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Réle des cyanobactéries dans le développement des zones ciguatérigénes en lien avec les impacts
anthropiques, pour une meilleure gestion du risque ciguatérique — résumé court

La ciguatéra est une intoxication consécutive a l'ingestion de poissons porteurs de ciguatoxines.
Classiquement liée a la prolifération des dinoflagellés ciguatérigenes, elle est favorisée par les perturbations
naturelles ou anthropiques des écosystemes coralliens. Or récemment, certaines cyanobactéries marines du
groupe des Oscillatoriales (Hydrocoleum sp.) ont également été impliquées dans des intoxications de type
ciguatéra. Dans ce contexte, |'objectif général de cette these est de mieux comprendre le déterminisme
ciguatérique afin de mieux le prévenir.

L’étude a constitué en un suivi écotoxicologique périodique de trois sites en Nouvelle-Calédonie : I'ille de
Lifou, réputée toxique ; la baie de Prony, en cours d’anthropisation ; I’atoll d’Ouvéa, réputé non ciguatérique, en
ciblant spécifiqguement I'étude de la diversité microbienne, I’évaluation de la toxicité a différents niveaux de la
chaine trophique (cyanobactéries, bénitiers, poissons) et la caractérisation des métabolites toxiques impliqués.

Ce suivi environnemental a mis en évidence un complexe toxinique CTXs-like/cyanotoxines chez les
Oscillatoriales dominant les écosystémes dégradés, ainsi que les poissons et bénitiers inféodés a ces zones. Parmi
les cyanotoxines détectées in situ, citons I’homoanatoxine-a (neurotoxine paralysante) présente a la fois chez
Hydrocoleum lyngbyaceum et les bénitiers Tridacna maxima, et la palytoxine, révélée pour la premiére fois chez
Trichodesmium erythraeum.

Ces résultats originaux posent les bases d’un outil de surveillance sanitaire et écologique opérationnel
d’un risque sanitaire en zone tropicale plus complexe que la ciguatéra telle qu’elle est connue actuellement.

Ciguatéra / Cyanobactérie / Bénitier / Déterminisme / Ciguatoxine / Cyanotoxine

Involvement of cyanobacteria in the ciguatera phenomenon in relation to anthropogenic pressures, for a better
monitoring— short abstract

Ciguatera, the most common marine intoxication, is caused by the consumption of coral reef fish which
accumulate toxins through their diet. This ecotoxicological phenomenon is induced by natural and/or man-made
disturbances of coral reefs ecosystems. With more substrate surface area available, the conditions are favorable for
the proliferation of naturally occurring toxinogenic dinoflagellates known to produce ciguatoxins (CTXs). More
recently, cyanobacteria of the order Oscillatoriale were also incriminated as potential progenitors of CTXs-like
compounds. It is in this context that the present study was undertaken.

To understand better and to define management approaches that the involvement of these cyanobacteria
poses to the risks of ciguatera outbreaks, surveys in New Caledonia were undertaken at three representative sites.
These include: (i) Lifou Island where strong ciguatera intoxications incidence have been recorded; (ii) the Bay of
Prony, which is close to the site of a mineral mining plant in construction; and (iii) the lagoon of Ouvea that is
reputed to be free of ciguatera. Studies on microorganisms (cyanobacteria and dinoflagellate) diversity,
toxicological analyses of different trophic levels (cyanobacteria, fish and giant clams) and detection of toxic
compounds were undertaken.

These ecotoxicological studies highlight the presence of a toxic matrix of CTXs-like compounds and
cyanotoxins in Oscillatoriales cyanobacteria, in fish and giant clams collected in damaged areas where. For the first
time, we are reporting the presence of homoanatoxin-a (a paralyzing neurotoxin), detected both in the
cyanobacteria Hydrocoleum lyngbyaceum and the giant clam Tridacna maxima, and palytoxin and one of its
derivative, 42-OH palytoxin detected in cyanobacteria samples of Trichodesmium.

Our findings emphasize the need of including the monitoring of marine cyanobacteria in management
programs of ciguatera and also provide a new trophic link to the current ciguatera fish food chain. Consequently,
we have named this new phenomenon as Ciguatera Seafood poisoning.

Ciguatera / Cyanobacteria / Giant clam / Ciguatoxin / Cyanotoxin / Ciguatera Seafood Poisoning
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Préambule

Le phénomeéne ciguatérique est bien connu des populations du Pacifique. Intoxication
alimentaire causée par la consommation de poissons contaminés, le syndrome peut
présenter des symptomes caractéristiques comme l'inversion de la sensation de chaud et
froid mais reste néanmois polymorphe. Les confusions avec d’autres intoxications marines
provoquées par d’autres toxines ou par la consommation d’autres organismes marins ne
sont pas rares. Les études sur I'aspect écologique de la ciguatéra existent mais restent peu
nombreuses tant il est complexe.

Afin d’améliorer la compréhension dans le déterminisme du phénomene
écotoxicologique de la ciguatéra, nous avons proposé ce travail de thése d’une durée de
trois ans. Il a pour défi de répondre aux besoins des populations en termes de connaissances
et de surveillance de la ciguatéra. Ainsi, I'Institut de Recherche pour le Développement (IRD)
et le Département environnement de la société Vale Nouvelle-Calédonie (Vale NC) ont
conjointement porté ce projet a travers leurs soutiens scientifiques, financiers et
d’expertises.

Articulé selon trois chapitres, ce rapport de thése présente les fruits de ces travaux.
Nous commencerons tout d’abord par présenter les intoxications alimentaires auxquelles les
populations peuvent étre confrontées lors de la consommation de produits marins. L’objectif
est d’avoir une vue d’ensemble des différentes intoxications d’origine marine afin d’éviter
les confusions possibles avec le syndrome de la ciguatéra pour lequel les connaissances
actuelles seront également exposées. Ensuite, seront traités les deux axes principaux de la
these : (i) I'implication des cyanobactéries comme nouvel agent ciguatoxinogéne (Chapitre 2)
et (ii) le développement des zones ciguatériques (Chapitre 3).
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Chapitre 1 : Intoxications alimentaires provoquées par les
organismes marins

I. Intoxications autres que la ciguatéra

L'océan est un vivier de ressources tant alimentaires que récréatives pour la
population mondiale. Ainsi, 15% des protéines animales nécessaires a 'Homme proviennent
de la mer. Chaque organisme a sa place dans ce milieu complexe regorgeant de vie et doit la
défendre. L'océan n’est pas sans danger, particulierement pour 'homme qui en en tirant
profit, peut aussi étre confronté a un milieu a risque qui peut se retourner contre lui.

Les microalgues toxiques produisent des toxines qui sont bioaccumulées le long de la
chaine alimentaire et provoquent de nombreuses intoxications qui different selon leurs
organismes producteurs, leurs vecteurs de transmission et leurs modes d’action. Depuis ces
trente derniéres années, la fréquence, l'intensité et la distribution géographique des
efflorescences de ces algues toxiques n’ont fait qu’augmenter (FAO, 2004). Les intoxications
alimentaires par consommation de produits d’origine marine liées aux développements de
microalgues toxiques parfois mortelles, sont également en augmentation.

Les recherches sur la caractérisation des phénomenes d’intoxications alimentaires en
terme d’écologie marine (microorganismes, toxines..) et en terme de mécanismes
d’intoxications (symptomes, modes d’action des toxines...) ont pour objectif de développer
des outils permettant de prévenir ces empoisonnements qui peuvent parfois étre fatals.

Dans ce premier chapitre, nous présenterons les différents syndromes en
mentionnant les toxines responsables, les vecteurs impliqués et leurs symptémes. Nous
avons choisi de les classer selon les vecteurs de transmission des toxines : invertébrés et
vertébrés, puis selon leurs symptémes. Puis, nous développerons le syndrome d’origine
marine qui touche le plus grand nombre de personnes et qui nous intéresse plus
particulierement dans cette thése: 'intoxication ciguatérique qui est généralement causée
par I'ingestion de poissons contaminés.

.1 Intoxications par les mollusques (invertébrés)

I.1.a Intoxication amnésique par les fruits de mer - IAFM ou ASP

Le syndrome d’intoxication amnésiante par fruits de mer (IAFM) est connu sous la
dénomination anglo-saxonne d'Amnesic Shellfish Poisoning (ASP). L'acide domoique (AD) en
est la principale neurotoxine responsable (figure 1E), et est synthétisée par certaines
especes de diatomées toxinogenes du genre Pseudo-nitzschia. Ses isomeres, les acides
isodomoiques, sont relativement moins fréquents et peu toxiques. Les vecteurs de cette
toxine sont principalement les mollusques filtreurs. L’AD, structurellement proche de I'acide
glutamique (neurotransmetteur), se fixe au niveau des récepteurs synaptiques et provoque
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une dépolarisation de la membrane qui entraine un dysfonctionnement des cellules ou leur
mort (Frémy et Lassus, 2001).

Les premiers symptomes de type gastro-intestinal (vomissements, diarrhées,
nausées...) surviennent dans un délai de 2 a 24 h aprés consommation des coquillages
contaminés. Puis, entre 24 et 48 h, des symptdmes neurologiques sont observés (maux de
téte persistants, vertiges, amnésie transitoire, désorientation, confusion). Dans les cas les
plus graves, il apparait une perte de mémoire, des dommages cérébraux et parfois des
convulsions ou un coma pouvant conduire a la mort (Frémy et Lassus, 2001). Les symptomes
particuliers a I'lAFM sont les atteintes de la mémoire de type antérograde (difficultés a
mémoriser des événements nouveaux) (Chateau-Degat, 2003).

I.1.b  Intoxication diarrhéique par les fruits de mer - IDFM ou DSP

L'intoxication diarrhéique par les fruits de mer (IDFM) est un syndrome connu sous la
dénomination anglo-saxonne de Diarrheic Shellfish Poisoning (DSP). Les toxines mises en
cause sont I'acide okadaique (AO) et ses dérivés, les dinophysistoxines (DTXs-1, -2, -3, -4) de
la classe des toxines polyéthérées lipophiles (Van Dolah, 2000 ; Chateau-Degat, 2003) (figure
1D). Isolées et identifiées a I'origine a partir d’extraits d’éponge Halichondria okadai, elles
sont synthétisées par les dinoflagellés du genre Prorocentrum ou Dinophysis (Dickey et al.,
1990 ; Ten-Hage et al., 2000). Elles sont thermostables et ne sont donc pas dégradées a la
cuisson des produits de la mer. Quatre autres familles font partie des toxines diarrhéiques :
les pecténotoxines, les yessotoxines, les azaspiracides et les toxines a action rapide
(spirolides, gymnodimines, pinnatoxines, pteriatoxines et prorocentrolides) ou les FATs pour
Fasts-Acting Toxins. Les vecteurs principaux sont les fruits de mer.

Les symptOmes, apparaissant entre 30 mn et 12 h apreés le repas, sont des troubles
gastro-intestinaux plus ou moins graves (diarrhée, vomissement, crampes abdominales). Des
troubles neurologiques peuvent apparaitre dans les cas les plus graves (hallucinations,
vertiges...). L'IDFM touche en moyenne une centaine de personnes par an et reste sous-
déclarée de par son caractére bénin. L’AO et ses congéneres sont les toxines marines les
moins dangereuses. Aucune mortalité n’a été rapportée (Chateau-Degat, 2003).

I.1.c Intoxication neurologique par les fruits de mer - INFM ou NSP

L’intoxication neurologique par les fruits de mer (INFM) est un syndrome connu sous
la dénomination anglo-saxonne de Neurotoxic Shellfish Poisoning (NSP). L’organisme mis en
cause est le dinoflagellé Karenia brevis (anciennement Gymnodinium cf. breve) produisant
les brévétoxines (PbTxs), polyéthers cycliques liposolubles (figure 1B). Environ dix analogues
sont issus de la biotransformation du précurseur dans les mollusques.

Ces neurotoxines activent les canaux sodium (Na*) sensibles au potentiel (CSSP) et
ont pour conséquence la dépolarisation des cellules nerveuses et musculaires engendrant
des symptOmes gastro-intestinaux, neurologiques (inversion des sensations de température)
et cardio-vasculaires apparaissant apres ingestion de coquillages contaminés. Des difficultés
respiratoires peuvent survenir par inhalation d’embruns chargés de ces biotoxines en cas
d’efflorescence importante et soumise a 'orientation défavorable des vents (Hansen et al.,
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2001 ; Kirkpatrick et al.,2006 ; 2008). Aucune mortalité humaine n’a été relevée (Frémy et
Lassus, 2001), seules des mortalités massives de poissons, d’oiseaux et de mammiféres
marins ont été enregistrées (Kirkpatrick et al., 2004). La zone d’endémie reste localisée au
niveau des cotes de Floride, du Golfe du Mexique et en Nouvelle-Zélande (figure 2).

I.1.d Intoxication paralysante par les fruits de mer - IPFM ou PSP

L’Intoxication paralysante par fruits de mer (IPFM) est un syndrome connu sous la
dénomination anglo-saxonne de Paralytic Shellfish Poisoning (PSP). Les toxines responsables
de I'lPFM forment une famille d’une vingtaine de molécules chimiquement proches, dont la
toxine de base est la saxitoxine (STX) (figure 1A). Cette phycotoxine paralysante a été isolée
du mollusque bivalve Saxidomus giganteus. Les dérivés toxiques de la STX sont la
néosaxitoxine puis les gonyautoxines purifiés a partir de microalgues du genre Alexandrium
(anciennement Gonyaulax). Les STXs sont hydrosolubles, thermostables et stables en milieu
acide (IFREMER, 2006).

Plusieurs espéces du genre Alexandrium ainsi que les especes Gymnodinium
catenatum et Pyrodinium bahamense sont productrices de toxines paralysantes. Les
efflorescences de ces dinoflagellés marins peuvent provoquer d’impressionnantes marées
rouges (« red tide »). Certaines cyanobactéries d'eau douce comme Aphanizomenon ou
Anabaena produisent également des toxines paralysantes (Negri et al., 2003). L'IPFM est
rapportée partout dans le monde mais plus particulierement dans les zones tempérées. Tous
les mollusques filtreurs sont potentiellement des vecteurs de STXs (FAO, 2004).

Les STXs sont des neurotoxines agissant directement sur les mécanismes de
transmission des influx nerveux en bloquant le passage des ions Na* a travers les canaux
sodiques au niveau des cellules excitatrices (nerveuses et musculaires). Les symptomes sont
de type gastro-intestinal sévissant dans |'heure qui suit l'ingestion des organismes
contaminés. lls se traduisent par des paresthésies buccales, des engourdissements des levres
s'étendant au visage, aux bras et aux jambes, des maux de téte, des nausées et des vertiges.
Dans les cas plus graves, il est observé une incoordination motrice et une incohérence de la
parole et on voit apparaitre des paralysies respiratoires qui peuvent provoquer la mort dans
8 a 10% des intoxications. A travers le monde, en moyenne 2 000 cas d’IPFM sont déclarés
annuellement (Frémy et Lassus, 2001 ; Llewellyn et al., 2006).

Aucun antidote n’est connu a ce jour et la posologie est uniquement basée sur des
soins palliatifs en support spécifique du systeme respiratoire. La prévention est donc
primordiale. La méthode de référence de détection des STXs est basée sur le test souris
(Référence 959-08, AOAC). Les coquillages sont considérés comme contaminés au-dela de
80 pg d’équivalent STX par 100 g de chair totale (Jellet et al., 1992).

26/326



Chapitre 1 : Intoxications provoquées par les organismes marins

Figure 1 : Familles de toxines d’algues marines: (A) saxitoxine, (B) brévétoxine, (C) ciguatoxine, (D) acide
okadaique, (E) acide domoique. (D’aprés Van Dolah, 2000).

D'autres intoxications par les invertébrés marins ont été rapportées en zones
tropicales en Asie ou en Polynésie :
- holothuries, responsables de troubles digestifs (Conand, 1989),
- mollusques céphalopodes (calmars, poulpes) (Robertson et al., 2004),
- mollusques bivalves (bénitiers responsables de déces par paralysie des
muscles respiratoires ou de convulsions) ou gastéropodes (troca) (Bagnis,
1967 ; Angibaud et al., 2000) (ch2.11.4.a).
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Figure 2 : Distribution des intoxications alimentaires par fruits de mer (d’aprés Frémy et Lassus, 2001 et Van
Dolah, 2000).

.2 Intoxications par les vertébrés

Le terme ichtyosarcotoxisme, du grec ichtyos (poisson), sarcos (chair) et toxicon
(poison), désigne une forme d'intoxication consécutive a l'ingestion de chair de poisson. Il
regroupe diverses intoxications par ingestion de poissons qui different selon les toxines
impliquées et selon leurs symptomes. On retrouve : le scombrotoxisme, le tétrodotoxisme,
le clupéotoxisme, le carchatoxisme ou encore la ciguatéra. D’autres vertébrés marins comme
les tortues (chélonitoxisme) peuvent également étre vecteurs de toxines.

I.2.a Le scombrotoxisme ou intoxication histaminique

Le scombrotoxisme a été mis en évidence lors d’intoxications par la consommation
de poissons de la famille des Scombridés (thons, bonites, maquereaux). Il touche de
nombreuses autres especes (anchois, sardines, mahi-mahi, harengs, loche...) (Hungerford,
2010).

Les chairs de poissons contaminés ont un niveau élevé en histamine (figure 3a). A la
suite d’une mauvaise conservation (rupture de la chaine du froid), on observe une
dégradation bactériologique de I'histidine en histamine par décarboxylation. Sa distribution
géographique n’est pas définie car elle est contextuelle et dépendante de la conservation du
poisson (Hahn and Capra, 2003).

L'intoxication histaminique survient lorsque la concentration en histamine atteint une
teneur de 0,6 g / kg de chair. Les premiers symptémes apparaissent souvent dans la demi-
heure qui suit le repas. lls sont similaires a une allergie (rougeur du visage, tachycardie,
bouffées de chaleur, urticaire, hypotension artérielle, cedéme facial, vomissement). Des
symptdémes de prurit peuvent rendre le diagnostic difficile par confusion avec ceux de la
ciguatéra. Le traitement du scombrotoxisme repose sur la prise d’antihistaminiques.
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1.2.b Le tétrodotoxisme

Le tétrodotoxisme ou fugu est dii a la consommation de poissons de la famille des
Tétraodontidés, des Diodontidés ou des Balistidés (poisson globe, poisson ballon, poisson
lune...). Plus fréquente en Asie (Hong-Kong, Japon, Malaisie) et en Polynésie, des cas
d’intoxications ont cependant été recensés au Maroc, a La Réunion, en Californie et a
Madagascar. La toxine mise en jeu est la tétrodotoxine (TTX), neurotoxine localisée dans les
ovaires, les visceres et la peau (figure 3b). Elle est synthétisée par diverses souches
bactériennes marines et terrestres du genre Vibrio, Shewanella et Alteromonas (Noguch et
al., 2008). La TTX a également été isolée d’autres organismes comme les céphalopodes ou
les gastéropodes, qui sont en fait les vecteurs de transmission pour les poissons (FAO, 2004).

Les premiers signes cliniques apparaissent dans les trois heures qui suivent le repas
avec apparition de symptomes de type gastro-intestinal (diarrhées, vomissements) et
neurologique (paresthésies buccales et des extrémités, ataxie, mydriase). L'évolution peut
étre grave par une installation progressive dans le coma qui peut étre irréversible (Chateau-
Degat, 2003). Aprés 24 h, l'issue est généralement favorable. Elle entrainerait 300
intoxications par an avec un taux de mortalité pouvant atteindre 60%, 2 mg de TTX suffisant
a tuer une personne (FAQ, 2004). Il n'y a pas d'antidote connu (de Haro, 2008).

I.2.c Le clupéotoxisme

Le clupéotoxisme est une intoxication redoutable aprés ingestion de poissons
pélagiques planctonophages de la famille des Clupéidés, sardines ou d'anchois des mers
tropicales. Les dinoflagellés benthiques du genre Ostreopsis en seraient a I'origine (Onuma et
al., 1999 ; Katikou, 2008). Cette microalgue est connue pour produire des analogues de la
palytoxine (PTX), une des neurotoxines les plus puissantes synthétisées par des organismes
marins (figure 3c) (Guerrini et al., 2010) (cf. ch2.11l.4.b).

La contamination se fait par consommation des produits de la péche contaminés. Ce
syndrome conduit a un tableau clinique grave dans I'heure suivant la consommation du
poisson. Les symptémes se manifestent brutalement et sont proches de la ciguatéra avec
une prédominance des signes neurologiques (golt métallique, délire, agitation, altération de
I'état de conscience, paralysie généralisée), des troubles digestifs séveres, et des difficultés
respiratoires. Le taux de mortalité est important (20%). Le traitement des intoxications
humaines reste jusqu’a présent symptomatique (de Haro, 2008).

1.2.d Le carchatoxisme

Le carchatoxisme est d( a l'ingestion de chair de requins de diverses espeéces
(Carcharhinus albimarginatus, C. sorrah, C. leucas, Sphyrna lewini). Les toxines identifiées
sont les carchatoxines A et B (Boisier et al., 1995). Le tableau clinique est proche de la
ciguatéra avec des signes majoritairement neurologiques mais des troubles cardiaques plus
séveres (bradycardie, troubles du rythme cardiaque) et des difficultés respiratoires pouvant
étre plus importantes : on peut noter également une altération de I'état de conscience. Ces
symptomes surviennent de 2 a 12 h suivant le repas. La principale zone concernée est
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Madagascar olU des intoxications collectives ont été décrites (Boisier et al., 1995;
Champetier de Ribes et al., 1997). Les mortalités relevées dans la littérature varient de 1 a
30% (Champetier de Ribes et al., 1997 ; De Haro, 2008). Le traitement reste symptomatique
et tres similaire a celui prescrit lors des intoxications ciguatériques.

L’étude des toxines a montré de fortes similarités en termes de propriétés chimiques
et de toxicité avec les CTXs : les mémes symptomes sont observés en test « souris » avec une
toxicité plus aigué pour les carchatoxines A et B (Boisier et al., 1995 ; Yasumoto, 1998). Il est
fort probable que les carchatoxines A et B soient issues de la biotransformation des CTXs par
le métabolisme des requins. Cette hypothése pourrait expliquer les similitudes entre le
carchatoxisme et la ciguatéra (Quod and Turquet, 1996 ; Hamilton et al., 2009).

I.2.e Le chélonitoxisme

Le chélonitoxisme est d( a l'ingestion de chair de tortues marines (Chelonia mydas et
Eretmochelys imbricata essentiellement). Des cas d’intoxications ont été observés dans les
océans Indien et Pacifique (Fussy et al., 2007). Plusieurs heures voire plusieurs jours apres un
repas, des symptdmes majoritairement gastro-intestinaux surviennent (vomissements,
diarrhée) ainsi que des déshydratations, une hypotension artérielle, des ulcérations de la
cavité buccale et de la langue. Le taux de mortalité est élevé (4 a 7,5%) (de Haro, 2008).

La lyngbyatoxine A (figure 3d) a été identifiée par techniques chromatographiques
(LC-MS) dans les chairs de Chelonia mydas (la tortue verte herbivore) (Yasumoto, 1998).
Cette toxine est synthétisée par Lyngbya majuscula, une espéce de cyanobactérie
filamenteuse productrice de nombreux métabolites secondaires (Osborne et al., 2001) qui
est broutée par C. mydas (Ito et al., 2002 ; Arthur et al., 2008). Cependant, E. imbricata étant
exclusivement carnivore (Fussy et al., 2007) si L. majuscula est bien a I'origine du
chélonitoxisme alors il existerait un ou d’autres maillons de la chaine alimentaire de
bioaccumulation.

Figure 3 : (a) structure de I'histamine, responsable du scombrotoxisme, (b) structure de la tétrodotoxine,
responsable du tétrodotoxisme, (c) structure de la palytoxine, toxine fortement suspectée d’étre
responsable du clupéotoxisme et (d) structure de la lyngbyatoxine, impliquée dans le chélonitoxisme.

30/326



Chapitre 1 : Intoxications provoquées par les organismes marins

1.2.f Autres types d’intoxication moins fréquente
Syndrome hallucinatoire (ichtyoalleinotoxisme).

La consommation des poissons de récifs herbivores de la famille des Acanthuridés,
Mugilidés, Mullidés, Siganidés peut étre responsable du syndrome hallucinatoire (ou
ichtyoalleinotoxisme). Les symptomes apparaissent rapidement et sont de type
neurologique (hallucinations, vertiges, cauchemars, troubles du comportement et de la
coordination motrice). Des observations ont été rapportées dans I'Océan Indien, et surtout
dans I'Océan Pacifique (rites religieux) (de Haro, 2008)

I.3 A chaque phycotoxine, son syndrome ?

Les phycotoxines, synthétisées par les microalgues toxiques, constituent un danger
potentiel particulierement lors des phases d’efflorescence (ou HAB de I'anglais Harmful Algal
Bloom). Elles regroupent une large classe de composés, de structure chimique trés diverses
(alcaloide, acide aminé, peptide ou polyéther) et de fonctionnalité trés variable. Les
microalgues productrices (diatomée, dinoflagellé) sont, elles, aussi tres diverses pouvant
étre a l'origine d’intoxications qui ont été classées selon les vecteurs de transmission et
selon le type de symptémes majeurs.

Afin d’avoir une vue d’ensemble des informations présentées dans cette premiere
partie, le tableau 1 synthétise les différents syndromes rencontrés en milieu marin et leurs
caractéristiques, les phycotoxines incriminées et leurs organismes producteurs.
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Tableau 1: Synthése des informations sur les intoxications alimentaires par consommation de produits de la mer (d'aprés Chateau-Degat, 2003; Van Dolah, 2000 ; Frémy et
Lassus, 2001).

Toxine Intoxication
T mptoém mptom
Syndrome Nom Toxicité Producteurs Vecteur aux c.Ie, SY , plo es S p O. es
mortalité généraux particuliers
IAFM (ASP) . . Diatomées e . .
.. .. . A 12 k . . 9 INR
Intoxication amnésique par les fruits de mer cide domoique Oug/ke Pseudo-Nitzshia 3% G Amnesie
Acide okadaique . )
IDFM (DSP . . ! Dinofl lé e
I ) . (DSP) . Dinophysistoxines, 192 ug / kg mottageres % 0% GIN
Intoxication diarrhéique par les fruits de mer . . Prorocentrum spp. 2
Pectenotoxine, Yessotoxine
INFM (NSP Dinofl lé
. V1 (NSP) . Brévétoxines 100-200 pg / kg inotlageties 0% GINR
Intoxication neurologique par les fruits de mer Karenia breve
IPFM (PSP) Saxitoxines, Dinoflagellés et %
-11 k } ) 1-149 N Gl
Intoxication paralysante par les fruits de mer Gonyautoxine 9-11,6 ng/ ke Cyanobactéries " % G
. , Ciguatoxines, Maitotoxines 0,25-3,6 ug / kg Dinoflagellés 7 Prurit, Inversion des
(910 <0,19 N Gl
Ciguatera Autres toxines ? 0,13 ug/ kg Gambierdiscus spp. e 0,1% G sensations
Scombrotoxisme Histamine - Bactéries ND Type allergisant
Tétrodotoxisme Tétrodotoxines Bactéries 5 60% N Mort fréquente
Pal i I Dinoflagellé
Clupéotoxisme alytoxine et a.na ogues ND ino age es 20% N Gl Prurit, coma, mort
Autres toxines ? Ostreopsis spp.
Carchatoxisme Carchatoxines A et B ND 1-30% N Gl Formes graves
Accidents hallucinatoires Diverses toxines ? ND ND N Hallucinations vertiges
e . . Cyanobactéries R Formes bénignes a
Chélonitoxisme ND — Lyngbyatoxine ND . by 4a7,5% Gl
Lyngbya majuscula graves
. -
& =
Vecteurs: ““ :mollusques coquillages; : poissons ; : tortues - Symptoémes: N : type neurologique ; Gl : type Gastro-intestinal; R ; type respiratoire - ND :

Non déterminé
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Il. Laciguatéra
1.1 Généralités

Le terme «ciguatéra» désigne une intoxication alimentaire causée par la
consommation d’organismes marins porteurs de ciguatoxines, c’est une des formes
d’ichtyosarcotoxisme. Elle est a ce jour la plus importante intoxication d’origine marine. Ce
terme désigne également le phénomeéne écotoxicologique correspondant a la perturbation
d’un milieu corallien propice a la prolifération de micro-organismes ciguatoxinogenes.

