et al. (1969) ont montré que des
concentrations de Mn réduites de 20 4 40 pg/LL 2 1 ou 2 pug/L dans les eanx naturelles
menaient 4 la dispatition des diatomées et la succession des especes d’algues bleu-vert.
Egalement, Gale et al. (1973) ont trouvé que des tapls d’algues 4 diatomées devenaient
dominants dans les sites touchés par les activités miniéres lorsque les niveaux de Mn

s’élevaient (de 0,1 42,4 mg de Mn/L).

La toxicité du Mn pour les microalgues peut aussi dépendre des bactéries présentes dans
les cultures d’algues. Par exemple, Christlieh (1984) a observé que 10 mg/L de Mn dans
un milien de culture entrainaient une réduction du rendement de Ia biomasse et une
décomposition de la chlorophylle dans les cultures non axéniques d’algues vertes
Fritschiella tuberosa, tandis qu’aucun effet ne se manifestait dans les cultures axéniques
aux mémes concentrations de Mn.

Le Mn (ajouté sous forme de chlorure de manganése) n’était pas toxique pour le flagellé
unicellulaire Tetramitus rostratus jusqu’a hauteur de 99 mg de Mn/L. Le résultat définitif
de I'essai était 1'inhibition de Ia division de la cellule sur une durde environ de 24 2

36 heures (Jaffe, 1995).

Byl et al. {1994) ont signalé qu’il existait peu de donndes sur la toxicité du Mn sur les
plantes aquatiques. Ces auteurs ont noté que la croissance de I’angiosperme Hydrilla
verticillate n’était pas affectée par le Mn jusqu’a 10 mg/L, mais que Pactivité de la
peroxydase était stimulée a | mg/L en regard des sujets témoins. Sinha ef al. (1994) ont
soulign¢ que la CELO aI"égard d’une réduction de la biomasse de la lenticule mineure
Spirodela polyrhiza était de 0,55 mg de Mh®"/L. pour une exposition de 72 heures et
qu’elle passait 4 11 mg/L aprés 14 jours d’exposition 425° C. Nasu et al. (1988) ont écrit
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que la multiplication des frondes de la lenticule mineure Lemna paucicostata était inhibée
a1 mg/L. de Mn(Il} dans un milieu de Bonner-Devirian & un pH 6,1, mais non dans un
milien M, qui contenait des concrentrations plus fortes de nuiriants hormis le calcium 4 un

pH de 5,1.

4.2.1.2 Invertébrés

Le peu de données sur la toxicité du Mn pour les invertébrés d’eau douce donne 4 penser
que les mollusques et les crustacés sont les groupes les plus sensibles, car leurs valeurs de
CL50/CE30 vont de 6 4100 mg/L, suivis par les arthropodes et les oligochétes — valeurs
de CL50 de 170 4300 mg/L.

Markich et Camilleri (1997) ainsi que Markich er al. (sous presse) ont résumé les données
disponibles sur la toxicité des métaux sur le biote d’eau douce tropicale d’Australie. En
dépit du petit nombre de données lides au Mn, ces anteurs ont conclu que le Mn était le
moins toxigue de tous les métaux étudiés. Ils n’ont frouve des données que pour vn seul
mollusque tropical, la moule Velesurio angasi. L'effet du Mn sur le mouvement des
valves de 1z moule pendant 48 heures a été déterminé dans 1'eau synthétique du ruisseau
Magela (dureté de 3,9 mg de CaCOy/L, alcalinité de 4,1 mg CaCO/L, conductivité de
26 puS/em et pH de 5 4 6) 4 28° C et dans une fourchette de concentrations de carbone
organique. Ies concentrations de carbone organique de <0,2 4 8,9 mg/L n’ont eu aucun
effet sur la toxicité du Mn, compte tenu de valeurs de CES0 denviron 19 mg/L. La CELO

était de 11 mg/L, sans effet 4 10 mg de Mn/L.

Chez les mvertébrés, on a le plus généralement rendu compte de la toxicité du Mn sur Ies
crustacés (autres que les espéces tropicales) (annexe 4-3). La toxicité prononcée du Mn 4
I’égard des sujets naissants de cladocére Ceriodaphnia dubia a été signalée et se situait
entre 8,8 4>45 mg de Mn/L, selon la dureté (Stubblefield et Hockett, 2000). La cladocére
Daphnia magna a accusé une sensibilité semblable. Faisant appel a des résultats publiés
au sujet de D. magna, Kaiser (1980) a établi que la forme la plus toxique du Mn était le
Mn™*, suivi par le Mn**, le M’ étant le moins toxique. Le Mn'" s'est aussi révéié é&tre
plus toxique pour les adultes des amphipodes Crangonyx pseudogracilis en comparaison
avec le Mn*", aprds 48 et 96 heures d’exposition. Les valeurs de CL50 & 96 heures se
situaient entre 1 389 mg de Mn*"/L 20,5 mg de Mn' /L. dans des eaux d’une dureté de 45
455 mg de CaCOy/L (Martin et Holdich, 1986).

Rama Rao et Nath (1983) ont indiqué que les larves du crustacé Canthocampius sp. se
montraient particulidrement sensibles au Mn aprés 24 4 48 heures. La concentration seuil
concernant les effets (CESO) aprés 48 heures d'exposition était de 0,15 mg de Mn/L
(ajouté sous forme de sulfate de manganése), affichant une mortalité de 66 % 40,2 mg/L
et de 100 % 4 0,25 mg/l.. En revanche, le Mn n’exercait aucun effet sur le taux
d’alimentation de Vamphipode Gammarus pulex lorsque les concentrations eétaient
comprises entre 0 et 0,5 mg de Mn/L (gjouté sous forme de suifate de mangangse) 315°C
dans les eaux stimulées de la rivigre West Okement (North Devon, R.-U.) (Maltby et

Crane, 1994).
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Le Mn arréte le développement et 1’éclosion des gemmules dormantes de 1’éponge d’ean
douce Spongilla lacustris 3une échelle de 5 454 mg de Mn/L, tandis que I’éclosion est de
70 % & 0,5 mg/L et que le Mn est sans effet 40,05 mg/L. Le calcium (1 mmole) renverse
I"inhibition (Ostrom et Stmpson, 1978).

Gorshokova (1963) a remarqué que, dans la mer Baltique, les eaux chargées de Mn
connaissaient un apprauvrissement des espéces endofaunes, en particulier les mollusques.
Bgalement, Schurin (1965) a découvert que la distribution des mollusques dans le golfe de
Riga éfait liée a la concentration de Mn, Dans les études faites en laboratoire sur ces
mollusques, Karpevich et Shurin (1975) ont découvert que de 17 & 20 mg de Mn/L
menaient 4 une accumulation de Mn dans les gonades, le foie, le coer et que la

consommation d’oxygéne augmentait. A des concentrations plus fortes, les animaux
mowrraient faute d’oxygéne.

