

Atelier sur les indicateurs environnementaux en eau douce

du lundi 12 au vendredi 16 mars 2010

Démarche de validation, expertise scientifique et recommandations

Virginie Archaimbault

Session Plénière 3 : de l'IBNC à l'IBS

Mardi 13 avril 2010

Documents consultés

- Thèse Nathalie Mary 1999 : Caractérisations physicochimique et biologique des cours d'eau de Nouvelle Calédonie, Proposition d'un indice biotique fondé sur l'étude des macroinvertébrés benthiques
- Rapport 2007 (N. Mary & C. Flouhr): Mise en place d'un indice biologique spécifique aux terrains miniers en Nouvelle Calédonie
- Guide méthodologique IBNC et IBS 2007 (N. Mary)
- + beaucoup d'échanges avec Nathalie Mary concernant chaque étape de la construction de la méthode et de l'indice

Objectifs du travail

- Lecture critique des méthodologies et des indices
- Apporter un recul métropolitain et européen (10 ans de questionnement)
- Propositions de piste d'évolution
- Recommandations pour stabilisation
- Démarches de validation et normalisation

Apporter des éléments de réponse étape par étape selon la démarche de la session plénière 2

Etape 1 L'échantillonnage

1er constat : manque de précision

- Nature des substrats potentiellement présent
- Définition des classes granulométriques
- Evaluation de la vitesse de courant

- Nature des substrats potentiellement présent
- Définition des classes granulométriques
- Evaluation de la vitesse de courant

Actuellement

Ordre de priorité des micro-habitats échantillonnés en fonction du support et de la vitesse du courant

	Vitesse du courant	Cascade	Rapide	Moyenne	Faible
	Support				
1	Bryophytes				
2	Autres plantes aquatiques				
3	Éléments organiques grossiers (litières, branchages, racines)				
4	Cailloux / galets				
5	Graviers				
6	Roche mère / Blocs				
7	Vase				
8	Sable et limon				

- Séparation des éléments organiques grossiers (litière vs racines)
- Séparation des blocs de la roche mère
- Algues?
- Définition précises des classes granulométriques
- Mesure de la vitesse de courant (lim de classe)

Nature des substrats potentiellement présent

Définition des classes granulométriques

Evalu

			<u> </u>	iotiopoio
luation de la	vitesse de courant	+	Ιн	abitabilité
Bryoph	ytes	11		
Sperma	aphytes immergés (hydrophytes)	10		
Débris	organiques grossiers (litières)	9		
Chevel	us racinaires, supports ligneux	8		
	ents minéraux de grande taille s, galets) (25 à 250 mm)	7		
Blocs (: d'éléme (25 à 25	> 250 mm) inclus dans une matrice ents minéraux de grande taille 50 mm)	6		2 dar
Granula mm)	ats grossiers (graviers) (2 à 25	5		
•	aphytes émergents de strate hélophytes)	4		
	sédiments fins (< 0,1 mm) avec organiques fins	3		
Sables	et limons (< 2mm)	2		
Algues		4		

Surfaces uniformes dures naturelles et

artificielles (roches, dalles, marnes et argiles compactes)

Exemple de la métropole

0

2 dans l'IBGN

- Nature des substrats potentiellement présent
- Définition des classes granulométriques
- Evaluation de la vitesse de courant

Classes de vitesse

Nulle

V < 5 cm/s

Lente

 $25 > V \ge 5$ cm/s

Moyenne

 $75 > V \ge 25$ cm/s

Rapide

 $V \ge 75$ cm/s

1er constat : manque de précision

- Nature des substrats potentiellement présent
- Définition des classes granulométriques
- Evaluation de la vitesse de courant

1er constat : manque de précision

- Nature des substrats potentiellement présent
- Définition des classes granulométriques
- Evaluation de la vitesse de courant
- Techniques d'échantillonnage

Techniques d'échantillonnage

Exemple de la métropole

Dans la norme

Tableau 2 : mode de prélèvement des substrats :

Définition du substrat principal	Habitabilité	Récupération du substrat	Agitation du substrat seulement
Bryophytes	11		X (frotter, peigner)
Spermaphytes immergés (hydrophytes)	10	×	
Débris organiques grossiers (litières)	9	X (volume final (1) maximum 1 L environ)	
→ Chevelus racinaires libres dans l'eau (2)	8		X (frotter, peigner)

Dans le guide d'application

+ mode opératoire précis

Blocs (> 250 mm) inclus dans une matrice d'éléments minéraux de grande taille (25 à 250 mm) :

Placer le Surber à contre courant en aval du bloc. Soulever le bloc et prélever la partie sous-bloc, bien frotter le bloc pour récupérer tous les organismes fixés dessus.