Les vecteurs les plus communément cités pour les cas d’intoxication ciguatérique
sont les poissons récifaux, d’ou la dénomination anglophone de Ciguatera Fish Poisoning
(CFP). Cette appellation ne sera pas utilisée dans ce présent document car la thése soutenue
remet en cause cette classification. Nous parlerons de « ciguatéra » ou « d’intoxication
ciguatérique classique » si le vecteur est un poisson ou « d’intoxication de type
ciguatérique » si le vecteur n’est pas un poisson. Tenant compte des nouvelles
connaissances présentées dans ce manuscrit, le terme anglo-saxon Ciguatera Shellfish
Poisoning pourra étre proposé.

Cette deuxiéme partie concernant l'intoxication ciguatérique, introduite par quelques
reperes historiques, nous permettra de faire le point sur les connaissances actuelles du
phénoméne sur les aspects épidémiologiques, socio-économiques, toxicologiques, les
méthodes de détection des toxines impliquées et enfin I'aspect qui nous intéresse plus
particulierement, I'aspect écologique.

[I.2 Historique

II.2.a  Quelques repéres

Cette affection est connue depuis la haute Antiquité. On en retrouve la trace, tant
dans I'ancienne Egypte, plus de 2000 ans avant JC qu’en Chine au début de I’ére chrétienne.
Les anecdotes rapportées par les navigateurs Fernandez de Quiros et Cook entre le 16°™ et
18°™ sigcle de notre ére ne font gue confirmer I'ancienneté du phénomene. En 1520, le
chroniqueur a la cour d’Espagne, Pedro Martyr D’Anghera rapporte des cas d’intoxication
dans I'équipage de Vasco de Gama, Christophe Colomb ou encore Fernand de Magellan aux
Antilles (FAQ, 2004).

En 1675, John Loocke, philosophe anglais, décrit pour la premiére fois de maniére
clinique ce syndrome qui touche bon de nombre d’équipages en ces périodes de grandes
expéditions. Il décrit plus particulierement lintoxication sévissant lors d’'un voyage aux
Bahamas : "Certains poissons la-bas sont empoisonnés entrainant de sévéres douleurs dans
les articulations de ceux qui les mangent et aussi des démangeaisons... Ces troubles
disparaissent en deux ou trois jours... Dans un lot de poissons de méme espece, taille, forme,
et golt, seuls certains spécimens renferment le poison, les autres n'entrainent aucun
préjudice chez I'homme... Nous n'avons jamais entendu dire que la maladie fat mortelle,
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mais pour les chats et les chiens qui consomment ces poissons, c'est souvent le dernier
repas... Chez des gens qui ont eu une fois cette maladie, une nouvelle ingestion de poisson,
méme sain, peut raviver le ferment toxique dans l'organisme et faire réapparaitre les
douleurs...".

En 1748, a I'lle Rodrigue (Archipel des Mascareignes, Océan Indien), une importante
intoxication des équipages de la flotte de I'amiral Boscawen provoque la mort de 1 500
hommes probablement déja affaiblis par les conditions de vie a bord (Halstead, 1965).

En 1774, le capitaine Cook et son naturaliste Forster sont victimes d’une intoxication
a Tanna aux Nouvelles-Hébrides(actuellement Vanuatu, Océan Pacifique), il en fait une
description précise dans son journal de bord : « Dans I'aprés-midi, un des naturels, ayant
harponné un poisson, mon secrétaire |I'acheta et me I'envoya apres mon retour. Il était d'une
nouvelle espéce, un peu comme un poisson-soleil, avec une grosse téte longue et hideuse.
Ne nous doutant pas qu'il pouvait nous empoisonner, nous donnames |'ordre de I'appréter
pour le souper. Mais par bonheur il fallut si longtemps pour le dessiner et le décrire qu'il
n'était plus temps de le faire cuire, de sorte qu'on n'appréta que le foie et les rognons
auxquels monsieur Forster et moi goGtames tout juste. Vers trois heures du matin, nous
nous trouvames atteints d'une extraordinaire faiblesse et d'un engourdissement de
I'ensemble des membres. J'avais presque perdu le sentiment du toucher et je ne pouvais
distinguer, entre ceux que j'avais la force de soulever, les corps lourds des légers. Un quart
d'eau et une plume avaient le méme poids pour ma main. Nous primes I'ensemble des deux
de I'émétique et apreés cela nous fimes une suée qui nous apporta énormément de
soulagement. Le matin, un des cochons qui avait mangé les entrailles fut trouvé mort. ».

En 1787, le naturaliste portugais Don Antonio Parra dans sa « Descriptiéon de
Diferents Piezas” fait référence a un syndrome neurologique qu’il nomme « siguatera »
(Halstead, 1965). Ce nouveau terme est dérivé de l'appellation du gastéropode Turbo

eme

(Cittarium ou Livona pica) nommé « sigua » au 18" siécle dans les Antilles espagnoles
(photo 1). Ce mollusque est connu pour provoquer une intoxication neuro-digestive. La
dénomination est progressivement transférée a la maladie causée par certains poissons de
récifs. C'est en 1967, que I'équipe de Scheuer introduit le terme de « Ciguatoxine » (CTX), le

composé majeur identifié dans I'extrait de chair de murene (Scheuer, 1967).

Photo 1 : Livona pica, le turbo nommé sigua qui provoque des intoxications neuro-digestives a I'origine du
nom ciguatéra.
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II.2.b  Les étapes clés dans I'avancée des recherches

eme

Les recherches sur cette intoxication ont débuté dans la premiéere moitié du 20
siecle dans I'Océan Pacifique ou la prévalence est la plus importante (Dawson, 1959).

1.2.b.1 Biologie- Ecologie

Dés 1808, I'idée d’une algue marine impliquée dans le phénomeéne de I'intoxication
par les poissons de récifs est émise par le docteur Chisholm (1808). Une étude conséquente
est menée depuis 1913 dans I'atoll de Palmyra situé prés de I'équateur a 1 500 km au sud
d’Hawaii, sur les liens existant entre le comportement alimentaire des poissons et leurs
caractéres toxiques (Dawson et al., 1955 ; Dawson, 1959). En 1958, le professeur Randall
propose l'idée d’un organisme benthique proliférant sur des substrats vierges qui serait la
source de contamination de la chaine alimentaire.

En 1977, I'équipe du docteur Yasumoto identifie un dinoflagellé comme agent causal
nommeé alors Diplopsalis (Yasumoto et al., 1977 ; Yasumoto et al.,1979 ; Taylor, 1979 ; Bagnis
et al., 1980), puis renommé Gambierdiscus toxicus (Adachi and Fukuyo, 1979) aprés sa
découverte dans I'archipel des lles Gambier de Polynésie Francaise (Bagnis et al., 1980). Ces
dinoflagellés ont été découverts en grande quantité dans le contenu stomacal du poisson
chirurgien Ctenochaetus striatus (photo 2), poisson connu pour étre ciguatoxique mais
également pour étre la proie de carnivores contaminés: le puzzle du transfert de la
ciguatoxicité a travers la chaine trophique se confirme (Yasumoto et al., 1977).

Photo 2: Ctenochaetus striatus

1.2.b.2 Toxine et mécanisme d’action

La CTX de chair de murénes a été caractérisée en 1967 par Scheuer. Ce sont quelques
années plus tard, que l'une des cibles des CTXs est identifiée : elles agissent spécifiqguement
sur le canal Na* (Bidard et al., 1984) et se fixent, plus particulierement, sur le site 5 de la
protéine. Ce site de fixation est commun aux brévétoxines (PbTxs), mais I'affinité des CTXs
est 20 a 50 fois plus grande que celle des PbTxs (Lombet et al., 1987).
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1.2.b.3 Traitement

En 1988, le mannitol administré par voix intraveineuse (i.v.) est introduit dans le
traitement de la ciguatéra pour soigner les symptomes des malades intoxiqués hospitalisés
(Palafox et al., 1988 ; Blythe et al., 1994).

1.2.b.4 Structure des toxines

Initié par le département de chimie de I'Université d’Hawaii, l'isolement, la
purification et la détermination de la structure de la premiere CTX et de son précurseur, la
Gambiertoxine (GTX), a été possible en 1989 a partir de la muréne Gymnothorax javanicus
(photo 3) et de cellules sauvages de Gambierdiscus (Murata et al., 1989).Puis, grace aux
techniques de Résonance Magnétique Nucléaire (RMN), I'élucidation structurale des
congéneres a tres vite progressé (Yasumoto et al., 1987).

Photo 3 : Gymnothorax javanicus, I'extraction de son foie a permis I'élucidation structurale des premiéres
CTXs.

A ses débuts, la recherche coordonnée par le Secrétariat de la Communauté du
Pacifique (CPS) a été initiée par la collaboration des équipes américaines de Californie (A.
Halstead et al.), d’Hawaii (Banner et al., P. Scheuer et al.), japonaise (T. Yasumoto et al.) et
polynésienne (R. Bagnis et al.). Leurs efforts mutualisés ont ouvert la recherche vers de
nombreux domaines que sont : I'épidémiologie (clinique, thérapeutique, incidence sanitaire
et socio-économique), I'étude des traitements (ethnopharmacologie et pharmacochimie),
des toxines (identification, synthése, mode d’action, chimie d’extraction), des organismes
précurseurs (identification, description, biologie des espéces, culture, toxinogenese),
I’élaboration d'outils de détection et de dosage des CTXs, I’écologie et les facteurs favorisant
les zones ciguatoxiques, I'élaboration d’outils de gestion du risque (prévention, outils de
surveillance environnementaux). Aujourd’hui, les diverses équipes a travers le monde
travaillant sur ces spécialités ont pu se retrouver lors du colloque sur « la ciguatéra et les
biotoxines associées » qui a eu lieu a Nouméa en 2008, initié par I'IRD, I'Institut Pasteur, la
CPS et I'Institut Louis Malardé (ILM).

L'approche pluridisciplinaire reste essentielle pour I'avancement des connaissances
dans le phénomene de la ciguatéra. Certains de ces aspects sont présentés dans cette partie
telles que les données épidémiologiques, socio-économiques, toxicologiques (toxines et
détection) et enfin écologiques.
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1.3 Aspects épidémiologiques

I.L3.a Zone d’endémie

L'intoxication touche majoritairement les bandes cétiéres de I'ensemble de la zone
tropicale et subtropicale (35°N a 35°S) avec une prévalence supérieure dans les zones
insulaires tropicales. Elle est présente dans tout le Pacifique sud (Polynésie francaise,
Nouvelle-Calédonie, Australie, Vanuatu, Micronésie, Tokelau, Tuvalu, Mariannes du Nord,
fles Marshall, Tles Cook, Kiribati, Fidji, Tonga, Samoa, Guam...), dans le Pacifique nord (Hawai,
Japon...), dans I'océan Indien (ile Maurice, Seychelles...), dans les Caraibes, en Floride, etc
(figure 4).

Hawaii ~ Golfe du Mexique
- Hawaii -

“M@roneae b

Melanesne

Caraibes

““Polynés
/

La Réunion

Nouvelle Zélande
Figure 4 : Zones touchées par les intoxications ciguatériques.

Cependant, en raison de I'augmentation des échanges mondiaux, les intoxications
touchent maintenant également les populations des zones habituellement indemnes, soit
par importation de poissons tropicaux soit par le déplacement des personnes dans les zones
endémiques (tourisme, voyage...) (Vigneau et al., 2008 ; Moulignier et al., 1995 ; Center for
disease control and prevention (CDC), 1998). Ces zones d’endémie tendent a s’accroitre. Plus
récemment, des cas d’intoxication ainsi que la détection de poissons ciguatériques ont été
rapportés aux lles Canaries (Perez-Arellano et al., 2005), au large du Cameroun (Bienfang et
al., 2008), dans I'Ouest du Golf du Mexique (Villareal et al., 2007), et en Créte (Aligazaki and
Fraga, 2008 ; Aligazaki et al., 2008 ; 2009), dans des zones a priori jusque la indemnes. Pour
ces deux dernieres études, il est a noter que la présence de populations de Gambierdiscus a
également été raportée. Cette extension peut étre expliquée par I'augmentation des zones
propices au développement des dinoflagellés ciguatérigenes due au réchauffement
climatique (augmentation des températures (Chateau-Degat et al., 2005 ; Llewellyn, 2009)),
a des évenements climatiques majeurs (Hales et al., 1999) ou a I'impact de I'activité humaine
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(dégradation des espaces et créations de substrats vierges) qui leur conférent de nouveaux
biotopes favorables. Ce serait le cas des plates-formes pétrolieéres offrant de nouveaux
terrains de développement a ces organismes précurseurs de la ciguatéra dans le nord-est du
Golfe du Mexique (Villareal et al., 2007).

I.3.b Incidence

La ciguatéra est I'intoxication par organismes marins qui affecte le plus grand nombre
de personnes. Le nombre de cas relevé dans la littérature est treés variable : de 20000 a
500 000 personnes par an contracteraient le syndrome ciguatérique (Fleming et al., 2006 ;
Vigneau et al., 2008). Dans le Pacifique Sud, cette intoxication est une des principales causes
de morbidité avec une incidence annuelle de 500 cas pour 100 000 habitants (Vaillant et al.,
2001) et pouvant atteindre 1 200 cas d’intoxications dans certains états insulaires dépendant
des ressources marines (Bruslé, 1997). Une étude de 2005 a montré qu’en Nouvelle-
Calédonie, le tiers de la population interrogé (559 patients) a été intoxiqué au moins une
fois; ces données comparées aux études épidémiologiques antérieures montrent une
augmentation de la prévalence de la ciguatéra sur le territoire (Laurent et al., 1993;
Baumann et al., 2009). Dans les zones endémiques de la ciguatéra, ce taux varie de 0,1%
jusqu’a 50% de la population (Dickey and Plakas, 2010).

L'intoxication provoque, fort heureusement, peu de cas mortels avec un taux
inférieur a 0,1% des cas. Une des raisons évoquées par Lewis est la mortalité chez les
poissons dont les teneurs en toxines seraient trop importantes (Lewis and Ruff, 1993 ;
Dickey and Plakas, 2010).

Cependant, l'incidence réelle de la ciguatéra est difficile a évaluer et les chiffres sont
a prendre avec précaution tant I'exhaustivité du recueil d’informations épidémiologiques est
variable selon la zone géographique (SPEHIS, 1996 ; Llewellyn, 2009). Dans les zones
endémiques, elles varient selon le développement du réseau de surveillance et les moyens
qui leur sont attribués par les services publics (questionnaire adapté, sensibilisation et
implication du personnel médical). Aux Etats-Unis, les « centres de contréle et de prévention
des maladies » (CDC) estiment que le nombre de cas rapportés ne refleterait que 2 a 10%
des cas réels (Lewis and Ruff, 1993 ; Villareal et al., 2007 ; Vigneau et al., 2008).

Les cas d’intoxications déclarés en Nouvelle-Calédonie ont fortement baissé depuis la
fin des années 1990 (figure 5) ce qui est en contradiction avec les données recueillies lors de
I'’étude de 2005 (Baumann et al., 2009) ou la prévalence des intoxications est en
augmentation. Ainsi, la diminution des cas raportés serait plutét a attribuer a une sous-
déclaration des cas.
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Figure 5 : Nombre de cas d'intoxication ciguatérique déclarés en Nouvelle-Calédonie de 1984 a 2008
(Données DPASS, 2009).

Cette sous-déclaration peut étre expliquée par différentes raisons : (i) la personne se
soigne en tribu directement par la médecine traditionnelle ; (ii) le dispensaire est trop
éloigné ; (iii) le manque de conviction en une amélioration possible par un phénomeéne
connu (le recours au médecin n’est pas une nécessité) ; (iv) ou enfin la maladie n’est pas
diagnostiquée dans les zones non endémiques (Friedman et al., 2008 ; Dickey and Plakas,
2010).

Enfin, ces données doivent étre reliées a l'importance relative qu'occupe le poisson
dans l'alimentation humaine. Certaines files ou atolls ont en effet une alimentation
monotone a base de poisson, ce qui accroit considérablement le risque individuel
d'intoxication ciguatérique.

II.3.c  Syndrome polymorphe

L'ingestion de divers organismes marins contaminés par les CTXs peut provoquer le
syndrome de la ciguatéra présentant un tableau clinique polymorphe. Les symptomes
cliniques peuvent étre classés en quatre groupes : neurologiques, gastro-intestinaux, cardio-
vasculaires et généraux. Chez I'Homme, ils peuvent se manifester a partir de 0,1 pug
équivalent de P-CTX-1B par kg de chair de poisson (soit 0,1 nmole de P-CTX-1 / kg) (Lewis
and Ruff, 1993 ; Lehane and Lewis, 2000). Il se traduit majoritairement par des troubles
digestifs dans les heures suivant le repas (diarrhée, vomissements) suivis de troubles
neurologiques (dysesthésie, paresthésies, myalgies, arthralgie, prurit), et dans les cas les plus
graves par des troubles cardio-vasculaires (hypotension artérielle, bradycardie) (figure 6).
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Figure 6: Evolution des symptomes au cours des trois premiers jours d'intoxication ciguatérique
(d’aprés Lawrence et al., 1980).

La sévérité et le nombre de symptémes dépend de la quantité et du type de CTXs
ingérées, mais également du « passé ciguatérique » du patient. En général, I'évolution est
favorable au bout d’'une semaine, mais pour les cas les plus sensibles ou les personnes les
plus contaminées, les symptémes de types neurologiques peuvent perdurer (dysesthésie,
prurit...). Les études épidémiologiques menées en 1979 et en 2007 en Polynésie francgaise
(Bagnis, 1979 ; Chateau-Degat et al., 2007 ; 2009) montrent la prédominance de symptémes
neurologiques dans pres de 90% des cas (figure 7).

Paresthésie 189

Arthalgie ] 88

Dysesthésie ]187

Myalgie

Diarrhée 171

Maux de téte

Frissons

Douleur abdominale

Prurit

Nausées

Vertiges

Ataxie ]38

Sueur 137

Vomissement 137

Tremblement

Douleur dentaire

Raideur du cou

Suintement oculaire ] 22

Rougeur cutanée 20

Dysurie 119

Salivation | 119
Dyspnce | 16
Hypotension 712
Parésie [ 10

Figure 7 : Classement par ordre décroissant (Fréquence, %) des symptomes observés sur 3009 cas
d'intoxications ciguatériques ; les symptomes sont classés en quatre groupes : neurologiques (bleu), gastro-
intestinaux (rose), cardio-vasculaires (blanc) et généraux (noir) (Données de Bagnis, 1979).
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1.3.c.1 Diagnostic différentiel

Actuellement, le diagnostic d’une intoxication ciguatérique par le personnel médical
ne se base que sur I'analyse du tableau clinique et I'anamneése du patient (Friedman et al.,
2008). Certains symptomes de la ciguatéra sont communs a d’autres ichtyosarcotoxismes (cf.
ch1.1.2), par contre les manifestations comme les démangeaisons, le golt modifié (sensation
métallique), I'inversion des sensations (chaud/froid) sont plus atypiques. Ainsi, I’association
de ces signes neuropathiques particuliers et d’'un syndrome digestif permet d’orienter vers le
syndrome ciguatérique.

En Polynésie et en Nouvelle-Calédonie, ce sont les formes neurologiques qui
dominent : prés de 90% des patients rapportent des paresthésies, des arthralgies ou
myalgies (figure 7) dans les premiéres heures suivant le repas. Tandis que dans les Caraibes,
les premiers symptomes sont de type gastro-intestinal, les symptémes neurologiques
apparaissant 24 h apreés l'ingestion de I'organisme contaminé. A la Réunion, les symptémes
raportés sont similaires a ceux de la région Pacifique, avec en plus des symptémes
hallucinatoires observés dans 16% des cas déclarés (Quod et Turquet, 1994). Le tableau
clinique varie selon les régions ou le poisson a été péché, cette variabilité pouvant
s’expliquer par les divers profils toxiniques en CTXs des poissons ingérés, eux-mémes
directement liés aux différentes espéces de Gambierdiscus productrices de toxines présentes
dans les régions concernées (cf. ch1.11.7).

En France, la maladie est classée par les professionnels de santé comme TIAC (Toxi-
infection alimentaire collective) a ciguatéra. Elle est a ce titre a déclaration obligatoire.
L'augmentation du déplacement des personnes et des échanges commerciaux fait naitre un
probleme de diagnostic médical : il n’est en effet pas évident pour les médecins des régions
non endémiques et non familiarisés aux intoxications de type ciguatérique d’émettre
rapidement un avis médical sur I'étiologie du phénomeéne (Vaillant et al., 2001 ; Vigneau et
al., 2008).

11.3.c.2 La ciguatéra chronique

A la suite d’une premiére intoxication, certains symptomes (paresthésie ou prurit :
persistance des picotements avec démangeaisons palmo-plantaires) peuvent réapparaitre
ou étre exacerbés par la consommation ultérieure de produits marins, d’alcool, de chocolat,
de cacahuéete, lors d’activités physiques, de relations sexuelles, ou encore lors de
changement dans les habitudes alimentaires (CDC, 1998 ; Lewis, 2006). En effet, a I'inverse
d’un phénomene d’immunisation, I'organisme semble se sensibiliser : soit par un processus
immunologique, soit par accumulation de toxines (Glaziou and Martin, 1993). La
biopersistance de certaines toxines peut étre plus ou moins longue. Le seuil symptomatique
peut étre dépassé d’autant plus souvent et/ou facilement que le corps est de nouveau sujet
a intoxication. Il est fort probable que ces deux phénomeénes soient cumulés. Ce seuil
symptomatique est donc fonction de la lenteur de I’élimination des toxines mais aussi de la
sensibilité individuelle (Hamilton et al., 2009). Ce phénomeéne bien connu des populations
insulaires est dénommé cliniquement ciguatéra chronique, il peut durer plusieurs mois a
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plusieurs années. Les symptomes neurologiques sont des sensations de faiblesse, d’anxiété
avec une fatigue persistante alternant avec des insomnies (syndrome de fatigue chronique)
qui peuvent étre associés a une dépression nerveuse (Pearn, 2001 ; Gatti et al., 2008).

II.3.d Comment soigner la ciguatéra ?

1.3.d.1 Traitement traditionnel

Dans le Pacifique, les populations polynésiennes, mélanésiennes, micronésiennes ou
caucasiennes font souvent appel aux guérisseurs locaux pour prévenir ou soigner les cas de
ciguatéra ou « gratte ». Ces remedes traditionnels éprouvés depuis des millénaires sont
souvent plus efficaces et surtout plus accessibles dans les zones insulaires, parfois tres
isolées ou sévit fréquemment cette intoxication.

Photos 4, 5, 6 : Plantes utilisées dans les remédes traditionnels : faux-tabac (Heliotropium foertherianum),
faux poivrier (Schinus terebenthifolius) et vitex (Vitex trifolia).

Le faux tabac dit « arbre a gratte » (Heliotropium foertherianum, photo 4), le faux-
poivrier (Schinus terebinthifolius, photo 5) ou encore le vitex (Vitex trifolia, photo 6) font
partie des nombreuses plantes utilisées traditionnellement pour lutter contre I'intoxication.
Les racines, feuilles, écorces ou fruits sont préparés en décoction, en infusion ou macération,
pures ou en mélange selon différentes proportions et selon une posologie propre, suivant
des « recettes de cuisine » ancestralement transmises de génération en génération en toute
discrétion.

En 1990, 'ORSTOM (futur-IRD) a lancé un programme d’étude de ces remedes
(Laurent et al., 1993). Une liste de pres de 100 plantes a pu étre établie, permettant d’initier
un programme ethnopharmacologique avec pour objectif, une meilleure compréhension du
phénoméne d’intoxication.

Notre équipe de recherche a I'IRD, en collaboration avec I'lLM de Polynésie Frangaise
et I'Institut Pasteur de Nouvelle-Calédonie, travaille sur la valorisation de ces remeédes
traditionnels dans le but d’identifier les substances bioactives de plantes sélectionnées selon
des méthodes ethnopharmacologiques. Ainsi, trois théses ont été soutenues depuis 2005
apportant de meilleures connaissances sur les mécanismes de l'intoxication (Boydron-Le
Garrec, 2005 ; Kumar-Roiné, 2009 ; Matsui, 2009). Elles ont pu montrer I'efficacité de
certains de ces remeédes voire caractériser certains composés bioactifs comme |'acide

42/326



Chapitre 1 : Intoxications provoquées par les organismes marins

rosmarinique, isolé du faux-tabac qui manifeste un effet « détoxifiant » (Boydron-Le Garrec
et al., 2005 ; Matsui et al., 2009 ; Kumar-Roiné et al., 2009 ). Les recherches continuent dans
le but d’optimiser I'utilisation de ces remedes traditionnels afin de permettre a tous de
bénéficier plus facilement des bienfaits de la nature pour vivre avec la ciguatéra.

1.3.d.2 Traitement occidental

En I'absence d’antidote, le traitement occidental est symptomatique, utilisant par
exemple des antispasmodiques et des antiémétiques pour les symptomes digestifs, des
complexes vitaminiques (B1, B6, B12), du gluconate de calcium ou des antihistaminiques
pour les symptomes neurologiques. Dans les cas les plus graves pouvant nécessiter une
hospitalisation, le D-mannitol, administré précocement en intraveineuse, reste le traitement
de référence des formes neurologiques. Le mannitol agirait sur I'interaction des CTXs avec le
CSSP de par ses propriétés osmotiques (Blythe et al., 1994 ; Dickey and Plakas, 2010). Dans
les formes chroniques, I'amitriptyline et la gabapentine ont été utilisées dans le traitement
de la douleur et des paresthésies (Sebat et al., 2004).

Récemment, les recherches menées a I’'Université d’Osaka permettent d’apporter un
espoir quant au traitement de la ciguatéra a I'aide d’anticorps monoclonaux (Inoue et al.,
2009). L'étude montre que la fixation de deux anticorps monoclonaux spécifiques de la P-
CTX-3C neutralise sa toxicité a la fois in vitro (cytotoxicité sur neuroblastomes) et in vivo
(modele souris) : « encapsulée », la toxine n’a plus la possibilité de se fixer aux canaux
sodiques.

1.4 Aspects socio-économiques

Les intoxications sévissent principalement dans les zones tropicales, la ou 10% de la
population vit sur la bande cétiere. Une grande partie des communautés insulaires dépend
économiquement des ressources marines (Dupon, 1993) et se retrouve confrontée a ce
phénomene.

II.4.a Impact sur la santé publique et colt

Le caractére sévére de la morbidité est le probleme majeur de cette intoxication. En
I'absence de traitement, la ciguatéra peut étre invalidante des jours voire des mois pour
certains cas d’intoxications. La maladie représente ainsi un colt non négligeable pour les
communautés insulaires ne pouvant plus pécher et pour les collectivités, lors des soins
médicaux. L’arrét maladie et les frais médicaux colteraient 1 100 S pour une intoxication
(Lehane and Lewis, 2000). Ainsi, en 1992, en Nouvelle-Calédonie ou il y a eu 192 cas
déclarés, les dépenses médicales se seraient élevées a 153 350 €.