On a indiqué que le manganése éfait la principale substance toxique de Ceriodaphnia
dubia dans les eaux de porosité des sédiments de la baie Quter Malletts (Vermont, E.-U.)
(Boucher et Watzin, 1999). Les caux de porosité confenaient de 23 439 mg/L. de Mn total,
soit bien au-deld de la CL50 248 heures 41°¢gard du Mn de 9,1 mg/L. Une évaluation de
données sur la toxicité (EDT) a permis de confirmer que le Mn était la cause de la toxicité
des eaux de porosité. La chose fut surprenante étant donné que le Mn est une composante
déterminante des sédiments d’eau douce. Les auteurs laissaient entendre que la baie
Mallets était particulidre parce que des ponis-jetées qui traversent la baie y empéchent le
mélange des eaux avec celles du lac. En outre, la stratification thermale 3 Ia fin de 14té et
au début de 1’automne entraine une raréfaction de I'oxygéne dans ’hypolimnion, ce qui
conduit 4 la dissolution des oxyhydroxydes de Mn dans le sédiment. On a détecté du Mn
au fond de I'ean et dans ’eau de porosité du sédiment & de fortes concentrations 3 mesure
que la stratification et I’anoxie croissaient. Le Mn ne se réoxyde que lentement de sorte
que le Mn™" dans les sédiments persiste & de hauts niveaux toute I’amnée ; cela peut
engendrer la toxicité qui atteint la cladocére et qui est notée dans les études en Iaboratoire.
On ne sait pas si le Mn peut contribuer aux effets sur les espéces benthiques de la baie.

4.2.1.3 Poissons

En général, le Mn présente peu de toxicité pour les poissons d’eau douce. M&me si nous
ne possédons que peu de données sur les espéces tropicales, il semble que les poissons
tropicaux soient moins sensibles au Mn gue la moule tropicale (Markich et Camilleri,
1997), qui a une CL50 de 189 mg de Mn/L. Les valeurs de CL.50 4 96 heures visant la

* truite arc-en-ciel tropicale adulte (Melanotaenia spledida inomata), le poisson arc-en-~ciel

(Melanotaenia nigrans) et le goujon {Hypseleosiris compressus) étaient supérieures a
500 mg de Mn/L en eau douce (ruisseau Magela} dun pH de 6 (Skidmore et Firth, 1983).
Le poisson-tasseau Marjorie éfait plus sensible dans la méme eau douce, tandis que sa
valeur de CL50 2 96 heures était de 10,2 mg/L. dun pH de 7 (Giles, 1974). Nath et Kumar
{1987) ont signalé une CL30 4 96 hewres pour le gourmi géant Colisa fasciatus de

3230 mg/L.

Les‘espéces des eaux tempérées et froides sont également insensibles au manganése aux
concentrations habituelles dans 1'environnement. Lewis (1976) a indiqué que les
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concentrations 1éthales de Mn se situaient entre 50 et 5 500 mg/L. pour le poisson. Oshima
(1931) et Iwao (1936) ont aussi découvert que la foxicité du Mn** pour les poissons d’eau
douce était faible, les concentrations 1éthales & 24 heures étant de 5 500 et de 3 400 mg de
Mn/L pour la chlorure de manganése et le sulfate de manganése respectivernent.

La truite arc-en-ciel (Salmo gairdneri) semble &tre plus sensible au Mn, car elle réagit a
des concentrations de CL50 de 96 heures de 3,7 mg/L, 4 une alcalinité de 116 mg/T, 420
425 mg/L, 4 une alcalinité de 304 mg/l. (WSC/NSR, 1995). Lewis (1976) a étudié les
effets du sulfate de manganése (1,5 et 10 mg /L) sur les oufs ef les alevins de la truite arc-
en-ciel dans des eaux a faible dureté. Le Mn était plus toxique pour les cafs avant qu'ils
n'atteignent le stade de ’embryon (le 7° jour) et de I'éclosion (29° jour). Les
concentrations de sulfate de manganése de 10 mg/L entrafnaient 30 % de mortalité des
orufs. Les truites au stade d’alevin et a celui-ei d’adulte était beancoup moins sensibles au
Mn. Il n’existait pas de différence tangible dans la mortalité des alevins de truite de 1 4
10 mg/L de sulfate de manganése. England et Cumrning (1971} ont indiqué une CL50 de
96 heures de 16 mg de Mn/L chez la truite arc-en-ciel.

Nix et Ingols (1980) ont posé que le Mn était & ’origine de la mortalité de la truite dans
I’écloserie Greers Ferry National Fish Hatchery, en Arkansas, aux Eiats-Unis. L'sau qui
alimentait 1’écloserie était de ['eau d’hypolimnion (aérée avant usage) du réservoir Greers
Ferryr. En automne de chaque année, ["approvisionnement en eau, qui était faible en
oxygéne et forte en Mn (1,5 mg/L en comparaison de la valeur habituelle de <0,1 mg/L),
occasionnait la mort de poisson. Des études précédentes avaient suggéré que le Mn n’était
pas toxique s°il &tait injecté au poisson (Schweiger, 1957), ce qui indiquait que 1’effet se
manifestait par les cellules épithéliales des lamelles des branchies. Les auteurs ont laiss¢
entendre que les formes oxydées du Mn, peut-étre des particules, étaient la cause de la

toxicité observée.

4,2.2 Organismes marins

4.2.2.1

Les effets du Mn sur le biote marin sont mal documentés, et il n’existe pas de données sur
les espéces tropicales. Les valeuwrs de CL/CES0 signalées sont comprises enfre 1,5 et
50 mg/L, pour les algues, 5 et 40 mg/L. pour les mollusques et les échinodermes et 30 ef
70 mg/L pour les crustacés adultes (annexe 4-4). Il a été impossible de trouver des
données sur la toxicité du manganése pour ies poissons.