Définition du substrat	Ordre	Protocole prélèvement			
Bryophytes	11	végétal seul (sur bloc) ou avec élément support (sur cailloux)			
Spermaphytes immergés (hydrophytes)	10	inclut la couche superficielle du sédiment			
Débris organiques grossiers (litières)	9	inclut la couche superficielle du sédiment			
Chevelus racinaires, supports ligneux	8	végétal seul			
Sédiments minéraux de grande taille (pierres, galets) (25 à 250 mm)	7	inclut les différentes classes granulométriques de sédiments			
Blocs (> 250 mm) inclus dans une matrice d'éléments minéraux de grande taille (25 à 250 mm)	6	inclut les sédiments et la faune associés au bloc (abris sous bloc)			
Granulats grossiers (graviers) (2 à 25 mm).	5	inclut les différentes classes granulométriques de sédiments			
Spermaphytes émergents de strate basse (hélophytes)	4	inclut la couche superficielle du sédiment			
Vases : sédiments fins (< 0,1 mm) avec débris organiques fins	3	couche superficielle du sédiment			
Sables et limons (< 2mm)	2	couche superficielle du sédiment			
Algues	1	inclut les éléments minéraux du support			
Surfaces uniformes dures naturelles et artificielles (roches, dalles, marnes et argiles compactes)	0	raclage de surface Observatoire			
		en Nouvelle-Calédonie			

1er constat : manque de précision

- Nature des substrats potentiellement présent
- Définition des classes granulométriques
- Evaluation de la vitesse de courant
- Techniques d'échantillonnage

1er constat : manque de précision

- Nature des substrats potentiellement présent
- Définition des classes granulométriques
- Evaluation de la vitesse de courant
- Techniques d'échantillonnage
- Stratégie d'échantillonnage

1er constat : manque de précision

- Nature des substrats potentiellement présent
- Définition des classes granulométriques
- Evaluation de la vitesse de courant
- Techniques d'échantillonnage
- Stratégie d'échantillonnage
 - Conditions lotiques ? Pertinence / objectif IBS

1er constat : manque de précision

- Nature des substrats potentiellement présent
- Définition des classes granulométriques
- Evaluation de la vitesse de courant
- Techniques d'échantillonnage
- Stratégie d'échantillonnage
 - Conditions lotiques ? Pertinence / objectif IBS
 - Habitabilité vs représentativité

Habitabilité vs Représentativité

2 objectifs différents

- Pourquoi ne pas coupler les 2 objectifs? RCS
 - Permet de valoriser l'existant
 - Permet d'assurer les continuités
 - Permet de mieux prendre en compte les altérations morphologiques
 - Comment échantillonner ?
 Au prorata des surface de recouvrement
 - Combien de prélèvement unitaire réaliser ?

Variable selon les objectifs (5, 8, 12, 20)
A tester (adaptation locale selon stratégie*)

Recommandations/phase terrain

- Augmentation du nombre de prélèvements en fonction de la représentativité des habitats
 - 5 semblent insuffisant : contribution trop importante des habitats les plus biogènes*/métriques biologiques
- Echantillonnage en zone lentique (IBS)
- Redécoupage des substrats (IBS et IBNC)

Etape 2 Le tri et la détermination id IBNC & IBS

Comment simplifier le tri?

- Cf préconisations Nathalie pendant session 2 : limitation du matériel à ramener au laboratoire
- Sous échantillonnage du substrat, mais, vérification de la totalité de l'échantillon (cf Rivpacs)
- Limiter le nombre d'organisme à sortir
 - Nombre mini selon la diversité puis comptage uniquement
 - Sous échantillonnage des taxons très abondants
- Exemple de la méthode AQEM

Quelles limites de détermination?

- OK avec remarques Nathalie en session 2 : ne pas regrouper les taxons sensibles
- Ne pas essayer de trop simplifier

Exemple de la métropole

Q : Jusqu'à quel niveau d'identification taxonomique pouvons nous aller pour un indice national qui doit être appliqué en routine ?