Lorsque la ressource pisciaire n’est plus disponible en raison du risque de ciguatéra,
les populations se tournent davantage vers la consommation de produits de qualité nutritive
moindre. Dans certaines iles du Pacifique, on observe alors un phénomeéne de transition
alimentaire forcée avec des conséquences importantes sur la santé humaine (diabéete,
obésité ...) (Dewailly et al., 2008; Chateau-Degat et al., 2009).
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II.4.b Impact sur I'économie

Le lagon constitue un espace de productivité biologique important et facilement
accessible ; peu de moyens sont nécessaires pour |'exploitation de ses ressources dans un
but d’autosubsistance ou pour sa valorisation a travers une activité économique (péche de
type artisanal) (David, 1991). Mais dés lors que la ciguatéra impacte la péche lagonaire, la ou
potentiellement I'intoxication est la plus probable, les petits pécheurs se tournent vers la
péche d’espéces du large (poissons pélagiques), ce qui entraine une augmentation du co(t
de l'activité (bateau adapté, essence, temps...). Dans certaines régions, I'économie de la
péche lagonaire est également freinée par la réglementation qui interdit a la vente certains
poissons dont la probabilité d’étre toxique est importante. Elle vise a protéger le
consommateur en interdisant ou en limitant la commercialisation des espéces a risque selon
le poids et/ou I'origine des spécimens. Mais il est difficile pour ces réglementations d’étre en
phase avec la réalité scientifique du phénomeéne, compte tenu de la variabilité avérée de la
ciguatéra dans le temps et dans I'espace.

L’activité économique des fles tire profit de leur environnement, deux activités
majeures se sont développées autour des zones lagonaires : le tourisme et I'aquaculture,
toutes deux plus ou moins importantes. Il peut exister des problémes de concurrence entre
ces deux activités dépendant toutes deux de la santé et de la qualité du lagon. Pendant
longtemps, des structures touristiques ont pu s’installer sans se soucier de la dégradation du
lagon (constructions, rejets, impact des populations...) et des pratiques de péche ont
entrainé de fortes dégradations du corail (dynamitage, ...). Sans développement raisonné et
réglementations adéquates, ces activités jouent potentiellement un rble dans le
développement de zones ciguatériques (cf. ch1.1l.7.d et ch.3.1.1). Ainsi, la dégradation des
lagons ou des zones littorales peut, a terme, mettre en péril les activités qui en tirent profit.

II.4.c  Evaluation de I'impact économique global des biotoxines marines

Il est difficile d’évaluer I'impact de la ciguatéra sur I’économie d’une collectivité tant
les atteintes qui peuvent étre directes ou non sont diverses et parfois méme difficilement
perceptibles. Aussi, afin de disposer d’outils de quantification d’impact notamment pour les
pouvoirs publics, Shuval (2001) a développé a la demande de I'Organisme Mondial de la
Santé (OMS) un indice, le DALYs pour « Disability-Adjusted Life Years », permettant d’évaluer
I'impact économique des biotoxines marines. Cet indice est calculé en prenant en compte
différentes échelles : 'homme et ses activités (la personne et sa sensibilité, travail, activité,
mortalité), I'environnement (pécherie, impact récréationnel) et I'économie mondiale. Le
DALYs permet d’estimer les pertes économiques liées au phénomene considéré. Celui des
biotoxines marines est estimé a 10° DALYs / an, soit un impact économique de 4*10° $ / an
au niveau mondial.

II.5 Aspects toxicologiques - Les toxines associées au phénomene ciguatérique

Les toxines produites par les dinoflagellés ou les diatomées sont des phycotoxines,
tandis que celles produites par les cyanobactéries composent la grande classe des
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cyanotoxines. Métabolites secondaires, les toxines seraient synthétisées par les organismes
dans un but de protection et pour limiter la prédation mais leurs roles ne sont pas encore
bien expliqués.

Nous présenterons successivement dans cette partie, les toxines qui sont impliquées
de maniére formelle dans la ciguatéra (CTXs), les autres toxines produites par le dinoflagellés
Gambierdiscus (maitotoxines, acides gambiériques, gambiérol) et celles suspectées de
contribuer au phénoméne écotoxicologique (acide okadaique, palytoxine) mais pour
lesquelles les preuves de leur implication n’ont pas été apportées de maniere irréfutable.

11.5.a Les ciguatoxines

Les ciguatoxines (CTXs) et leurs précurseurs, les gambiertoxines (GTXs), sont
synthétisées par les dinoflagellés du genre Gambierdiscus. Leur présence dans les chairs de
poissons n’entraine aucune odeur, ni goQt particulier. Thermorésistantes, la cuisson ne
permet pas de dégrader ces molécules complexes (Pearn, 2001).

Les CTXs sont regroupées en 3 familles selon leur origine géographique : les
ciguatoxines du Pacifique (P-CTX), des Caraibes (C-CTX), et de I'Océan Indien (I-CTX),
auxquelles on peut ajouter les toxines produites par les Gambierdiscus (Lewis, 2006).

11.5.0.1 Structure chimique

Les CTXS sont de polyéthers polycycliques liposolubles de faible poids moléculaire
variant de 1023 - 1157 Da. Cette famille de toxines est stable et peut étre conservée au
moins six mois a -4°C dans un solvant adéquat (méthanol, éthanol..). A ce jour, une
cinquantaine de congénéres de CTXs a été isolée et caractérisée d'un point de vue
chromatographique (figure 8), mais toutes n’ont pas encore été décrites structurellement
(Yasumoto, 2001 ; Litaker et al., 2010).

Actuellement, aucune CTX n’est disponible commercialement et seules certaines
d’entres elles peuvent étre synthétisées entierement (Hirama et al., 2001) ou partiellement
(Kobayashi et al., 2004). La recherche s’appuie donc sur les cultures in vitro des
microorganismes producteurs de CTXs pour s’approvisionner en précieuses CTXs. Seuls
certains laboratoires comme celui des Microalgues Toxiques de [I'ILM, maitrisent
suffisamment la culture des Gambierdiscus, I'extraction et la purification des CTXs pour
proposer des toxines d’'une pureté satisfaisante.

Les lignées toxiques de Gambierdiscus produisent différentes toxines qui seront
biotransformées a chaque maillon de la chaine trophique et différemment selon les
organismes hotes contaminés (Lewis and Holmes, 1993). Ainsi, a chaque espéce (pisciaire ou
autre) et a chaque niveau trophique est associé un profil toxinique propre, complexe et trés
variable (figure 9). Cette complexité explique en partie les symptomes polymorphes de la
ciguatéra.
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P-CTX-1: R1 = "CH,OHCHOH; R2 = OH Me
P-CTX-3 (P-CTX-2): R1 = '"CH,OHCHOH; R2=H Me
GT-4B (CTX-4A): R1 = 'CH,CH; R2=H

Figure 8: Structure chimique de quelques CTXs (Extrait de Lewis, 2006).
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Figure 9: Diversité de profils toxiniques dans la chaine trophique (Source ILM, données non publiées).
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1.5.0.2 Cible moléculaire et mécanismes d’action

Les CTXs activent les CSSP, protéines transmembranaires présentes a la surface des
cellules excitables (nerveuses musculaires ou myocardiques) ou de certaines cellules non
excitables comme les cellules gliales (figure 10). La toxine se fixe spécifiquement au niveau
de la sous-unité a du site 5 de la protéine membranaire constituant le canal. Les séquences
extracellulaires des segments transmembranaires S6 (domaine I) et S5 (domaine 1V) seraient
impliquées dans la formation du site fixant la toxine (Bottein-Dechraoui et al., 2005). Les
CTXs ayant une forte affinité pour le CSSP, leur fixation est quasi-irréversible (Lewis, 2006 ;
tableau 2) .

Int

Figure 10: Modéle structural simplifié du canal sodium sensible au potentiel (CSSP).

11.5.0.3 Conséquences de la fixation des CTXs sur les voies métaboliques

La fixation des CTXs sur les CSSP bloque ceux-ci en position ouverte. Il en résulte : (i)
une augmentation de la perméabilité membranaire au sodium, (ii) une augmentation de
I’excitabilité membranaire qui correspond a la dépolarisation de la membrane, (iii) une
altération de la libération des neurotransmetteurs et enfin (iv) une augmentation du volume
cellulaire par entrée d’eau. L'ensemble de ces modifications a différentes répercussions en
fonction du type de cellules cibles : perturbation de I'influx nerveux (cellules nerveuses),
perturbation de I'activité musculaire (cellules musculaires), des effets biphasiques (cellules
cardiaques) ou encore des libérations de neurotransmetteurs (au niveau des jonctions
cellulaires).

Méme si le mode d’action est en grande partie déterminé, les conséquences sur le
métabolisme secondaire ne sont pas complétement élucidées notamment en ce qui
concerne l'immunotoxicité. Récemment, il a été mis en évidence l'induction de 'oxyde
nitrique (NO) dans la cascade métabolique provoquée par I'action des CTXs (Kumar-Roiné et
al., 2008). L'implication de ce radical NO expliquerait le polymorphisme de lintoxication
ciguatérique. L'étude des mécanismes de toxicité permet une meilleure compréhension d’un
point de vue biologique et physiologique en général, permettant ainsi de mieux évaluer les
bases d’un traitement médical.
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11.5.0.4 Potentiel toxique

L’oxydation des congéneéres de CTXs confére a chaque degré une augmentation de la
toxicité de la toxine (Murata et al., 1989; Lewis and Holmes, 1993). Le tableau 2 synthétise
les potentiels toxiques selon divers tests présentés par la suite (cf. ch.1.1l.6.b et ch.2.11.2.d).
La P-CTX-1B, la forme la plus oxydée car en fin de chaine alimentaire, est la plus toxique des
congéneres (Lewis et al., 1991). Elle entraine des risques pour la santé humaine a des
concentrations de 0,1 ppb soit 0,1 ug de P-CTX-1B / kg de chair (Pearn, 2001 ; Lewis et al.,
2009).
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Tableau 2 : Caractéristiques et potentiels toxiques de quelques CTXs (d'aprés Lehane and Lewis, 2000 ; Lewis,
2006 ; Dechraoui, 1999; Bottein-Dechraoui et al., 2005); MTest RBA:test de fixation spécifique sur
synaptosomes de cerveaux de rat et @Test N2A : test de cytotoxicité sur cellules de neuroblastomes (Neuro-
2A), i.p. : injection intrapéritonéale.

Caractéristiques Toxicité
. @) Test
T T RBA
est souris est N2A®?
Ciguatoxine Masse
Origine moléculaire Référence DLso (i.p.) Ki Clso
[M+H]
ug / kg nM nM
P-CTX-1 Poisson carnivore 1111 Murata et al., 1991 0,25 0,041 11,3
P-CTX-2 A2 Poisson carnivore 1095 Lewis et al., 1991 2,3 (PCTX-2) 0,047 86
P-CTX-3 Poisson carnivore 1095 Lewis et al., 1991 0,9 - -
P-CTX-3C Gambierdiscus 1045 Satake et al., 1993 2 0,49 146
2,3-
DihydroxyP- Poisson carnivore 1057 Satake et al., 1998 1,8 - -
CTX-3C
51-HydroxyP- . .
CTX-3C Poisson carnivore 1039 Satake et al., 1998 0,27 - -
G. toxicus
P-CTX-4A . . 1061 Satake et al., 1997 2 0,93
Poisson herbivore
G. toxicus
P-CTX-4B , . 1061 Murata et al., 1991 4 - -
Poisson herbivore
C-CTX-1 Poisson carnivore 1141 Vernoux et Lewis, 1997 3,6 - -
C-CTX-2 Poisson carnivore 1141 Vernoux et Lewis, 1997 1 - -
I-CTX-1 Poisson carnivore 1141 Hamilton et al., 2002 0,5 - -
I-CTX-2 Poisson carnivore 1141 Hamilton et al., 2002 0,5 - -
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I.5.b Les maitotoxines

1.5.b.1 Généralités

Les maitotoxines (MTXs) sont des neurotoxines extrémement puissantes qui tirent
leur nom du maito, nom tahitien du poisson chirurgien Ctenochaetus striatus dont le
premier type, MTX-1, a été isolé par Yasumoto et al. (1987). Ce sont des polyéthers
polycycliques sulfatés comportant 32 cycles. Trois congéneéres ont été isolés MTX-1 a MTX-3
respectivement de poids moléculaire 3 422, 3298 et 1 060 Da (Murata et al., 1992 ; Murata
et al., 1993 ; Caillaud et al., 2010). Seule la structure de la MTX-1 a été déterminée
(C164H256068S52Na5) (Yasumoto et al., 2001 ; Lewis, 2006) (figure 11).

OSO3Na OH & ™,
HO
OH

Figure 11: Structure de la MTX-1.

1.5.b.2 Mécanismes d’action

Les MTXs activent les canaux calciques des cellules (sensibles ou non au potentiel),
engendrant une augmentation de la perméabilité membranaire aux ions calcium (Ca®")
(Ohizumi, 1987 ; Lewis et al., 2000 ; de la Rosa et al., 2007). Elles provoquent une plasmolyse
des cellules par une accumulation lente et progressive de Ca’' intracellulaire. Les MTXs
provoquent des effets hémolytiques, ichtyotoxiques et cytotoxiques. Leurs mécanismes

d’action restent toutefois encore mal définis (Ohizumi, 1987 ; Yasumoto et al., 2001).

1.5.b.3 Toxicité

Les MTXs sont parmi les composés naturels les plus toxiques dans la nature. Injectée
en i.p., la dose létale chez la souris est de 50 ng / kg, bien plus toxique que la P-CTX-1 (0,25
ug / kg en i.p., tableau 2), mais elle est 100 fois moins toxique administrée par voie orale
(Yokohama et al., 1988 ; Satake et al., 2007). En outre, de par sa polarité, elle ne s"accumule
pas dans les chairs du poisson ; les MTXs n’interviennent donc généralement pas dans le
phénoméne de la ciguatéra (Lewis and Holmes, 1993 ; Lewis, et al., 2000). En revanche, elles
peuvent engendrer une forte toxicité si celles-ci sont encore présentes dans le tractus
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digestif du poisson (Bagnis et al., 1992), en particulier dans les régions a forte prévalence de
ciguatéra ou les insulaires ont coutume de consommer également la téte et les viscéres de
poissons.

II.5.c Les acides gambiériques et le gambiérol

Les acides gambiériques et le gambiérol sont des composés extraits de Gambierdiscus
toxicus (Moroashi et al., 1998 ; Morohashi et al.,, 2000; Yasumoto et al., 2005). Leurs
mécanismes d’action ne sont pas encore completement élucidés; leurs cibles
pharmacologiques sont les canaux Na* pour les acides gambiériques et les canaux Na*, K" et
TRPV1 (canaux cationiques non spécifiques impliqués dans la sensibilité aux température et
dans les réactions aux brilures) pour le gambiérol (Inoue et al., 2003 ; Cuypers et al., 2007 ;
2008).

Gambierc acid A (GAA, 1):

Gamblenc acid B (GAB, 2): Ma H

Gambienc acid C (GAC, 3): H

Gamblerc acid D [(GAD, 4] Me

Figure 12 : Structure chimique des acides gambiériques (Morohashi et al., 2000) et du gambiérol
(Ito et al., 2003).

Ces composés liposolubles sont structurellement proches (figure 12) et provoquent le
méme type de symptdémes que ceux de la ciguatéra en injection intra-péritonéale (i.p.) chez
la souris (Ito et al., 2003). Certaines études avancent donc I’hypothése de leur réle dans les
intoxications ciguatériques mais celui-ci reste encore a confirmer (Ito et al., 2003 ; Cuypers
etal., 2008 ).

I1.5.d L'acide okadaique

11.5.d.1 Description et action

L’acide okadaique (AO) et ses dérivés, les dinophysitoxines (DTXs-1, -2, -3, -4) sont
responsables des IDFM (cf. ch.1.l.b). Elles font parties de la classe des toxines polyéthérées
lipophiles (Van Dolah, 2000; Chateau-Degat, 2003). Ces toxines inhibent I'action des
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protéines phosphatases (PP1 et PP2A), enzymes provoquant la déphosphorylation de
certaines protéines. L'accumulation de protéines phosphorylées induit des contractions
musculaires. Elles agissent sur la perméabilité des vaisseaux du tube digestif ce qui explique
les symptomes majoritairement d’ordre gastrique. La dose |étale de I’AO injectée en i.p. chez
la souris est de 192 ug / kg (Frémy et Lassus, 2001).

11.5.d.2 Lien avec la ciguatéra

Plusieurs études mettent en évidence |'implication possible de I'AO et de ses
congéneres dans des intoxications de type ciguatérique. Isolées et identifiées a partir
d’extraits d’éponge Halichondria okadai, 'AO et les DTXs sont synthétisés par les
dinoflagellés du genre Prorocentrum ou Dinophysis souvent associés aux mémes biotopes
qgue Gambierdiscus (Dickey et al., 1990 ; Ten-Hage et al., 2000). Elles pourraient donc jouer
un role dans les intoxications ciguatériques, mais nous ne disposons pas d’étude scientifique
apportant les preuves formelles de leur implication.

II.5.e La palytoxine

La palytoxine (PTX) est une macromolécule complexe possédant a la fois une partie
hydrosoluble et liposoluble. A ce jour, c’est le composé naturel non protéinique le plus
toxique (Katikou, 2007). Impliquée dans les cas de clupéotoxisme (cf. ch.1.1.2.c), elle serait
principalement synthétisée par différentes especes du genre Ostreopsis, dinoflagellé
benthique se développant dans les mémes biotopes que Gambierdiscus (cf. ch.1.ll.7.a)
(Katikou, 2007).

Il.5.e.1 Description et mécanisme d’actions

La PTX est polyhydroxylée, de poids moléculaire de 2 680 Da et de formule chimique
C129H223N30s54 (figure 3c) (Katikou, 2007). Elle fut découverte a la suite d’études sur une
intoxication déclarée ciguatérique. En 1971, des chercheurs d’Hawaii I'ont isolé de Palythoa
toxica, corail mou de la famille des Zoanthidae. Par la suite, des équipes japonaises
d’Okinawa ont isolé du contenu digestif de balistes ayant causé la mort de cochons, des
composées similaires a la PTX (PTX-like) (Tan and Lau, 2000). Nombreux sont les organismes
récifaux capables de séquestrer la PTX : crustacés, moules, éponges (Porifera sp.), coraux
mous (Alcyonaria), poissons (Chaetodon sp.), étoiles de mer (Acanthaster) (Gleibs and Mebs,
1999 ; Wu, 2009).

La PTX posséde un large éventail d’action : (i) elle agit sur la pompe protéique Na*/K’,
la bloquant en position ouverte et induisant un efflux K" et un influx Na*, ce qui entraine une
perturbation du gradient ionique et une dépolarisation des membranes excitables, (ii) elle
induit une activation secondaire des canaux Ca’’ et (iii) augmente la libération des
neuromédiateurs au niveau des terminaisons nerveuses (Vale and Ares, 2007). Les
conséquences de I'action de cette neurotoxine sont de séveres contractions musculaires, des
irritations cutanées, de la fievre et une géne respiratoire (cf. ch.1.1l.c sur le clupéotoxisme).
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I.5.e.2 Lien avec la ciguatéra

En 1986, a Hawaii, la palytoxine (PTX) a causé des intoxications de type ciguatérique
par ingestion de maquereaux (Decapterus macromosa) (Kodama et al.,, 1989). La
symptomatologie observée était similaire au tableau clinique ciguatérique avec toutefois
une particularité : le syndrome « spinal-seizure » observé 48 h apres les premiers
symptomes et associé a de fortes contractions musculaires (Kodama et al., 1989 ; Tan et al.,
2000). L'association de cette toxine avec les CTXs pourrait engendrer des intoxications a
caractere ciguatérique atypique (cf. ch.2.1l1).

II.6 Détection des organismes toxiques

Une des principales demandes des consommateurs de poissons tropicaux et
particulierement des populations insulaires, porte sur la disponibilité d’'un test de détection
des poissons toxiques. Les questions qui se posaient en 1961, relevées par Banner, sont
toujours d’actualité : « Les habitants des fles nous posent toujours les mémes questions :
Quels sont les poissons qui ne présentent aucun danger? Comment peut-on déterminer si un
poisson est toxique ou non? » (Banner, 1961). Car rien ne permet de discriminer un poisson
sain d’un individu toxique (ni I'odeur, la couleur ou le go(t). A ce jour, il n’existe aucun test
pour les particuliers totalement fiable sur le marché. Ainsi, la mise en place d’un test de
référence a la fois sensible, simple, rapide, fiable, utilisable sur le terrain et peu onéreux
demeure actuellement un des principaux enjeux actuels pour la communauté de chercheurs
spécialisés dans le domaine.

Les principaux obstacles a la détection des CTXs sont (i) les faibles quantités de
toxines a détecter dans les matrices contaminées de I'ordre de 0,1 ppb, et (ii) la multiplicité
des toxines en jeu avec des structures et des degrés de toxicité trés variables. La faible
disponibilité en toxines pures est le facteur limitant pour I'avancée des recherches. Malgré
ces contraintes, différentes méthodes d’évaluation de la ciguatoxicité ont été développées
avec plus ou moins d’efficacité. Actuellement, les progrés de la recherche ont permis la mise
en place de tests utilisables en routine au laboratoire, incluant a la fois des tests in vivo (test
sur animaux) et in vitro (méthodes chimiques, neuro-pharmacologiques, immuno-chimiques
et tests de cytotoxicité).

Dans cette partie, aprés une présentation succincte de quelques tests basés sur les
croyances populaires, nous ferons le point sur I'avancée des tests de laboratoire utilisés pour
la détection des CTXs, en soulignant les avantages, sensibilité et spécificité et les
inconvénients. La sensibilité traduit la probabilité pour un poisson toxique de donner un
résultat positif. La spécificité, quant a elle, traduit la probabilité pour un poisson non toxique
de donner un résultat négatif.

I.6.a Tests traditionnels

Bien avant que les scientifiques ne se penchent sur le phénomeéne ciguatérique, les
populations insulaires étaient déja confrontées a la ciguatoxicité des poissons récifaux. Tout
naturellement, au fil des ages, ils ont ainsi développé un certain nombre de tests empiriques
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leur permettant d’éviter les poissons suspects et les zones dites « a risque » (Chilshom,
1808).

Les tests sur insectes (fourmis, mouches ou autres) sont basés sur leur répulsion vis-
a-vis de la chair ou des visceres d’un poisson contaminé (Pichon et Bagnis, 1973). Quant au
test dit « du chat », si aprés ingestion d’'un morceau de chair de poisson, I'animal ne
présente aucun symptéme d’intoxication typique (faiblesse, vomissement, troubles de la
coordination ou mort), le poisson entier pourra alors étre consommé. Dans certaines iles du
Pacifique, ces tests sont également pratiqués sur les poulets, les canards, les tortues ou
encore les chiens du village, si plus aucun chat (animal considéré comme le plus sensible aux
toxines ciguatériques) n’est encore vivant.

Les métaux sont également utilisés avec le test a la piece d’argent : une piece ou une
cuillere en argent est mise a bouillir en présence de chair suspecte. Le métal ressort terni si
celle-ci est toxique. Des fils de cuivre noirciraient également avec ce méme traitement si la
chair est toxique (Boydron, 2004). L’équipe hawaiienne de Banner a montré qu’aucun de ces
tests ne s’est révélé fiable lors d’essais en laboratoire (Banner et al., 1963).

Enfin, le « test du foie » utilise la sensibilité accrue de certaines personnes vis-a-vis
des intoxications ciguatériques. A cet effet, le foie de poisson, qui héberge les plus fortes
concentrations de toxines, sera mis au contact de la langue ou des levres de personnes ayant
déja été atteintes d’intoxications ciguatériques. L’hypersensibilité acquise leur permettrait
de sentir des picotements si le foie est contaminé. Cette technique qui dépend de nombres
facteurs (sensibilité propre de la personne, capacité du poisson a la compartimentation
différentielle, ...) ne peut s’avérer fiable et aucune équipe scientifique ne s’est aventurée a
valider ce test a travers une étude a grande échelle.

Actuellement, I'équipe du Laboratoire des Microalgues Toxiques de I'ILM, en
collaboration avec I'IRD et I’'Université de Laval (Québec, Canada), achéve une étude visant a
valider scientifiguement deux tests utilisés traditionnellement par la population de Raivavae
(Australes, Polynésie Francaise): observation de la rigidité cadavérique et/ou de signes
d’hémorragie apreés incision a la base de la queue des poissons. Une centaine de poissons,
prélevés dans le cadre du suivi du risque ciguatérique du lagon de Raivavae, a ainsi été
passée au crible de ces deux tests populaires avant d’étre analysés en laboratoire par le test
RBA (tableau 2).

I.6.b Tests de laboratoire

Plusieurs méthodes de détection ont été mises en place depuis le début des années
50. Certaines ont été largement utilisées puis progressivement abandonnées pour laisser
place a de nouveaux tests, plus spécifiques et plus sensibles, développés au fur et a mesure
des connaissances acquises sur la structure des CTXs et leurs mécanismes d’action. Ces
différentes méthodes sont basées soit sur le mode d’action des toxines, soit sur leurs
propriétés structurales.

54/326



Chapitre 1 : Intoxications provoquées par les organismes marins

11.6.b.1 Méthodes analytiques basées sur le mode d’action des CTXs

I1.6.b.1.a Tests in vivo

Historiguement, ce sont les premiers tests utilisés pour mettre en évidence I'effet des
CTXs. Différents modeles de laboratoire ont été proposés qui utilisent des vertébrés ou des
invertébrés. L’'intoxication de I'animal intervient soit par gavage, soit par injection i.p. ou
intraveineuse (i.v.). Afin d’évaluer I'efficacité du test, plusieurs critéres sont pris en compte :
la sensibilité de I'espece, la spécificité des symptdmes, la quantification de la réponse de
I'animal en termes de toxicité, la possibilité d’utiliser le test en routine et enfin le caractére
éthique du test. Ces tests biologiques donnent une réponse globale de la toxicité d’un extrait
brut. Le test souris est le plus utilisé pour les études de toxicité aigué. Le tableau 3 résume
les différents bioessais utilisés en présentant le principe, les seuils de sensibilité et leurs
avantages et inconvénients.

Ces bioessais ont été pour la plupart abandonnés, essentiellement pour des raisons
d’éthique, de manque de sensibilité, de fiabilité ou de colt. Bien que permettant d’évaluer
une toxicité globale, ils ne donnent en revanche aucune information sur la composition
toxinique des extraits testés. Utilisés durant plus de 40 ans, ils ont cependant permis de
riches avancées dans la compréhension du phénomeéne de la ciguatéra. Mais rapidement, il
s’est avéré nécessaire de développer des méthodes de détection alternatives permettant de
caractériser les profils toxiniques des échantillons testés.
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Tableau 3 : Caractéristiques des tests in vivo utilisés dans la détection de la ciguatoxicité (d'aprés Boydron et al., 2004) ; *US : unité souris (Legrand et al., 1982) : quantité
d’extrait nécessaire pour tuer « 1g » de souris en 24 h, **DLs, : quantité d’extrait nécessaire pour tuer 50% du modéle, ***DLM: Dose létale minimum, quantité d’extrait la plus faible

pour tuer le modele, LD : limite de détection.