Algues

Les divers milieux de culture employés pour les essais de toxicité confondent encore la
toxicité du Mn pour les algues. Par exemple, Rosko et Rachlin (1975) ont montré que [a
CE50 de 96 heures pour le Mn a1'égard de la diatomée Nitzschia closterium est passée de
26 £ 0,02 mg/L 454 mg/l, quand le chélateur, ’acide citrique, a été ajouté aux milieux de
culiure. Florence er al. (1994) a trouvé que le croissance d’un isolat australien de la méme
espéce de diatomée était insensible au Mn, avec une CE50 de 72 heures >0.5 mg/L. On a
observé que les clones tropicaux de ceffe diatomée, solés de la mer de Corail et du
plateau Nord-Ouest du nord de 1’ Australie, étaient moins sensibles aux aufres métaux fels
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4.2.2.2

que le nickel et le chrome que le clone de zone tempérée de cette espéce; par contre, la
toxicité du manganése de ces clones tropicaux n‘a pas fait I’objet d'essai. Le Mn était
également peu toxique pour les diatomées marines Ditvlum brightwellii et Asterionella
Japonica, lewrs valewrs de CES50 étant de 1,5 mg/L et de 4,9 mg/L respectivement
(Canterford et Canterford, 1980; Fisher et Jones, 1981).

Christensen ef al, (1979) ont noté une réduction de 50 % du volume cellulaire de 1’algue
verte Chlorella stigmatophora 4 50 mg de Mn/L (ajouté sous forme de chlorure de
manganése) dans un milieu marin artificiel en plus de PEDTA. Ils ont observé un fort
effet d’antagonisme du Mn avec la toxicité du plomb, probablement en raison de la
concurrence a1’égard de sites actifs. Rebhun et Amotz (1988) ont aussi montré que le Mn
protégeait contre la toxicité du cadmium 1'algue verte Dunaliella salina. Le cadmium
concurrengait le Mn soit en vue d’un site d’une membrane cellulaire soit, au sein de la
cellule, 4 ’égard d’une métalloenzyne particuliére, ce qui conduisait & des symptdmes de
carence ¢i Mn comme la chlorose et I'interférence 4 I'égard de la structure de la
membrane chloroplastique et du transport ¢’électrons du photosystéme IT.

Le Mn ne présentait pas de risques toxiques pour les populations naturelles de
phytoplancton et de nanoplancton de 1’estuaire de Zuari, 4 Goa. On n’a enregistré aucune
réduction de la photosynthése (assimilation du carbone) bien qu’on ait remarqué de
petites hausses en présence de faibles concentrations de Mn de 8 pg/L (Ragendran ef al,

1978).

Des sédiments recueillis dans un port de la NGS en Australie contenaient 345 mg de
Mn/kg en poids sec ainsi que 1,5 mg/L dans de ’eau de porosité filtrée, En dépit de cela,
le sédiment n’était pas toxique pour 1*algue marine benthique Entomoneis ¢f. punctulata
dans un essai de toxicité de tout le sédiment (Stauber er al, 2000), L’essai porte sur la
diminution de I’activité de I’enzyme (estérase) dans I'algue sur une durée d’exposition de
3 424 heures. Adams (2000) a montré I'absence d’effet sur 1’activité de ’enzyme dans

cette algue & des concentrations allant jusqu’a 2,5 mg de Mn/L.

Invertébrés

On a indiqué que, hormis les embryons de crabe, les crustacés sont insensibles au
manganése. Liu et Chen (1987) ont établi Ieffet de trois stades d’oxydation du Mn sur le
pourcentage relatif d’éclosion de spores de 'artémia Artemia salina aprés 48 heures
d’exposition & 28° C. De tous les métaux mis 4 1’essai, le Mn fut Ie moins toxique. Des
concenfrations de 100 mg/L de Mn®*, Mn*" et Mn™ ont donné des contréles de 82 %,
69 % et 8% respectivement. Cependant, les résultats ont été confondus par la
précipitation du Mn'** 4 des concentrations dépassant 10 mg/L., :

Par contre, les embryons du crabe brachyoure Cancer anthonyi étaient sensibles au Mn
(Macdonald ef al., 1988). Btant donné que cette espéce porte sa couvée 3 Iextérieur sur
son abdomen, les embryons sont constamment exposés aux contaminants de ’eau et des
sédiments. Des concentrations de >100 mg/L occasionnzient une mortalité totale des
embryons du crabe en sept jours. Des concentrations de 0,01 4 10 mg/L. domnaient licu a
27 245 % de mortalité, méme si la réaction n’était pas fonction de la concentration. De
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plus, ’éclosion des embryons décroissait 4 des concentrations de Mn de 0,013 10 mg/L,

‘en regard des sujets témoins. Les eaux du crabe Carcinus maenas accumulaient le Mn (et

d’autres métaux) pendant 1'ovogénése et I'extrusion des cafs, le Mn s’intégre aussi ala

membrane vitelline chitineuse (Martin, 1976). Ceite bioconceniration de Mn peut
expliquer pourquoi les embryons de crabe meurent et pourquoi ’éclosion des larves est
entravée 4 de faibles concentrations de manganése en comparaison avec les autfres

invertébrés.

Les mollusques et les échinoderme résistent au Mn 4 des concentrations idoines dans
I'environnement. Le Mn n’avait aucun effet sur la réussite du peuplement de I'huitre
Crassostrea gigas, et le comportement des larves n’était pas touché par des concentrations
atteignant 20 pug/l. (Watling, 1983). Il en allait de méme du débit de filtration ou de la
mortalité de la coque commune Cerastoderma edule (Naylor, 1989). Young et Nelson
(1974) ont aussi observé que 1’élément n’influait nullement sur la motilité du sperme de
Poursin de mer 40,14 mg/L. Elle était [égérement affeciée 4 des concentrations de Mn de
0,68 mg/L.

D sédiment contenant 345 mg/kg de Mn, prélevé dans un port de la NGS, ne présentait
pas de toxicité aigué pour ["amphipode d’estuaire Corophium sp. durant une exposition de

10 jours (Stauber et al., 2000).

En revanche, Doyle (1999} a trouvé que le Mn était fortement & "origine de la toxicitd
d’échantillons d’eau de porosité prélevés dans le ruisseau Cockle, dans la baie Warners
Bay, 4 Broughion Point et 4 Marks Point, dans le lac Macquarie, en NGS. Les
concentrations totales de manganése dans les eaux de porosité étaient comprises entre
0,05 et 5,272mg/L, commme les concenirations dont on saif qu'elles affectent le
développement des larves de 'owrsin de mer sur une durée de 72 heures (CESO de
1,3 mg de Mn/L et CE50 de 5,2 mg/L). Lorsque les eaux de porosité ont été validées par
ajout de Mn, la toxicité s’est accrue. Cependant, 1'auteur suggere que le Mn dans ces
sédiments ne provient pas d’apports anthropogéniques, mais y est présent de maniére
naturelle.