Quelles sont les familles ou groupes pour lesquels une identification au genre apporterait une sensible plus-value d'information ?

Etude de la diversité biologique et écologique intra famille

Recensement des difficultés rencontrées en détermination faunistique pour la réalisation du réseau de référence

Enquête DIREN 2006

																_	
T <i>a</i> xon	Lorraine	Franche Comté	Basse Normandie	Haute Normandie	Pays de Loire	Languedoc Roussillon	Ile de France AG	Ile de France CLC	Limousin	Centre	Rhone Alpes	BE AUXIME	BE AQUASCOP A. BERLY	BE AQUASCOP V. BOUCHAREYCHAS	Poitou Charente		SOMME
Capniidae	0	1	1	2	0	0	0	0	0	1	2	2	1	0	0		10
Chloroperlidae	1	2	3	3	0	0	3	0	1	1	2	3	3	3	3		28
Leuctridae	2	3	2	2	1	1	0	3	1	2	1	2	2	3	3		28
Perlidae	1	1	1	1	1	1	0	2	2	2	2	2	0	0	0		16
Perlodidae	1	3	1	1	1	1	0	2	2	2	2	2	1	3	0		22
Taeniopterygidae	1	3	1	0	0	1	0	0	1	1	1	1	1	3	3		17
Beraeidae	0	3	2	0	0	0	3	0	3	2	2	2	1	3	0		21
Brachycentridae	2	2	1	0	1	1	0	0	1	1	1	1	2	1	1		15
Glossosomatidae	1	3	1	2	0	3	0	2	3	0	3	3	1	3	3		28
Goeridae	1	0	1	1	1	3	3	2	1	3	1	3	1	3	3		27
Hydropsychidae	1	3	1	1	1	1	0	1	1	1	1	1	1	3	1		18
Hydroptilidae	1	3	3	1	1	1	0	2	1	1	2	2	1	3	3		25
Lepidostomatidae	1	1	2	2	1	2	0	0	1	1	1	2	1	0	0		15

Liste finie de difficulté d'identification

0 = difficulté non renseignée, 1 = facile, 2 = moyenne, 3 = difficile

1- Pour chaque genre

Attribution des groupes et sous-groupes: biologiques, écologiques et bio-écologiques Usseglio-Polatera et al. 2000, 2001

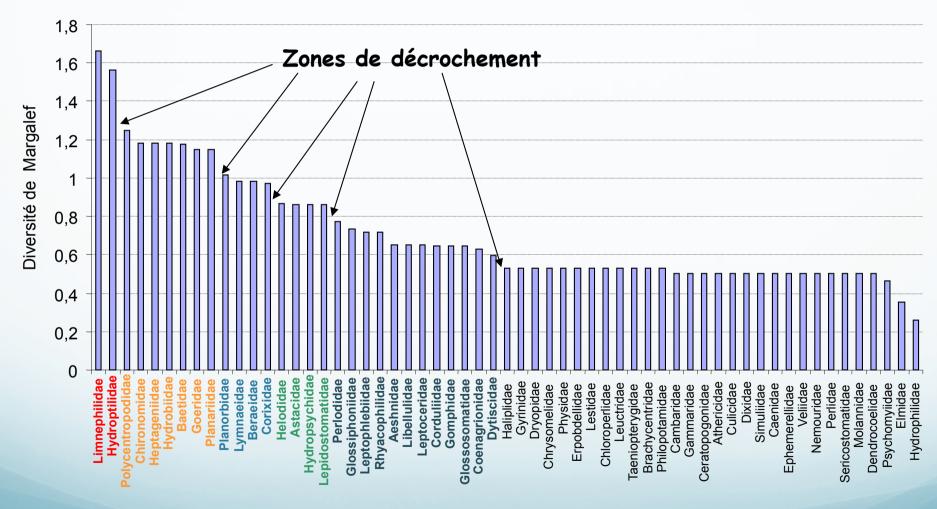
Biologiques : taille maximale potentielle, caractéristiques de reproduction (stratégie r vs K), type de nourriture utilisé et habitudes alimentaires

Ecologiques: distribution longitudinale et transversale, vitesse du courant, statut trophique

Bioécologiques: reproduction, respiration, nourriture, mode d'alimentation, niveaux saprobiques, distributions transversale et longitudinale, vitesse du courant, statut trophique

