



# Atelier sur les indicateurs environnementaux en eau douce

du lundi 12 au vendredi 16 mars 2010


















# L'Indice Bio-S





Nathalie MARY (ETHYC'O)
Clémentine FLOUHR (HYTEC)



Session plénière 3 : de l'IBNC à l'IBS





## 1. Contexte de l'étude

## > Objectifs

- Mettre au point un indice biotique pour caractériser les perturbations d'ordre sédimentaire
- Cours d'eau drainant des substrats à dominante ultrabasique
- Activités minières passées ou actuelles (érosion)
  - → Disposer d'un outil de suivi de ces impacts
  - → A partir des données disponibles (IBNC)



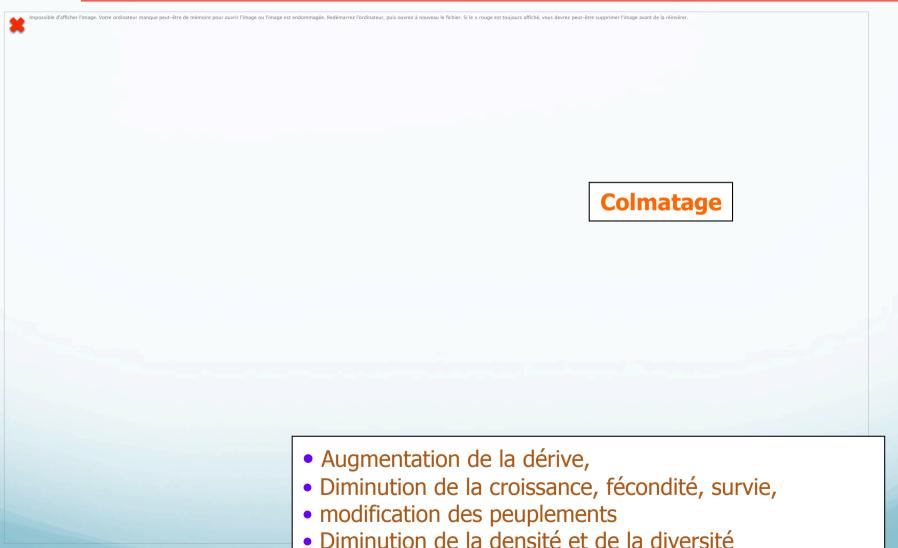


## 1. Contexte de l'étude

- Les substrats ultrabasiques
- Péridotites et serpentinites
- 1/3 de la superficie de la Grande Terre



- Décharges de stériles sur les versants, absence de gestion des eaux, ...
- → érosion, lessivage → pollution des rivières (hyper-sédimentation, engravement)
- 10 à 20 sites en activité








## 1. Contexte de l'étude

> Effets des sédiments fins sur la macrofaune benthique





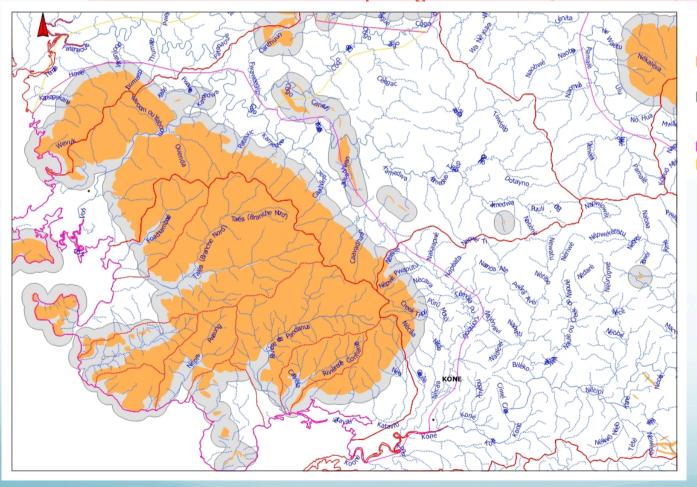


A. Synthèse des observations disponibles (oct. 1996/ sept. 2006) 655 observations (Données IBNC)

## B. Zones géologiques considérées

Zone d'influence directe : surfaces situées dans un environnement géologique à dominante ultrabasique

**331 observations** (185 stations)


 Zone d'influence indirecte : aval proche de la zone d'influence directe
 121 observations

> → Cours inférieurs soumis à des perturbations de type organique → non considérées