Test Principe Sensibilité et Spécificité Avantages Inconvénients Références
Injection i.p. de I'extrait DLM < 40 g de chair/20 g de S’applique a diverses matrices ) . .
jeciion L.p. ¢ * goec /20g ppiiue a aiv Moins sensible que les tests in vitro .
Souris Toxicité exprimée en US souris biologiques Consommateur d’extrait Pottier et Vernoux, 2003
(courbe dose / temps de survie) LD = 1,8 ppb pour la C-CTX-1 Peu sensible aux matrices Ethique Vernoux, 1994
en DLgp**, ou en DLM*** LDso = 0,25 a 2,3 mg/kg de chair complexes q
Réfl i
Gavage de 10% du poids 150 fois plus sensible que la Ciniz(:n(:nea\;?or:z?szrear;: Bagnis et Vernoux, 1975
Chat Observations comportementales : P souris g Sensibilité Ethique Bagnis, 1977
types, heures, intensité (48 h) Economique (disponibilité des chats) Bagnis et al., 1985
Injection par voie i.p. ou i.v. (sous
. I'ail 10%d id Pl ibl I is, P , simplicité de | 5 ti ) .
Poussin aile) ou par gavage (10% du poids) us sensible que la SOU'FIS er os 5|mp ICI.G_.‘ e. a prepara'lon Ethique Pottier et Vernoux, 2003
Observations comportementales : proche de celle du chat (i.p.) des extraits (utilisation en routine)
types, heures, intensité (48 h)
Test en bio-expérimentation . Consommation réduite d’extrait o Chungue et al., 1984
. . P . DLsg < 2,25 mg de chair/ g e Technicité du test g
Moustique Injection intra thoracique d'insecte Bonne reproductibilité Mattrise de I'élevage Pompon et al., 1984
Mortalité observée dans I'heure Rapidité & Bagnis et al., 1985
Simple et Sensible Probleme de lindarité de la réponse Pichon et al., 1973
Larve de Observation de I'effet de 5 g de LD =0,05-0,3 ng de CTX/ g de Pas de probleme éthique e P Labrousse et Matile,
L . . ; s Non spécifique pour les CTXs
Dipteres chair sur la croissance de 10 larves chair Bonne corrélation avec le test . - , 1996
. (tres sensible pour I’AQ)
souris s
Administration par voie orale
109 . . Ethi
Mangouste 0% dg son poids en poisson Régurgitation rare thlgue , . Banner et al., 1961
Observations comportementales : Consommation d’extrait
types, heures, intensité (48 h)
. Injection en intramusculaire .
E B ., 1
crevisse 0,33% du poids Faux positifs anner etal., 1967
Larve de Artemia salina Invalidé
crevette Mesure la mortalité larvaire — 24 h Faux positifs Boydron, 2004
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[1.6.b.1.b Le test N2A : Test de cytotoxicité sur neuroblastomes
Le principe du test N2A est basé sur la capacité des CTXs a se fixer spécifiquement sur
le site 5 des CSSP (Kogure et al., 1988 ; Manger et al., 1993 ; 1995). Il permet un dosage
global des composés cytotoxiques présents dans diverses matrices (ex. chairs ou foies de
poissons, bénitiers) avec une sensibilité de I'ordre du nM. Ce test, utilisé comme base du
dosage de la toxicité des organismes étudiés dans cette thése, sera plus largement
développé dans la partie « Matériels et Méthodes » du chapitre 2 (cf. ch.2.11.2.d.3). Les
principaux avantages et inconvénients de ce test sont :
— Une bonne sensibilité (de I'ordre du nM) (Manger et al., 1993 ; Bottein-Dechraoui
etal., 2005 ),
— Une faible consommation d’extrait (ex : 5 g de chair de poisson),
— Une bonne tolérance aux matrices complexes ne nécessitant au préalable qu’un
protocole d’extraction simple (Manger et al., 1995),
— Une automatisation possible avec 'utilisation du format microplaque,
— Une simplicité dans la lecture des résultats,

— Une durée totale d’analyse relativement longue (42 - 45 h) (sans prise en compte
du temps d’extraction de I’échantillon),

— Pas de discrimination entre les toxines activant les CSSP (CTXs ou PbTxs),

— Un niveau de technicité élevé (culture cellulaire - manipulation de toxines -
formation de I'opérateur)

— Les difficultés d’approvisionnement en toxines spécifiques (e.g. ouabaine et
vératridine) pour les collectivités d’outre-mer.

I1.6.b.1.c Le test RBA : test de fixation spécifique sur synaptosomes de rat

Le test de fixation spécifique sur synaptosomes de rat ou Receptor Binding Assay
(RBA) est un test neuropharmacologique basé sur I'affinité des toxines marines pour le site 5
du CSSP (Poli et al., 1986; Lombet et al., 1987 ; Van Dolah et al., 1994). Ce test dose de
maniére indirecte la compétition pour le site 5 du CSSP entre le ligand radiomarqué
(brévétoxine tritiée ou *H-PbTx-3) et I'analyte (CTXs contenues dans I’échantillon). La finalité
est de détecter et de doser les CTXs dans les matrices organiques. La figure 13 illustre la
courbe de régression classiquement observée permettant d’évaluer la toxicité d’une toxine
(ex. de la C-CTX-1) ou d’un extrait. Ce test, également utilisé dans le cadre de cette these,
sera développé en détail dans le chapitre 2 (cf. ch.2.11.2.d.4).

Le test RBA est actuellement utilisé en routine pour des études environnementales et
la surveillance sanitaire des zones a risque de ciguatéra (Bottein-Dechraoui et al., 2005 ;
Darius et al., 2007 ; Chinain et al., 2009a) ou dans le cadre de la caractérisation de composés
issus de la pharmacopée traditionnelle et actifs dans le traitement de la ciguatéra (Kumar-
Roiné, 2009). Il présente certains avantages et inconvénients:

— Une bonne sensibilité, de I'ordre du nM : sensiblement équivalente a celle du test

N2A et 10 000 fois supérieure a celle du test souris (Hamilton et al., 2002),
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— Une haute spécificité : une détection des composés agissant sur site 5 du CSSP,
— Une bonne tolérance aux matrices complexes : utilisable sur des échantillons
partiellement purifiés,

— Possibilité de surévaluer la toxicité (e.g. celle de métabolites autres que les CTXs
présentant également une trés haute affinité avec les CSSP et donc capables de
déplacer la *H-PbTx-3),

— Fortes contraintes en termes de technicité,

— Préparation des synaptosomes a partir de tissu animalier,

— Manipulation de radioéléments (utilisation de matériel adapté, formation
réglementaire des manipulateurs, gestion des déchets...),

—  Colts des réactifs (*H-PbTx-3).

0 N2A:
* RBA

Effet relatif
(% du controle)
3

D k| 1 1 k] /] T WALl | ik |
107319072107 10" 102 102 10~ 108 10-°
C-CTX-1 concentration (g/mil)

Figure 13 : Courbes de régression sigmoidale de la C-CTX-1 obtenues par le test N2A (0) et le test RBA ()
(extrait de Bottein-Dechraoui et al., 2005).

11.6.b.2 Méthodes analytiques basées sur les propriétés structurales des CTXs

[1.6.b.2.a Tests immuno-chimiques

Le principe de ces tests est basé sur une détection d’antigéne (CTXs) au moyen
d’anticorps (anti-CTXs) polyclonaux ou monoclonaux (Hokama et al., 1977). Les CTXs de
faible poids moléculaire sont considérées d’un point de vue immunologique comme des
hapténes qui, sans activation préalable puis couplage a une protéine, sont non-
immunogenes. Ces hapténes peuvent étre activés par une réaction de type chimie micellaire
en phase inverse puis couplés a une protéine comme la Bovine Serum Albumine (BSA)
(Pauillac et al., 1998). Les conjugués de type CTX-BSA immunogenes sont ensuite injectés in
vivo a des lapins ou des rats, pour déclencher une réponse immunologique par production
d’anticorps spécifiques.

Un marquage de ces conjugués est nécessaire pour visualiser et quantifier les CTXs
marqués. Il existe ainsi différents « systemes rapporteurs » qui par liaison covalente se fixent
a I'anticorps sans affecter les propriétés d’aucune des parties. Plusieurs méthodes ont été
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développées avec plus ou moins de fiabilité : (i) les méthodes radio-immunologiques
utilisant I'iode radioactive (**°l) (Laigret et al., 1981), (ii) la méthode d’immunoflurorescence
utilisant un fluorochrome (lto et al, 1983) ou (iii) encore les méthodes immuno-
enzymatiques couplant I'anticorps a une enzyme (ELISA pour Enzyme-Linked
ImmunoSorbent Assay) (Hokama et al., 1977 ; Pauillac et al., 2000). Ce test de haute
sensibilité permet de doser des CTXs de I'ordre du pg dans les chairs de poissons.

Cette technique de dosage a été utilisée dans de nombreuses études
environnementales dans les fles du Pacifique (Wong et al., 2005 ; 2006 ; Ito et al., 1983) et a
permis la mise sur le marché des premiers tests utilisables par les pécheurs (Ciguatect®,
Ciguacheck®) basés sur un anticorps monoclonal anti-CTX-1 (Hokama et al., 1998).
Cependant, la spécificité du test s’est avérée imparfaite avec 'observation de faux positifs
(engendrant un manque a gagner en raison du retrait a la vente de certains poissons
pourtant sains, avec un impact non négligeable sur la faune pisciaire en raison d’'une péche
excessive) mais également de faux négatifs (risque pour le consommateur) (Dickey et al.,
1994). Ce test, malgré les difficultés de mise au point, demeure une voix prometteuse pour
I'obtention d’un test de détection de terrain (Naar, 1999).

I1.6.b.2.b Tests physico-chimiques

Les techniques de chromatographie liquide (LC) ou gazeuse (GC) couplées a une
détection par spectrométrie de masse (MS) simple ou en tandem (MS / MS) permettent non
seulement une détection et une quantification spécifique et précise des phycotoxines, mais
également l'identification de composés avec une grande sensibilité et sélectivité (Lewis et
al., 1998 ; Lewis et al., 2009). Les CTXs peuvent ainsi étre séparées et caractérisées en
fonction de leurs propriétés structurales. Leur présence peut étre confirmée dans des
échantillons issus de matrices complexes dont le profil toxinique peut ainsi étre établi. En
phase inverse LC-MS/MS, elles permettent de détecter dans des chairs de poissons un
équivalent de 40 ppt de P-CTX-1 soit 40 ng / kg de chair (Lewis et al., 1998).

La LC-MS/MS permet également l'identification de nouvelles toxines grace aux
différentes informations structurales acquises. Elle présente cependant différentes
contraintes :

— Nécessité d’une purification poussée de I'extrait : un prétraitement par dérivation

en pré-colonne,

— La nécessité de disposer de toxines pures (standards de référence) pour la

détection et la quantification des toxines impliquées.

[1.6.c  Critéres de choix d’un test

Le choix d’un test sera essentiellement dicté par les objectifs de I'étude et de ses
parameétres : matrices a tester, toxines et panel des congéneéeres a identifier, seuil de
sensibilité exigé ou souhaité, etc... . Le tableau 4 donne une synthese des criteres a
considérer lors du choix d’un test de détection.
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Tableau 4 : Avantages et spécificités de quelques techniques d'analyses des phycotoxines (d’aprés Frémy et
Lassus, 2001) ; + : Faible ; ++ : moyen ; +++ : élevé ; * : temps de manipulation et temps d’observation.

o
N} “Q () QC) S
o+ c +— =
. S 2 = 82 = RE 3 .
Techniques 5 s} = € @ o Yo g Avantages Contraintes
@ o c P © =35 B
Q. o (] 5 [on e
(%] (%] :GJ o
©
Toxicité .
. . . Ethique
Bioessais sur animaux + + + 3-48h*  + + +++ globale . .
s e s Animalerie
Rapidité
Toxicité
Test N2A ++ ++ ++ | 4-42h* 4+ ++ ++ globale
Sensibilité
Toxicité
Test RBA +++ ++ ++ | 4-24h*  +++  +++ globale Radiomarquage
Sensibilité
Tests Sensibilité
. ) +++ ++ 2h ++ o
immunologiques Spécificité
; g e s Colt
Chromatographiques +++ +H+ 6h +++ o+t + Spécificité .
Appareillage

Le choix d’un test dépend de la sensibilité et de sa spécificité mais doit également

tenir compte des contraintes techniques (colt du matériel) et humaines (niveau de

technicité requis) du laboratoire (notion de praticabilité).

Frémy et Lassus (2001) distingue ainsi trois classes de méthodes regroupant :

— les outils de dépistage, pour les laboratoires impliqués dans la détection en

routine de classes de toxines spécifiques (e.g. tests sur animaux, tests de

cytotoxicité, tests biochimiques ou immunochimiques)

— les outils d’investigation, pour les laboratoires de recherche (e.g. techniques

chromatographiques ou électrophorése capillaire)

— les outils de confirmation, pour les laboratoires de recherche spécialisés dans la

détection de certaines toxines (e.g. spectrométrie de masse).

Enfin, il faut étre vigilant quant a la comparaison des résultats, quelque soit le test

considéré. Par ailleurs, certains des tests sont sensibles aux matrices complexes et ne

peuvent étre appliqués qu’a des matrice ayant subi des étapes d’extraction et purification

poussées.

Jusqu’a tres récemment, le test biologique sur souris était le plus utilisé au sein de

I’Union Européenne tant pour la détection des CTXs que pour les toxines diarrhéiques ou

paralysantes. Toutefois, depuis 2010, I’Agence Francaise de Sécurité Sanitaire des Aliments

(AFSSA) recommande que le test souris soit désormais systématiquement associé a des

analyses en LC-MS/MS pour la détection des biotoxines marines lipophiles (Krys et al., 2010).
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[1.7 Aspects écologiques : I'étiologie du phénomene

II.7.a  Organismes ciguatoxinogénes

Le dinoflagellé Gambierdiscus toxicus fut longtemps considéré comme unique
organisme a |'origine de la ciguatéra. Depuis, les études ont montré que d’autres espéces de
Gambierdiscus, ainsi que les genres Ostreopsis et Prorocentrum mais également certaines
cyanophycées pourraient également étre impliqués dans les intoxications de type
ciguatérique. Le polymorphisme des symptomes et la complexité du phénomene ciguatéra
seraient liés, en partie, a cette diversité des progéniteurs des toxines impliquées dans le
syndrome ciguatérique. Nous ferons le point sur ces différents micro-organismes dans la
section qui suit.

I.7.a0.1 Les dinoflagellés ou dinophycées

Ces organismes, végétaux aquatiques unicellulaires, constituent une part importante
du phytoplancton et un maillon essentiel de la chaine trophique en tant que producteurs
primaires. A ce jour, environ 2 200 espéces sont décrites. Les dinoflagellés incriminés dans
les intoxications ciguatériques sont épiphytes et vivent dans les zones coralliennes de faible
profondeur. Chez beaucoup d'espéces, la cellule est protégée par une theque constituée de
plaques cellulosiques rigides, incrustées de silice.

Seulement 30 espéeces de dinoflagellés sont connues pour produire des composés
bioactifs dont certains sont de puissantes toxines (Yasumoto et al., 1987 ; Bruslé 1997).
Leurs efflorescences épisodiques constituent un danger potentiel directement pour la faune
ou indirectement pour 'Homme. Gambierdiscus est le genre formellement impliqué dans la
ciguatéra ; quant aux genres Prorocentrum, Ostreopsis ou Coolia, dinoflagellés benthiques
partageant les mémes biotopes que Gambierdiscus (Sugg and Van Dolah, 1999 ; Faust,
2009), avec qui ils constituent un complexe propice aux intoxications par voie
bioaccumulative, ils pourraient également jouer un role dans la genése des flambées de
ciguatéra (Faust, 2009).

[I.7.a.1.a Genre Gambierdiscus

Diversité spécifique et description

Proposée pour la premiére fois en 1977 comme agent étiologique de la ciguatéra
(Yasumoto et al., 1977 ; Bagnis et al., 1980), le genre Gambierdiscus compte a ce jour dix
especes décrites (tableau 5) (Adachi and Fukuyo, 1979 ; Faust, 1995 ; Holmes, 1998 ; Chinain
et al., 1999b; Litaker et al.,, 2009). Initialement rattaché au genre Diplopsalis, la
détermination par Adachi et Fukuyo de la formule thécale de G. toxicus (Adachi and Fukuyo,
1979) a conduit a I'établissement d'un nouveau genre :

- Division : Pyrrophytes - Famille : Hétéraulacacées

- Classe : Dinophycées - Genre : Gambierdiscus
- Ordre : Péridiniales
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Tableau 5 : Especes de Gambierdiscus décrites (d’apres Litaker et al., 2009).

Espeéce

Référence

Origines de la souche isolée

G. toxicus

G. belizeanus

G. yasumotoi

G. australes

G. pacificus

G. polynesiensis

G. caribaeus

G. carolinianus

G. carpenteri

G. ruetzleri

Adachi and Fukuyo, 1979

Faust, 1995

Holmes, 1998

Chinain et al., 1999b

Chinain et al., 1999b

Chinain et al., 1999b

Litaker et al., 2009

Litaker et al., 2009

Litaker et al., 2009

Litaker et al., 2009

Polynésie francaise (Tahiti), Nouvelle-Calédonie (Ouvéa), la
Réunion

Belize, USA (Floride, Golfe du Mexique)

Singapour (iles Pualu Hantu)

Polynésie francgaise (Raivava - Australes,Morurua - Gambiers),
USA (Hawai)

Polynésie francaise (Hao - Tuamotu; Moorea - fles de la
Société)

Polynésie francaise (Tubuai - Australes ; Rangiroa - Tuamotu)

Belize, Palau, Polynésie frangaise (Tahiti), lles Caimans

USA (Caroline du Nord)

lles Mariannes (Guam), Belize

USA (Caroline du Nord), Belize

Ces microalgues unicellulaires sont de forme lenticulaire et caractérisées par une

encoche ventrale (sulcus) ou s'insérent deux flagelles : le flagelle longitudinal ou sulcal, qui

joue un roéle de gouvernail et le flagelle transversal ou cingulaire, qui ondule dans le

cingulum (figure 14). La coloration globale de la cellule est variable, du vert clair au brun.

Figure 14 : Cellule de Gambierdiscus : (a) schéma de la vue ventrale (extrait de Adachi and Fukuyo, 1979),
(b) vue latérale en microscopie optique (source ILM) et (c) vue ventrale en microcopie électronique a
balayage (source IRD).
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La theque cellulosique se compose de deux valves : |I'épitheque et I'hypotheque,
chacune constituée d’une trentaine de plaques comportant des pores et séparées par des

sutures sinueuses. Leurs formes, dimensions, nombre et arrangement varient selon les
especes (figure 15).

Gambierdiscus ruetzleri Gambierdiscus belizeanus Gambierdiscus caribaeus
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Figure 15 : Vues hypotheécales des dix espéces de Gambierdiscus décrites, barre d’échelle = 50 um (extrait de
Litaker et al., 2009).

La détermination des différentes especes est délicate et demeure |'affaire de
spécialistes. L'utilisation croisée d’outils d’identification est souvent nécessaire : microscopie
optique, microscopie électronique a balayage ou encore analyses phylogénétiques (Chinain
et al., 1999b; Litaker et al., 2009). Précédemment, l'utilisation exclusive de criteres
morphologiques a pu étre source d’erreur pour l'identification correcte des espéces
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impliquées dans des intoxications ciguatériques (Litaker et al., 2010). Une bonne
identification est primordiale dans la compréhension du rdole spécifique joué par chacune
d’entre elles dans le phénomeéne de la ciguatéra. Ainsi, I'espece G. toxicus décrite par Adachi
et Fukuyo en 1979 est désignée comme le lectotype (ne disposant plus de matériel pour
certifier de son identification) et G. toxicus représentée par la lignée GTT-91 qui est
conservée dans |'algotheque de I'lLM comme I'épitype de I'espéce (Chinain et al., 1999a;
Litaker et al., 2009). Litaker et al. (2009) proposent une clé dichotomique d’identification
basée sur des criteres morphologiques.

Ecologie de I'organisme - Site d’étude

Inféodé aux écosystémes coralliens, Gambierdiscus a un mode de vie épiphytique.
Les cellules sont observées directement fixées aux thalles des macroalgues, ou au sein des
gazons algaux mixtes de recouvrement des substrats coralliens morts. On les retrouve sur de
nombreux hotes comme les Rhodophycées calcaires telles que Jania ou Amphiroa, sur les
Chlorophycées comme Halimeda ou encore sur les Phéophycées comme Turbinaria (Bagnis
et al, 1980, Cruz-Rivera and Villareal, 2006; Parsons and Preskitt, 2007). Lors
d’efflorescences, Gambierdiscus est souvent retrouvé en populations isolées mais denses
(Dickey and Plakas, 2010).

Bien que possédant des flagelles, le dinoflagellé est peu mobile et demeure
pratiquement absent en eau libre.

La reproduction se fait sur le mode isogame par bipartition oblique et la fréquence
des mitoses varie de 2 a 10 jours selon les conditions du milieu et selon I'espéce. La culture
de Gambierdiscus en laboratoire a fait I'objet de nombreuses études afin de déterminer ses
conditions optimales de croissance et de production toxinique (Durand-Clément, 1986 ;
Bomber et al., 1988 ; Morton et al., 1992). Treés sensible aux modifications de luminosité, de
salinité et de température, son développement est optimal dans les conditions suivantes :

— Température de 27-30°C,

— Salinité de 34,5 — 35,0%o,

— pHde8,2a8,4,

— Milieu enrichi en sels nutritifs,

— Eclairement de I'ordre de 2 000 a 3 000 lux,
— Photopériode de 12 h: 12 h.

L"apparition d’efflorescence de Gambierdiscus est rapide avec une croissance de 0,1 a
0,55 division par jour (Withers, 1981 ; Chinain et al., 2010b), leur disparition I'est également.
La fréquence de surveillance doit donc étre impérativement adaptée au caractere
épisodique de ces efflorescences, a savoir au minimum une fois par mois.

Le taux de croissance de Gambierdiscus varie également en fonction de la
compétition avec d’autres microalgues ou la présence de bactéries épiphytiques (Morton et
al., 1992).
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Toxinogenese de Gambierdiscus

Seules certaines lignées cellulaires de Gambierdiscus sont génétiquement capables
de produire des CTXs et leur potentiel de production toxinique est variable (Roeder et al.,
2009 ; Chinain et al., 2010b). Lors de la caractérisation de la GTX, seul 1 clone sur les 12
isolés des lles Gambier produisait des toxines en quantité suffisante (Yasumoto, 2005).

De méme, seules certaines souches cultivées a I'Institut Louis Malardé s’averent tres
toxiques, telle la lignée G. polynesiensis (TB-92) collectée a Tubuai en Polynésie Frangaise. Sa
toxicité enregistrée comme la plus élevée est de 1,4*10™ US / cellule (test souris) ou 11,9 pg
d’équivalent de P-CTX-3C / cellule (test RBA) (Chinain et al., 2010b). A l'inverse, d’autres
souches également présentes dans I'algothéque de I'lLM telles G. toxicus GTT-91 et REN-1,
ou G. pacificus HO-91 isolées a Tahiti et a la Réunion, se sont avérées atoxiques.
L'observation d’efflorescences de Gambierdiscus ne s’"accompagne donc pas obligatoirement
d’une flambée de ciguatéra.

De fagon similaire, in natura, les cellules sauvages peuvent produire des toxines avec
de fortes variations. Cette production toxinique dépend (i) des facteurs génétiques et (ii) des
conditions environnementales (Chinain et al., 1999a : Richlen et al., 2008). Ainsi un épisode
ciguatoxique sera d’autant plus important que la (ou les) souche(-s) de Gambierdiscus
composant l'efflorescence produira(-ont) des profils toxiniques de forte toxicité et
proliférera(-ont) dans des conditions favorables a son (leurs) efflorescence(s) et a sa (leur)
production(s) toxinique(s) (Richlen et al., 2008). Ces variations permettent d’expliquer en
partie les différents types de ciguatoxicité et de symptomes observés dans les différentes
régions endémiques du globe : Océan Pacifique, Indien et Atlantique (Dickey and Plakas,
2010).

La variabilité inter- et intraspécifique de la production en toxines chez Gambierdiscus,
également observée chez d’autres dinoflagellés et cyanobactéries marines, témoigne de
I’extréme complexité des mécanismes régissant la toxinogenése chez ces micro-organismes
producteurs de toxines. A ce jour, les bases génétiques de la biosynthése des CTXs restent
encore mal connues. La toxicité chez Gambierdiscus pourrait étre le fait de génes ou de
familles de génes. De par leur structure, les CTXs, polyéthers polycycliques issues du
métabolisme secondaire de Gambierdiscus, sont souvent assimilées a la grande famille des
polykétides. Les enzymes impliqués dans la synthése de ces polykétides sont désignés sous le
terme générique de polyketide synthase (PKs). Leur caractérisation ouvrirait la voie a des
outils hautement fiables de surveillance environnementale permettant ainsi de prévenir, en
temps réel, 'apparition de zones ciguatériques dans une zone donnée.

II.7.a.1.b Les autres dinoflagellés
Prorocentrum est un dinoflagellé benthique connu pour produire des toxines
diarrhéiques (AO et les DTXs) responsables du syndrome du DSP (cf ch.1.l.b) (Morton et al.,
1998 ; Dickey et al., 1990). Les espéces P. lima et P. mexicanum ont été isolées de zones
ciguatoxiques et sont considérées comme producteurs potentiels de toxines impliquées dans
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les intoxications de type ciguatérique (Durand-Clément, 1986). Ce genre a été mis en cause
lors d’intoxications séveres par consommation de barracuda (Frémy et Lassus, 2001).

Quant a Ostreopsis, il est connu pour produire les PTXs (cf. ch.2.1ll.4.b). L'espece est
benthique mais remonte épisodiquement en surface lors d’efforescence. La toxine peut
alors se concentrer dans la chaine alimentaire, ce qui explique I'implication des poissons
majoritairement planctonophages dans le clupéotoxisme (cf. ch.1.l.2.c). Récemment, des
efflorescences ont été observées au niveau des coOtes méditerranéennes italiennes,
francaises et espagnoles (Katikou, 2007). Les conséquences de ces blooms sont néfastes,
aussi bien pour la santé humaine (contact direct ou indirect par bioaccumulation) que pour
I’écosysteme (hypoxie du milieu entrainant de fortes mortalités d’invertébrés, notamment).
A plusieurs reprises, certaines especes d’'Ostreopsis ont été impliquées dans des épisodes
d’intoxications de type ciguatérique (Shears and Ross, 2009).

Amphidinium et Coolia sont des dinoflagellés également suspectés d’étre impliqués
dans le syndrome ciguatéra (Faust, 2009).

La zone géographique de répartition de ces dinoflagellés se situe classiquement au
niveau de la ceinture tropicale du globe mais peut s’étendre jusqu’aux latitudes supérieures,
notamment en mer Méditerranée (Aligizaki and Nikolaidis, 2006 ; Aligizaki et al., 2008 ;
Aligizaki et al., 2009) (cf. ch.1.11.3.a).

1.7.0.2 Les cyanobactéries

Au début des recherches sur la ciguatéra, Randall (1958) puis Banner (1961)
incriminaient des algues filamenteuses comme source potentielle de [I'intoxication
ciguatérique. En 1964 a Bora Bora (lles de la Société, Polynésie Francaise), Bagnis rapporte
de séveres intoxications de type ciguatérique ayant entrainé la mort de deux personnes a la
suite de la consommation de bénitiers (Bagnis, 1967). Ces bénitiers, Tridacna maxima,
péchés dans une zone réputée ciguatoxique étaient recouverts d’une algue bleuatre, comme
ce fut le cas trente ans auparavant dans une ile voisine, Tahaa, ou les pécheurs signalerent le
méme type d’intoxications, et la présence d’algues filamenteuses noires. Ces algues
filamenteuses pourraient étre les algues bleues plus tard dénommeées cyanophycées ou
cyanobactéries (cf. ch2).

En 1992, Hahn et Capra accusent la cyanobactérie pélagique Trichodesmium
erythraeum d’étre impliquée dans des cas d’intoxication ciguatérique. Cette Oscillatoriale
synthétiserait des composés chimiquement proches des CTXs dont les effets sur souris leur
ont valu la dénomination de « CTXs-like ». L’année suivante, Endean et al. (1993) isolent a
partir d’extraits de T. erythraeum des composés hydrosolubles et liposolubles toxiques de
natures chimiques et toxicités similaires a celles de chairs de maquereaux (Scomberomorus
commerson) ciguatoxiques péchés dans la zone d’efflorescence de T. erythraeum.

66/326



Chapitre 1 : Intoxications provoquées par les organismes marins

[I.7.b  Organismes marins incriminés

1.7.b.1 Poissons

Certaines especes sont reconnues par les populations insulaires pour étre a haut
risque de ciguatéra (loches, lutjans, anglais, murenes, barracudas, carangues). Par ailleurs,
les especes en fin de chaine alimentaire ou les grands spécimens sont souvent reconnus
pour étre fortement ciguatériques. A contrario, les espéces pélagiques, dites du large (thon,
thazard, etc.), seraient reconnues pour étre indemnes de toxines. Toutefois, toutes ces
informations basées sur I'expérience des pécheurs ou des consommateurs n‘ont pas été
validées scientifiquement.