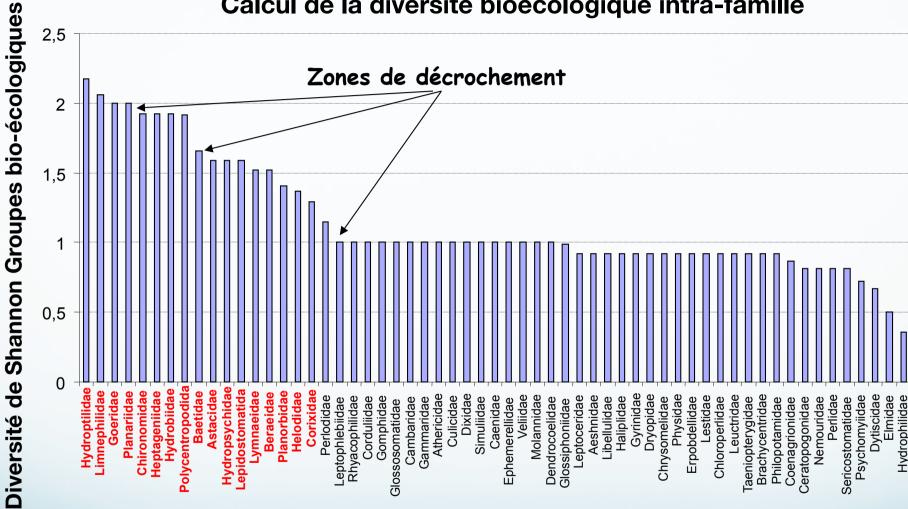
2- Pour chaque famille

Calcul de la diversité fonctionnelle intra-famille (Shannon, Margalef) selon chacun des critères de regroupement


$$H' = -\sum (q_i/Q) \text{ Log}_2(q_i/Q)$$
 Margalef = (S-1) / Log₂Q

Avec: S=richesse, Q=abondance

Exemple de diversité intra famille sur la base des groupes bio-écologiques selon Usseglio-Polatera et al., 2001



Calcul de la diversité bioécologique intra-famille

3- Etablissement d'une liste finie des familles les plus diversifiées Puis: Couplage de toutes les informations pour obtenir la liste finale

Comment valider l'identification? Peut-on s'en affranchir?

- Audit
- Validation croisée
- Formation diplomante

- Acceptabilité d'un seuil d'erreur (10 à 20% selon les cas)
- Evaluation de l'incertitude

Etape 3 Le calcul des scores

Taxons pris en comptes

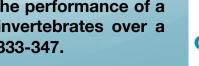
- OK pour le microbenthos
- Pas OK pour les taxons rares ou faiblement représentés
 - Soit combiner ces 2 informations
 - Soit travailler en % de représentativité sur les échantillons (pas abondance brute)
 - Risque de perte d'information
- Pas OK pour les taxons extrêmement fréquent
 - Ils jouent un rôle dans l'écosysteme
 - Leur disparition brusque ou variation de l'abondance peut être très informative
 - Risque de perte d'information / nouveaux taxons

Prise en compte de tous les taxons présents

Exemple du BMWP (Biological Monitoring Working Party)

Indice d'évaluation de la qualité du milieu basé sur la sensibilité des taxons à la contamination organique

Représentatif de la sensibilité des macroinvertébrés au manque d'oxygène



utilisé pour mettre en évidence une pollution chimique classique (sans tenir compte des toxiques)

BMWP = Somme des scores de sensibilité attribués à toutes les familles présentes dans la liste faunistique

> Chaque famille n'est comptée qu'une seule fois quel que soit le nombre d'espèce présente

Exemple du BMWP (Biological Monitoring Working Party)

