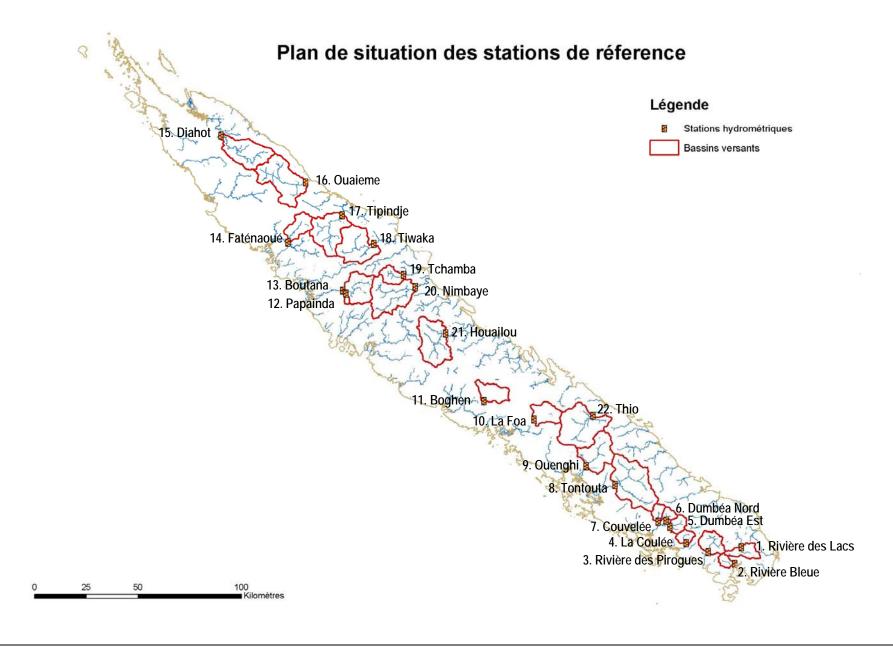


DIRECTION DES AFFAIRES VETERINAIRES ALIMENTAIRES ET RURALES Service de l'eau des statistiques et études rurales Observatoire de la ressource en eau

Recueil des débits caractéristiques de la Nouvelle-Calédonie



SOMMAIRE

DEFINITIONS ET METHODOLOGIE	4
1. RIVIERE DES LACS	10
2. RIVIERE BLEUE	23
3. RIVIERE DES PIROGUES	36
4. LA COULEE	49
5. DUMBEA EST	62
6. DUMBEA NORD	75
7. COUVELEE	88
8. TONTOUTA	101
9. OUENGHI	114
10. LA FOA	128
11. BOGHEN	141
12. PAPAINDA	155
13. BOUTANA	168
14. FATENAOUE	182
15. DIAHOT	195
16. OUAIEME	210
17. TIPINDJE	223
18. TIWAKA	236
19. TCHAMBA	251
20. NIMBAYE	265
21. HOUAÏLOU	278
22. THIO	293
TARI FALIY DE SVNTHESE	307

Définitions et méthodologie

L'Observatoire de la Ressource en Eau (ORE) de la DAVAR dispose sur l'ensemble de la Grande Terre d'un réseau de 40 stations limnimétriques et 70 stations pluviométriques en place pour les plus anciennes depuis le milieu des années 50.

Ce document est le recueil des caractéristiques hydrométriques des 22 bassins versants pour lesquels la DAVAR dispose de plus de 10 années de données ininterrompues. Nous y avons ajouté les caractéristiques physiques afin de pouvoir replacer chaque bassin dans son contexte géomorphologique, géologique et géographique.

Le paragraphe qui suit détaillera les méthodes et définira les grandeurs utilisées.

Localisation et durée des observations

Les numéros d'identification et les coordonnées géographiques des stations hydrométriques de référence sont indiqués. Il a parfois été nécessaire d'utiliser plusieurs stations de mesures pour un même bassin versant généralement en raison de perturbation hydraulique à la station d'origine. Dans ce cas, les coordonnées et les périodes de suivi des différentes stations sont présentées ainsi que les méthodes de transpositions des débits utilisés.

Dans le tableau des observations

Le **BV** indique la superficie totale du bassin versant (km²)

La durée effective (Durée Eff) des observations correspond à la durée (ans) sur laquelle nous disposons effectivement de valeurs observés, c'est donc la durée totale du suivi depuis l'origine de la station à laquelle nous soustrayons les périodes de lacunes (défaillance du matériel, vandalisme,...)

Les **débits jaugés** (min et max) sont les débits extrêmes effectivement mesurés lors de jaugeages. En pratique, le jaugeage consiste à mesurer la section mouillée et la vitesse de l'écoulement, le débit (m³/s) étant égal au produit de la vitesse moyenne (m/s) par la section mouillée (m²). La mesure de la vitesse est réalisée à l'aide d'un courantomètre à hélice ou plus récemment grâce à un vélocimétre à effet Doppler. Les mesures sont effectuées en principe tous les mois ainsi qu'occasionnellement lors de périodes de crues.

Les débits évalués (min et max) le sont grâce aux courbes d'étalonnages. Celles-ci établissent les relations entre les hauteurs d'eau et les débits sur la base des jaugeages réalisées. Les extrapolations de hautes eaux sont généralement réalisées par modélisation hydraulique (H_RAS) intégrant la topographie du bief de contrôle et calée sur des lignes d'eau relevées à partir des laisses de crues ou des échelles à maximums de crues (installés depuis les années 90).

Le plan de situation sur fond topographique: « D.I.T.T.T. – gouvernement de la Nouvelle-Calédonie ».présente également la localisation des stations pluviométriques de référence et le parcours du chemin hydraulique le plus long.

Débits journaliers classés

Pour chaque journée d'observation nous pouvons établir un débit moyen. Ces débits moyens journaliers sont ensuite classés par ordre croissant de façon à déterminer par la méthode d'Hazen la probabilité de non dépassement de chaque valeur.

La formule d'Hazen nous donne :
$$P(Q \le Q_r) = \frac{r - 0.5}{n}$$

Avec $P(Q \le Q_r)$ la probabilité d'obtenir un débit inférieur ou égal au débit de rang r. n la taille totale de l'échantillon.

La valeur de débit pour P = 0.5 est le **débit journalier médian** qui caractérise la valeur de débit qui est dépassée (ou non dépassé) en moyenne un jour sur deux.

Les débits journaliers classés suivent classiquement une loi Log Normale. Néanmoins, l'ajustement n'étant généralement pas parfait, en particulier pour les extrêmes, les valeurs empiriques sont également indiquées dans le tableau.

Débits moyens mensuels

Le **module** est la moyenne annuelle des débits. Etant donnée la grande variabilité des débits journaliers et la forte influences des épisodes de crue sur les valeurs moyennes, cette grandeur est peu représentative de ce que l'on observe fréquemment dans les cours d'eau. Il est donc fortement conseillé de privilégier l'utilisation du débit médian pour caractériser les débits habituels des cours d'eau.

La valeur **\$10** est le débit (annuel ou mensuel) **décennal sec**. On observe donc un débit inferieur ou égal avec une période de retour de l'ordre de 10 ans.

La valeur **H10** est le débit (annuel ou mensuel) **décennal humide**. On observe donc un débit supérieur ou égal avec une période de retour de l'ordre de 10 ans.

En d'autres termes, une période de 10 ans ne connaitra statistiquement qu'une seule année dont le débit moyen sera inferieur ou égale à S10 et une seule année durant laquelle le débit moyen sera supérieur ou égale à H10.

La valeur K3 est le **coefficient d'irrégularité**. C'est le rapport du débit décennal humide sur le débit décennal sec : **K3 = H10/S10**. Une faible valeur de K3 traduit un débit moyen assez régulier d'une année sur l'autre alors qu'un coefficient fort traduit une grande irrégularité d'une année sur l'autre.

Débits caractéristiques d'étiages

Le **Débit caractéristique d'étiage (DCE)** est défini pour une année donnée. C'est le débit journalier en-dessous duquel l'écoulement descend dix jours consécutifs dans l'année.

Le **DCE** médian est le DCE qui est dépassé en moyenne un an sur deux. Lorsqu'une année présente un DCE supérieur au DCE médian on considère qu'il s'agit d'un étiage humide. Dans le cas contraire, on parle d'étiage sec.

Les estimations fréquentielles sont obtenues par ajustement à la loi de Gumbel pour les valeurs maximales (étiages humide) et à la loi Log normale pour les valeurs minimales (étiages secs). Le tableau présente les valeurs brutes et spécifiques des étiages pour différentes périodes de retour.

Les graphiques sont présentés afin que le lecteur puisse apprécier la qualité de chaque ajustement.

Pour un rapport détaillé sur les étiages : DAVAR, Frysou O., 2008 - Caractérisation des régimes d'étiage en Nouvelle-Calédonie.

Courbes de tarissement

Les tarissements sont caractérisés par analogie à la loi de vidange d'un réservoir unique :

$$Q(t) = Q_0 \times e^{-\alpha(t-t_0)}$$

 α [j-1] : coefficient de tarissement

Q₀ : débit initial de tarissement au temps t= t₀

Nous considérons que le tarissement commence lorsque le débit devient inférieur ou égale au débit caractéristique d'étiage décennal humide (DCE H10).

Le temps caractéristique de tarissement (j) est $T_c = 1/\alpha$. Cela correspond à $Q(t=Tc) = Q_0e^{-1} = Q_0 / 2.71$ soit le temps au bout duquel, en l'absence de précipitations, le débit initial de tarissement Q_0 a diminué de 63%.

Débits maximums de crues

Les débits maximums annuels de crues sont généralement ajustés graphiquement à la loi de Gumbel.

Lorsqu'au regard de l'échantillon, différentes hypothèses d'ajustement apparaissent réalistes, nous présentons une hypothèse haute, qui constitue une approche maximaliste à conseiller en cas d'application nécessitant des précautions particulières.

Aussi, lorsque l'échantillon reporté en variable de Gumbel $(u = -\ln(-(\ln F(X))))$ présente une tendance asymptotique, nous présentons également un ajustement à la loi des extrêmes généralisée (**GEV**) de type II encore appelée loi de Jenkinson ou Frechet (pour c<0). Cet ajustement est réputé moins robuste en raison d'un troisième paramètre (c) difficile à caler (forte sensibilité). Il semble néanmoins que l'ajustement GEV soit à privilégier pour déterminer les débits extrêmes de la région du Sud-Est comprise entre Thio et Houailou.

Pour les séries de faibles durées d'observations (Coulée, Pirogues,...), nous privilégions la « méthode du renouvellement » (Musy A., Meylan P., (1996) – Hydrologie fréquentielle, EPFL). Celleci permet d'établir une correspondance avec la loi GEV (dont Gumbel) à partir de séries tronquées comme les débits de crues supérieures à un seuil donné. Les ajustements sont ainsi fiabilisé car ils portent alors sur 3 à 7 valeurs maximales par an au lieu d'une seule.

Quoiqu'il en soit, il faut toujours relativiser la fiabilité de l'ajustement à la durée des séries d'observation. Une extrapolation à des périodes de retour au-delà de deux fois la durée des observations reste sujette à caution. De même la pertinence de la fréquence empirique présentée sur les graphiques est d'autant plus grande que la valeur est fréquente. Il n'est donc pas essentiel de positionner les valeurs les plus extrêmes précisément sur l'ajustement. Aussi, il faut toujours avoir à l'esprit qu'une crue décennale à une probabilité de 63 % d'être atteinte ou dépassé sur une durée de 10 ans (et 95% sur 30 ans). Il s'agit d'une valeur de probabilité qui n'exclue pas qu'elle puisse être dépassée deux années consécutives ou jamais dépassé en 30 ans.

Pluviométrie

La carte de la pluviométrie moyenne inter-annuelle a été élaborée par la DAVAR en collaboration avec Météo-France (Perchat C., 2003 - Traitement et analyse des données pluviométriques de la Nouvelle-Calédonie. DAVAR). La méthode mise en œuvre tient compte des composantes principales du relief pour l'interpolation spatiale des données ponctuelles. Nous présentons ici la répartition des isohyètes pour chaque bassin versant ainsi que les pluviomètres (DAVAR ou Météo-France) qui ont été utilisés pour le bilan d'écoulement trimestriel.

Bilan d'écoulement trimestriel

Les bilans ont été effectués sur la période correspondante à la carte de la pluviométrie présenté ci-dessus, c'est-à-dire, avec les valeurs de pluies et de débits relevées du 01/11/1990 au 31/10/2002. Nous pouvons ainsi directement comparer les bassins versants entre eux.

Les bilans sont effectués sur des périodes trimestrielles glissantes cohérentes avec les temps caractéristiques de tarissement.

Les cumuls de pluie sont calculés avec l'aide des données fournies par les pluviomètres présentés sur la carte de pluviométrie et pondérées en fonction de leur représentativité sur la carte des isohyètes.

Il peut y avoir ainsi quelques différences entre la valeur de pluviométrie moyenne calculée sur la base des isohyètes présentée dans la partie « pluviométrie » et l'indice de pluie trimestrielle utilisée dans cette partie.

Caractéristiques Physiques

Altitudes et Pentes

La carte représente le modèle numérique de terrain (MNT) à la résolution de 10m avec ombrage du relief (réalisé à partir des données topographiques de la base de données topographique BDTOPO de la DITTT) lorsque les zones étudiées sont disponibles. Dans le cas contraire nous avons utilisé le MNT à la résolution de 50m avec ombrage du relief (réalisé à partir des données topographiques de l'IGN au 1/50000 et de la DITTT au 1/10000).

La carte des pentes a été réalisée à partir de l'extraction des données du MNT à la résolution 50m alors que la courbe hypsométrique et les principaux quantiles découlent de l'extraction des données du MNT à la résolution de 10m lorsque celui-ci est disponible. Dans le cas contraire nous avons utilisé le MNT à la résolution de 50m.

Chemin Hydraulique

Le chemin hydraulique L a été tracé de façon à représenter le plus long parcours de ruissellement et d'écoulement sur chaque bassin versant. Ce tracé est subjectif car nous avons cherché à tenir compte de la représentativité du parcours hydraulique, en évitant les bras « marginaux » qui auraient augmenté la longueur du chemin hydraulique sans que cette partie du bassin versant n'alimente de façon significative l'exutoire.

La **pente à l'exutoire i**_e a été calculée sur la partie aval du chemin hydraulique, de pente constante et représentative de la pente moyenne à proximité du limnigraphe.

Le **temps de concentration** T_c a été estimé en mesurant le décalage temporel entre un épisode pluvieux (hyétogramme) et la crue correspondante (hydrogramme). Pour chaque station nous

avons sélectionné une dizaine d'événements significatifs et en particulier les crues de type unitaire (présentant un seul pic de crue).

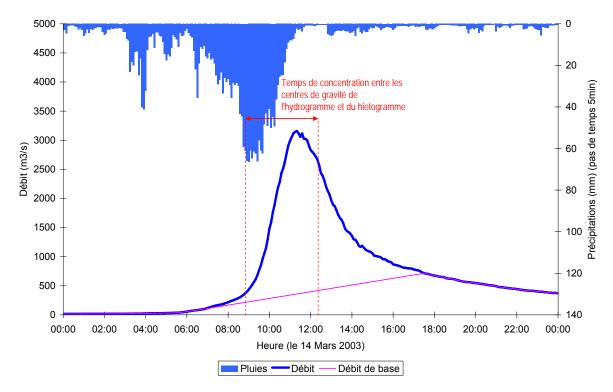


Figure 1 Décalage entre la pluie et le débit à Tontouta lors du cyclone Erica

La valeur Tc est définie en utilisant le décalage temporel entre les centres de gravité de l'hydrogramme et du hyétogramme comme le montre la figure 1. Les temps mesurés sont très variables d'un épisode à l'autre, probablement en raison des écarts dans l'état initial de saturation des sols. Nous retenons la valeur considérée comme étant la plus probable, tout en indiquant la fourchette de variations [Tc_min, Tc_max]

Ce temps de concentration nous permet de calculer une vitesse moyenne de transfert qui correspond à la longueur du chemin hydraulique divisée par Tc.

Géologie

La carte a été élaborée d'après les données de la carte géologique de la Nouvelle-Calédonie au 1/200 000, DIMENC/SGNC-BRGM, 1981. Certaines classes du document d'origine ont été regroupées de façon à améliorer la lisibilité tout en conservant la pertinence pour l'interprétation hydrogéologique.

Ainsi les dunite, gabbros et péridotites indifférenciées ont été regroupés au sein de la classe « Roches basiques et ultra basiques » alors que les « Terres et altérites » sont distinguer de façon à différencier les profils érodés.

De même les différentes classes d'alluvions et de colluvions utilisées dans la carte géologique au 1/200000e ont été regroupées en 2 classes : « Alluvions et Colluvions Anciennes » et « Alluvions et Colluvions Modernes »

Les « Formation gréseuse rhyolites basaltes » sont issues du regroupement des classes de faciès "à charbons", de diabases et de rhyolites.

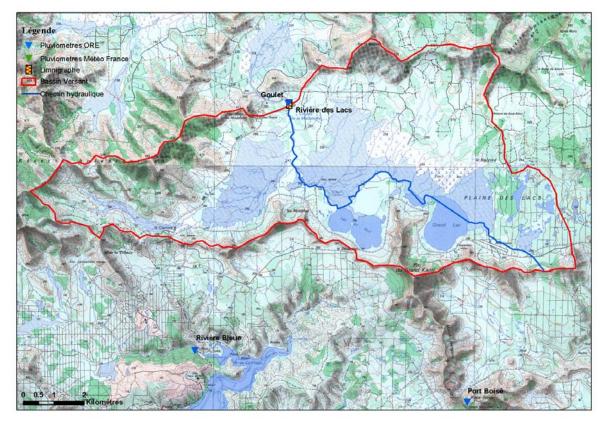
La formation de « Basalte de Koné » regroupe la classe des dolérites dominantes, basaltes, gabbros et sédiments associés ainsi que les faciès volcano-sédimentaire de Koné (argilites, tufs, cinérites)

La classe des **« Tuffs mesozoique »** est le regroupement de nombreuses classes volcanosédimentaires de la carte géologique au 1/200000^e telles que les dolérites, basaltes, rhyolites, spilites, tufs, gabbros et roches acides ainsi que des formations terrigènes.

Enfin les « Schistes micashistes » représentent le prisme sédimentaire indifférencié du Nord calédonien ainsi que la série des micaschistes et gneiss du Mont Panié.

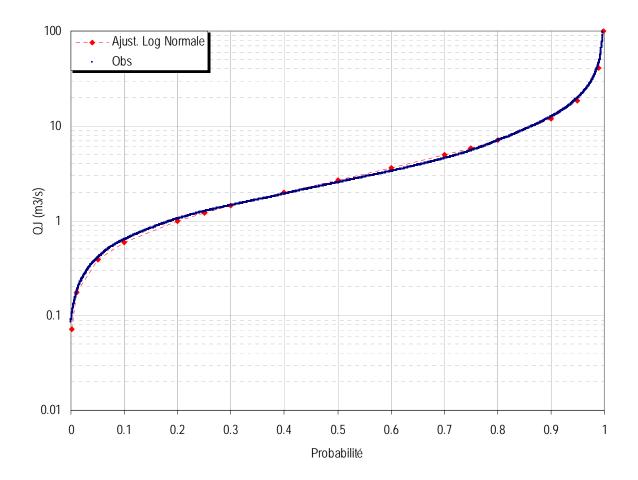
Occupation des Sols

La carte est issue de la Classification de l'occupation du sol de la Nouvelle-Calédonie par approche objet réalisée à partir d'images Spot datant de 2004 par le Service de la Géomatique et de la Télédétection du Gouvernement de la Nouvelle-Calédonie – 2008.

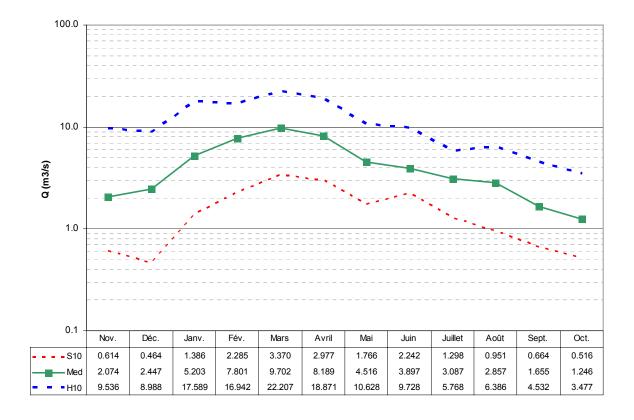

Lorsque la carte présente des lacunes (nuages, ombres), les superficies correspondantes ont été redistribuées dans les classes présentes à proximité afin d'estimer au mieux la répartition des classes de végétation.

1. Rivière des Lacs

Localisation et durée des observations


CODE	ODE STATION		LOCALISATION Coordonnées Lambert (m) X Y Z			
5705501001	Riviere des Lacs Goulet. Cote 240	488 707	219 065	240	77	

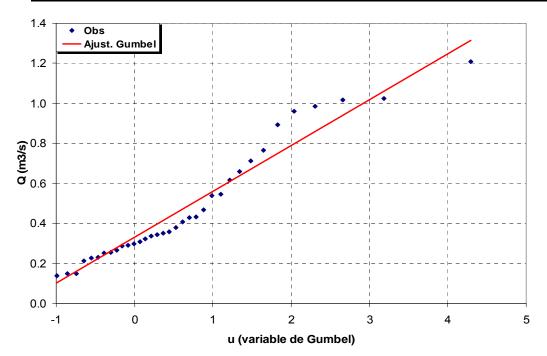
		C	BSERVATION	IS		
		Durée	Qmin	(M3/S)	Qmax	(M3/S)
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué
20/06/1956	15/05/2008	49.0	0.099	0.080	290	921

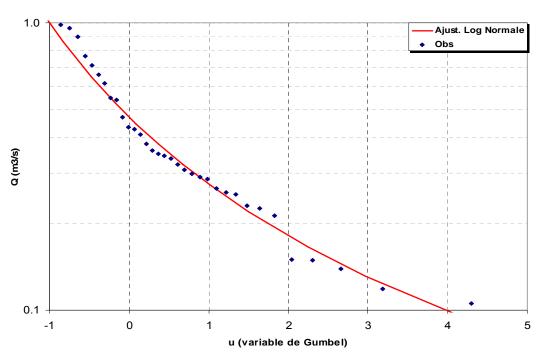

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

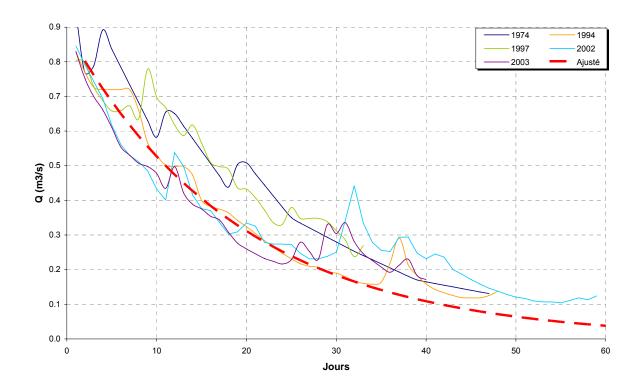
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.174	0.170
0.10	0.592	0.633
0.25	1.206	1.254
0.50	2.658	2.526
0.75	5.858	5.499
0.90	11.929	12.468
0.99	40.563	46.285

Débits moyens mensuels



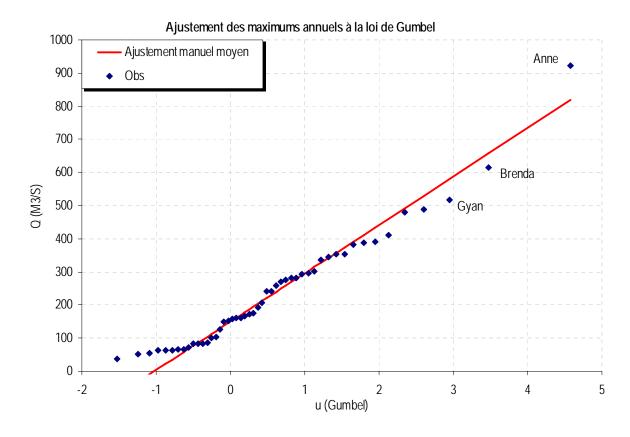

Module annuel = $4.91m^3/s$ $S10 = 3.47m^3/s$ $H10 = 8.88m^3/s$ K3 = 2.6

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

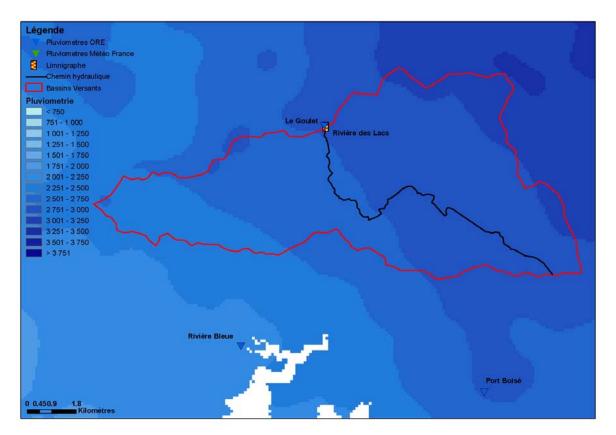
	Etiage Humide (T ans)			Médi	ane	Et	iage Sec (T	ans)	
	100	1	0	5	2		5	10	100
Q m³/s	1.386	0.8	346	0.674	0.3	79	0.220	0.166	0.085
Q spé l/s/km²	18.0	11	.0	8.8	4.9	9	2.9	2.2	1.1
Loi	Gumbel				Log No	rmale			
Paramètres	Gd =	0.229	PO =	0.330	ບ=	-0.97	1	$\sigma = 0$	643

Courbes de tarissement

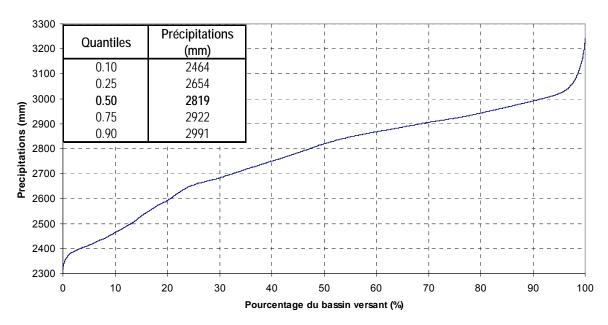


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.8	0.0484	21

 Q_0 : débit initial de tarissement α : coefficient de tarissement


 t_{c} : temps caractéristique de tarissement

Débits maximums de crues


	Période de Retour T (années)						Parametre	e loi	
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	150	204	369	479	584	720	822	146	150

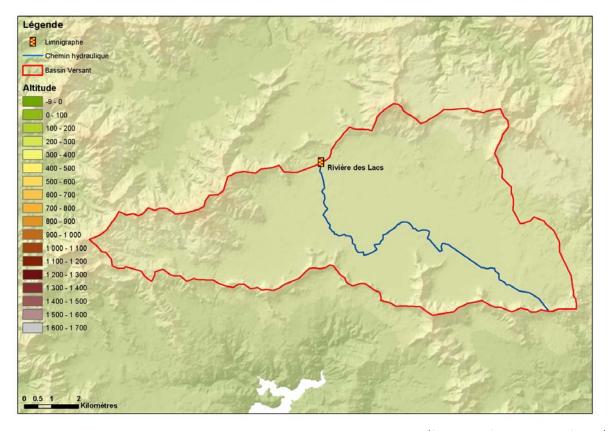
Pluviométrie

(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Rivière des Lacs

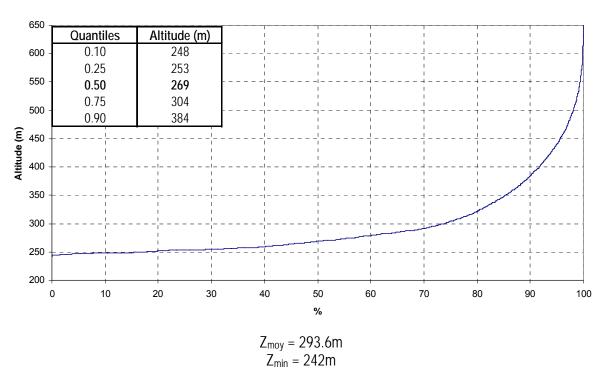
 $\begin{aligned} & \text{Précipitation moyenne} : P_{\text{moy}} = 2775 \text{mm} \\ & \text{Précipitation minimum} : P_{\text{min}} = 2316 \text{mm} \\ & \text{Précipitation maximum} : P_{\text{max}} = 3242 \text{mm} \end{aligned}$

Bilan d'écoulement trimestriel

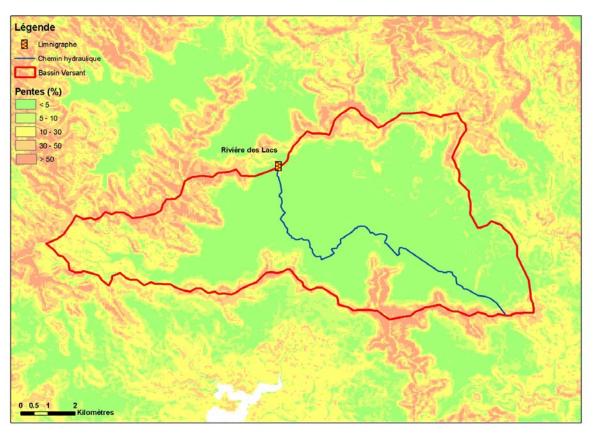

Coefficient d'écoulement moyen interannuel = 72% [63 ; 80]

Lame écoulée : L_e = 2120 mm

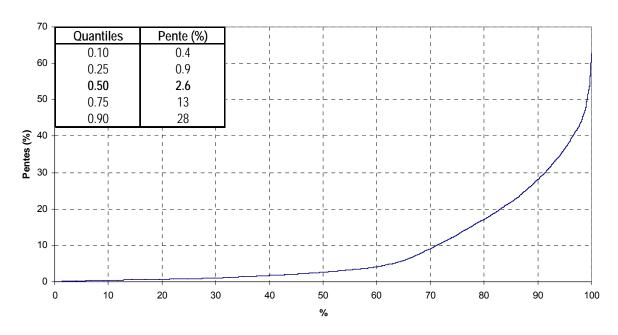
Déficit d'écoulement : Δ_e = P – L_e = 837 mm


Caractéristiques Physiques

Altitudes

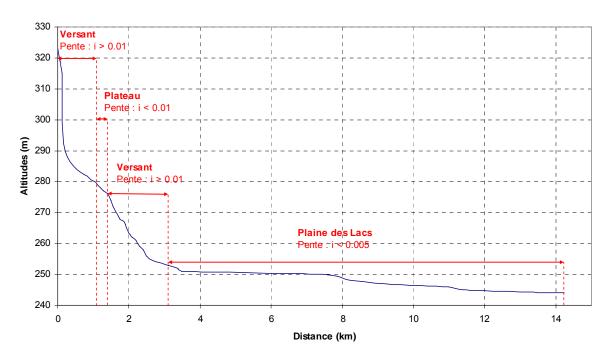

(Source: DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de la Rivière des Lacs


 $Z_{max} = 651m$

Pentes

(Source : d'après DTSI, MNT au pas de 50m)

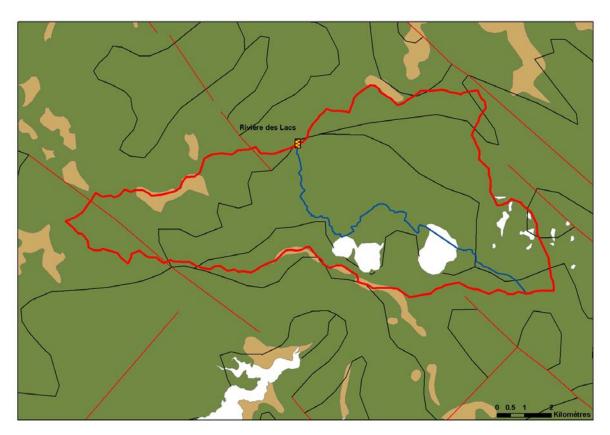

Pentes du bassin de la Rivière des Lacs

$$\label{eq:pentemoyenne} \begin{split} & \text{Pente moyenne}: i_{\text{moy}} = 8.8\% \\ & \text{Pente minimum}: i_{\text{min}} = 0.0\% \\ & \text{Pente maximum}: i_{\text{max}} = 52.6\% \end{split}$$

Chemin Hydraulique

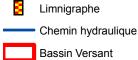
Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	< 0.025
0.25	< 0.025
0.50	0.04
0.75	0.27
0.90	1.26


Longueur du chemin hydraulique : L = 14.125 km

Pente moyenne : $i_{ch} = 0.55\%$ Pente à l'exutoire : $i_e = 0.1\%$

100% du chemin hydraulique présente une pente inferieure à 5%


Temps de Concentration : T_c = 10.5 h [8.72 ; 10.63] Vitesse Moyenne de Transfert : $V = L / T_c = 0.37 \text{ m.s}^{-1}$

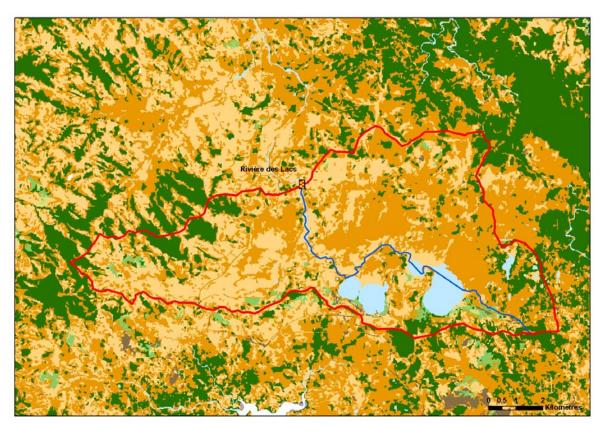
Géologie

(Source : DTSI, BRGM 1/1000000)

Légende

Géologie

Chevauchement, Observé
Faille principale, Observé


Faille principale, Supposé

Normal, Observé

Roches basiques à ultra basiques 2.1%

Terres et Alterites 97.9%

Occupation des Sols

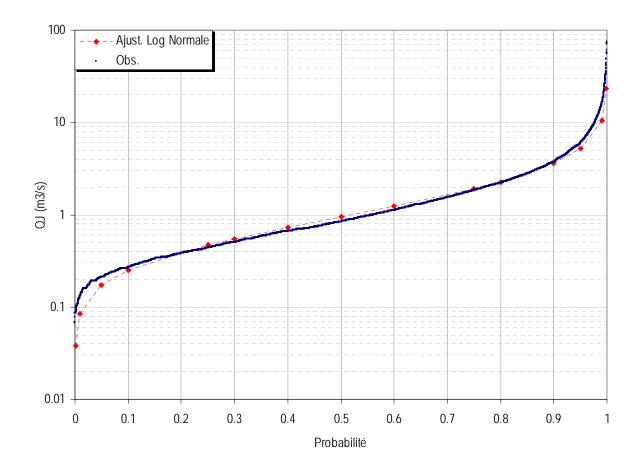
(Source : DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

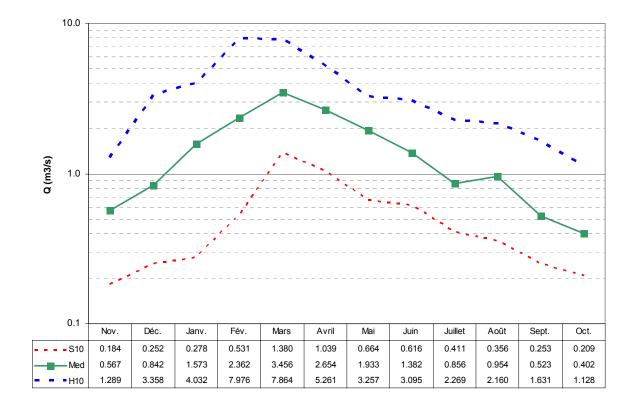

Limnigraphe	
Chemin hydraulique	
Bassin versant	
Savane	0.2%
Maquis Clairsemé	34.0%
Maquis Dense	44.9%
Broussailles	1.8%
Végétation Dense	13.1%
Sol nu	0.5%
Eau	5.5%
	Chemin hydraulique Bassin versant Savane Maquis Clairsemé Maquis Dense Broussailles Végétation Dense Sol nu

2. Rivière Bleue

Localisation et durée des observations


		LOCALISATION			
CODE	STATION	Coordo	onnées Lambert	(m)	BV
		Χ	Υ	Z	(km²)
5707200501	Riviere bleue Embouchure. Cote 1	485 639	210 980	1	33.3

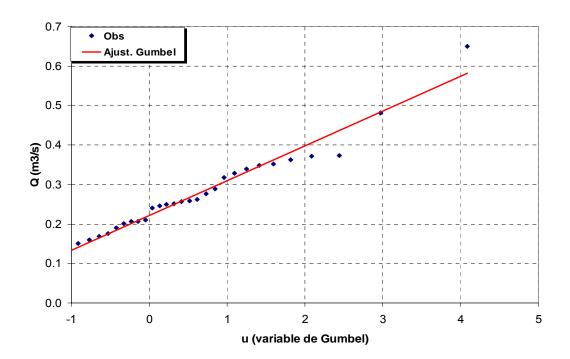
		OB	SERVATIONS			
		Durée	Qmin	(M3/S)	Qmax	(M3/S)
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué
19/02/74	15/05/08	31.9	0.151	0.067	14.0	332

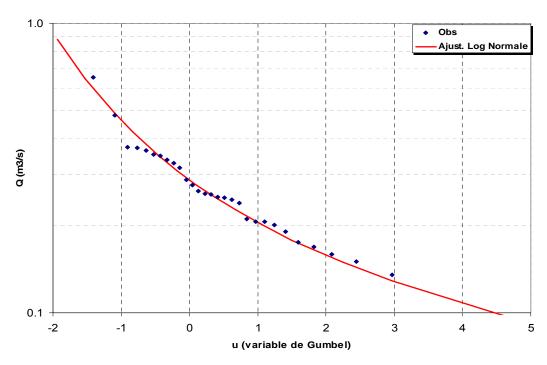

(Source : DTSI, IGN 1/200000)

Débits journaliers classés

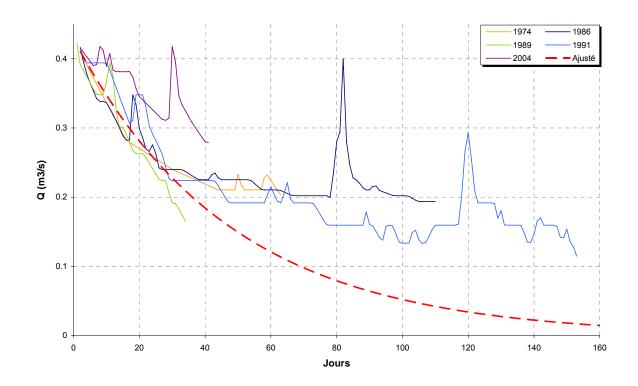
	Q (M3/S)				
Р	Loi Log-N	Empirique			
0.01	0.085	0.132			
0.10	0.250	0.268			
0.25	0.470	0.440			
0.50	0.946	0.843			
0.75	1.905	1.842			
0.90	3.576	3.736			
0.99	23.366	15.534			

Débits moyens mensuels



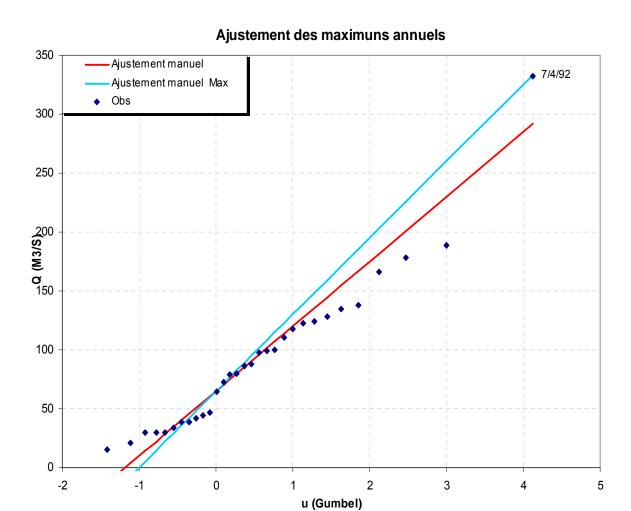

Module annuel = $1.77m^3/s$ $S10 = 0.87m^3/s$ $H10 = 2.53m^3/s$ K3 = 2.9

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

		Etiage Humide (T ans)			Médiane	Eti	Etiage Sec (T ans)			
		100 10 5		2	5	10	100			
	$Q m^3/s$	0.627	0.4	20	0.354	0.251	0.178	0.149	0.098	
	Q spé l/s/km²	18.8	12	2.6	10.6	7.5	5.4	4.5	2.9	
	Loi			Log Normale						
	Paramètres			v = -1.38	32	$\sigma = 0.6$	406			

Courbes de tarissement

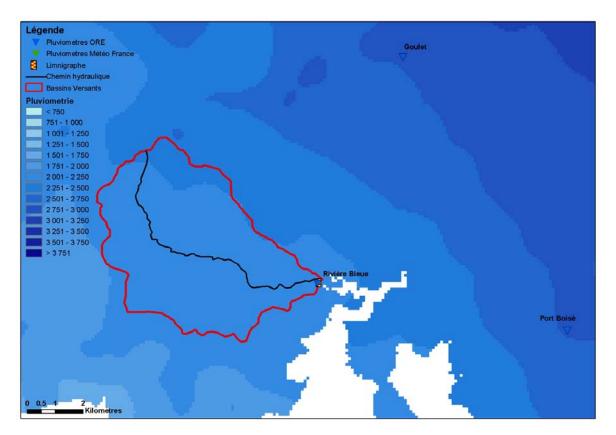


Q_0	α	$t_c = 1/\alpha$		
(m3.s-1)	(jour-1)	(jour)		
0.42	0.0252	40		

 $\begin{array}{ll} Q_0 & : \text{d\'ebit initial de tarissement} \\ \alpha & : \text{coefficient de tarissement} \end{array}$

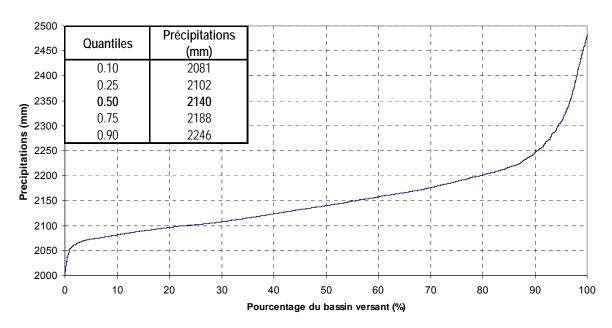
 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

Débits maximums de crues

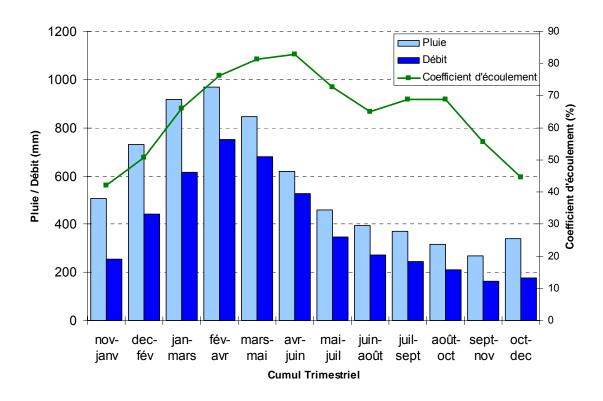

*La crue du cyclone Anne dont la hauteur d'eau maximale est supérieure à celle de la crue du 7/4/92 n'a pas pu être prise en compte dans l'analyse (le limnigraphe ayant été détruit pas la crue).

	Période de Retour T (années)						Parametre	Parametre loi	
_	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	65	85	147	189	228	280	318	55	65
Q (m³/s) Hyp_haute	65	89	162	211	258	319	364	65	65

Note:


L'hypothèse haute peut être utilisé par mesure de précaution pour évaluer les débits les plus forts, il demeure cependant des incertitudes concernant les étalonnages hautes eaux qui nous poussent à privilégier l'ajustement moyen.

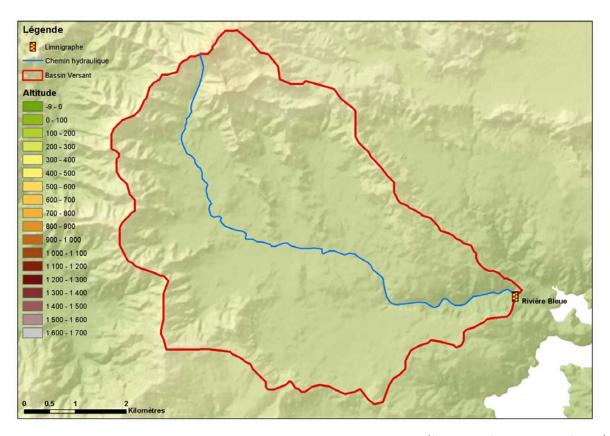
Pluviométrie


(Source: MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Rivière Bleue

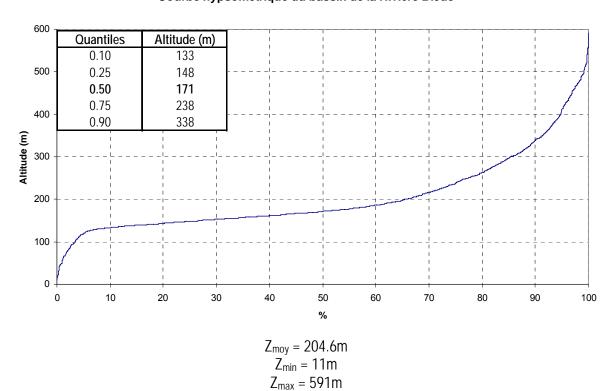
 $\begin{aligned} & \text{Pr\'ecipitation moyenne}: P_{moy} = 2156mm \\ & \text{Pr\'ecipitation minimum}: P_{min} = 2000mm \\ & \text{Pr\'ecipitation maximum}: P_{max} = 2482mm \end{aligned}$

Bilan d'écoulement trimestriel

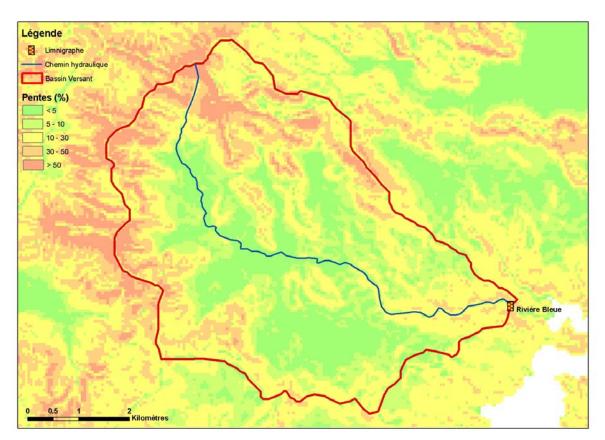


$$\label{eq:coefficient} \begin{split} \text{Coefficient d'écoulement moyen interannuel} &= 70\% \ [38\ ;91] \\ \text{Lame écoulée} : L_e &= 1563 \ \text{mm} \end{split}$$

Déficit d'écoulement : Δ_e = P – L_e = 685 mm

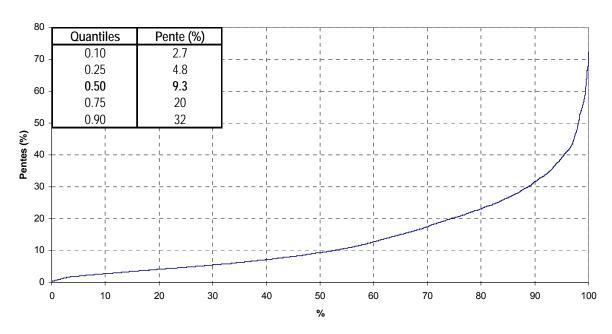

Caractéristiques Physiques

Altitudes



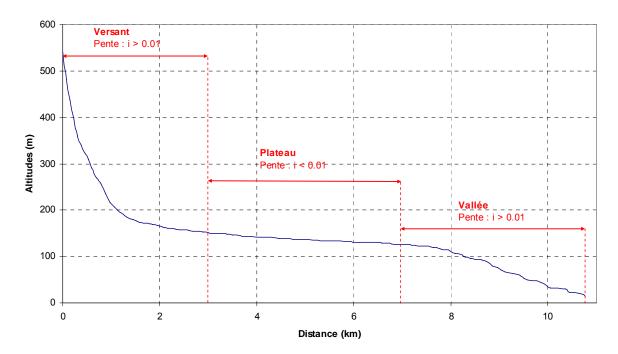
(Source: DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de la Rivière Bleue



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

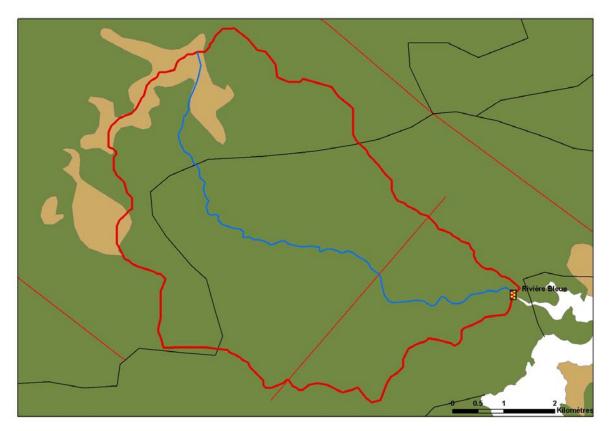

Pentes du bassin de la Rivière Bleue

Pente moyenne : $i_{moy} = 13.9\%$ Pente minimum : $i_{min} = 0.25\%$ Pente maximum : $i_{max} = 72.4\%$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.23
0.25	0.48
0.50	1.35
0.75	3.37
0.90	9.92


Longueur du chemin hydraulique : L = 10.904 km

Pente moyenne : i_{ch} = 4.9% Pente à l'exutoire : i_e = 3.4%

79% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 4.2 h [3.80 ; 5.07] Vitesse Moyenne de Transfert : V = L / T_c = 0.72 m.s⁻¹

Géologie

(Source : DTSI, BRGM 1/1000000)

Légende

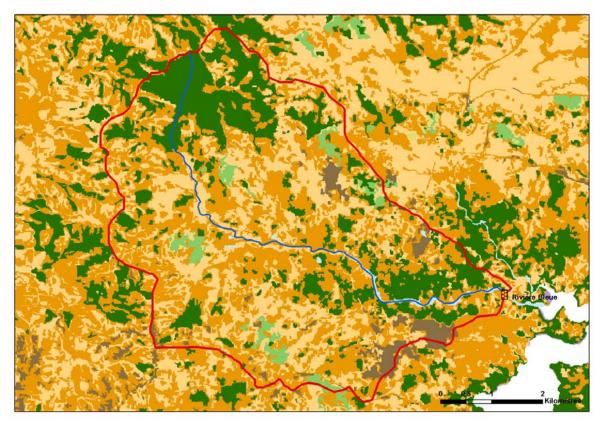
Chemin hydraulique

Bassin Versant

Géologie

Chevauchement, Observé

---- Faille principale, Observé


······ Faille principale, Supposé

Normal, Observé

Roches basiques à ultra basiques 4.7%

Terres et Alterites 95.3%

Occupation des Sols

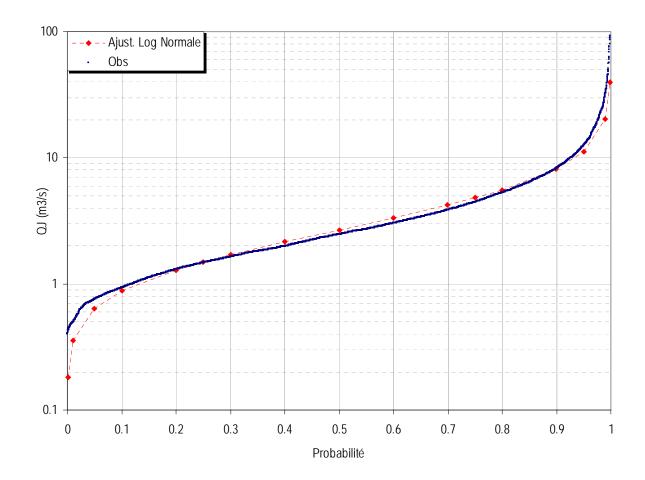
(Source : DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

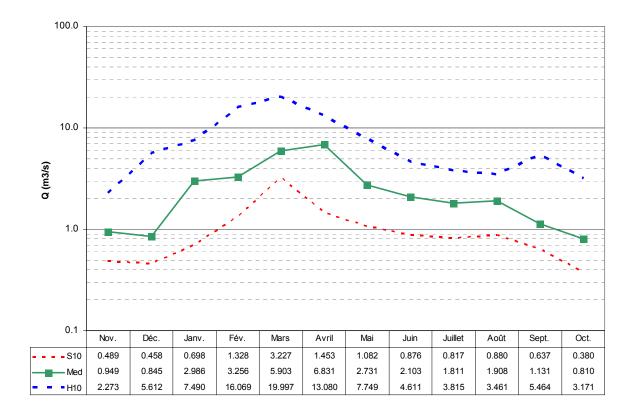
Limnigraphe	
Chemin hydraulique	
Bassin versant	
Lacunes	
Savane	0.1%
Maquis Clairsemé	27.1%
Maquis Dense	42.8%
Broussailles	2.8%
Végétation Dense	22.7%
Sol nu	3.9%
Eau	0.6%

3. Rivière des Pirogues

Localisation et durée des observations


CODE	STATION	Coordo	в۷		
		Х	Y	Z	(km²)
5704400101	Rivière des PiroguesCote 5	472 781	216 611	5	104

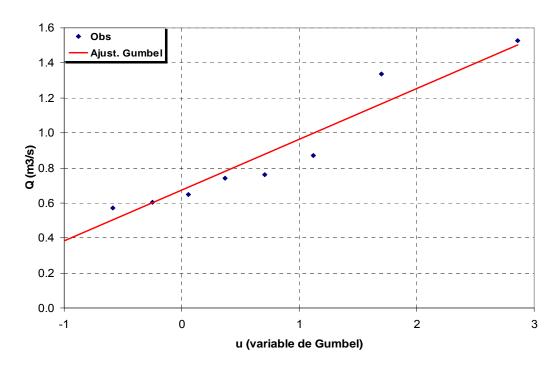
OBSERVATIONS									
		Durée	(m3/S)						
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué			
08/02/71	17/03/08	16.0	0.373	0.373	95	2240			

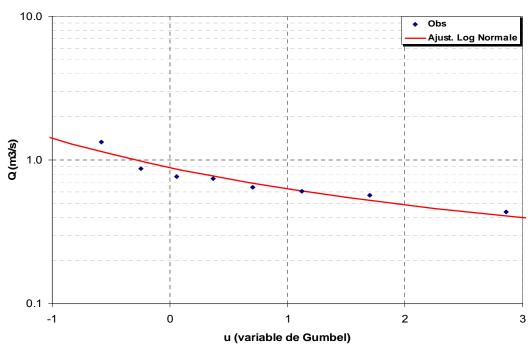

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

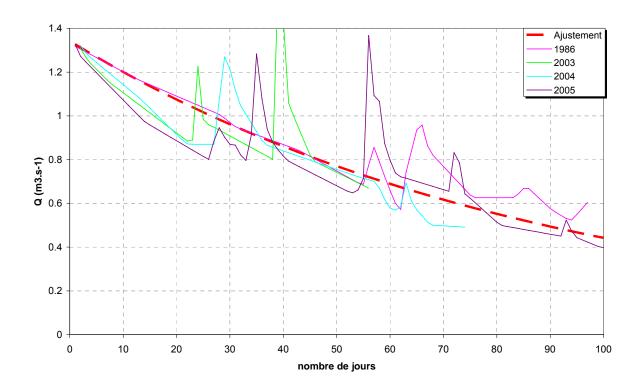
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.354	0.496
0.10	0.878	0.935
0.25	1.489	1.471
0.50	2.678	2.465
0.75	4.815	4.444
0.90	8.164	8.289
0.99	20.260	32.135

Débits moyens mensuels



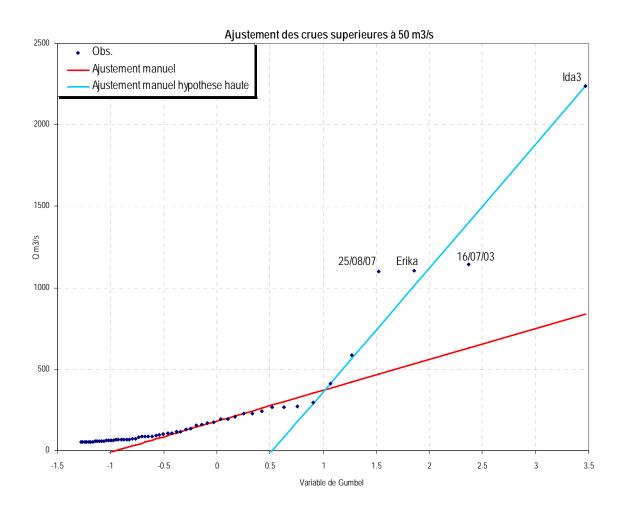

Module annuel = 3.01m³/s S10 annuel = 1.63m³/s H10 annuel = 5.32m³/s K3 = 3.3

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

		Etiage Humide (T ans)			Médi	ane	Etiage Sec (T ans)			
_		100	10	0	5	2		5	10	100
ſ	Q m³/s	2.009	1.3	27	1.109	0.7	72	0.550	0.461	0.302
	Q spé l/s/km²	19.3	12	.8	10.7	7.4	4	5.3	4.4	2.9
	Loi	Gumbel			Log Normale					
	Paramètres	Gd =	0.290	PO =	0.674	ບ=	-0.259)	σ= 0.	403

Courbes de tarissement



Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
1.33	0.0111	90

 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$

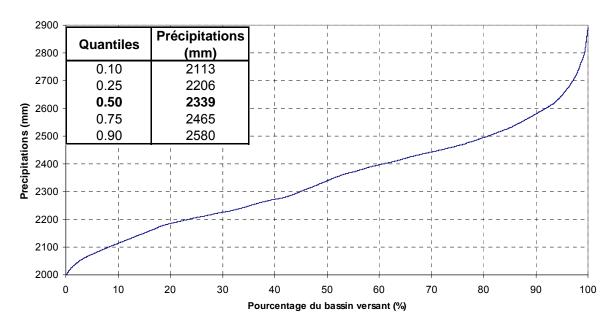
 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

Débits maximums de crues

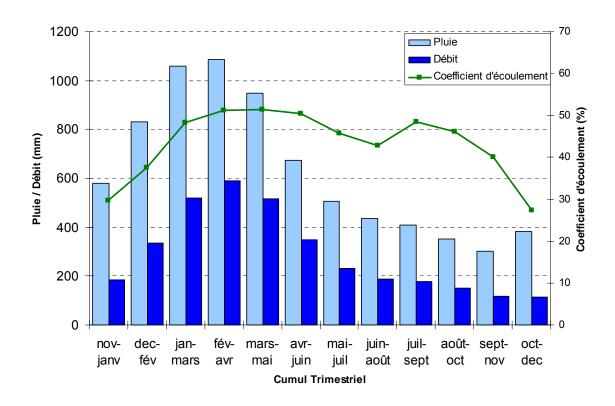


		Période de Retour T (années)							
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	180	250	465	608	744	921	1054	190	180
Q (m³/s) Hyp_haute			740	1310	1857	2565	3096	760	-400

Note:


L'hypothèse haute peut être utilisé par mesure de précaution pour évaluer les débits les plus forts, il demeure cependant des incertitudes concernant les étalonnages hautes eaux qui nous poussent à privilégier l'ajustement moyen. Celui-ci présente de plus un Q_{100} de $1054m^3/s$ cohérent avec les stations du sud de la Grande Terre.