Variabilité interspécifique

Il est difficile de désigner formellement des espéces qui seraient plus toxiques que
d’autres, tant les conditions environnementales propres a chaque site de péche et le
comportement alimentaire propre a chagque espéce pisciaire ont un impact sur la toxicité de
chaque spécimen. Environ 400 espéces sont susceptibles de provoquer des intoxications
ciguatériques (Halstead, 1965). Les acanthuridés, serranidés, murénidés, carangidés,
labridés, lutjanidés, lethrinidés et sphyraenidés sont des familles potentiellement toxiques.

En fait, tout poisson lagonaire doit étre considéré comme potentiellement porteur de
toxines ciguatériques. Bagnis estime que « beaucoup » de poissons récifaux possédent en
permanence une teneur en toxine résiduelle et variable (Bagnis et Vernoux, 1975 ; Dickey
and Plakas, 2010). Ces concentrations varient en fonction des épisodes d’efflorescences
microalgales toxiques qui constituent le premier maillon de la chaine trophique (Lewis and
Holmes, 1993 ; Lewis and Ruff, 1993) (cf. ch.1.ll.7.c). Par ailleurs, la toxicité évaluée d’un
poisson n’a de valeur que pour un temps donné, et est susceptible de varier dans le temps et
dans I'espace pour une espéce donnée.

Variabilité physiologique

Les CTXs sont des toxines liposolubles et s’accumulent préférentiellement dans les
organes a forte teneur lipidique (foie, cerveau, gonades, ...). La concentration des toxines du
foie a été évaluée comme étant 50 fois plus importante que celle des muscles (Lehane and
Lewis, 2006).

Cette répartition physiologique des toxines varie en fonction des especes de
poissons. Leurs capacités d’accumulation, de biotransformation, de compartimentation ou
de dégradation des toxines ne sont que peu documentées. Indépendamment de leur régime
alimentaire, leur physiologie agit sur les toxines ingérées et leur confere un potentiel toxique
(biotransformation par voie oxydative des GTXs), un panel toxinique et une répartition
toxinique selon les différents organes, variable dans le temps.

Les formes séveres ou mortelles d’intoxications sont souvent liées a la consommation
des visceres et de la téte, organes dits « concentrateurs » des CTXs (Hamilton et al., 2009). Il
semble que les poissons montrent une certaine tolérance vis-a-vis de ces toxines, qui leur
permet d’accumuler des taux élevés de CTXs sans en étre affectés, mais fort heureusement
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pour ’lhomme, jusqu’a un seuil limite qui finit par leur étre fatal (Lewis, 1993). Les plus fortes
teneurs en toxines ont été détectées dans les murénes (Gymnothorax javanicus), ce qui leur
a longtemps valu le statut privilégié de source d’approvisionnement en CTXs pour les
laboratoires.

Les populations sollicitent souvent les chercheurs afin de leur présenter une liste
d’espéces toxiques. Or, comme nous avons pu le voir, I'évaluation de la toxicité d’un poisson
n’est valable que pour un temps, un individu et un site donné. Aussi, extrapoler des valeurs
de toxicité issues d’individus isolés a I'espéce entiere provenant de divers biotopes, n’est pas
recommandé.

Le risque d’intoxication peut tout de méme étre minimisé en sélectionnant certaines
especes dont I'innocuité est souvent reconnue, ou certaines tailles a ne pas dépasser.

1.7.b.2 Autres produits marins impliqués dans le syndrome de la ciguatéra

Des bénitiers (Tridacna spp.) et des gastéropodes (Turbo spp. ou Trocha) ont
provoqué ponctuellement des cas graves d’intoxications assimilés a [Iintoxication
ciguatérique (Bagnis, 1967 ; Kanno et al., 1976 ; Angibaud et al., 2000 ; Laurent et al., 2008).
D’autres organismes marins ont été impliqués dans des intoxications ciguatériques comme
le céphalopode (Zlotnick et al., 1995). Cependant, a ce jour, les recherches n’ont pas permis
d’élucider formellement ce ou ces type(s) d’intoxication(s) alimentaire(s).

Plus récemment, des cas d’intoxication par consommation d’oursins rappelant
I'intoxication ciguatérique ont également été observés a Rurutu (Australes, Polynésie
Francaise). Des recherches sont actuellement menées par I'ILM et I'IRD pour comprendre
I’étiologie de ces intoxications émergentes.

[I.7.c  Chaine de transfert

La chaine alimentaire ciguatérigéne est lagonaire et majoritairement pisciaire (Lewis
and Holmes, 1993). Le schéma de développement de la ciguatéra se fait selon cinq étapes
successives (figure 16) :

1. Dégradation du biotope corallien,
Prolifération des micro-organismes toxinogénes sur les substrats vierges ainsi
générés ou peuvent proliférer les macro-algues supports,

3. Transfert des toxines algales vers le second maillon de la chaine (poissons
herbivores),

4. Bioconcentration des toxines au niveau des prédateurs supérieurs (poissons
carnivores),

5. Intoxication humaine.

Le déterminisme du phénomeéne de la ciguatéra est complexe en raison des multiples
variables forcantes s’exercant a chaque niveau trophique de la chaine alimentaire. Leur
étude s’avere donc primordiale pour la compréhension de la biogenése de ce phénoméne
écotoxicologique.
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Figure 16: Biogeneése de la ciguatéra.
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Une flambée sera d’autant plus violente que les organismes de bas étage trophique
seront toxiques ou porteurs des toxines les plus virulentes. Les facteurs a I'origine de ce
caractéere virulent sont: (i) la diversité et le potentiel toxique élevé des différents analogues
synthétisés (ii) un niveau de production plus important. (cf. ch.1.1l.7.a)

Le phénomeéne écologique de la ciguatéra est basé sur les principes de
biomagnification (bioconcentration + bioaccumulation) associée a la biotransformation des
toxines le long de la chaine alimentaire. Lors d’un épisode ciguatérique, les herbivores sont
affectés les premiers, puis successivement, les maillons supérieurs a savoir les poissons
carnivores et I'Homme. L'augmentation des concentrations toxiniques associée a leur
biotransformation par voie oxydative (augmentation de la toxicité) confere aux maillons
successifs un potentiel toxique supérieur en qualité et en quantité toxinique.

II.7.d Déterminisme du phénomeéne

Une flambée ciguatérique est épisodique et imprévisible, et se caractérise par une
distribution aléatoire dans I'espace et dans le temps. Les différents niveaux de variabilité
concernent :

— Lazone,

— Lasaison ou I'année,

— Les especes touchées et impliquées,

— Lasensibilité individuelle des consommateurs

Bagnis et Vernoux (1975) considerent que les CTXs sont présentes en permanence
dans I'environnement récifal, a des taux résiduels variables selon le régime alimentaire des
poissons. Seul un test de haute sensibilité peut alors détecter ce niveau résiduel et latent
dans les organismes marins.

Lorsque la santé des récifs est bonne, la concurrence entre les différentes espéces
permet d’obtenir un équilibre limitant les proliférations d’une population aux dépens des
autres étres vivants.

1.7.d.1 Composante spatiale

Les zones endémiques sont essentiellement les régions insulaires du globe mais les
récifs continentaux sont également affectés (ex : Etats du Queensland en Australie, Floride
au Etats-Unis, la Grande Terre en Nouvelle-Calédonie) (Legrand, 1991). Localement, les
lagons offrent des conditions favorables au développement des dinoflagellés
ciguatoxinogénes.

Les connaissances empiriques des populations insulaires leur permettent de délimiter
de maniere « précise » les zones récifales dites gratteuses. Ainsi dans les fles Gilbert
(Archipel des Kiribati), Jane Cooper rapporte que les récifs ciguatériques sont tous situés
sous le vent c’est-a-dire au sud-ouest et a I'ouest de I'archipel (Banner et al., 1963). D’aprés
les observations de Faust (2009), les zones lagonaires protégées de faibles profondeurs, ou
peu d’échanges avec les eaux extérieures favorisent la concentration en sels nutritifs, sont
des environnements propices aux flambées ciguatérigénes.
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A Tlinverse, d’autres études menées en Polynésie montrent que les zones
ciguatoxigues sont exposées aux vents ou localisées au niveau des passes, point d’ouverture
vers |'océan (Bagnis, 1977). Le fort hydrodynamisme semblerait alors dans ce cas étre un des
facteurs favorisant la ciguatoxicité du lagon. Ces observations contradictoires suggérent
qu’un facteur pourra étre favorisant pour un biotope donné alors qu’il pourra avoir I'effet
inverse pour un autre biotope.

En tout état de cause, il s"avére que méme si les populations locales connaissent les
zones de péche a éviter, les raisons de 'apparition du phénoméne ne sont souvent pas
comprises.

11.7.d.2 Composante temporelle - Saisonnalité

Le caractere saisonnier d’'une flambée ciguatérique dépend de nombreux critéres :
nature et intensité des facteurs déclenchant, type d’environnement, géomorphologie des
zones lagonaires, especes pisciaires incriminées (écologie et physiologie), facteurs de
sensibilité individuelle des patients intoxiqués, etc.

Certains considerent qu’il existe une « saison de gratte » qui correspondrait a la
période de floraison des coraux, vers la fin du printemps et le début de I'été (novembre,
décembre). Cependant, le caractere saisonnier des flambées a fait I'objet de nombreuses
études scientifiques, sans qu’aucun consensus ne soit obtenu (Lawrence et al., 1980 ;
Legrand et Bagnis, 1991). L'étude de Chateau-Degat et al. (2005) par exemple, menée sur
une période de huit ans, ne met pas en évidence de saisonnalité dans le phénomene
ciguatérique. A l'inverse, les données épidémiologiques recueillies en Nouvelle-Calédonie
montrent une augmentation des intoxications a la saison chaude du mois d’octobre au mois
de février (rapport DDASS 2007, NC). Ces informations ne peuvent toutefois étre
extrapolées, puisqu’il faudrait pondérer ces données avec la fréquence de péche. En effet,
I'activité de péche augmente a cette période en raison des conditions météorologiques
favorables et des vacances.

Grace aux observations empiriques et aux croisements des données recueillies lors
d’études épidémiologiques ou environnementales, Bagnis et Vernoux (1975) estiment a 5-12
ans le délai nécessaire aux poissons pour étre de nouveau consommés aprés une flambée de
ciguatéra. En particulier, les especes Ctenochaetus striatus et Plectropomus leopardus
redeviennent quasiment saines respectivement 5 et 10 ans aprés un épisode toxique. Enfin,
Quod et Turquet (1996) estiment que la durée du phénomeéne peut s'étendre sur 15 a 20
ans.

En Polynésie francaise, les données d’écologie et d’épidémiologie collectées de
février 1993 a décembre 2001 montrent (i) une croissance des populations de Gambierdiscus
13 a 17 mois suivant l'augmentation des températures des eaux de surface et (ii) une
augmentation des intoxications ciguatérigues 3 mois aprés une efflorescence de
Gambierdiscus (Chateau-Degat et al., 2005). L'objectif de ce type de modeéle est d’utiliser
une donnée simple (ici la température) pour tenter de prévenir les recrudescences
d’intoxications ciguatériques; les auteurs concluent que des intoxications ciguatériques
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peuvent survenir 20 mois apres une augmentation significative des températures de surface.
Mais de nombreux parametres entrant dans le calcul de prédiction du modele restent
négligés ou omis : les divers facteurs de croissance des dinoflagellés, les lieux de péche du
poisson toxique, la sous-estimation des cas déclarés.

Par ailleurs, d’autres études menées en Polynésie montrent qu’un délai de 4 a 7 mois
est nécessaire entre un épisode de mortalité corallienne massive par blanchiment du corail
et la survenue d’une efflorescence a Gambierdiscus (Chinain et al., 1999a).

En termes de méthodologie de surveillance des zones ciguatériques, ces informations
vont nous permettre de définir la fréquence des prélevements des populations de micro-
organismes. Ainsi, il sera préconisé d’effectuer un suivi des dinoflagellés (Gambierdiscus,
Prorocentrum et Ostreopsis) sur les macroalgues sélectionnées selon une fréquence
mensuelle minimum, comme cela a pu étre expliqué précédemment en tenant compte du
cycle de croissance de Gambierdiscus (cf. ch.1.11.7.a).

1.7.d.3 Facteurs favorisant le développement de zones ciguatoxinogénes

L'incidence de la ciguatéra est reliée aux changements de I’'environnement marin
(Chateau-Degat et al., 2005). Bien qu’il existe peu d’études mettant en évidence de facon
formelle le lien entre des perturbations de I'écosysteme et le déterminisme du potentiel
ciguatoxique d’une zone donnée, I'ensemble des observations empiriques permettent de
dire qu’une zone devient « gratteuse » a la suite de perturbations de I’environnement.
Cependant, d’un point de vue scientifique, il est difficile de corréler ces observations aux
connaissances actuelles sur les écosystémes récifaux. Les divers facteurs de destructions et
de perturbations favorisant les risques de ciguatéra auxquels est soumis le récif peuvent étre
regroupés en facteurs naturels versus les facteurs liés a I'action de I'homme (facteurs
anthropiques) (Bagnis, 1987 ; Frémy et Lassus, 2001).

Perturbations naturelles

Elles peuvent étre de deux ordres :

(i) des facteurs biotiques tels que des organismes marins comme les Acanthaster ou
les especes corallivores, les surcharges en sels nutritifs, les marées rouges, le
développement important de cyanobactéries ou,

(ii) des facteurs abiotiques tels que les fortes variations de températures, de salinité
ou de pH, I'hydrodynamisme (exemple des tsunamis), des concentrations anormales en
éléments chimiques (exemple des métaux), la pluviométrie, la turbidité, la luminosité ou des
phénoménes climatiques plus globaux (El Nifio, cyclone ou dépressions tropicales, ...).

Perturbations anthropiques

L'Homme impacte également les zones littorales de par ses activités parmi lesquelles
on peut citer: les apports en éléments chimiques ou en nutriments (phénomeéne
d’eutrophisation), les perturbations mécaniques (dragage des récifs pour aménagements
littoraux, les zones portuaires, les ancrages) ou encore les changements dans la composition
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biologique d’un écosysteme et touchant plus particulierement les especes fonctionnelles
(importation d’espéces perturbant I’équilibre fonctionnel ou diminution de prédateurs).

La liste de ces facteurs n’est pas exhaustive: tout évenement susceptible de
perturber les polypes constituant les colonies récifales, voire entrainer la mort du corail sur
des zones plus ou moins étendues, doit étre considéré comme un facteur favorisant les
zones ciguatoxiques. Car ces zones vierges de coraux sains peuvent, étre alors propices aux
développement des macroalgues support privilégiés des microalgues ciguatoxinogenes,
éléments déclencheurs la chaine ciguatérique.

Enfin, le réchauffement global qu’il soit d’origine anthropique ou naturelle est une
des causes de fortes mortalités de colonies récifales ; il est donc également a considérer
comme un des facteurs ciguatoxinogénes (Baker et al., 2008 ; Llewelyn, 2009; Dickey and
Plakas, 2010).

La multitude des parametres a prendre en compte ainsi que leurs interconnexions
parfois complexes, expliqgue pourquoi il s'avere souvent difficile voire impossible de prédire
le potentiel toxique d’un poisson dans une zone récifale donnée.

La période de latence, parfois relativement importante qui s’écoule entre I'impact, la
morbidité corallienne et ses effets perceptibles au niveau de I'Homme a rarement été
étudiée en détail. Dans le chapitre 3, nous nous proposons d’aborder spécifiquement ce
probléme grace a la mise en place d’'une étude prospective écotoxicologique dans une zone
anthropisée de Nouvelle-Calédonie.
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Problématique et objectifs de thése

I. Contexte de travail

En Nouvelle-Calédonie comme dans de nombreuses fles du Pacifique, les populations
vivent avec la ciguatéra qu’ils connaissent depuis des générations. lls ont appris a éviter les
zones de péches connues comme toxiques ou a reconnaitre les especes de poissons a plus « fort
risque » ciguatérique ou encore connaissent des techniques permettant de détecter les
poissons toxiques. Certains ont également développé un arsenal de remédes pour prévenir ou
soigner la ciguatéra. Cependant, nous avons pu voir, dans le premier chapitre, que ce
phénoméne complexe reste la cause du plus grand nombre d’intoxications par organismes
marins au monde, dont le co(t peut s’avérer trés élevé pour les communautés touchées. Peu
d’études scientifiques se sont attachées avec succes a I'élucidation complete du déterminisme
de ce phénomene écotoxicologique.

Et pourtant, de maniéere globale, les recherches sur la ciguatéra deviennent un enjeu
sanitaire et socio-économique majeur en raison de I'augmentation des migrations humaines, de
la rapidité du transport des produits de la mer, de I'amplification de leur consommation
mondiale et des bouleversements climatiques en cours. Aussi, il nous parait important de mieux
comprendre le déterminisme écologique de ce phénomeéne afin de mieux le prévenir.

De récents travaux de recherche menés dans la tribu d’Hunété a Lifou (lles des Loyauté
en Nouvelle-Calédonie) ont suggéré l'implication de cyanobactéries benthiques dans des
intoxications de type ciguatérique a la suite de la consommation de bénitiers et de poissons
herbivores (perroquets) (Laurent et al., 2008). Ces auteurs ont montré que ces cyanobactéries,
de l'ordre des Oscillatoriales et appartenant a I'espéce Hydrocoleum lyngbyaceum, produisaient
un complexe toxinique dont les effets s’apparentent a I'action des CTXs et a celui des toxines
paralysantes.

Alors que I'implication des dinoflagellés dans le phénomeéne de la ciguatéra est établie,
celle des cyanobactéries est tout a fait nouvelle et engendre de nombreuses questions :

- Existe-t-il d’autres espéeces de cyanobactéries susceptibles d’étre impliquées dans
ce phénomene?

- Quelle est la nature chimique des toxines synthétisées?

- Les bénitiers et les poissons herbivores sont-ils des vecteurs de ces toxines?

- Quels sont les facteurs favorisant les efflorescences a cyanobactéries?

- Limplantation et la prolifération des cyanobactéries sont-elles liées a Ia
dégradation du corail comme cela est suggéré a Lifou?

- Plus généralement, quels sont les facteurs favorisant le développement des zones
ciguatérigenes?
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Nos hypothéses de travail sont les suivantes :

« Les cyanobactéries synthétisent des composées toxiques similaires aux CTXs
associées a d’autres toxines paralysantes. Les organismes tels que les bénitiers ou les poissons
herbivores exposés a ces efflorescences cyanobactériennes et contaminés par
bioaccumulation constituent alors un danger pour ’THomme. »

« Le risque potentiel lié aux proliférations des cyanobactéries ou des dinoflagellés
ciguatoxinogénes est corrélé aux perturbations environnementales, et notamment celles
d’origine anthropique. »

Pour vérifier 'ensemble de ces hypotheses, ce travail de these s’articulera autour de
deux axes :
Axe 1: Etude de I'implication des cyanobactéries dans le phénomeéne écotoxicologique

de la ciguatéra, et lien avec la contamination des bénitiers : site d’étude de Lifou,
Axe 2: : Liens entre les facteurs de perturbations d'un environnement et le
développement de zones ciguatérigenes : sites d’étude de la Baie de Prony et d’Ouvéa

Il. Objectifs de I’étude

Axe 1: Etude de I'implication des cyanobactéries dans le phénoméne écotoxicologique de la
ciguatéra et lien avec la contamination des bénitiers (site d’étude a Lifou).

Ce volet fait suite a I'étude menée dés 2004 en Nouvelle-Calédonie dans le village de
Hunété a Lifou sur la mise en évidence d’un nouveau degré de complexité du phénomeéne
écotoxicologique (Laurent et al., 2008).

Les activités de recherche mises en ceuvre cibleront plus particulierement :

- Le suivi des populations de dinoflagellés et de cyanobactéries,

- La mise en évidence de leur potentiel toxinique,

- La caractérisation des familles toxiniques en jeu,

- La caractérisation des voies de transmission des toxines au sein de la chaine
alimentaire.

Axe 2 : Liens entre les facteurs de perturbations d’un environnement et le développement de
zones ciguatérigenes.

L’étude menée a Lifou a permis de souligner la relation entre les impacts humains dans
I'environnement et les risques d’intoxications, sur un mode rétrospectif. A l'inverse, le site de
Prony est le lieu idéal pour une étude prospective du phénomeéne en raison de I'implantation
d’un site minier dans le sud de la Grande Terre. Un plan de surveillance y sera mis en oeuvre
afin de mettre en évidence les facteurs favorisant les zones ciguatérigenes. L’évolution du site
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de Prony sera comparée a celle du site d’Ouvéa sélectionné pour sa réputation d’ile indemne de
ciguatéra.

Cette these présente ainsi deux aspects novateurs :

1) La caractérisation des risques toxiques liés au développement de certaines
cyanobactéries marines et leur impact sanitaire sur la chaine alimentaire et, partant sur la santé
humaine,

2) L’Etude prospective d’une zone tropicale soumise a des pressions anthropiques.

Les travaux réalisés s’integrent dans le volet Environnement et écotoxicologie de la

thématique « Ciguatéra », mené au sein du laboratoire de I’'lUMR 152 de I'IRD depuis plusieurs
années, en partenariat avec des équipes reconnues dans le domaine.
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Chapitre 2 : Implication des cyanobactéries dans le phénomeéne
écotoxicologique de la ciguatéra et leur lien avec la toxicité des
bénitiers

Les cyanobactéries et leur lien avec la ciguatéra

Comme nous l'avons abordé dans le premier chapitre, d’aprés les données
bibliographiques, les cyanobactéries sont suspectées d’étre une source de toxines, dans la
chaine alimentaire pisciaire, pouvant conduire a des empoisonnements chez I’'Homme de type
ciguatérique (Endean et al., 1993). Un composé létal pour la souris, en injection i.p., a été extrait
d’échantillons de Trichodesmium erythraeum et, de quatre espéces de mollusques (trois
bivalves : Pinctada margaritifera, Lopha cristagalli, Ostrea nomades et un gastéropode :
Littorinidae sp.) et d’un poisson molluscivore (Trachinotus blochii), récoltés a proximité de
I'efflorescence. Les études chromatographiques et les symptomes enregistrés chez la souris
étaient en faveur de substances proches des CTXs (Hahn and Capra, 1992). Alors que
I'implication des dinoflagellés dans le phénomene ciguatérique est établie, celle des
cyanobactéries reste encore a prouver.

Historique et contexte

En 2004, a Lifou, lle des Loyautés, une alerte sanitaire a été lancée par la Province des
lles a la suite d’intoxications ciguatériques atypiques et séveres sévissant depuis janvier 2001
dans la tribu de Hunété. A la demande des services sanitaires, I'équipe de Dominique Laurent de
I'IRD a étudié le phénomene.

L’étude épidémiologique préliminaire a révélé des intoxications a caractere ciguatérique
ayant nécessité plusieurs hospitalisations, suite a la consommation principalement de poissons
herbivores et de bénitiers, et caractérisées par une apparition rapide des symptémes (brilure
de la bouche et de la gorge). Dans la tribu concernée, la population avait défini une zone a
risque ou la majorité des poissons, mais aussi des bénitiers, ayant causé les intoxications avait
été péchée.

Les premiéres observations et études de la zone ont mis en évidence I'absence de
Gambierdiscus et |la présence de large tapis de cyanobactéries recouvrant des coraux fortement
dégradés. L'ensemble de ces premieres données poussa a s’interroger sur la provenance et le
type de toxines mises en jeu.

S’agissait-il : (i) d’une intoxication ciguatérique classique, (ii) d’'une intoxication plus
complexe incluant d’autres toxines en plus des CTXs ou alors (iii) d’'une toute autre forme
d’intoxication ?
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Les premiers résultats de I'étude menée de 2005 a 2006 dans le cadre de mon
Volontariat Civil a I’Aide Technique (VCAT) ont mis en évidence un potentiel toxique chez les
bénitiers (Tridacna sp.), les poissons herbivores (Scaridés) ainsi que chez les cyanobactéries
identifiées comme étant Hydrocoleum lyngbyaceum. Ces résultats, présentés en introduction de
la partie « Etudes écotoxicologiques de Hunété a Lifou », ont fait 'objet d’'une premiére
publication dans Harmful Algae :

Laurent D., Kerbrat A.S., Darius H.T., Girard E., Golubic S., Benoit E., Sauviat M.P., Chinain
M., Molgéd J., Pauillac S. 2008. Are cyanobacteria involved in Ciguatera Fish Poisoning-like
outbreaks in New Caledonia? Harmful Algae, 7(6) : 827-838.

Cette étude illustre une des problématiques de base abordées dans cette thése, a savoir
le réle des cyanobactéries dans la ciguatéra, le terrain d’étude principal étant la zone de péche
contaminée de Lifou. En effet, le site de Hunété est un lieu d’étude idéal pour observer
I’évolution du phénomeéne, pour y étudier la toxicité a différents niveaux trophiques, la
saisonnalité des cyanobactéries et la présence concomitante de dinoflagellés.

Dans ce chapitre 2, nous présenterons tout d’abord les cyanobactéries marines toxiques
puis les avancées des recherches menées sur le site de Lifou seront exposées. Ensuite, I'étude
menée sur les cyanobactéries pélagiques Trichodesmium qui a conduit a deux publications (dont
I'une est en cours d’évaluation), sera détaillée en appui aux résultats concernant la toxicité des
cyanobactéries benthiques.
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I. Introduction
I.1 Les cyanobactéries marines toxiques
I.1.a  Généralités

Les cyanobactéries aussi appelées cyanophycées (Cyanophyceae) ou algues bleues
constituent une sous-classe des bactéries. Ces différentes appellations se justifient par des
propriétés communes a la fois aux bactéries (absence de membrane nucléaire et plastidiale, de
mitochondrie, de réticulum endoplasmique et de dictyosome, et présence de paroi cellulaire
Gram- avec de la muréine) et aux algues (présence de chlorophylle (a) et de deux
photosystémes, utilisation de I'eau comme donneur d’électron pour la photosynthese
productrice oxygénique). Procaryotes photosynthétiques autotrophes, les cyanobactéries ne
présentent donc ni noyau véritable, ni plaste, ni reproduction sexuée.

Elles font partie des organismes les plus anciens connus sur la planete (3,5 milliards
d’années). Elles ont permis le développement de la vie sur terre grace a leur production d’O, par
photosynthese (la Grande Oxydation), a leur contribution au premier puits biologique de
carbone et enfin a une « désacidification » des océans lorsqu'elles se sont organisées en
stromatolithes (Camoin and Gautret, 2006). En effet, ces colonies fixées sont capables de
produire du calcaire et certaines de ces formes sont parmi les plus anciennes, comme dans
I'ouest de I'Australie dans la baie de Shark ou au parc national de Yalgorup (photos 7 et 8).

Photos 7 et 8: (1) La baie Shark en Australie est un des trés rares endroits du monde qui abritent encore des

stromatolithes en développement actif. (2) Stromatolithe contemporain, en croissance, sur le littoral ouest de
I'Australie, dans le parc national de Yalgorup.

La diversité morphologique des cyanobactéries s’est développée depuis 2 milliards
d’années. Ces microorganismes regroupent ainsi environ 2 000 espéces réparties en 150 genres
(Lavoie et al., 2007). Aujourd’hui, des formes tres variées sont rencontrées : des unicellulaires
ou des filaments dépassant un metre de long et pouvant se subdiviser en fragments, ou plus
rarement en forme de plaques, ou de colonies irréguliéres. Les formes unicellulaires
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(coccospores) et filamenteuses (trichomes) sont les plus souvent rencontrées et constituent
deux des principales classes: les coccogonophycidées (formes solitaires ou coloniales) et les
hormogonophycidées (formes coloniales filamenteuses).