Group	Families	Scores
Mayflies, Stoneflies, Tiverbug, Caddisflies or Sedgeflies	Siphlonuridae, Heptageniidae, Leptophlebiidae, Ephemerellidae, Potamanthidae, Ephemeridae, Taeniopterygidae, Leuctridae, Caprniidae, Perlodidae, Perlidae, Chloroperlidae, Aphelocheridae, Phryganeidae, Molannidae, Beraeidae, Odontoceridae, Leptoceridae, Goeridae, Lepidostomatidae, Brachycentridae, Sericostomatidae	10
Crayfish, Dragonflies	Astacidae, Lestidae, Agriidae, Gomphidae, Cordule gasteridae, Aeshnidae, Corduliidae, Libelluiidae	8
Mayflies, Stoneflies, Caddisflies or Sedge flies	Caenidae, Nemouridae, Rhyacophilidae, Polycentropidae, Limnephilidae	7
Snails, Caddisflies or Sedge flies, Mussels, Shrimps, Dragonflies	Neritidae, Vivipa ridae, Ancylidae, Hydroptilidae, Unionidae, Corophiidae, Gammaridae, Platycnemididae, Coenagriidae	6
Bugs, Beetles, Caddisflies or Sedgeflies, Craneflies/Blackflies, Flatworms	Mesoveliidae, Hydrometridae, Gerridae, Nepidae, Naucoridae, Notonectidae, Pleidae, Corixidae, Haliplidae, Hygrobiidae, Dytiscidae, Gyrinidae, Hydrophilidae, Clambidae, Helodidae, Dryopidae, Elmidae, Chrysomelidae, Curculionidae, Hydropsychidae, Tipulidae, Simuliidae, Planariidae, Dendrocoelidae	5
Mayflies, Alderflies, Leeches	Baetida e, Sialidae, Piscicolidae	4
Snails, Cockles, Leeches, Hog louse	Valvatidae, Hydrobiidae, Lymnaeidae, Physidae, Planorbidae, Sphaeriidae, Glossiphoniidae, Hirudidae, Erpobdellidae, Asellidae	3
Midges	Chironomidae	2
Worms	Oligochaeta (whole class)	1

• Exemple du **BMWP** (Biological Monitoring Working Party)

BMWP score	Category	Interpretation
0-10	Very poor	Heavily polluted
11-40	Poor	Polluted or impacted
41-70	Moderate	Moderately impacted
71-100	Good	Clean but slightly impacted
>100	Very good	Unpolluted, unimpacted

Calcul des scores

- Méthode bien documentée
- Différence IBNC et IBS : Pourquoi?
 - Quelle serait la meilleure approche?
- Question concernant l'obtention des 3 classes et de la typo
 - Non prise en compte d'une valeur quantifiée du colmatage
 - Non prise en compte des MES
- 3 classes est-ce suffisant?
 - A priori oui pour le calcul des scores
 - Moins évident pour déterminer un indice

Etape 4 Calcul de l'indice et Interprétation des résultats

Calcul de l'indice

- Prise en compte uniquement des taxons indicateurs
- Pourquoi ne pas prendre en compte la richesse?
 Pondération par Stot : Meilleure sensibilité de l'indice
- Exemple de l'ASPT (Average Score Per Taxa)

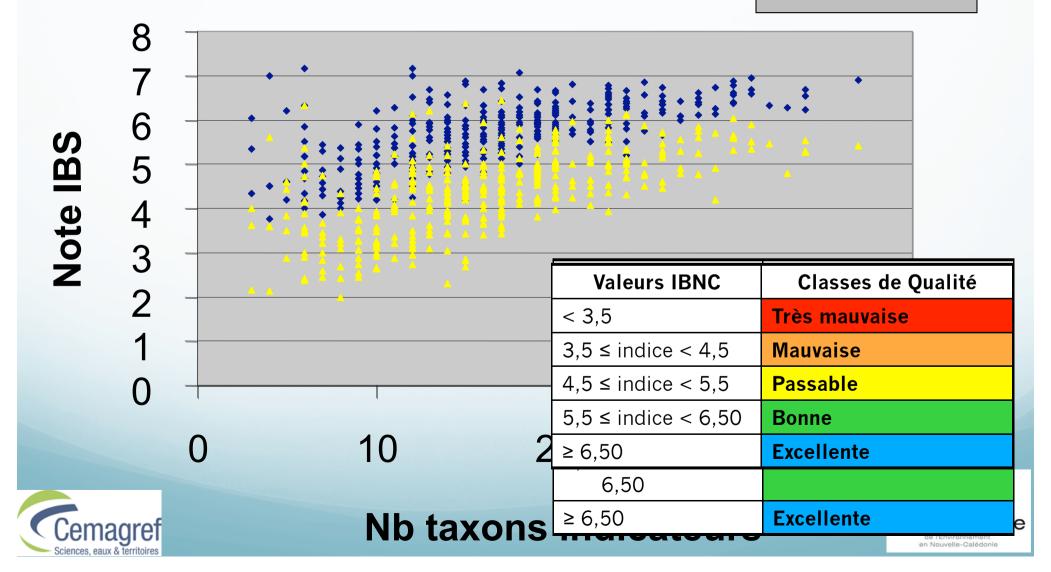
Indice de polluosensibilité dans les milieux ou l'écosystème a une faible capacité biogène

ASPT = Nombre de famille

ARMITAGE, P.D., D. MOSS, J.F. WRIGHT & M.T. FURSE 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites.- Water Res. 17, 333-347.