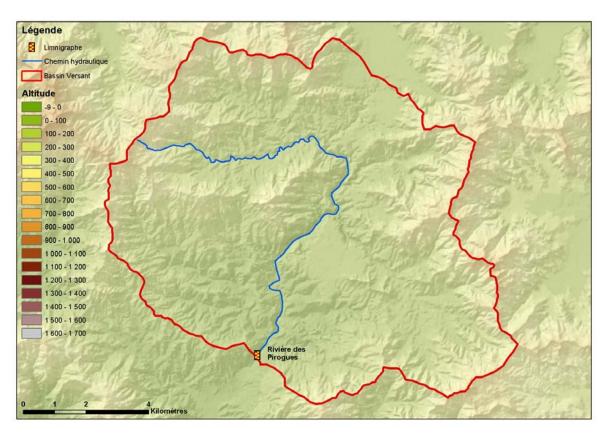
Pluviométrie


(Source: MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Riviere des Pirogues

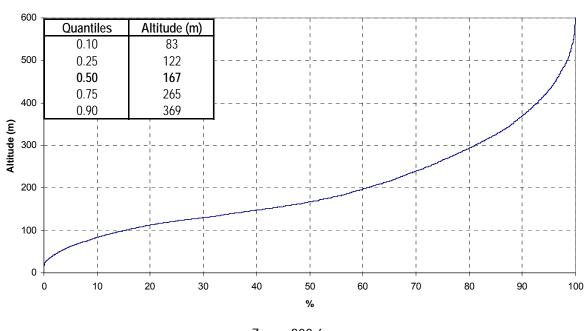
 $\begin{array}{l} Pr\'{e}cipitation\ moyenne: P_{moy} = 2343mm \\ Pr\'{e}cipitation\ minimum: P_{min} = 1988mm \\ Pr\'{e}cipitation\ maximum: P_{max} = 2890m \end{array}$

Bilan d'écoulement trimestriel

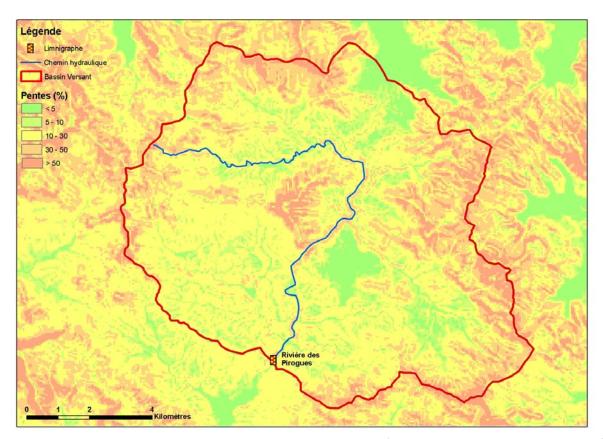


Coefficient d'écoulement moyen interannuel = 46% [23 ;73] Lame écoulée : L_e = 1156 mm

Déficit d'écoulement : Δ_e = P – L_e = 1367 mm

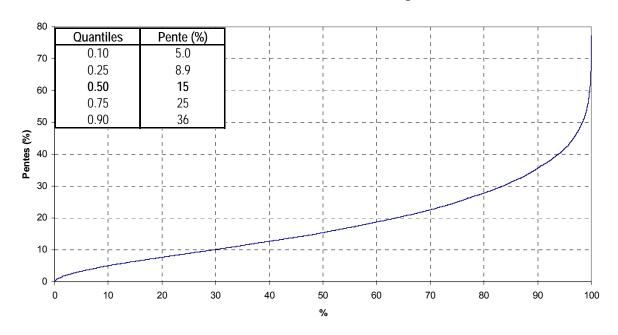

Caractéristiques Physiques

Altitudes



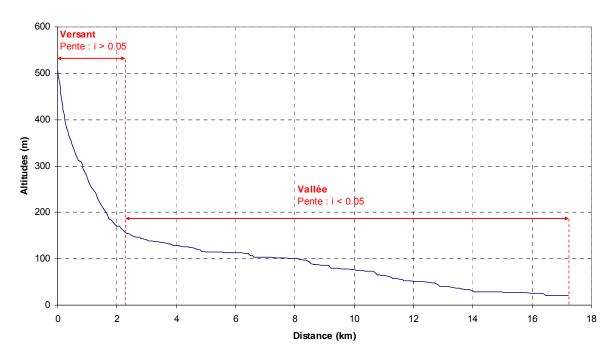
(Source: DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de la Rivière des Pirogues



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

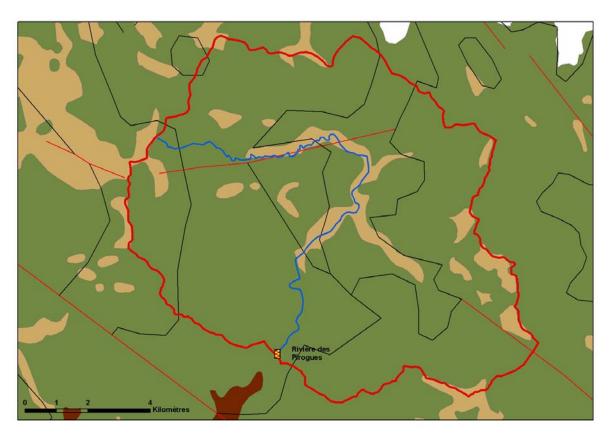

Pentes du bassin de la Rivière des Pirogues

Pente moyenne : i_{moy} = 18.1% Pente minimum : i_{min} = 0.00% Pente maximum : i_{max} = 77.31%

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.07
0.25	0.18
0.50	0.51
0.75	1.80
0.90	7.20


Longueur du chemin hydraulique : L = 17.566 km

Pente moyenne : $i_{ch} = 2.8\%$ Pente à l'exutoire : $i_e = 1.1\%$

85% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 1.4 h [1.40 ; 2.54] Vitesse Moyenne de Transfert : V = L / T_c = 3.5 m.s⁻¹

Géologie

(Source : DTSI, BRGM 1/1000000)

Légende

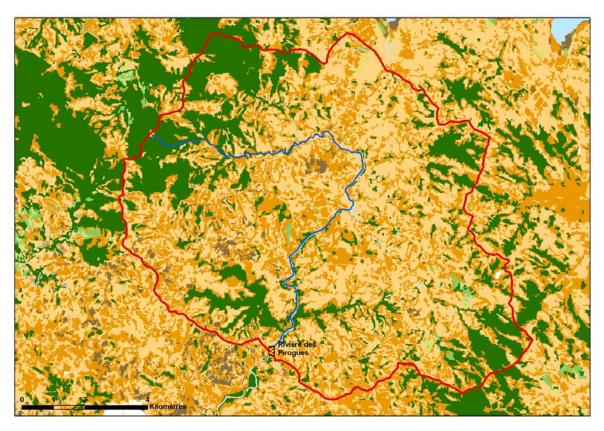
Limnigraphe

—— Chemin hydraulique

Bassin Versant

Géologie

Chevauchement, Observé


Faille principale, Observé
Faille principale, Supposé

---- Normal, Observé

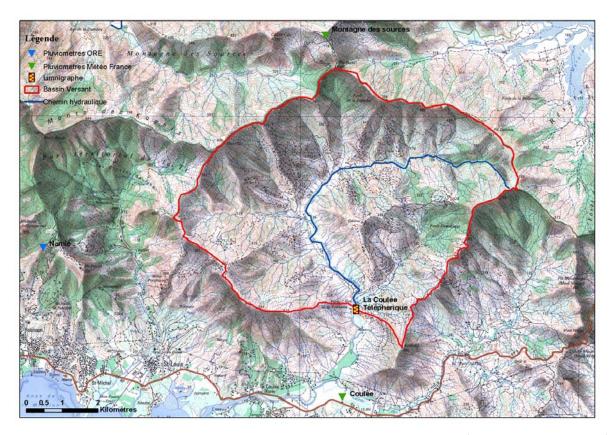
Roches basiques à ultra basiques 9.7%

Terres et Alterites 90.3%

Occupation des Sols

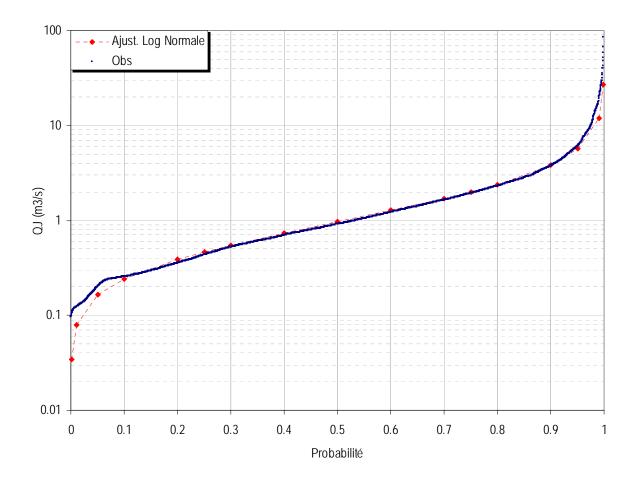
(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

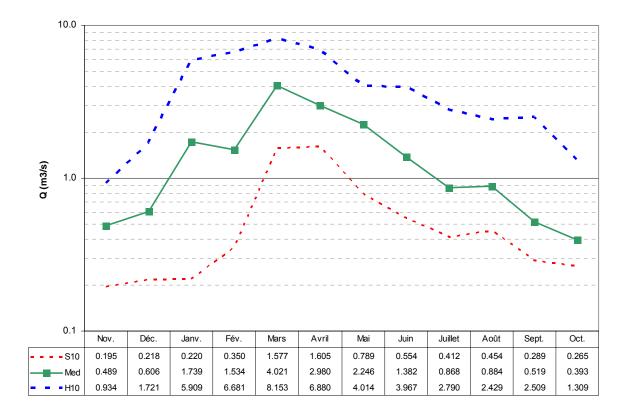

8	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	0.4%
	Maquis Clairsemé	41.2%
	Maquis Dense	34.2%
	Broussailles	0.4%
	Végétation Dense	21.9%
	Sol nu	1.5%
	Eau	0.4%

4. La Coulée

Localisation et durée des observations


CODE	STATION	Coordo	BV		
		Χ	Υ	Z	(km²)
5700300107	Cote 7	462 205	220 449	7	44.71
5700300106	Telepherique	462 058	220 970	5.1	43.77

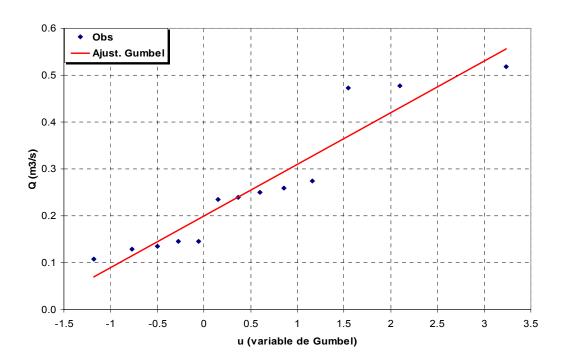
OBSERVATIONS								
Durée Qmin (M3/S) Qmax (M3/S)								
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué		
24/12/91	10/04/08	15.0	0.111	0.0966	146	845		

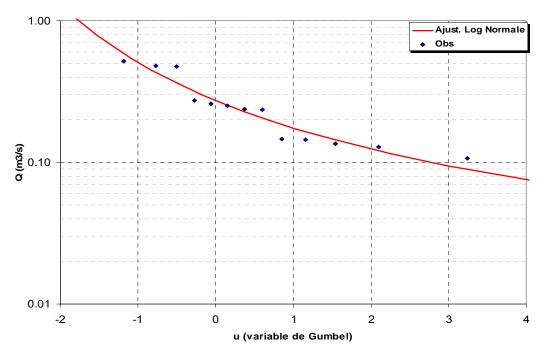

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

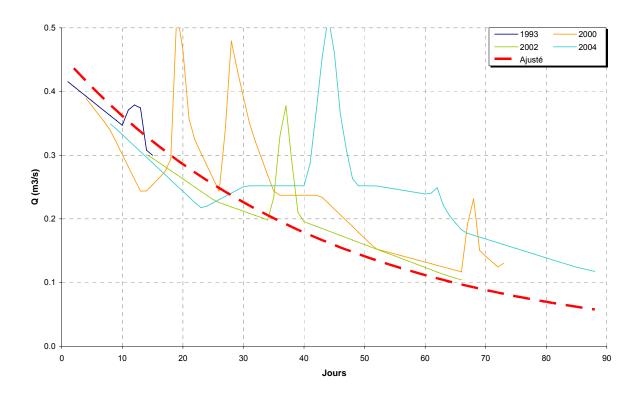
	Loi Log-N	Empirique
Р	Q (m³/s)	Q (m ³ /s)
0.01	0.079	0.122
0.10	0.243	0.257
0.25	0.467	0.436
0.50	0.967	0.915
0.75	2.002	1.936
0.90	3.852	<i>3.765</i>
0.99	11.883	18.097

Débits moyens mensuels



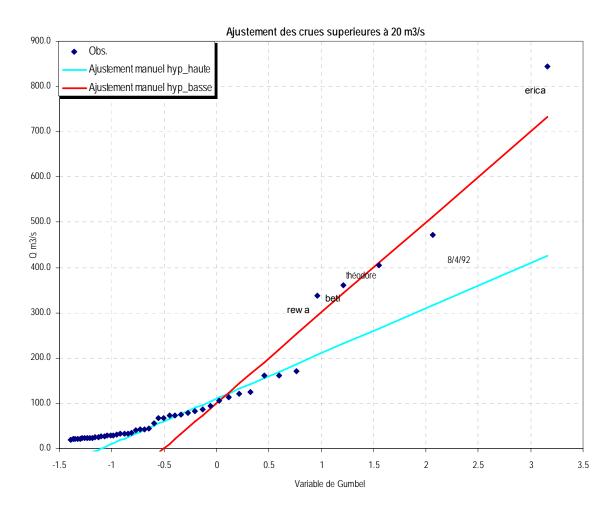

Module annuel = $1.78 \text{ m}^3\text{/s}$ $S10 = 1.44 \text{ m}^3\text{/s}$ $H10 = 2.40 \text{ m}^3\text{/s}$ K3 = 1.7

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

	Etiage Humide (T ans)			Médiane	E	Etiage Sec (T ans)			
	100	1	0	5	2	5	10	100	
Q m³/s	0.706	0.4	47	0.364	0.228	0.146	0.115	0.066	
Q spé l/s/km²	16.1	10	1.2	8.3	5.2	3.3	2.6	1.5	
Loi		Gumbel			Log Normale				
Paramètres	Gd =	0.110	PO =	0.199	v = -1.4	78	σ = 0.533		

Courbes de tarissement

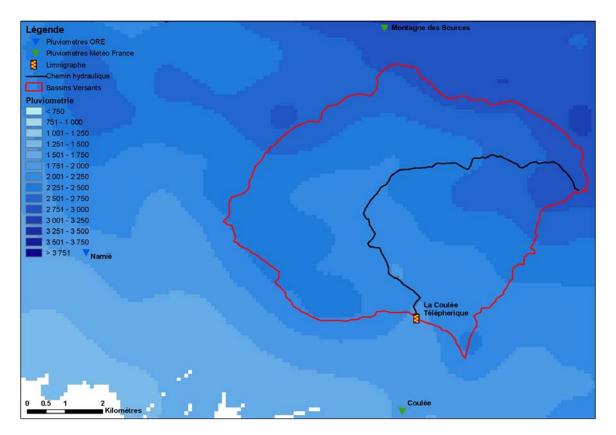


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.45	0.0235	43

 Q_0 : débit initial de tarissement α : coefficient de tarissement

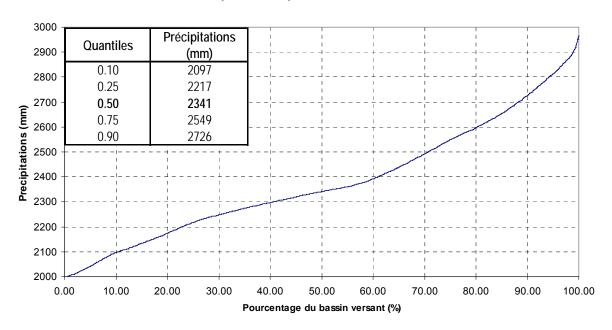
 $t_{\text{\tiny C}}$: temps caractéristique de tarissement

Débits maximums de crues

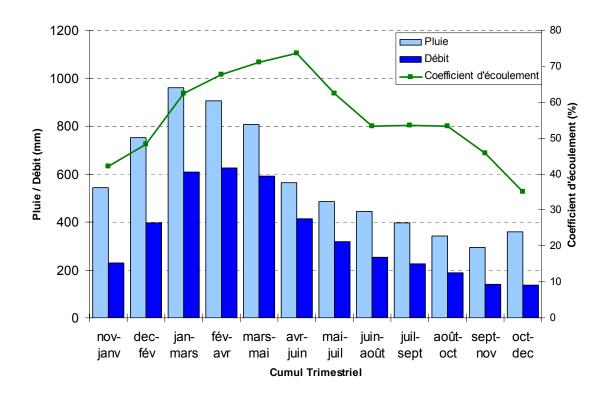


		Période de Retour T (années)									
	1	2	5	10	20	50	100	Gd	P0		
Q (m³/s) Hyp_haute	100	173	400	550	694	880	1020	200	100		
Q (m³/s) Hyp_basse	110	147	260	335	407	500	570	100	110		

La courbe représentant les épisodes de débit supérieurs à 20m³/s montrent un groupe de crues pouvant être caractérisé par l'hypothèse basse alors que les épisodes cycloniques nécessitent un ajustement supérieur.


En replaçant cette étude dans le contexte régional des bassins versants de la cote ouest il est conseillé d'utiliser l'hypothèse haute avec un débit centennal de 1020 m³/s.

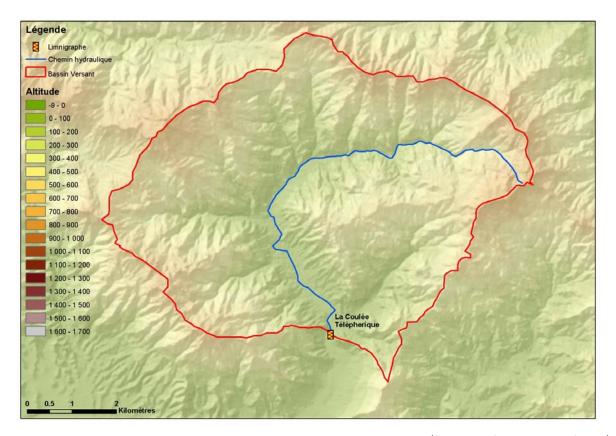
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Coulée

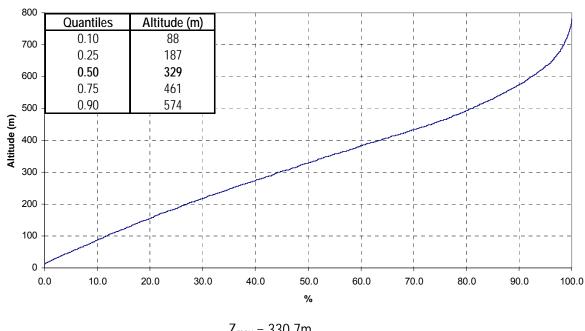
 $\begin{aligned} &\text{Pr\'ecipitation moyenne}: P_{moy} = 2381 mm \\ &\text{Pr\'ecipitation minimum}: P_{min} = 1983 mm \\ &\text{Pr\'ecipitation maximum}: P_{max} = 2968 mm \end{aligned}$

Bilan d'écoulement trimestriel

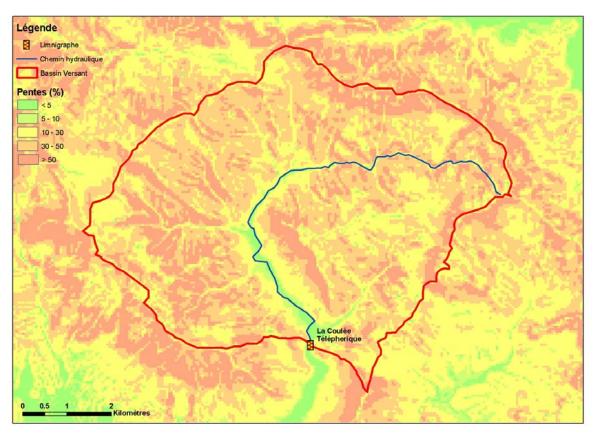


Coefficient d'écoulement moyen interannuel = 61% [53 ; 76] Lame écoulée : L_e = 1382 mm

Déficit d'écoulement : Δ_e = P – L_e = 897 mm

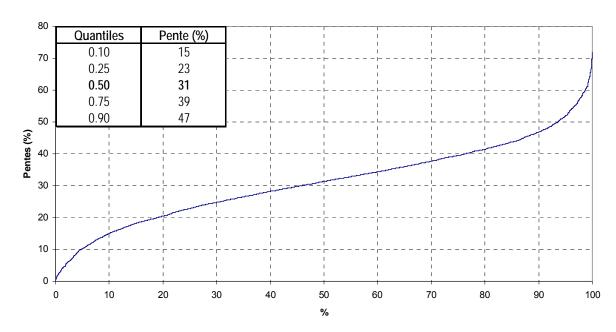

Caractéristiques Physiques

Altitudes



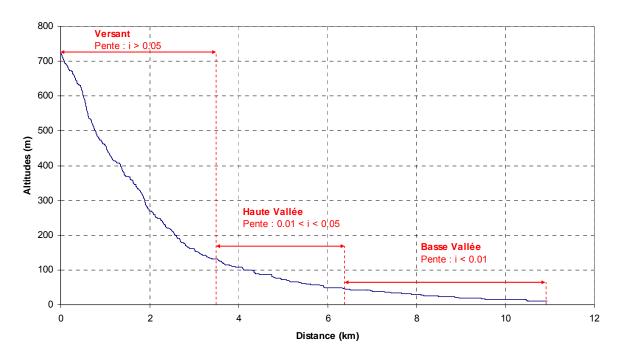
(Source : DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de la Coulée



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

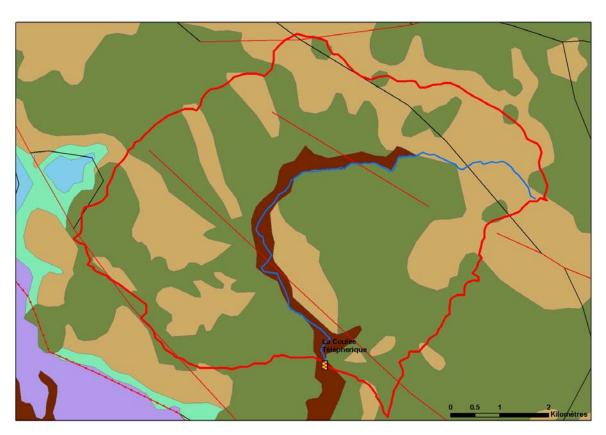

Pentes du bassin de la Coulée

Pente moyenne : $i_{moy} = 31.2\%$ Pente minimum : $i_{min} = 0.18\%$ Pente maximum : $i_{max} = 71.8\%$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.5
0.25	3.0
0.50	9.3
0.75	21.6
0.90	32.4


Longueur du chemin hydraulique : L = 10.948 km

Pente moyenne : $i_{ch} = 6.5\%$ Pente à l'exutoire : $i_e = 0.41\%$

68% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 2.0 h [1.91 ; 2.53] Vitesse Moyenne de Transfert : V = L / T_c = 1.5 m.s⁻¹

Géologie

(Source : DTSI, BRGM 1/1000000)

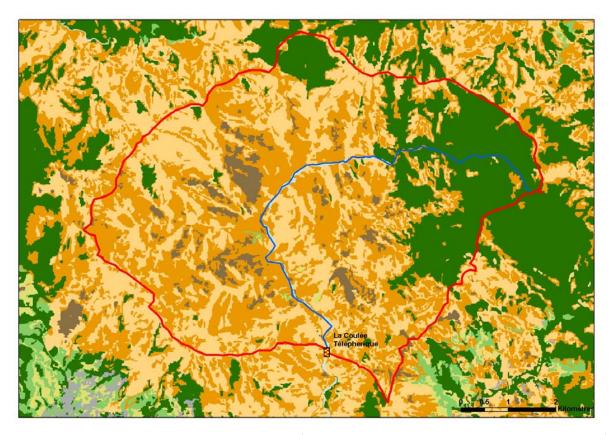
Légende

Limnigraphe
Chemin hydraulique

Bassin Versant

Géologie

Chevauchement, Observé


Faille principale, Observé
Faille principale, Supposé

Normal, Observé

Roches basiques à ultra basiques 35.9%
Alluvions Colluvions Modernes 5.1%

Terres et Alterites 59%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

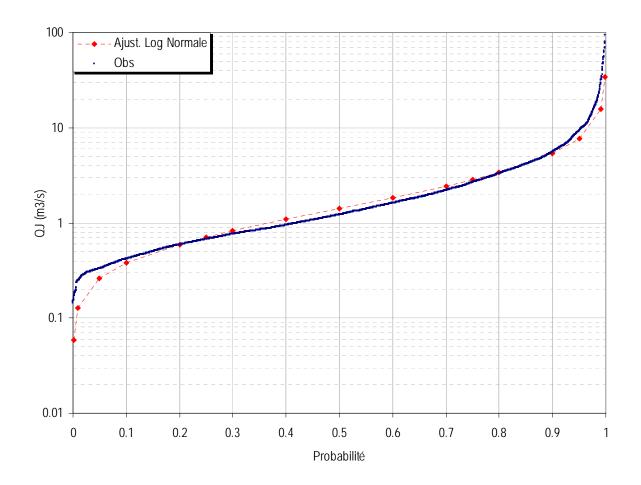
Légende

_		
3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Savane	0.2%
	Maquis Clairsemé	32.5%
	Maquis Dense	40.8%
	Végétation Dense	20.6%
	Sol nu	5.3%
	Eau	0.5%

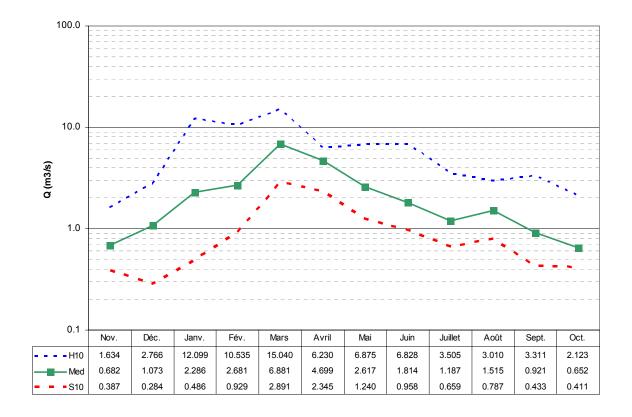
5. Dumbéa Est

Localisation et durée des observations

CODE	STATION	Coordo	BV		
		Х	Υ	Z	(km²)
5700500101	Dumbea Est Barrage. Cote 100	454 213	228 926	100	56.75
5700500105	Dumbea Est Ancienne prise.	453 424	229 374	110	59.63
5700500107	Dumbea Est Amont retenue (station H)	455 190	228 888	120	51.21


		OB	SERVATIONS			
		Durée	Qmin	(m³/s)	Qmax	(m³/s)
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué
01/01/63	07/08/08	31	0.219	0.176	236	1122

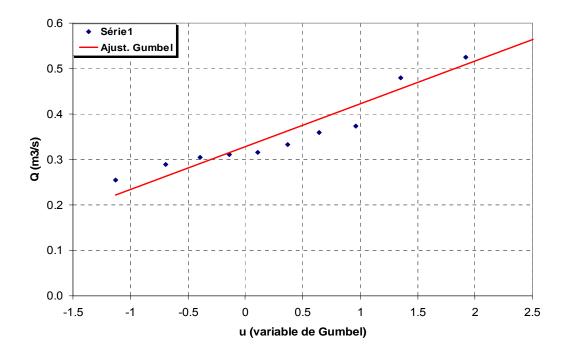
Hors mis les évaluations de débits de crue, toutes les autres évaluations proposées dans cette note ont été élaborées à partir des débits observés à la station de la Dumbéa Amont Barrage (5700500107), mise en place le 02/12/1992.

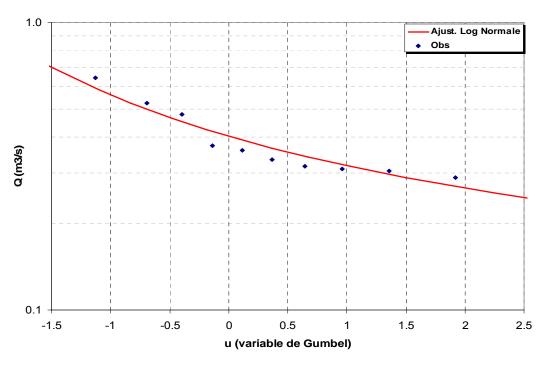

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

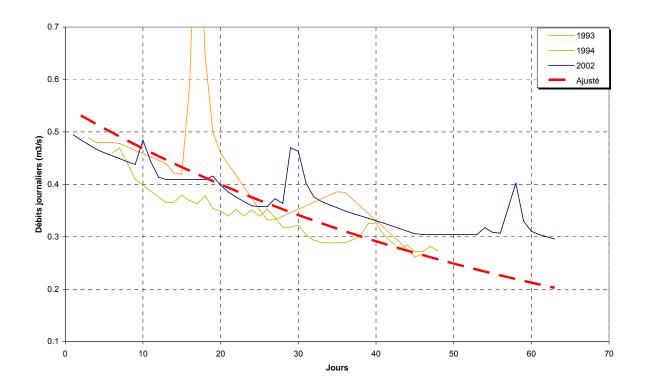
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.128	0.249
0.10	0.377	0.418
0.25	0.706	0.676
0.50	1.417	1.221
0.75	2.842	2.679
0.90	5.319	5.540
0.99	15.637	28.632

Débits moyens mensuels



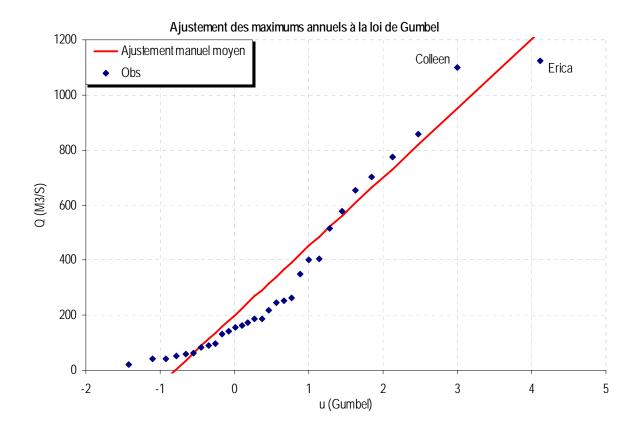

Module annuel = $3.06m^3/s$ $S10 = 1.96m^3/s$ $H10 = 3.55m^3/s$ K3 = 1.8

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiage

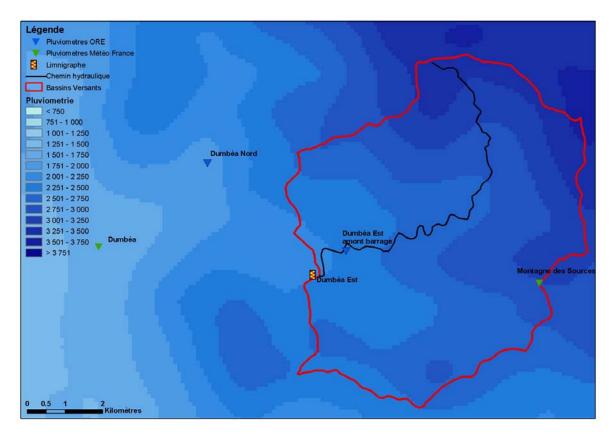
		Etiage Humide (T ans)				Médiane	E	tiage Sec (T	ans)
_		100	10	0	5	2	5	10	100
I	Q m³/s	0.761	0.5	40	0.470	0.366	0.289	0.255	0.190
ı	Q spé l/s/km²	14.9	10	.5	9.2	7.1	5.6	5.0	3.7
I	Loi	Gumbel				Log N	ormale		
	Paramètres	Gd =	0.068	PO =	0.317	v = -1.00	05	σ= (0.282

Courbes de tarissement

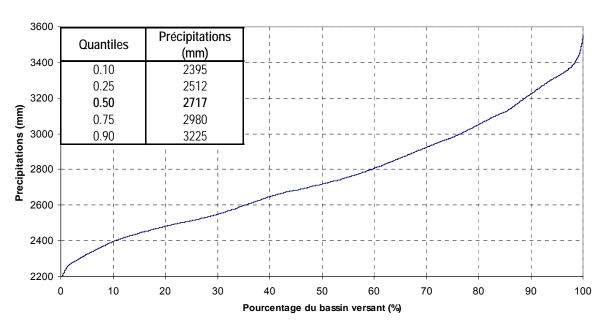


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.54	0.0158	63

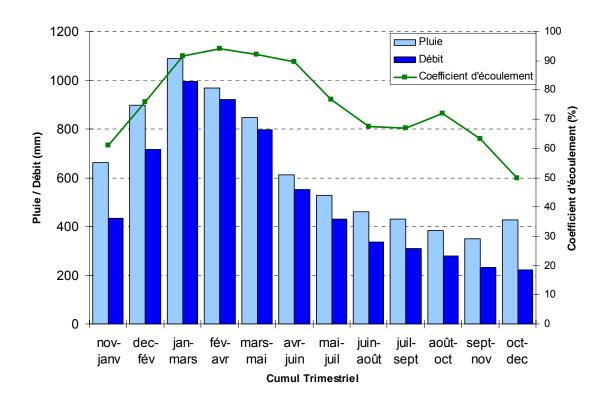
 Q_0 : débit initial de tarissement α : coefficient de tarissement


 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

Débits maximums de crues


	Période de Retour T (années)							Parametre	e loi
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	200	292	575	763	943	1175	1350	250	200

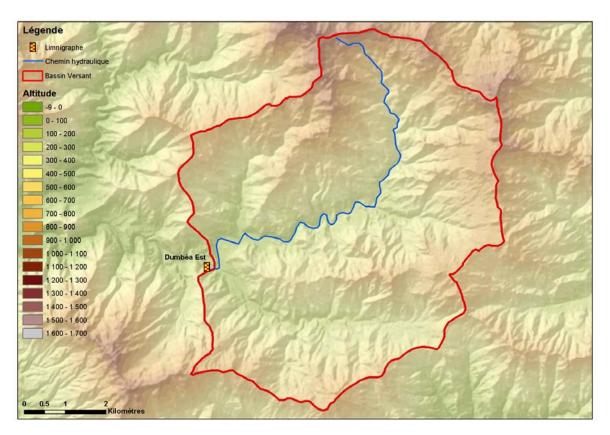
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Dumbéa Est

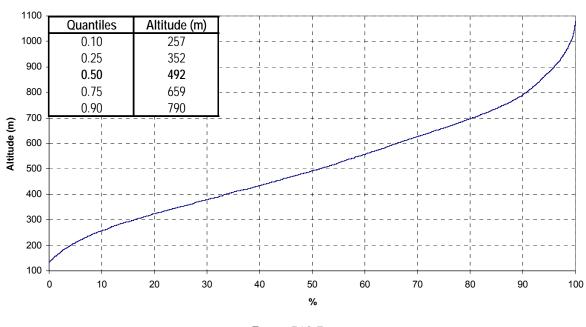
 $\begin{aligned} & \text{Précipitation moyenne} : P_{\text{moy}} = 2762 mm \\ & \text{Précipitation minimum} : P_{\text{min}} = 2168 mm \\ & \text{Précipitation maximum} : P_{\text{max}} = 3556 mm \end{aligned}$

Bilan d'écoulement trimestriel

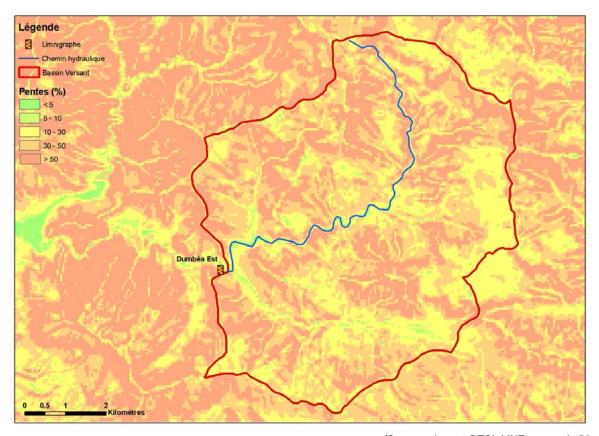


Coefficient d'écoulement moyen interannuel = 81% [64 ;94] Lame écoulée : L_e = 2062 mm

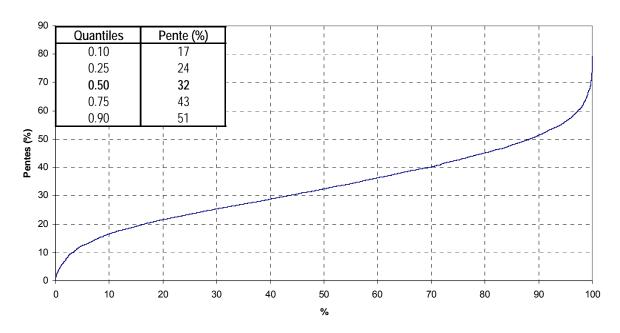
Déficit d'écoulement : Δ_e = P - L_e = 480 mm


Caractéristiques Physiques

Altitudes

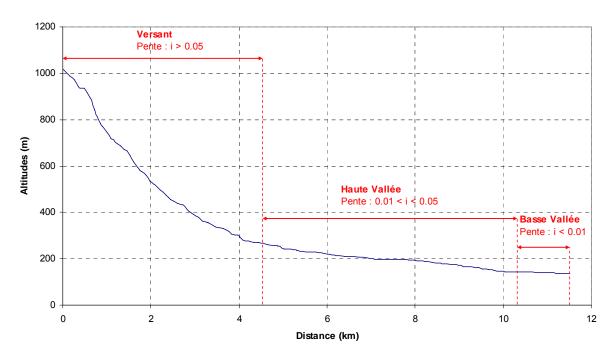

(Source : DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de Dumbéa Est


$$\begin{split} Z_{moy} &= 512.7m\\ Z_{min} &= 133m\\ Z_{max} &= 1080m \end{split}$$

Pentes

(Source : d'après DTSI, MNT au pas de 50m)

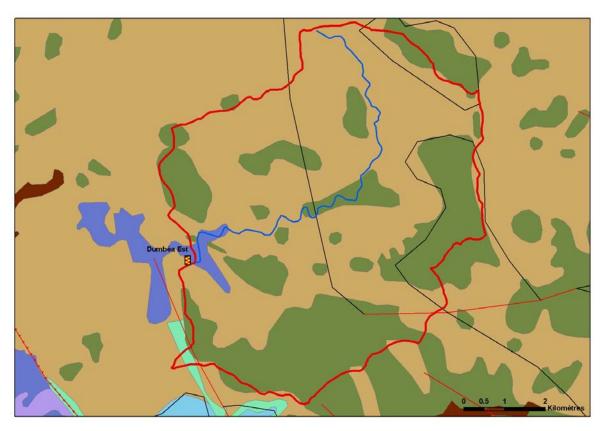

Pentes du bassin de Dumbéa Est

Pente moyenne : $i_{moy} = 33.3\%$ Pente minimum : $i_{min} = 0.40\%$ Pente maximum : $i_{max} = 79.2\%$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.19
0.25	1.19
0.50	2.22
0.75	11.6
0.90	22.8


Longueur du chemin hydraulique : L = 11.744 km

Pente moyenne : $i_{ch} = 7.7\%$ Pente à l'exutoire : $i_e = 0.40\%$

62% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 1.3 h [1.19 ; 1.73] Vitesse Moyenne de Transfert : $V = L / T_c = 2.5 \text{ m.s}^{-1}$

Géologie

(Source : DTSI, BRGM 1/1000000)

Légende

Limnigraphe

—— Chemin Hydraulique

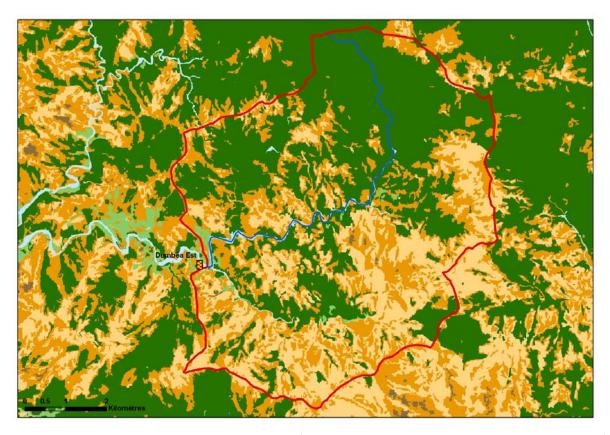
Bassin Versant

Géologie

Chevauchement, Observé

Faille principale, Observé

Faille principale, Supposé


---- Normal, Observé

Roches basiques à ultra basiques 62.3%

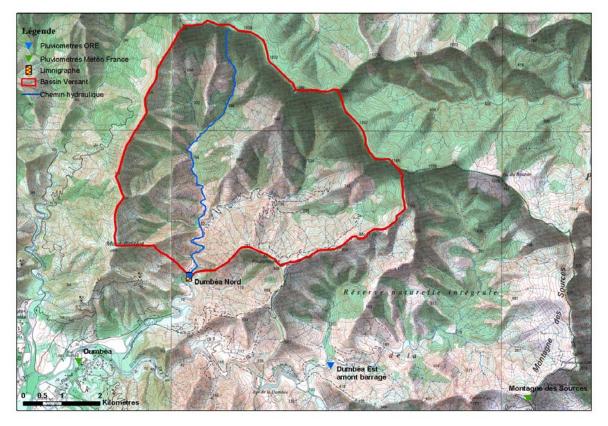
Alluvions Colluvions Anciennes 1.2%

Terres et Alterites 36.3%

Occupation des Sols

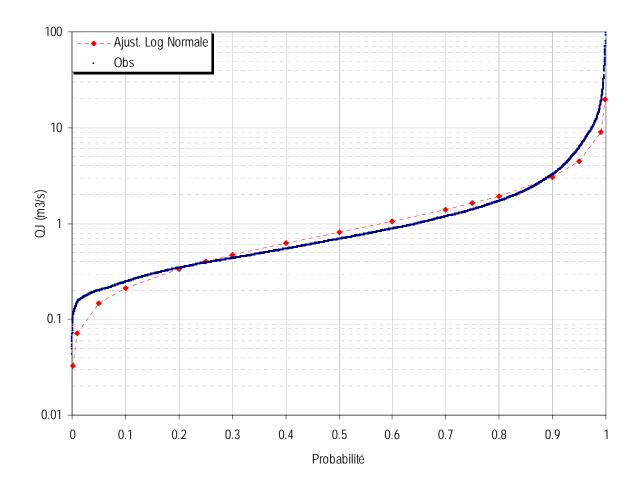
(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

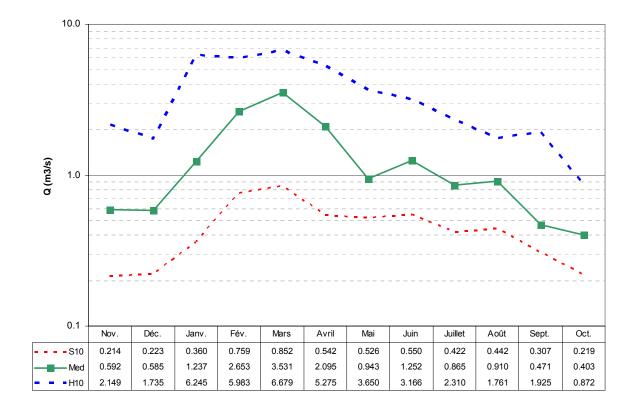

_		
3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Maquis Clairsemé	24.5%
	Maquis Dense	28.3%
	Broussailles	0.7%
	Végétation Dense	45.4%
	Sol nu	0.2%
	Eau	0.9%

6. Dumbéa Nord

Localisation et durée des observations


CODE	CODE STATION		LOCALISATION Coordonnées Lambert (m)			
		Χ	Υ	Z	(km²)	
5700500201	Dumbea Nord Station B. Cote 80	452 385	231 833	80	32.31	

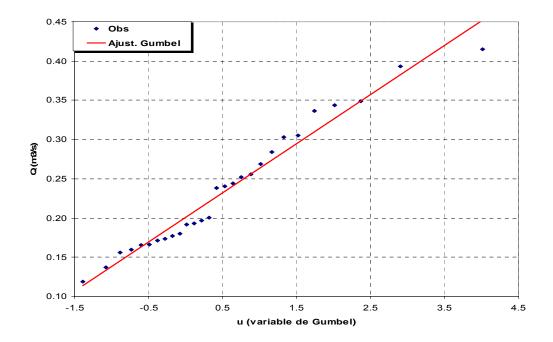
OBSERVATIONS						
		Durée	Qmin	(m³/s)	Qmax	(m³/s)
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué
08/01/63	28/05/09	38.0	0.132	0.032	32.8	735

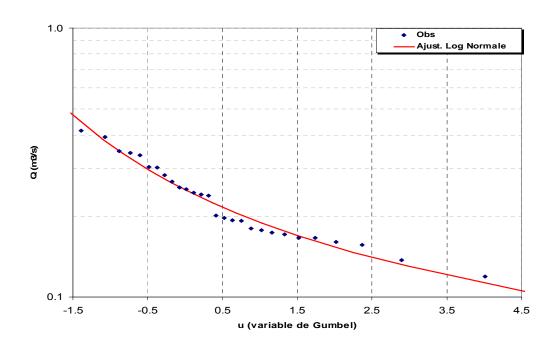

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

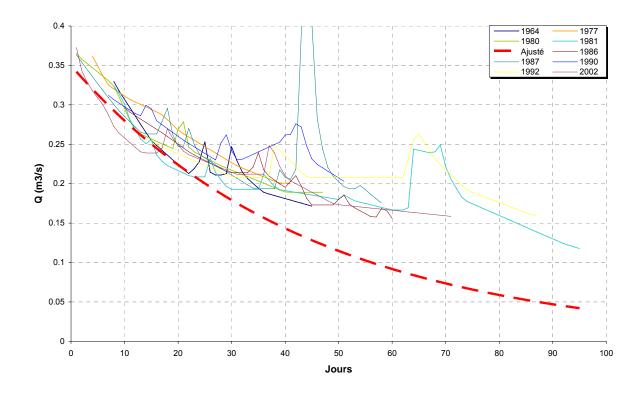
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.072	0.149
0.10	0.213	0.245
0.25	0.400	0.389
0.50	0.804	0.688
0.75	1.619	1.395
0.90	3.038	3.240
0.99	8.977	17.355

Débits moyens mensuels



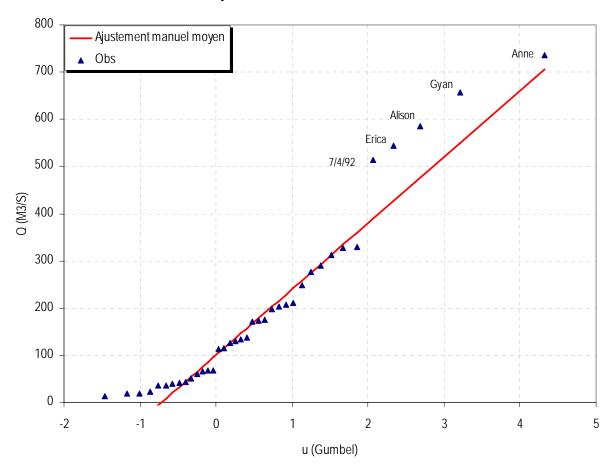

Module annuel = $1.61m^3/s$ $S10 = 0.97m^3/s$ $H10 = 1.99m^3/s$ K3 = 2.1

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

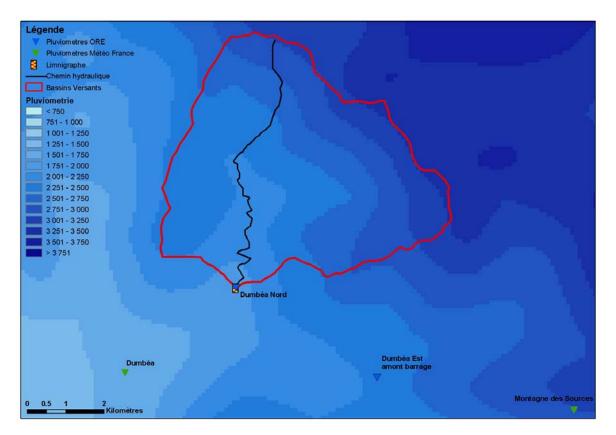
	Etiage Humide (T ans)			Médian	е	Etiage Sec (T ans)			
	100	1	0	5	2		5	10	100
$Q m^3/s$	0.489	0.3	42	0.295	0.224		0.170	0.147	0.104
Q spé l/s/km²	15.2	10	1.6	9.2	7.0		5.3	4.6	3.2
Loi	Gumbel				Log Nor	male			
Paramètres	Gd =	0.063	PO =	0.201	υ= -1	.496)	σ= 0.3	330