Les stratégies de résistance

Planctoniques ou benthiques, les cyanobactéries croissent en mer comme en eau douce
ainsi que dans les eaux sur-salées des marais salants. Abondantes dans les milieux oligotrophes,
certaines sont capables de coloniser les milieux pollués aérobies ou anaérobies. D’autres
peuvent étre toxiques (Anabaena, Microcystis) pour I'animal et pour I'Homme qui les
consomment. Cette ubiquité est liée a leur grande faculté d’adaptation. Elles ont développé un
arsenal de stratégies physiologiques, métaboliques, écologiques qui leur confere une plasticité
écologique extréme. Ces stratégies adaptatives leur permettent de survivre dans des conditions
environnementales a priori non favorables grace au maintien de I'équilibre entre les exigences
de base de la vie (eau, énergie, éléments nutritifs) et I'optimisation des processus de la vie
(croissance, reproduction et survie (minimiser les pertes)). Nous pouvons ainsi citer comme
stratégies de résistance : leur composition pigmentaire, leur mobilité, la diazotrophie, la
présence d’akinetes (cellules spécialisées de résistance) et enfin leur production toxinique

I.1.b  Les cyanobactéries toxiques marines

Tous les ordres composant les cyanobactéries d’eau douce, de loin les plus étudiées,
renferment des genres toxinogenes. A ce jour, ce sont les ordres des Nostocales et des
Oscillatoriales qui sont les plus impliqués. Les principaux genres connus pour leur capacité a
produire des toxines sont Anabaena, Aphanizomenon, Cylindrospermopsis, Microcystis,
Nodularia, Oscillatoria et Planktothrix (figure 17). Une quarantaine d’espéces connues sécrétent
ou contiennent des cyanotoxines qui sont généralement des neurotoxines pouvant affecter
mortellement divers animaux et 'Homme (Carmichael et al., 1997).

Bien que trés nombreuses, les cyanobactéries marines sont beaucoup moins étudiées
guant a leur potentiel toxinogene alors qu’elles mériteraient largement une attention croissante
afin d’en évaluer le risque.

Benthiques ou pélagiques, les genres Lyngbya et Trichodesmium sont en revanche bien
étudiés du fait de leur importance dans les mers des régions tropicales (Hoffmann, 1999 ;
Golubic et al., 2009).

80/326



Chapitre 2 : Les cyanobactéries marines
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Figure 17 : Diversité de formes parmi les genres de cyanobactéries toxiques les plus fréquemment rencontrés
(D’apres Lawton L. et al., 1999).
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Lyngbya majuscula

Une des cyanobactéries marines les plus étudiées est certainement Lyngbya majuscula,
(photos 9 et 10). C’est une filamenteuse benthique des régions tropicales dont la fréquence et la
taille des efflorescences augmentent de maniére inquiétante ces dernieres années,
particulierement dans la baie de Moreton dans le Queensland australien (Dennison et al., 1999 ;
Watkinson et al., 2005 ; Roelfsema et al., 2006). Plus de 70 composés bioactifs ont été identifiés
chez L. majuscula comme par exemple [I'aplysiatoxine, la debromoaplysiatoxine, la
lyngbyatoxine et I'antillatoxine. Les activités biologiques de ces substances sont tres variées et
se traduisent par des irritations cutanées, occulaires ou respiratoires (Osborne et al., 2001). Les
dommages sur la santé humaine sont multiples au regard de la variété de toxines produites par
cette cyanobactérie. Les intoxications raportées sont provoquées par contact direct ou par
inhalation d’aérosols.

“ S

Photos 9 et 10: Mattes de Lyngbya majuscula sur un tombant récifal (au premier plan) et en phase de récolte.

Outre les intoxications liées aux nombreuses toxines que cette cyanobactérie est capable
de synthétiser, ses proliférations massives peuvent affecter considérablement I’écosysteme
marin en provoquant I'asphyxie de la faune environnante par anoxie.

Enfin, L. majuscula a été fortement suspectée par Randall (1958) d’étre une des sources
des toxines impliquées dans le phénomene ciguatérique. Cette cyanobactérie a en effet été
identifiée dans le contenu digestif de nombreux poissons ciguatoxiques dont les Acanthurus
(Dawson et al., 1955). A I'origine des recherches sur la ciguatéra, L. majuscula a été considérée
comme l'un des précurseurs benthiques contribuant a la composition du panel de toxines
contaminant les poissons et provoquant cette intoxication (Halstead, 1965).

Trichodesmium spp.

Trichodesmium est une cyanobactérie non-hétérocystée diazotrophe qui domine
périodiquement les communautés phytoplanctoniques des eaux oligotrophes tropicales. Pour
ces deux raisons, elle est largement étudiée d’un point de vue biogéochimique afin d’évaluer
son réle dans le cycle de I'azote et du carbone des océans (Carpenter et al., 1993, 2004 ; Capone
et al., 1997 ; Levitan et al., 2010).
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Comme précédemment mentionné, il a été démontré (i) la présence de composés
neurotoxiques paralysants dans des échantillons de Trichodesmium (Rorig et al., 1998 ; Hawser,
1991 ; Hawser and Codd, 1992 ; Hawser et al., 1992 ;) ainsi (ii) qu’un lien fort probable entre la
production par Trichodesmium de substances neurotoxiques de type CTXs et la contamination
des thazards (Scomberomorus commerson) par de telles toxines (Endean et al., 1993 ; Hahn and
Capra, 1992). Etant donné l'intérét de cette cyanobactérie, I'étude de la nature de la toxicité de
Trichodesmium fait I'objet d’une section en fin de ce chapitre 2.

De nombreux genres de cyanobactéries sont ubiquistes des eaux douces, eaux
saumatres ou des océans, I'étude de leur toxicité associée a leurs risques avérés en eau douce,
nous permet de penser qu’elles peuvent présenter un risque potentiel dans les écosystemes
marins (Gugger et al., 2005 ; Stewart et al., 2006 ; Cadel-Six et al., 2007 ; Wood et al., 2007).

I.1.c Les facteurs de prolifération - stratégie de résistance

Les cyanobactéries naturellement présentes peuvent dans certaines circonstances
favorables a leur développement se multiplier rapidement. Ce phénomeéne est appelé
efflorescence, fleur d’eau ou encore bloom en anglo-saxon. Suivant les espéces, une
efflorescence peut apparaitre et disparaitre trés vite lors de conditions favorables changeantes.
C’est dans ces conditions de fort développement de biomasse que les cyanobactéries toxiques
peuvent provoquer des effets déléteres sur la faune environnante ou la santé humaine. La
dynamique des populations est difficile a caractériser en I'état actuel des connaissances
scientifiques. Seul un suivi régulier des paramétres environnementaux et des caractéristiques
des populations cyanobactériennes pourrait permettre de I’évaluer.

Mais de maniere générale, quelles sont les conditions nécessaires a ces développements
parfois extraordinaires ?

l.1.c.1 Conditions favorables

Trois facteurs principaux influencent les proliférations cyanobactériennes :

L’eutrophisation. Un bloom de cyanobactéries n’est pas en soit une pollution, il peut
constituer une réponse naturelle a un phénomene d’eutrophisation. D’importants
enrichissements de I'environnement en éléments nutritifs (diverses formes azotées et/ou
phosphatées) sont reconnus pour étre un des facteurs les plus favorisants. Ces apports sont
souvent liés aux activités humaines (lessivage des sols agricoles, urbanisation épurant mal ses
eaux...).

Facteurs physico-chimiques favorables. La lumiere, la température, la salinité et le pH
ont des valeurs optimales et propres a une cyanobactérie donnée. Plus ces valeurs sont proches
de I'optimum, plus, a priori, la croissance de la population sera grande.
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La stratification de la colonne d’eau. Avant et pendant le bloom, la colonne d’eau se
stratifie grace a une diminution de I’hydrodynamisme local. La stratification du milieu favorisée
par des eaux calmes est caractéristique dans les lacs et rivieres. Ce méme phénomeéne est
également observé lors des efflorescences de Trichodesmium en milieu marin (Rodier and Le
Borgne, 2008 ; 2010). Les cyanobactéries pélagiques se positionnent dans la colonne d’eau
grace a la production de lipides ou de vacuoles gazeuses, afin de bénéficier de conditions
physico-chimiques (lumiére, turbulence, salinité...) optimales.

l.1.c.2 Conséquences biologiques et écologiques des efflorescences

Le développement soudain, en masse, de ces organismes peut avoir différentes
conséquences sur leur environnement proche et provoque divers effets négatifs. Ainsi la
surabondance de ces populations crée des impacts liés a :

-L’ombrage. La biomasse produite inhibe les conditions optimales de luminosité pour les

autres espéces et peut causer ainsi leur mort.

-La dominance. La biodiversité de I'écosysteme est fortement déséquilibrée. La
population dominante inhibe le développement des autres populations de la
communauté phytoplanctonique.

-L’anoxie. Les fortes consommations en O, de cyanobactéries appauvrissent le milieu.
Ces conditions d’anoxie peuvent étre fatales aussi bien pour les végétaux que pour
les animaux. Mais cette consommation massive d’O, peut étre également une
conséquence indirecte des efflorescences, causée par la dégradation de ces grandes
guantités de matiere organique par les bactéries.

Les efflorescences peuvent interférer de maniére mécanique et/ou chimique sur
I’écosystéme, par exemple I'apport soudain et massif d’élément comme I'ammoniaque est
toxique pour de nombreux organismes.

Enfin, certaines espéces sont capables de produire lors de telles proliférations des
cyanotoxines en quantités suffisantes pour constituer un risque pour les humains et la faune.

I.1.d  Les cyanotoxines

Les cyanotoxines sont des métabolites secondaires. Ce sont en majorité des peptides
cycliques ou des alcaloides. Les cyanotoxines décrites dans cette section sont, a I'exception des
saxitoxines, toutes produites uniquement par les cyanobactéries.

Les phycotoxines d’eau douce et d’eau saumatre sont majoritairement des cyanotoxines
produites par les cyanobactéries tandis que la production des phycotoxines marines est, a ce
jour, majoritairement attribuée aux microalgues, régulierement associées aux épisodes toxiques
entrainant l'interdiction de commercialisation des coquillages (cf. ch.1.1.1).
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Lors d’'un phénomene d’efflorescence, plusieurs especes de cyanobactéries pouvant
coexister, il est possible qu’'une prolifération aboutisse a la production concomitante de
plusieurs cyanotoxines (tableau 6).

Tableau 6 : Espéces de cyanobactéries potentiellement toxiques et des toxines associées ayant déja été observées
en France (AFSSA et AFSSET, 2006).

Cyanobactéries Cyanotoxines
Anabaena circinalis Anatoxines, saxitoxines, microcystines
Anabaena planctonica Anatoxine-a
Aphanizomenon flos-aquae Anatoxine-a, saxitoxines
Cylindrospermopsis raciborskii Cylindrospermopsine, saxitoxines
Lyngbya gracilis Debromoaplysiatoxines
Microcystis aeruginosa Microcystines
Oscillatoria sp Anatoxine-a
Planktothrix agardhii Microcystines
Planktothrix rubescens Microcystines
Raphidiopsis sp. Cylindrospermopsine
Woronichinia naegeliana Anatoxines-a

1.1.d.1 Les différentes classes

Les cyanotoxines sont classées selon les organes cibles, les moins toxiques étant les
dermatotoxines et les plus toxiques les hépatotoxines et les neurotoxines (AFSSA et AFSSET,
2006).

I.1.d.1.a Dermatotoxines
Les dermatotoxines sont des toxines irritantes dont les affections sont majoritairement
cutanées : elles touchent principalement la peau et les muqueuses (dermites ou dermatose).
Intracellulaires, elles sont hydrosolubles, trés stables et trés variables. Il en existe deux types :

- Les alcaloides dermatotoxiques uniquement identifiés dans les cyanobactéries marines :
aplysiatoxine, debromoaplysiatoxine et lyngbyatoxine-a,

- Les lipopolysaccharides, constitutifs de la paroi cellulaire et présents chez toutes les
espéces de cyanobactéries, qui pourraient également étre responsables d’effets gastro-
intestinaux en cas d’ingestion ainsi que d’irritation et d’inflammation des voies aériennes
supérieures.

I.1.d.1.b Hépatotoxines
Les hépatotoxines affectent principalement le foie, les reins et les intestins pouvant étre
des cibles secondaires. Ce sont les toxines les plus fréguemment rencontrées lors de
proliférations cyanobactériennes. On distingue trois grandes familles qui sont: les
microcystines, les nodularines ou les cylindrospermopsines (Mazur-Marzec, 2006 ; AFSSA et
AFSSET, 2006) (pour revue : Gago-Martinez A., 2007 ; Welker, 2008 ; Furey et al., 2008).
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Figure 18 : Structures des microcystines (a), des nodularines (b), et de la cylindrospermopsine(c) (Extrait de
Welker, 2008).

Microcystines et nodularines

Les microcystines, heptapeptides cycliques, constituent une famille de toxines composée
de pres de 80 variantes de masse moléculaire comprise entre 800 et 1 100 daltons (Da). Les
congéneres se différencient de par la substitution de deux acides aminés sur la structure
chimique de base (figure 18a). Les microcystines ont été identifiées dans les souches des genres
Microcystis, Anabaena, Nodularia, Planktothrix, Nostoc, Hapalosiphon et Anabaenopsis.

Les nodularines sont des peptides cycliques de cing acides aminés. On distingue 9
variantes en fonction de la position des méthylations (figure 18b). Elles sont tres proches des
microcystines, de la méme gamme de poids moléculaire et de propriétés physico-chimiques
similaires. Elles sont produites majoritairement par le genre Nodularia.

Les microcystines et les nodularines sont solubles dans I'eau et trés stables dans
I’environnement. La demi-vie des microcystines est de I'ordre de 2 a 4 jours (Jaeg, 2007). La DLsg
est trés différente en fonction du type de microcystine variant, en injection i.p., de 50 pg / kg
pour la MC-LR a 800 pg / kg pour la MC-RR (Jaeg, 2007) (tableau 7).

La toxicité des microcystines et des nodularines est complexe et s’exprime différemment
en fonction de leur structures et de la dose ingérée. Certaines d’entre elles entrainent a forte
dose la mort cellulaire alors qu’a faible dose, elles provoquent plutét une prolifération cellulaire
(Gago-Martinez, 2007).
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Cylindrospermopsine

La cylindrospermopsine est un alcaloide de 415 Da (figure 18c). Il en existe 2 congénéres,
un non toxique et un toxique avec une DLsg en injection i.p. chez la souris de 2,1 mg / kg. C’est
une molécule trés polaire et soluble dans I'eau. Elles sont majoritairement produites par
Cylindrospermopsis raciborskii.

Cette molécule est connue pour inhiber la synthese des protéines de fagon non
spécifique. Les organes les plus touchés sont les reins et le foie. Cependant d’autres organes
peuvent étre affectés comme les poumons, les glandes surrénales, I'estomac, le pancréas et les
intestins (Welker, 2008).

I.1.d.1.c Neurotoxines
Les neurotoxines ciblent la jonction neuromusculaire avec un mode d’action spécifique a
chaque famille. Ainsi, basées sur leurs activités, trois classes majeures de neurotoxines ont été
définies : I'anatoxine-a, I'anatoxine-a (S) et les saxitoxines et dérivés (figure 19). Jusqu’a présent,
elles n’étaient connues qu’en milieu d’eau douce (pour revue Ardoz et al., 2009).

Anatoxine-a

L'anatoxine-a (AnTX-a) est un alcaloide a fonction amine secondaire de 165 Da, soluble
dans I'eau, peu stable et rapidement dégradé dans I'environnement. L’homoanatoxine (HANTX-
a), forme méthylée de I'’AnTX-a, a un poids moléculaire de 179 Da ; ses propriétés chimiques
sont quasiment les mémes que celles de I’AnTX-a (figure 19) (James et al., 2007). Chez la souris,
leur DLsp est de 250 pg / kg en injection i.p. et de plus de 5 000 pg/kg par voie orale (tableau 7).

L'’AnTX-a et 'HANnTX-a sont des agonistes des récepteurs a I'acétylcholine. L’acétylcholine
est le neurotransmetteur principal de la jonction neuromusculaire. La cyanotoxine entraine une
dépolarisation de la jonction neuromusculaire (blocage de la transmission de I'influx au niveau
des synapses) qui se traduit par des fasciculations musculaires, des convulsions et I'apparition
d'une détresse respiratoire pouvant engendrer la mort. L’acétylcholine subit normalement une
dégradation permanente par I'acétylcholinestérase qui ne peut en revanche dégrader I’AnTX-a,
entrainant alors son accumulation. Ceci a pour conséquence l'apparition d’un syndrome
cholinergique.

Ces deux neurotoxines sont produites par les genres Anabaena, Aphanizomenon,
Cylindrospermum, Microcystis, Oscillatoria, Planktothrix et Raphidiopsis pour I'’AnTX-a et par
Oscillatoria, Anabaena, Raphidiopsis et Phormidium pour I'HAnTX-a (Ardoz et al., 2009). Ces
deux toxines peuvent étre simultanément produites par Raphidiopsis mediterranea (Namikoshi
et al., 2003) et par une souche axénique d’Oscillatoria PCC 9029 (Araoz et al., 2005).

Anatoxine-a (S)
L'anatoxine-a(s) (AnTX-a(s)) est un ester de phosphate de 252 Da, instable aux pH
alcalins et a la chaleur (figure 19). C’est un inhibiteur de I'acétylcholine estérase. Lors d’une
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intoxication a I’AnTX-a(s), I'acétylcholine n’est plus suffisamment dégradée. Elle s"accumule et
provoque une stimulation excessive des récepteurs cholinergiques. Les effets induits sont
similaires a ceux qui sont observés avec I’AnTX-a (syndrome cholinergique) avec la particularité
du symptéme d’hypersalivation (expliquant la lettre (s) d’AnTX-a(s)). L'AnTX-a(s) est cependant
dix fois plus toxique pour I'animal que I’AnTX-a : sa DLsp en injection i.p. chez la souris est de 20
ug / kg (tableau 7).

L’AnTX-a(s) est beaucoup moins fréquente que I’AnTX-a et I’'HAnTX-a. Elle a été identifiée
chez Anabaena flos-aquae (pour revue, James et al., 2007).

Saxitoxine

Les saxitoxines (STXs) sont les seules toxines produites a la fois par des dinoflagellés et
des cyanobactéries. Elles sont responsables des IPFM (ou PSP) brievement présentées
précédement (cf. ch.1.1.1.d).

Pour rappel, elles forment une famille de 25 variantes d’alcaloides a un noyau
tétrahydropurique dont: les non-sulfatés (STX), les STXs avec un groupement sulfaté
(gonyautoxines, GTX) ou les STXs avec deux groupements sulfatés (C-toxines). Leur poids
moléculaire varie de 241 a 491 Da. Elles sont trés stables dans I'eau (figure 19).

Les STXs se fixent au niveau du site 1 des CSSP et bloquent leur activité. Cette fixation a
pour conséquence l'inhibition de la transmission nerveuse qui provoque l'apparition de
symptdémes de type paralysant. La STX est la plus puissante des toxines de cette famille avec une
DLsg chez la souris de 10 pg / kg (i.p.) (tableau 7).

Les STXs sont produites par les cyanobactéries d’eau douce Aphanizomenon flos-aquae,
Anabaena circinalis, Lyngbya wollei, Cylindrospermopsis raciborskii.
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Alcaloides neurotoxiques ches les cyanobactéries d'eau douce
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Figure 19 : Structure des neurotoxines (extrait d’Ardoz, 2009).

Enfin, de nouvelles cyanotoxines produites par les cyanobactéries marines sont décrites
régulierement et dont les risques potentiels pour la santé humaine ou animale ne sont pas
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encore connus (antillatoxines, kalkitoxine, jamaicamides, BMAA ou B-méthylamino-L-alanine...)
(figure 19) (Ardoz et al., 2009).

Tableau 7 : Caractéristiques des principales cyanotoxines connues : nombre de congénéres décrits, espéces sources

et toxicité selon différents modes d’administration (i.v. : intra-veineux, i.p.: intra-péritonéal ; i.n.: intra-nasal)
(d’aprés Codd, 2000 et Furey et al., 2008 in Botana).
Toxicité
DLso (Hg/kg)
Cyanotoxines Nombre Espéce-sources i.v. i.p. i.n. orale
Microcystis, Oscillatoria, 5 000 -
Microcystines 80 Anabaena, Nostoc, - 25-150 36-122
. 10900
Hapalosiphon
Nodularines 9 Nodularia - 200 -2 000 - 4 400 - 6 900
p .
Cylindrospermopsines 2 Cylindrospermopsis, - 200 - 2 000 - 4 400 - 6 900
Aphanizomenon
Anabaena, Oscillatoria,
Anatoxine-a 2 Microcystis, Phormidium, <100 375 2 000 >5000
Aphanizomenon,
Cylindrospermum
Homoanatoxine-a 1 Anabaena, Planktothrix - 250 - > 5000
Anatoxine-a(S) 1 Anabaena - 20 - -
Aphanizomenon,
Saxitoxines >20 Anabaena, Lyngbya, 3,2-3,6 7,6-10,5 - 251-267
Cylindrospermopsis
LPS >3 La plupart - - - -
. . Lyngbya, Schizothrix,
Aplysiatoxine 2 Oscillatoria i i i i
Lyngbyatoxine >1 Lyngbya - - - -
1.1.d.2 Régulation de la production en cyanotoxines

Toutes les cyanobactéries ou les différentes souches d’une méme espéce ne sont pas

toxinogenes. La présence d’un genre réputé produire des cyanotoxines ne signifie pas

nécessairement que les toxines seront présentes, car toutes les espéeces constituant le genre

n’ont pas la capacité de produire des cyanotoxines. Les especes toxiques peuvent générer une

souche qui possedera (et exprimera) ou non les génes pour la production de toxines. Selon la

diversité du matériel génétique des souches toxiques, celles-ci

peuvent générer des

cyanotoxines de toxicité variable. Une méme souche peut synthétiser plusieurs cyanotoxines

pouvant rendre complexe la détection du panel de toxines si celles-ci appartiennent a des

classes différentes (activités différentes) ou si leurs propriétés physico-chimiques different

(notion de profil toxinique).
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La plus grande partie des cyanotoxines produites s’accumule a l'intérieur des cellules
(endotoxine) et le niveau de production semble étre corrélé a la phase de croissance des
cyanobactéries. A la fin de la période de sénescence, elles meurent et les cellules se lysent,
provoquant le relargage des toxines dans le milieu environnant. Ainsi, pendant la phase
d’installation de I'efflorescence, on retrouve trés peu de toxines extracellulaires alors qu’en
phase de déclin, la concentration de toxines extracellulaires augmente considérablement.
Sachant que ces espéces sont souvent caractérisées par des efflorescences sans mesure
réguliére et rapprochée, il est difficile de mesurer les maxima de toxicité.

Selon certaines études, les proliférations de cyanobactéries sont rarement prédictibles et
il N’y a pas de corrélation entre la biomasse de cyanobactéries et la quantité de toxines
produites (Welker, 2008).

Des corrélations ont toutefois été observées entre la production toxinique et la
croissance cellulaire, I'intensité lumineuse, la concentration en nutriments et en fer, I'effet du
zooplancton et certains paramétres physico-chimiques du milieu (température et pH) (Sivonen
and Jones, 1999).

1.1.d.3 Rébles des toxines

Différentes théories ont été proposées quant a la fonction des cyanotoxines. Plusieurs
auteurs suggérent que la production de ces métabolites serait le résultat d’un stress provenant
de l'environnement. D’autres soutiennent que l'expression des genes a lorigine de la
production de ces toxines est constitutive et que la proportion synthétisée augmenterait avec la
croissance de la souche considérée et par conséquent, indirectement avec les facteurs
environnementaux. Les toxines auraient ainsi des fonctions régulatrices du métabolisme
cellulaire. Enfin comme autre hypothése, il est proposé que ces molécules puissent servir de
facteurs favorisant le mutualisme avec d’autres espéces, ou a l'inverse, que ces toxines puissent
procurer un avantage sélectif sur des especes compétitrices. En effet ces toxines pourraient étre
produites dans le but d’éliminer des compétiteurs potentiels pour les ressources, ainsi que des
prédateurs.

En conséquence, quelque soit leur origine, la production de ces toxines contribue a
augmenter I'avantage compétitif des cyanobactéries dans le but d’atteindre la dominance de

I’écosystéme.
.2 Les intoxications dues aux cyanobactéries
I.2.a  Tableaux cliniques

En raison de la coexistence possible de plusieurs classes de toxines au sein d’'une méme
efflorescence, les tableaux cliniques peuvent étre complexes. Cependant, il est possible
d’associer des symptomes spécifiques a chacune des 3 classes de cyanotoxines :
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Dermatotoxines

Les personnes exposées aux dermatotoxines présentent un tableau clinique
classiquement appelé « démangeaison du baigneur ». En plus des signes d’irritation cutanée
(érythéme, cedéme), il est possible d’observer une atteinte des muqueuses oculaires et/ou
nasales et lors d’inhalation, des troubles respiratoires voire des troubles digestifs (lésions
irritatives buccales, gastro-entérite) parfois accompagnés de fievre (de Haro, 2008). Mais
globalement, les effets sur la santé de ces toxines sont moins bien établis que pour les deux
autres classes de cyanotoxines.

Hépatotoxines

Les personnes exposées aux hépatotoxines présentent un tableau de type gastro-
entérite avec apparition, dans les 3 a 5 h suivant I'ingestion de I’eau contaminée, de crampes
abdominales, puis de vomissements et diarrhées. Le tableau s’améliore spontanément en 24 a
48 h, mais dans les cas les plus graves, une atteinte hépatique peut étre observée, avec cytolyse
hépatique (élévation des transaminases) potentiellement sévere, conduisant a l'insuffisance
hépatocellulaire avec mise en jeu du pronostic vital.

Neurotoxines

Il existe un risque de paralysie musculaire pouvant atteindre les muscles respiratoires.
Plusieurs cas de déces de chiens, d’oiseaux et de bétail ont été décrits, avec arrét respiratoire,
apres ingestion d’eau contaminée; les symptOmes observés sont des vertiges, des
tremblements, une suffocation, des convulsions et un opisthotonos (contraction généralisée du
corps). L'apparition des symptémes peut étre rapide avec arrét respiratoire brutal quelques
minutes seulement aprés I'ingestion d’eau contaminée (cas des animaux retrouvés morts au
bord de I'’eau) ou intervenir dans un délai de 6 a 24 h avec développement d’une bradypnée
d’aggravation progressive. Chez 'Homme, des cas de céphalées parfois accompagnées de
malaises et de troubles digestifs ont été rapportés (de Haro, 2008). Les intoxications humaines
sont généralement dues a la consommation de mollusques filtreurs (coquilles St Jacques,
moules) contaminés. Les symptomes provoqués par ces neurotoxines peuvent étre difficiles a
différencier de ceux provoqués par les CTXs, étant donnée la trés forte variabilité individuelle
observée lors des intoxications ciguatériques.

Quelque soit la cyanotoxine incriminée lors d’une intoxication, le traitement reste
purement symptomatique.
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1.2.b Incidence et nature des intoxications

Les cyanotoxines sont a I'origine de nombreuses intoxications mortelles chez les animaux
domestiques et sauvages, et d’'un nombre non négligeable d’intoxications chez 'Homme (pour
revue : Kuiper-Goodman et al., 1999 ; Falconer, 2005; AFFSA et AFFSET, 2006).

C'est en 1878 que Francis décrit le premier cas d’animaux de ferme (moutons, chevaux,
chiens et cochons) morts intoxiqués par ingestion d’eau contaminée par Nodularia spumigena
prés du fleuve Murray en Australie du sud-ouest (Codd et al., 1994).

Un des accidents les plus graves enregistrés s’est déroulé en 1996 au Brésil lors de
I'utilisation d’eau en soins de dialyse. La contamination de I'eau par des hépatotoxines
(microcystines et cylindrospermopsines) a provoqué la mort de 60 patients a la suite de graves
affections hépatiques (Pouria et al., 1998).