Calcul de l'indice

- Prise en compte uniquement des taxons indicateurs
- Pourquoi ne pas prendre en compte la richesse?
 Pondération par Stot : Meilleure sensibilité de l'indice
- Influence directe sur les résultats :
 - Très peu de valeurs déclassantes
 - Très peu de sites en très mauvaise qualité
 - Quelques résultats très discutables : ne reflétant à priori pas le milieu puisque classés en TBE alors que 4<Nb taxa indic<10
 - 1ère proposition d'amélioration simple et rapide de l'indice : pondérer la somme des scores non pas par la richesse des taxa indicateurs mais par la richesse totale (IBNC et IBS)



1er Essai d'application (n=366)

Beaucoup de déclassement, mais si attribution de score à tous les taxa : équilibrage des résultats

IBS Tax Ind

Calcul de l'indice

- Prise en compte uniquement des taxons indicateurs
- Pourquoi ne pas prendre en compte la richesse?
 Pondération par Stot : Meilleure sensibilité de l'indice
- Influence directe sur les résultats :
 - Très peu de valeurs déclassantes
 - Très peu de sites en très mauvaise qualité
 - Quelques résultats très discutables : ne reflétant à priori pas le milieu puisque classés en TBE alors que 4<Nb taxa indic<10

Average Score Per Taxa

Indice de polluosensibilité dans les milieux ou l'écosystème a une faible capacité biogène