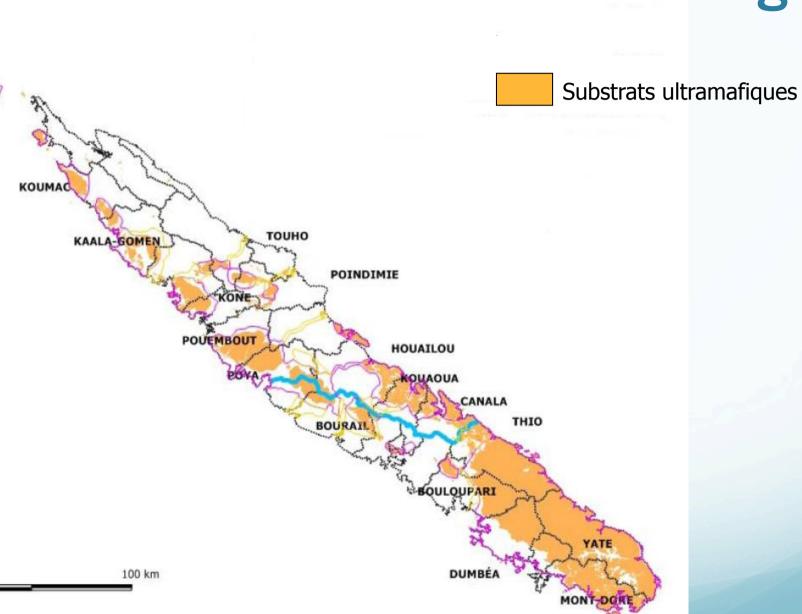




Exemple de délimitation de la zone d'influence directe : massifs du Koniambo et du Kathepaï (péridotites/cuirasses/latérites)



Nappe des péridotites et formations d'altération associées Zone tampon de 500 m

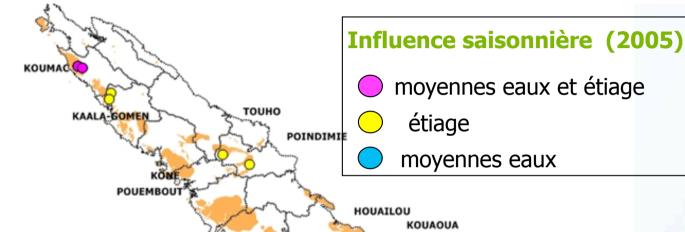

des zones d'influence (Geoimpact, 2006)

Limite de la zone d'influence dite "directe"

Limite de la zone d'influence dite "indirecte"











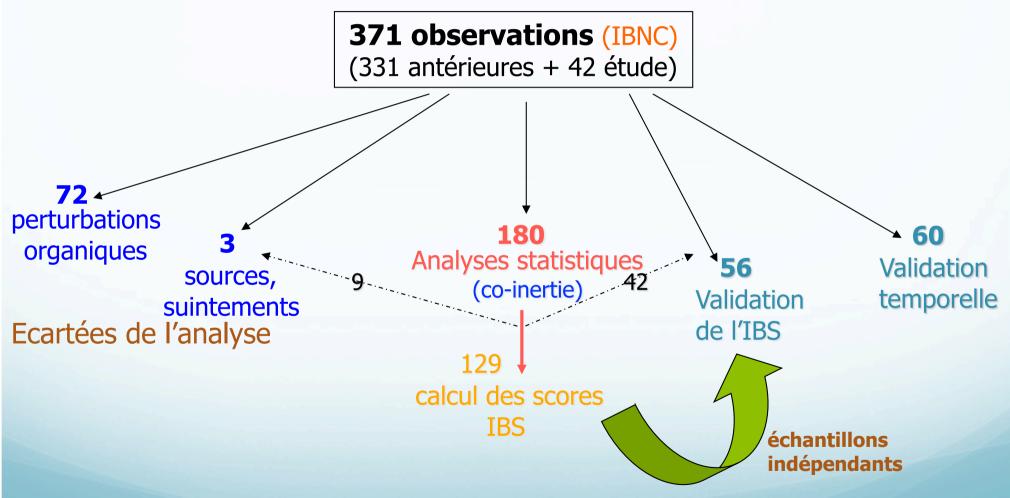




C. 32 stations complémentaires (2 campagnes / 42 observations)



BOURAI


- → Substrat ultramafique, hors influence anthropique
- sites préservés
- secteurs peu prospectés
- amont/aval ouvrages de décantation