Courbes de tarissement

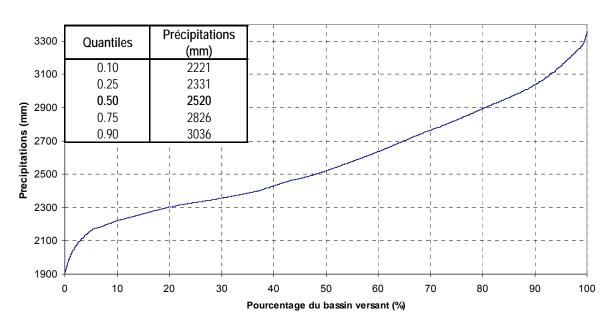

Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.342	0.0223	45

 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$

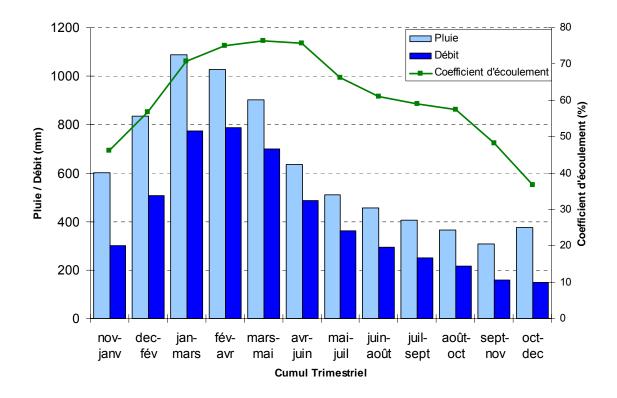
 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement


Débits maximums de crues

Ajustement des maximums annuels

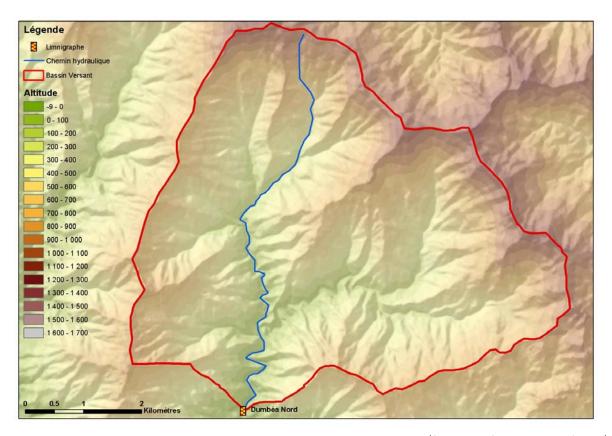

	Période de Retour T (années)							Parametre	de Gumbel
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	100	151	310	415	516	646	744	140	100

Pluviométrie

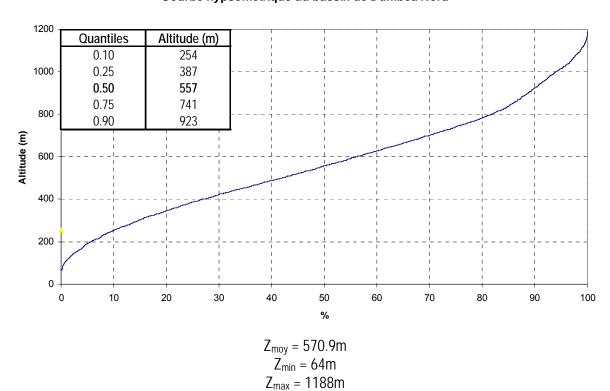

(Source: MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Dumbéa Nord

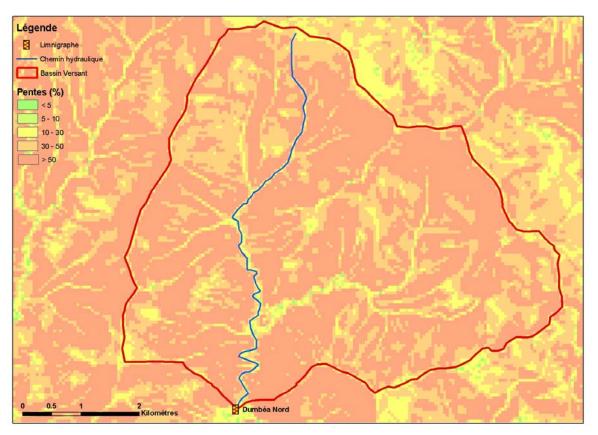
 $\begin{aligned} & \text{Précipitation moyenne} : P_{\text{moy}} = 2581 \text{mm} \\ & \text{Précipitation minimum} : P_{\text{min}} = 1909 \text{mm} \\ & \text{Précipitation maximum} : P_{\text{max}} = 3362 \text{mm} \end{aligned}$


Bilan d'écoulement trimestriel

$$\label{eq:coefficient} \begin{split} \text{Coefficient d'écoulement moyen interannuel} &= 66\% \ [47\ ;77] \\ &\quad \text{Lame écoulée} : L_e = 1663 \ \text{mm} \\ \text{Déficit d'écoulement} : \Delta_e = P - L_e = 842 \ \text{mm} \end{split}$$

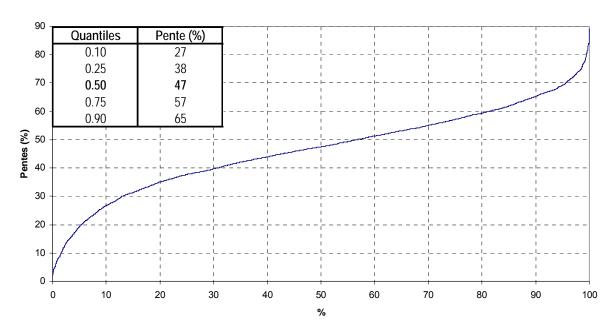

Caractéristiques Physiques

Altitudes



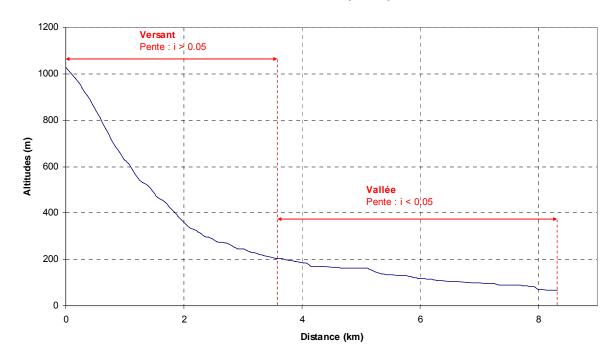
(Source: DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de Dumbea Nord



Pentes

(Source : d'après DTSI, MNT au pas de 10m)

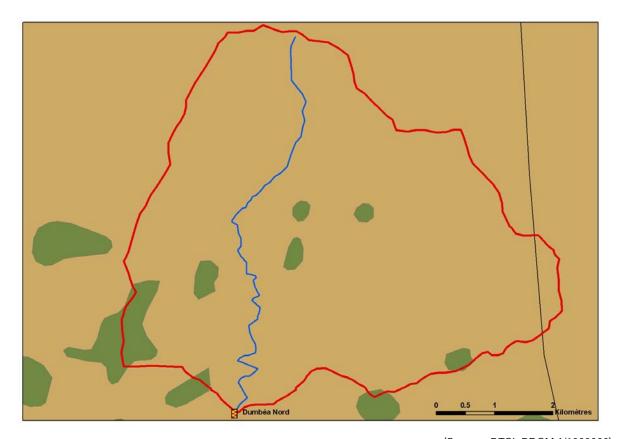

Pentes du bassin de Dumbéa Nord

Pente moyenne : $i_{moy} = 46.7\%$ Pente minimum : $i_{min} = 1.06\%$ Pente maximum : $i_{max} = 89.3\%$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.72
0.25	1.29
0.50	4.01
0.75	16.2
0.90	35.9


Longueur du chemin hydraulique : L = 8.377 km

Pente moyenne : $i_{ch} = 11.5\%$ Pente à l'exutoire : $i_e = 0.90\%$

54% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 1.5 h [1.43 ; 2.18] Vitesse Moyenne de Transfert : V = L / T_c = 1.6 m.s⁻¹

Géologie

(Source : DTSI, BRGM 1/1000000)

Légende

Limnigraphe

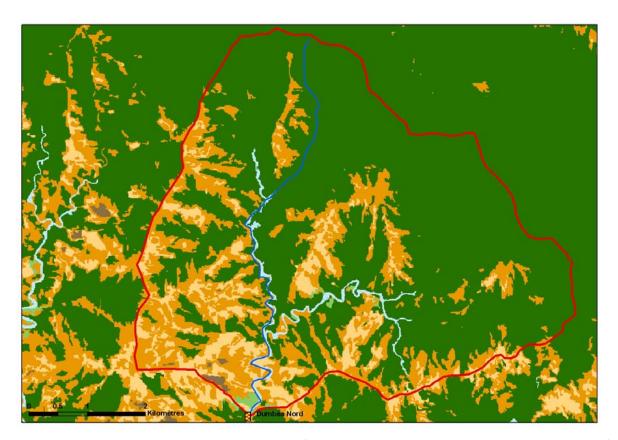
Chemin hydraulique

Bassin Versant

Géologie

Chevauchement, Observé

— Faille principale, Observé


----- Faille principale, Supposé

---- Normal, Observé

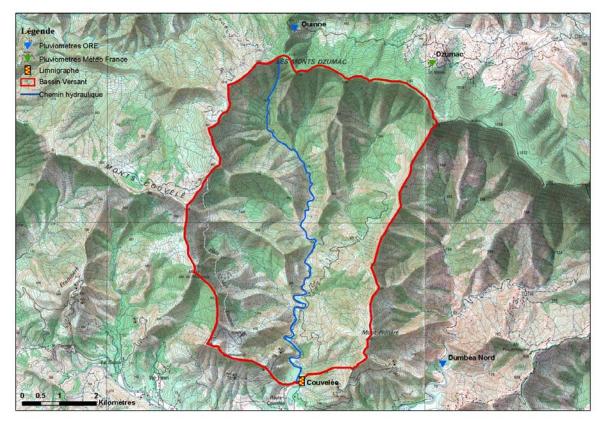
Roches basiques à ultra basiques 96%

Terres et Alterites 4%

Occupation des Sols

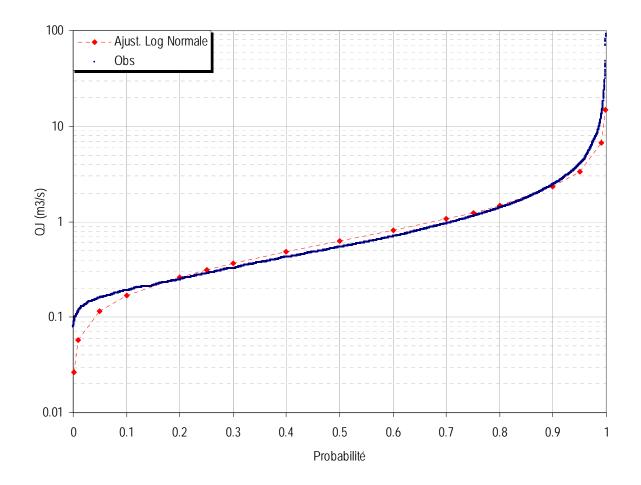
(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

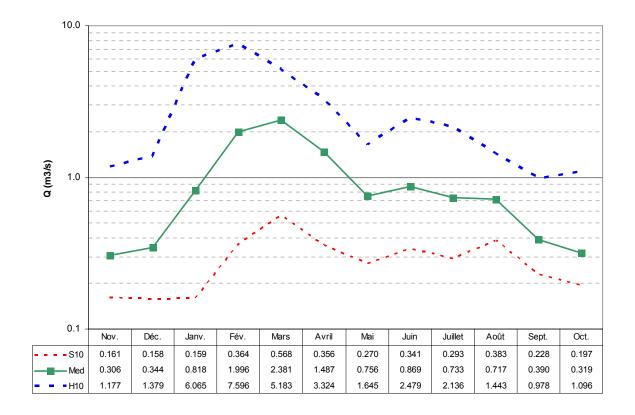

_		
8	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Maquis Clairsemé	8.2%
	Maquis Dense	23.4%
	Broussailles	0.4%
	Végétation Dense	66.0%
	Sol nu	0.2%
	Eau	1.7%

7. Couvelée

Localisation et durée des observations


CODE	STATION	Coordo	BV		
		Χ	Υ	Z	(km²)
5700500301	Couvelee Haute couvelee. Cote 30	448 602	231 372	30	40

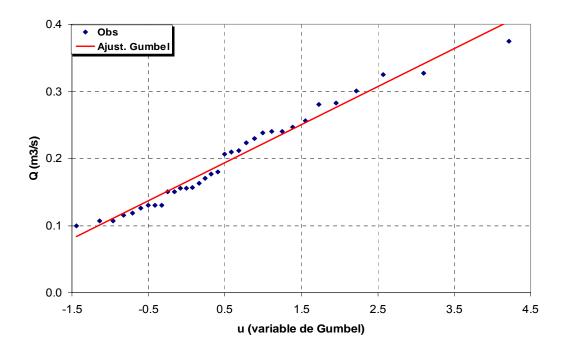
OBSERVATIONS						
		Durée	Qmin	(M3/S)	Qmax	(M3/S)
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué
01/01/67	16/05/08	38.6	0.112	0.080	232.0	679.963

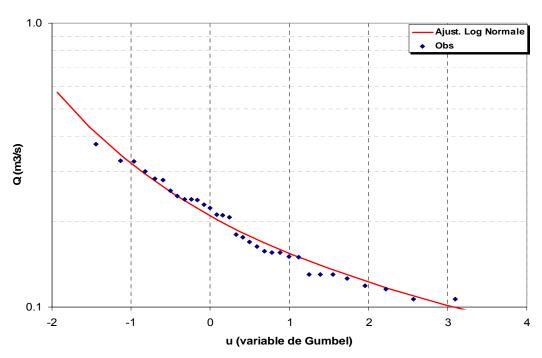

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

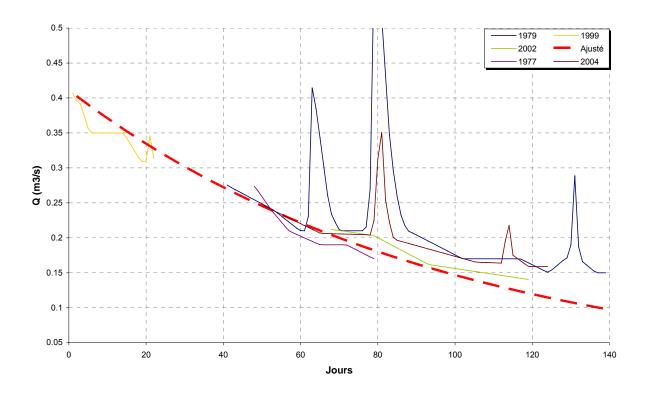
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.058	0.116
0.10	0.168	0.190
0.25	0.312	0.286
0.50	0.622	0.542
0.75	1.239	1.138
0.90	2.306	2.458
0.99	6.717	12.243

Débits moyens mensuels



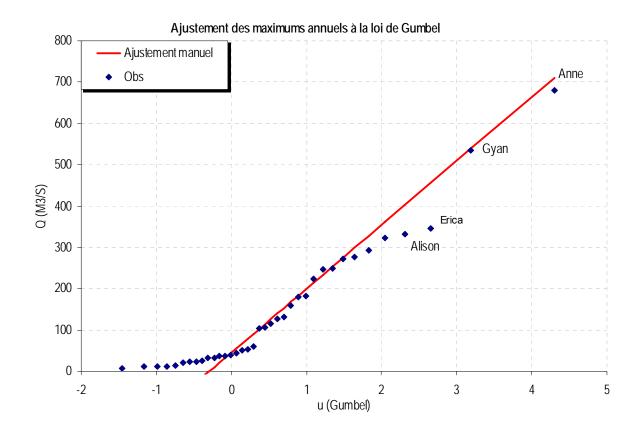

Module annuel = $1.22m^3/s$ $S10 = 0.70m^3/s$ $H10 = 2.46m^3/s$ K3 = 3.5

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

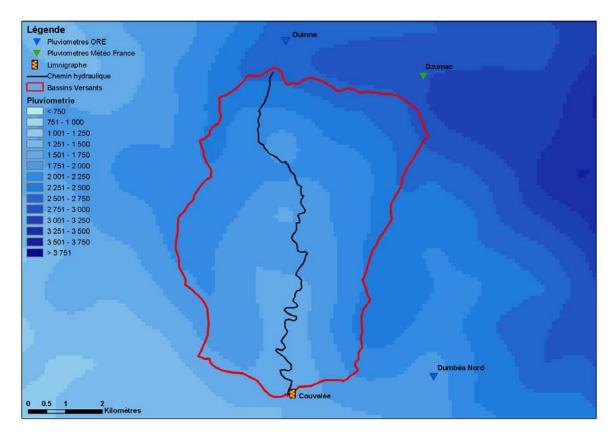
	Etiage Humide (T ans)			Médi	ane	Etiage Sec (T ans)			
	100 10 5		2		5	10	100		
Q m³/s	0.426	0.2	193	0.250	0.1	85	0.136	0.116	0.080
Q spé l/s/km²	10.7	7.	.3	6.3	4.	6	3.4	2.9	2.0
Loi	Gumbel				Log Normale				
Paramètres	res $Gd = 0.057 PO = 0.165$			$v = -1.686$ $\sigma = 0.364$				364	

Courbes de tarissement

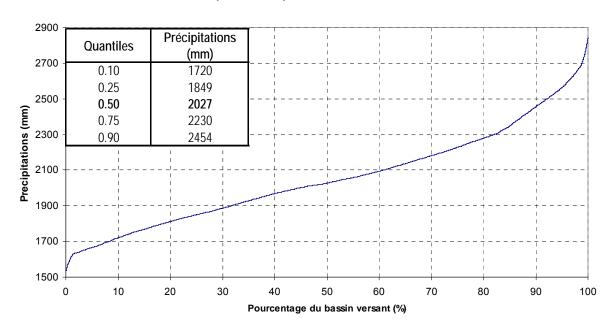


Q_0	α	$t_c = 1/\alpha$		
(m3.s-1)	(jour-1)	(jour)		
0.29	0.0103	97		

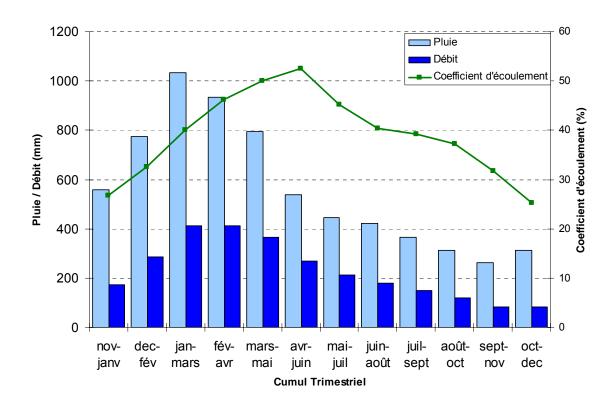
 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$


 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

Débits maximums de crues


	Période de Retour T (années)								e loi
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	45	102	277	394	505	650	758	155	45

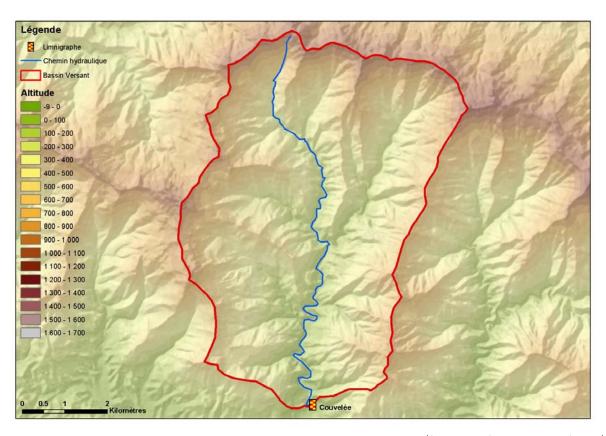
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Couvelée

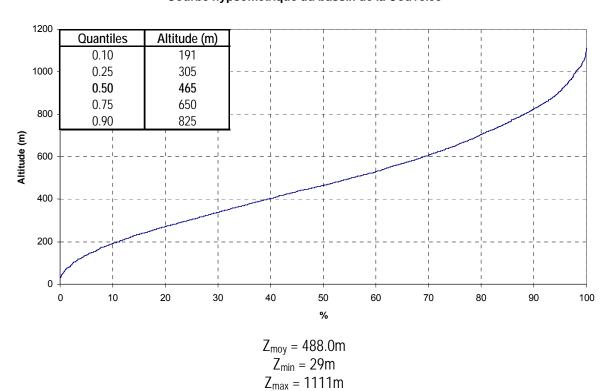
 $\begin{aligned} & \text{Précipitation moyenne} : P_{\text{moy}} = 2057 mm \\ & \text{Précipitation minimum} : P_{\text{min}} = 1535 mm \\ & \text{Précipitation maximum} : P_{\text{max}} = 2844 mm \end{aligned}$

Bilan d'écoulement trimestriel

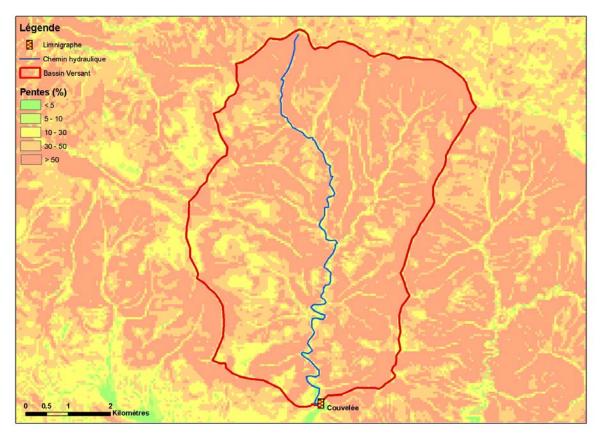

Coefficient d'écoulement moyen interannuel = 41% [20 ;50]

Lame écoulée : $L_e = 917 \text{ mm}$

Déficit d'écoulement : Δ_e = P – L_e = 1333 mm

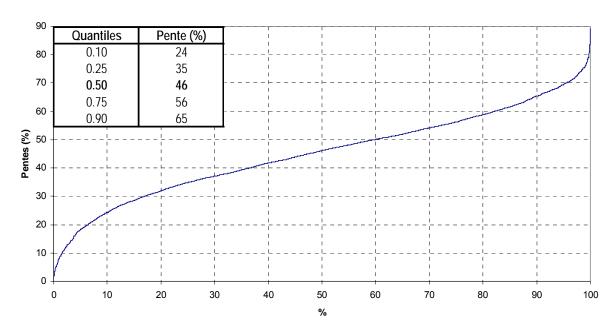

Caractéristiques Physiques

Altitudes



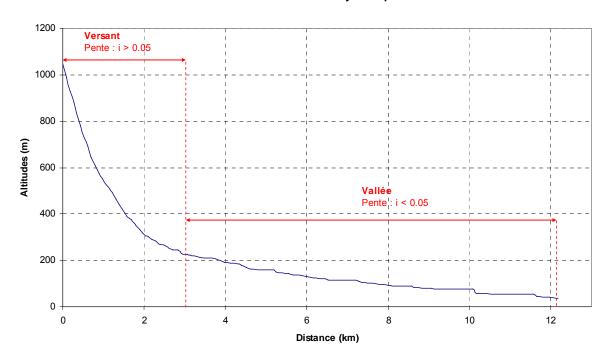
(Source: DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de la Couvelée



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

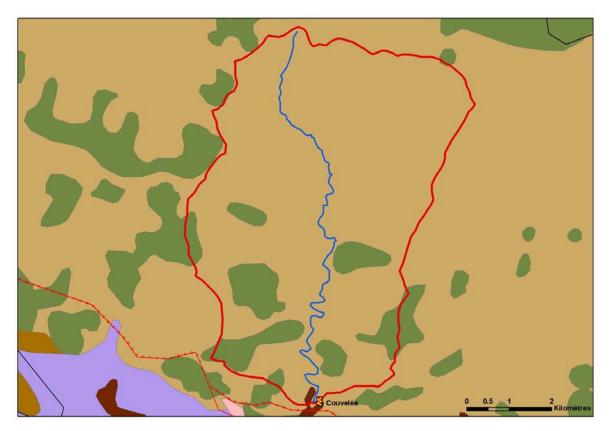

Pentes du bassin de la Couvelée

Pente moyenne : $i_{moy} = 45.2\%$ Pente minimum : $i_{min} = 0.88\%$ Pente maximum : $i_{max} = 89.3\%$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)			
0.10	0.22			
0.25	0.36			
0.50	1.72			
0.75	8.3			
0.90	28.3			


Longueur du chemin hydraulique : L = 12.391 km

Pente moyenne : $i_{ch} = 8.3\%$ Pente à l'exutoire : $i_e = 2\%$

69% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 1.7 h [1.71 ; 2.90] Vitesse Moyenne de Transfert : V = L / T_c = 2.0 m.s⁻¹

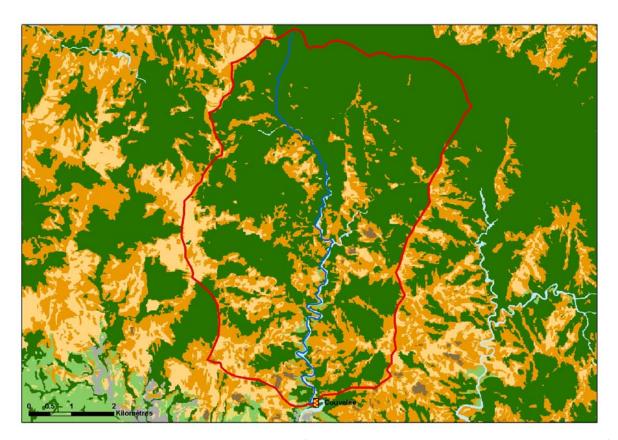
Géologie

(Source : DTSI, BRGM 1/1000000)

Légende

Limnigraphe
Chemin hydraulique
Bassin Versant

Géologie


Chevauchement, Observé
Faille principale, Observé
Faille principale, Supposé
Normal, Observé

Roches basiques à ultra basiques 88.1%

Alluvions Colluvions Modernes 0.1%

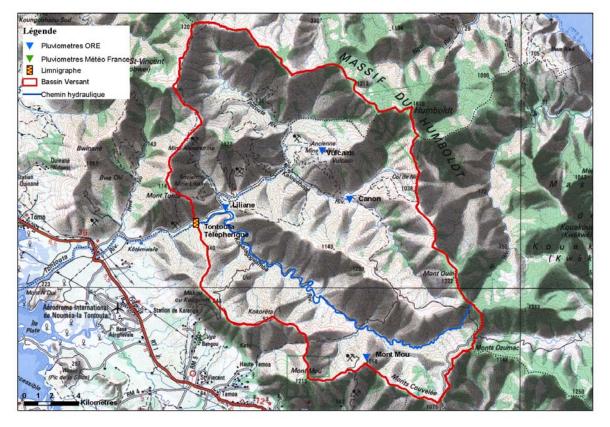
Terres et Alterites 11.7%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

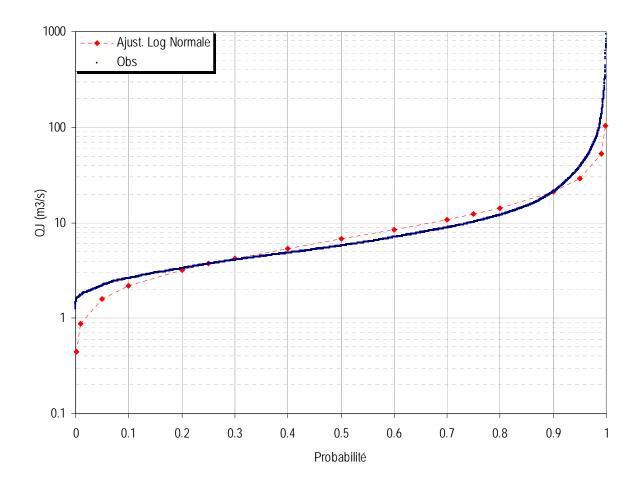
Légende

8	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Maquis Clairsemé	7.6%
	Maquis Dense	22.6%
	Broussailles	0.9%
	Végétation Dense	67.5%
	Sol nu	0.4%
	Eau	1.0%

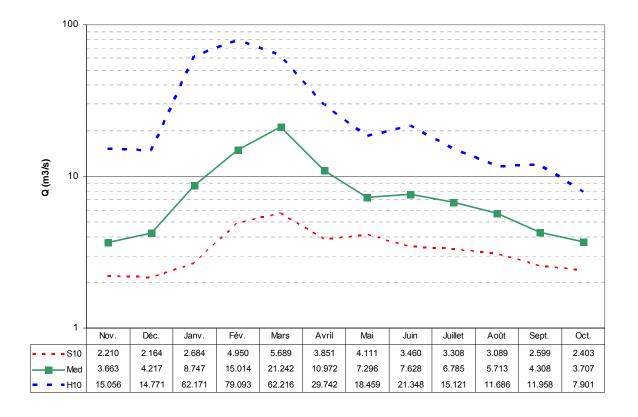

8. Tontouta

Localisation et durée des observations

CODE	STATION	Coordo	BV		
		Χ	Υ	Z	(km²)
5705200103	Tontouta Telepherique	427 740	249 324	33	385
5705200101	Tontouta Mine Liliane. Cote 33	428 948	250 028	33	381
5705200102	Tontouta Echelle TP. Cote 30	429 063	250 089	33	380


La Tontouta a été successivement suivie par 3 stations : TP (1954-1963), Mine Liliane (1968-2002) et Téléphérique (depuis 2000). Les débits ont été jugés équivalents. En effet, la différence entre les bassins versant (environ 1%) est jugée non significative. La station TP (1958-1963) n'a pas été prise en compte pour les hautes eaux, le suivi étant uniquement constitué par lecture journalière d'échelle.

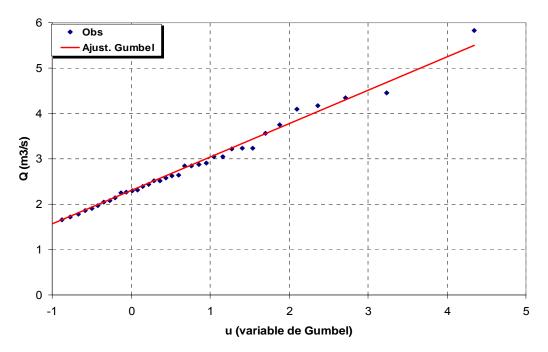
OBSERVATIONS									
		Durée	Qmax (M3/S)						
Début	Début Fin Eff.(ans)		Jaugé	Evalué	Jaugé	Evalué			
01/06/54	15/04/08	40.98	1.625	1.251	1600	4583			

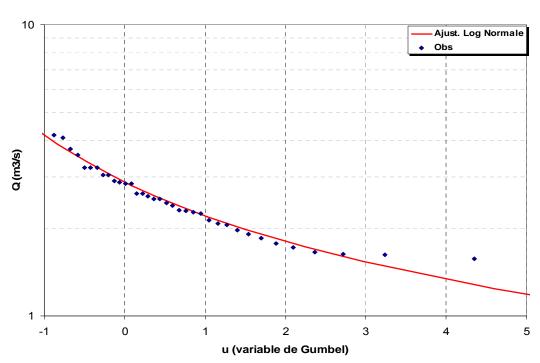

(Source : DTSI, IGN 1/200000)

Débits journaliers classés

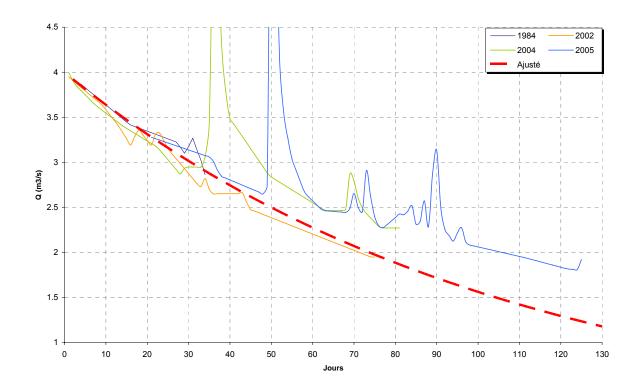
	Loi Log-N	Empirique		
Р	Q (M3/S)	Q (M3/S)		
0.01	0.868	1.750		
0.10	2.180	2.626		
0.25	3.723	3.695		
0.50	6.748	5.723		
0.75	12.230	10.165		
0.90	20.888	20.978		
0.99	52.475	123.953		

Débits moyens mensuels



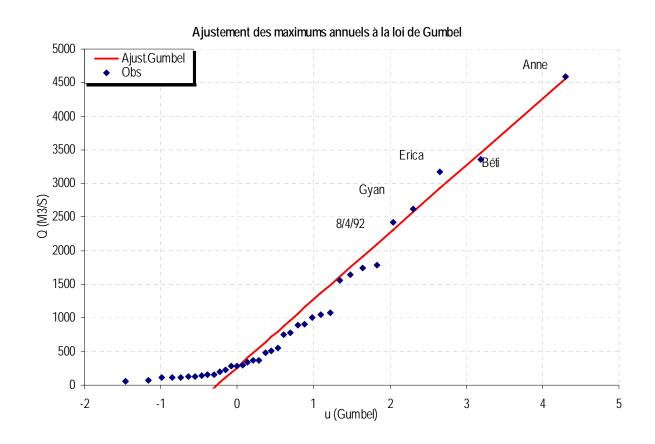

Module annuel = $11.58m^3/s$ $S10 = 6.36m^3/s$ $H10 = 25.27m^3/s$ K3 = 4.0

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

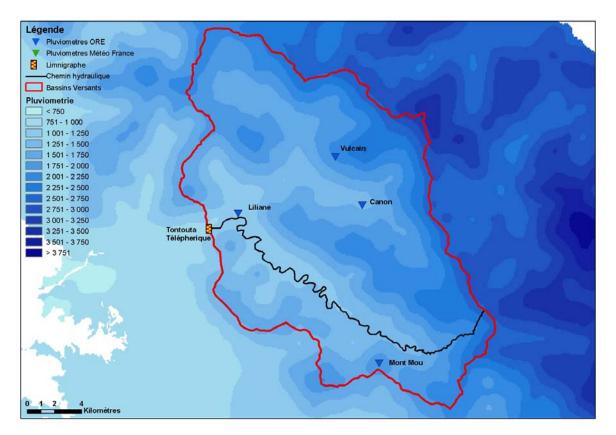
		Etiage Humide (T ans)			Médiane	Etiage Sec (T ans)			
100 10 5		2	5	10	100				
Γ	Q m³/s	5.692	3.962	3.409	2.589	1.982	1.724	1.238	
L	Q spé l/s/km²	14.8	10.3	8.9	6.7	5.1	4.5	3.2	
Γ	Loi Gumbel			Log Normale					
	Paramètres	Gd =	0.736 P	O = 2.305	v = 0.951		σ = 0.3	317	

Courbes de tarissement

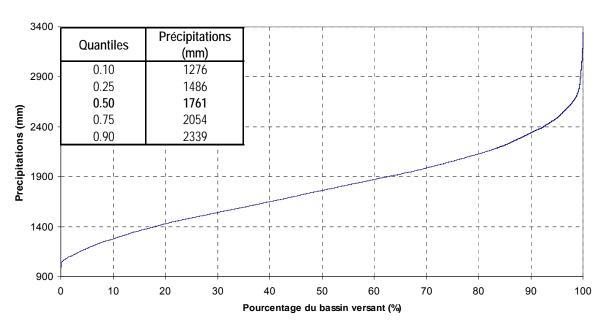


Q_0	α	$t_c = 1/\alpha$		
(m3.s-1)	(jour-1)	(jour)		
4.0	0.0083	120		

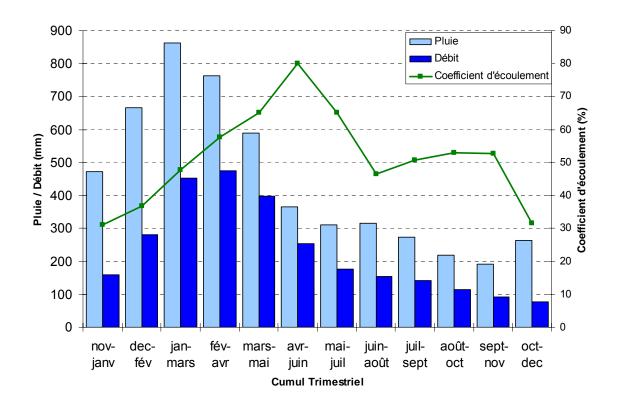
 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$


 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

Débits maximums de crues


		Période de Retour T (années)							
	1	2	5	10	20	50	100	Gd	P0
Qmax (m³/s)	270	637	1770	2520	3240	4172	4870	1000	270

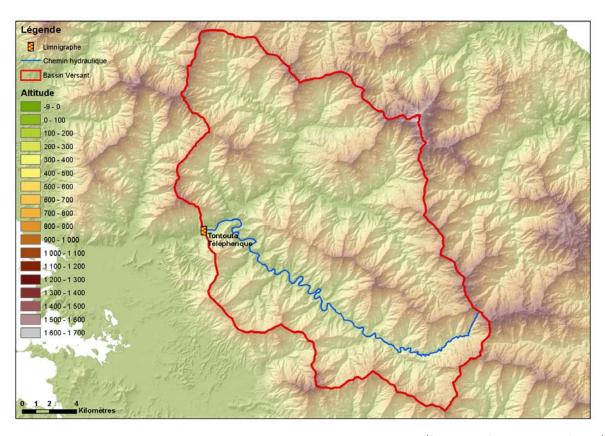
Pluviométrie


(Source: MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Tontouta

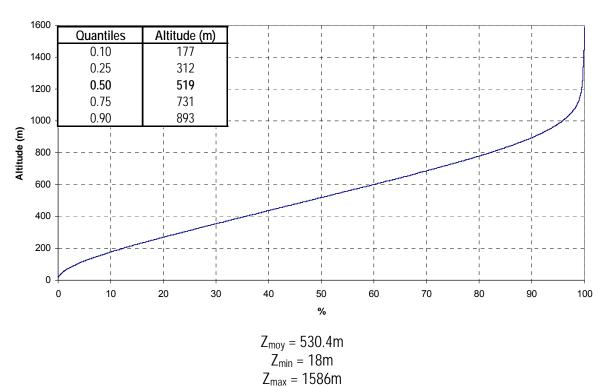
 $\begin{aligned} & \text{Pr\'ecipitation moyenne}: P_{\text{moy}} = 1787 mm \\ & \text{Pr\'ecipitation minimum}: P_{\text{min}} = 974 mm \\ & \text{Pr\'ecipitation maximum}: P_{\text{max}} = 3347 mm \end{aligned}$

Bilan d'écoulement trimestriel

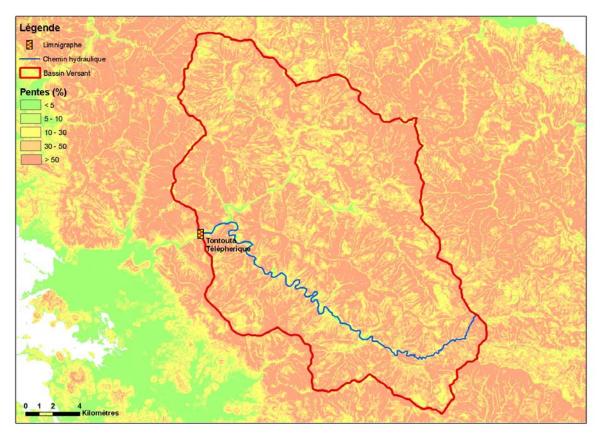

Coefficient d'écoulement moyen interannuel = 53% [33 ;65]

Lame écoulée : L_e = 927 mm

Déficit d'écoulement : $\Delta e = P - Le = 838 \text{ mm}$

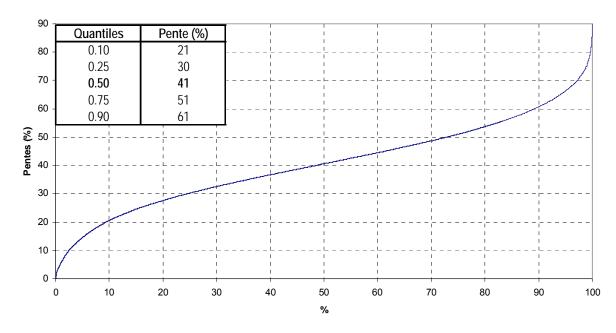

Caractéristiques Physiques

Altitudes



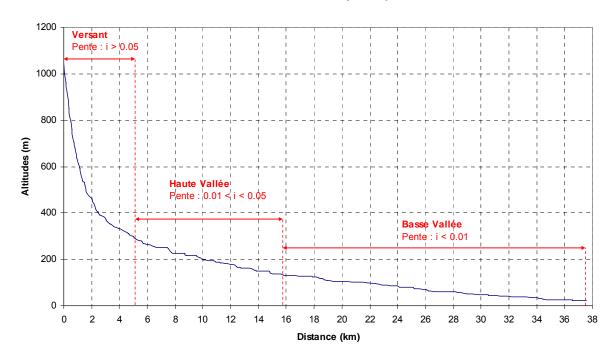
(Source: DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de la Tontouta



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

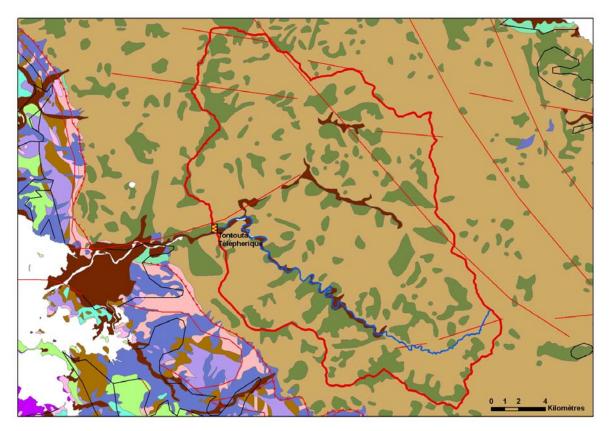

Pentes du bassin de la Tontouta

 $\begin{aligned} & \text{Pente moyenne}: i_{moy} = 40.6\% \\ & \text{Pente minimum}: i_{min} = 0.18\% \\ & \text{Pente maximum}: i_{max} = 97.41\% \end{aligned}$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.11
0.25	0.19
0.50	0.45
0.75	1.37
0.90	5.1


Longueur du chemin hydraulique : L = 37.632 km

Pente moyenne : $i_{ch} = 2.7\%$ Pente à l'exutoire : $i_e = 0.19\%$

90% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 5.1 h [4.32 ; 5.60] Vitesse Moyenne de Transfert : V = L / T_c = 2.0 m.s⁻¹

Géologie

(Source : DTSI, BRGM 1/1000000)

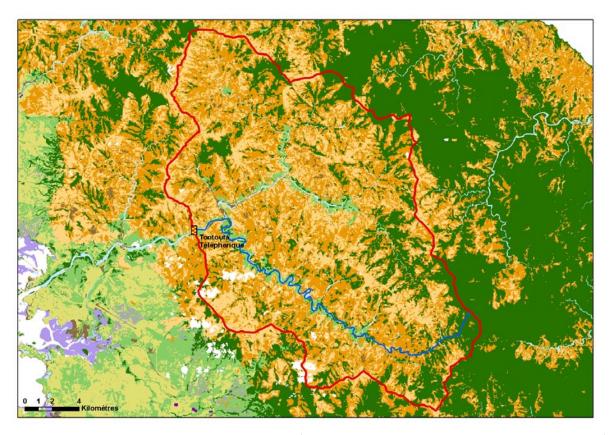
Légende

Limnigraphe
Chemin hydraulique
Bassin Versant

Géologie

Chevauchement, Observé

Faille principale, Observé
Faille principale, Supposé


---- Normal, Observé

Roches basiques à ultra basiques 72.5%

Alluvions Colluvions Modernes 2.7%

Terres et Alterites 24.8%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

8	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Savane	0.4%
	Maquis Clairsemé	28%
	Maquis Dense	45.2%
	Broussailles	3.1%
	Végétation Dense	21%
	Sol nu	0.7%
	Eau	1.6%

9. Ouenghi

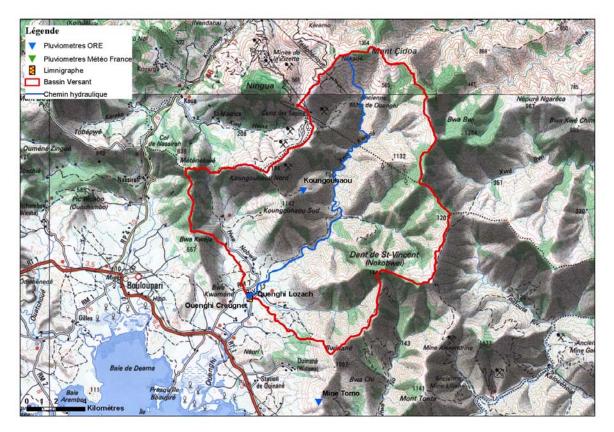
Localisation et durée des observations

CODE		LOCALISATION Coordonnées Lambert (m) BV				OBSERVATIONS	
CODE	CODE STATION		onnees Lambert Y	(m) Z	BV (km²)	Début	Fin
5703300101	Ouenghi Pont RT1. Cote 5	411909	255339	5	240	03/07/1954	31/08/1994
5703300103	Ouenghi c% Creugnet	413767	258359	0	212	31/08/1993	23/06/2008

La Ouenghi a été successivement suivie par 2 stations limnimétriques: Pont RT1 et Creugnet

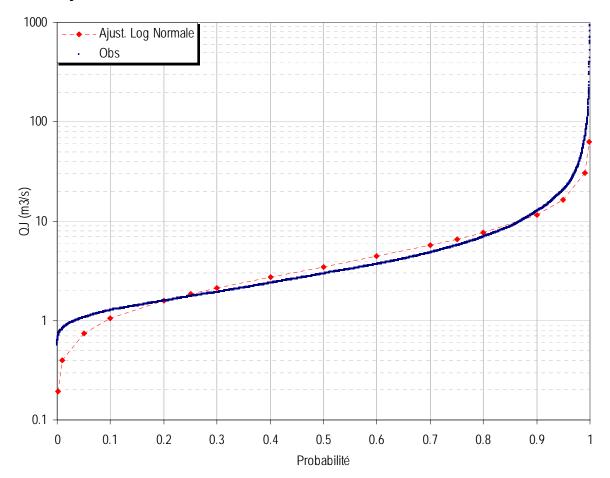
Les débits d'étiage et de moyennes eaux de la station Pont RT1 ont été transposés à Ouenghi Creugnet via la relation établie à partir de quelques jaugeages d'étiages :

Q_{Creugnet}=0.963 Q_{pont}.

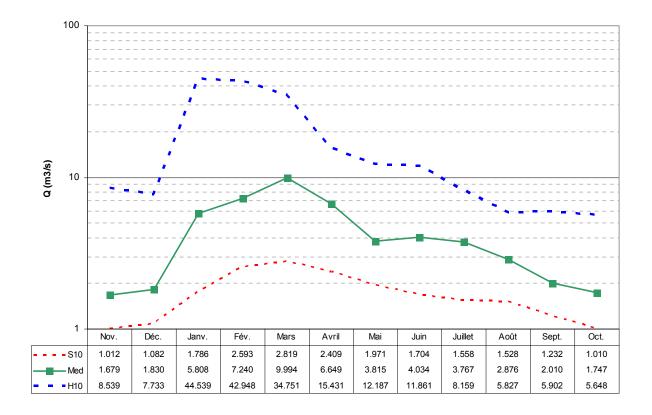

A noter que la station aval (RT1) est sérieusement influencée par les prélèvements (surtout depuis les années 90) et qu'il est difficile d'évaluer le débit naturel du cours d'eau à l'aval de la station Creugnet

OBSERVATIONS							
Durée Qmin (M3/S) Qmax (M3/S)							
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué	
03/07/54	23/06/08	45.0	0.659	0.560	1070	2076	

Pour les plus hautes eaux (PHE), les données ne sont statistiquement exploitables qu'à partir de 1970. Vu les incertitudes sur l'estimation des débits maximums de crues sur ces stations, la différence minime de superficie entre les deux stations et leur situation aval, il peut être considéré que les phénomènes d'amortissement de l'onde de crues compensent l'accroissement de superficie. Aussi, les séries de débits maximums de crues ont été concaténées sans facteur correctif.


Du fait de la position aval de la station limnigraphique, le lit majeur au niveau de la section contrôle est particulièrement large ce qui rend l'évaluation des débits de hautes eaux très imprécise. Au niveau de la station aval, la présence de digue artificielle dont celle que constitue la RT1 rendait encore moins fiable l'évaluation des débits de crues débordantes.

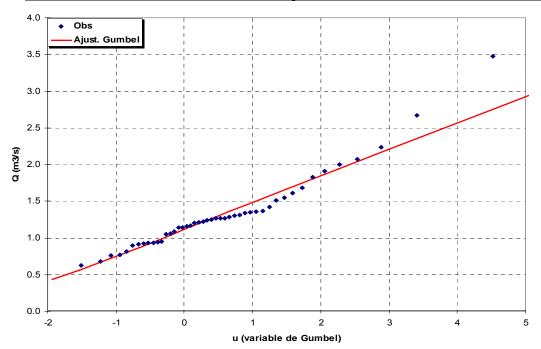
Aussi, les débits caractéristiques de crues sont à utiliser avec circonspection.

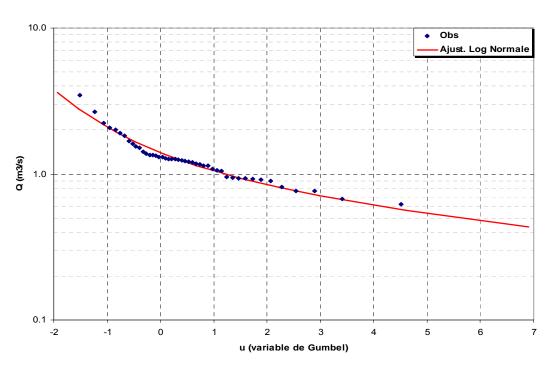

(Source : DTSI, IGN 1/200000)

Débits journaliers classés

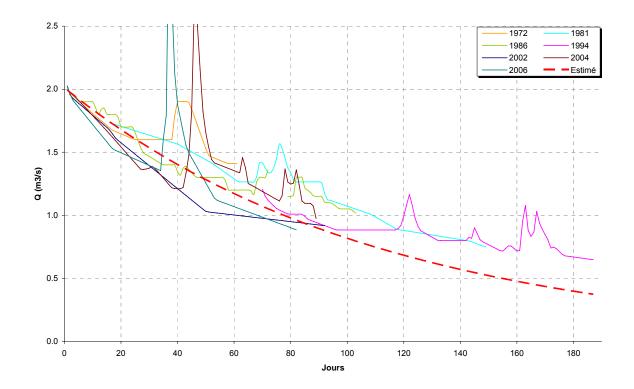
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.395	0.826
0.10	1.052	1.270
0.25	1.857	1.756
0.50	3.494	2.974
0.75	6.574	5.703
0.90	11.610	12.553
0.99	30.904	65.650

Débits moyens mensuels



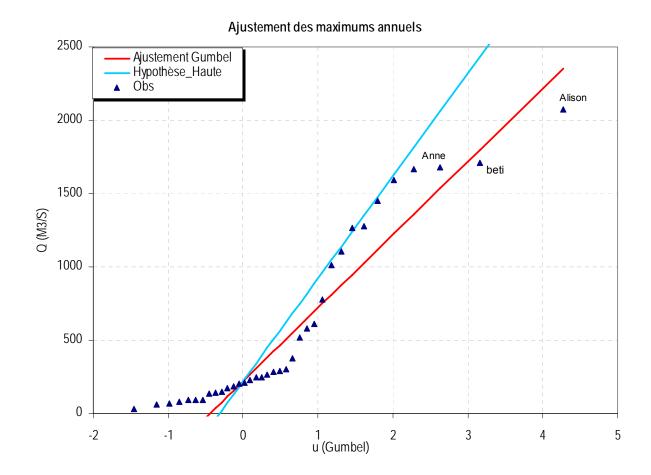

Module annuel = $5.14 \text{ m}^3/\text{s}$ $S10 = 2.64 \text{ m}^3/\text{s}$ $H10 = 14.63 \text{ m}^3/\text{s}$ K3 = 5.5

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

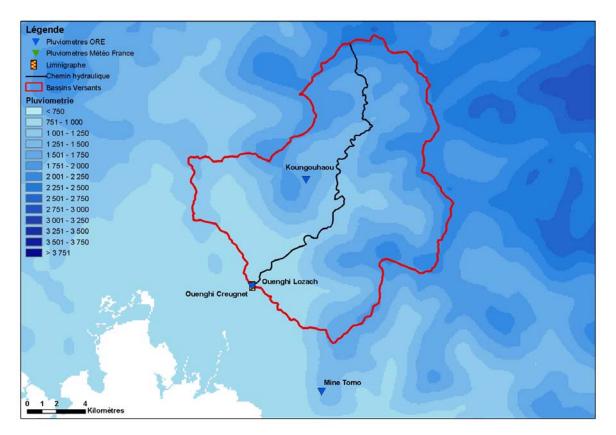
		Etiage Humide (T ans)			Médiane	Eti	ans)	
_		100	10	5	2	5	10	100
	$Q m^3/s$	2.964	2.011	1.706	1.250	0.936	0.805	0.562
	Q spé l/s/km²	14.0	9.5	8.0	5.9	4.4	3.8	2.7
	Loi	Gumbel			Log Normale			
	Paramètres	Gd =	0.406 F	PO = 1.098	v = 0.223	}	σ = 0.3	343

Courbes de tarissement

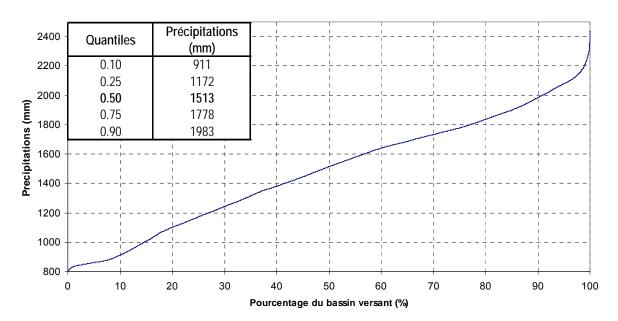

Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
2.0	0.0090	111

 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$

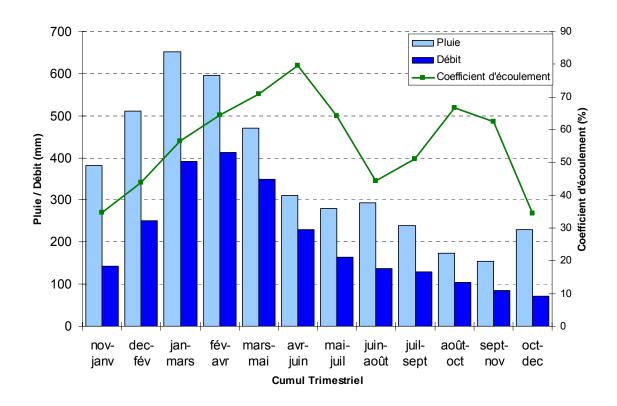
 $t_{\text{\tiny C}} \hspace{1.5cm} : temps \hspace{0.1cm} caract\'eristique \hspace{0.1cm} de \hspace{0.1cm} tarissement$


Débits maximums de crues

	Période de Retour T (années)						Parametre	de Gumbel	
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	220	403	970	1345	1705	2171	2520	500	220
Q (m³/s) Hyp_haute	220	477	1270	1795	2299	2951	3440	700	220


L'ajustement à la loi de Gumbel est de qualité médiocre. Il semble notamment se dessiner une rupture de pente pour u>0.5 (T>2 ans). L'ajustement moyen conduit à un débit spécifique centennal d'environ 12 m3/s/km², ce qui semble cohérent dans le contexte régional notamment par rapport aux évaluations obtenus sur les rivières de Tontouta (13 m3/s/km² pour 385km²) et de la Foa (14 m3/s/km² pour 116 km²). Il est également présenté un ajustement maximaliste (i.e. hypothèse haute) qui conduit à un débit spécifique centennal d'environ 16 m3/s/km² qui ne peut être rejeté vu les incertitudes générales sur l'évaluation.