> 5.4	Very Good
4.81 – 5.4	Good
4.21 – 4.8	Fair
3.61 – 4.2	Poor
<= 3.6	Very Poor

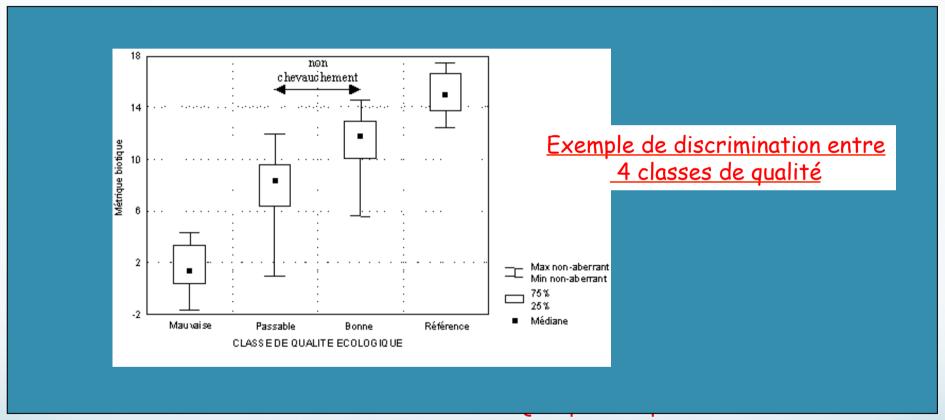
 $\Delta:0,59$

Alors que

 Δ : 0,75 IBS

Et

Δ:1 **IBNC**

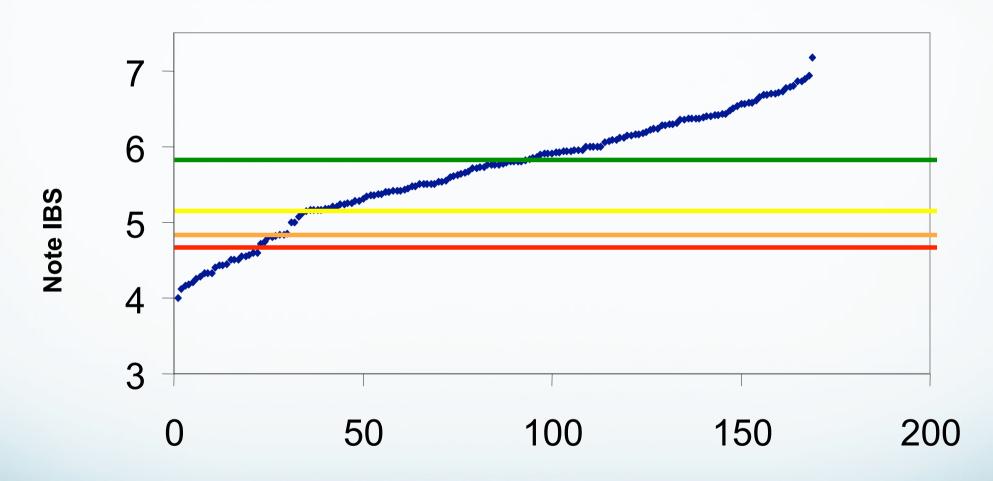


ARMITAGE, P.D., D. MOSS, J.F. WRIGHT & M.T. FURSE 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites.- Water Res. 17, 333-347.

Calcul de l'indice

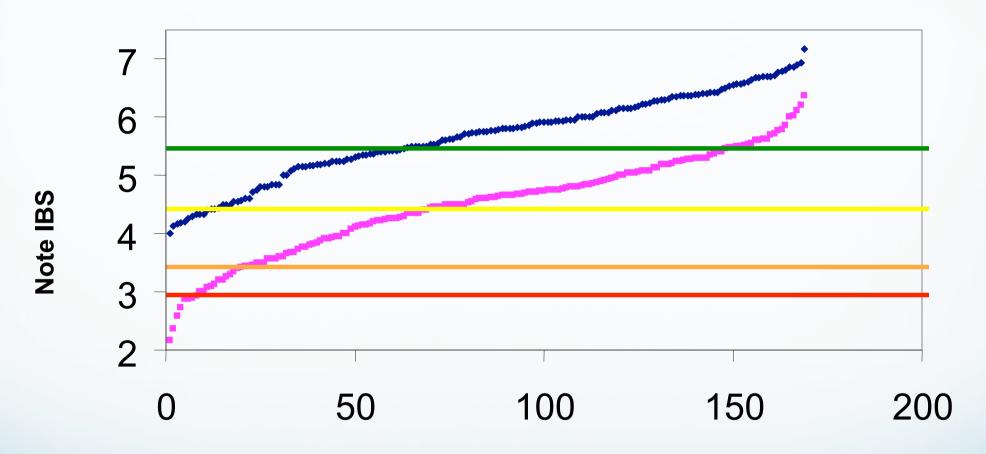
Prise en compte uniquement des taxons indicateurs

définition des seuils



Estimation visuelle de la limite des CQ (Box Plot cf jeudi...)

1er aperçu


Stations utilisées pour le calibrage de l'indice

1er aperçu

IBS Richesse

Stations utilisées pour le calibrage de l'indice

Etape 5 Domaine et limites d'application

Domaine et limites d'application

- Déjà précisés
- Dépendant de l'accessibilité du milieu
 - Modification du protocole, mais pas forcément de la construction de l'indice pour les autres taille de CE
 - Programme de validation large échelle avec moyens spécifiques (mésologiques, physiques, chimiques
 - Dépendant de l'accessibilité du milieu

Etapes supplémentaires vers la validation

- Uniformisation des termes dans les documents
- Validation en fonction de mesure des paramètres in situ
- Validation des CQ avec un autre jeu de données (indépendant de l'établissement des scores)
- Adaptation de l'échantillonnage aux méthodologies
- Si une évolution vers le DCE-compatible est souhaitée, prise en compte obligatoire des notions d'écart à la référence, de composition et d'abondance dans l'indice et prise en compte souhaitable de la représentativité du milieu dans la phase d'échantillonnage

Propositions

- Augmentation du nombre de prélèvements en fonction de la représentativité des habitats
- Echantillonnage en zone lentique (IBS)
- Redécoupage des substrats (IBS et IBNC)
- Couplage difficulté d'identification et acceptabilité de l'erreur
- Prise en compte de tous les taxons présents pour attribution de scores
- Prise en compte de Stot dans le calcul de l'indice
 Modification/validation des valeurs limites de CQ
- Validation des 5 CQ

Etapes supplémentaires pour validation ?

- Pour une validation institutionnelle de la méthode ?
- Pour une démarche de normalisation : exemple AFNOR (T95F, GT invertébrés rivières*)?
- Développement de la mise en réseau ?