## D. Données disponibles en zone d'infl. directe







#### E. Analyse des données (180 observations)

- ACM sur les caractéristiques mésologiques relevés dans chaque station (fiche terrain), 19 paramètres
- ACP sur les listes faunistiques disponibles (IBNC), 77 taxons
- Classifications hiérarchiques Typologies des observations
- Analyse de co-inertie (relation faune / milieu)
- Validées par J.-M. Olivier (Univ. Lyon 1 / ADE-4)





## Paramètres mésologiques considérés (ACM)

- Environnement général (maquis, forêt, cultures, tribus...)
- Largeur du lit mineur (m)
- Végétation des rives (couverture %, type)
- Ombrage (%)
- Granulométrie (différentes classes, %)
- Végétaux aquatiques (dont algues) (%)
- MO d'origine végétale (importance)
- > IBNC
- Conductivité (µS/cm)
- Erosion active (importance qté dépôts latéritiques)
- Altitude (m)
- Superficie du BV au site (km²)
- Ordre de drainage au site (Strahler)
- Proximité / concession minière existante (km)

Infos fiche terrain

Classes de modalité

1

Calculés pour l'étude (DTSI)





#### F. Mode de détermination des scores

- méthode proposée par Stark (1985)
- MCI (Macroinvertebrate Community Index) Nouvelle-Zélande
- Système des scores
- > 35 sites (13 cours d'eau) / 3 saisons d'échant.
- prélèvements de faune benthique
- sites groupés en 3 classes :
  - 1. Stations indemnes de perturbation (12)
  - 2. Stations peu à modérément polluées (9)
  - 3. Stations polluées (6)





#### F. Mode de détermination des scores

|                                           | Classe 1 Indemnes de perturbations | Classe 2 Peu à moyennement polluées | Classe 3 Polluées | Total              |
|-------------------------------------------|------------------------------------|-------------------------------------|-------------------|--------------------|
| Abondance relative moyenne du taxon i (%) | 5,58                               | 1,64                                | 0                 | 5,58+1,64+0 = 7,22 |
|                                           | 5,58/7,22                          | 1,64/7,22                           | 0/ <b>7,2</b> 2   |                    |
| Coefficient de pondération                | x <b>10</b>                        | x <b>5</b>                          | x <b>1</b>        |                    |
| Score                                     | 7,7                                | 1,1                                 | 0                 | 8,8 <b>≈ 9</b>     |

Abondance relative taxon i = (nb d'individus de i / nb d'individus total) x 100

$$MCI = \left[ \frac{1}{n} \sum_{i=1}^{i=n} s_i \right] \times 20 \text{ n : nombre total de taxa indicateurs si : score du taxon i}$$





#### A. Structuration des données (180 observations)

- Typologie mésologique (ACM, 19 paramètres) → environnement général, superficie du BV, ordre de drainage, granulométrie dominante 6 groupes
- Typologie faunistique (ACP, 77 taxa) → densité animale, richesse taxonomique, nombre de taxa polluo-sensibles (indice EPT)
   5 groupes
- Forte co-structure entre la faune et son milieu (co-inertie)
  - → environnement général, végétation des berges, signes d'érosion active (dépôts latéritiques), IBNC
  - → richesse taxonomique, nombre de taxa polluo-sensibles