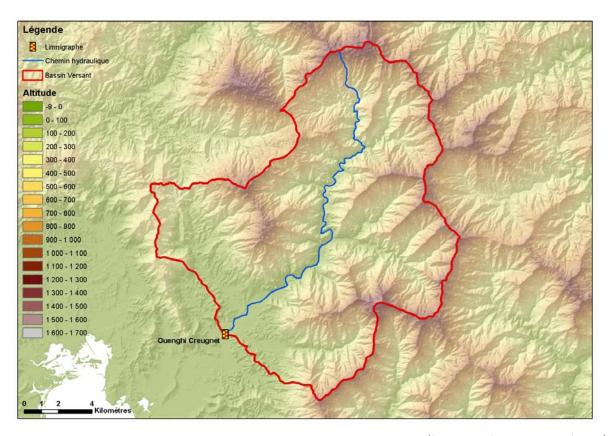
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Ouenghi

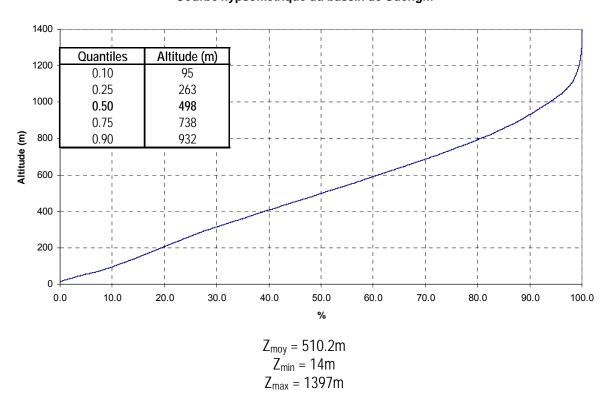
 $\begin{aligned} & \text{Pr\'ecipitation moyenne}: P_{\text{moy}} = 1484mm \\ & \text{Pr\'ecipitation minimum}: P_{\text{min}} = 801mm \\ & \text{Pr\'ecipitation maximum}: P_{\text{max}} = 2437mm \end{aligned}$

Bilan d'écoulement trimestriel

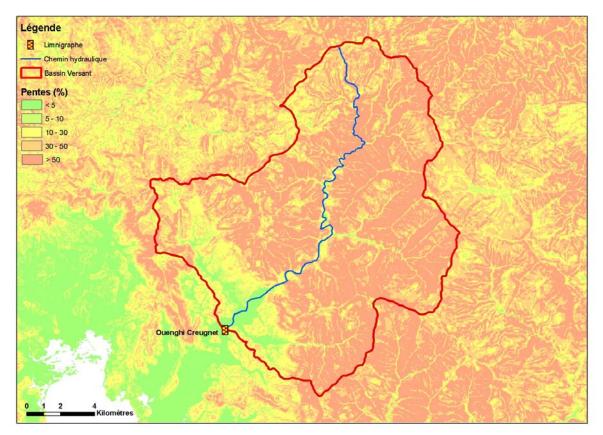


Coefficient d'écoulement moyen interannuel = 58% [34 ;75]

 $Lame \ \acute{e}coul\acute{e}e : L_e = .824 \ mm$ $D\acute{e}ficit \ d'\acute{e}coulement : \Delta_e = P - L_e = 605 \ mm$

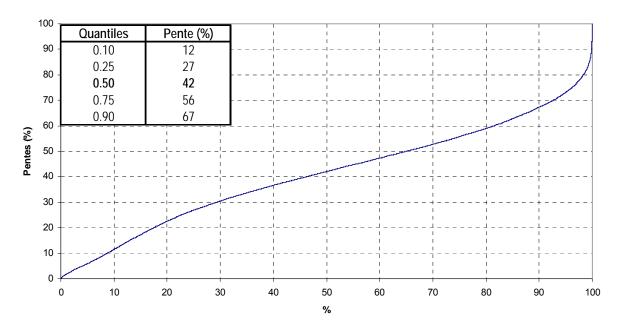

Caractéristiques Physiques

Altitudes



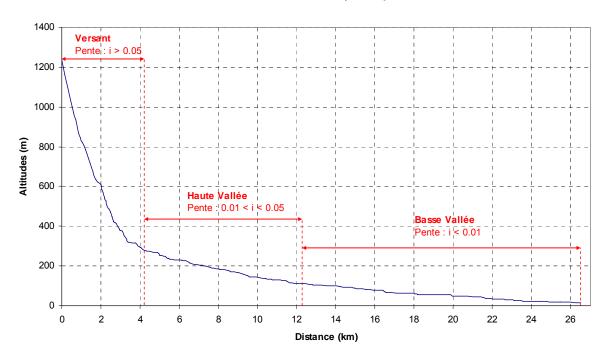
(Source: DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de Ouenghi



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

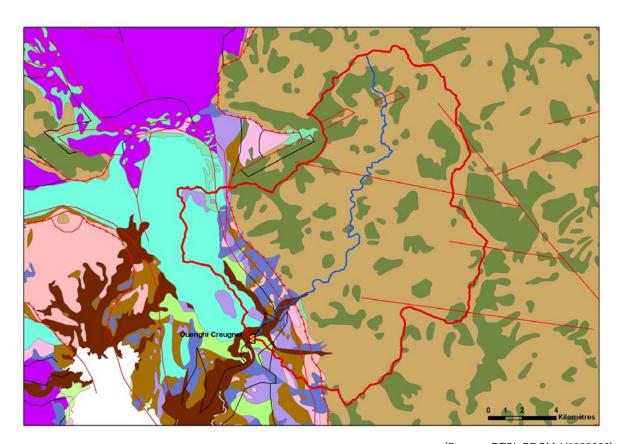

Pentes du bassin de la Ouenghi

Pente moyenne : i_{moy} = 41.1% Pente minimum : i_{min} = 0.00% Pente maximum : i_{max} = 105.2%

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.62
0.25	1.00
0.50	5.94
0.75	17.9
0.90	30.7


Longueur du chemin hydraulique : L = 26.537 km

Pente moyenne : $i_{ch} = 4.6\%$ Pente à l'exutoire : $i_e = 0.30\%$

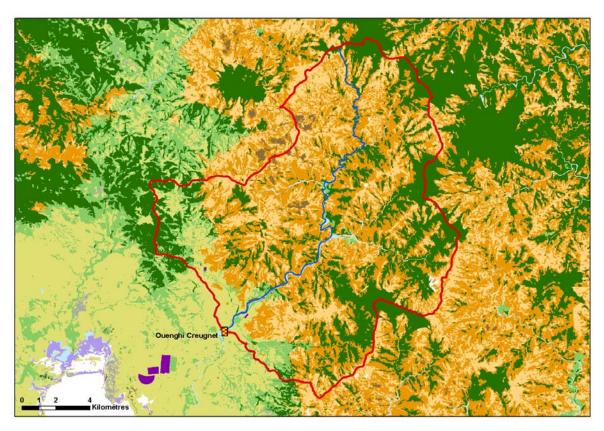
44% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 3.8 h [3.50 ; 5.07] Vitesse Moyenne de Transfert : V = L / T_c = 1.9 m.s⁻¹

Géologie

1.9%

(Source : DTSI, BRGM 1/1000000)


Légende

Limnigraphe Chemin Hydraulique Bassin Versant

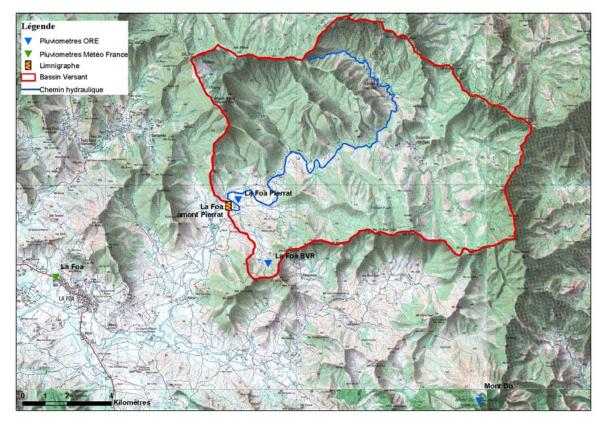
Basalte de Kone

Géologie Chevauchement, Observé Faille principale, Observé Faille principale, Supposé Normal, Observé 0.4% Serpentinite et Silice 63.0% Roches basiques à ultra basiques 3.7% Alluvions Colluvions Anciennes 2.1% Alluvions Colluvions Modernes 19.2% Terres et Alterites 0.4% Eocene Calcaire 4.9% Flysh Widflysh Arenites Flysh à brèches 0.7% 2.1% Formations greseuses rhyolites basaltes Complexe Silico Argileux 1.6%

Occupation des Sols

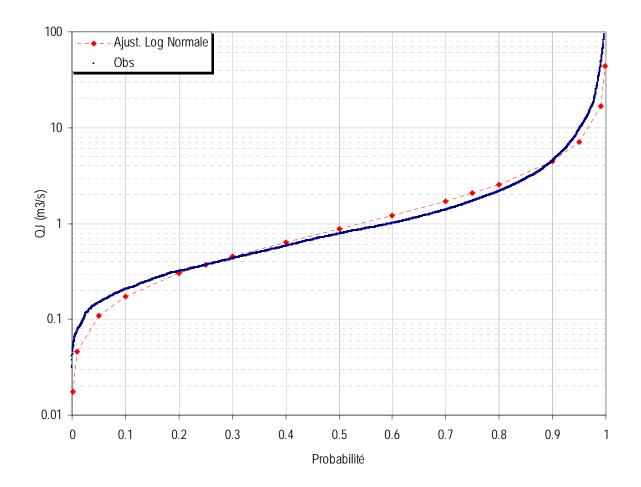
(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

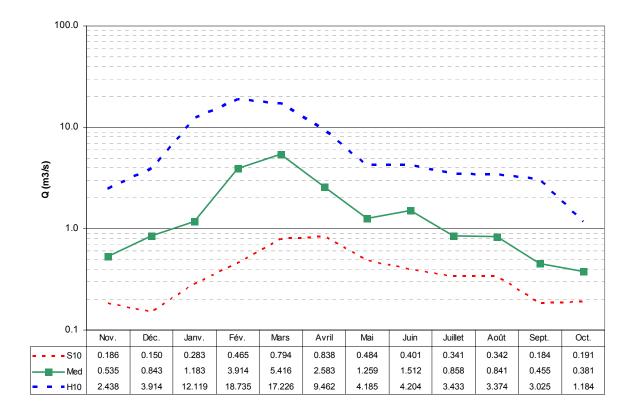

Limnigraphe	
Chemin hydraulique	
Bassin versant	
Lacunes	
Savane	5.9%
Maquis Clairsemé	22.4%
Maquis Dense	40.1%
Broussailles	4.2%
Végétation Dense	25.6%
Sol nu	0.9%
Eau	0.9%

10. La Foa

Localisation et durée des observations


CODE	STATION	LOCALISATION Coordonnées Lambert (m) BN			
		Χ	Υ	Z	(km²)
5701600202	La_Foa Amont confluence pierrat. Cote 19	388 659	280 908	19	116

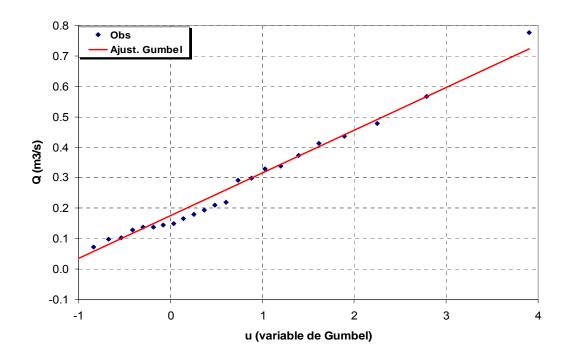
OBSERVATIONS							
Durée Qmin (M3/S) Qmax (M3/S)						(M3/S)	
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué	
09/10/1980	28/05/2009	28.0	0.054	0.031	268	1561	

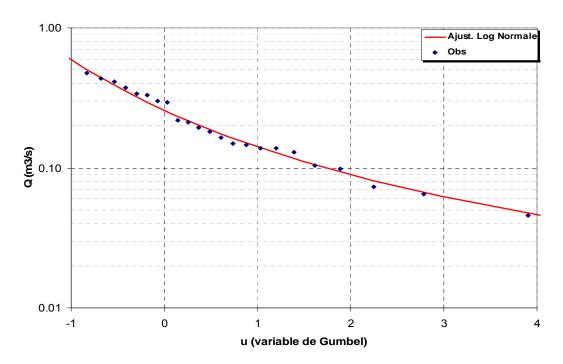

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.046	0.076
0.10	0.173	0.207
0.25	0.374	0.367
0.50	0.88	0.778
0.75	2.06	1.713
0.90	4.45	4.484
0.99	16.72	43.61

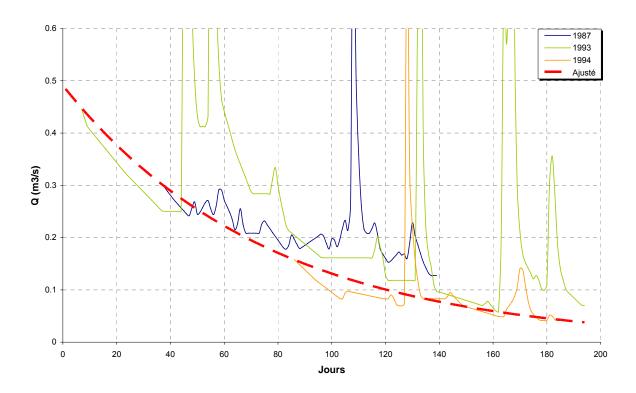
Débits moyens mensuels




Module annuel =
$$2.12 \text{ m}^3\text{/s}$$

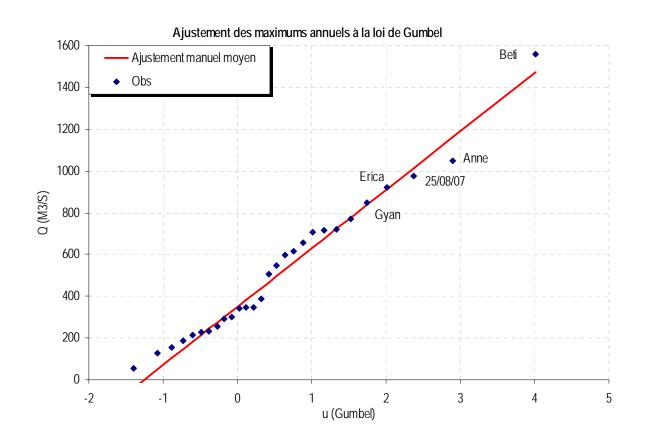
 $S10 = 1.31 \text{ m}^3\text{/s}$
 $H10 = 4.59 \text{ m}^3\text{/s}$
 $K3 = 3.5$

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10

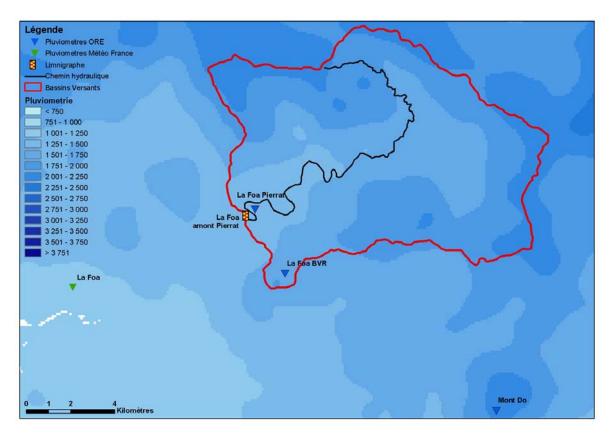

Débits caractéristiques d'étiages (DCE)

		Etiage Humide (T ans)			Médi	ane	Et	iage Sec (T ans)	
		100	10)	5	2		5	10	100
ľ	Q m³/s	0.821	0.49	91	0.386	0.20)2	0.111	0.081	0.039
	Q spé l/s/km²	7.1	4.2	2	3.3	1.7	7	1.0	0.7	0.3
ľ	Loi		Gumbel				Log No	ormale		
	Paramètres	Gd =	I = 0.140 PO = 0.175		υ=	-1.599	9	σ=	0.712	

Courbes de tarissement

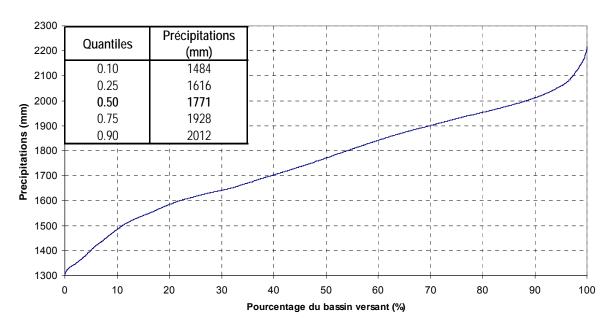

Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.49	0.0243	41

 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$

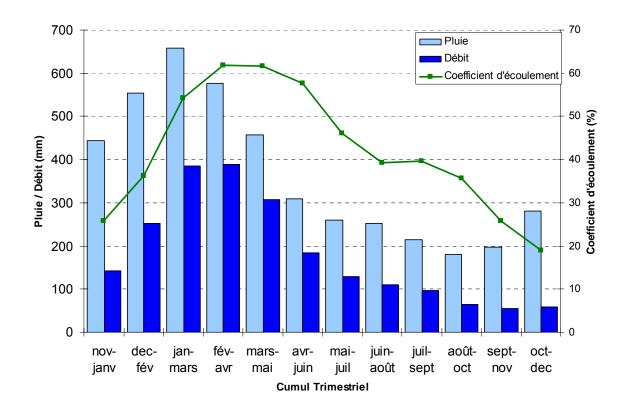

 $t_{\text{\tiny C}} \hspace{1.5cm} : temps \hspace{0.1cm} caract\'eristique \hspace{0.1cm} de \hspace{0.1cm} tarissement$

Débits maximums de crues

	Période de Retour T (années)					Parametre	e loi		
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	350	453	770	980	1182	1443	1638	280	350



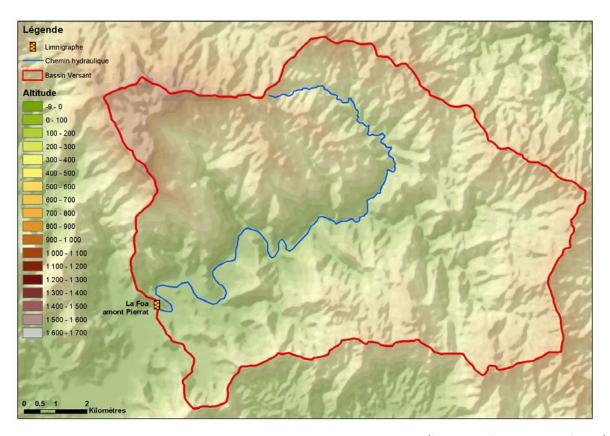
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Foa

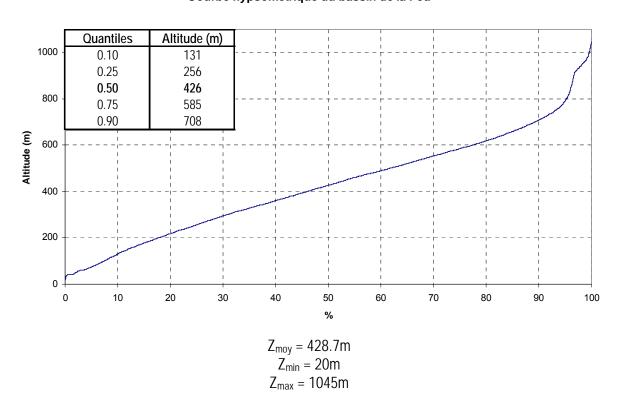
 $\begin{aligned} & \text{Pr\'ecipitation moyenne}: P_{moy} = 1762mm \\ & \text{Pr\'ecipitation minimum}: P_{min} = 1304mm \\ & \text{Pr\'ecipitation maximum}: P_{max} = 2217mm \end{aligned}$

Bilan d'écoulement trimestriel

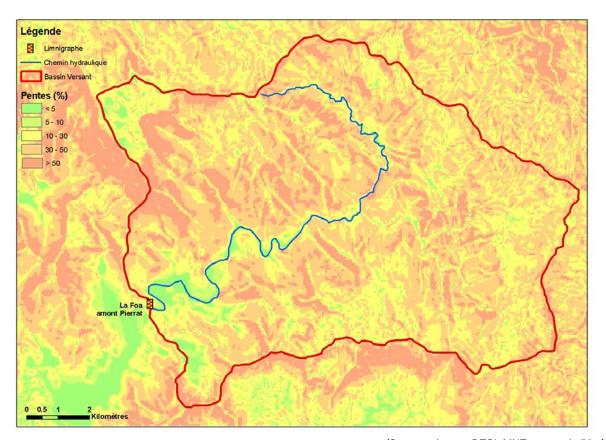


Coefficient d'écoulement moyen interannuel = 50% [33 ;66]

 $Lame \ \acute{e}coul\acute{e}e : L_e = 725 \ mm$ $D\acute{e}ficit \ d'\acute{e}coulement : \Delta_e = P - L_e = 737 \ mm$

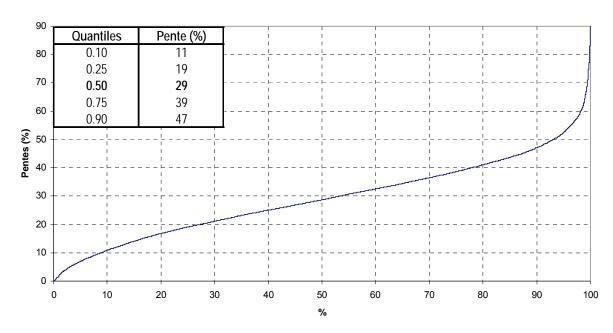

Caractéristiques Physiques

Altitudes



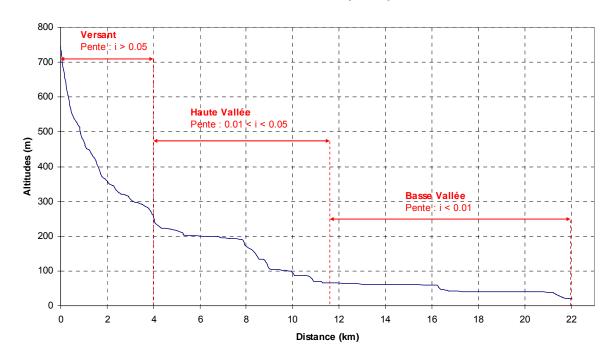
(Source : DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de la Foa



Pentes

(Source : d'après DTSI, MNT au pas de 50m)


Pentes du bassin de la Foa

 $\begin{array}{l} Pente\ moyenne: i_{moy} = 29.2\%\\ Pente\ minimum: i_{min} = 0.00\%\\ Pente\ maximum: i_{max} = 99.0\% \end{array}$

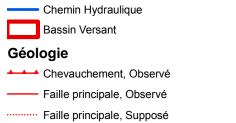
Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.03
0.25	0.06
0.50	0.37
0.75	3.2
0.90	9.5


Longueur du chemin hydraulique : L = 22.072 km

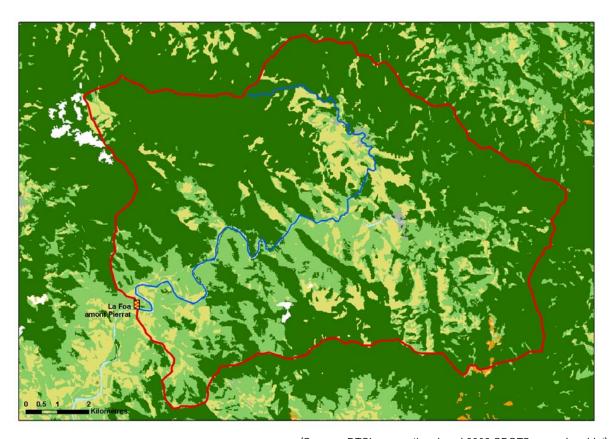
Pente moyenne : $i_{ch} = 3.3\%$ Pente à l'exutoire : $i_e = 1\%$


81% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 2.6 h [2.26 ; 2.90] Vitesse Moyenne de Transfert : $V = L / T_c = 2.4 \text{ m.s}^{-1}$

Géologie

(Source : DTSI, BRGM 1/1000000)



Légende

Limnigraphe

Normal, Observé
Serpentinite et Silice 3.2%
Alluvions Colluvions Anciennes 1.4%
Complexe Silico Argileux 2.5%
Tuffs Mesozoique 92.8%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

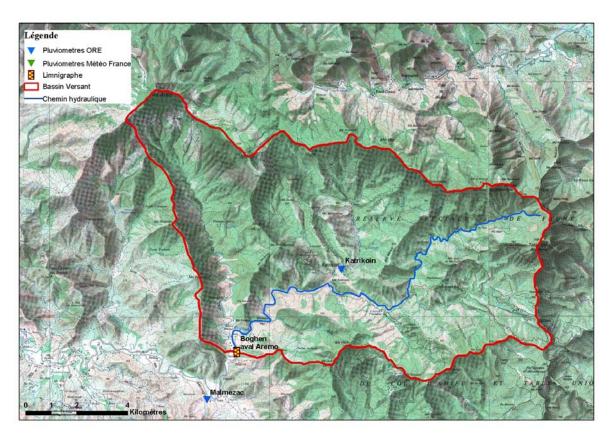
Légende

Limnigraphe	
Chemin hydraulique	
Bassin versant	
Lacunes	
Savane	12.0%
Maquis Clairsemé	0.1%
Maquis Dense	0.1%
Broussailles	22.5%
Végétation Dense	64.6%
Eau	0.7%
	Chemin hydraulique Bassin versant Lacunes Savane Maquis Clairsemé Maquis Dense Broussailles Végétation Dense

11. Boghen

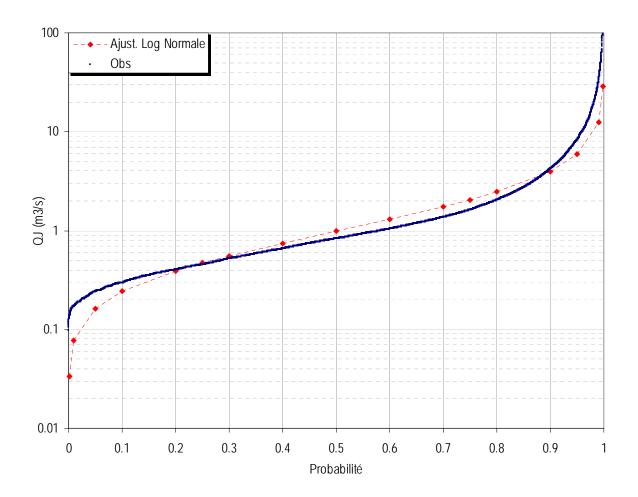
Localisation et durée des observations

CODE	Coordo	BV			
		Χ	Υ	Z	(km²)
5702600101	Boghen Aval confluence Aremo. Cote 31.	364 525	289 667	31	113
5702600102	Boghen Malmezac. Cote 30.	363 673	287 810	30	134

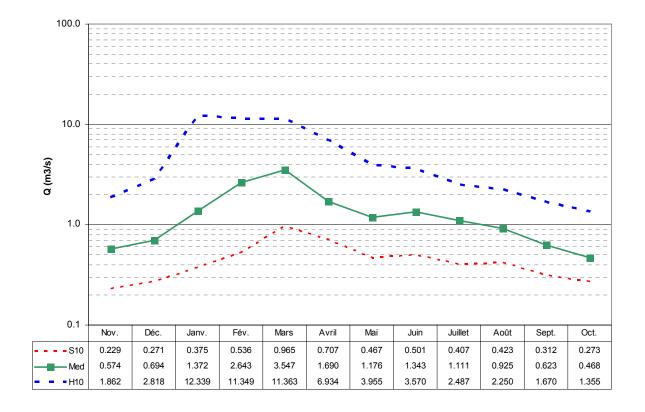

		(OBSERVATION	S		
		Durée	Qmin	(M3/S)	Qmax	(M3/S)
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué
21/01/55	19/05/08	49.0	0.128	0.093	700	2841

La station hydrométrique de la Boghen a été constituée successivement de 2 stations : Malmezac de 1955 à 1969 puis Aval Aremo à partir de 1969.

Un transfert de cotes de Malmezac à Aval Aremo a été utilisé pour les plus hautes eaux :


Pour les débits d'étiages et les débits journaliers, la chronique des débits de Malmezac a été transférée vers Aremo via la relation :

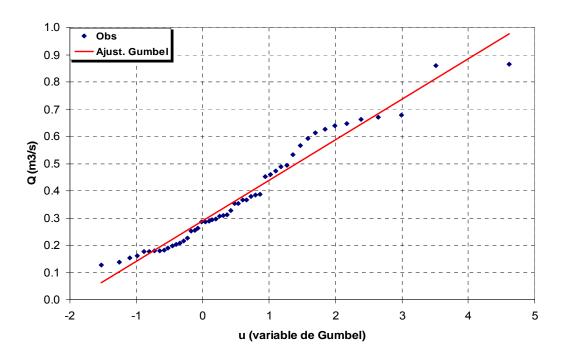
Q Aremo = 0.9622*Q Malmezac

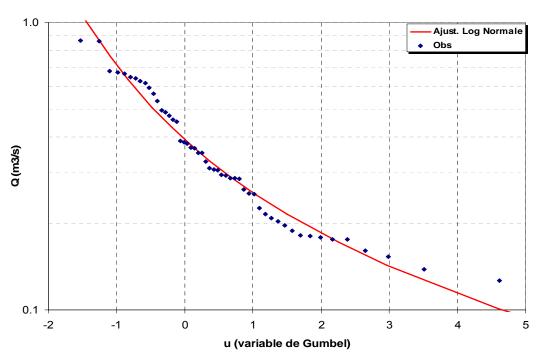

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

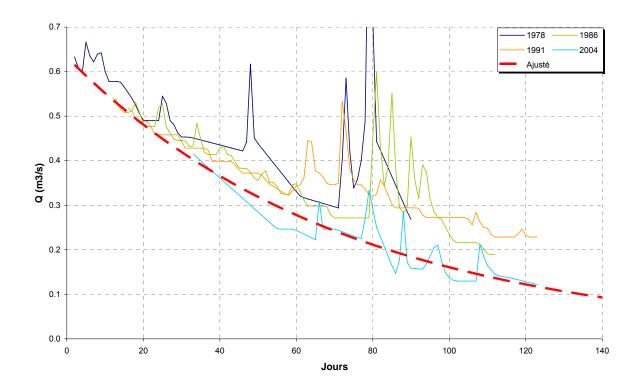
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.077	0.171
0.10	0.242	0.296
0.25	0.470	0.453
0.50	0.981	0.829
0.75	2.049	1.616
0.90	3.976	4.221
0.99	12.437	31.552

Débits moyens mensuels



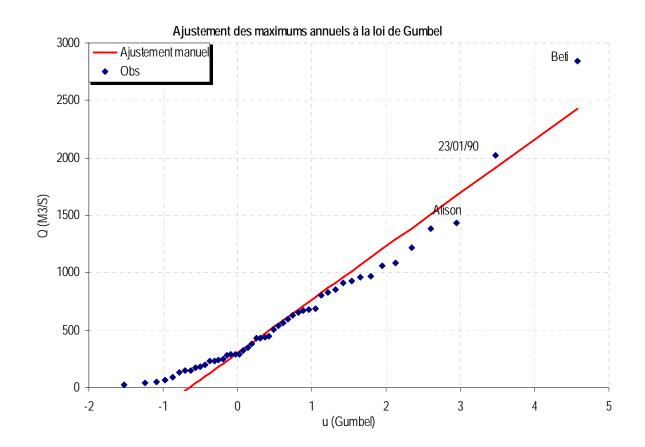

Module annuel = 1.744m³/s S10 = 0.867m³/s H10 = 3.207m³/s K3 = 3.7

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10

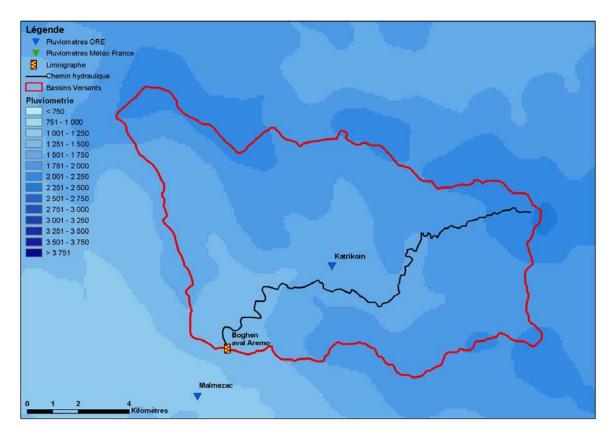

Débits caractéristiques d'étiages (DCE)

	Etiage Humide (T ans)			Médiane	E	Etiage Sec (T ans)		
	100	1	0	5	2	5	10	100
Q m³/s	0.974	0.6	24	0.513	0.330	0.215	0.172	0.101
Q spé l/s/km²	8.6	5.	.5	4.5	2.9	1.9	1.5	0.9
Loi		Gumbel Gd = 0.149 PO = 0.289			Log N	ormale		
Paramètres	Gd =			$v = -1.109$ $\sigma = 0.5$			509	

Courbes de tarissement

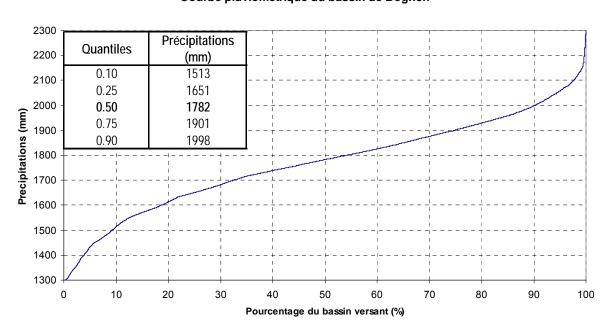

Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.531	0.0150	67

 Q_0 : débit initial de tarissement α : coefficient de tarissement

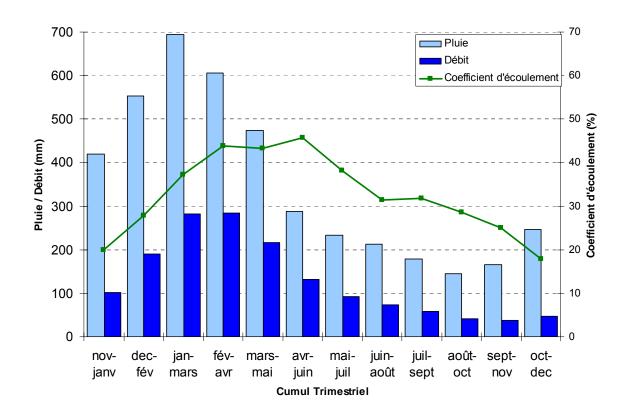

 $t_{\text{\tiny C}}$: temps caractéristique de tarissement

Débits maximums de crues

		Période de Retour T (années)						Parametre	Parametre loi	
	1	2	5	10	20	50	100	Gd	P0	
Q (m³/s)	300	470	997	1346	1681	2114	2439	465	300	



Pluviométrie


(Source : MétéoFrance, DAVAR)

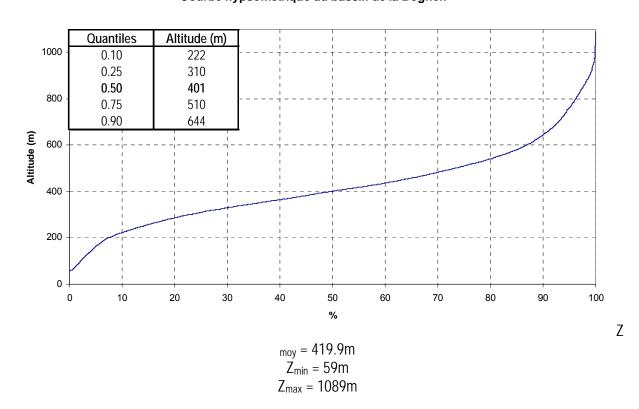
Courbe pluviometrique du bassin de Boghen

 $\begin{aligned} & \text{Précipitation moyenne} : P_{\text{moy}} = 1769 mm \\ & \text{Précipitation minimum} : P_{\text{min}} = 1294 mm \\ & \text{Précipitation maximum} : P_{\text{max}} = 2308 mm \end{aligned}$

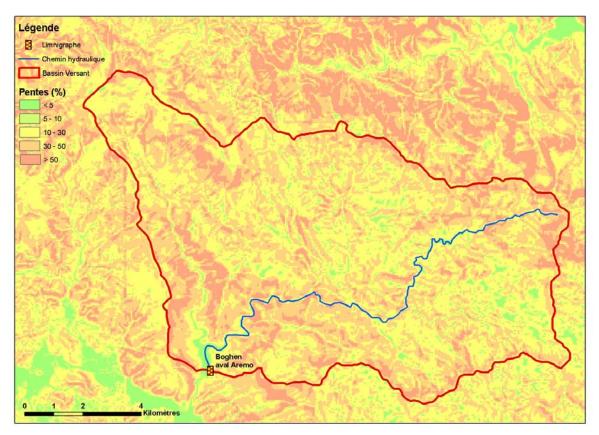
Bilan d'écoulement trimestriel

Coefficient d'écoulement moyen interannuel = 37% [16 ;53]

 $Lame \ \acute{e}coul\acute{e}e : L_e = 519 \ mm$ $D\acute{e}ficit \ d'\acute{e}coulement : \Delta_e = P - L_e = 885 \ mm$

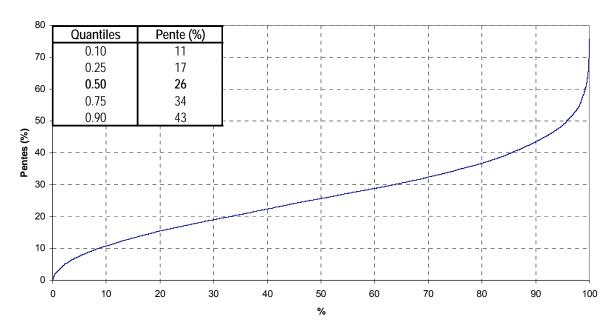

Caractéristiques Physiques

Altitudes



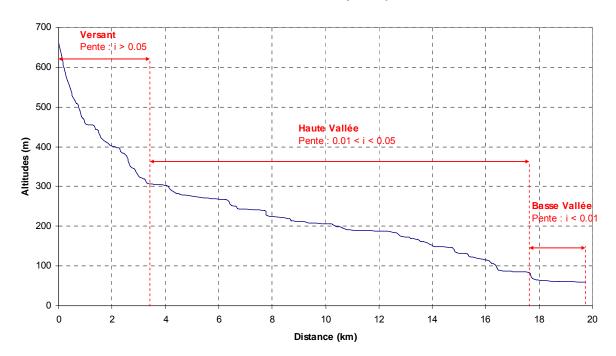
(Source : DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de la Boghen



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

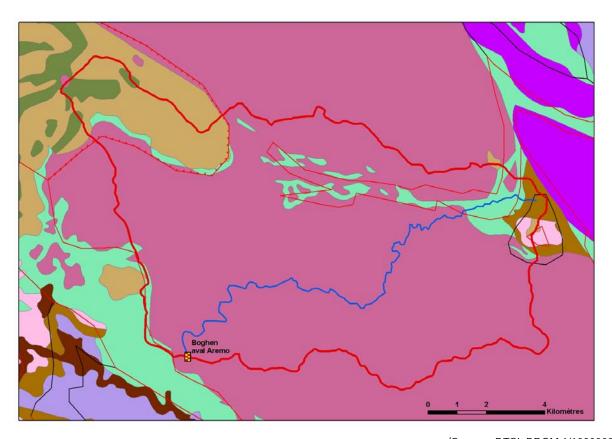

Pentes du bassin de la Boghen

Pente moyenne : $i_{moy} = 26.5\%$ Pente minimum : $i_{min} = 0.18\%$ Pente maximum : $i_{max} = 75.7\%$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.17
0.25	0.39
0.50	0.82
0.75	2.4
0.90	8.8


Longueur du chemin hydraulique : L = 19.871 km

Pente moyenne : $i_{ch} = 3.0\%$ Pente à l'exutoire : $i_e = 0.10\%$

83% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 1.6 h [1.39 ; 1.91] Vitesse Moyenne de Transfert : V = L / T_c = 3.4 m.s⁻¹

Géologie

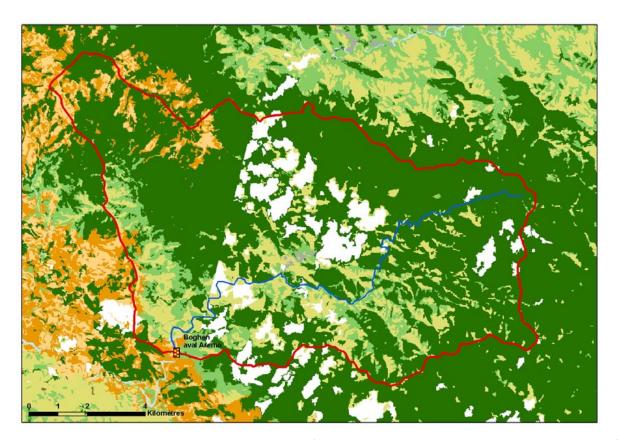
(Source : DTSI, BRGM 1/1000000)

Légende

Lege	enue	
3	Limnigraphe	
	Chemin Hydraulique	
	Bassin Versant	
Géol	ogie	
***	Chevauchement, Observé	
	Faille principale, Observé	
	Faille principale, Supposé	
	Normal, Observé	
	Série Boghen	83.6%
	Serpentinite et Silice	6.5%
	Roches basiques à ultra basiques	7.2%

Terres et Alterites

Eocene Calcaire


Complexe Silico Argileux

1.2%

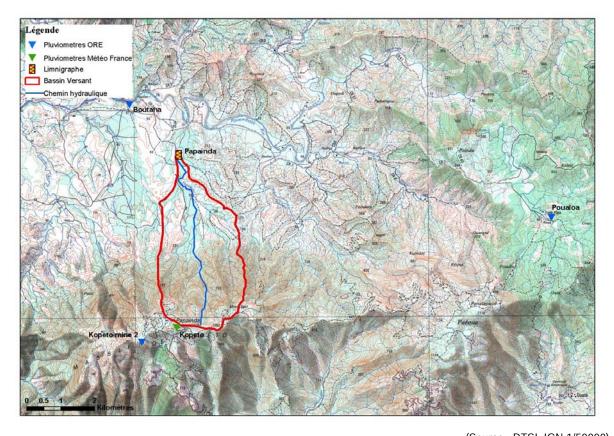
0.3%

1.1%

Occupation des Sols

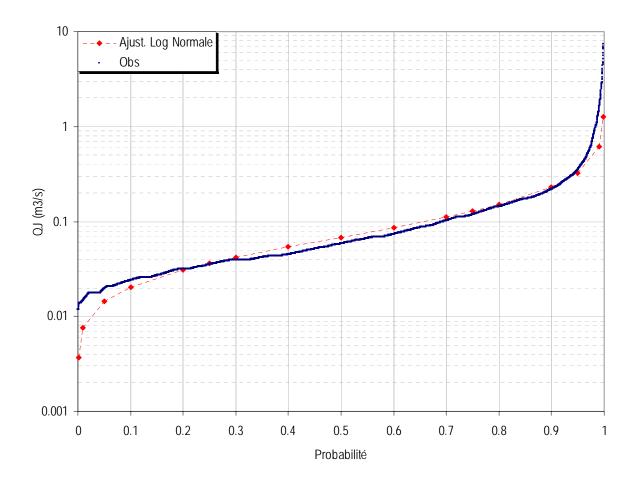
(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende


3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	15.6%
	Maquis Clairsemé	2.1%
	Maquis Dense	3.1%
	Broussailles	10.2%
	Végétation Dense	68.7%
	Eau	0.3%

12. Papainda

Localisation et durée des observations


CODE	STATION	Coord	BV		
		Χ	Υ	Z	(km²)
5703906501	Papainda Cote 50.	297 771	341 695	50	9.08

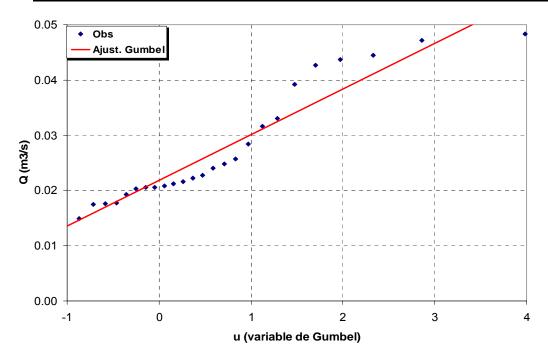
OBSERVATIONS									
		Durée	Qmin	(M3/S)	Qmax	(M3/S)			
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué			
20/12/80	21/05/08	27.0	0.017	0.012	55.7	95.7			

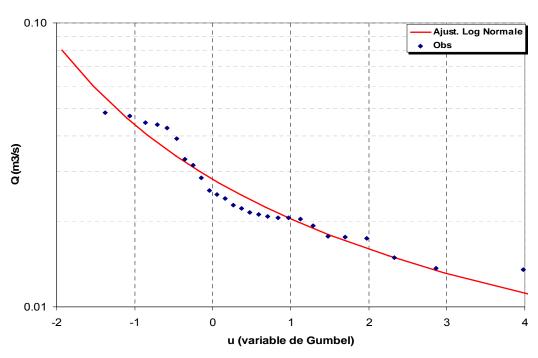

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

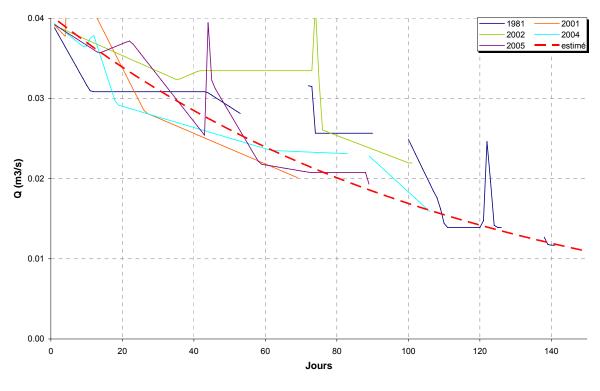
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.008	0.015
0.10	0.020	0.024
0.25	0.036	0.035
0.50	0.068	0.058
0.75	0.129	0.118
0.90	0.229	0.218
0.99	0.613	1.449

Débits moyens mensuels



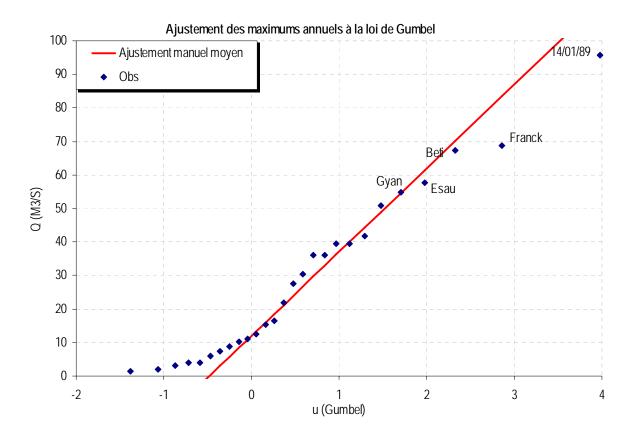

Module annuel = $0.11m^3/s$ S10 annuel = $0.04m^3/s$ H10 annuel = $0.29m^3/s$ K3 = 6.8

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

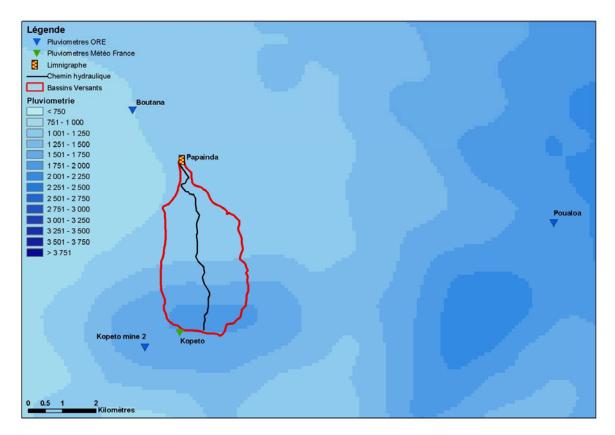
	Etiage Humide (T ans)			Médi	ane	Etiage Sec (T ans)			
	100	10	0	5	2		5	10	100
Q m³/s	0.060	0.0	40	0.034	0.0	25	0.018	0.015	0.010
Q spé l/s/km²	6.5	4.	4	3.7	2.	7	2.0	1.7	1.1
Loi		Gumbel				Log No	rmale		
Paramètres	etres $Gd = 0.008 PO = 0.022$		0.022	$v = -3.700$ $\sigma = 0.38$			381		

Courbes de tarissement

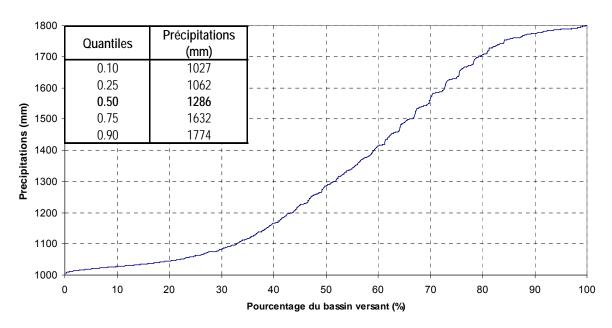


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.04	0.0087	115

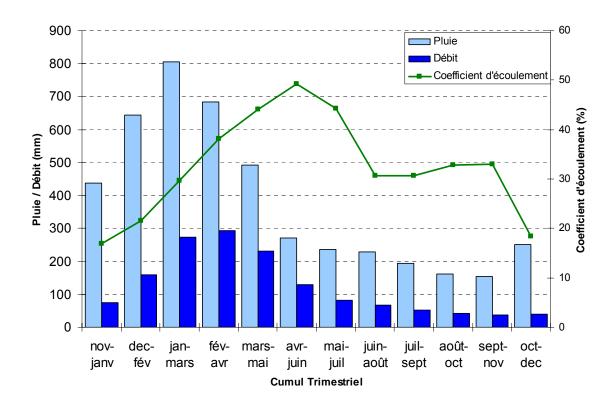
 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$


 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

Débits maximums de crues


	Période de Retour T (années)							Parametre	e loi
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	12	21	49	68	86	110	127	25	12

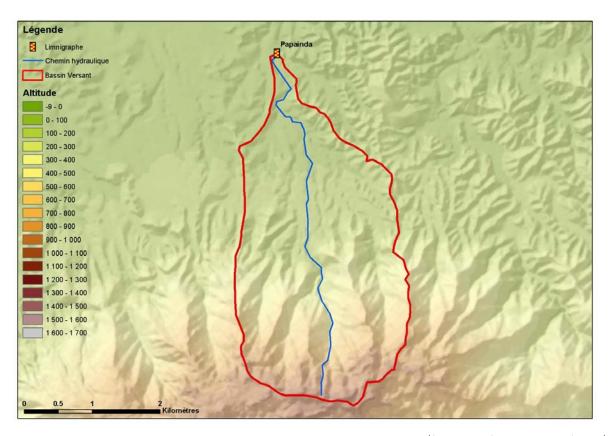
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Papainda

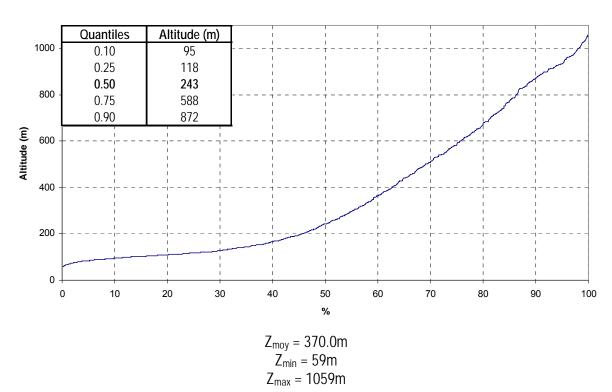
 $\begin{aligned} &\text{Pr\'ecipitation moyenne}: P_{moy} = 1346mm \\ &\text{Pr\'ecipitation minimum}: P_{min} = 1005mm \\ &\text{Pr\'ecipitation maximum}: P_{max} = 1801mm \end{aligned}$