4.2.3 Résumeé

Le tableau 4-1 présente un résumé de toutes les données disponibles sur la toxicité du Mn
pour les espéces tropicales. Quoique les eaux de mer des fropiques présentent des
caractéristiques de qualité différentes de celles des zones tempérées, comme moins de
nutriamnts et une teneur en carbone organique moindre, et qu’elles regoivent davantage de
lumiére et aient des températures plus élevées, rien ne permet d’avancer que les espéces
tropicales soient plus ou moins sensibles au mangsnése que les espéces des eaux
tempérées, Par contre, cette conclusion découle de données trés limitées sur les eaux
tropicales. Il 2 &t impossible de trouver des données sur la toxicité du manganeése pour
les mangroves, les coraux, les zostéres marines ou les poissons de mer.

11 n'est généralement possible de détecter les effets aigus ou chroniques du Mn sur les
organismes d’eau douce et d’eau de mer qu’a des concéntrations supérieures 2 5 mg/L, ce
qui dépasse de loin les concentrations de Mn dans ’environnement. Parmi les exceptions
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figurent une lenticule mineure d’eau douce, une algue d’eau douce et une algue marine
sur la croissance desquelles on rapporte des effets & des concentrations de Mn d'environ

1 mg/L. On a mentionné que, a ses premiers stades, un crustacé d’eau douce et un

crustacé de mer éfaient plus sensibles au Mn, mais que leur réaction de 0,01 4 10 mg/L
n’était pas liée 41a concentration. La figure 4-1 montre qu'il existe peu de chevauchement
enfre les concentrations de Mn dans les eaux et dans les sédiments, les demniéres étant

celles qui influent sur les organismes aquatiques.

4.3 Facteurs qui influent sur la toxicité du manganése a I'égad
des organismes aquatiques

4.3.1 Température

Aucim renseignement de la documentation ne monire que la toxicité du mangandse
s’accroit lorsque fes températures passent de 21° C 430° C. Shcherban (1977) a noté que
la toxicité du Mn®* (ajouté sous forme de sulfate de manganése) pour Daphnia magna
s’accentue légérement & des températures plus élevées. A 10 et 15° C, la CE50 pour une
exposition de un atrois jours au Mn était de 10 mg/L. A 30° C, on pouvait aussi observer
une certaine mortalité de 0,5 4 5 mg/L aprés trois jours d’exposition. Il a conclu que le Mn
était peu toxique et que les changemenis de température entrainaient peu de forte toxicité.

On a aussi montré que la température ne cause aucun effet sur le taux d’assimilation du
*Mn chez I'algue rouge Porphyra leucosticta au-deld d’un régime de 8 4 28°C
(Tsukidate, 1974).

4.3.2 Dureté de I'eau

Un certain nombre de rapports montrent qu’un accroissement de la dureté de I'eau suscite
une diminution de la toxicité du manganése pour les poissons, Les études de Stubblefield
et al. (1990) ont révélé qu'une grande toxicité du Mn pour le vairon A grosse téte et
Ceriodaphnia dubia s’accompagnait d’une corrélation inverse en fonction de la dureté de
I’ean. Dans un article récent (Stubblefield ef al., 1997), les auteurs ont aussi étudié I'effet
de T'eau dure sur la toxicité du Mn (ajouté sous forme de chlorure de manganése) sur les
premiers stades de la vie de la truite de mer (Saimo trutta) dans des conditions d’essai en
rencuvellement continu. lls ont mesuré le Mn 4 des valeurs de dureté de l'ean de 30, 150
et 450 mg/L fixée 4 CaCOs;. La dureté de 1'ean exergait un effet marqué sur la toxicité
chronigue du Mn, laquelle diminuait & mesure que la dureté augmentait. Les auteurs ont
noté une survie réduite dans les eaux dont la dureté était de 30 mg/L, tandis que Ia
croissance réduite était visible (changement du poids du corps) 4 des valeurs de dureté de
150 et de 450. Les valeurs de CI25 (c.-&d. une concentration entrainant une inhibition de
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Figure 4-1. Comparaison entre les concentrations de manganése dans les eaux et les sédiments
sachant que les échelles de conceniration entrainent des effets toxiques sur les organismes d’eau
douce et d’eau de mer.
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RECENSION DES ECRITS SUR LE MANGANESE

4.3.3 pH

Ia croissance de 25 %) fondées sur les résultats définitifs étaient de 4,7, 5,6 et
8,7 mg/L. de Mn a chaque valeur de dureté respective. Les valeurs de CI25 réduites
en regard de la dureté de I'eau ont donné I’équation suivante ;

125 (avec dul'eté) =e 01,2064 (Log duretd de I’eau) + 7,70%2

Les embryons de la truite de mer ont toléré le Mn, toute la mortalité s’étant produite
uniquement aprés [éclosion. Par conire, les valeurs de CSEO/CELQ étaient plus
faibles & une dureté de 150 mg/L (2,8 et 4,4 mgde Mn/L respectivement) en

comparaisan d’une dureté de 30 mg/L (3,9 et 7,4 mg de Mn/L).

Tout comme maints anfres métaux, 1'on creit que le calcium (au lieu du magnésium)
est 4 Porigine de la réduction de la toxicité du mangandse dans les eaux & dureté
accrue. On a fait valoir que la concurrence exercée par le Mn et le Ca 4 P’égard des
sites de liaison & 1'épithélium des branchies de la truite de mer Salvelinus frontinalis
se manifestait par une augmentation marquée de la CLS0 & des concentrations
externes de Ca accrues (Gonzalez et al., 1990). Méme si 1'on sait que le Mn a une
incidence sur I’homéostate du calcivm dans les plantes tetrestres, le gros de la preuve
du réle protecteur du Mn chez les invertébrés et les poissons dans le milieu marin est
circonstanciel. Par exemple, Gale et al (1973) ont trouvé des écrevisses dang
plusieurs sites d’eau dure affectés par des travaux miniers ayant des concentrations
de calcium de 95 4210 mg/L et une concentration moyenne de Mn de 0,127 mg/L, en
revanche aucun écrevisse ne se trouvait dans des lieux subissant la méme pollution
(0,156 mg de Mn/L) dans des cours d’eau douce (de 15 450 mg de Ca/L). L’effet de
bonification du Mn par le Ca est probablement attribuable 4 la concurrence a 1’égard
des sites de liaison et de ’absorption. La concurrence entre le Mn et le Ca 4 I’égard
de ces sites 4 1’épithélium des branchies est révélée par une forte hausse de la CL50

lorsque la concentration externe du Ca est accrue.