A ce jour, en France, aucune intoxication mortelle chez 'Homme n’a encore été
recensée. Cependant, depuis I'année 2002, plusieurs décés de chiens ont été constatés sur les
rives du Tarn, a la suite de I'ingestion d’eau contaminée par des cyanobactéries et/ou par des
cyanotoxines (Gugger et al., 2005 ; Silvano, 2005 ; Cadel-Six et al., 2007). Cette mortalité canine
suggere qu’il existe un risque sanitaire potentiel pour la population exposée lors d’activités
nautiques.

Les voies d’expositions sont diverses : (i) par baignade, lors de la pratique de sports
aquatiques, (ii) par ingestion d’eau contaminée par les cyanobactéries et/ou leurs toxines (le
plus fréquent), (iii) lors de la consommation d’organismes ayant accumulé des toxines, enfin (iv)
I'inhalation de I"’écume, plus rare, pourrait représenter un risque pour les personnes a proximité
de I'efflorescence.

L’AFSSA et I’AFSSET ont mené conjointement une large étude faisant |’état des lieux des
risques liés aux cyanotoxines en France (AFSSA et AFSSET, 2006). Il en ressort que pour une
seule des toxines, la microcystine LR : le risque lié a la présence de cette hépatotoxine dans les
eaux destinées a la consommation humaine est considéré « négligeable ».

Les risques liés aux autres cyanobactéries marines ou d’eau douce sont encore difficiles a
estimer tant les rapports restent sporadiques. En effet, les études concernant les cas
d’intoxications ne sont souvent menées que par intéréts affectifs (chiens) ou économiques
(élevage, aquaculture). Les intoxications recensées sont donc a priori sous estimées (sous-
déclaration des intoxications chez les animaux sauvages).

Les intoxications humaines directes restent heureusement faibles probablement par
évitement des zones visiblement contaminées (accumulation des fleurs d’eau en bord de
rivage). Par contre, en ce qui concerne les intoxications indirectes, I'évaluation du risque n’est
pas aisée en raison du temps de latence dans le phénomene d’assimilation et d’accumulation
dans la chaine alimentaire.
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C'est cet aspect des intoxications par voie indirecte que nous allons tenter d’élucider
avec entre autre la recherche et I'étude de I'agent causal, dans le but d’évaluer le risque réel ou
potentiel que les cyanobactéries engendrent.

A ce jour, en Nouvelle-Calédonie, aucun signalement d’intoxication due aux
cyanobactéries marines n’a été formellement établi.

1.3 La chaine trophique et les vecteurs de toxicité

Les cyanobactéries d’eau douce ou marine ont peu de prédateurs connus, plus pour des
raisons de méconnaissances que de réalité de fait: les études commencent a peine a se
développer sur le sujet (Cruz-Rivera and Villareal, 2006). Cependant, on peut citer certaines
espéces de zooplancton, de poissons ou de mollusques pouvant étre considérées comme des
vecteurs potentiels de toxicité.

I.3.a Le zooplancton

Les prédateurs connus des cyanobactéries appartiennent majoritairement au
zooplancton qui constituerait un second maillon de la voie de transfert pour une éventuelle
toxicité. Planktothrix rubescens, cyanobactérie d’eau douce et productrice de microcystines, a
été retrouvée dans le tractus digestif d’'un de ses prédateurs connus, les daphnies. Les
cyanobactéries du genre Trichodesmium sont des proies pour deux espéces identifiées du
zooplancton, Miracia efferata et Macrosetella gracilis, qui ne sont pas affectées par la toxicité
de la cyanobactérie (O’Neil and Roman, 1992 ; O’Neil, 1998 ;). Ainsi, il semble que certains
prédateurs comme les mésobrouteurs (taille de 0,5 a 2 cm), épiphytes des populations
cyanobactériennes, aient acquis une forme de résistance vis-a-vis du systéme de défense de
leur hote (Cruz-Rivera and Villareal, 2006). La voie de transfert et I'intégration des cyanotoxines
dans la chaine trophique pourraient se faire par ces différents organismes de prédation.

I.3.b  Les poissons

Comme nous l'avons déja cité précédemment, L. majuscula a été retrouvé dans
I'alimentation de divers poissons récifaux (Dawson et al., 1955). Certains de ces poissons
herbivores ingérent directement ces cyanobactéries benthiques pouvant constituer de
véritables prairies de gazons denses. Cependant, a priori, au vue de la faible qualité
nutritionnelle que peut apporter ces cyanobactéries, elles ne peuvent étre considérées comme
élément principal de I’alimentation de ces poissons (Capper et al., 2005 ; 2006).

Il est intéressant également de mentionner les mulets (Mugilidés): ces poissons
planctonophages se nourrissent en surface ol il y a accumulation d’organismes planctoniques.
Ils ingeérent ainsi d’importantes quantités de biomasse de Trichodesmium lors des
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efflorescences. Les poissons planctonophages, prédateurs du zooplancton, pourraient ainsi
constituer un autre maillon de la chaine trophique.

I.3.c Les bénitiers

De nombreux cas d’intoxications provoquées par la consommation de bénitier ont été
rapportés, particulierement dans le Pacifique (Bagnis, 1967). Halstead nomme ce type
d’intoxication « Tridacna shellfish poisoning » dont les symptomes incluent des perturbations
gastro-intestinales et de coordinations (Halstead, 1965). En 1976, Kanno entreprend I'étude de
la toxicité des bénitiers et met en évidence comme Bagnis en 1967, des composés toxiques,
sans déterminer le type de toxicité. Enfin, la présence de STXs dans Tridacna crocea a été
associée a des efflorescences de dinoflagellés du genre Pyrodinium a Palau et Alexandrium a
Taiwan (Hwang, 2003). Bien que ces organismes filtreurs soient des accumulateurs potentiels de
toxines, leur toxicité reste encore a élucider (nature toxinique, source intrinseque...).

A travers I'étude menée a Lifou, nous souhaitons mettre en évidence (i) le type de
toxicité de ces bénitiers et (ii) le lien potentiel existant entre la toxicité de ces organismes
marins et les cyanobactéries qui se développent de maniére importante dans la méme zone
récifale.
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Il. Etudes écotoxicologiques de Hunété a Lifou

[1.1 Introduction

L’ensemble de I’étude a laquelle j’ai participé lors de mon intégration dans I’équipe a fait
I'objet d’une publication, Laurent et al. (2008).

II.L1.a Alerte sanitaire - Bilan épidémiologique

De 2001 a 2004, les habitants de la tribu de Hunété (environ 300), importants
consommateurs de produits de la mer, ont été gravement touchés par des intoxications
ciguatériques. L'étude épidémiologique rapporte trente cas d’intoxications principalement par
consommation de poissons herbivores, perroquet (Scaridés), et molluscivores, bec de cane
(Lethrinidés), mais aussi de bénitiers (mollusques filtreurs) péchés dans la zone de péche
lagonaire de la tribu (tableau 8). Lors de I'alerte sanitaire, les habitants avaient déclaré que les
crustacés péchés dans la zone étaient également toxiques.

Tableau 8: Espéces de poissons ayant provoqué des intoxications ciguatériques relevées par |'étude
épidémiologique.

Nombre d'intoxication

Total Zone toxique Zone non toxique

Perroquet 15 11 4
Bec de cane
Petit Napoléon
Dawa
Rouget
Loche saumonée
Bénitier

N R P NN N
N O FLr NN WOU
O r OO ON

Le tableau clinique décrit est typique des intoxications ciguatériques classiques avec des
symptomes de type neurologique (fourmillements, ataxie, paresthésie) et gastro-intestinal
(vomissement, diarrhée) accompagnés de symptomes particuliers comme la brilure de la
bouche et de la gorge quelques minutes seulement aprés le début du repas. La population a
noté également [Iinefficacité des remeédes traditionnels utilisés de maniere efficace
habituellement.

Ce sont (i) la sévérité des symptdémes ciguatériques accompagnés de symptémes
annexes (bralure de la bouche et de la gorge), (ii) le nombre important de cas d’hospitalisation
(30%), (iii) I'inefficacité des médicaments traditionnels et (iv) les organismes marins impliquées
(poissons herbivores, molluscivores et les bénitiers) inhabituels dans les cas de ciguatéra
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classique (plutot poissons ichtyophages en Nouvelle-Calédonie) qui font de cette intoxication
une ciguatéra atypique.

I.L1.b  Zonation

Les habitants ont désigné de maniere relativement précise deux zones ou la majeure
partie des organismes ayant provoqué les intoxications avait été péchée : Managite et Keij,
regroupées par la suite au sein d’'une méme zone qualifiée de « ZT » (ZT) pour faciliter
I'approche expérimentale (figure 20).

|

L ]

Figure 20 : Carte de la zone de péche des habitants de la tribu de Hunété et nombre de cas d’intoxications par
zone selon I’étude épidémiologique.

Zone réputée toxique

II.L1.c  Suivi écotoxicologique
I.1.c.1 Données antérieures et suivi environnemental

Au niveau de la ZT, une rampe de mise a |'’eau a été construite a travers le récif soulevé.
D’apres les témoignages recueillis auprés du chef du clan des pécheurs, en 1999, la zone a été
affectée par la construction de cette rampe et de sa route d’acces. Les pluies ont drainé vers le
récif les substrats détritiques coralliens utilisés pour le revétement des routes. Un creusement
du récif frangeant avait été nécessaire pour obtenir un acces a la pleine eau et visiblement,
cette zone a été dégradée. Cet effet a ensuite été accentué lors du cyclone Erica en mars 2003 :
les pluies diluviennes associées au fort hydrodynamisme ont été un facteur aggravant la fragilité
du corail.
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Localement, des éléments exogenes détritiques (batteries et divers déchets) sont
observés (photos 11 et 12), témoins de la présence d’un ancien « dépotoir marin ».

Photos 11 et 12 : Vues sous-marines de la zone située au pied de la mise a I'eau.

Au pied de cette zone, le corail est fortement dégradé et est recouvert de gazons
cyanobactériens, véritable tapis noir recouvrant les coraux branchus morts entassés entre des
blocs madréporaires; |'espece majoritaire a été identifiée comme étant Hydrocoleum
lyngbyaceum. Par ailleurs, il est remarquable de noter [I'absence de dinoflagellés
ciguatoxinogénes.

La comparaison entre la ZT et les zones alentours met en évidence une trés faible
densité de macroalgues dans cette zone ainsi que I'absence quasi-totale d’holothuries, par
rapport a la zone réputée non toxique (ZNT) qui est apparue riche et diversifiée tant en espéces
benthiques que pisciaires.

I.1.c.2 Suivi toxicologique

Des analyses toxicologiques d’échantillons d’H. lyngbyaceum, de bénitiers et de poissons
prélevés dans la ZT ont été effectuées. lls indigquent :

1) Une toxicité de type CTXs dans les extraits liposolubles d’H. lyngbyaceum et de
bénitiers qui a été mise en évidence suite a des analyses avec les tests souris, de cytotoxicité, de
RBA et des études neurophysiologiques,

2) Une toxicité de type paralysante dans les extraits hydrosolubles d’H. lyngbyaceum
(test souris) et de bénitiers (test souris et études neurophysiologiques), qui suggére la présence
de toxines paralysantes de type AnTX-a ou STXs,

3) Une toxicité dans la chair et le foie de poissons de type CTXs (test souris) dans les
extraits liposolubles versus une absence de toxicité dans les extraits hydrosolubles,

4) La présence d’un pic de rétention proche de celui de la P-CTX-3C dans des extraits
purifiés de bénitiers (analyses chromatographiques en HPLC), qui suggere la présence de
composés de type CTXs ou CTXs-like dans les bénitiers.
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[1.2 Matériels et méthodes
I.2.a Site d’étude
11.2.a.1 Présentation

La Nouvelle-Calédonie (21°30 S, 165°30 E) est constituée de la Grande Terre, et des lles
Loyautés (figure 21). La grande terre est bordée par une couronne récifale d’environ 8 000 km?,
large de 100 a 10 000 m qui limite un lagon d’environ 20 400 km?”. Les Loyautés sont, quant a
elles, une partie émergée d’une ride située en bordure de la zone de collision de la plaque
australienne avec la plaque pacifique. Elles s’étendent sur plus de 1 000 km selon un alignement
SE / NO (entre 18°S et 25°S) avec du Nord au Sud, Ouvéa, Lifou, Tiga et Maré. Ce sont d’anciens
récifs coralliens soulevés séparés de la Grande-Terre a I'ouest par le bassin des Loyauté dont la
profondeur varie de 2 000 a 2 500 m. Les iles Loyauté sont elles-mémes séparées les unes des
autres par des fonds variant entre 1 500 et 1 700 m.
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Figure 21 : Situation de la NoIIe-CaIdnie et de Lifou

Lifou est la plus grande des lles Loyauté avec une superficie de 1207 km? (elle est
comparable a la Martinique). Cet atoll surélevé émerge a 104 m et sa population est de 8 627
habitants (recensement 2009). Lifou désigne a la fois I'lle, I'aire coutumiere de Drehu et une
commune, chef-lieu de la Province des iles Loyauté. L’aire coutumiére est subdivisée en trois
districts (Wetr, Gaica et Lossi) qui regroupent eux-mémes 37 tribus.

Comme ses voisines, Lifou est constituée de roches calcaires massives d'origine
corallienne qui se soulévent progressivement au cours du temps. Elle présente un large plateau
central entouré par une couronne de falaises correspondant a I’ancienne barriére récifale. Trés
calcaire et donc poreuse, elle est dépourvue de cours d'eau mais renferme une importante
lentille d'eau douce en profondeur qui est accessible par des « trous d'eau ». De nombreuses
résurgences d’eau douce sont visibles tout le long de la cOte, ces apports d’eau douce
influencant notablement localement le biotope ou ils se reversent.

99 /326



Chapitre 2 : Les cyanobactéries marines

L’écosystéme récifal

De maniere générale, I'état des récifs coralliens est considéré en « bonne santé » par les
organismes de surveillance (programme Ifrecor, CRISP). Cependant, localement, on peut
observer des zones dégradées par l'activité humaine ou par les aléas climatiques (cyclone,
tsunami...) voire par d’autres pressions naturelles comme les Acanthaster. Ces derniéres restent
heureusement encore limitées. De nombreuses constructions d’infrastructures le long du littoral
calédonien en général se sont faites par dragages ou remblais détruisant de nombreux hectares
de cote, comme ce fut le cas ponctuellement dans la tribu de Hunété.

D’autre part, le blanchissement des coraux a frappé la Nouvelle-Calédonie en 1995 /
1996, du fait d’'une augmentation de la température des eaux ; la situation semble stabilisée.

Enfin, il est difficile de mesurer avec certitude les différents impacts auxquels est soumis
le récif plus localement (pollution domestique, prélévements de coraux ou impact du tourisme).

La zone de péche de la tribu de Hunétég, zone incriminée

L’étude réalisée est située sur la zone traditionnelle de péche de la tribu de Hunété. Elle
se situe au nord-ouest de Lifou dans le district de Wetr au nord d’Easo (nord de la Baie de
Santal). La zone de péche, cotiére, au pied de la tribu est constituée du récif soulevé. Ce plateau
corallien est fait de grands domes, sur fond dur de sable moyen et débris grossiers. La
profondeur est de 50 cm a 5 m. La cbte présente des renfoncements voire grottes, la ol la mer a
creusé le platier soulevé. Ces découpes ont pour conséquence la création de petites cuvettes
caractérisées par une forte houle.

11.2.a.2 Plan d’échantillonnage

Dix-huit points d’échantillonnage, répartis entre la ZT et la ZNT définies antérieurement,
ont été retenus, qui se répartissent selon :
- Trois transects perpendiculaires a la cOte par zone : n°1, 2 et 3 pour la ZNT et n°4,
5 et 6 pour la ZT,
- Trois transects transversaux / transect perpendiculaire, distants d’environ 50 m,
correspondant a 3 points d’éloignement de la cote : A, B et C respectivement
(figure 22).
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Figure 22 : Vue aérienne de la zone de péche de la tribu de Hunété a Lifou, zonation des préléevements : 6
transects de A a B, perpendiculaires a la cote et 3 transects de 1 a 3 paralléeles a la c6te définissant 18 points de
prélevements.

Les caractéristiques (profondeur et coordonnées géographiques) de ces 18 points
d’échantillonnage sont présentées dans le tableau 9.

II.2.b  Prélevements biologiques et périodicité du suivi

Trois missions sont menées annuellement : deux en saison chaude (février et novembre)
et une en saison froide (juin a ao(t). Lors de chacune de ces missions d’une journée et sur
I'ensemble des deux zones, les populations de dinoflagellés et de cyanobactéries sont
identifiées d’'un point de vue taxonomique, quantifiées et caractérisées au niveau de leur
potentiel toxique.

Une fois par an, en février, la ciguatoxicité au sein de la chaine alimentaire est évaluée
grace a des collectes de bénitiers et de poissons effectuées dans la ZT et la ZNT.
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1.2.b.1 Dinoflagellés

Nom P;?;;Z:s:r Latitude Longitude

1A 1m -20.764910 167.099106

. 1B 3m -20.765079 167.099106
§ 1c 4m -20.765350 167.099075
= 2A 1m -20.765079 167.097275
2 'g 28 3m -20.765249 167.097321
= 2C 4m -20.765560 167.097427
g 3A 1m -20.765825 167.096016
N 3B 3m -20.766016 167.096064
3C 4m -20.766129 167.096100

4A 1m -20.766201 167.093655

4B 3m -20.766380 167.093781

s 4c 4m -20.766688 167.093956
= 5A 1m -20.767310 167.093006
_}_} 5 5B 3m -20.766803 167.092529
° 5C 4m -20.767059 167.092760
S 6A 1m 20.767771 167.091408
6B 3m -20.768112 167.091579

6C 4m -20.768338 167.091794

Les dinoflagellés ciguatérigenes sont des microalgues épiphytes de macroalgues hotes
ou de débris coralliens ; leur prélevement s’effectue selon la méthode décrite par Chinain et al.

(1999a).

Récolte des macro-algues supports

A chaque point de récolte, les macroalgues-support identifiées (ex. Halimeda, Turbinaria,
Dictyota, Lobophora ; photos 13 a 16) ou les débris coralliens sont récoltés en plongée libre et

conservés dans des poches plastiques maintenues ferm

Photos 13, 14, 15, 16 : Exemples de macroalgues-supports des dinof|
Hunété (13 : Halimeda, 14 : Turbinaria, 15 : Dictyota et 16 : Lobophora).

ées avec |'eau de récolte.

lagellés recontrées sur le site d’étude de
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Le choix du support des microorganismes (débris coralliens ou macroalgues) dépend de
la disponibilité de ce substrat au niveau du point de prélevement. Chaque fois que cela est
possible, la récolte d’environ 200 a 500 g de macroalgues est privilégiée afin de pouvoir
dénombrer les cellules de dinoflagellés et rapporter ce nombre a la masse macroalgale,
permettant ainsi une étude comparative plus aisée d’une saison a l'autre. En revanche, les
débris coralliens pouvant représenter des masses trés variables, le dénombrement des
microorganismes épiphytiques rapportée a la masse de corail n’a pas été retenu.

Il est intéressant de noter que les dinoflagellés ont des préférences quant a leurs hotes,
en fonction des avantages compétitifs qu’ils leur conférent (e.g. disponibilité de substrat,
parametres favorisant leur croissance, protection vis-a-vis des prédateurs, ...) (Nakahara et al.,
1996 ; Cruz-Rivera and Villareal, 2006).

De maniere générale, nos prélevements sont surtout constitués de débris coralliens
supports, étant donné que dans la plupart des points de prélévements, peu de macroalgues
sont présentes.

Extraction des cellules par agitation

Les poches sont agitées vigoureusement pendant 1 mn afin de décrocher les
dinoflagellés de leur support macroalgal. L'eau de mer est filtrée sur 3 tamis de porosité 500,
250 et 45 um. La fraction comprise entre 45 et 250 um est récupérée a l'aide d’une pissette
d’eau de mer. Elle est conservée au formol a 5% d’eau de mer filtrée a 0,45 um et tamponnée a
pH 7,0 au borate de potassium (Na;B407, 10 H,0).

Comptage des cellules au microscope

L’'observation, I'identification et le dénombrement des microorganismes sont réalisés en
microscopie optique. Le protocole de prélevement des microorganismes est synthétisé en figure
23.

e -

Figure 23: Protocole de prélevement des microorganismes : prélevement manuel en plongée libre, extraction des
cellules épiphytes par agitation, filtration et récupération des microorganismes, observation des échantillons au
microscope optique.

En situation d’efflorescence de microalgues (i.e. densités cellulaires > 1 000 cellules par g
d’algue), le préléevement de biomasse plus conséquente est effectué en vue des analyses
toxicologiques ultérieures.
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1.2.b.2 Cyanobactéries

Les cyanobactéries présentent I'avantage d’étre visibles a I’ceil nu. Ainsi, leur présence et
leur zonation peuvent étre appréciées relativement facilement en plongée libre.

Quatre types de prélevements sont effectués en vue de (i) leur identification morpho-
taxonomique, et/ou (ii) I’évaluation de leur potentiel toxique en cas d’efflorescences, iii) leur
mise en culture et iv) leur caractérisation moléculaire.

I1.2.b.2.a Prélévement destiné a I'identification morphotaxonomique
Les filaments sont délicatement prélevés manuellement ou a I'aide de pince afin de ne
pas lyser les cellules et aussitét préservés dans du formol a 5% en eau de mer filtrée (pH 7,0). A
chaque préléevement, sont associées des photographies prises in situ; les caractéristiques
biologiques et le point d’échantillonnage sont relevés.
Nous nous sommes appuyés sur I'expertise scientifique du Professeur Stjepko Golubic,
spécialiste des cyanobactéries de I’Université de Boston.

11.2.b.2.b Prélévement pour caractérisation moléculaire
Chaque échantillon est stabilisé dans de I’éthanol absolu a 50% en eau de mer filtrée a
0,45 um, en vue d’analyses moléculaires (identification de la diversité génétique, analyse de la
toxicité) réalisées a I'Institut Pasteur de Paris dans le cadre du projet Aristocya financé par 'ANR
CES (Contaminants Environnement Santé). Ce travail ne rentre pas directement dans les
objectifs de thése, toutefois certains résultats préliminaires seront abordés dans la partie
« Discussion ».

I1.2.b.2.c Essai de mise en culture
Des prélevements de cyanobactéries sont effectués afin de les mettre en culture au
laboratoire de Nouméa. Ces échantillons sont prélevés délicatement et conservés dans des
flacons avec de I'eau de mer dont les proportions sont au minimum de 1 volume pour 10. Les
cyanobactéries sont mises en milieu de culture liquide ou solide au plus tard 24 h apres le
prélevement.

I1.2.b.2.d Prélévement pour analyses toxicologiques

Les grandes couvertures de cyanobactéries sont prélevées selon des techniques
différentes dépendant des conditions de collecte (profondeur, houle...), de la morphologie des
cyanobactéries (type « biofilm » ou longs filaments...) ou de leur substrat (débris coralliens,
sables ou colonne d’eau dans le cas des formes pélagiques). L'objectif est de recueillir
suffisamment de biomasse en vue des analyses toxicologiques tout en mettant I'accent sur la
qualité de I'échantillon (éviter les débris et I'association avec d’autres espéces...). De maniére
générale, les cyanobactéries benthiques et pélagiques récoltées sont constituées de filaments
de plusieurs mm a quelques cm de long qui s’agglutinent pour former des colonies d’aspects
morphologiquement variables (photos 17, 18 et 19).
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Y L 9 : 1.'. B E ey et v
Photos 17, 18, 19 : Vues macroscopiques de diverses colonies de cyanobactéries filamenteuses benthiques et
pélagiques.

Les mattes de cyanobactéries sont récoltées manuellement, a I'aide d’un tamis ou d’un
aspirateur sous marin (photo 20). Les échantillons sont rapidement conditionnés en flacon,
maintenus a I'abri de la lumiére et conservés a +4°C jusqu’a leur traitement, au plus tard 24 h
apres la récolte.

Photo 20 : Récolte en plongée bouteille de cyanobactéries a I’aide d’un aspirateur sous-marin.

1.2.b.3 Bénitiers

Des bénitiers (especes non définies) récoltés dans la ZT ont provoqué deux séveres
intoxications. Les bénitiers sont un élément important de la nourriture traditionnelle des
insulaires dans I'ensemble de la région indo-pacifique. Parmi les sept espéces de bénitiers
réparties a travers les régions tropicales, six sont présentes en Nouvelle-Calédonie, I'espece
Tridacna maxima présentant la plus grande répartition géographique. Elles sont inscrites sur
I'Annexe Il de la liste rouge des espéces menacées afin de contrdler leur commerce et leur
exportation (CITES : « Convention sur le commerce international des espéces de faune et de
flore sauvages menacées d'extinction »).

Le bénitier (ou tridacne) est un mollusque bivalve des fonds récifaux coralliens peu
profonds (50 cm a 15 m). Des individus de plusieurs centaines d’années ont été observés et la
taille adulte varie de 15 cm jusqu’a 1 m pour les spécimens les plus gros (Tridacna gigas).
Organisme micro-filtreur et sessile, il se nourrit et s’oxygene grace a I'aspiration créée par son
manteau. Le siphon inhalant conduit I'oxygéne et la matiere organique planctonique
environnante vers les branchies puis la bouche et le systéeme digestif. Ses excrétions sont
rejetées par le siphon exhalant situé a l'arriere de I'animal. Le manteau présente de vives
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couleurs dues aux zooxanthelles qu’il renferme. Ces algues unicellulaires du genre
Symbiodinium vivent en symbiose mutualiste avec le bénitier en consommant son CO, et en
procurant en retour divers nutriments a son hote défini comme du phototropisme positif
(Rosewater, 1965 ; Braley, 1989 ;).

Dans le cas de notre étude, nous rencontrerons les espéces Tridacna squamosa
(Lamarck, 1819), T. maxima (Roding, 1798) et Hippopus hippopus (Linné, 1758) appelé
localement le bénitier rouleur en raison de I'absence de byssus, organe qui permet a I'animal de
se fixer au substrat (figure 24). Dans la mesure du possible, la méme espeéce est collectée afin de
minimiser les variabilités inhérentes a la physiologie propre a chaque espeéce.

Tridacng N
maxima H. hippopus

b
Tridacna squamosa
Figure 24 : Espéces de bénitiers rencontrées sur le site d’étude : a) Tridacna squamosa, b) Tridacna maxima et c)
Hippopus hippopus.

Une fois par an (en février), les bénitiers sont prélevés manuellement a I'aide de couteau
afin de les détacher de leur support (méthode de péche traditionnelle). Six individus sont
collectés dans la ZT et aux moins trois autres dans la ZNT de maniére a minimiser I'impact de
I’étude sur la ressource alimentaire de la tribu.

Chaque individu est identifié, photographié et mesuré (longueur maximale). La chair est
prélevée entierement sans séparation des différents organes. La masse totale du corps est
pesée et conservée a -20°C jusqu’a leur traitement au laboratoire.

Afin d’avoir une toxicité globale de I'individu, I'analyse de la toxicité est réalisée sur
I'intégralité du corps (chair et hépatopancréas). Lors de la préparation du repas,
I’hépatopancréas, organe concentrateur noir, est enlevé ; il est donc probable que la toxicité
potentielle dosée soit supérieure a celle a laquelle le consommateur est exposé.

106/ 326



Chapitre 2 : Les cyanobactéries marines

1.2.b.4 Poissons

L’étude épidémiologique a révélé que les perroquets (especes non identifiées) ont causé
des intoxications chez 15 personnes (11 avec des spécimens récoltés en ZT et 4 en ZNT). Les
intoxications liées a la consommation de poissons herbivores de début de chaine alimentaire ne
sont pas fréquentes en Nouvelle-Calédonie. Elles seraient plutét caractéristiques de zones
ciguatériques en émergence, les herbivores constituant I'un des premiers maillons contaminés.