4 groupes

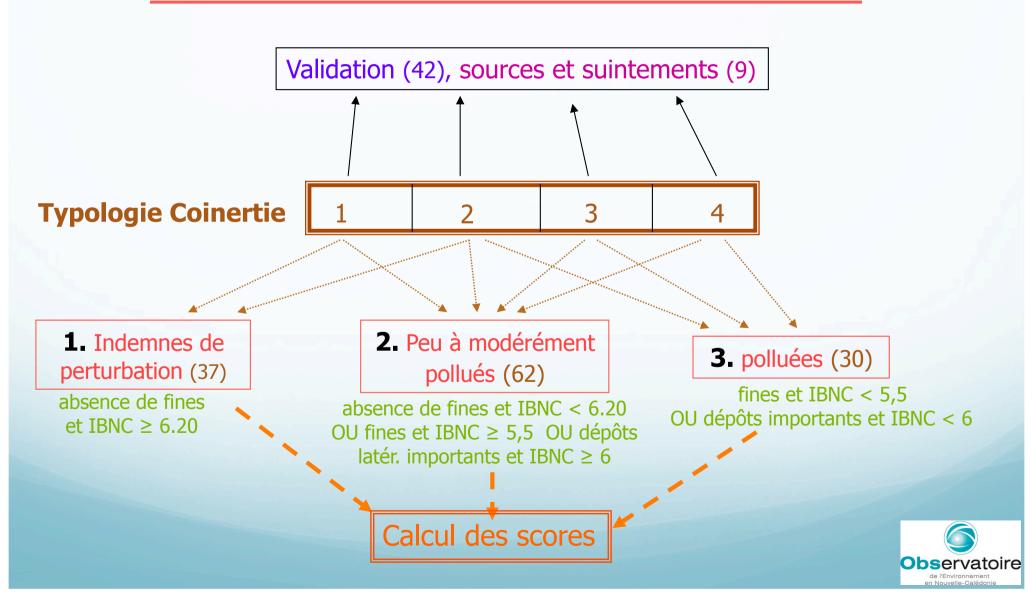




#### A. Structuration des données (180 observations)

#### Typologie résultant de la coinertie




- 1. Stations préservées en milieu forestier Porouda, Néa...
- 2. Stations sur maquis minier, moyennement perturbées Taléa, Népia, Pandanus, ...
- 3. Cours inférieurs engravés des grandes rivières Dumbéa, Tontouta, ...
- 4. stations avec dépôts latéritiques importants Sud (Koué, Kadji, ..)

Rich. taxon. Indice EPT





#### B. Calcul des scores des taxons indicateurs





#### Mode de détermination des scores

|                                           | Classe 1 Indemnes de perturbations | Classe 2 Peu à moyennement polluées | Classe 3 Polluées | Total              |
|-------------------------------------------|------------------------------------|-------------------------------------|-------------------|--------------------|
| Abondance relative moyenne du taxon i (%) | 5,58                               | 1,64                                | 0                 | 5,58+1,64+0 = 7,22 |
|                                           | 5,58/7,22                          | 1,64/7,22                           | 0/ <b>7,2</b> 2   |                    |
| Coefficient de pondération                | x <b>10</b>                        | x <b>5</b>                          | x <b>1</b>        |                    |
| Score                                     | 7,7                                | 1,1                                 | 0                 | 8,8 <b>≈ 9</b>     |

Abondance relative taxon i = (nb d'individus de i / nb d'individus total) x 100

→ 97 % des scores obtenus selon cette formule (valeurs arrondies au nombre entier le plus proche)



#### B. Calcul des scores des taxons indicateurs

- > Scores compris entre 1 et 10
- > Taxa non pris en compte :
  - rares (occurrence <3): achètes ; Planorbiidae *Gyraulus sp.* ; Gerridae et Hydrometridae ; Ephydridae et Muscidae ; Helicophidae et Kokiriidae; Dytiscidae et Gyrinidae
  - faiblement représentés (total individus < à 20) : Thiaridae *Melanoides sp.*; Corduliidae ; Leptoceridae *NGD sp.*
  - microbenthos (ostracodes, copépodes, hydracariens)
  - extrêmement fréquents : Hydrospychidae ; Chironomidae Tanytarsini et Tanypodinae
  - → 56 taxa indicateurs





#### Exemple de scores de polluo sensibilité

|                             | IBS | IBNC |
|-----------------------------|-----|------|
| TRICHOPTERES                |     |      |
| Ecnomidae                   | 4   | 8    |
| Hydroptilidae               | 3   | 5    |
| Helicopsychidae             | 8   | 8    |
| Triplectides (Leptoceridae) | 8   | 6    |
| DIPTERES                    |     |      |
| Blephariceridae             | 4   | 10   |
| Psychodidae                 | 10  | 4    |
| Forcipomyiinae              | 8   | 8    |
| Simuliidae                  | 6   | 1    |