Le pH en eau douce confribue a confréler la spéciation du manganése et, par
conséquent, sa biodisponibilité et sa toxicité. Dans des eaux de <pH 6,5 ot le carbone
organique est peu dissous (COD), presque tout le Mn est présent tandis que le faible
poids moléculaire de Mn** suscite un adduit. La chose s'est avérée dans les riviéres
tropicales a4 Groote Eylandt, en Australie du Nord, licu de la plus grande mine de Mn
au monde (Florence er al., 1989). Toutefois, lorsque Ie pH était plus élevé, davantage
de Mn filirable était présent sous forme de MnO, avec les colloi des organiques
associés, qui étaient probablement moins biodisponibles. En revanche, Wepener et al.
(1992} ont noté que le Mn entrainait un stress plus poussé a un pH neutre (7,4) qu'a
un pH 5 pour le poisson Tilapia sparrmanii. Outre les effets de spéciation, il est
possible que le pH ait une incidence sur la membrane cellulaire et le perméabilité des
-branchies, comme on I’a trouvé pour les autres métaux tels que le cuivre et I'uranium

(Franklin et ai., 2000).
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Tsukidate (1974) a observé que les taux d’assimilation de Porphyra leucosticta était
optimaux a un Ph entre 7,5 et 8,5, accusant des diminutions aux deux extrémités de

PPéchelle (>8,5) et (<7,5) du pH.

On a remarqué que la distribution de plusieurs espéces d’algues dans le ruisseau
Pinal, en Arizona, cours d’eau contaminé par de I’eau acide coulant d’une mine de
Cu, était en corrélation avec les concentrations de Mn et de Ni et les gradients du pH
{Rousch et Sommerfield, 1999). Le pH et la concentration du Mn de 10 2 17 km en
aval des débris miniers se situaient entre 5,9 et 7,8 et 0,42 et 1,02 mg/L. Au terme
d'une étude de suivi en laboratoire, les auteurs ont conclu que c’était les
concentrations de métaux au lieu du pH qui semblaient régir 1a distribution des algues
dans le cours d’em. 1ls ont étudié ’effet du pH, du Mn (sulfate de manganése) et du
Ni sur deux algues vertes filamenteuses — Ulothrix minuta et U. fimbriata. 1ls ont
effectué un essai de Mn 320, 40 et 280 mg/L (concentrations semblables 4 celles du
cours d’eau ) dun pH 6 et ils ont établi la croissance (teneur en chlorophylle a) aprés
15 jours. La croissance &tait considérablement ralentie 4 toutes les concentrations
testées; elle accusait une inhibition d’environ 85 % et 100 % 420 mg de Mn/L pour
U. minuta et U. fimbriata respectivement.

4.3.4 Salinité

Nous n'avons frouvé qu'un seul rapport sur les effets de la salinité sur la toxicité du
Mn. Fatala et Surosz (1998) ont écrit que la salinité n’avait aucune incidence sur la
toxicité du Mn (gjouté sous forme de chlonwe de manganése) 4 1’égard de la
croissance des algues vertes Chlorella vulgaris, Oocystis submaring, Scenedesmus
armatus et Stichococcus bacillaris.

4.4 Mécanismes de la toxicité du manganése pour les
organismes aquatiques

4.4 1 Microorganismes

Il existe pen de rapporis sur le mécanisme des effets toxiques du Mn sur les
microorganismes. Dans les bactéries, le Mn est absorbé par un réseau de transport
d’une grande spécificité ayant une grande affinité avec le Mn (Silver et Walderhaug,
1992). Singh et Kashyap (1978) ont montré que le Mn & fortes concentrations était
mutagéne pour les bactéries, les bactériophages et la levure. Le Mn réduit la fidélité
de la polymérase de I’ ADN dans la sélection des bases nucléotidigues, y compris les
mutations ponctuelles particuliéres. Ces auteurs ont aussi mesuré les effets de 50 a
500 mg/l. de Mn sur les deux algues bleu-vert Chroococcus limneticus et Plectonema
boryanum et ont ohservé que le Mn causait une division asymétrique de C. limneticus
et donnait ainsi naissance 4 des cellules anormales. Prigre de noter toutefois que, pour
que ces concentrations de Mn causent ces effets, il faut qu’elles soient beaucoup plus
importantes que celles qui existent généralement méme dans les eaux les plus

polluées.
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Dans les microalgues d’estuaire Chlorella salina, 1’absorption de *Mn a 1évélé une
phase initiale rapide indépendante de Ia lumiére ou de la température (Garnham et al.,
1992). Cette premiére phase était une stabilisation par contact mdépendante du
métabolisme, snivie par une absorption plus lente, qui diminuait dans 1’obscurité ou &
basse température. De grandes quantités de Mn étaient lides aux constituants
pariétaux, et il en existait de plus grandes quantités encore dans la vacuole du
cytoplasme, ce qui indiquait le transport du Mn a travers le tonoplaste.

Une fois a Pintérieur de la cellule, le Mn peut induire une carence en fer dans
certaines algues, notamment les algues bleu-vert, et cela peut conduire 4 inhiber la
synthése de la chlorophylle (Csatorday et al., 1984). On estime que le mécanisme
constitue une concurrence & I'égard d’un site pour l'intégrité du fonctionnement
duquel le fer est nécessaire. Ces auieurs ont observé que, dans U'slgue Anacystis
nidulans, le Mn entrave 1’accés des ions de fer & un certain site fonctionnel ayant trait
ala branche du magnésium liée 4 la voie de synthése du tétrapyrrole dans la synthése
de la phycobiliprotéine du pigment. Le site de I'action était I’étape suivant I’insertion
du Mg dans I’anngau de protoporphyrine.

Rousch et Sommerfield (1999) ont montré que ia teneur en chlorophylle a dans deux
algues vertes diminuait 4 20 mg/L. de Mn pendant 15 jours. Cette teneur réduite peut
éire due 2 wn effet sur la synthése de la chlorophylle a ou & une activité plus intense
sur I'enzyme chlorophyllase, qui brise la chlorophylle. Abdel-Basset et al. (1995) ont
aussi montré que 'activité de I"enzyme chlorophyllase (isolée dans deux algues
veries) s’accroissait /n vifro en présence de 0,1 mg/L de Mn.

A I'opposé de ’étude précitée, on a souvent indiqué que le mangandse protégeait les
microalgues contre la toxicité d’autres métaux. Par exemple, Sunda et Hunstman
(1998a,b,c) ont révélé que le Mn protégeait la diatomée Thalassiosira pseudonana et
Yalgue verte Chlorella pyrenoidosa confre I'absorption de cadmium, car I’absorption
du cadmium était inversement proportionnelle a la concentration des ions libres du
Mn. Skowrofiski et af. (1988) ont pour leur part écrit que le Mn (50 mg/l.,) améliorait
la toxicité du cadmium dans les microalgues Stichococcus bacillaris. Egalement dans
Chlamydomonas sp., le zinc cellulaire augmentait tandis que les concentrations
externes de Mn diminuaient.