Bilan d'écoulement trimestriel

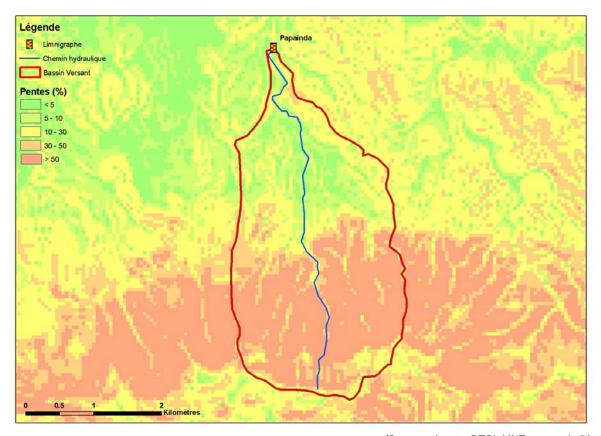

Coefficient d'écoulement moyen interannuel = 32% [18 ;43]

Lame écoulée : L_e = 494 mm

Déficit d'écoulement : Δ_e = P – L_e = 1027 mm

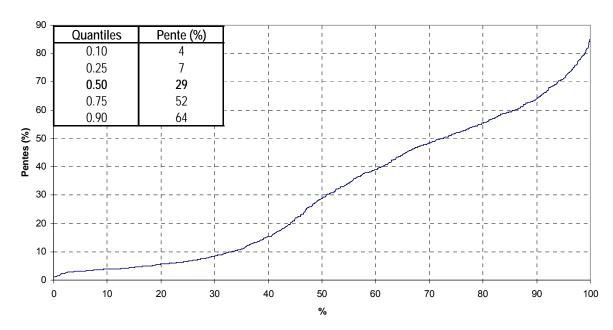

Caractéristiques Physiques

Altitudes



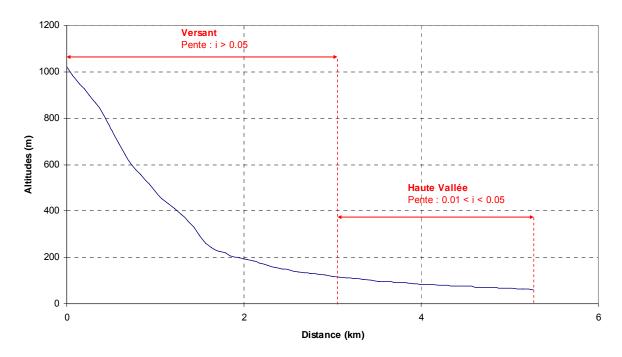
(Source: DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de Papainda



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

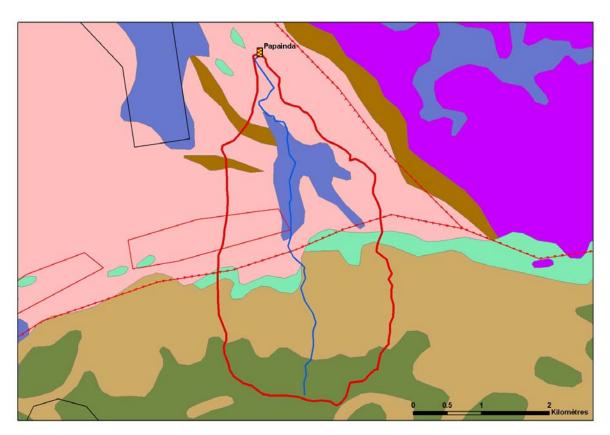

Pentes du bassin de Papainda

 $\begin{aligned} & \text{Pente moyenne}: i_{moy} = 31.02\% \\ & \text{Pente minimum}: i_{min} = 1.00\% \\ & \text{Pente maximum}: i_{max} = 84.9\% \end{aligned}$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)		
0.10	1.0		
0.25	2.6		
0.50	5.9		
0.75	37.8		
0.90	50.7		


Longueur du chemin hydraulique : L = 5.756 km

Pente moyenne : i_{ch} = 18.3% Pente à l'exutoire : i_e = 2%

48% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 0.7 h [0.69 ; 0.91] Vitesse Moyenne de Transfert : V = L / T_c = 2.3 m.s⁻¹

Géologie

(Source: DTSI, BRGM 1/1000000)

Légende

Limnigraphe
Chemin Hydraulique

Bassin Versant

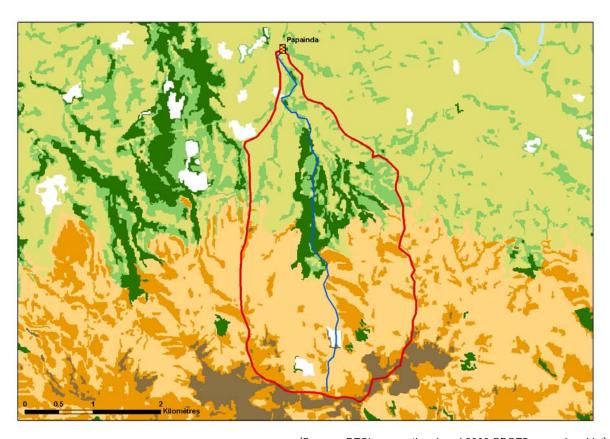
Géologie

Chevauchement, Observé
Faille principale, Observé

Faille principale, Supposé

Normal, Observé

Serpentinite et Silice 6.7%
Roches basiques à ultra basiques 32.4%


Alluvions Colluvions Anciennes 11.5%

Terres et Alterites 14.1%

Complexe Silico Argileux 1.8%

Basalte de Kone 33.6%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

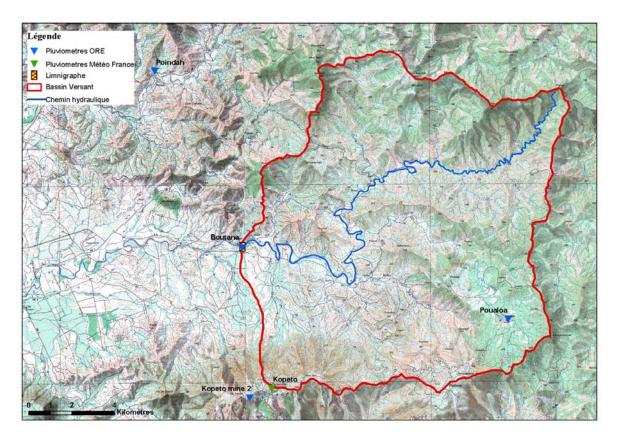
Légende

Limnigraphe	
Chemin hydraulique	
Bassin versant	
Lacunes	
Savane	20.3%
Maquis Clairsemé	42.4%
Maquis Dense	13.2%
Broussailles	10.0%
Végétation Dense	10.9%
Sol nu	3.2%

13. Boutana

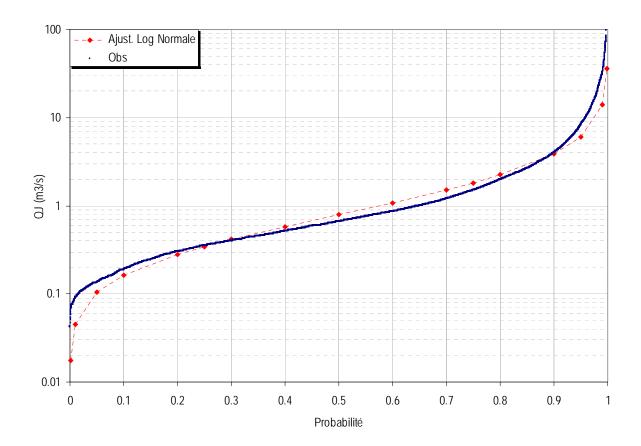
Localisation et durée des observations

CODE	STATION	Coordor	ВV		
		Х	Υ	Ž	(km²)
5703900103	Pouembout Tamaon. Cote 20	293 334	343 317	20	197
5703900101	Pouembout Radier Rte Foret Plate.Cote 28	296 393	343 305	28	179
5703900102	Pouembout Boutana. Cote 27	296 337	343 223	27	181

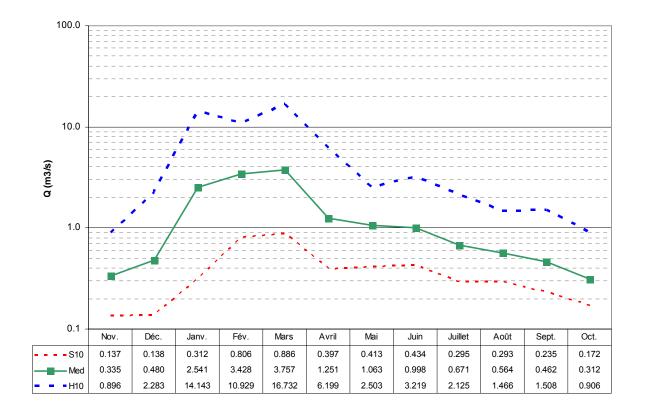

La station Pouembout a été constituée successivement de 3 stations: Tamaon, Forêt Plate et Boutana.

Pour les plus hautes eaux (PHE), les cotes des 2 stations précédentes ont été ramenées à Boutana via des équations de transfert de cotes :

HeBout (m) = 1.057*He ForêtP (m) + 0.784 et He Bout (m) = 1.0094* He Tam (m) + 2.3.


Les débits d'étiage et de moyenne eaux ont été jugés équivalents entre Forêt Plate et Boutana (même superficie de bassin versant). Pour la station Tamaon, les débits journaliers ont été transposés à Boutana via la formule empirique $Q1 = Q2 * (S1/S2)^{0.75}$.

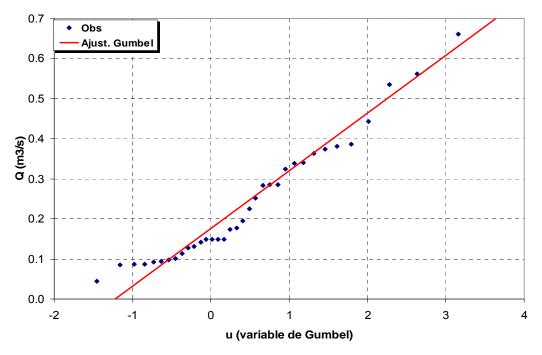
OBSERVATIONS								
Durée Qmin (m3/S) Qmax (m3/S)								
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué		
01/11/55	21/05/08	43.1	0.042	0.042	400	2400		

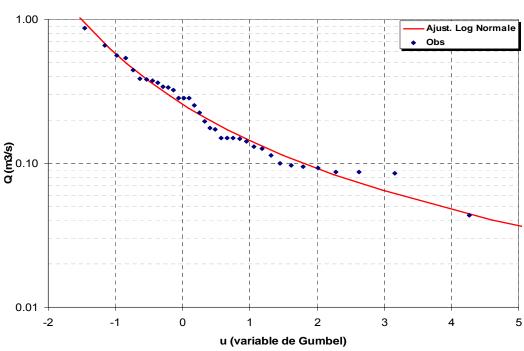

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

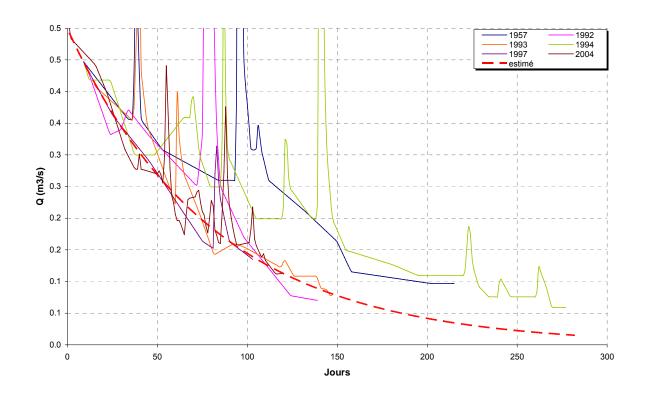
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.045	0.090
0.10	0.163	0.189
0.25	0.345	0.305
0.50	0.793	0.666
0.75	1.821	1.505
0.90	3.849	4.013
0.99	13.961	32.015

Débits moyens mensuels



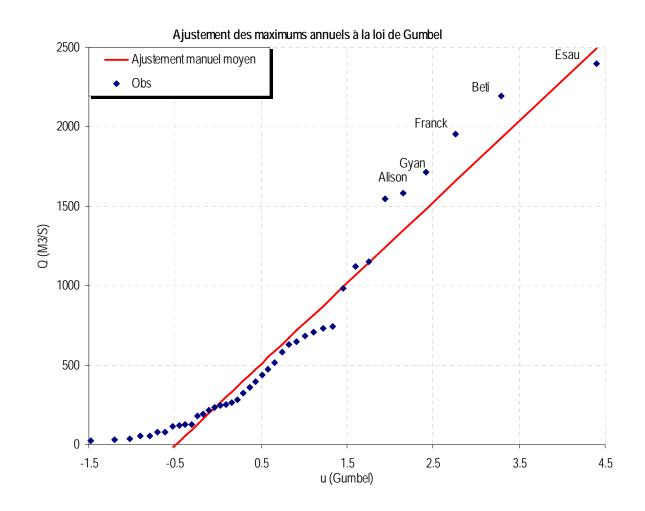

Module annuel = $1.38m^3/s$ S10 annuel = $0.64m^3/s$ H10 annuel = $2.36m^3/s$ K3 = 3.7

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

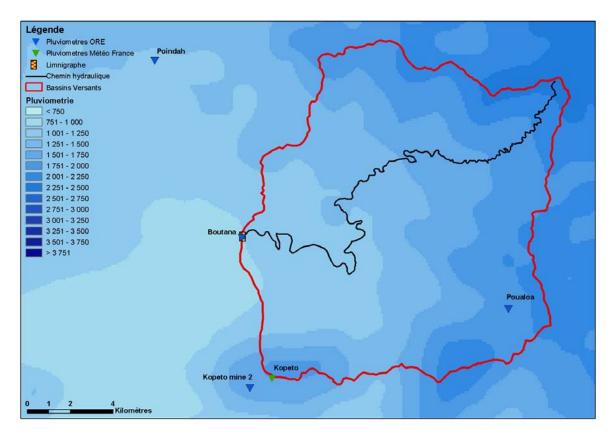
	Etiage Humide (T ans)			Média	ne	Etia	age Sec (T a	ans)	
	100	10)	5	2		5	10	100
Q m³/s	0.838	0.4	99	0.391	0.20	4	0.114	0.084	0.041
Q spé l/s/km²	4.8	2.	8	2.2	1.2		0.6	0.5	0.2
Loi		Gumbel					Log Nor	male	
Paramètres	Gd =	0.144	PO =	0.175	υ=	-1.589)	$\sigma = 0.0$	694

Courbes de tarissement

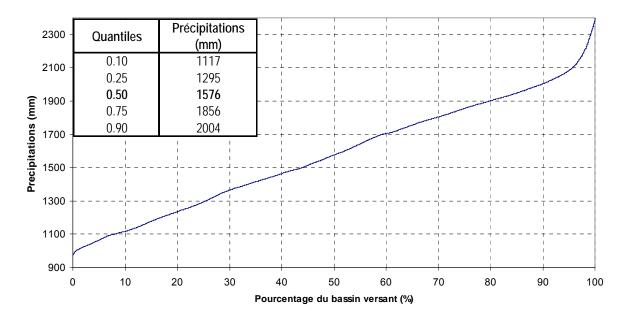


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.50	0.0124	81

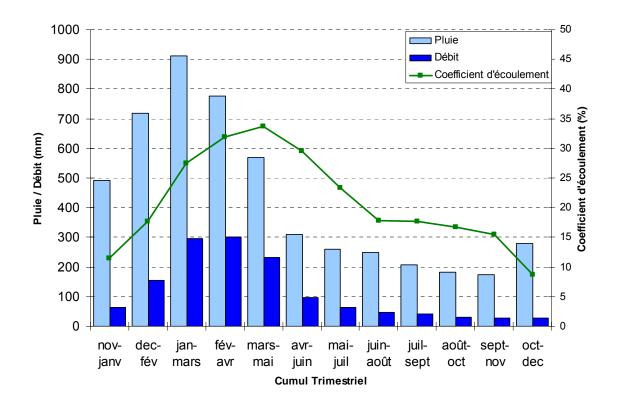
 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$


 $t_{\text{\tiny C}}$: temps caractéristique de tarissement

Débits maximums de crues


	Période de Retour T (années)								e loi
_	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	250	437	1015	1398	1765	2240	2596	510	250

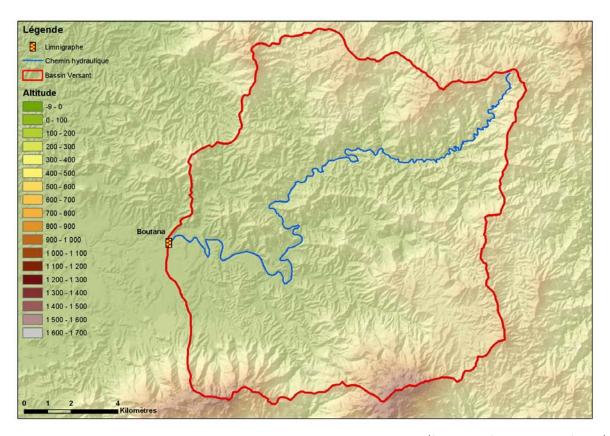
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Boutana

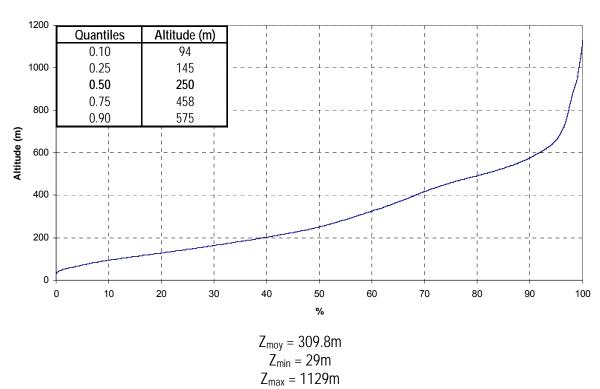
 $\begin{aligned} & \text{Pr\'ecipitation moyenne}: P_{\text{moy}} = 1578 mm \\ & \text{Pr\'ecipitation minimum}: P_{\text{min}} = 973 mm \\ & \text{Pr\'ecipitation maximum}: P_{\text{max}} = 2396 mm \end{aligned}$

Bilan d'écoulement trimestriel

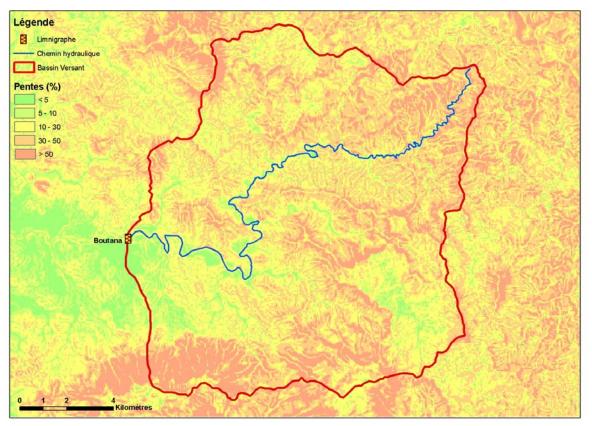

Coefficient d'écoulement moyen interannuel = 27% [9 ;41]

Lame écoulée : L_e = 461 mm

Déficit d'écoulement : Δ_e = P – L_e = 1248 mm

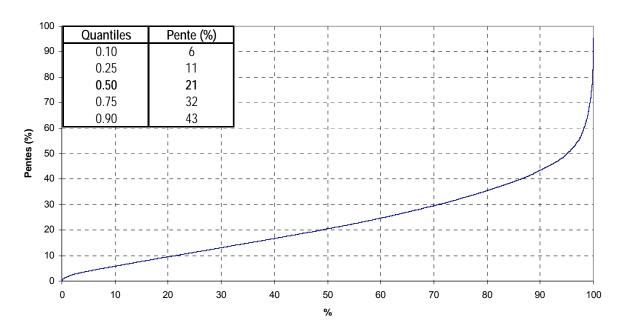

Caractéristiques Physiques

Altitudes



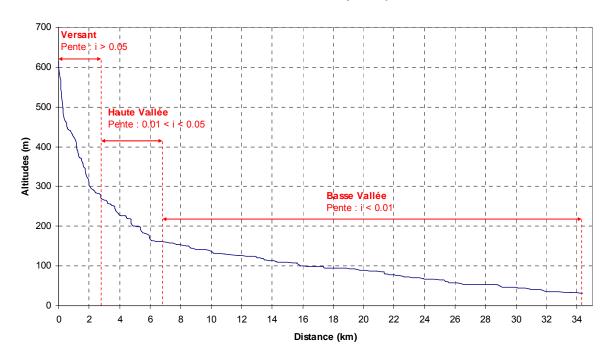
(Source: DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de la Boutana



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

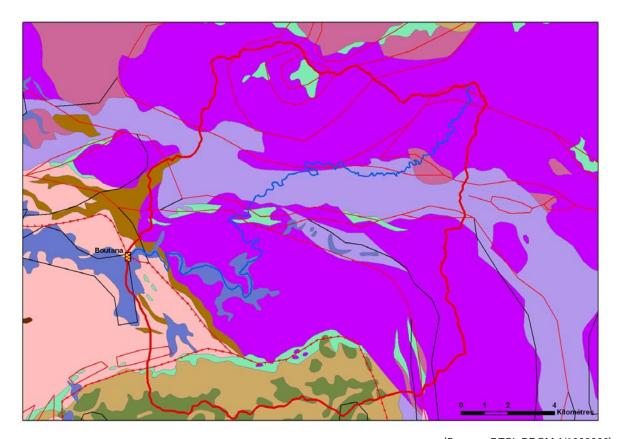

Pentes du bassin de la Boutana

 $\begin{array}{l} Pente\ moyenne: i_{moy} = 23.0\%\\ Pente\ minimum: i_{min} = 0.00\%\\ Pente\ maximum: i_{max} = 95.4\% \end{array}$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.07
0.25	0.14
0.50	0.31
0.75	0.89
0.90	3.4

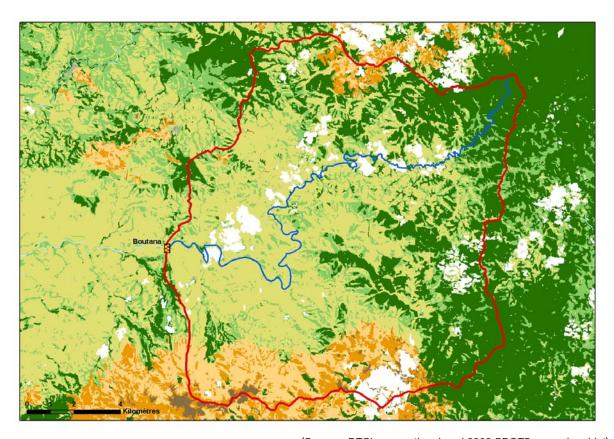

Longueur du chemin hydraulique : L = 34.423 km

Pente moyenne : $i_{ch} = 1.7\%$ Pente à l'exutoire : $i_e = 0.3\%$

92% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 2.4 h [2.23 ; 2.80] Vitesse Moyenne de Transfert : V = L / T_c = 4.0 m.s⁻¹

Géologie



(Source : DTSI, BRGM 1/1000000)

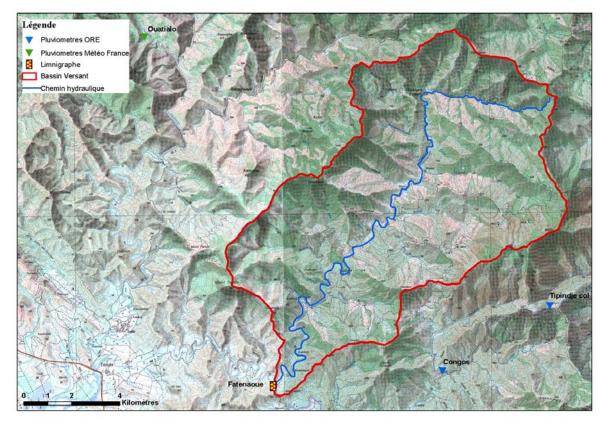
Légende

3	
Limnigraphe	
Chemin Hydraulique	
Bassin Versant	
Géologie	
Chevauchement, Observé	
Faille principale, Observé	
······ Faille principale, Supposé	
Normal, Observé	
Série Boghen	1.2%
Serpentinite et Silice	4.4%
Roches basiques à ultra basiques	7.7%
Alluvions Colluvions Anciennes	3.7%
Terres et Alterites	3.4%
Formations greseuses rhyolites basaltes	16.9%
Complexe Silico Argileux	1.6%
Basalte de Kone	4.6%
Tuffs Mesozoique	56.6%

Occupation des Sols

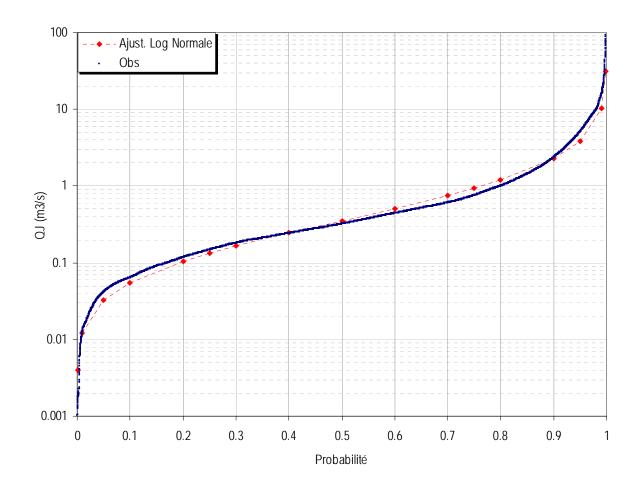
(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

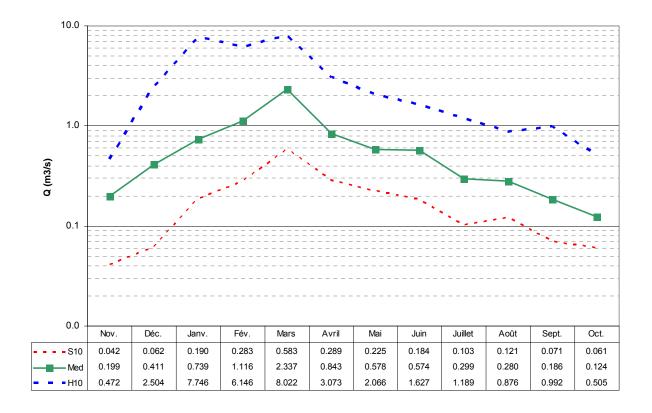

3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	47.2%
	Maquis Clairsemé	8.2%
	Maquis Dense	5.0%
	Broussailles	15.5%
	Végétation Dense	27.6%
	Sol nu	0.7%
	Eau	0.3%

14. Faténaoué

Localisation et durée des observations


CODE	STATION	Coordo	BV		
		Χ	Υ	Z	(km²)
5704700301	Fatenaoue Cote 30.	269 844	366 421	30	111

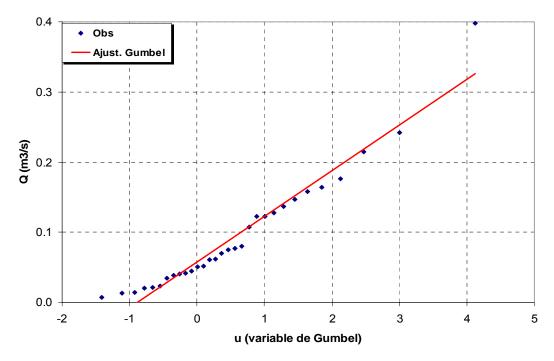
OBSERVATIONS							
		Durée	Qmin	Qmax	(M3/S)		
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué	
01/01/55	03/06/08	38.4	0.001	0.0002	109	1802	

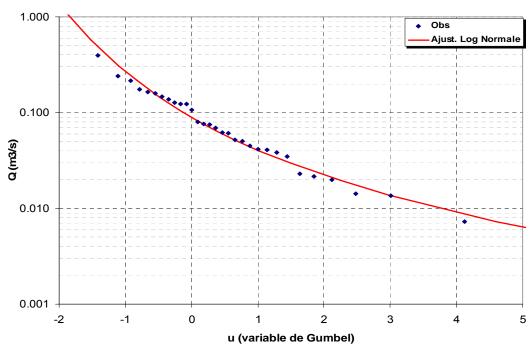

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

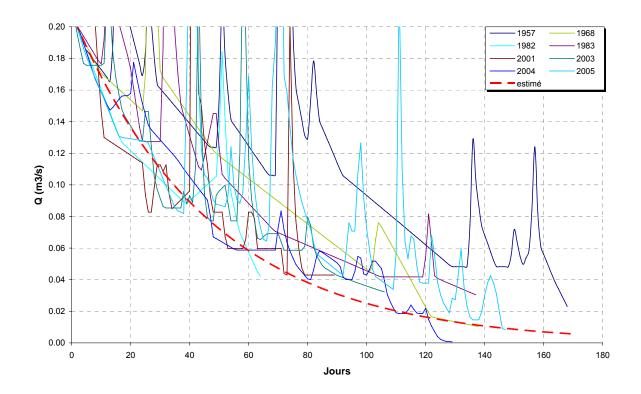
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.012	0.013
0.10	0.055	0.064
0.25	0.133	0.148
0.50	0.353	0.320
0.75	0.942	0.756
0.90	2.278	2.349
0.99	10.411	15.207

Débits moyens mensuels


Module annuel = $0.84 \text{ m}^3\text{/s}$ $S10 = 0.36 \text{ m}^3\text{/s}$ $H10 = 2.18 \text{ m}^3\text{/s}$ K3 = 6.0

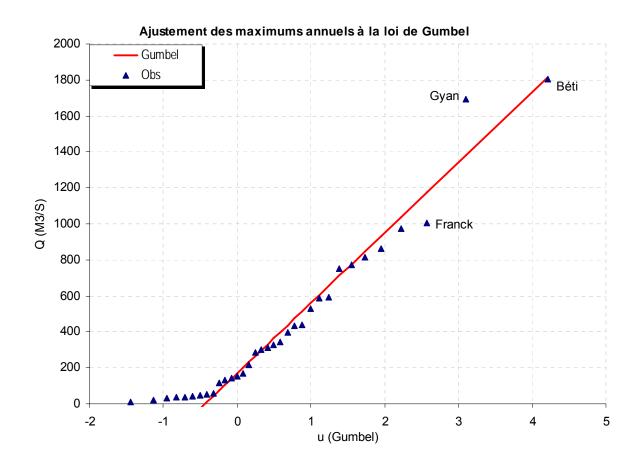

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10

Débits caractéristiques d'étiages (DCE)


		Etiage Humide (T ans)			Médi	ane	Etiage Sec (T ans)			
_		100	1	0	5	2		5	10	100
	Q m³/s	0.357	0.2	04	0.155	0.0	65	0.030	0.020	0.007
	Q spé l/s/km²	3.2	1.	8	1.4	0.0	5	0.3	0.2	0.1
	Loi	Gumbel			Log Normale					
	Paramètres	Gd =	0.065	PO =	0.058	υ=	-2.732	<u>)</u>	$\sigma = 0.9$	941

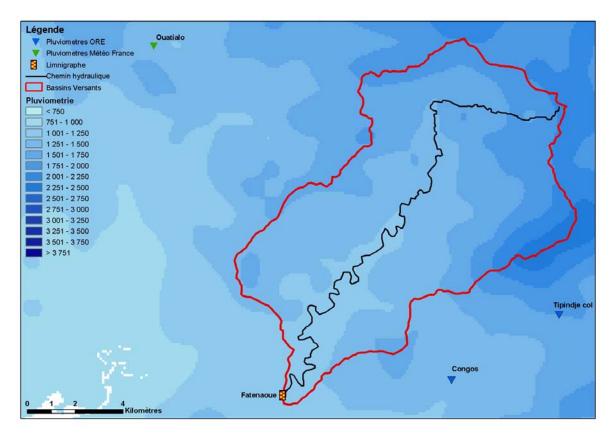
Note : Les DCE des étiages 93 et 94 évalués respectivement à 2 et 1 l/s ont été retirés de l'échantillon (les enregistrements limnigraphiques sont considérés douteux et les jaugeages sont trop insuffisants)

Courbes de tarissement

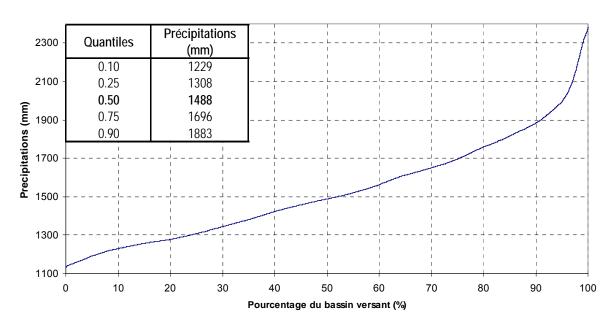


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
0.204	0.0212	47

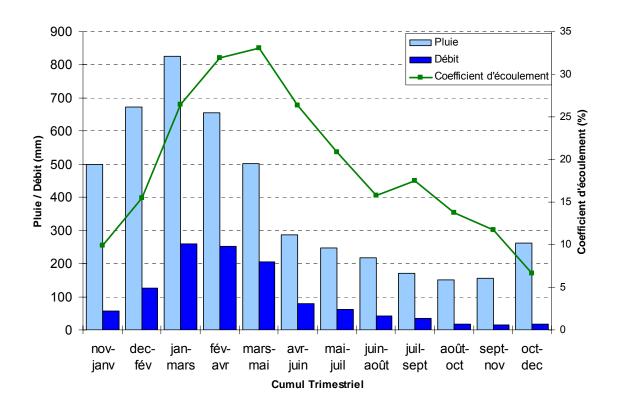
 Q_0 : débit initial de tarissement α : coefficient de tarissement


 $t_{\text{\tiny C}}$: temps caractéristique de tarissement

Débits maximums de crues


		Pério de de Retour T (années)							e loi
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	170	313	755	1048	1328	1692	1964	390	170

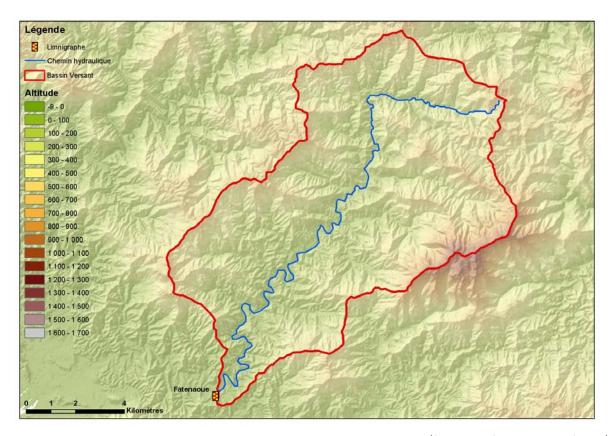
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Fatenaoué

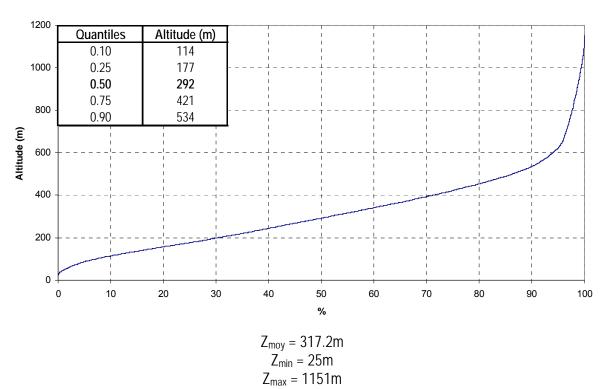
 $\begin{aligned} & \text{Pr\'ecipitation moyenne}: P_{moy} = 1529 mm \\ & \text{Pr\'ecipitation minimum}: P_{min} = 1131 mm \\ & \text{Pr\'ecipitation maximum}: P_{max} = 2382 mm \end{aligned}$

Bilan d'écoulement trimestriel

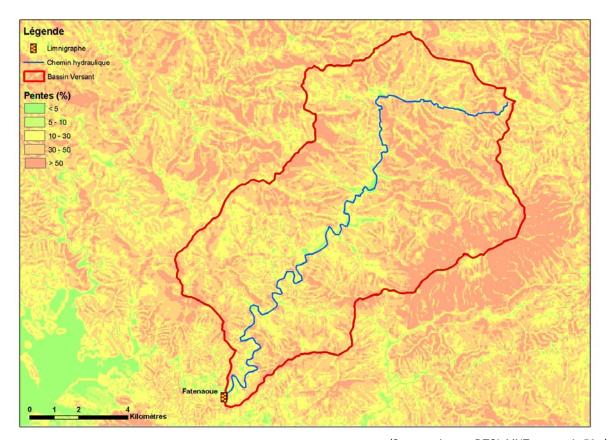

Coefficient d'écoulement moyen interannuel = 25% [8 ;39]

Lame écoulée : L_e = 390 mm

Déficit d'écoulement : $\Delta_e = P - L_e = 1164 \text{ mm}$

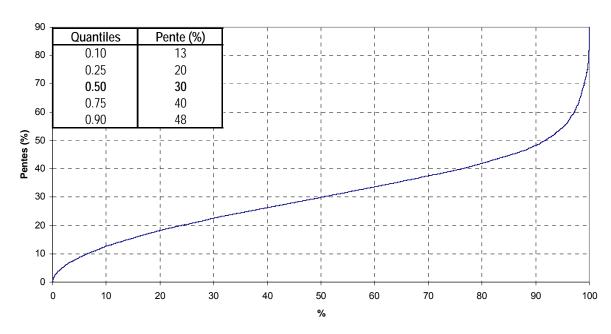

Caractéristiques Physiques

Altitudes



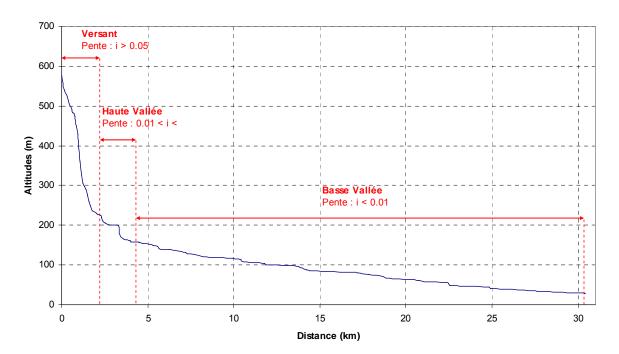
(Source: DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de Faténaoué



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

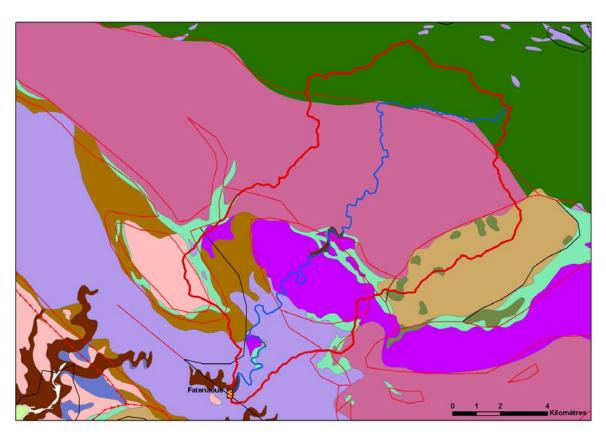

Pentes du bassin de Faténaoué

 $\begin{aligned} & \text{Pente moyenne}: i_{moy} = 30.6\% \\ & \text{Pente minimum}: i_{min} = 0.18\% \\ & \text{Pente maximum}: i_{max} = 91.58\% \end{aligned}$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.10
0.25	0.16
0.50	0.23
0.75	0.74
0.90	2.7


Longueur du chemin hydraulique : L = 30.594 km

Pente moyenne : $i_{ch} = 1.8\%$ Pente à l'exutoire : $i_e = 0.5\%$

92% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 3.7 h [3.35 ; 4.53] Vitesse Moyenne de Transfert : V = L / T_c = 2.3 m.s⁻¹

Géologie

45.3% 3.9% 5.6%

> 0.5% 0.9% 9.8%

> 6.3%

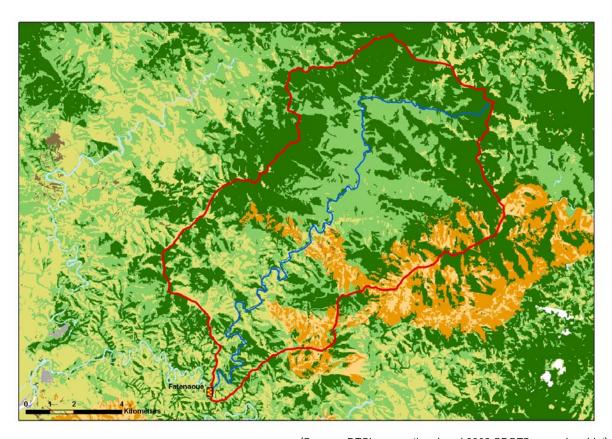
1.0%

12.7%

14.0%

(Source : DTSI, BRGM 1/1000000)

ende
Limnigraphe
Chemin Hydraulique
Bassin Versant
ogie
Chevauchement, Observé
Faille principale, Observé
Faille principale, Supposé
Normal, Observé
Série Boghen
Serpentinite et Silice
Roches basiques à ultra basiques
Alluvions Colluvions Modernes
Terres et Alterites
Formations greseuses rhyolites basaltes


Complexe Silico Argileux

Basalte de Kone

Tuffs Mesozoique

Schistes Micashistes

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

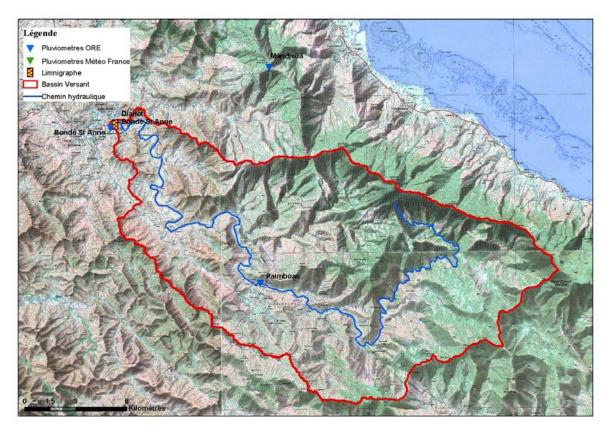
Légende

3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	9.0%
	Maquis Clairsemé	3.5%
	Maquis Dense	7.2%
	Broussailles	33.5%
	Végétation Dense	45.8%
	Sol nu	0.2%
	Eau	0.7%

15. Diahot

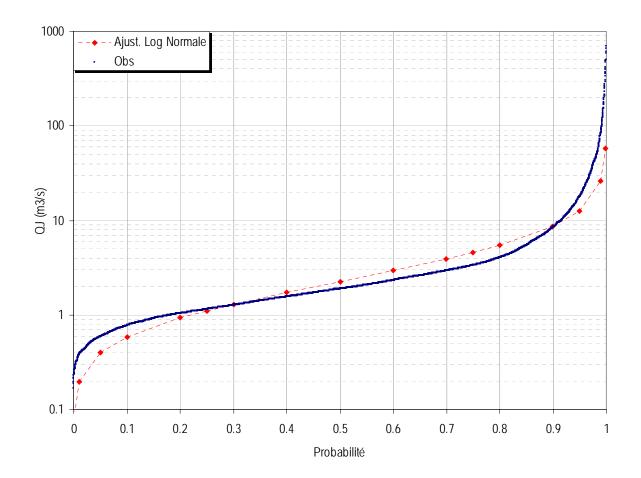
Localisation et durée des observations

		LOCALISATION				OBSERVATIONS	
CODE	STATION	Coordonn	Coordonnées Lambert (m)		BV	5.0.	
		Х	Y	L	(km²)	Début	Fin
5700400101	Diahot Bonde (Mission). Cote 3	236 135	417 698	3	291	10/01/1955	09/01/1980
5700400102	Diahot Bonde (Sainte-Anne). Cote 4	237 584	417 902	4	248	10/01/1980	28/05/2008

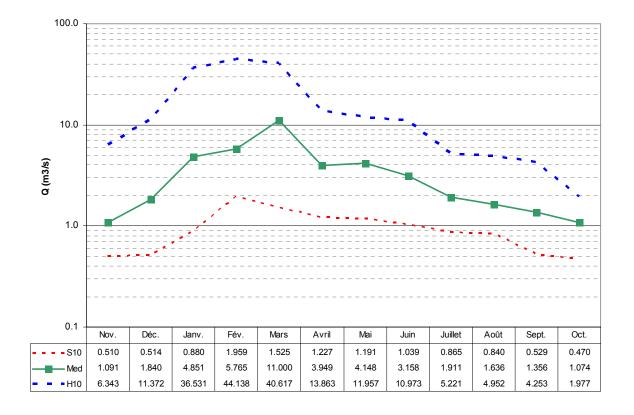

OBSERVATIONS								
	Durée Qmin (M3/S) Qmax (M3/S)							
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué		
10/01/1955	28/05/2008	43.0	0.371	0.141	453	3720		

Le Diahot a été suivi successivement par deux stations hydrométriques à Bondé Mission et Bondé Ste Anne.

Les observations ont débuté en 1955 mais elles ne sont réellement exploitables qu'à partir de 1971.


Les stations de Ste Anne et Mission n'ont connu aucune période commune d'enregistrement limnigraphiques et n'ont jamais été jaugées simultanément. Ainsi, aucune information ne permet le rattachement des débits d'étiages. Nous ne considérerons donc que la période 1980 2008 pour les données moyennes et les données d'étiage.

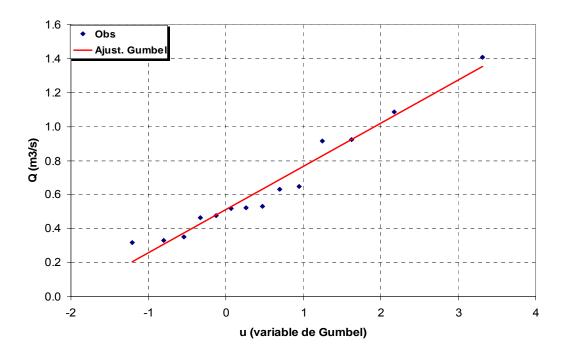
Les données de crues seront par ailleurs étudiées sur la période 1972 2008 en appliquant un coefficient 0.85^{0.75} (0.85 étant le rapport des surfaces entre les bassins versant de l'ancienne et de la nouvelle station).

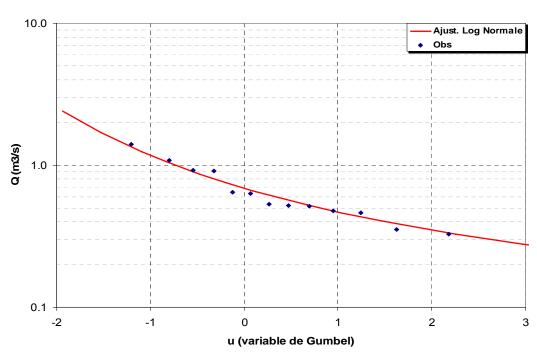

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

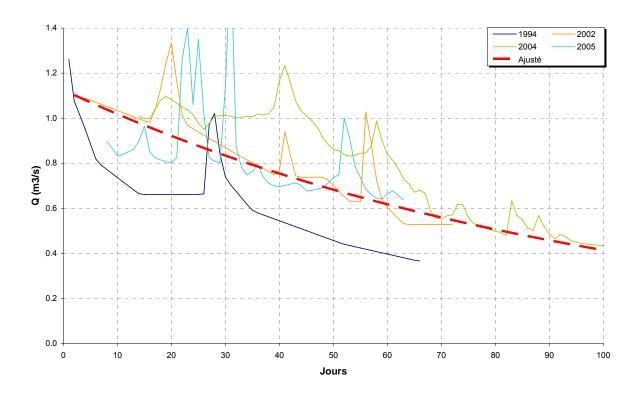
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.196	0.375
0.10	0.586	0.773
0.25	1.109	1.149
0.50	2.253	1.892
0.75	4.574	3.365
0.90	8.653	8.488
0.99	25.924	84.752

Débits moyens mensuels



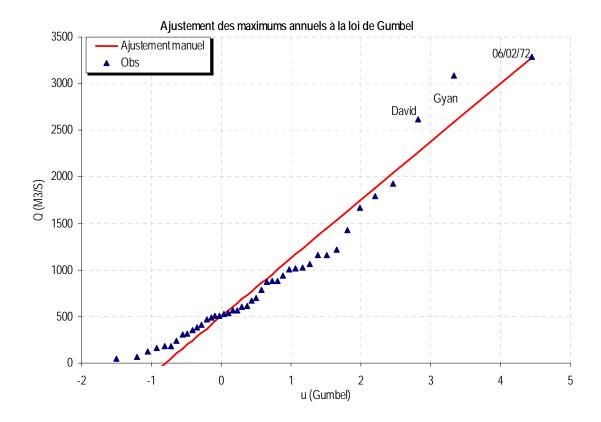

Module annuel = 4.05m³/s S10 = 2.11m³/s H10 = 15.43m³/s K3 = 7.3

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10

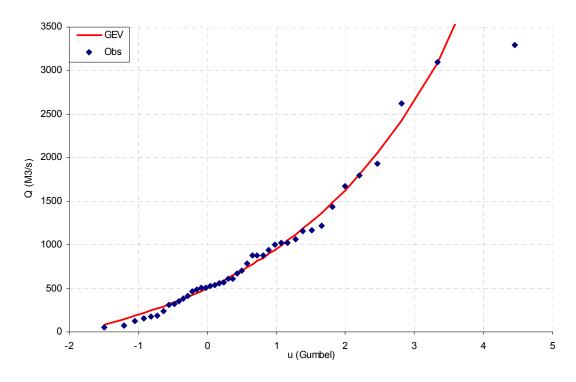

Débits caractéristiques d'étiages (DCE)

	Etiage Humide (T ans)			Médi	ane	Etia	ans)		
	100	10)	5	2		5	10	100
$Q m^3/s$	1.680	1.08	82	0.891	0.59	90	0.402	0.329	0.205
Q spé l/s/km²	6.8	4.4	4	3.6	2.4	4	1.6	1.3	0.8
Loi		Gumbel Gd = 0.235 PO = 0.585				Log Nor	male		
Paramètres	Gd =			0.585	v = -0.416		ó	$\sigma = 0.4$	426

Courbes de tarissement



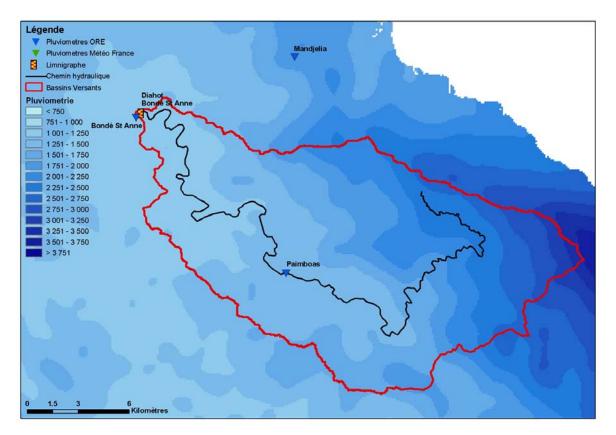
Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
1.114	0.0125	80


 Q_0 : débit initial de tarissement α : coefficient de tarissement

 $t_{\text{\tiny C}}$: temps caractéristique de tarissement

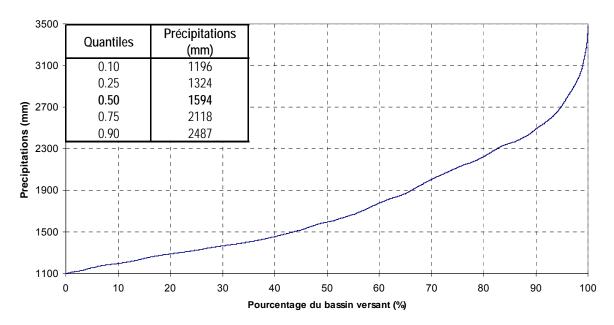
Débits maximums de crues

Ajustement des maximums annuels à la loi GEV

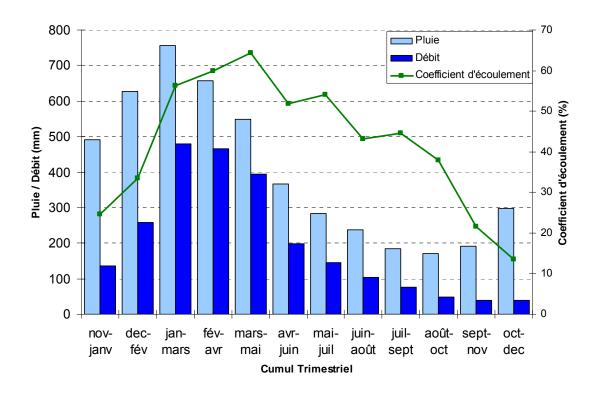


Qmax (m³/s)		Période de Retour T (années)						Parametre loi			
Qillax (III45)	1	2	5	10	20	50	100	Gd	P0	С	
Gumbel	500	729	1437	1906	2356	2939	3375	625	500	0.00	
GEV	500	646	1260	1850	2610	3980	5400	370	500	-0.40	

Note:


Les observations ont permis de constituer un échantillon de 43 valeurs de débits instantanés maximums annuels. L'ajustement à la loi de Gumbel classiquement employée pour caractériser la distribution des maximums annuels semble sous estimer 2 des 3 épisodes les plus forts de la série (Gyan et David). Aussi, nous proposons également un ajustement à la loi des extrêmes généralisée (GEV) encore appelée loi de Jenkinson ou Frechet (pour c<0). L'ajustement de celle-ci est moins robuste en raison d'un troisième paramètre (c) mais correspond également mieux à notre échantillon. Les débits spécifiques centennaux sont ainsi compris entre 15 et 25 m³/s/km² suivant l'ajustement. Seule la poursuite des observations permettra de diminuer cette marge d'incertitude.