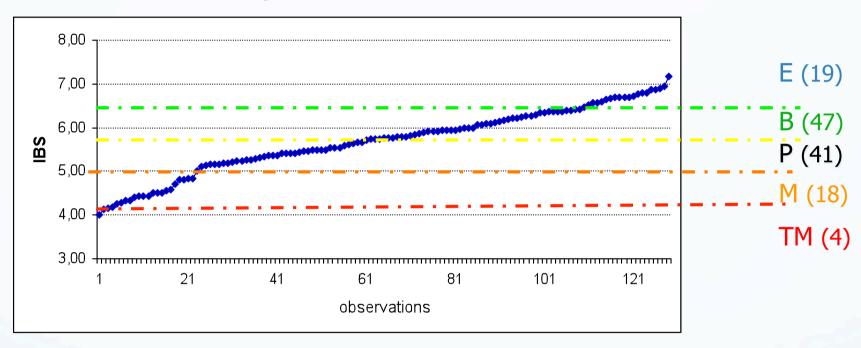


## C. Détermination de l'IBS

$$IBS = \frac{1}{n} \sum_{i=1}^{i=n} s_i$$

n: nombre total de taxa indicateurs

si: score du taxon i

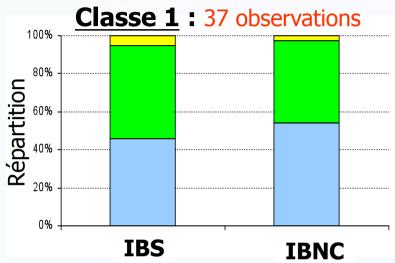

Même protocole d'échantillonnage que l'IBNC

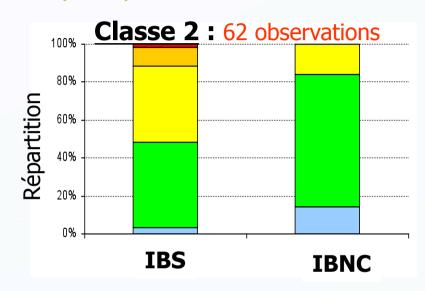
(filet surber 250 µm; 5 prélèvements/station; milieu courant)

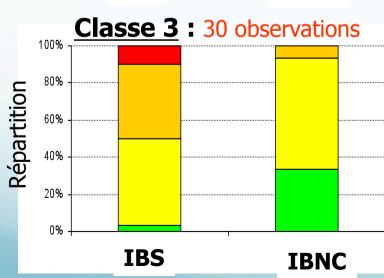




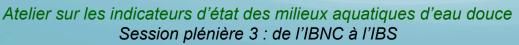
#### D. <u>Classes de qualité</u>





#### → Sur avis d'expert


| Indice Bio-Sédimentaire | Qualité       |  |
|-------------------------|---------------|--|
| < 4,25                  | Très mauvaise |  |
| 4,25 ≤ indice < 5,00    | Mauvaise      |  |
| 5,00 ≤ indice < 5,75    | Passable      |  |
| 5,75 ≤ indice < 6,50    | Bonne         |  |
| ≥ 6,50                  | Excellente    |  |



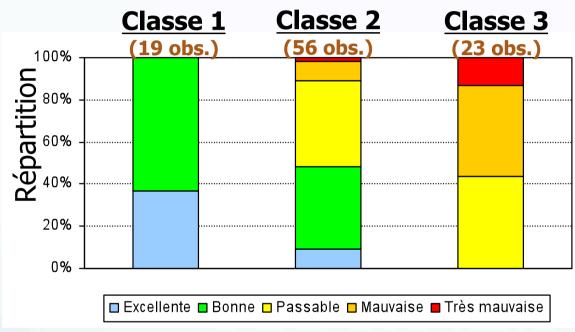

#### > IBS calculés pour les observations ayant permis le calcul des scores



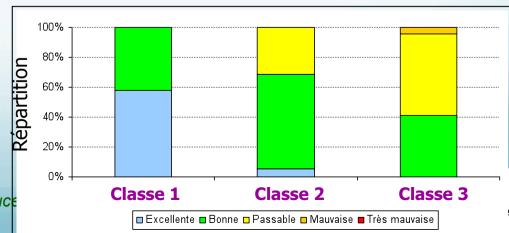











#### E. Validation de la méthode (98 observations)

Valeurs d'IBS calculées



#### Valeurs d'IBNC



Atelier sur les indicateurs d'état des milieux aquatiques d'eau douce Session plénière 3 : de l'IBNC à l'IBS















#### F. Autres résultats

- Variabilité temporelle : 72 observations (36 stations)
- pas de différence significative étiage / moyennes eaux (test non paramétrique sur échantillons appariés)
- Polluants organiques :
  - Si IBS < 5 (QB très mauvaise ou mauvaise) : pas de différence significative entre l'IBNC et l'IBS
  - Si IBS > 5 (QB excellente à passable) : il existe une différence significative entre l'IBNC et l'IBS → utilisation des indices en fonction de l'objectif recherché