On a aussi fait valoir que le manganése (4 pg/L) améliorait la toxicité du cuivre dans
Nitzschia closterium (Stauber et Florence, 1985). Les oxydes de manganése sont
d’excellents pidges de métaux en raison de leur faible solubilité et leur grande
supeificie. En revanche, le Mn ne s'oxyde gue lentement dans 1'eau de mer en MnQO,.
On a découvert que le Mn ajouté & I'eau de mer demeurait a Pétat de Mn** et
n’affichait qu’une oxydation de 10 % sur une durée de trois mois. Cependant, en
présence d’algues, le Mn’* peut s’oxyder 4 la surface de la cellule en Mn™,
probablement par voie de superoxyde. Le Mn lié aux cellules (3 I’état de Mn** ou

_d’hydroxydes Mn’*) absorbait le cuivre et empachait la pénétration du cuivre dans les

cellules. Dans Nitzschia, méme s’il existait une concurrence de liaison 4 la surface de
la cellule enfre Ie cuivre et le Mn, le cuivre n’affectait pas le Mn intracellulaire. On
savait également que le Mn piége efficacement le radical superoxyde produit dans le

Inco Limited

4-21 Rescan” Environmental Services Ltd.



RECENSION DES ECRITS SUR LE MANGANESE

chloroplaste par réduction de 1’oxygéne moléculaire. Le Mn catalysait la dismutation
du superoxyde en H,O, et en O, assurant ainsi une protection supplémentaire & la
cellule des algues.

4.4.2 Invertébrés

Dans leurs études sur les plathelminthes, Palladini et al. (1980) ont prouvé que le

Mn’* était neurotoxique, car il bloquait la libération présynaptique de la dopamine, ce
qui conduisait a endommager de maniére irréversible les cellules dopaminergiques.

Les concentrations de Mn (ajoufé sous forme de sulfate de mangandse ou de chlorure
de manganeése) de 100 & I 000 mg/L. induisent immédiatement des mouvements

hélicoi daux chez les vers en raison d’une surstimulation de dopamine. La mort
suivait dans les 24 448 heures.

4.4.3 Poissons

Les métaux peuvent &tre toxiques pour les poissons, car ils agissent sur la surface des
branchies ¢f endommagent les membranes épithéliales et entravent Ia capacité des
branchies & réguler les ions, en particulier le sodium. Aprés avoir traversé les

branchies, les métaux sont transportés dans le flot sanguin et peuvent donner heu 2
une multitude d’effets toxiques. '

Dans les plupart des rapports sur les mécanismes de toxicité du Mn & 'égard des
poissons, on reléve que les auteurs ont utilisé des concentrations anormalement
levées de Mn pour obtenir des effets observables. Lewis (1978) a remarqué que de
fortes doses de Mn (2 500 mg/L) suscitaient des [ésions aux branchies, ’anémie, la
lencocytose, des désordres du mélsbolisme des glucides, le déclin de 1'activité
spermatogénique et des désordres neurclogiques des alevins et de la vandoise 3
longues nageoires Agosia chrvsogaster. En outre, Garg et al. (1989) ont examiné les
effets du Mn sur les pararnétres du sang du téléostéen Channa punctatus a des
expositions de 96 heures et 30 jours. La concentration entrafnant 50 % de mortalité se
sitnait 4 3 g Mn/L. Le Mn causait un déclin du nombre de globules rouges et de
I’hémoglobine et un accroissement des globules blancs. Les teneurs en protéines et en
urée étaient réduites a de fortes expositions tandis que I'urée augmentait 4 des
expositions chroniques.

Par contre, dans un rapport récent sur fes effets du Mu (de 500 41 500 mg/L) sur le
profil hématologique du poisson d’eau douce Oreochromis niloticus, aprés 96 heures
d’exposition, on a montré gu'il se produisait une réduction des lencocytes et du
cholestérol et un accroissement de 1’hémoglobine, des érythrocytes, des protéines
sériques, du glucose sérique et des triglycérides sériques (Al-Akel ef al, 1998). Les
autews avangaient que c’était un manque d’oxygéne qui réduisait 'activité du

“poisson. Un état hypoxique powrait nuire aux réserves d’énergie du muscle et du foie

ef mener 4 I'augmentation observée des niveaux de glucose. Tl peut y avoir, par
médiation du stress, libération de globules rouges et synthése d’hémoglobine en vue
d’améliorer I'aptitude du sang 2 transporter [’oxygéne. La réduction des leucocytes
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peut &tre due 4 une plus grande sécrétion de I"hormone adrénocorticotrope, ce qui
pourrait provoquer des titres sanguins de corticostéroi des plus élevés et causer la lyse
des lymphocytes.

Schweiger (1957) a découvert que de fortes concentrations de Mn (de 600 2
5000 mg/L) induisaient des symptdmes de suffocation lente, de paralysie, de
cautérisation des lamelles des branchies et de déclin des cellules muqueuses du
poisson. Zaba et Harrig (1978) ont révélé un déréglement intracellulaire de la voie de
production énergétique dans les parties infracellulaires des cellules hépatiques du
téléostéen. Ils ont trouvé que Colisa fasciatus connaissait une réduction importante
de tous les globules rouges aprés une exposition de 26 heures 4 2 500 mg/L de Mn.
La CL50 496 heures était de 2 850 mg/L. Le nombre de petits lymphocytes a aussi
augmenté. Il peut s’agir d’une conséquence de la stimulation directe des systémes de
défense immunitaite ou des dommages des tissus causés par le Mn.

Wepener ef al. (1992) ont éidié le mécanisme de toxicité du Mn (ajouté sous forme
de chiorure de manganése) au Tilapia (Tilapia sparrmanii) en Afrique du Sud. A
I’'opposé des études précédentes, le Mn a fait I'objet d'un essai 4 des concentrations
écologiques de 4,43 mg/L, soit la moyenne des eaux locales de Witwatersrand, 3 un
pH de 7,4 et de 5. Aucune mortalité n’a éié enregisirée aprés 96 heures d’exposition.
Par contre, ils ont observé une diminution importante des globules rouges, de
Phémoglobine, du volume moyen des globules, de I'hématocrite et des globules
blancs. La réduction des pglobules rouges et de I’hématocrite était due & une
hémorragie interne, probablement & la suite d’une nécrose des muqueuses intestinales
et des reins. L'anémie induite par le manganése était aussi évidente, peut-8ire en
raison de l"endommagement du tissu hématopoi étique de la rate et du rein. La
diminution du volume moyen globulaire était atiribuable & la libération de globules
rouges immatures & cause du saignement. L’enzyme ALA-D, une enzyme
déterminante dans la biosynthése de ’héme, a affiché une activité accrue pour
compenser les conditions hypoxiques qu’a connues le poisson. Les auteurs laissent
entendre que les diminutions des globulés blancs peuvent étre le fait d’une sécrétion
accrue de corticostérof des, soit une réaction qui n’est pas propre 4 un stress du

milien.