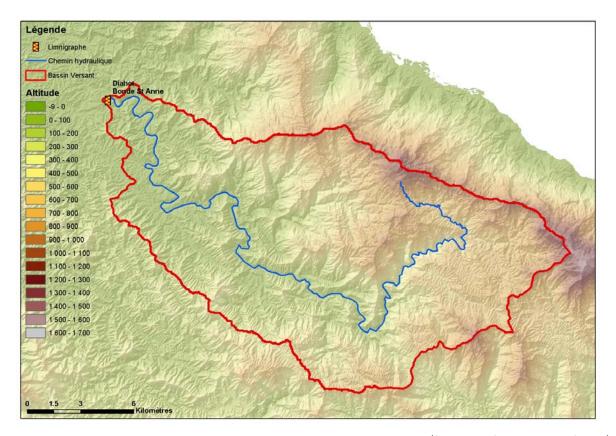
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin du Diahot

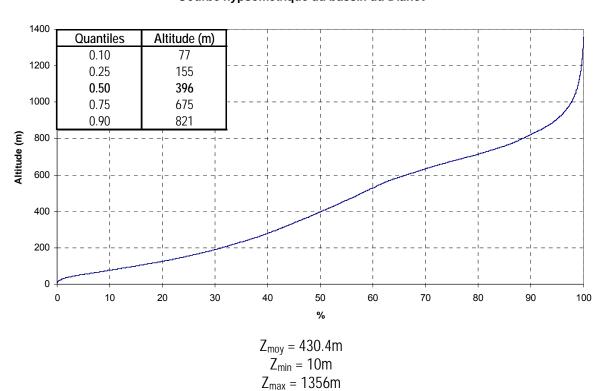
 $\begin{aligned} & \text{Précipitation moyenne} : P_{\text{moy}} = 1744 \text{mm} \\ & \text{Précipitation minimum} : P_{\text{min}} = 1097 \text{mm} \\ & \text{Précipitation maximum} : P_{\text{max}} = 3479 \text{mm} \end{aligned}$

Bilan d'écoulement trimestriel

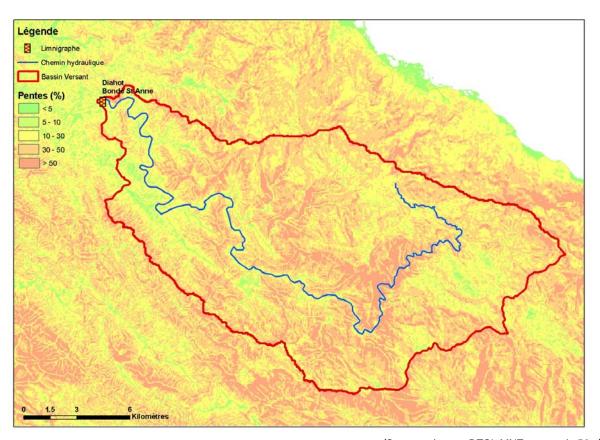


Coefficient d'écoulement moyen interannuel = 50% [19 ; 81]

 $Lame \ \acute{e}coul\acute{e}e: L_e = 796 \ mm$ $D\acute{e}ficit \ d'\acute{e}coulement: \Delta_e = P - L_e = 807 \ mm$

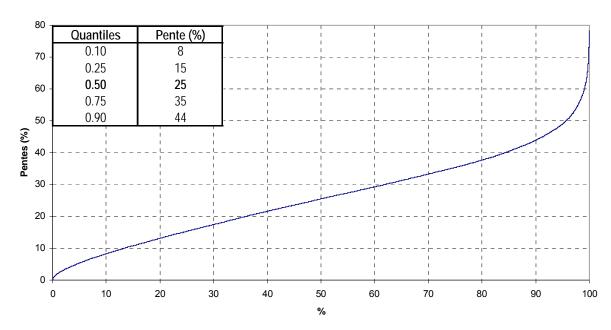

Caractéristiques Physiques

Altitudes



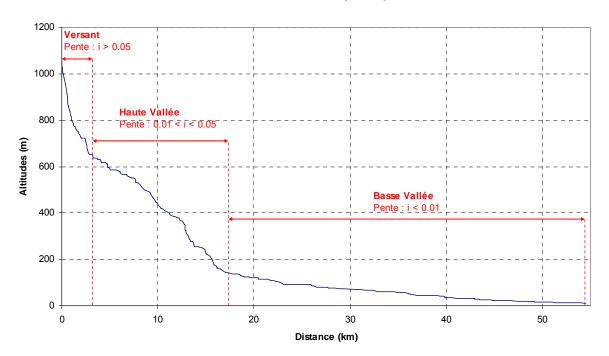
(Source: DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin du Diahot



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

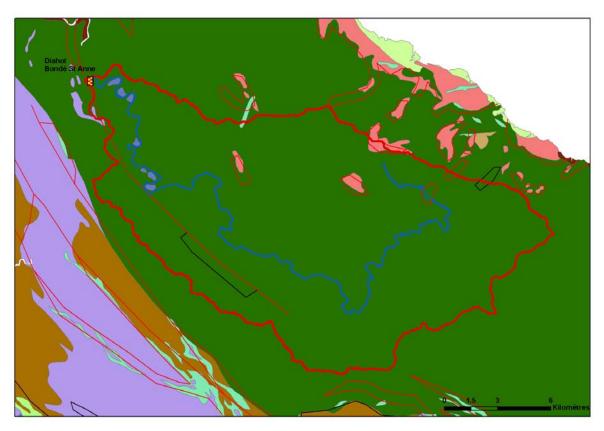

Pentes du bassin du Diahot

$$\label{eq:pentemoyenne} \begin{split} & \text{Pente moyenne}: i_{\text{moy}} = 26.0\% \\ & \text{Pente minimum}: i_{\text{min}} = 0.00\% \\ & \text{Pente maximum}: i_{\text{max}} = 78.3\% \end{split}$$

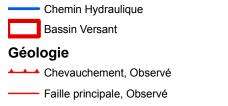
Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.05
0.25	0.10
0.50	0.32
0.75	1.5
0.90	5.0


Longueur du chemin hydraulique : L = 54.585 km

Pente moyenne : $i_{ch} = 1.9\%$ Pente à l'exutoire : $i_e = 0.1\%$


90% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 4.4 h [4.16 ; 4.88] Vitesse Moyenne de Transfert : V = L / T_c = 3.4 m.s⁻¹

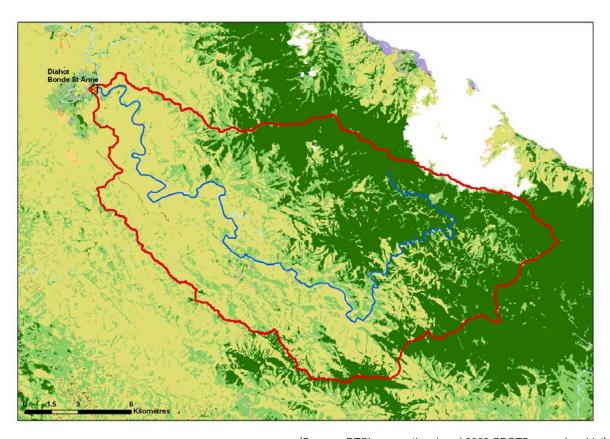
Géologie

(Source : DTSI, BRGM 1/1000000)

Faille principale, Supposé
Normal, Observé

Limnigraphe

Légende


Alluvions Colluvions Anciennes

Schistes Micashistes 98.9%

0.4%

Glaucophanites 0.7%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

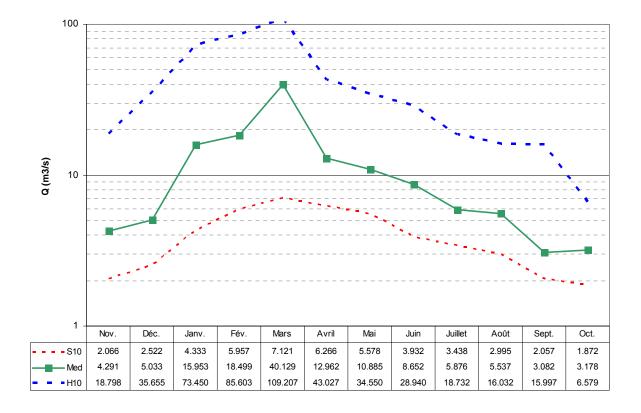
Limnigraphe	
Chemin hydraulique	
Bassin versant	
Lacunes	
Savane	43.1%
Broussailles	19.1%
Végétation Dense	36.7%
Sol nu	0.1%
Eau	1.0%
	Chemin hydraulique Bassin versant Lacunes Savane Broussailles Végétation Dense Sol nu

16. Ouaieme

Localisation et durée des observations

CODE	STATION	Coordor	LOCALISATI nnées Lambe V	_	BV (km²)
5703100101	Ouaieme Dernier rapide. Cote 10	278 250	395 437	10	325

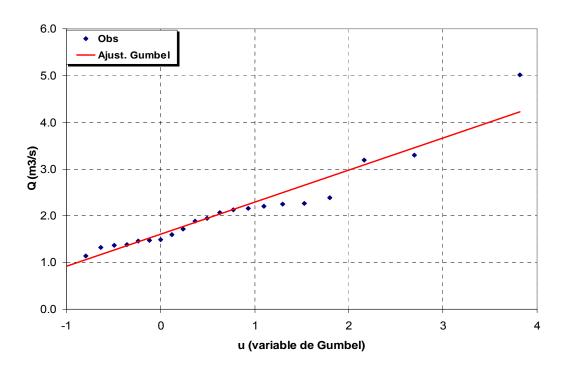
OBSERVATIONS									
		Durée	Qmax	(m3/S)					
Début	ıt Fin Eff.(ans)		Jaugé	Evalué	Jaugé	Evalué			
07/07/59	18/06/08	31.0	0.742	0.858	1300	13400			


(Source: DTSI, IGN 1/200000)

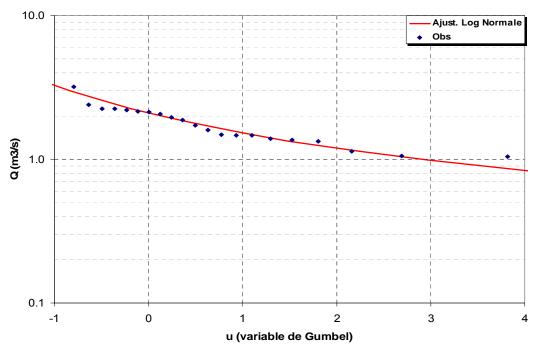
Débits journaliers classés

	Q (M3/S)					
Р	Loi Log-N	Empirique				
0.01	0.511	1.144				
0.10	1.523	1.905				
0.25	2.872	2.861				
0.50	5.810	4.712				
0.75	11.754	9.663				
0.90	22.162	22.211				
0.99	66.013	200.854				

Débits moyens mensuels


Module annuel =
$$13.93 \text{ m}^3/\text{s}$$

 $S10 = 9.01 \text{ m}^3/\text{s}$
 $H10 = 37.14 \text{ m}^3/\text{s}$
 $K3 = 4.1$

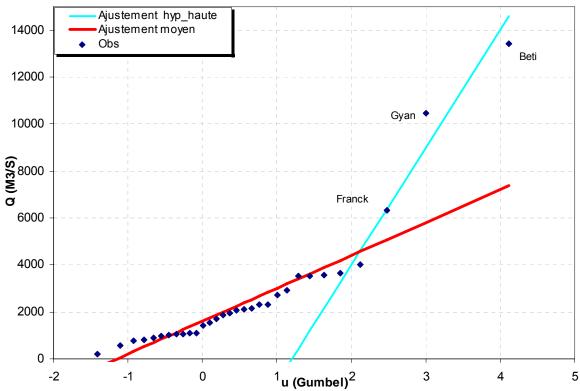

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10

Remarque : Débits moyens mensuels et module annuel uniquement sur période 1977 à 2008 (lacunes excessives sur la période 1955 à 1976)

Débits caractéristiques d'étiages (DCE)

	Etiage Humide (T ans)			Médiane	Etia	ans)	
	100	10	5	2	5	10	100
$Q m^3/s$	4.757	3.147	2.633	1.847	1.340	1.133	0.761
Q spé l/s/km²	14.5	9.6	8.0	5.6	4.1	3.4	2.3
Loi		Gumbel Gd = 0.685 PO = 1.605			Log Nor	male	
Paramètres	Gd =			v = 0.614		σ = 0.3	382

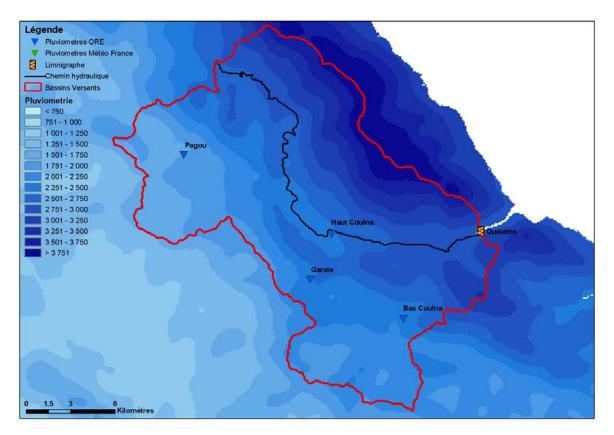
Courbes de tarissement


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
3.15	0.0206	49

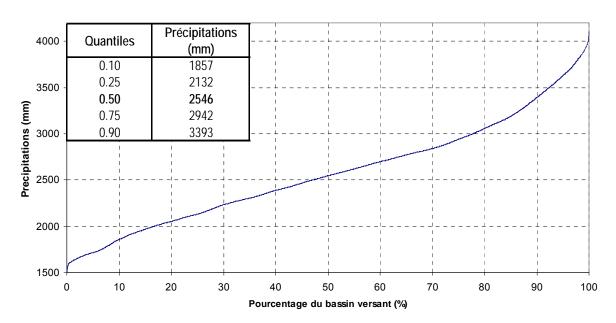
 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$

 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

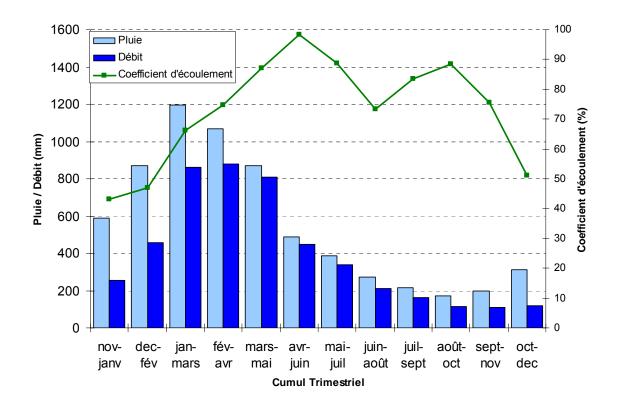
Débits maximums de crues


Ajustement des maximuns annuels

		Période de Retour T (années)							netre loi
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	1600	2113	3700	4751	5758	7063	8040	1400	1600
Q (m³/s) Hyp_haute				5252	8851	13510	17001	5000	-6000


Note: L'ajustement moyen est cohérent avec les résultats d'une analyse à l'échelle régionale. Les valeurs extrêmes de Gyan et Beti sont probablement surestimées par l'étalonnage des très hautes eaux de la station qu'aucun élément nouveau n'a permis de corriger.

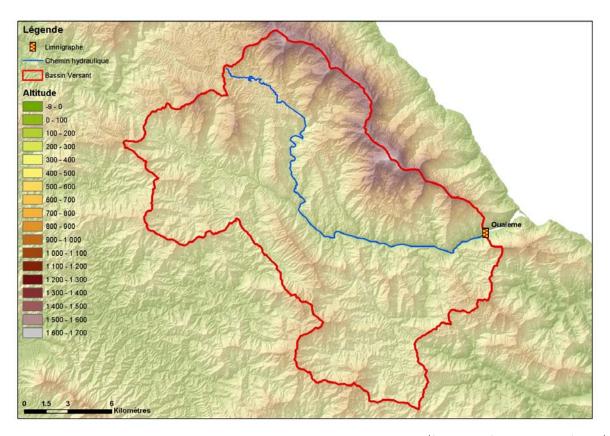
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Ouaieme

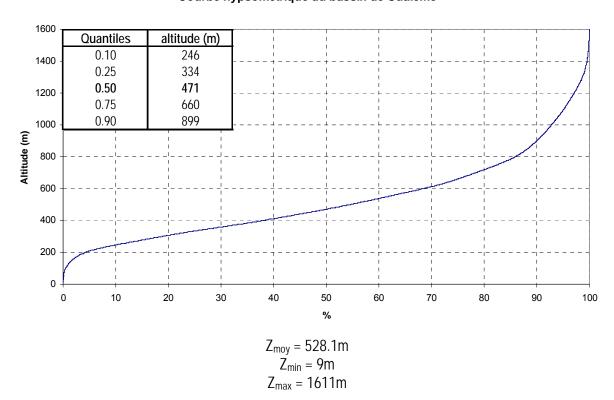
 $\begin{aligned} &\text{Pr\'ecipitation moyenne}: P_{moy} = 2578mm \\ &\text{Pr\'ecipitation minimum}: P_{min} = 1507mm \\ &\text{Pr\'ecipitation maximum}: P_{max} = 4107mm \end{aligned}$

Bilan d'écoulement trimestriel

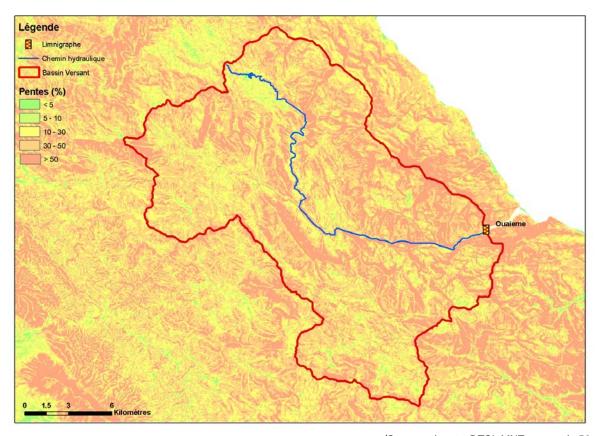


Coefficient d'écoulement moyen interannuel = 72% [40 ;95] Lame écoulée : L_e = 1589 mm

Déficit d'écoulement : Δ_e = P - L_e = 624 mm

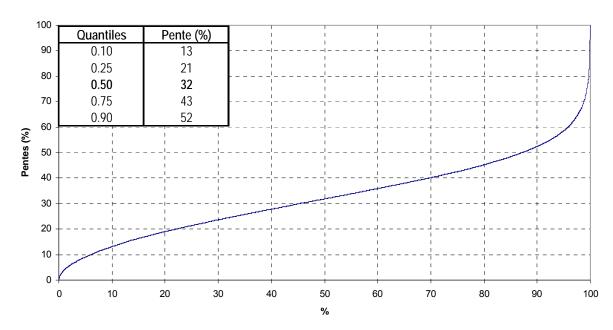

Caractéristiques Physiques

Altitudes



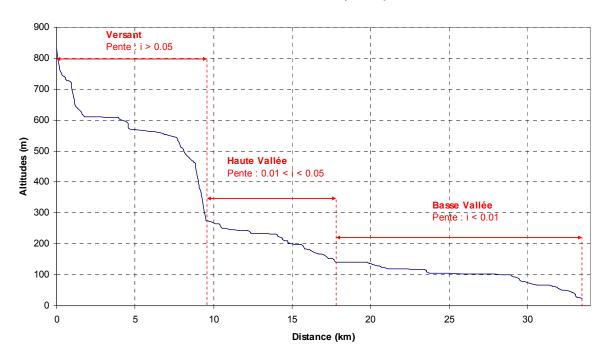
(Source: DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de Ouaieme



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

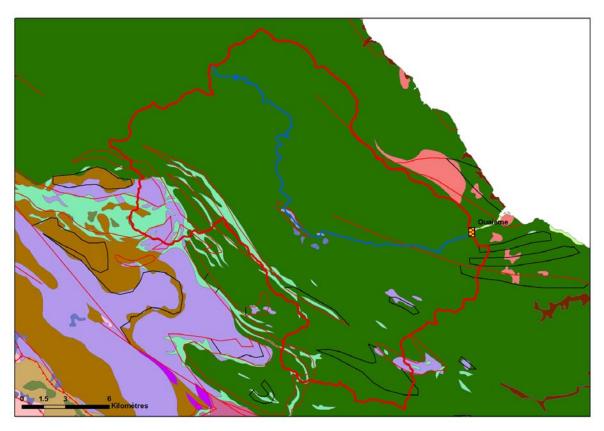

Pentes du bassin de la Ouaieme

Pente moyenne : $i_{moy} = 32.6\%$ Pente minimum : $i_{min} = 0.18\%$ Pente maximum : $i_{max} = 122.5\%$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.04
0.25	0.08
0.50	0.51
0.75	1.8
0.90	5.5

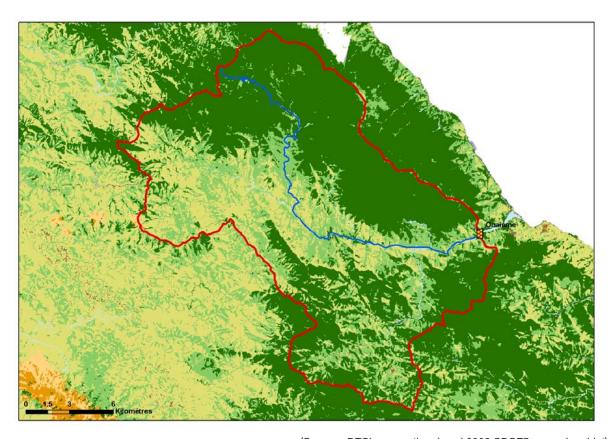

Longueur du chemin hydraulique : L = 33.609 km

Pente moyenne : $i_{ch} = 2.4\%$ Pente à l'exutoire : $i_e = 2.9\%$

88% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 1.9 h [1.47 ; 3.22] Vitesse Moyenne de Transfert : V = L / T_c = 4.9 m.s⁻¹

Géologie



(Source : DTSI, BRGM 1/1000000)

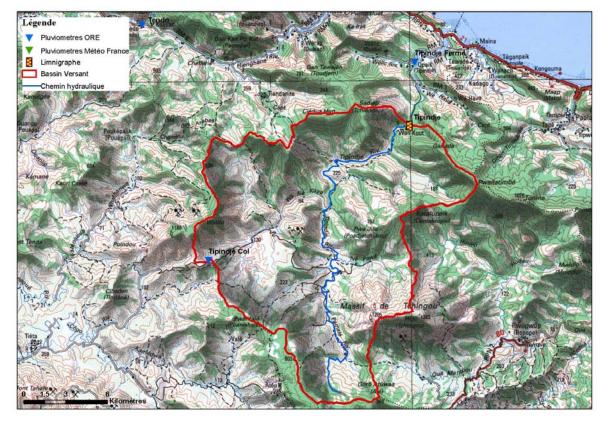
Légende

Legende	
Limnigraphe	
Chemin Hydraulique	
Bassin Versant	
Géologie	
Chevauchement, Observé	
Faille principale, Observé	
······ Faille principale, Supposé	
Normal, Observé	
Serpentinite et Silice	4.3%
Alluvions Colluvions Anciennes	0.2%
Formations greseuses rhyolites basaltes	2.8%
Complexe Silico Argileux	0.2%
Schistes Micashistes	92.5%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

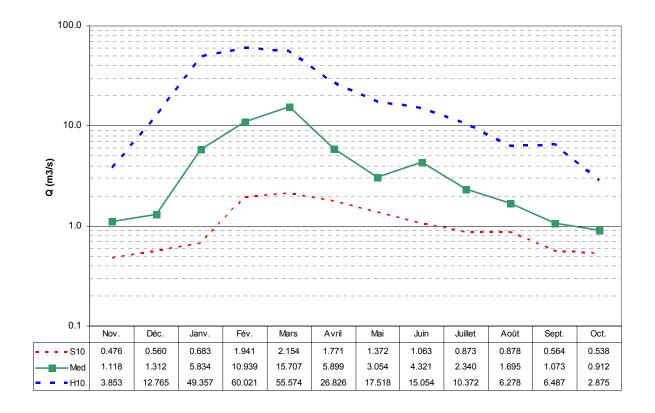

3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	19.5%
	Maquis Clairsemé	0.1%
	Broussailles	24.0%
	Végétation Dense	55.4%
	Sol nu	0.2%
	Eau	0.9%

17. Tipindje

Localisation et durée des observations


CODE	STATION	LOCALISATION Coordonnées Lambert (m) BV				OBSERVATION	
		Χ	Υ	Ž	(km²)	Début	Fin
5705000101	Tipindje Ouen-Cout. Cote 9	295 006	379 371	9	247	17/6/55	29/07/76
5705000102	Tipindje Tagun Pwa. Cote 7	295 930	379 685	7	252	29/12/76	04/08/08

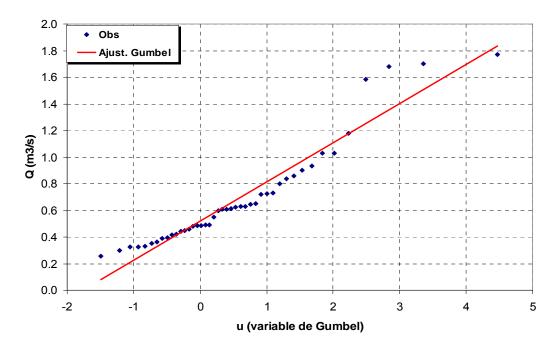
		OBSE	RVATIONS			
		Durée	Qmin	(m³/s)	Qmax	(m³/s)
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué
17/06/55	04/08/08	51.6	0.191	0.172	403	6252

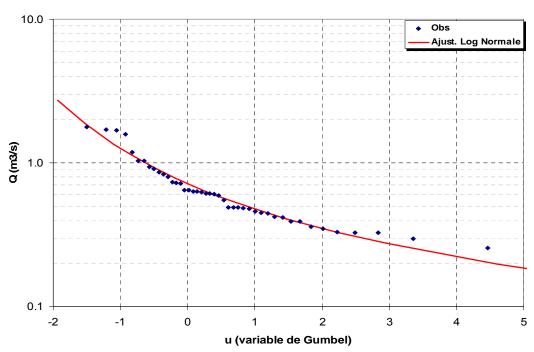

(Source : DTSI, IGN 1/200000)

Débits journaliers classés

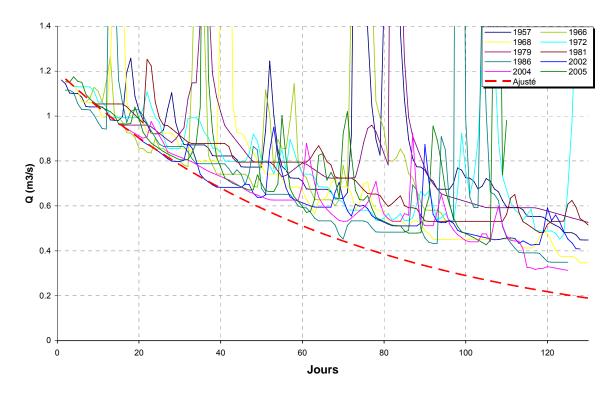
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.121	0.349
0.10	0.449	0.608
0.25	0.959	0.923
0.50	2.229	1.774
0.75	5.184	3.788
0.90	11.079	12.012
0.99	40.940	145.842

Débits moyens mensuels



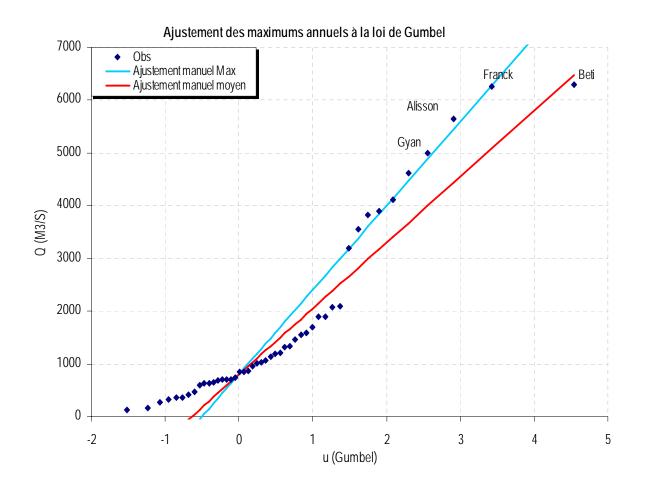

Module annuel = $6.33 \text{ m}^3\text{/s}$ $S10 = 3.02 \text{ m}^3\text{/s}$ $H10 = 19.48 \text{ m}^3\text{/s}$ K3 = 6.4

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

		Etiage Humide (T ans)			Médi	ane	Eti	age Sec (T a	ans)	
_		100	10	0	5	2		5	10	100
Ī	Q m³/s	1.872	1.1	82	0.961	0.60)9	0.405	0.328	0.198
L	Q spé l/s/km²	7.4	4.	7	3.8	2.4	4	1.6	1.3	0.8
Ī	Loi	Gumbel				Log Normale				
L	Paramètres	Gd =	0.294	PO =	0.521	ບ=	-0.496	ó	$\sigma = 0.6$	484

Courbes de tarissement

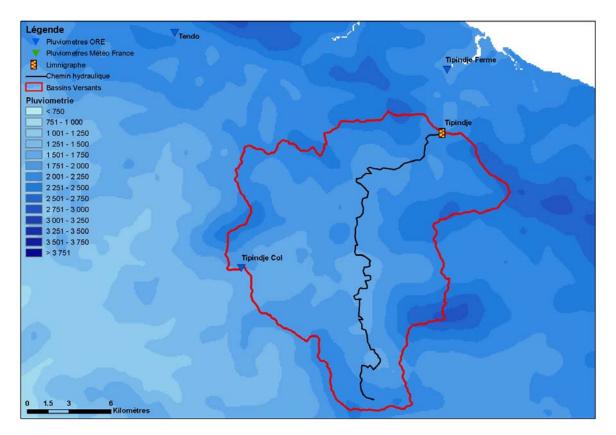


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
1.182	0.0116	86

 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$

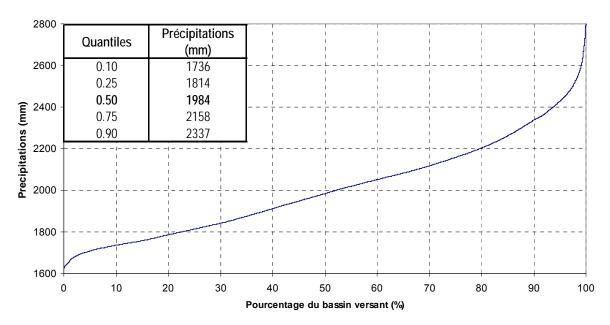
 $t_{\text{\tiny C}}$: temps caractéristique de tarissement

Débits maximums de crues

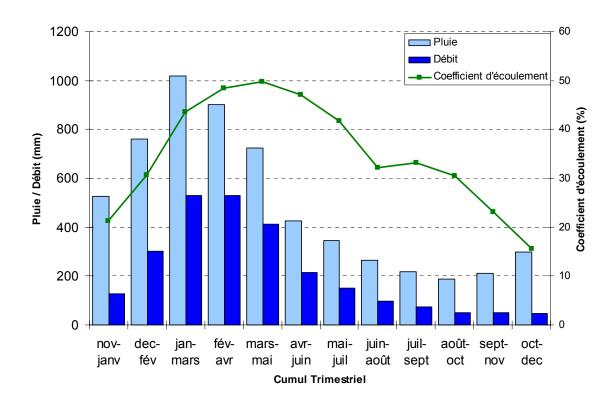


		Période de Retour T (années)							
	1 2 5 10 20 50 100								P0
Q (m³/s)	800	1258	2675	3613	4513	5677	6550	1250	800
Q (m³/s) Hyp_haute	800	1386	3200	4401	5552	7043	8160	1600	800

Note:


L'hypothèse haute peut être utilisé par mesure de précaution pour évaluer les débits les plus forts, il demeure cependant des incertitudes concernant les étalonnages hautes eaux qui nous poussent à privilégier l'ajustement moyen. Celui-ci présente de plus un débit spécifique de crue centennale Q_{100} de 25.9 m³/s/km² cohérent avec les stations de la cote est.

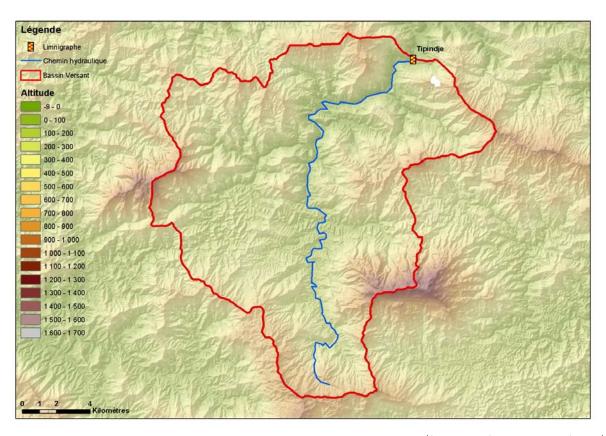
Pluviométrie


(Source: MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Tipindje

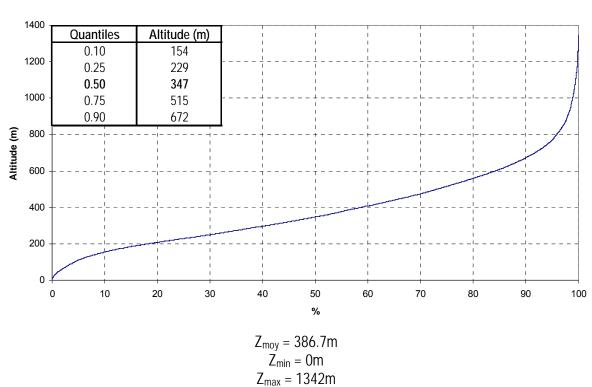
 $\begin{aligned} &\text{Pr\'ecipitation moyenne}: P_{moy} = 2008mm \\ &\text{Pr\'ecipitation minimum}: P_{min} = 1626mm \\ &\text{Pr\'ecipitation maximum}: P_{max} = 2811mm \end{aligned}$

Bilan d'écoulement trimestriel

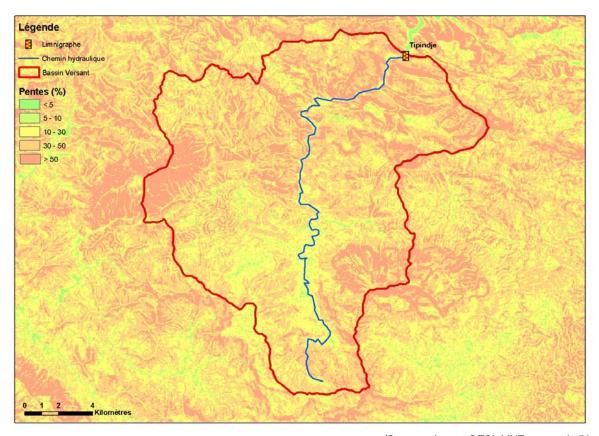


Coefficient d'écoulement moyen interannuel = 44% [17 ;68] Lame écoulée : L_e = 861 mm

Déficit d'écoulement : Δ_e = P - L_e = 1097 mm

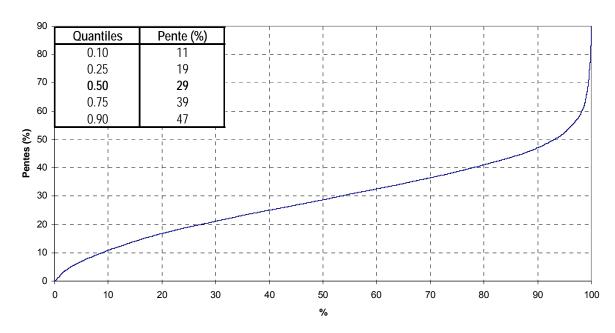

Caractéristiques Physiques

Altitudes



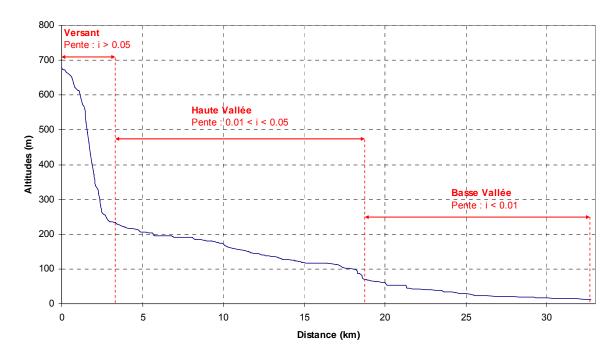
(Source: DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de Tipindje



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

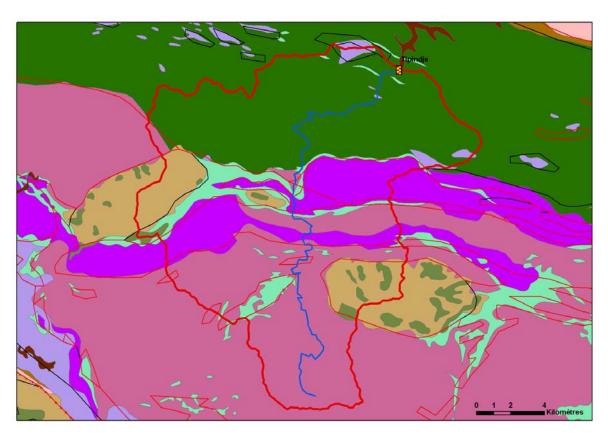

Pentes du bassin de la Foa

 $\begin{array}{l} Pente\ moyenne: i_{moy} = 29.2\% \\ Pente\ minimum: i_{min} = 0.00\% \\ Pente\ maximum: i_{max} = 99.0\% \end{array}$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.09
0.25	0.14
0.50	0.36
0.75	1.0
0.90	3.9

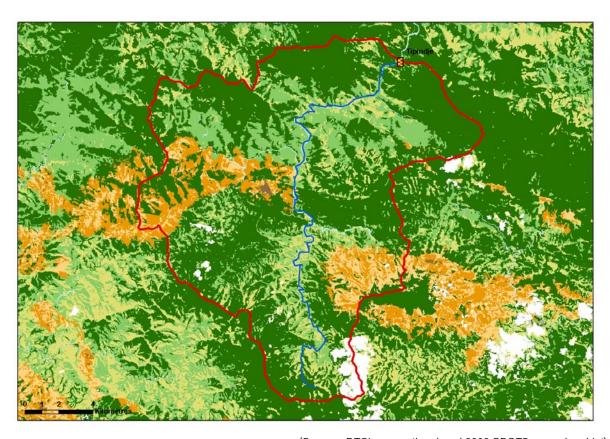

Longueur du chemin hydraulique : L = 32.706 km

Pente moyenne : $i_{ch} = 2.0\%$ Pente à l'exutoire : $i_e = 0.2\%$

92% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 3.7 h [3.37 ; 4.11] Vitesse Moyenne de Transfert : V = L / T_c = 2.5 m.s⁻¹

Géologie



(Source : DTSI, BRGM 1/1000000)

Légende

31.0%
7.0%
8.6%
1.3%
1.1%
14.7%
36.3%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

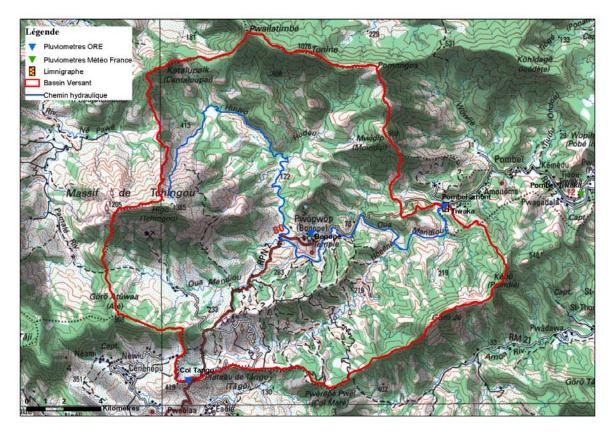
3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	9.3%
	Maquis Clairsemé	4.3%
	Maquis Dense	7.3%
	Broussailles	21.2%
	Végétation Dense	56.9%
	Sol nu	0.2%
	Eau	0.7%

18. Tiwaka

Localisation et durée des observations

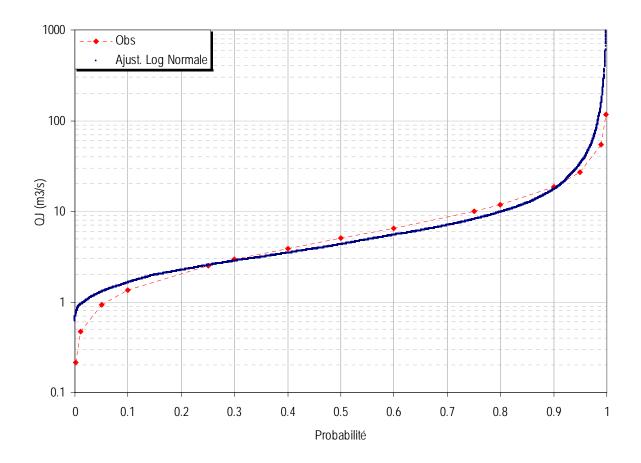
		LOCALISATION				
CODE STATION		Coordo	BV			
		Х	Υ	Z	(km²)	
5705100101	Tiaou-Tiwaka. Cote 1	317 108	367 106	1	345	
5705100102	Tribu Pombei. Cote 0.	315 109	367 956	0	326	
5705100105	Aval chutes Pombei. Cote 8.	311 350	365 753	8	261	

La station Tiwaka été constituée successivement de 3 stations : Tribu, Tiaou et chutes Pombei. Les débits d'étiage et de moyennes eaux ont été rattachés via les relations suivantes :

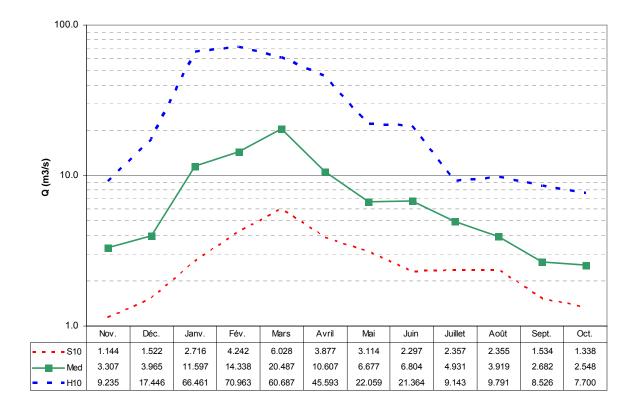

Q_Chutes_Pombei = 0.696 Q_Tiaou Q_Chutes_Pombei = 0.735 Q_Tribu

Pour les PHE les cotes de station Tiaou précédentes ont été ramenées à Boutana via des équations de transfert de cotes :

He_Chutes_Pombei (cm) = 0.6795 He_Tiaou +143.63


La station Tribu n'a pas été utilisée pour les hautes eaux la qualité des relevés semblant très aléatoire.

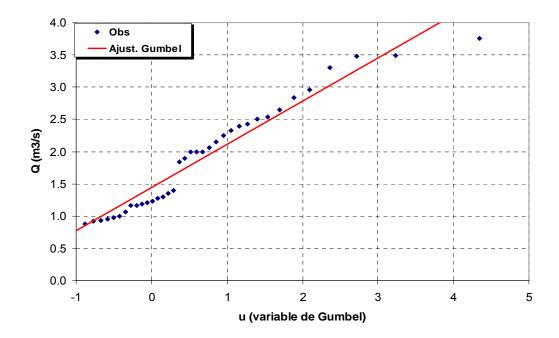
OBSERVATIONS								
Durée Qmin (M3/S) Qmax (M3/S)								
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué		
21/04/55	28/07/08	47.0	0.132	0.588	534	4910		

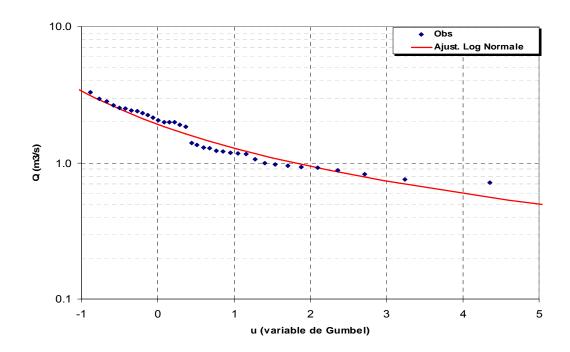

(Source : DTSI, IGN 1/200000)

Débits journaliers classés

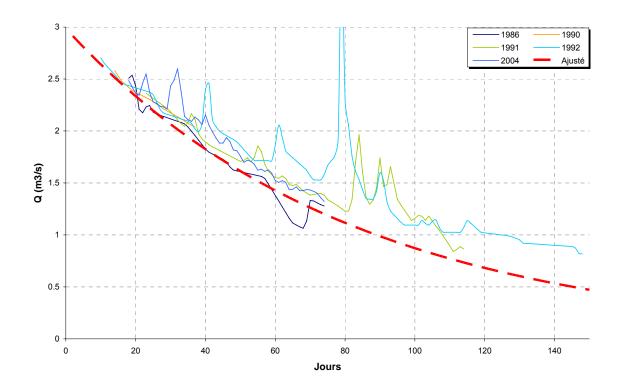
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.467	0.926
0.10	0.467	1.639
0.25	2.519	2.537
0.50	5.015	4.297
0.75	9.983	8.148
0.90	18.552	17.382
0.99	53.899	157.239

Débits moyens mensuels



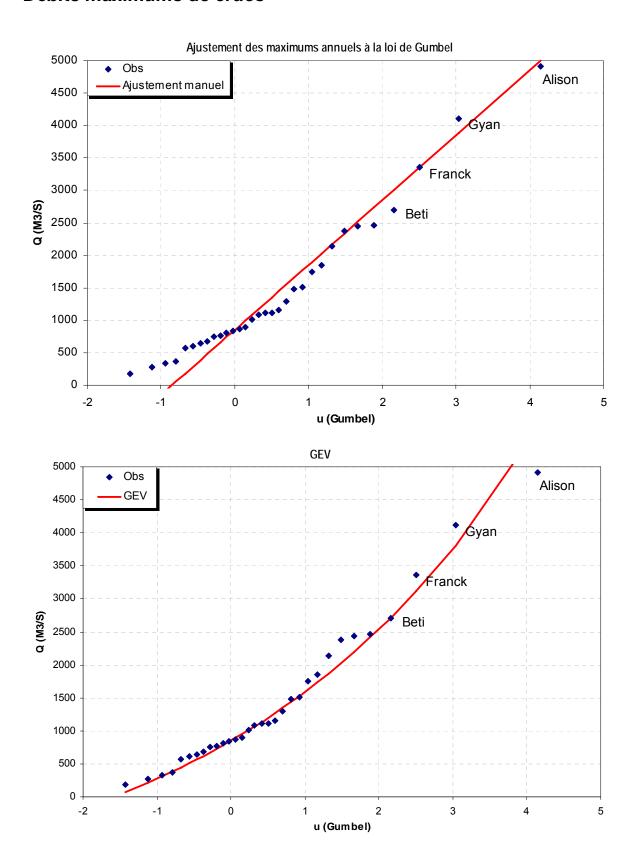

Module annuel = 10.43m³/s S10 annuel = 6.67m³/s H10 annuel = 24.95m³/s K3 = 3.7

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

	Etiage Humide (T ans)			Médiane	Etia	ans)	
	100	10	5	2	5	10	100
Q m³/s	4.525	2.950	2.447	1.631	1.087	0.879	0.531
Q spé l/s/km²	17.4	11.3	9.4	6.3	4.2	3.4	2.0
Loi		Gumbel			Log Normale		
Paramètres	Gd =	0.670 PO =	1.442	v = 0.489	σ = 0.483		

Courbes de tarissement

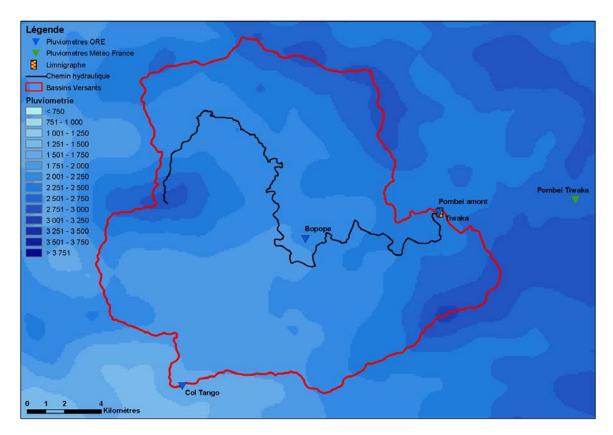


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
2.95	0.0129	<i>78</i>

 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$

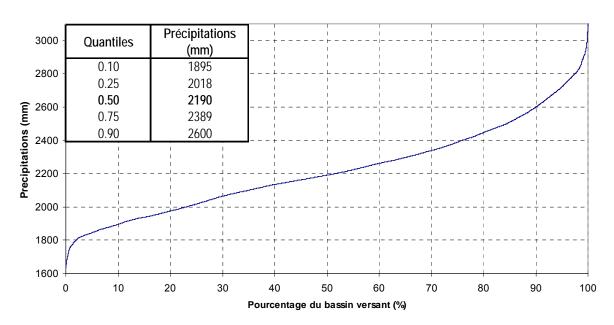
 $t_{\text{\tiny C}} \hspace{0.5cm} : temps \hspace{0.1cm} caract\'eristique \hspace{0.1cm} de \hspace{0.1cm} tarissement$

Débits maximums de crues

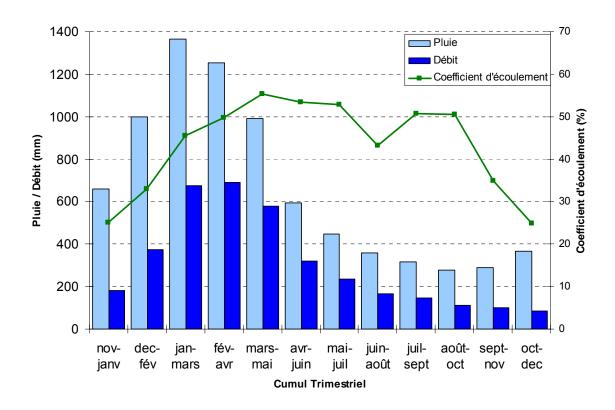


	Période de Retour T (années)							Parametre	loi	
	1	2	5	10	20	50	100	Gd	P0	
Gumbel Q (m³/s)	850	1235	2425	3213	3969	4947	5680	1050	850	
GEV Q (m³/s)	850	1099	2033	2814	3713	5146	6462	650	850	-0.25

Note:


Les deux ajustements proposés sont tous deux relativement cohérents à la fois avec l'échantillon des 32 valeurs maximums annuelles et le contexte régional. Bien que le l'ajustement à la loi des extrêmes généralisée (GEV, encore appelée loi de Jenkinson ou Frechet) soit légèrement meilleur; nous privilégions l'ajustement Gumbel, réputé plus robuste car dépendant de seulement deux paramètres.