## 4. Conclusions

#### A. Domaines d'utilisation

- Contrôle du bon fonctionnement d'ouvrages (confinement des sédiments, décanteurs, caniveaux, ...)
- Études d'impact ou de préfaisabilité sur substrats ultramafiques
- Contrôle et suivi en routine de la qualité des eaux
- Remise en état de sites dégradés (revégétation)
- Suivi restauration naturelle de sites dégradés





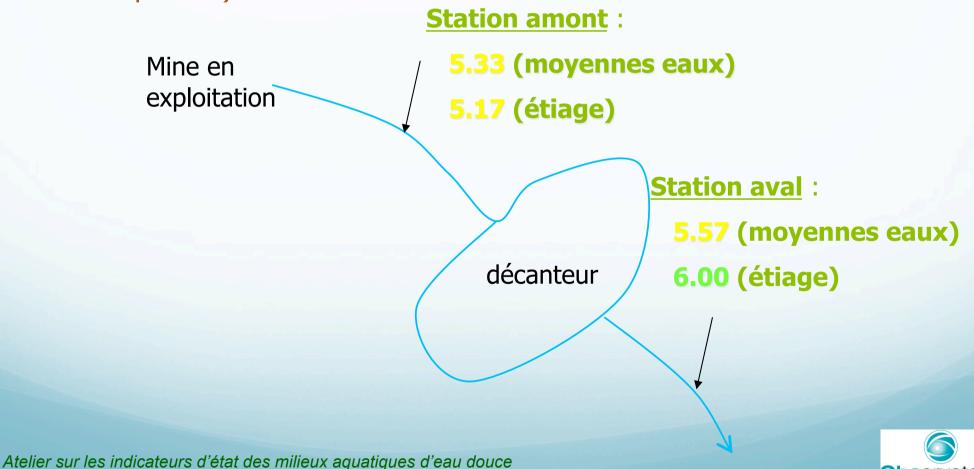
## 4. Conclusions

#### B. Limites d'utilisation

| Perturbations Substrat                                        | à dominante<br>sédimentaire | à dominante de<br>type organique | Sédimentaires<br>et organiques |
|---------------------------------------------------------------|-----------------------------|----------------------------------|--------------------------------|
| Ultramafique (zone d'influence directe)                       | IBS                         | IBNC                             | IBS et/ou<br>IBNC?             |
| Autre (substrat volcano-<br>sédimentaire ou<br>métamorphique) |                             | IDING                            |                                |

Érosion naturelle difficilement dissociable des pollutions anthropiques.



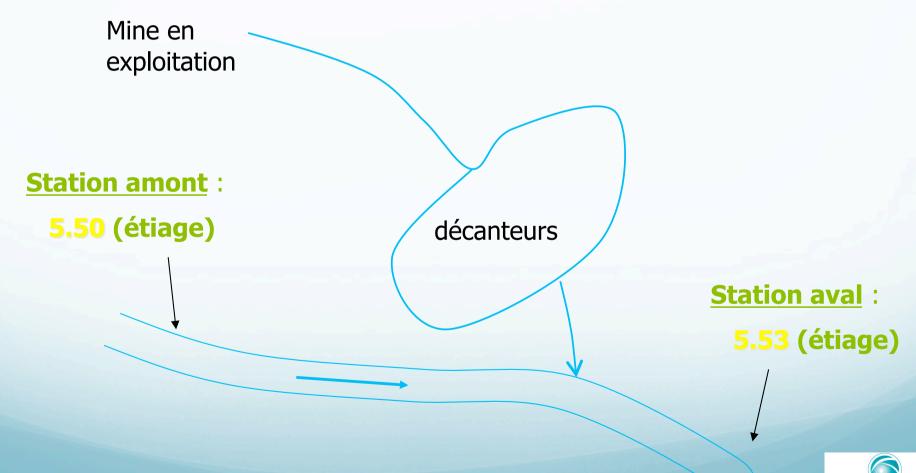



Session plénière 3 : de l'IBNC à l'IBS

## 5. Exemples d'utilisation de l'IBS

Suivi d'un ouvrage de confinement des sédiments sur site minier en activité

1/ cas d'un ouvrage implanté dans le lit du cours d'eau (cours supérieur)






## 5. Exemples d'utilisation de l'IBS

Suivi d'un ouvrage de confinement des sédiments sur site minier en activité

2/ cas d'un ouvrage en dérivation par rapport au cours principal



Atelier sur les indicateurs d'état des milieux aquatiques d'eau douce Session plénière 3 : de l'IBNC à l'IBS