Nous disposons de peu de renseignements sur le mécanisme de la toxicité du
manganése pour les poissons tropicaux. Nath et Kumar (1987, 1988) se sont penchés
sur I'impact du Mn (ajouté sous forme de Mn S0,H0) sur le métabolisme des
glucides du gowrmi péant Colisa fasciatus péché dans le lac Ramgarh, a Gorakhpur,
en Inds. La CL50 4 96 heures était de 3 230 (de 2948 43 538) mg de Mn/L. La
CL50 a décru d’environ 50 % tandis que D'exposition passait de 24 3 96 heures. Le
Mn a gussi été & 'origine d’une hausse du glycogéne du foie 4 3 heures, suivie par
une diminution aprés 24 heures en regard des sujets témoins. Les auteurs ont indiqué
que cette hausse initiale pouvait avoir été causée par la glycogénose ou par un taux
réduit de glycogénolyse. Le déclin du glycogéne du foie peut tre attribuable 4 Ia

“plycogénolyse, clle-méme peut-8tre induite par une libération accrue de

catécholamines. Les niveaux de glycémie étaient 4 1'opposé; ils montraient une chute
mmportante 4 3 heures et une augmentation aprés 48 496 heures. Les niveaux d’acide
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lactique du sang se sont élevés aprés 24 h d’exposition au Mn, affichant une hausse
de 56 % aprés 72 heures. Cela peut traduire une hypoxie des tissus ou une hypoxie
des branchies. La libération de catécholamines peut aussi étve 3 'origine d’une
augmentation des niveaux d'acide lactique dans le sang,

En plus des effets hématologiques, Hiltibran (1971) a trouvé que, dans les
mitochondries du foie du crapet arlequin, le Mn modifiait le métabolisme du
phosphate en présence de succinate et d’a-cétoglutarate en améliorant la conversion
du phosphate organique des tissus en phosphate inorganique. Srivasta et Agrawal
(1983} ont indiqué une réduction de 1'activité spermatogénique et unc hémorragie
chez Colisa fasciatus exposé 42,4 g de Mn/L.

On a noté que la premiére action toxique du Mn sur la truite de mer Salvelinus
Sfrontinalis relevait du déréglement de la rétention de sodinm. Les concentrations de
sodium dans le corps et le plasma a diminué respectivement de 52 % et 40 % pendant
T'exposition & 590 mg de Mn/L, et tous les poissons sont morts en 36 heures. Du **Mn
radioactif &tait accumulé dans le foie (Gonzalez et al., 1990). Le Mn stable 1ié aux

branchies était en corrélation négative avec le sodium du corps.

Reader ef al. (1988) ont montré que la larve vésiculée de la truite de mer (almo
frutta) exposée A des concentrations de Mn supérieuresi 0,360 Mg de Mn/L subissait
un déréglement du méizbolisme du calcium. L’absorEﬁle‘d g, du K ou du Na
n’était pas touchée, ce qui donne a penser que le Mn ne suscife pas un accroissement
marqué de 1a perméabilité de la membrane mais qu’il influe plut6t sur I’absorption du
calcium ou sur sa rétention. Ies populations de poissons des lacs soumis & des faux
élevé de Mn ont aussi accusé des symptémes de mobilisation réduite de calcium
pendant "oogénése ou un dépdt réduit de calcium du squelette, par contre cet énoncé
est en partie rendu incertain en raison du faible pH des lacs étudiés (Fraser et Harvey,

1982).

4.5 Toxicité du manganése pour les humains

On a entrepris depuis 1980 un certain nombre d’études sur les aspects de la santé
humaine en rapport avec le Mn (WHO, 1981; Stokes ef al, 1988; WSC/NSR, 1995),
et il n’est pas de notre ressort d’examiner en profondeur les effets toxiques du Mn sur
les humains. Nous ne donnons ici qu’un bref résumé de données utiles récentes.

Le Mn est un élément trace essentiel aux humains, car il est indispensable & la
formation du tissu conjonectif et des os ainsi qu’a la croissance, an métabolisme des
glucides et des lipides, au développement embryonnaire de I'oreille interne et 4 la
fonction de reproduction. Les adultes ont besoin chaque jour d’en prendre 2 ou 3mg,
tandis que la consommation quotidienne se situe entre 2 et 9 mg (WSC/NSR, 1995).

_La charge corporelle totale pour un homme de 70 kg est d’environ de 10 4 20 mg, st

le Mn se concentre dans les tissus riches en mitochondries tels que le foie, les reing,
le pancréas et les intestins. Le Mn peut aussi franchir la barri¢re hémato-encéphalique
et le placenta. La demi-vie du manganése dans le corps est de 37 jours, bien qu’il
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reste plus longtemps dans le cerveau (WHO, 1981). Méme si des études sur des
animaux témoins ont moniré des carences en Mn, on ne connait pas chez 1’homme de
symptomes de carence en Mn bien définis.

Le Mn s’absorbe par inhalation, par ingestion ou par la peau. En dépit de la faible
toxicité du Mn du point de Ja vue de la mortalité, du systéme et de Pimnumologie, la
poussicre de Mn peut causer des effets neurologiques graves chez I’homme aprés son
inhalation. L’empoisonnement aigu au Mn se caractérise par la désorientation, la
perte de meémoire, 1’angoisse prononcée et les hallucinations (Shukla et Singhal,
1984). Dans les premiers moments de I'empoisonnement au Mn, les victimes
manifestent des désordres neuropsychiatriques caractérisés par ume excitation
psychomotrice, I'irritabilité, les troubles de la parole et un comportement compulsif.
Le Mn s’accumule dans le cerveau et induit la synthése des catécholamines ; il en
résulte une augmentation de la dopamine et de la noradrénaline sans doute en raison
de I’hyperactivité observée. A la suite d’une exposition chronique, les patients
arborent un visage ayant I'allure d’un masque, voient leurs réflexes exagérés, ont des
tremblements, éprouvent de la difficulté 4 marcher et sont atteints d’autres
symptémes semblables & ceux de ta maladic de Parkinson. Le Mn au cerveau mhibe