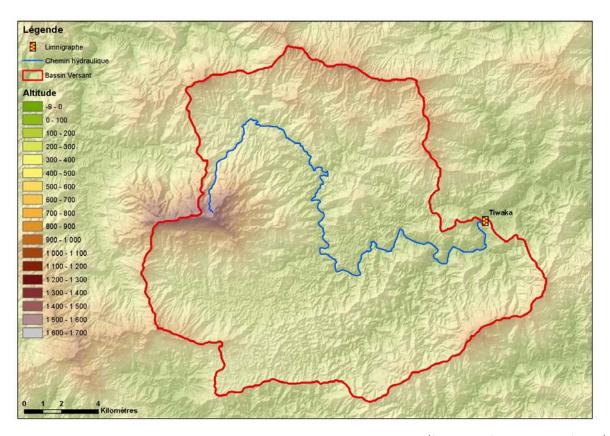
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Tiwaka

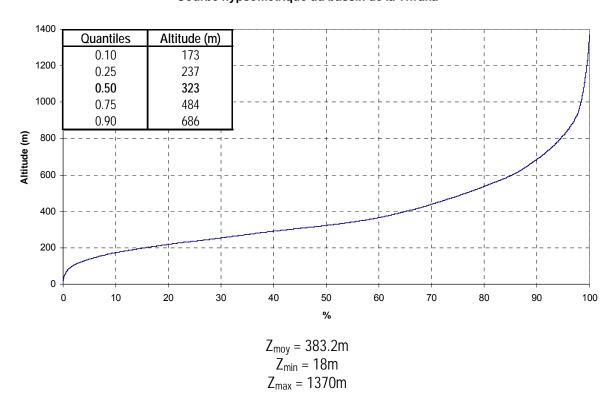
 $\begin{aligned} & \text{Pr\'ecipitation moyenne}: P_{moy} = 2222mm \\ & \text{Pr\'ecipitation minimum}: P_{min} = 1636mm \\ & \text{Pr\'ecipitation maximum}: P_{max} = 3101mm \end{aligned}$

Bilan d'écoulement trimestriel

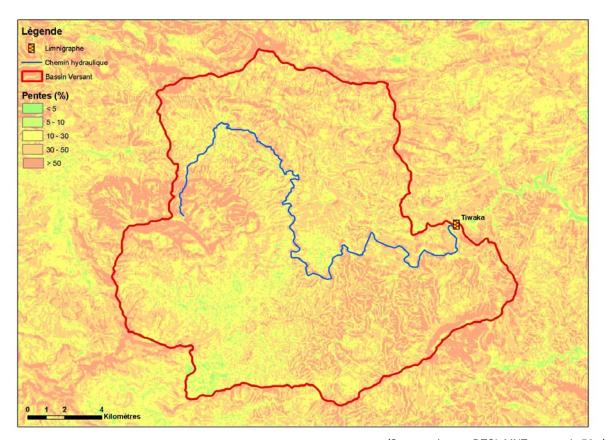


 $\label{eq:coefficient} \begin{tabular}{ll} Coefficient d'écoulement moyen interannuel = 46\% \ [25~;~67] \\ Lame écoulée : L_e = 1223~mm \end{tabular}$

Déficit d'écoulement : $\Delta_e = P - L_e = 1419 \text{ mm}$

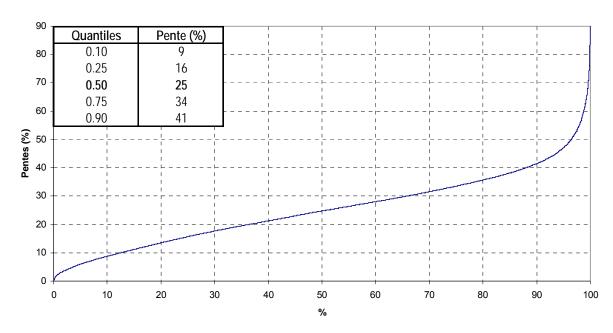

Caractéristiques Physiques

Altitudes



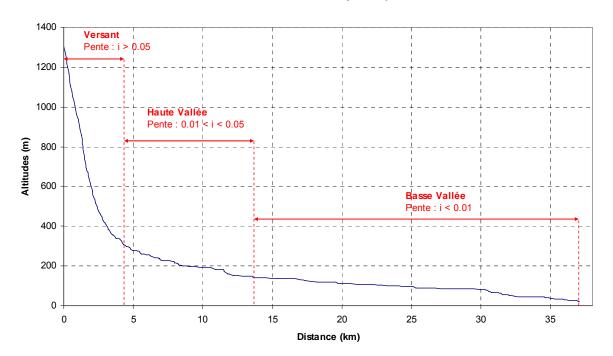
(Source: DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de la Tiwaka



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

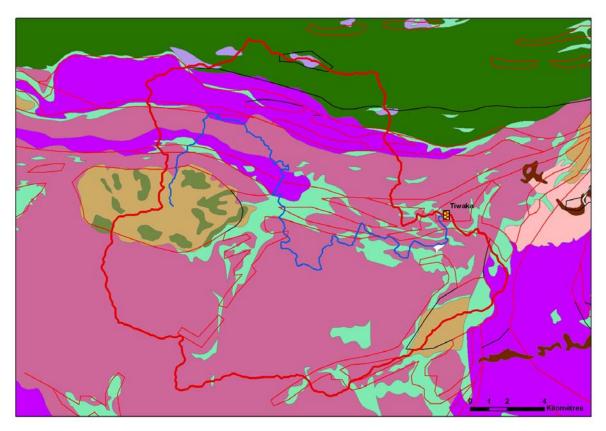

Pentes du bassin de la Tiwaka

 $\begin{array}{l} Pente\ moyenne: i_{moy} = 25.3\%\\ Pente\ minimum: i_{min} = 0.35\%\\ Pente\ maximum: i_{max} = 90.5\% \end{array}$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.08
0.25	0.15
0.50	0.39
0.75	1.2
0.90	9.2


Longueur du chemin hydraulique : L = 37.163 km

Pente moyenne : $i_{ch} = 3.5\%$ Pente à l'exutoire : $i_e = 0.8\%$

86% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 3.8 h [3.29 ; 3.83] Vitesse Moyenne de Transfert : V = L / T_c = 2.7 m.s⁻¹

Géologie

(Source : DTSI, BRGM 1/1000000)

Légende

Limnigraphe
Chemin Hydraulique
Bassin Versant

Géologie
Chevauchement, Observé

Faille principale, Observé
Faille principale, Supposé

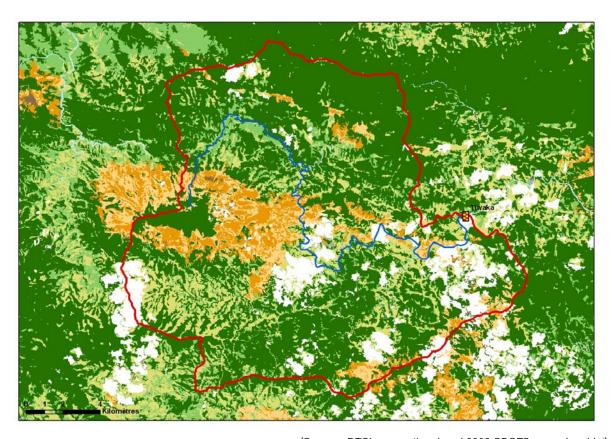
Schistes Micashistes

---- Normal, Observé

Série Boghen 58.9%

Serpentinite et Silice 11.8%

Roches basiques à ultra basiques 6.8%


Terres et Alterites 2.0%

Formations greseuses rhyolites basaltes 0.3%

Tuffs Mesozoique 13.7%

6.5%

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

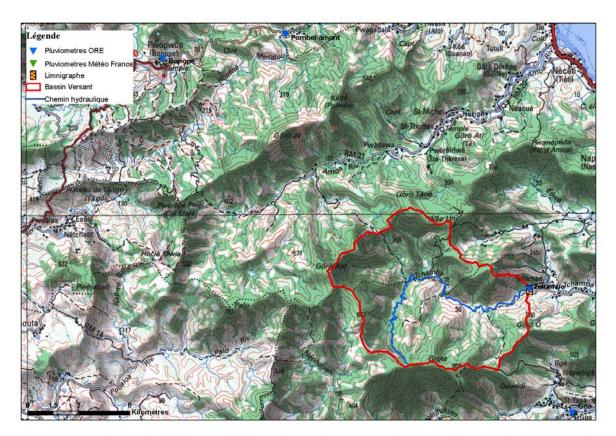
Légende

3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	14.0%
	Maquis Clairsemé	7.8%
	Maquis Dense	8.0%
	Broussailles	11.1%
	Végétation Dense	58.3%
	Sol nu	0.3%
	Eau	0.6%

19. Tchamba

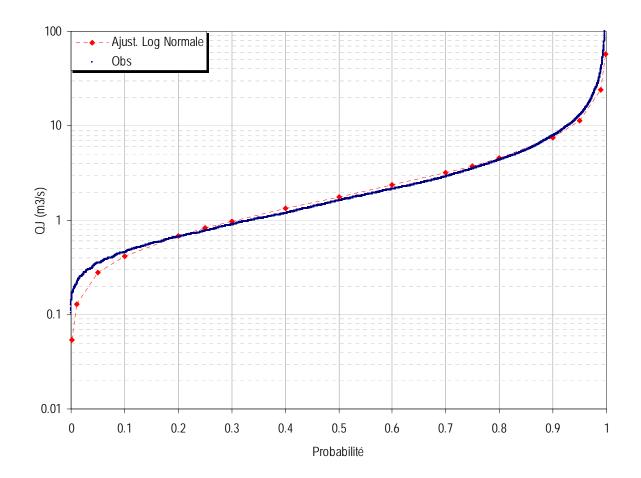
Localisation et durée des observations

		LOCALISATION						
CODE	STATION	Coord X	données Lambert (m v	BV (km²)				
		٨			(KIII)			
5704600105	Tchamba Amont Pont. Cote 8	325 676	350 668	8	72			
F704/00101	Takaraka Tellas Oaka 10	227.212	250.007	10	7.4			
5704600101	Tchamba Tribu. Cote 10	326 213	350 886	10	74			

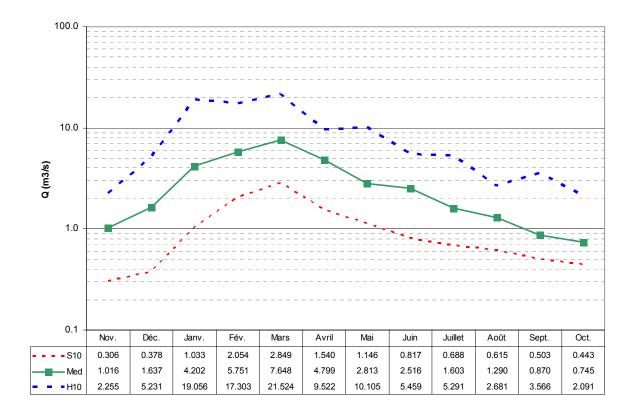

OBSERVATIONS								
Durée Qmin (M3/S) Qmax (M3/S)								
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué		
12/02/55	15/07/08	45.3	0.231	0.090	32	2251		

La station Tchamba a été constituée successivement de 2 stations distantes d'environ 700 m : « Tribu » (1955-1986) et « Amont pont » (à partir de 1983). A noter que la cote de « Tchamba Tribu » est probablement de l'ordre de 7 (et non 10 comme indiqué dans le nom).

Un transfert de cotes de « Tribu » vers « Amont pont » a été utilisé pour les plus hautes eaux :


Pour les débits d'étiages, les débits journaliers et mensuels: la chronique des débits de « Tribu » a été concaténée à celle de « Amont pont » sans facteur correctif. En effet, vu la faible différence de superficie des bassins versants et de la distance entre les 2 stations (700m) les débits ont été considérés comme équivalents.

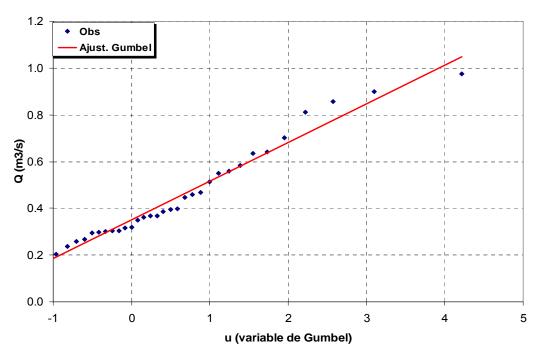
Il faut également préciser que la station est très instable en basses eaux (nombreux détarrages), aussi certaines années, où le nombre de jaugeages d'étiage a été jugé insuffisant, ont été écartées des séries d'ajustement. De même, des jaugeages de hautes eaux demeurent nécessaires pour valider les estimations des débits extrêmes.

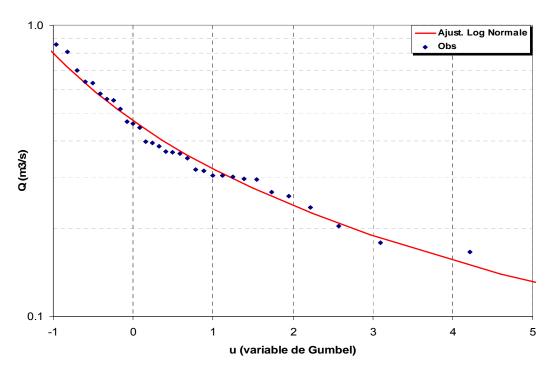

(Source : DTSI, IGN 1/200000)

Débits journaliers classés

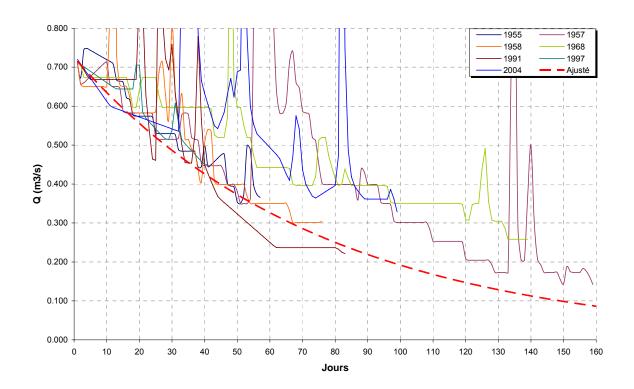
Ē.	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.128	0.211
0.10	0.416	0.455
0.25	0.824	0.772
0.50	1.763	1.608
0.75	3.770	3.522
0.90	7.471	7.840
0.99	24.253	40.114

Débits moyens mensuels



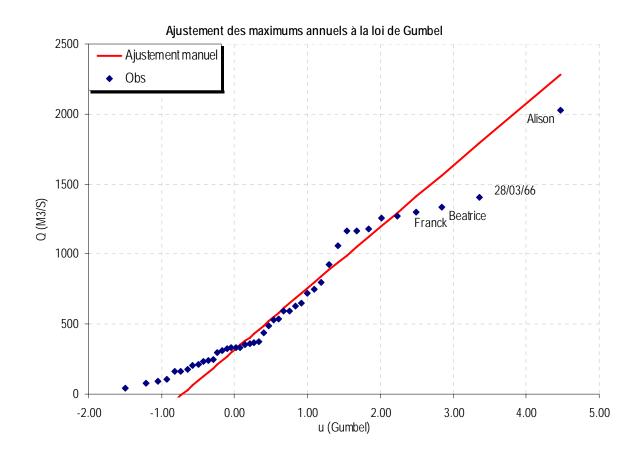

Module annuel = $3.25m^3/s$ $S10 = 1.77m^3/s$ $H10 = 5.15m^3/s$ K3 = 2.9

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

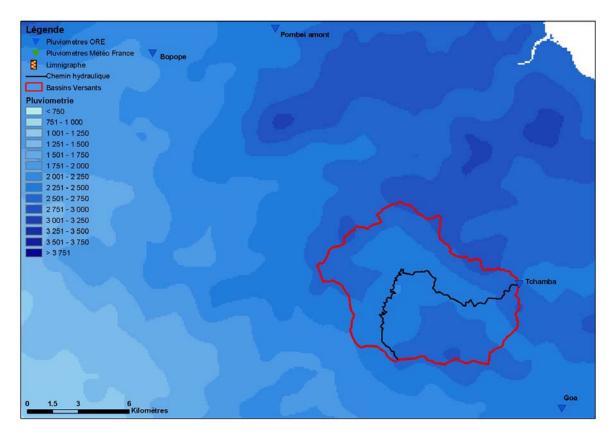
	Etiage Humide (T ans)			Médi	ane	Eti	age Sec (T	ans)	
	100	10)	5	2		5	10	100
$Q m^3/s$	1.114	0.7	25	0.600	0.40	03	0.275	0.226	0.140
Q spé l/s/km²	15.5	10	.1	8.3	5.0	5	3.8	3.1	1.9
Loi	Gumbel Gd = 0.166 PO = 0.352					Log No	rmale		
Paramètres				υ=	-0.908	3	σ= 0.	454	

Courbes de tarissement

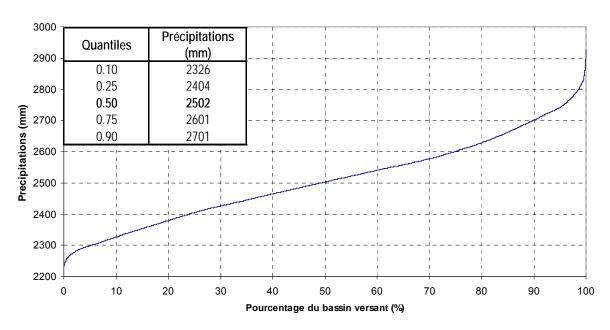


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
1.0	0.0120	83

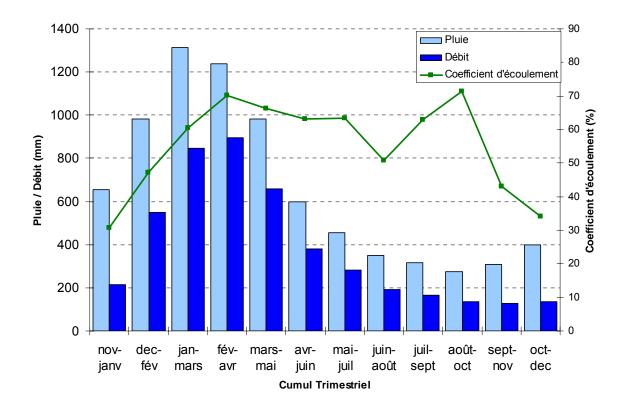
 Q_0 : débit initial de tarissement α : coefficient de tarissement


 $t_{\text{\tiny C}}$: temps caractéristique de tarissement

Débits maximums de crues


	Période de Retour T (années)							Parametre loi	
	1	2 5 10 20 50 100 0						Gd	P0
Q (m³/s)	315	476	975	1305	1622	2032	2339	440	315

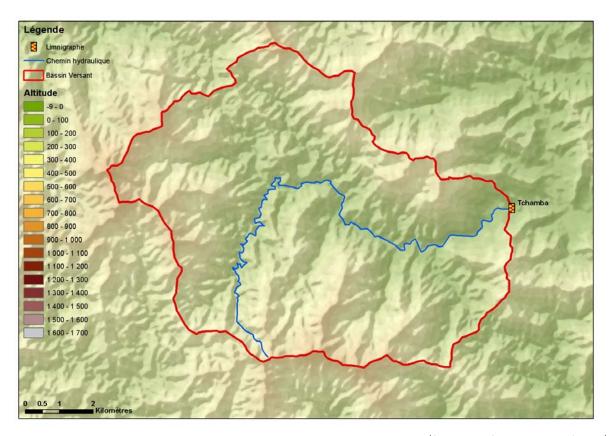
Pluviométrie


(Source: MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de la Tchamba

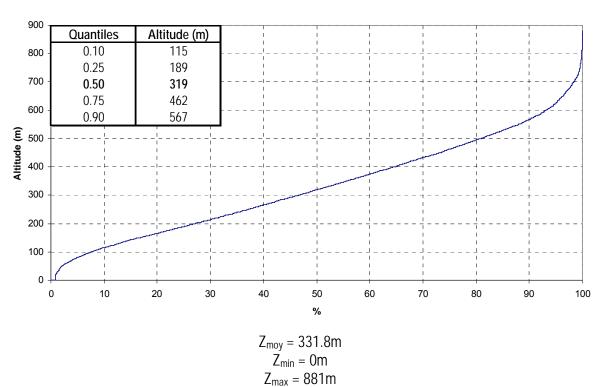
 $\begin{aligned} &\text{Pr\'ecipitation moyenne}: P_{moy} = 2508mm \\ &\text{Pr\'ecipitation minimum}: P_{min} = 2232mm \\ &\text{Pr\'ecipitation maximum}: P_{max} = 2927mm \end{aligned}$

Bilan d'écoulement trimestriel

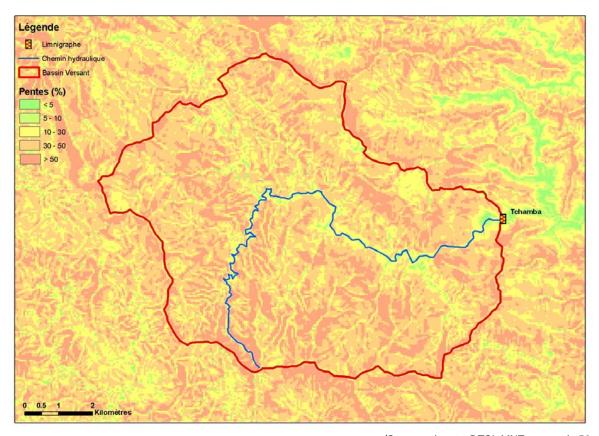


Coefficient d'écoulement moyen interannuel = 58% [34 ;92] Lame écoulée : L_e = 1529 mm

Déficit d'écoulement : Δ_e = P - L_e = 1098 mm

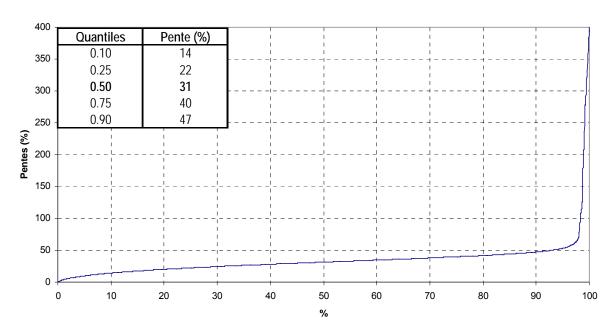

Caractéristiques Physiques

Altitudes



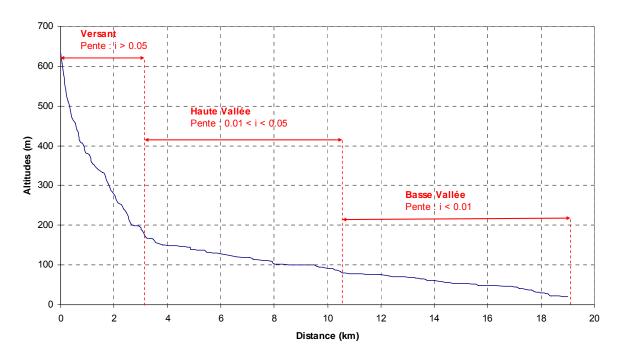
(Source: DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de la Tchamba



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

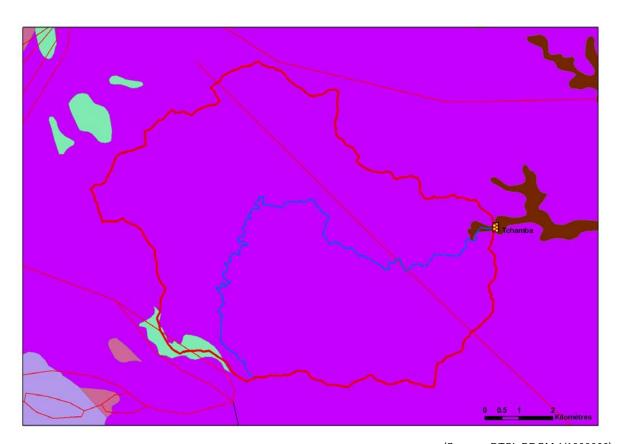

Pentes du bassin de la Tchamba

$$\label{eq:pentemoyenne} \begin{split} & \text{Pente moyenne}: i_{moy} = 34.5\% \\ & \text{Pente minimum}: i_{min} = 0.00\% \\ & \text{Pente maximum}: i_{max} = 406.6\% \end{split}$$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.15
0.25	0.26
0.50	0.60
0.75	1.5
0.90	9.4


Longueur du chemin hydraulique : L = 19.096 km

Pente moyenne : $i_{ch} = 3.2\%$ Pente à l'exutoire : $i_e = 0.8\%$

83% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 1.1 h [0.93 ; 1.29] Vitesse Moyenne de Transfert : V = L / T_c = 4.8 m.s⁻¹

Géologie

(Source : DTSI, BRGM 1/1000000)

Légende

Limnigraphe

Chemin Hydraulique

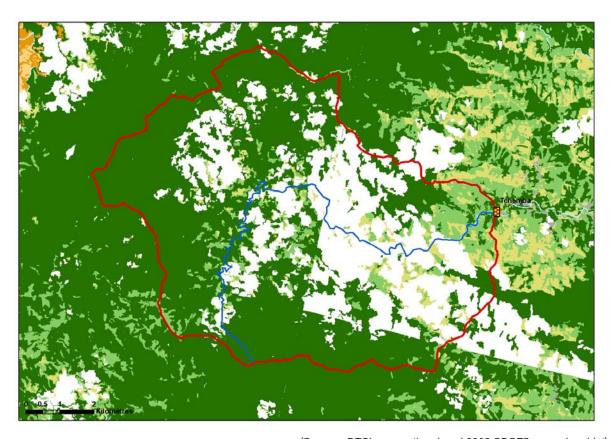
Bassin Versant

Géologie

Chevauchement, Observé

Faille principale, Observé

····· Faille principale, Supposé


Normal, Observé

Serpentinite et Silice 0.7%

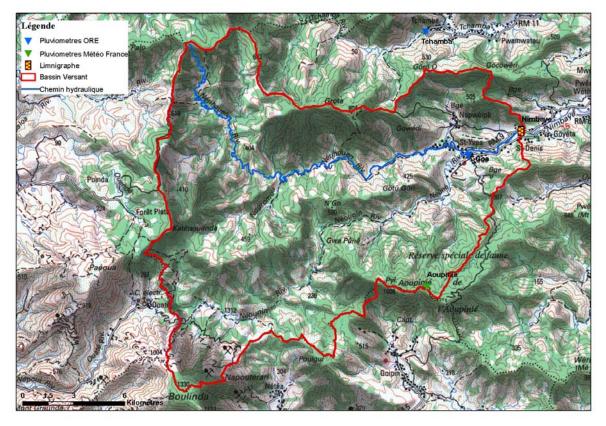
Alluvions Colluvions Modernes 0.3%

Tuffs Mesozoique 99.0%

Occupation des Sols

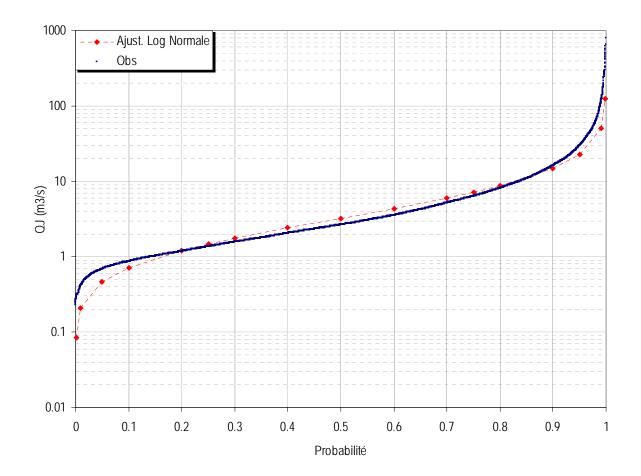
(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

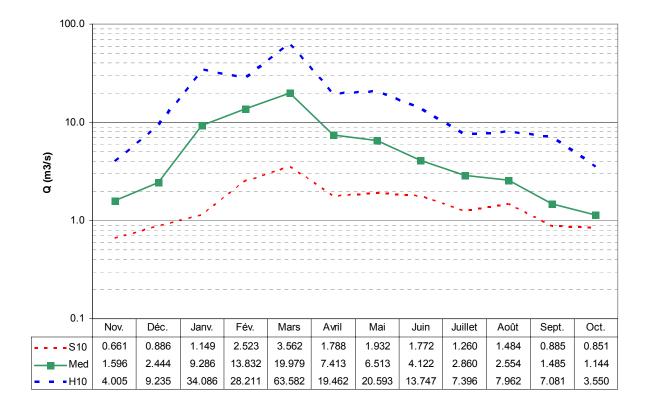

3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	6.2%
	Broussailles	12.3%
	Végétation Dense	81.2%
	Eau	0.2%

20. Nimbaye

Localisation et durée des observations


CODE	STATION		LOCALISATI nnées Lambe Y	_	BV (km²)
5702900101	Nimbayes Aval Goa. Cote 3	331 323	344 887	3	282.6

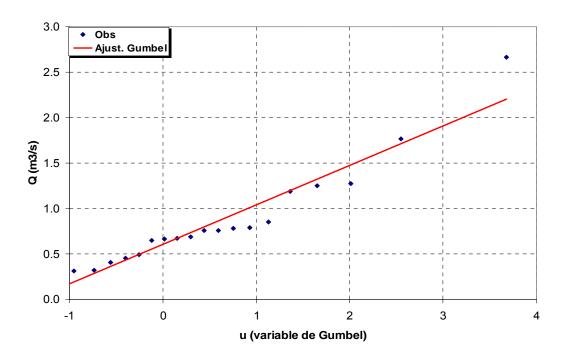
OBSERVATIONS										
Durée Qmin (m³/s) Qmax (m³/s)										
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué				
01/01/72	15/06/08	35.0	0.289	0.229	191.000	6512.821				

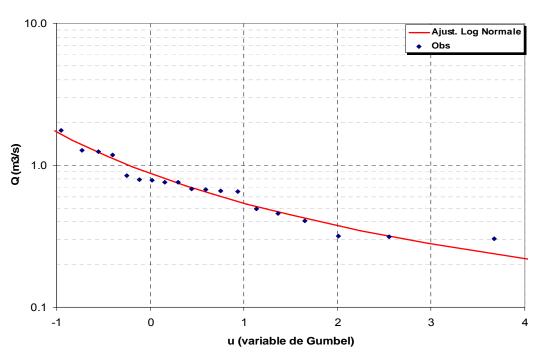

(Source : DTSI, IGN 1/100000)

Débits journaliers classés

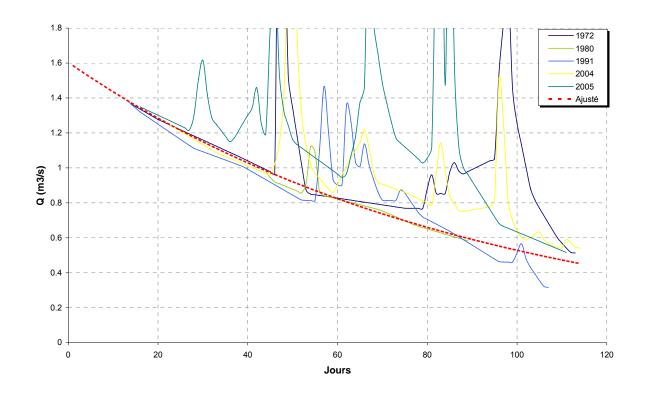
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.206	0.417
0.10	0.711	0.868
0.25	1.459	1.366
0.50	3.241	2.667
0.75	7.200	6.369
0.90	14.770	16.224
0.99	50.863	109.424

Débits moyens mensuels



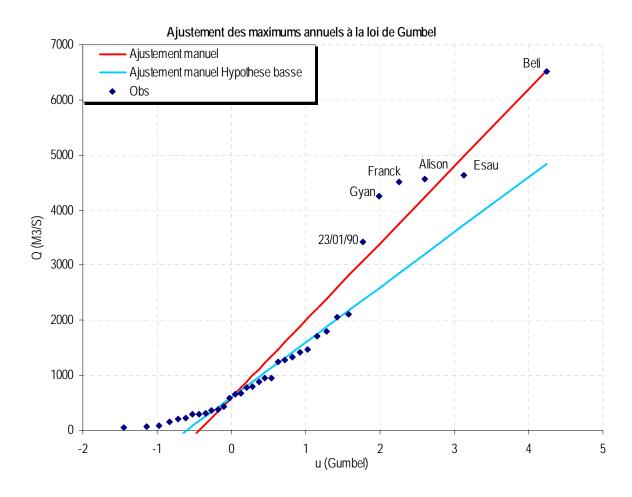

Module annuel = 6.34m3/s S10 annuel = 3.64m3/s H10 annuel = 8.93m3/s K3 = 2.5

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

	Etiage Humide (T ans)			Médi	ane	Eti	age Sec (T a	ans)	
	100 10 5		2		5	10	100		
Q m³/s	2.608	1.5	86	1.259	0.72	22	0.446	0.346	0.190
Q spé l/s/km²	9.1	5.	5	4.4	2.!	5	1.5	1.2	0.7
Loi	Gumbel					Log No	rmale		
Paramètres	Gd =	Gd = 0.435 PO = 0.607			ບ=	-0.326	ó	σ = 0.!	573

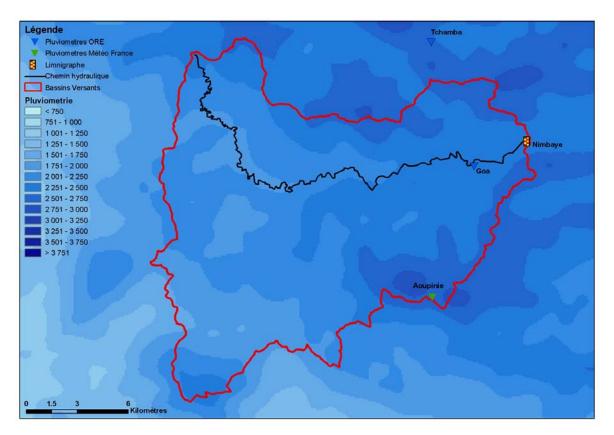
Courbes de tarissement



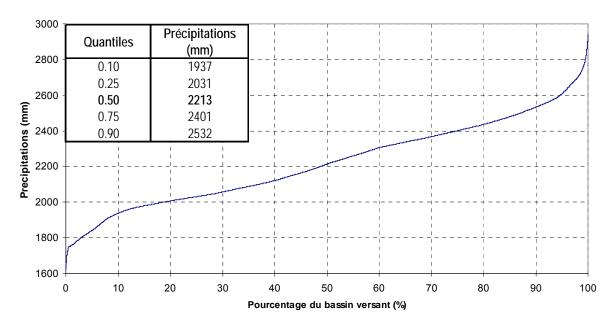
Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
1.387	0.0119	84

 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$

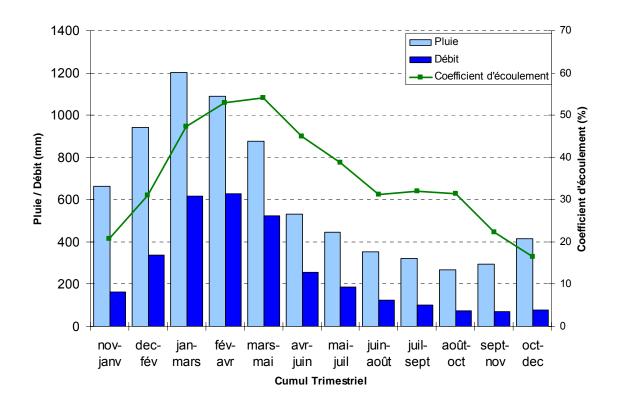
 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement


Débits maximums de crues

	Période de Retour T (années)							Parametre	e loi
	1	2	5	10	20	50	100	Gd	P0
Q (m³/s)	600	1113	2700	3751	4758	6063	7040	1400	600
Q (m³/s) Hyp_basse	600	967	2100	2850	3570	4502	5200	1000	600


Nous donnons à titre indicatif une hypothèse basse d'ajustement qui est cohérente avec les années où les crues sont relativement faibles. Cependant nous privilégions l'ajustement moyen qui est plus sécuritaire et cohérent avec l'ensemble des valeurs régionales de la cote Est.

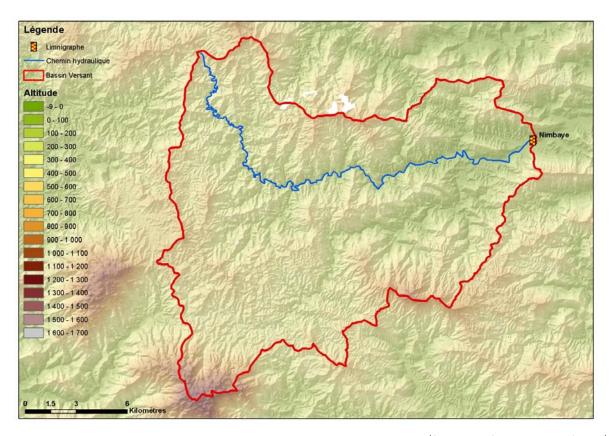
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Nimbaye

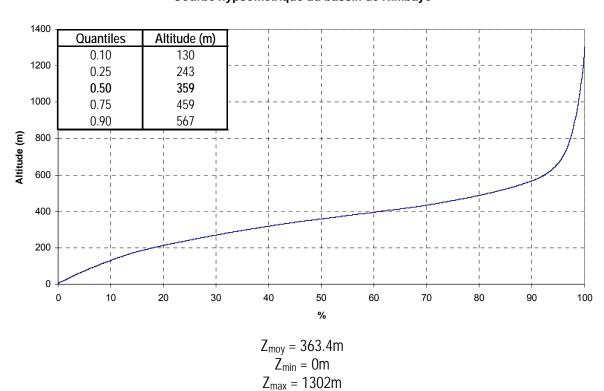
 $\begin{aligned} &\text{Pr\'ecipitation moyenne}: P_{moy} = 2221 mm \\ &\text{Pr\'ecipitation minimum}: P_{min} = 1622 mm \\ &\text{Pr\'ecipitation maximum}: P_{max} = 2939 mm \end{aligned}$

Bilan d'écoulement trimestriel

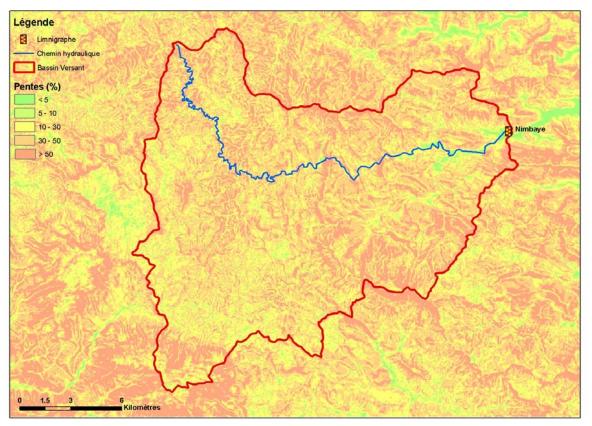


Coefficient d'écoulement moyen interannuel = 43% [25 ;62]

 $Lame \ \acute{e}coul\acute{e}e : L_e = 1052 \ mm$ $D\acute{e}ficit \ d'\acute{e}coulement : \Delta_e = P - L_e = 1415 \ mm$

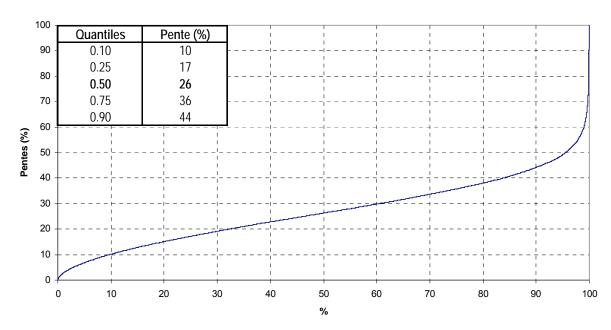

Caractéristiques Physiques

Altitudes



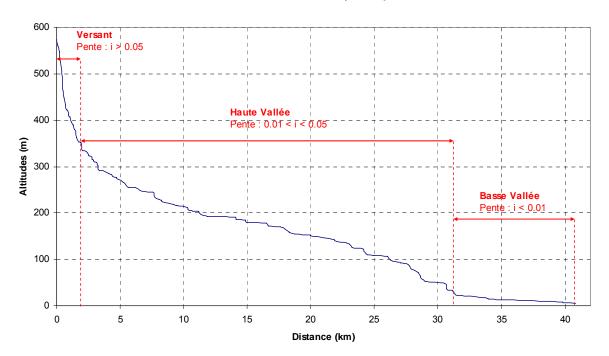
(Source : DTSI, MNT au pas de 10m)

Courbe hypsometrique du bassin de Nimbaye



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

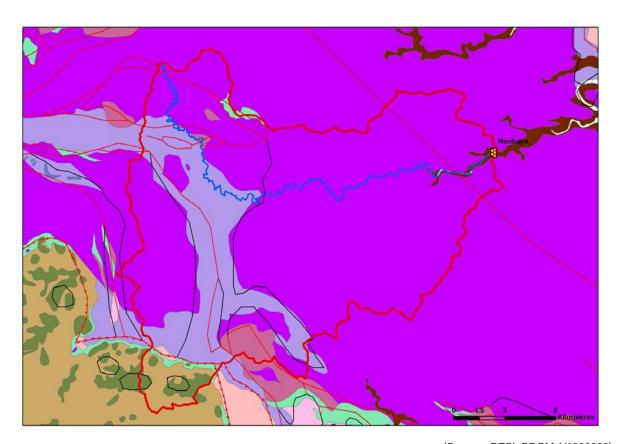

Pentes du bassin de Nimbaye

Pente moyenne : $i_{moy} = 27.1\%$ Pente minimum : $i_{min} = 0.00\%$ Pente maximum : $i_{max} = 281.1\%$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.07
0.25	0.14
0.50	0.33
0.75	1.0
0.90	3.4


Longueur du chemin hydraulique : L = 40.837 km

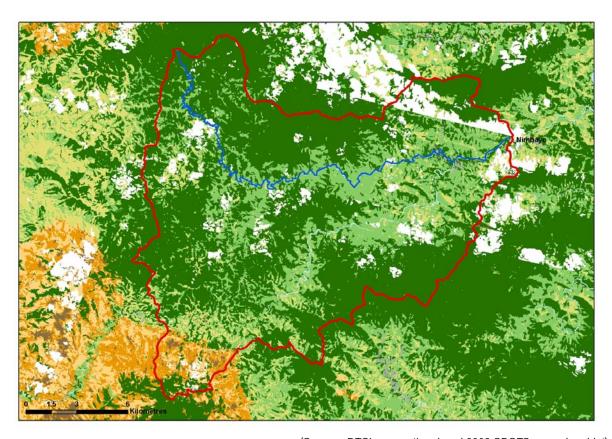
Pente moyenne : $i_{ch} = 1.4\%$ Pente à l'exutoire : $i_e = 0.15\%$

93% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 2.7 h [2.56 ; 3.28] Vitesse Moyenne de Transfert : V = L / T_c = 4.2 m.s⁻¹

Géologie

75.4%


(Source : DTSI, BRGM 1/1000000)

Légende

99.1.6	
Limnigraphe	
Chemin Hydraulique	
Bassin Versant	
Géologie	
Chevauchement, Observé	
Faille principale, Observé	
Faille principale, Supposé	
Normal, Observé	
Série Boghen	2.2%
Serpentinite et Silice	0.8%
Roches basiques à ultra basiques	2.2%
Alluvions Colluvions Modernes	0.5%
Terres et Alterites	1.1%
Formations greseuses rhyolites basaltes	17.5%
Basalte de Kone	0.1%

Tuffs Mesozoique

Occupation des Sols

(Source : DTSI, occupation du sol 2008 SPOT5 approche objet)

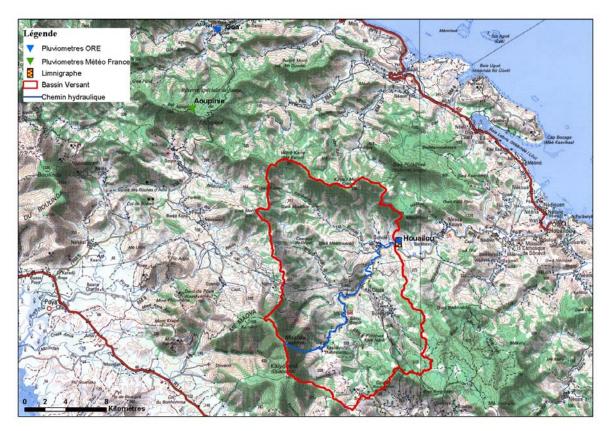
Légende

8	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	6.0%
	Maquis Clairsemé	1.1%
	Maquis Dense	1.7%
	Broussailles	27.9%
	Végétation Dense	62.2%
	Sol nu	0.3%
	Eau	0.8%

21. Houaïlou

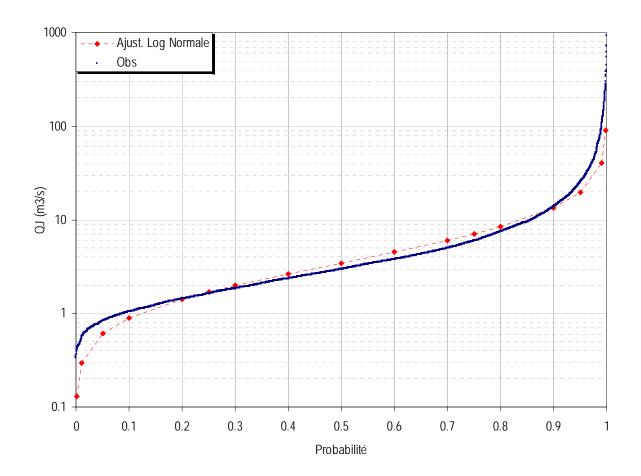
Localisation et durée des observations

CODE	STATION	Coordo	BV		
		Χ	Υ	Z	(km²)
5700800102	Houailou Carovin. Cote 14	346 002	322 564	14	266
5700800101	Houailou Neperou. Cote 6	354 196	323 523	6	300

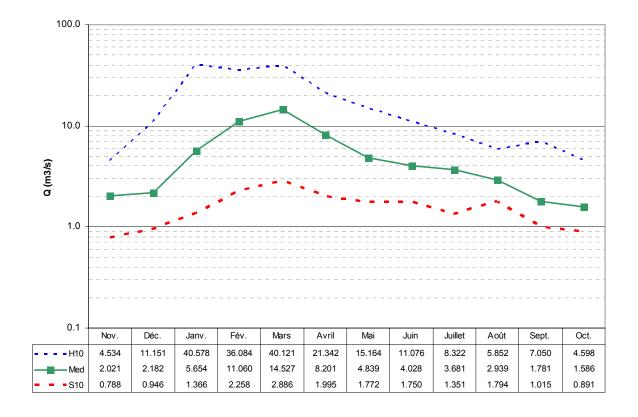

OBSERVATIONS									
Durée Qmin (M3/S) Qmax (M3/S)									
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué			
18/09/54	13/05/08	52.0	0.352	0.324	542	5011			

La station Houaïlou a été constituée successivement de 2 stations : Népérou (1954-1976) et Carovin (1975-2008). Un transfert de cotes de Népérou à Carovin a été utilisé pour les plus hautes eaux via la relation :

[He Carovin (m) = He Népérou(m) *0.827+18.27]


Pour les débits d'étiages, les débits journaliers et mensuels, la chronique des débits de Népérou a été transférée à Carovin via la relation :

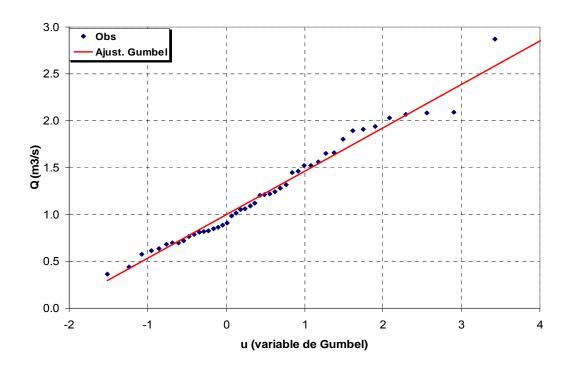
[Q Carovin = 0.8035*Q Népérou.]

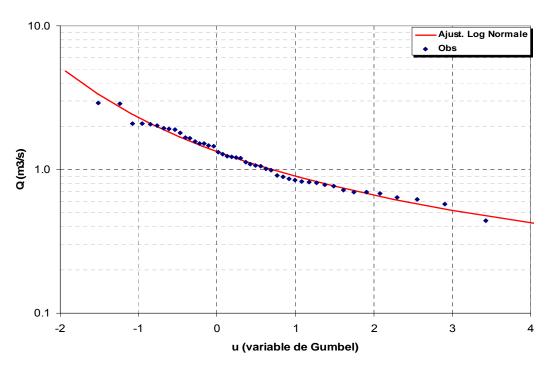

(Source: DTSI, IGN 1/200000)

Débits journaliers classés

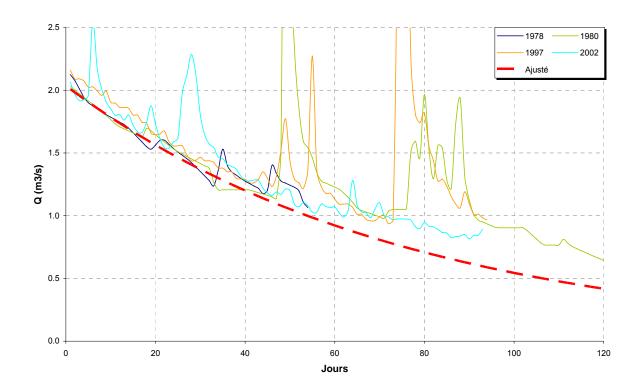
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.294	0.530
0.10	0.886	1.050
0.25	1.683	1.630
0.50	3.43	2.972
0.75	7.00	5.950
0.90	13.30	13.785
0.99	40.11	92.291

Débits moyens mensuels



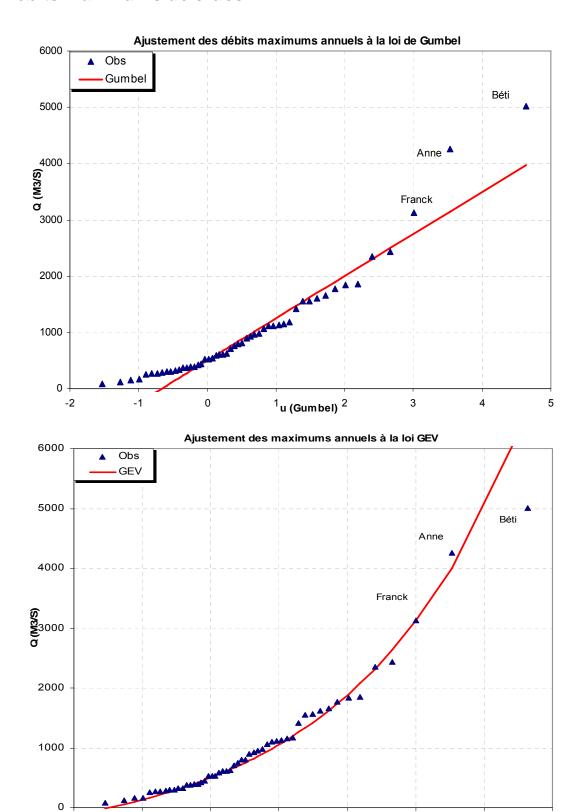

Module annuel = $5.55m^3/s$ $S10 = 3.18m^3/s$ $H10 = 12.17m^3/s$ K3 = 3.8

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10


Débits caractéristiques d'étiages (DCE)

	Etiage Humide (T ans)			Médi	ane	Etia	age Sec (T a	ans)	
	100 10 5		2		5	10	100		
$Q m^3/s$	3.124	2.0	36	1.689	1.13	33	0.763	0.621	0.380
Q spé l/s/km²	11.6	7.6		6.3	4.2		2.8	2.3	1.4
Loi		nbel				Log Noi	rmale		
Paramètres	Gd =	0.463	PO =	0.995	$v = 0.125$ $\sigma = 0.470$				470

Courbes de tarissement



Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
2.04	0.0132	76

 Q_0 : débit initial de tarissement α : coefficient de tarissement

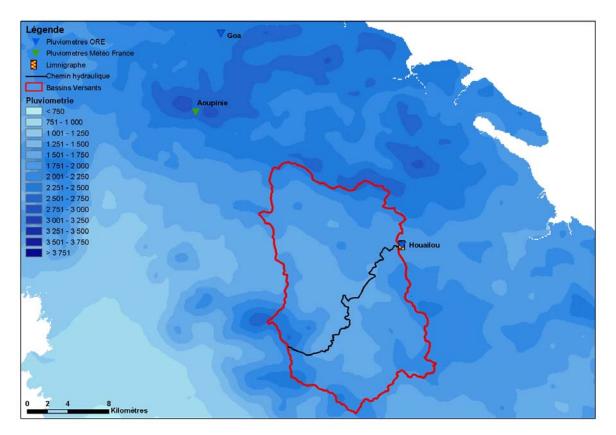
 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

Débits maximums de crues

Q max (m³/s)	Période de Retour T (années)								Parametre de loi		
Q max (m³/s)	1	2	5	10	25	50	100	Gd	P0	С	
Gumbel	500	775	1625	2188	2899	3426	3950	750	500	0.00	
GEV	500	678	1425	2142	3419	4733	6459	450	500	-0.40	

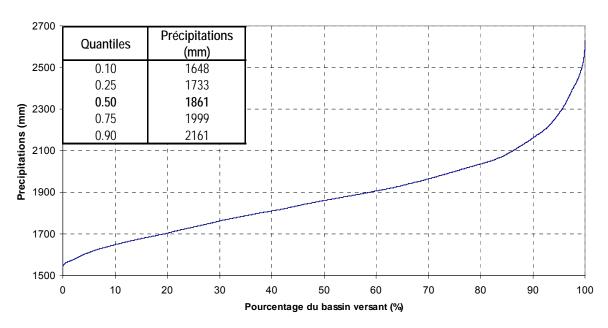
 1 u (Gumbel) 2

3

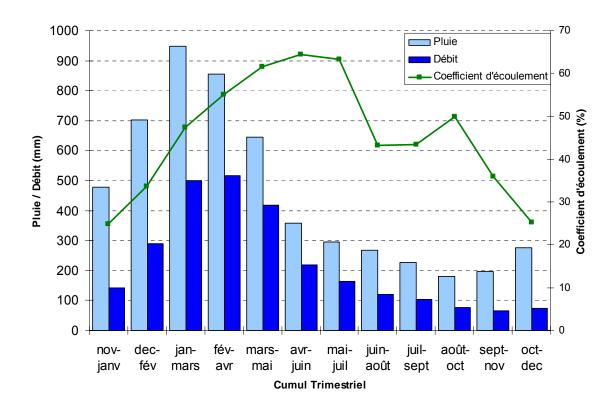

0

-2

Note:


Les observations ont permis de constituer un échantillon de 52 valeurs de débits instantanés maximums annuels. L'ajustement à la loi de Gumbel classiquement employée pour caractériser la distribution des maximums annuels semble sous estimer les 3 épisodes les plus forts de la série (Beti, Anne, Franck). Aussi, nous proposons également un ajustement à la loi des extrêmes généralisée (GEV) encore appelée loi de Jenkinson ou Frechet (pour c<0). L'ajustement de celle-ci est moins robuste en raison d'un troisième paramètre (c) mais correspond également mieux à notre échantillon. Les débits spécifiques centennaux sont ainsi compris entre 15 et 25 m³/s/km² suivant la loi utilisée. L'ajustement GEV correspond bien aux valeurs régionales de la côte Est alors que l'ajustement Gumbel est davantage cohérent avec les valeurs extrêmes de la région Ouest. Dans une moindre mesure, cette particularité s'observe également sur la station de Thio ce qui pourrait être une résultante de la climatologie spécifique des bassins compris entre Thio et Houaïlou connus pour avoir une pluviométrie inférieure à celle observée ailleurs sur la façade Est de la Grande Terre.