‘les enzymes liées a ’énergie, ce qui ralentit le métabolisme et interfire avec la

physiologie des neurones catécholaminergiques ainsi gue des terminaisons nerveuses,
Les niveaux de catécholamine dimimuent alors, et [a mort cérébrale s’ensuit. La chute
de l'activité locomotrice peut éire liés 4 de faibles niveaux de dopamine et de
norépinéphrine dans le cerveau. Florence et Stauber (1989) ont montré que la
neurotoxicité du Mn peut étre aifribuable 3 Poxydation de la dopamine due 2 la
production de quinone de dopamine et de HO,, qui sont sux-mémes fortement
neurotoxiques. Le cerveau a besoin d’une certain quantité de superoxyde pour
réaliser la synthése des neurofransmetteurs, la sérotonine et la norépinéphrine.
Cependant, le Mn peut catalyser la dissociation du superoxyde, ce qui accroit les
effets toxiques. De plus, le Mn diminue la péroxydation des lipides dans le cerveau

en entrant en concurrence avec les ions de fer.

A ’opposé des multiples rapports sur la toxicité du Mn par inhalation, il existe peu
de rapports sur la toxicité du Mn par l'sau ou par le régime alimentaire (Klimis-
Tavantzis, 1994). Kawamura ez al. (1941) ont signalé la toxicité du Mn 3 Hiratsuka,
au Japon, aprés Ia contamination de I'eau de puits par du Mn de piles. Des gens ont
&té exposés pour une période de deux 4 trois mois & des concentrations allant jusqu’a
14 mg de Mn/L.

Peut-&tre que 1’étude récente la mieux documentée sur les effets possibles du Mn sur
une population normale (en regard de travaillewrs touchés par une exposition
professionuelle) porte sur le syndrome neurologique lié au mangandse chez des
aborigenes australiens vivant & Groote Bylandt, au nord de I’ Australie. La collectivité
aborigéne se trouve prés d’un riche affleurement de Mn, ol le sol en contient des
concentrations de 4 ou 5 % (Florence et Stauber, 1989). Les aborigénes ont de forts

“niveaux de Mn dans les cheveux et dans le sang (Stauber ef al, 1987), et 2% de b

population souffre de troubles neurologiques. On croit que les principales sources de
Mn sont le sol et les plantes de la localité ainst que la consommation de thé bouilli au
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lieu de Pair et de ’eau. Il n’a pas été prouve que Ie manganése est un agent causal, et
il est possible que la maladie soit aussi d’origine génétique.

Outre les pathologies du systéme nerveux central, le Mn peut aussi influer sur les
poumons, le foie, les teins, le pancréas et les fonctions reproductrices. Il y a pénurie
de données sur les effets que le Mn peut avoir sur les fonctions génétiques,
reproductives et sur le développement des hommes.

4.6 Résumeé

+ Le manganése est un élément essentiel aux organismes aquatiques qui en ont
besoin 4 titre de constituant ou de cofacteur de nombreuses enzymes engagées
dans la photosynthése, la détoxification des radicaux libres et du métabolisme en

géneral,

» On a trouvé que le manganése exergait un effet protecteur chez les organismes
aquatiques, en particulier les algues, chez lesquelles il prévient la haison et
I’absorption d'un ensemble de métanx plus toxiques.

« La manganése est I'un des métaux les moins toxiques pour les organismes
aquatiques. En général, il est possible de détecter les cffets aigus ou
chroniques du Mn sur les organismes d’eau douce ou d’eau de mer qu’a des
concentrations supérieures 25 mg/L, soif bien au-dela des concentrations de
Penvironnement natarel.

« Parmi les espéces d’eau douce, il semble que les cladocéres et les truite arc-en-
ciel sont les plus sensibles au Mn, cest-&dire 4 des densités de CL50 aussi
faibles que 5 mg/L. en eau douce. La toxicité est fonction de la dureté de I'eau et
du pH, et elle décroit dmesure que la dureté de I’eau croft.

« Parmi les données examinées, les valeurs signalées de CL/CES0 se situent entre
1,5 et 50 mg/L. pour les algues, entre 5 et 40 mg/L pour les moliusques et les
échinodermes et entre 50 et 70 mg/L pour les crustacés adultes.

+ 1l existe peu de données sur la toxicité du manganése pour les espéces fropicales,
en particulier Ie biote marin. Méme si les saux de mer tropicales possédent des
caractéristiques de qualité différentes de celles des eaux tempérées, & savoir des
teneurs en nutriants et en carbone organique plus faibles ainsi que des régimes de
lumiére et de température plus élevés, rien n’indique que le mangancse soit plus
toxique pour les espéces tropicales que pour les espéces tempérées. De plus, la
température semble peu influer sur la toxicité du manganése.

+ La toxicité du manganése est fonction de sa spéciation chimique. En général, ses
formes colloi dales ef particulaires (comme powr le MnQ) ne sont pas
biodisponibles, tandis que les Mn®" et Mn'" dissous ne sont toxiques qu'd trés
fortes concentrations.

“» La bioconcentration du manganése est commune a presque tous les organismes

aquatiques. Les organismes marins accumulent le manganése plus que les
espéces d’eau de mer. Les poissons ot les plantes de mer concentrent le
manganése 3 des facteurs allant jusqu’a 100 et 100 000 respectivement. Les
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concentrations habituelles de manganése dans les algues, les zostéres marines, le
corail et les invertébrés sont comprises entre 5 et 50 ug/g, tandis que les tissus
des poissons de mer et d’ean douce en contiennent de 0,1 410 pg/g.

Il existe des preuves contradictoires sur la possibilité de biomagnification du
manganese. Certains auteurs signalent une faible biomagnification, mais il est
peu probable gu'elle soit importante en regard de la bicaccumulation des autres
métaux.

On n’a procédé 4 des €tudes sur le mécanisme de la toxicité du manganése qu’a
des concentrations bien au-dela des niveaux qui se retrouvent méme dans les sites
les plus pollués. Dans les algues, le manganése peut affecter la synthése de la
chlorophylle, tandis que chez les poissons, il dérégle le métabolisme des
glucides, les paramétres hématologiques ainsi que le métabolisme du sodium et
du calcium, et en définitive méne 4 un manque d’oxygéne.

Chez les humains, le manganése peut dérégler les poumons, le foie, les reins, le
pancréas et les fonctions reproductrices. Le mangandse est une neurotoxine
capable de franchir Ia barriére hémato-encéphalique et saccumule dans les tissus
du cerveau ou il oxyde les neurotransmetteurs tels que la dopamine, ce qui peut
déboucher sur des troubles neurologiques.
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