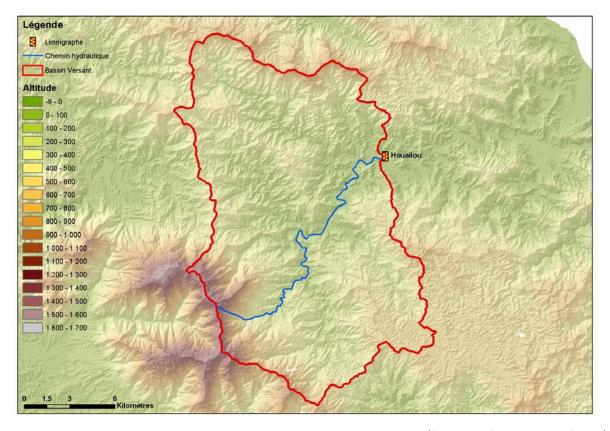
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Houailou

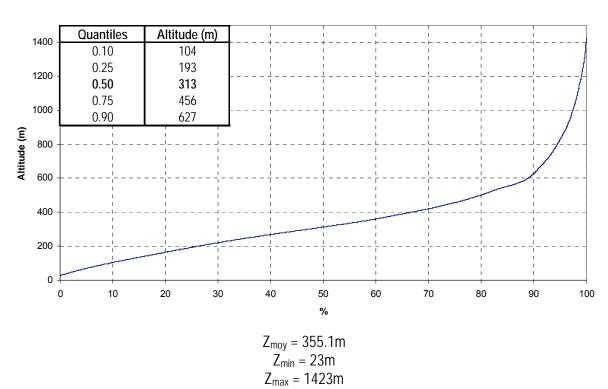
 $\begin{aligned} &\text{Pr\'ecipitation moyenne}: P_{moy} = 1885mm \\ &\text{Pr\'ecipitation minimum}: P_{min} = 1545mm \\ &\text{Pr\'ecipitation maximum}: P_{max} = 2629mm \end{aligned}$

Bilan d'écoulement trimestriel

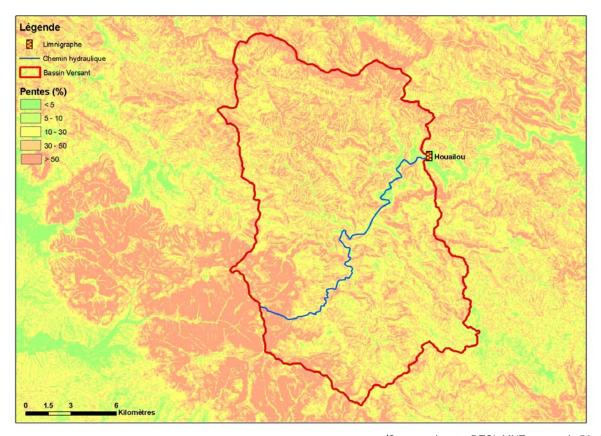

Coefficient d'écoulement moyen interannuel = 50% [25 ;75]

Lame écoulée : L_e = 897 mm

Déficit d'écoulement : Δ_e = P – L_e = 913 mm

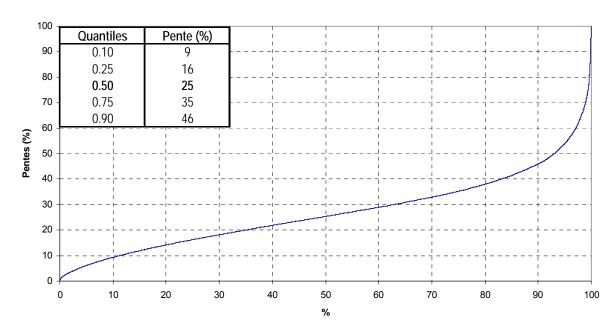

Caractéristiques Physiques

Altitudes



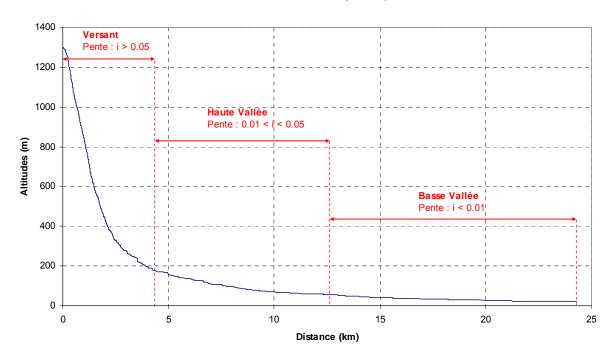
(Source: DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de Houailou



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

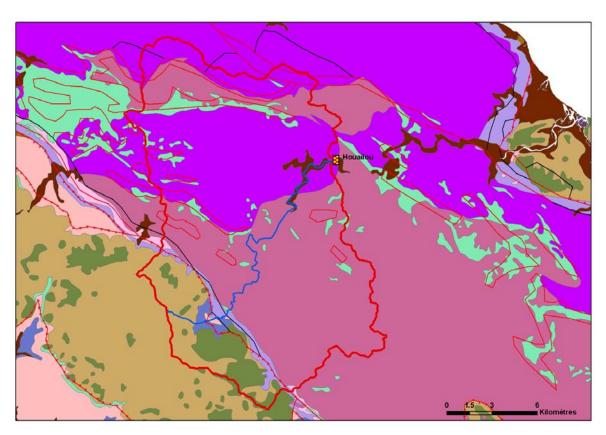

Pentes du bassin de Houailou

 $\begin{aligned} & \text{Pente moyenne}: i_{moy} = 27.0\% \\ & \text{Pente minimum}: i_{min} = 0.18\% \\ & \text{Pente maximum}: i_{max} = 116.0\% \end{aligned}$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.04
0.25	0.11
0.50	0.32
0.75	1.2
0.90	20.3

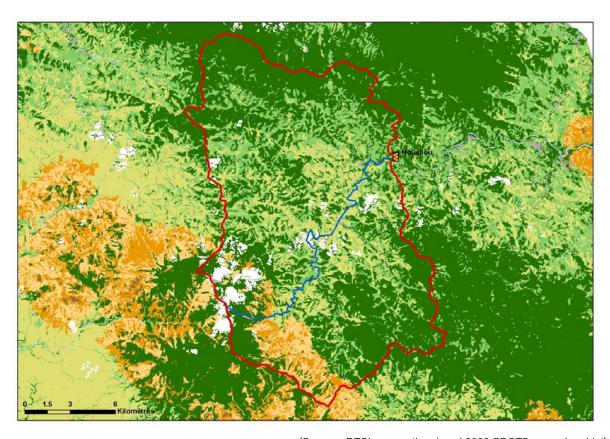

Longueur du chemin hydraulique : L = 24.353 km

Pente moyenne : $i_{ch} = 5.3\%$ Pente à l'exutoire : $i_e = 0.15\%$

83% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 2.0 h [1.93 ; 2.36] Vitesse Moyenne de Transfert : V = L / T_c = 3.4 m.s⁻¹

Géologie



(Source : DTSI, BRGM 1/1000000)

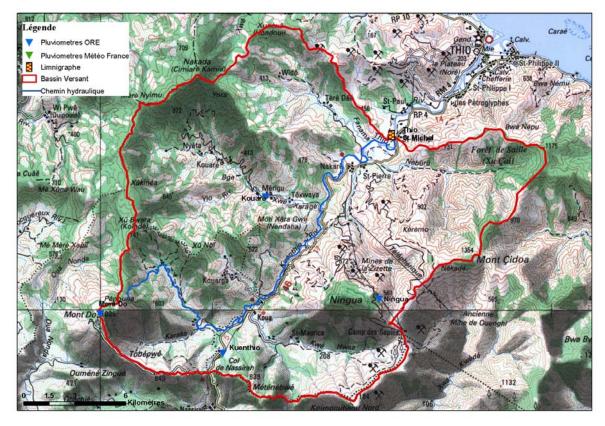
Légende

Legende	
Limnigraphe	
Chemin Hydraulique	
Bassin Versant	
Géologie	
Chevauchement, Observé	
Faille principale, Observé	
Faille principale, Supposé	
Normal, Observé	
Série Boghen	46.3%
Serpentinite et Silice	4.4%
Roches basiques à ultra basiques	7.0%
Alluvions Colluvions Anciennes	0.9%
Alluvions Colluvions Modernes	1.0%
Terres et Alterites	4.9%
Eocene Calcaire	0.2%
Formations greseuses rhyolites basaltes	2.4%
Basalte de Kone	0.2%
Tuffs Mesozoique	32.7%

Occupation des Sols

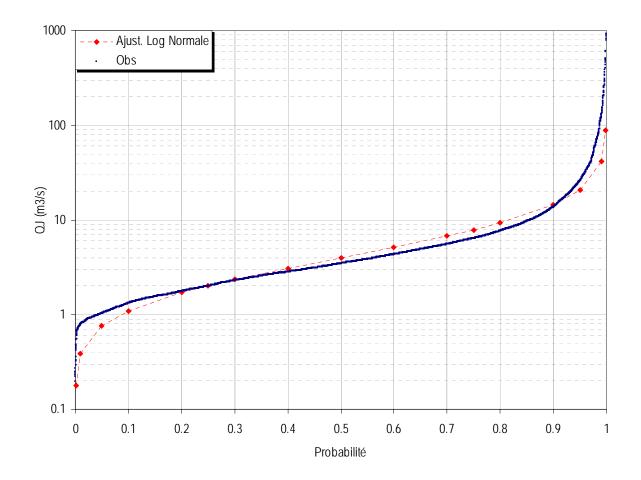
(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

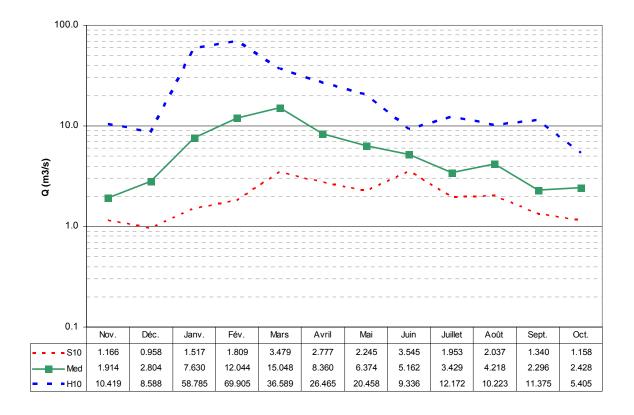

3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	14.8%
	Maquis Clairsemé	4.5%
	Maquis Dense	3.1%
	Broussailles	25.2%
	Végétation Dense	52.1%
	Eau	0.3%

22. Thio

Localisation et durée des observations


CODE	STATION	Coordo X	LOCALISATIO Onnées Lambert Y		BV (km²)
5704800101	Thio Saint Michel . Cote 15	417 121	282 686	15	344.5

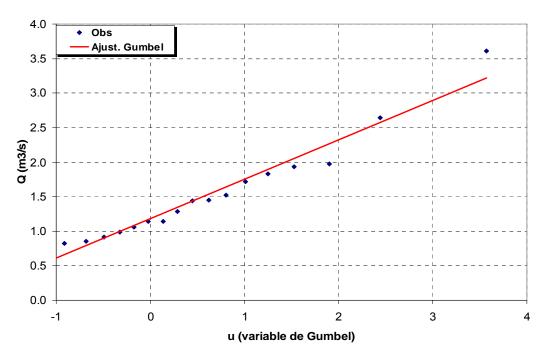
OBSERVATIONS						
Durée Qmin (M3/S) Qmax (M3/S)						(M3/S)
Début	Fin	Eff.(ans)	Jaugé	Evalué	Jaugé	Evalué
23/12/81	21/07/08	22.0	0.673	0.152	724	5688

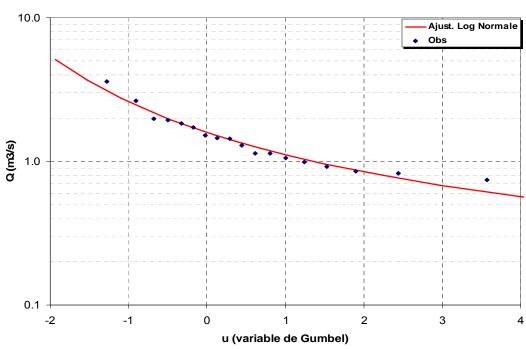

(Source : DTSI, IGN 1/50000)

Débits journaliers classés

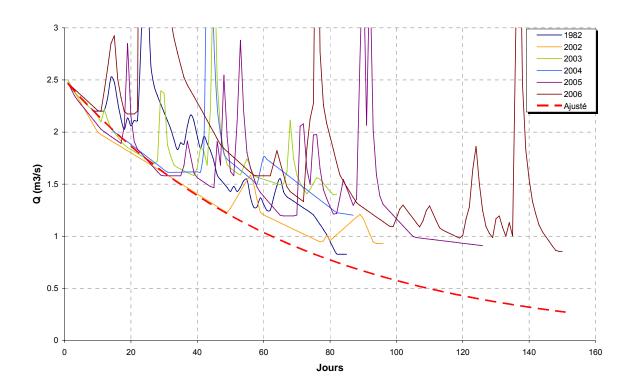
	Loi Log-N	Empirique
Р	Q (M3/S)	Q (M3/S)
0.01	0.384	0.799
0.10	1.097	1.322
0.25	2.020	1.995
0.50	3.981	3.467
0.75	7.845	6.395
0.90	14.445	13.683
0.99	41.305	119.964

Débits moyens mensuels



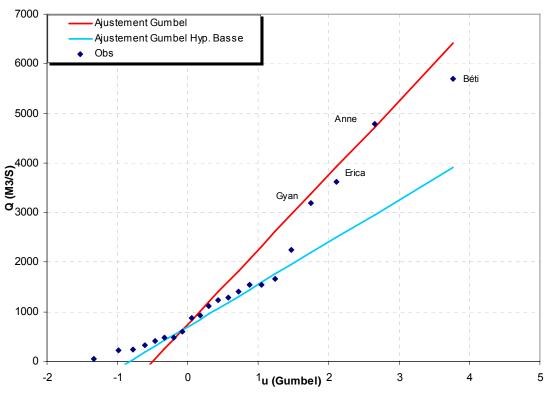

Module annuel = $7.33 \text{ m}^3\text{/s}$ $S10 = 3.19 \text{ m}^3\text{/s}$ $H10 = 19.39 \text{ m}^3\text{/s}$ K3 = 6.1

S10 valeur empirique décennale sèche H10 valeur empirique décennale humide K3 Coefficient d'irrégularité : K3 = H10 / S10

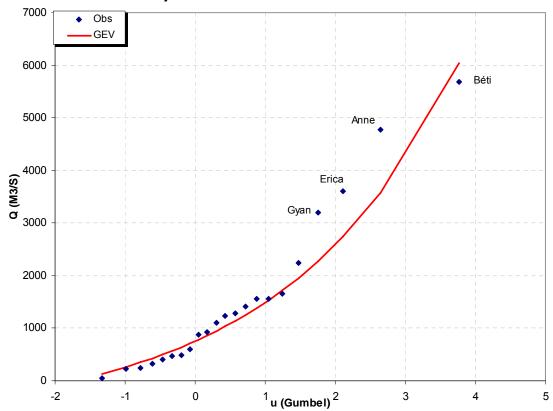

Débits caractéristiques d'étiages (DCE)

		Etiage Humide (T ans)			Médiane	Etia	age Sec (T a	ans)
		100	10	5	2	5	10	100
	Q m³/s	3.804	2.466	2.038	1.374	0.962	0.798	0.513
	Q spé l/s/km²	11.1	7.2	5.9	4.0	2.8	2.3	1.5
ſ	Loi	Gumbel				Log Nor	rmale	
	Paramètres	Gd =	0.569 PO =	= 1.184	v = 0.317		σ = 0.4	423

Courbes de tarissement


Q_0	α	$t_c = 1/\alpha$
(m3.s-1)	(jour-1)	(jour)
2.466	0.0147	68

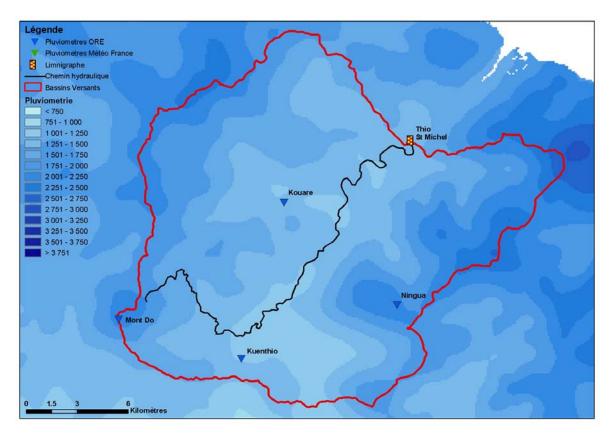
 $\begin{array}{ll} Q_0 & : \text{ débit initial de tarissement} \\ \alpha & : \text{ coefficient de tarissement} \end{array}$


 $t_{\scriptscriptstyle C}$: temps caractéristique de tarissement

Débits maximums de crues

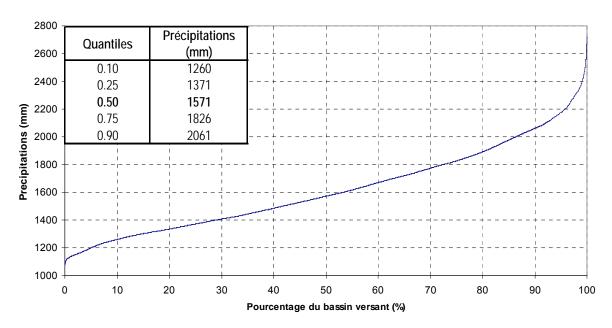
Ajustement des débits maximums annuels à la loi de Gumbel

Ajustement des maximums annuels à la loi GEV

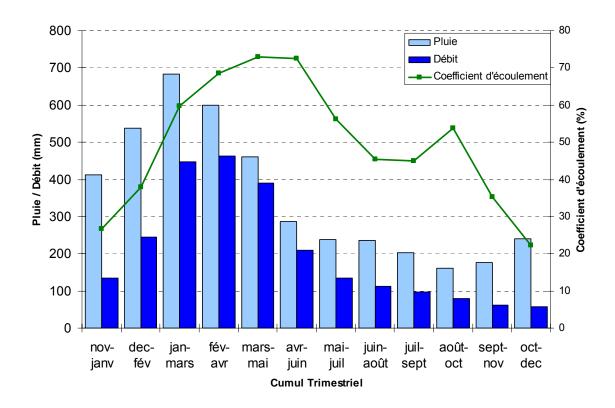


0 may (m3/c)		F	Période de	Retour T	(années)			Para	ametre de	e loi
Q max (m³/s)	1	2	5	10	25	50	100	Gd	P0	С
Gumbel	750	1300	3000	4126	5548	6603	7650	1500	750	0.00
Gumbel Hyp_basse	750	970	1650	2100	2669	3091	3510	600	750	0.00
GEV	750	987	1983	2940	4642	6394	8695	600	750	-0.40

Note:


L'ajustement Gumbel proposé est cohérent avec les valeurs régionales de la cote Est mais apparaît relativement inadapté aux valeurs centrales de l'échantillon. L'hypothèse basse proposée est cohérente avec les valeurs régionales de la cote Ouest mais ne permet pas de décrire les épisodes extrêmes (Beti, Anne, Erica, Gyan). Comme pour la station voisine de Houaïlou, l'ajustement à la loi des extrêmes généralisée (GEV) encore appelée loi de Jenkinson ou Frechet (pour c<0) semble le plus adapté à l'échantillon. Cette particularité pourrait être une résultante de la climatologie spécifique des bassins compris entre Thio et Houaïlou connus pour avoir une pluviométrie inférieure à celle observée ailleurs sur la façade Est de la Grande Terre.

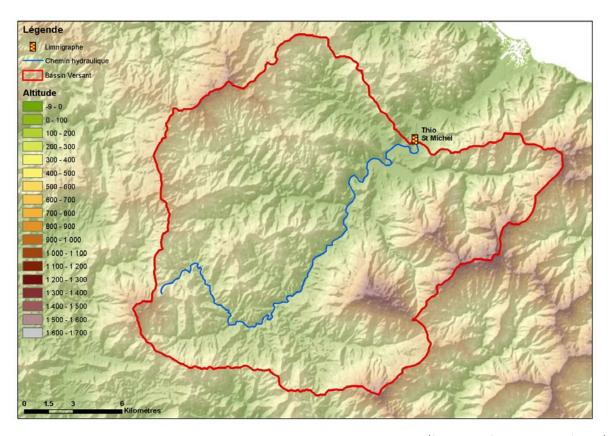
Pluviométrie


(Source : MétéoFrance, DAVAR)

Courbe pluviometrique du bassin de Thio

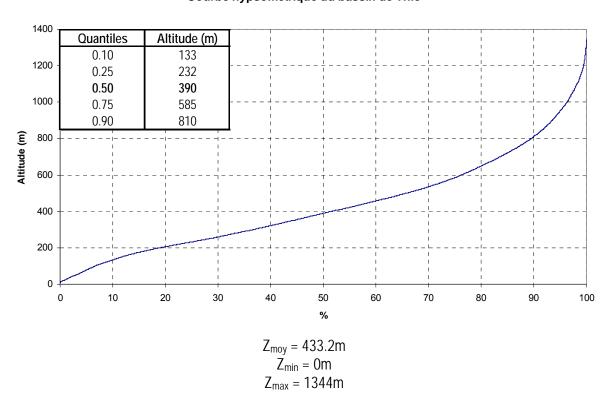
 $\begin{aligned} & \text{Pr\'ecipitation moyenne}: P_{moy} = 1619mm \\ & \text{Pr\'ecipitation minimum}: P_{min} = 1076mm \\ & \text{Pr\'ecipitation maximum}: P_{max} = 2716mm \end{aligned}$

Bilan d'écoulement

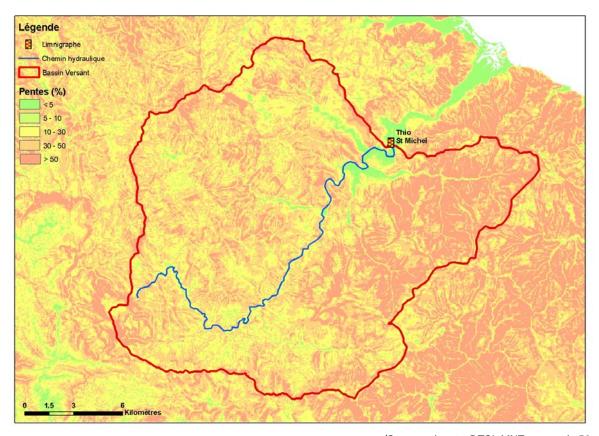


Coefficient d'écoulement moyen interannuel = 57 % [31 ; 95]

 $Lame \ \acute{e}coul\acute{e}e : L_e = 811 \ mm$ $D\acute{e}ficit \ d'\acute{e}coulement : \Delta_e = P - L_e = 601 \ mm$

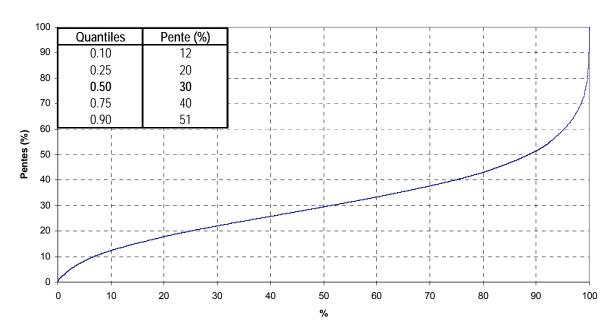

Caractéristiques Physiques

Altitudes



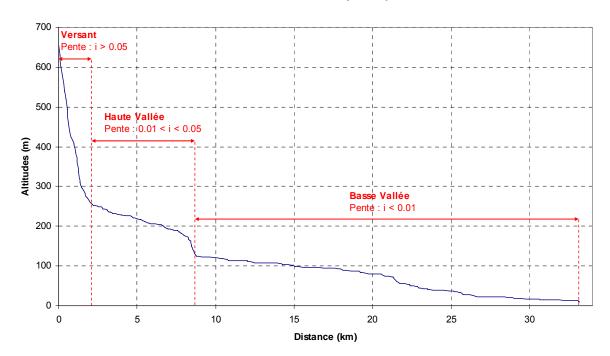
(Source : DTSI, MNT au pas de 50m)

Courbe hypsometrique du bassin de Thio



Pentes

(Source : d'après DTSI, MNT au pas de 50m)

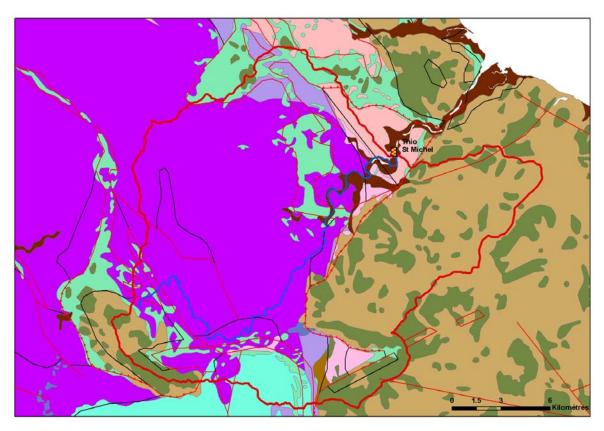

Pentes du bassin de Thio

 $\begin{aligned} & \text{Pente moyenne}: i_{moy} = 31.1\% \\ & \text{Pente minimum}: i_{min} = 0.00\% \\ & \text{Pente maximum}: i_{max} = 391.4\% \end{aligned}$

Chemin Hydraulique

Profil suivant le chemin hydraulique

Quantiles	Pente (%)
0.10	0.08
0.25	0.12
0.50	0.29
0.75	0.71
0.90	4.0


Longueur du chemin hydraulique : L = 33.444 km

Pente moyenne : $i_{ch} = 1.9\%$ Pente à l'exutoire : $i_e = 0.2\%$

92% du chemin hydraulique présente une pente inferieure à 5%

Temps de Concentration : T_c = 3.9 h [3.81 ; 5.81] Vitesse Moyenne de Transfert : V = L / T_c = 2.4 m.s⁻¹

Géologie

8.5% 20.8%

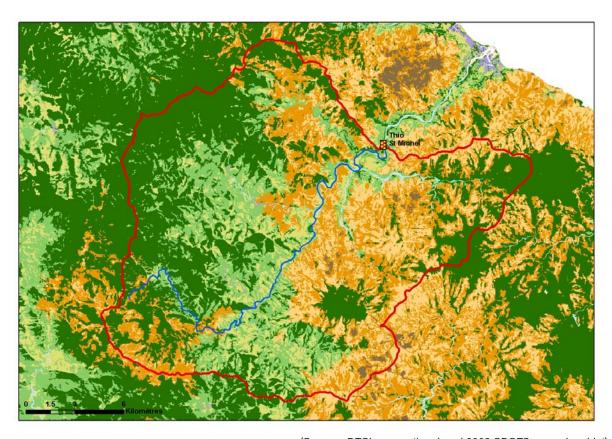
0.2% 1.9% 11.1% 2.4% 3.0% 3.6%

0.4%

1.7%

46.4%

(Source : DTSI, BRGM 1/1000000)


Lége	ende
3	Limnigraphe
	Chemin Hydraulique
	Bassin Versant
Géol	ogie
•	Chevauchement, Observé
	Faille principale, Observé
	Faille principale, Supposé
	Normal, Observé
	Serpentinite et Silice
	Roches basiques à ultra basiques
	Alluvions Colluvions Anciennes
	Alluvions Colluvions Modernes
	Terres et Alterites
	Eocene Calcaire
	Flysh Widflysh Arenites
	Formations greseuses rhyolites basaltes

Complexe Silico Argileux

Basalte de Kone

Tuffs Mesozoique

Occupation des Sols

(Source: DTSI, occupation du sol 2008 SPOT5 approche objet)

Légende

3	Limnigraphe	
	Chemin hydraulique	
	Bassin versant	
	Lacunes	
	Savane	7.8%
	Maquis Clairsemé	13.6%
	Maquis Dense	21.6%
	Broussailles	18.0%
	Végétation Dense	37.5%
	Sol nu	0.7%
	Eau	0.8%

Tableaux de synthèse

Caractéristiques de la station et Débits journaliers classés

	Stations &		Dé	bits jou	rnaliers	classés	(Loi Lo	g Norma	ale)		Débits j	journali	ers clas	sés (Em	pirique)					
N°	Noms	Durée obs.	Superficie	Altitude	Drain Hydr.	0.01	0.10	0.25	0.50	0.75	0.90	0.99	0.01	0.10	0.25	0.50	0.75	0.90	0.99	Q _{50%}
		(ans)	(km²)	(m)	(km)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(l/s/km²)
1	Riviere des Lacs	49	77	235	14.1	0.2	0.6	1.2	2.7	5.9	11.9	40.6	0.2	0.6	1.3	2.5	5.5	12.5	46.3	32.7
2	Riviere Bleue	32	33	1	10.9	0.1	0.3	0.5	0.9	1.9	3.6	23.4	0.1	0.3	0.4	8.0	1.8	3.7	15.5	25.3
3	Riviere des Pirogues	16	104	5	17.6	0.4	0.9	1.5	2.7	4.8	8.2	20.3	0.5	0.9	1.5	2.5	4.4	8.3	32.1	23.7
4	La coulée	15	44	10	10.9	0.1	0.2	0.5	1.0	2.0	3.9	11.9	0.1	0.3	0.4	0.9	1.9	3.8	18.1	20.9
5	Dumbéa Est	31	51	120	11.7	0.1	0.4	0.7	1.4	2.8	5.3	15.6	0.2	0.4	0.7	1.2	2.7	5.5	28.6	23.8
6	Dumbéa Nord	38	32	50	8.4	0.1	0.2	0.4	8.0	1.6	3.0	9.0	0.1	0.2	0.4	0.7	1.4	3.2	17.4	21.4
7	Couvelée	39	40	30	12.4	0.1	0.2	0.3	0.6	1.2	2.3	6.7	0.1	0.2	0.3	0.5	1.1	2.5	12.2	13.4
8	Tontouta	41	385	22	37.6	0.9	2.2	3.7	6.7	12.2	20.9	52.5	1.8	2.6	3.7	5.7	10.2	21.0	124.0	14.9
9	Ouenghi	45	212	10	26.5	0.4	1.1	1.9	3.5	6.6	11.6	30.9	8.0	1.3	1.8	3.0	5.7	12.6	65.7	14.0
10	La Foa	28	116	19	22.1	0.0	0.2	0.4	0.9	2.1	4.5	16.7	0.1	0.2	0.4	8.0	1.7	4.5	43.6	6.7
11	Boghen	49	113	31	19.9	0.1	0.2	0.5	1.0	2.0	4.0	12.4	0.2	0.3	0.5	8.0	1.6	4.2	31.6	7.4
12	Papainda	27	9	50	5.8	0.0	0.0	0.0	0.1	0.1	0.2	0.6	0.0	0.0	0.0	0.1	0.1	0.2	1.4	6.4
13	Boutana	43	181	28	34.4	0.0	0.2	0.3	8.0	1.8	3.8	14.0	0.1	0.2	0.3	0.7	1.5	4.0	32.0	3.7
14	Faténaoué	38	111	30	30.6	0.0	0.1	0.1	0.4	0.9	2.3	10.4	0.0	0.1	0.1	0.3	8.0	2.3	15.2	2.9
15	Diahot	43	248	3	54.6	0.2	0.6	1.1	2.3	4.6	8.7	25.9	0.4	8.0	1.1	1.9	3.4	8.5	84.8	7.6
16	Ouaième	31	325	10	33.6	0.5	1.5	2.9	5.8	11.8	22.2	66.0	1.1	1.9	2.9	4.7	9.7	22.2	200.9	14.5
17	Tipindje	52	252	7	32.7	0.1	0.4	1.0	2.2	5.2	11.1	40.9	0.3	0.6	0.9	1.8	3.8	12.0	145.8	7.0
18	Tiwaka	47	261	15	37.2	0.5	0.5	2.5	5.0	10.0	18.6	53.9	0.9	1.6	2.5	4.3	8.1	17.4	157.2	16.5
19	Tchamba	45	72	15	19.1	0.1	0.4	8.0	1.8	3.8	7.5	24.3	0.2	0.5	8.0	1.6	3.5	7.8	40.1	22.4
20	Nimbaye	35	283	3	40.8	0.2	0.7	1.5	3.2	7.2	14.8	50.9	0.4	0.9	1.4	2.7	6.4	16.2	109.4	9.4
21	Houailou	52	266	18	24.4	0.3	0.9	1.7	3.4	7.0	13.3	40.1	0.5	1.1	1.6	3.0	6.0	13.8	92.3	11.2
22	Thio	22	345	15	33.4	0.4	1.1	2.0	4.0	7.8	14.4	41.3	8.0	1.3	2.0	3.5	6.4	13.7	120.0	10.1

Modules interannuels et Débits Caractéristiques d'Etiages

:	Stations & Bassins Versants Modules interannuels N° Superficie Moy S10 Median H10 N° Noms											Débits	Caractér	istiques d	'Etiages				
N°	Noms	Superficie	Moy	S10	Median	H10	K3	H100	H10	H5	Median	S5	S10	S100	Gur	mbel	Log No	ormale	Tc. Tarris ^t
		(km²)	(m³/s)	(l/s/km²)	(l/s/km²)	(l/s/km²)		(l/s/km²)	Gd	P0		d	<i>(j)</i>						
1	Riviere des Lacs	77	5.7	44.9	63.6	115.0	2.6	18.0	11.0	8.8	4.9	2.9	2.2	1.1	0.23	0.33	-0.97	0.64	21
2	Riviere Bleue	33	1.8	26.1	53.1	75.9	2.9	18.8	12.6	10.6	7.5	5.4	4.5	2.9	0.09	0.22	-1.38	0.41	40
3	Riviere des Pirogues	104	3.5	15.6	28.9	51.2	3.3	19.3	12.8	10.7	7.4	5.3	4.4	2.9	0.29	0.67	-0.26	0.40	90
4	La coulée	44	1.9	32.9	40.7	54.9	1.7	16.1	10.2	8.3	5.2	3.3	2.6	1.5	0.11	0.20	-1.48	0.53	43
5	Dumbéa Est	51	3.1	38.3	59.8	69.3	1.8	14.9	10.5	9.2	7.1	5.6	5.0	3.7	0.07	0.32	-1.01	0.28	63
6	Dumbéa Nord	32	1.8	30.0	49.8	61.6	2.1	15.1	10.6	9.1	6.9	5.3	4.5	3.2	0.06	0.20	-1.50	0.33	45
7	Couvelée	40	1.3	17.4	30.4	61.3	3.5	10.7	7.3	6.3	4.6	3.4	2.9	2.0	0.06	0.17	-1.69	0.36	97
8	Tontouta	385	13.7	16.5	30.1	65.7	4.0	14.8	10.3	8.9	6.7	5.1	4.5	3.2	0.74	2.31	0.95	0.32	120
9	Ouenghi	212	7.4	12.4	24.2	68.9	5.5	14.0	9.5	8.0	5.9	4.4	3.8	2.7	0.41	1.10	0.22	0.34	111
10	La Foa	116	2.5	11.3	18.3	39.7	3.5	7.1	4.2	3.3	1.7	1.0	0.7	0.3	0.14	0.18	-1.60	0.71	41
11	Boghen	113	2.1	7.7	15.4	28.4	3.7	8.6	5.5	4.5	2.9	1.9	1.5	0.9	0.15	0.29	-1.11	0.51	67
12	Papainda	9	0.1	4.7	12.3	31.6	6.8	6.6	4.5	3.8	2.7	2.0	1.7	1.1	0.01	0.02	-3.70	0.38	115
13	Boutana	181	2.8	3.5	7.6	13.1	3.7	4.6	2.8	2.2	1.1	0.6	0.5	0.2	0.14	0.17	-1.59	0.69	81
14	Faténaoué	111	1.1	3.3	7.5	19.6	6.0	3.2	1.8	1.4	0.6	0.3	0.2	0.1	0.06	0.06	-2.73	0.94	47
15	Diahot	248	5.6	8.5	16.3	62.3	7.3	6.8	4.4	3.6	2.4	1.6	1.3	8.0	0.24	0.58	-0.42	0.43	80
16	Ouaième	325	17.4	27.7	42.8	114.1	4.1	14.6	9.7	8.1	5.7	4.1	3.5	2.3	0.69	1.61	0.61	0.38	49
17	Tipindje	252	10.3	12.0	25.1	77.2	6.4	7.4	4.7	3.8	2.4	1.6	1.3	8.0	0.29	0.52	-0.50	0.48	86
18	Tiwaka	261	13.9	25.6	40.0	95.7	3.7	17.4	11.3	9.4	6.3	4.2	3.4	2.0	0.67	1.44	0.49	0.48	78
19	Tchamba	72	3.1	24.7	45.3	71.8	2.9	15.5	10.1	8.3	5.6	3.8	3.1	1.9	0.17	0.35	-0.91	0.45	83
20	Nimbaye	283	10.0	12.9	22.4	31.6	2.5	9.2	5.6	4.5	2.6	1.6	1.2	0.7	0.44	0.61	-0.33	0.57	84
21	Houailou	266	7.6	11.9	20.9	45.7	3.8	11.7	7.7	6.3	4.3	2.9	2.3	1.4	0.46	0.99	0.12	0.47	76
22	Thio	345	9.8	9.3	21.3	56.3	6.1	11.0	7.2	5.9	4.0	2.8	2.3	1.5	0.57	1.18	0.32	0.42	68

Débits maximums de crues

5	Stations & Bassins Ve	ersants					Débits Ma	aximums de (Crues				
N°	Noms	Superficie	Q1	Q2	Q5	Q10	Q20	Q50	Q100		Parametres loi		Tps Conc°
	140113	(km²)	(m³/s/km²)	(m³/s/km²)	(m³/s/km²)	(m³/s/km²)	(m³/s/km²)	(m³/s/km²)	(m³/s/km²)	Gd	P0	С	(h)
1	Riviere des Lacs	77	1.9	2.6	4.8	6.2	7.6	9.3	10.6	146	150		10.5
2	Riviere Bleue	33	2.0	2.6	4.4	5.7	6.9	8.4	9.5	55	65		4.2
3	Riviere des Pirogues	104	1.7	2.4	4.5	5.8	7.2	8.9	10.1	190	180		1.4
4	La coulée	44	2.3	4.0	9.2	12.6	15.9	20.1	23.3	200	100		2.0
5	Dumbéa Est	51	3.9	5.7	11.2	14.9	18.4	23.0	26.4	250	200		1.3
6	Dumbéa Nord	32	3.1	4.7	9.6	12.8	16.0	20.0	23.0	140	100		1.5
7	Couvelée	40	1.1	2.5	6.9	9.8	12.6	16.2	18.9	155	45		1.7
8	Tontouta	385	0.7	1.7	4.6	6.5	8.4	10.8	12.7	1000	270		5.1
9	Ouenghi	212	1.0	1.9	4.6	6.3	8.0	10.2	11.9	500	220		3.8
10	La Foa	116	3.0	3.9	6.7	8.5	10.2	12.5	14.2	280	350		2.6
11	Boghen	113	2.7	4.2	8.8	11.9	14.9	18.7	21.6	465	300		1.6
12	Papainda	9	1.3	2.3	5.5	7.5	9.5	12.1	14.0	25	12		0.7
13	Boutana	181	1.4	2.4	5.6	7.7	10.4	12.4	14.4	510	250		2.4
14	Faténaoué	111	1.5	2.8	6.8	9.4	12.0	15.2	17.7	390	170		3.7
15	Diahot	248	2.0	2.9	5.8	7.7	9.5	11.9	13.6	625	500		4.4
16	Ouaième	325	4.9	6.5	11.4	14.6	17.7	21.7	24.7	1400	1600		1.9
17	Tipindje	252	3.2	5.0	10.6	14.3	17.9	22.5	26.0	1250	800		3.7
18	Tiwaka	261	3.3	4.7	9.3	12.3	15.2	19.0	21.8	1050	850		3.8
19	Tchamba	72	4.4	6.6	13.6	18.2	22.6	28.3	32.6	440	315		1.1
20	Nimbaye	283	2.1	3.9	9.6	13.3	16.8	21.5	24.9	1400	600		2.7
21	Houailou	266	1.9	2.5	5.4	8.1	12.8	17.8	24.3	450	500	-0.4	2.0
22	Thio	345	2.2	3.8	8.7	12.0	16.1	19.2	22.2	1500	750		3.9

Pluviométrie et Bilans hydrologiques

	Stations & Bassins Ve	ersants				Pluvi	ométrie						Bilan	s Hydrolog	giques		
N°	Noms	Superficie		(Quantile (mm	1)		Pmoy	Pmin	Pmax	Coef moy interannuel	fourchette inferieure	fourchette superieur	Précip°	Ecoul ^t Le	Ce	Δе
		(km²)	0.10	0.25	0.50	0.75	0.90	(mm)	(mm)	(mm)	%	%	%	(mm)	(mm)	(%)	
1	Riviere des Lacs	77	2464	2654	2819	2922	2991	2775	2316	3242	72	63	80	2957	2120	72	837
2	Riviere Bleue	33	2081	2102	2140	2188	2246	2156	2000	2482	70	38	91	2248	1563	70	685
3	Riviere des Pirogues	104	2113	2206	2339	2465	2580	2343	1988	2890	46	23	73	2523	1156	46	1367
4	La coulée	44	2097	2217	2341	2549	2726	2381	1983	2968	61	53	76	2279	1382	61	897
5	Dumbéa Est	51	2395	2512	2717	2980	3225	2762	2168	3556	81	64	94	2541	2062	81	480
6	Dumbéa Nord	32	2221	2331	2520	2826	3036	2581	1909	3362	66	47	77	2505	1663	66	842
7	Couvelée	40	1720	1849	2027	2230	2454	2057	1535	2844	41	20	50	2251	917	41	1333
8	Tontouta	385	1276	1486	1761	2054	2339	1787	974	3347	53	33	65	1765	927	53	838
9	Ouenghi	212	911	1172	1513	1778	1983	1484	801	2437	58	34	75	1428	824	58	605
10	La Foa	116	1484	1616	1771	1928	2012	1762	1304	2217	50	33	66	1461	725	50	737
11	Boghen	113	1513	1651	1782	1901	1998	1769	1294	2308	37	16	53	1404	519	37	885
12	Papainda	9	1027	1062	1286	1632	1774	1346	1005	1801	32	18	43	1520	494	32	1027
13	Boutana	181	1117	1295	1576	1856	2004	1578	973	2396	27	9	41	1709	461	27	1248
14	Faténaoué	111	1229	1308	1488	1696	1883	1529	1131	2382	25	8	39	1553	390	25	1164
15	Diahot	248	1196	1324	1594	2118	2487	1744	1097	3479	50	19	81	1602	796	50	807
16	Ouaième	325	1857	2132	2546	2942	3393	2578	1507	4107	72	40	95	2213	1589	72	624
17	Tipindje	252	1736	1814	1984	2158	2337	2008	1626	2811	44	17	68	1959	861	44	1097
18	Tiwaka	261	1895	2018	2190	2389	2600	2222	1636	3101	46	25	67	2642	1223	46	1419
19	Tchamba	72	2326	2404	2502	2601	2701	2508	2232	2927	58	34	92	2627	1529	58	1098
20	Nimbaye	283	1937	2031	2213	2401	2532	2221	1622	2939	43	25	62	2467	1052	43	1415
21	Houailou	266	1648	1733	1861	1999	2161	1885	1545	2629	50	25	75	1810	897	50	913
22	Thio	345	1260	1371	1571	1826	2061	1619	1076	2716	57	31	95	1412	811	57	601

Altitudes et Pentes

Statio	ons & Bassins Versa	nts				Altit	udes							Per	ites			
N°	Noms	Superficie			Quantile (m)		Zmoy	Zmin	Zmax			Quantile (%))		imoy	imin	imax
• •		(km²)	0.1	0.25	0.5	0.75	0.9	(m)	(m)	(m)	0.1	0.25	0.5	0.75	0.9	(%)	(%)	(%)
1	Riviere des Lacs	77	248	253	269	304	384	293.6	242	651	0.4	0.9	2.6	12.9	28.0	8.8	0.0	62.6
2	Riviere Bleue	33	133	148	171	238	338	204.6	11	591	2.7	4.8	9.3	20.3	31.5	13.9	0.3	72.4
3	Riviere des Pirogues	104	83	122	167	265	369	200.6	16	603	5.0	8.9	15.4	25.0	35.6	18.1	0.0	77.3
4	La coulée	44	88	187	329	461	574	330.7	10	782	15.0	22.8	31.4	39.5	46.8	31.2	0.2	71.8
5	Dumbéa Est	51	257	352	492	659	790	512.7	133	1080	16.5	23.5	32.4	42.7	51.3	33.3	0.4	79.2
6	Dumbéa Nord	32	254	387	557	741	923	570.9	64	1188	26.7	37.8	47.5	57.2	65.3	46.7	1.1	89.3
7	Couvelée	40	191	305	465	650	825	488.0	29	1111	24.3	34.9	46.2	56.2	65.4	45.2	0.9	89.3
8	Tontouta	385	177	312	519	731	893	530.4	18	1586	20.6	30.2	40.6	51.0	60.7	40.6	0.2	97.4
9	Ouenghi	212	95	263	498	738	932	510.2	14	1397	11.5	26.9	42.0	55.7	67.4	41.1	0.0	105.0
10	La Foa	116	131	256	426	585	708	428.7	20	1045	10.9	19.1	28.7	38.6	47.1	29.2	0.0	99.0
11	Boghen	113	222	310	401	510	644	419.9	59	1089	10.8	17.3	25.7	34.5	43.5	26.5	0.2	75.7
12	Papainda	9	95	118	243	588	872	370.0	59	1059	3.9	6.7	28.9	52.0	64.2	31.0	1.0	84.9
13	Boutana	181	94	145	250	458	575	309.8	29	1129	5.8	11.3	20.5	32.4	43.4	23.0	0.0	95.4
14	Faténaoué	111	114	177	292	421	534	317.2	25	1151	12.7	20.4	29.9	39.5	48.2	30.6	0.2	91.6
15	Diahot	248	77	155	396	675	821	430.4	10	1356	8.3	15.3	25.5	35.4	43.9	26.0	0.0	78.3
16	Ouaième	325	246	334	471	660	899	528.1	9	1611	13.2	21.4	31.8	42.5	52.4	32.6	0.2	122.4
17	Tipindje	252	154	229	347	515	672	386.7	0	1342	11.6	19.5	29.3	39.8	50.0	30.7	0.0	327.7
18	Tiwaka	261	173	237	323	484	686	383.2	18	1370	8.8	15.7	24.8	33.5	41.4	25.3	0.4	90.5
19	Tchamba	72	115	189	319	462	567	331.8	0	881	14.3	22.3	31.3	39.8	47.2	34.5	0.0	406.6
20	Nimbaye	283	130	243	359	459	567	363.4	0	1302	10.2	17.2	26.3	35.8	44.2	27.1	0.0	281.1
21	Houailou	266	104	193	313	456	627	355.1	23	1423	9.3	16.3	25.3	35.2	46.0	27.0	0.2	116.0
22	Thio	345	133	232	390	585	810	433.2	0	1344	12.4	20.1	29.5	40.2	51.5	31.1	0.0	391.4

Chemin hydraulique

	Stations & Bassins Ve	ersants						Chemin I	hydraulique					
N°	Noms	Superficie			Quantile (%)			ich	ie	part < 5%	Tps Conc°	fourchette inferieure	fourchette superieure	V de transfert
		(km²)	0.10	0.25	0.50	0.75	0.90	(%)	(%)	(%)	(h)	(h)	(h)	(m/s)
1	Riviere des Lacs	77	0.0	0.0	0.0	0.3	1.3	0.6	0.1	100	10.5	8.72	10.63	0.37
2	Riviere Bleue	33	0.2	0.5	1.4	3.4	9.9	4.9	3.4	79	4.2	3.80	5.07	0.72
3	Riviere des Pirogues	104	0.1	0.2	0.5	1.8	7.2	2.8	1.1	85	1.4	1.40	2.54	3.5
4	La coulée	44	0.5	3.0	9.3	21.6	32.4	6.5	0.4	68	2.0	1.91	2.53	1.5
5	Dumbéa Est	51	0.2	1.2	2.2	11.6	22.8	7.7	0.4	62	1.3	1.19	1.73	2.5
6	Dumbéa Nord	32	0.7	1.3	4.0	16.2	35.9	11.5	0.9	54	1.5	1.43	2.18	1.6
7	Couvelée	40	0.2	0.4	1.7	8.3	28.3	8.3	2.0	69	1.7	1.71	2.90	2.0
8	Tontouta	385	0.1	0.2	0.5	1.4	5.1	2.7	0.2	90	5.1	4.32	5.60	2.0
9	Ouenghi	212	0.6	1.0	5.9	17.9	30.7	4.6	0.3	44	3.8	3.50	5.07	1.9
10	La Foa	116	0.0	0.1	0.4	3.2	9.5	3.3	1.0	81	2.6	2.26	2.90	2.4
11	Boghen	113	0.2	0.4	8.0	2.4	8.8	3.0	0.1	83	1.6	1.39	1.91	3.4
12	Papainda	9	1.0	2.6	5.9	37.8	50.7	18.3	2.0	48	0.7	0.69	0.91	2.3
13	Boutana	181	0.1	0.1	0.3	0.9	3.4	1.7	0.3	92	2.4	2.23	2.80	4.0
14	Faténaoué	111	0.1	0.2	0.2	0.8	2.8	1.8	0.5	92	3.7	3.35	4.53	2.3
15	Diahot	248	0.1	0.1	0.3	1.5	5.0	1.9	0.1	90	4.4	4.16	4.88	3.4
16	Ouaième	325	0.0	0.1	0.5	1.8	5.5	2.4	2.9	88	1.9	1.47	3.22	4.9
17	Tipindje	252	0.1	0.1	0.4	1.0	3.9	2.0	0.2	92	3.7	3.37	4.11	2.5
18	Tiwaka	261	0.1	0.2	0.4	1.2	9.2	3.5	0.8	86	3.8	3.29	3.83	2.7
19	Tchamba	72	0.2	0.3	0.6	1.5	9.4	3.2	0.8	83	1.1	0.93	1.29	4.8
20	Nimbaye	283	0.1	0.1	0.3	1.0	3.4	1.4	0.2	93	2.7	2.56	3.28	4.2
21	Houailou	266	0.0	0.1	0.3	1.2	20.3	5.3	0.2	83	2.0	1.93	2.36	3.4
22	Thio	345	0.1	0.1	0.3	0.7	4.0	1.9	0.2	92	3.9	3.81	5.81	2.4

Géologie

5	Stations & Bassins Ve	rsants								Geologie							
N°	Noms	Superficie	Série Boghen	Serpentinite et Silice	Roches basiques à ultra basiques	Alluvions Colluvions Anciennes	Alluvions Colluvions Modernes	Complexe Silico Argileux	Basalte de Kone	Terres et Alterites	Eocene Calcaire	Flysh Widflysh Arenites	Flysh à brèches	Formations greseuses rhyolites basaltes	Tuffs Mesozoique	Schistes Micashistes	Glaucophanites
		(km²)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	Riviere des Lacs	77	0.0	0.0	2.1	0.0	0.0	0.0	0.0	97.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	Riviere Bleue	33	0.0	0.0	4.7	0.0	0.0	0.0	0.0	95.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	Riviere des Pirogues	104	0.0	0.0	9.7	0.0	0.0	0.0	0.0	90.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	La coulée	44	0.0	0.0	35.9	0.0	5.1	0.0	0.0	59.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	Dumbéa Est	51	0.0	0.2	62.3	1.2	0.0	0.0	0.0	36.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	Dumbéa Nord	32	0.0	0.0	96.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	Couvelée	40	0.0	0.0	88.1	0.0	0.1	0.0	0.0	11.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	Tontouta	385	0.0	0.0	72.5	0.0	2.7	0.0	0.0	24.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	Ouenghi	212	0.0	0.4	63.0	3.7	2.1	1.6	1.9	19.2	0.4	4.9	0.7	2.1	0.0	0.0	0.0
10	La Foa	116	0.0	3.2	0.0	1.4	0.0	2.5	0.0	0.0	0.0	0.0	0.0	0.0	92.8	0.0	0.0
11	Boghen	113	83.6	6.5	7.2	0.0	0.0	1.1	0.0	1.2	0.3	0.0	0.0	0.0	0.0	0.0	0.0
12	Papainda	9	0.0	6.7	32.4	11.5	0.0	1.8	33.6	14.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	Boutana	181	1.2	4.4	7.7	3.7	0.0	1.6	4.6	3.4	0.0	0.0	0.0	16.9	56.6	0.0	0.0
14	Faténaoué	111	45.3	3.9	5.6	0.0	0.5	6.3	1.0	0.9	0.0	0.0	0.0	9.8	12.7	14.0	0.0
15	Diahot	248	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	98.9	0.7
16	Ouaième	325	0.0	4.3	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	2.8	0.0	92.5	0.0
17	Tipindje	252	31.0	7.0	8.6	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0	1.1	14.7	36.3	0.0
18	Tiwaka	261	58.9	11.8	6.8	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.3	13.7	6.5	0.0
19	Tchamba	72	0.0	0.7	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	99.0	0.0	0.0
20	Nimbaye	283	2.2	8.0	2.2	0.0	0.5	0.0	0.1	1.1	0.0	0.0	0.0	17.5	75.4	0.0	0.0
21	Houailou	266	46.3	4.4	7.0	0.9	1.0	0.0	0.2	4.9	0.2	0.0	0.0	2.4	32.7	0.0	0.0
22	Thio	345	0.0	8.5	20.8	0.2	1.9	0.4	1.7	11.1	2.4	3.0	0.0	3.6	46.4	0.0	0.0

Occupation des sols

Stati	ons & Bassins Versa	nts			Оссі	upation des	sols		
N°	Noms	Superficie	Sol Nu	Savane	Broussaille	Maquis Minier	Maquis Minier Dense	Vegetation Dense	Eau
		(km²)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	Riviere des Lacs	77	0.5	0.2	1.8	34.0	44.9	13.1	5.5
2	Riviere Bleue	33	3.9	0.1	2.8	27.1	42.8	22.7	0.6
3	Riviere des Pirogues	104	1.5	0.4	0.4	41.2	34.2	21.9	0.4
4	La coulée	44	5.3	0.2	0.0	32.5	40.8	20.6	0.5
5	Dumbéa Est	51	0.2	0.0	0.7	24.5	28.3	45.4	0.9
6	Dumbéa Nord	32	0.2	0.0	0.4	8.2	23.4	66.0	1.7
7	Couvelée	40	0.4	0.0	0.9	7.6	22.6	67.5	1.0
8	Tontouta	385	0.7	0.4	3.1	28.0	45.2	21.0	1.6
9	Ouenghi	212	0.9	5.9	4.2	22.4	40.1	25.6	0.9
10	La Foa	116	0.0	12.0	22.5	0.1	0.1	64.6	0.7
11	Boghen	113	0.0	15.6	10.2	2.1	3.1	68.7	0.3
12	Papainda	9	3.2	20.3	10.0	42.4	13.2	10.9	0.0
13	Boutana	181	0.7	42.7	15.5	8.2	5.0	27.6	0.3
14	Faténaoué	111	0.2	9.0	33.5	3.5	7.2	45.8	0.7
15	Diahot	248	0.1	43.1	19.1	0.0	0.0	36.7	1.0
16	Ouaième	325	0.2	19.5	24.0	0.1	0.0	55.4	0.9
17	Tipindje	252	0.2	9.3	21.2	4.3	7.3	56.9	0.7
18	Tiwaka	261	0.3	14.0	11.1	7.8	8.0	58.3	0.6
19	Tchamba	72	0.0	6.2	12.3	0.0	0.0	81.2	0.2
20	Nimbaye	283	0.3	6.0	27.9	1.1	1.7	62.2	8.0
21	Houailou	266	0.0	14.8	25.2	4.5	3.1	52.1	0.3
22	Thio	345	0.7	7.8	18.0	13.6	21.6	37.5	8.0