Afin d’évaluer I’évolution spatiale et temporelle de la toxicité de la zone incriminée, nous
avons choisi comme « poissons-sentinelles » les perroquets.

Ainsi, 5 individus au minimum ont été chassés annuellement au fusil sous-marin avec un
suivi sur 3 ans. Chaque spécimen collecté est photographié, identifié, pesé et mesuré.
L’évaluation de la ciguatoxicité des poissons est basée sur le dosage des toxines dans les chairs.
Dans la mesure ou les toxines sont différemment réparties en fonction des organes (teneurs en
toxines variables de la téte a la queue), pour chaque individu le dosage de la toxicité est
effectué sur un broyat préparé a partir de la totalité des filets qui sont conservés a -20°C jusqu’a
leur traitement au laboratoire.

II.2.c  Extraction et purification

Différents types d’extraction et de purification sont utilisés en fonction (i) des toxines
recherchées, (ii) de la matrice et (iii) des tests de dosage utilisés :
- Une extraction par partage liguide-liquide (dite extraction de masse) pour extraire et

séparer de maniére large toutes les familles toxiniques présentes dans des matrices complexes
(bénitier et cyanobactérie),
- Une extraction en phase solide (SPE) (dite extraction rapide) appliquée directement sur

la chair de poissons et sur les extraits liposolubles de cyanobactéries pour extraire
préférentiellement les toxines de type CTX,
- Une étape de purification complémentaire par chromatographie liquide basse pression

appliquée aux extraits liposolubles délipidés de bénitiers.
1.2.c.1 Extraction de masse (matrices brutes de cyanobactéries et bénitiers)

I.2.c.1.a Principe

« L’extraction de masse » (extraction et séparation liquide-liquide) permet de séparer les
toxines liposolubles (ex. CTXs) des toxines hydrosolubles (ex. MTXs, STXs). L'objectif est
d’identifier la nature des toxines potentiellement présentes dans ces deux organismes. Aussi, il
est primordial d’utiliser une technique d’extraction permettant d’extraire la majorité des toxines
a I'aide d’un solvant a large pouvoir d’extraction, le méthanol (MeOH) associée a une extraction
complémentaire au (MeOH) acide pour isoler d’éventuelles autres toxines hydrosolubles
(Mc Elhiney et al., 1998 ; Nicholson and Bruch, 2001 ; Laurent et al., 2008) (figure 25).
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Cyanobactérie ou Bénitier lyophilisé
Extraction
3xMeOH en sonication
3xMeOH en agitation
Filtration, puis évaporation
dufiltré

Résidu MeOH 1 \
Séparation Liquide/Liquide / /,:" Reprise du Filtrat
{ 3xMeOH Acide

Agitation
Filtration, puis
Evaporation
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Figure 25: Protocole d'extraction des bénitiers et des cyanobactéries (d’aprés Mc Elhiney et al., 1998 ; Nicholson
and Bruch, 2001 ; Laurent et al., 2008) ; Extrait liposoluble (1) des cyanobactéries et extrait liposoluble (1)*
délipidé des bénitiers.

I1.2.c.1.b Préparation des échantillons

Cyanobactéries.

Les cyanobactéries ont la caractéristique de relarguer trés rapidement leur contenu
cellulaire. Cette propriété est visible a la vive coloration rose violacée de I'exsudat (pigments de
type phycoérythrine et phycocyanine) (photo 21). C’'est pourquoi les mattes de cyanobactéries,
conservées au maximum 24 h dans les flacons a +4°C, sont traitées avec leur exsudat afin de
prendre en compte a la fois les endotoxines et les exotoxines.

L’échantillon est congelé et lyophilisé et la matiere séche pesée. Environ 10 g de matiere
lyophilisée sont conservés pour étre traités au laboratoire de I'lIFREMER de Nantes pour la
détection de cyanotoxines connues (comme les familles des AnTX-a, PTXs, STXs, microcystines,
DSTs et AO). Le reste du matériel est traité en extraction liquide-liquide au laboratoire a
Nouméa.
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Photo 21 : Conditionnement des cyanobactéries avant la lyophilisation, le relargage des pigments est visible a la
vive coloration indigo.

Bénitier.
L'intégralité du corps du bénitier (manteau, hépatopancréas, visceres, muscles...) est
pesée et finement broyée, homogénéisée puis congelée avant lyophilisation.

II.2.c.1.c Extraction
Les échantillons lyophilisés de cyanobactérie ou de bénitier sont extraits par agitation
mécanique 3 a 6 h au MeOH a 100% avec ultrasonication durant 30 mn a 1 h. Apreés filration sur
Blichner®, I'extrait méthanolique est séché a I'évaporateur rotatif a 40°C. L'opération est
répétée trois fois et les extraits séchés sont rassemblés puis pesés.

[1.2.c.1.d Séparation

Cet extrait méthanolique séché est dissous dans un mélange composé de
dichlorométhane (CH,Cl,) a 100% et d’une solution de MeOH : H,0 dans les proportions 60 : 40.
L'intégralité du I'extrait MeOH (1) est agitée dans une ampoule a décanter puis laissée au repos
jusgu’a la séparation des phases. La phase apolaire (CH,Cl,) ou phase liposoluble est susceptible
de contenir des CTXs. La phase polaire ou phase hydrosoluble (MeOH : H,0) est susceptible de
contenir des toxines de types STXs ou MTXs de plus forte polarité. Ces phases sont séchées et
constituent I’extrait hydrosoluble (1) et I'extrait liposoluble (1). Dans la suite du mémaoire, ils
seront désignés respectivement par « extrait hydrosoluble » et « extrait liposoluble ».

En parallele, le matériel biologique extrait au MeOH est de nouveau extrait au MeOH
acidifié (acide acétique, 0,05% ; V : V) afin de compléter I'extraction de I'ensemble des toxines
potentiellement présentes (étape de « reprise du filtrat », figure 25). Le méme protocole de
séparation est ensuite appliqué. Les phases séchées constituent I’extrait hydrosoluble (2)
susceptible de contenir des toxines de type AnTxs-a ou STXs, et I’extrait liposoluble (2).

Les extraits de bénitier subissent une étape supplémentaire de purification par
délipidation.

II.2.c.1.e Délipidation de I'extrait liposoluble de bénitier
Le bénitier constitue une matrice complexe riche en acide gras. Il est donc nécessaire
d’effectuer une délipidation de la phase liposoluble afin d’éviter d’éventuels effets matrices lors
des tests de dosages.
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L’extrait liposoluble est repris dans du cyclohexane (CgH1y) et un mélange MeOH : H,0
80 :20). Apres agitation et décantation, deux phases séparent les composés lipidiques des
composés d’intérét. Les fractions sont évaporées et conservées séches a -20°C. Seule la phase
polaire au méthanol aqueux qui constitue I'extrait liposoluble (1)* contenant potentiellement
les toxines de type CTXs, sera testée sur test N2A.

1.2.c.2 Extraction rapide (matrice brute de poisson)

I.2.c.2.a Principe
Cette méthode chromatographique d'extraction en phase solide (SPE) a été mise au
point a I'ILM en 2000 et validée par le test souris et le test RBA (Darius et al., 2007). Cette
méthode d’extraction (figure 26) permet d’isoler de la chair de poissons une fraction susceptible
de contenir les MTXs (F1) et une autre susceptible de contenir des CTXs par polarités
différentielles (F2). La phase mobile est constituée de solvants de polarité décroissante et la
phase stationnaire d’une colonne de silice en phase inverse C18.

Conditionnement dépdt de Elution de ringage Elution des
['"&chantillon analytes

e ————————

Figure 26: Etapes de I'extraction rapide en phase solide.

11.2.c.2.b Méthode

Préparation des échantillons

L’évaluation de la toxicité d’un poisson est basée sur celle des tissus de chair.
L'intégralité de la chair de poisson (filets) prélevée est broyée et homogénéisée a I'aide d’un
mixeur (type alimentaire). Trois aliquots de 5 g de chair broyée sont prélevés et conservés a -
20°C jusqu’a I'étape d’extraction.

Extraction

Un volume de 7 mL de MeOH a 100% est ajouté a chacun des aliquots. Les échantillons
sont agités mécaniquement, incubés dans un bain a ultrason pendant 2 h, puis maintenus a -
20°C pendant 12 h. Les échantillons sont ensuite centrifugés 2 fois 5 mn a 3 000 rpm (rotations
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par minute) afin de récupérer le surnageant. Cette manipulation est effectuée 2 fois afin de
s’assurer de récupérer un maximum de solvants d’extraction.

Purification

L’extrait méthanolique est ensuite purifié sur cartouches de silice en phase inverse (Sep-
Pak® Plus C18, Waters), fixées sur un systéme de cuve a vide permettant une extraction rapide
et homogene des réplicats. Les cartouches sont conditionnées par 7 mL de mélange MeOH : H,0
(70 : 30). Le surnageant issu de la seconde centrifugation (extrait) est prélevé et dilué dans un
volume d’eau défini afin de respecter les conditions d’élution MeOH : H,O (70 :30).
L’échantillon homogénéisé a I'aide d’une pipette par flux-reflux est filtré avant passage sur la
cartouche a I'aide d’un filtre Millex® a 0,45 um. Le systeme filtre-cartouche est fixé sur la cuve a
vide (photo 22). Lors du passage du mélange dans la cartouche, les CTXs sont adsorbées sur la
phase stationnaire, tandis que les composés plus polaires comme les MTXs sont élués et
récupérés dans la premiere fraction. Les CTXs sont ensuite éluées par passage de 7 mL de
MeOH : H,0 (90 : 10).

Photo 22 : Systéme de cuve a vide sur lequel sont fixés les filtres et les cartouches utilisés pour I’extraction
rapide.

Les fractions sont récupérées et séchées a |'évaporateur a flux d’air (température de
45°C), ces extraits sont pesés et conservés a 4°C. La derniére fraction d’élution 90: 10
susceptible de contenir les CTXs est analysée in vitro par test de N2A.
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11.2.c.3 Purification sur Sep-pak® (extraits liposolubles de cyanobactéries)

I.2.c.3.a Principe
Cette étape de purification complémentaire sur extraits liposolubles de cyanobactéries
s’avere indispensable afin d’éviter d’éventuels effets liés a la matrice au niveau des tests N2A et
RBA. Le protocole utilisé est trés similaire a celui utilisé pour I'extraction rapide des chairs de

poissons (voir ci-dessus).

I1.2.c.3.b Méthode

Cinqg (5) mg de I'extrait liposoluble de cyanobactéries sont purifiés sur cartouche de silice
en phase inverse Sep-pak®. L’extrait est dilué dans 10 mL de MeOH : H,0 (70 : 30) et déposé sur
la cartouche activée. La premiere fraction est récupérée puis 10 mL du méme solvant sont
déposés : ces 20 mL rassemblés constituent la premiere fraction F1 susceptible de contenir les
composés de plus forte polarité. Ensuite, les composés sont éluées par 20 mL de MeOH : H,0
(90:10), cette fraction constituant la fraction F2 susceptible de contenir des composés de
polarité proche des CTXs. Enfin, la cartouche est éluée par 20 mL de MeOH (100%). Cette
fraction F3 contient les composés les moins polaires. Ces trois fractions F1, F2 et F3 sont
séchées sous flux d’air a 45°C et conservées a -20°C jusqu’au moment des anlayses
toxicologiques par tests in vitro, N2A et/ou RBA.

1.2.c.4 Purification par chromatographie liquide basse pression (extraits liposolubles de
bénitiers)

Les extraits liposolubles des bénitiers sont purifiés successivement sur deux colonnes de
chromatographie (Florisil®et Sephadex LH20) selon la méthodologie décrite par Hamilton et al.,
(2002).

L’extrait liposoluble (1) (E1 pour étape 1) est fractionné sur colonne de chromatographie
préparée manuellement avec du Florisil® en utilisant le gradient d’élution suivant
hexane : acétone : méthanol (3:0:0 - 3:1:0 - 3:1:0 - 3:1:0 - 3:1:0 - 3:1:0 - 0:9:1 - 0:9:1
- 0:0:1). Les 9 fractions (E1F1 a E1F9) sont éluées dans un volume de phase mobile défini en
fonction des caractéristiques de la colonne. Ensuite, les 2 fractions susceptibles de contenir les
CTXs (hexane : acétone : méthanol ; 0:9:1, soit E1F5 et E1F6) sont rassemblées puis purifiées sur
une colonne de chromatographie préparée manuellement avec du Sephadex LH20 en utilisant le
systéeme de solvants suivant: CH,Cl, : MeOH (1 : 1). Les 5 fractions issues de cette seconde étape
de purification (E2F1 a E2F5) sont éluées successivement par un volume de phase mobile défini
en fonction des caractéristiques de la colonne.

Les fractions séchées sont conservées a +4°C jusqu’au moment des analyses
toxicologiques par les tests N2A et RBA.
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II.2.d Dosage de la toxicité

1.2.d.1 Choix des tests de détection

La difficulté dans la détection des cyanotoxines et des phycotoxines est leur grande
diversité tant en termes structurels, qu’en mode d’action (notion de spécificité du test) et pour
une méme famille, les congéneres ont des degrés de toxicité tres variables (notion de sensibilité
du test). Dans le cadre de notre étude, deux objectifs sont poursuivis : (i) détecter et doser
spécifiguement les CTXs présentes dans les matrices analysées et (ii) identifier et doser d’autres
familles toxiniques coexistant éventuellement avec les CTXs.

Pour la premiére approche, nous avons donc privilégié l'utilisation du test N2A, en
association avec le procédé d’extraction rapide spécifique des CTXs (dosage de la toxicité des
poissons).

Pour la seconde approche, nous nous sommes orientés en priorité vers le test souris et le
test N2A qui permettent d’évaluer la toxicité globale d’un échantillon obtenu par le procédé
d’extraction de masse (dosage de la toxicité des cyanobactéries et bénitiers). Le test RBA est
utilisé en complément pour tenter de préciser les modes d’action des composés toxiques mis en
évidence.

Le tableau 10 synthétise les tests toxicologiques utilisés (test souris, N2A ou RBA) en
fonction des différents modes d’extraction appliqués et des matrices biologiques analysées. Ces
différents tests biologiques sont présentés dans la partie suivante.

Tableau 10 : Synthése des tests utilisés pour évaluer le potentiel toxinique des différentes matrices biologiques
selon les modes d'extraction et de purification utilisés.

11.2.d.2

[1.2.d.2.a

E i Purificati
Matrice xtraction de Extraction rapide urification sur
masse colonnes
Cyanobactérie Test souris Test N2A
T .
o est souris Test N2A
Bénitier Test N2A - Tost RBA
Test RBA
Poisson - Test N2A -

Test de toxicité aigué sur souris : Test souris

Principe

La souris, modele mammifére sensible, a été utilisée pendant longtemps dans le

domaine de la recherche de la ciguatéra mais également pour la détection de nombreuses
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autres toxines. Le bio-essai sur souris présente un double intérét : i) il donne des indications sur
la toxicité globale d’un extrait (résultante des effets toxiques cumulés de I'ensemble des
composés présents) et ii) certains des symptémes observés chez la souris peuvent utilement
renseigner sur la nature des toxines présentes dans les extraits. En revanche, il ne constituera
gu’une étape préliminaire du criblage de toxicité des organismes marins.

Le test souris est basé sur I'observation des symptomes de I'animal et la durée de leurs
effets a la suite de linjection i.p. d’extraits potentiellement toxiques. L’ensemble des
expérimentations est réalisé selon les conditions de pratiques et d’éthiques définies par la
directive du conseil de la communauté européenne du 24 novembre 1986 (86/609/EEC). Grace
au soutien de I'IPNC, ces manipulations sur animaux qui requiérent un certain nombre de
conditions et de pratiques particulieres (animalerie, environnement adapté) ont pu avoir lieu.

I1.2.d.2.b Matériels et méthodes

Des souris OF1 (Iffa-Credo, L’Arbresle, France) de 20 g + 2 g sans distinction de sexe sont
utilisées comme modeéle pour le « Test souris » (Dechraoui et al., 1999). Les animaux sont
maintenus dans des conditions de nourriture et d’eau ad libitum.

L’extrait sec, dissous dans 300 pL de solution saline (NaCl a 0,9%) contenant 0,1% de
Tween 60, est administré en i.p.. Les doses testées en dupliquat varient de 0,5 a 5,0 mg d’extrait
sec par g de souris selon I'extrait considéré (bénitier ou cyanobactérie) : trois concentrations
sont testées. Au total, six individus sont injectés par extrait. Le témoin regoit 300 uL de la
solution saline a 0,1% de Tween 60 (n = 2). Les symptdmes et le comportement de I'animal sont
observés pendant 24 h. Les souris sont sacrifiées au-dela de 48 h apres I'injection.

La toxicité des extraits secs est exprimée en DLsg (mg d’extrait sec / g de souris), elle est
définie comme la dose capable de tuer 50% du lot de souris sur 24 h. Pour des raisons
d’éthiques et de techniques liées aux faibles quantités d’extrait disponibles, nous avons choisi
de minimiser le nombre de souris utilisé par analyse. Ainsi, en testant 3 concentrations en
duplicat par extrait (N = 2*3), les informations disponibles permettent uniquement d’estimer les
DLso. Dans notre cas d’étude, cette information reste amplement suffisante.

La DLsg estimée et les symptomes (caractere aigu et durée) nous permettent de définir
trois degrés de toxicité : atoxique (ATox), toxique (Tox +) et fortement toxique (Tox ++) définis
au tableau 11.

Ainsi, la toxicité d’un extrait est caractérisée par son degré de toxicité (potentiel
toxique) et les symptomes caractéristiques (ex. : paralysie, agitations, cris...) observés chez la
souris (type toxinique). Les symptomes caractéristiques observés chez la souris aprés injection
en i.p. de diverses toxines pures sont présentés dans le tableau 12.
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Tableau 11 : Critéres utilisés pour classer les extraits testés en test souris par niveaux de toxicité (effet de I'injection
i.p. de 1 mg d’extrait de cyanobactérie ou 5 mg d’extrait de bénitier par g de souris).

Classe de toxicité

Temps de survie

Temps de

. . Phase de coma
récupération

Atoxique (ATox)

Toxique (Tox+)

Fortement Toxique
(Tox++)

>48 h

>48 h

<10

<2h -

>24 h présente

Tableau 12 : Symptomes caractéristiques chez la souris aprés injection en i.p. des différentes cyanotoxines et
phycotoxines (d’aprés Frémy et Lassus, 2001 ; Cronberg and Annadotter, 2006 ; Riobd et al., 2008 ; Ardoz et al.,

2009).
R DL
Symptoémes observables >0
Hg/ kg
Anatoxine-a Titube, suffocation, agitation, convulsions, mort par détresse respiratoire 250
Homoanatoxine-a  Paralysie du corps, convulsions, mort par détresse respiratoire 250
. Semblables aux symptomes pour 'anatoxine-a, ataxie, incontinence
Anatoxine-a(s) . y p' P 20
urinaire, hypersalivation, tremblements
o Respiration irréguliére, perte de coordination, mouvements saccadés,
Saxitoxine P . & . P . . 10-30
ophtalmie, mort par détresse respiratoire
Microcystines Diarrhée, paleur des muqueuses, vomissement, faiblesse, anorexie, mort 36-122
nodularines (nécrose du foie)
Lyngbyatoxine Prostration, paralysie progressive, convulsions
Acide domoique Spasmes, se gratte derriere les oreilles avec les pattes arriéres -
. . Prostration, faiblesse des membres, convulsions, temps de survie:
Acide okadaique . P 190
plusieurs heures
Brévétoxines Paralysie progressive, cyanose, diarrhée 170-200
CTXs Diarrhée, dyspnée, paralysie, convulsions 0,25-3,6
MTXs Hypothermie, piloérection, dyspnée, paralysie progressive du train- 0.05-01
arriere aux membres supérieurs, haletement, convulsions post-mortem ! !
. Paralysie progressive, tremblement du train-arriere et des membres,
Palytoxine ysi€ prog 0,01-0,1

ataxie, cyanose, dyspnée, diarrhée, mort par détresse respiratoire
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1.2.d.3 Tests de cytotoxicité sur neuroblastomes, Test N2A

I1.2.d.3.a Principe

Le principe du test est basé sur la capacité des CTXs a se fixer spécifiquement sur le site 5
des CSSP (Manger et al., 1995). Ce test de cytotoxicité utilise comme modeéle des
neuroblastomes de souris (Neuro-2A) (ATCC -CCL-131™). Il permet donc une détection de
I'ordre du pg des toxines agissant spécifiquement sur les CSSP grace a l'utilisation de
potentialisateurs, mais également un dosage global de la toxicité d’extraits divers (chairs ou
foies de poissons, cyanobactérie, bénitier).

Les cellules mises en culture sont prétraitées par I'action combinée de deux
potentialisateurs : la vératridine (V) et I'ouabaine (O). En présence de toxines activant les CSSP
(CTXs ou PbTxs), la concentration intracellulaire en Na* augmente ce qui a pour conséquence
une augmentation de la mortalité cellulaire. Le dosage des cellules vivantes est effectué par un
test au MTT. Ce test permet donc dans un premier temps, de discriminer les toxines agissant sur
les CSSP puis dans certaines conditions réactionnelles spécifiques celles qui sont activatrices
(CTXs et PbTxs) vs inhibitrices (STXs et TTX) des CSSP.

Les avantages et inconvénients du test sont présentés dans le chapitre 1 (cf.
chl1.11.6.b.1.b). L'aspect technique et les adaptations faites dans le cadre de notre étude sont
développés dans cette partie.

11.2.d.3.b Matériels et méthodes

11.2.d.3.b.(i) Conditions expérimentales
(a) Matériel cellulaire

Les cellules utilisées, les Neuro-2A, sont issues d’une lignée cellulaires de
neuroblastomes de souris (Mus musculus), de souche « A albinos » (photo 23). Cette tumeur,
volontairement développée, est appelée neuroblastome (ou sympathoblastome). Elle dérive de
la créte neuronale de I'embryon qui constitue le systéme nerveux autonome sympathique
responsable de la sécrétion des catécholamines.

(b) Mise en culture

Tous les produits utilisés sont, sauf indication contraire, fournis par Sigma-Aldrich.

Afin d’éviter toutes contaminations, I'ensemble des manipulations s’effectue en
conditions stériles sous hotte a flux laminaire et les différentes solutions et milieux de culture
sont achetés stériles ou stérilisés par autoclavage ou filtration a 0,2 um avant utilisation.
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ATCC Number: CCL-131
Designation: Neuro-2a

[Garccly

Low Density

Photo 23 : Vues au microscope des neuroblastomes de souris, Neuro-2A (source ATCC).

Scale Bar= 100um

Milieu de culture et mise en culture

Le milieu de culture utilisé est le milieu complet RPMI-1640 contenant 25 mM d’HEPES
enrichi a 5% de sérum de veau foetal (SVF) décomplémenté (ou inactivé a 56°C pendant 30 mn),
1mM de pyruvate de sodium, 2 mM de L-glutamine, du bicarbonate de sodium et 50 ug / mL de
streptomycine, 50 U / mL de pénicilline et 50 ug / mL d’amphotéricine B.

Dans des flacons de culture (75 cm?, Corning), les cellules sont mises a incuber a 37°C
dans une étuve en atmosphére humide a 5% en CO,. Dans ces conditions, les Neuro-2A qui sont
des cellules adhérant naturellement aux surfaces, ont un temps de génération compris entre 16
et 24 h. Le milieu est changé toutes les 24 h. Elles tendent naturellement vers la formation d’un
tapis cellulaire. L’aboutissement d’un tapis cellulaire est appelé confluence.

Trypsinisation

Lorsque les cellules sont a confluence ou si I'on souhaite favoriser la multiplication
cellulaire, il est nécessaire de les individualiser par une étape de trypsination. La trypsine est
une enzyme protéolytique dont I'action se concentre sur les ponts arginyl et lysyl des chaines
polypeptidiques. Pour une action optimale, il est important que le milieu soit a pH 6-9 et a 37°C.
L’action de la trypsine est combinée a celle de I'acide éthylene tétra-acétique (EDTA), chélateur
d’ions divalents nécessaires au maintien des jonctions cellulaires.

Le milieu de culture est éliminé et remplacé par 2 mL de solution saline tamponnée au
phosphate, le PBS (Phosphate Buffer Saline) sans Ca®* ni Mg2+. Le PBS est aspiré puis remplacé
par 3 mL de solution de trypsine-EDTA. Afin d’optimiser la réaction enzymatique, la solution est
incubée 10 a 15 mn a 37°C. Enfin, I'ajout de 10 mL de milieu permet d’arréter I'action de la
trypsine, I'agitation par flux-reflux a I'aide d’une pipette finalisant |'étape de séparation des
cellules les unes des autres. Les cellules mises en suspension sont alors bien rondes et
individualisées. La concentration cellulaire de la suspension est déterminée grace a la
numeération au bleu de Trypan.
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Numération cellulaire au bleu de Trypan

La numération permet de vérifier la densité et la viabilité cellulaires pour ainsi calculer le
facteur de dilution en fonction des étapes suivantes (repiquage, congélation ou test de
cytotoxicité). Une fois les cellules individualisées et la solution cellulaire homogénéisée par
trypsination, la numération se fait sur un aliquot de 10 pL de suspension cellulaire. Puis, 10uL de
Bleu de Trypan a 0,4 % en PBS sont ajoutés a cet aliquot, agités et laissés agir 5 mn. Ce colorant
d’exclusion permet la numération des cellules viables, il n’est internalisé que par les cellules
mortes qui apparaissent alors bleues.

Le comptage se fait au microscope optique a l'aide de lames de comptage Kova®
(Glasstic® Slide 10, Hycor). A confluence, la densité de cellules viables doit étre comprise entre
0,8 22,0 x 10° cellules / mL et le taux de cellules mortes doit &tre inférieur 3 10%. Ces conditions
sont primordiales pour réaliser le test de cytotoxicité et pour la cryoconservation.

Décongélation-Congélation

Lorsque les cellules sont a confluence et si leur taux de mortalité est inférieur a 10%, les
cellules peuvent étre cryoconservées dans des tubes de cryoconservation (Nunc®) a -80°C
(2 ans) ou a I'azote liquide (5 ans). Le milieu de congélation est composé du milieu de culture
RPMI 1640 a 40%, de SVF a 50% et de diméthyl sulfoxyde (DMSO) a 10%. Le DMSO permet
d’éviter I'éclatement des cellules lors de la congélation: c’est un cryoconservateur. Mais a
température ambiante, le DMSO dégrade les membranes.

Aprés une centrifugation de la suspension cellulaire de 5 mn a 3 000 rpm, le culot
cellulaire est repris dans le milieu de congélation pour obtenir une concentration cellulaire
d’environ 5 a 7 x 10° cellules / mL réparties dans des cryotubes.

Lors de la décongélation, les cellules doivent étre décongelées rapidement au bain-marie
a 37°C et mises immédiatement en présence de milieu de culture complet pour diluer le DMSO
et empécher la dégradation des membranes cellulaires. Puis les cellules sont remises en culture.
Le milieu est renouvelé 2 h aprés la mise en culture.

11.2.d.3.b.(ii)  Test de cytotoxicité

Le potentiel toxique d’extraits est analysé en testant une gamme de concentrations. Ce
test est développé spécifiquement pour la détection des toxines agissant sur les CSSP. Sa
sensibilité se trouve augmentée grace a [l'utilisation des deux composés: ouabaine et
vératridine.

Potentialisateurs de membrane

Les potentialisateurs utilisés sont la vératridine (V) et I'ouabaine (O) (figure 27). lls
augmentent la sensibilité du canal sodique des cellules.

La vératridine est un alcaloide liposoluble qui stimule I'entrée de Na* dans la cellule en
se fixant au site 2 du CSSP. L'ouabaine est un glycoside cardiaque, intervenant dans la
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perméabilité des cellules. Plus spécifiquement, c’est un inhibiteur de 'ATP-ase Na*-K" qui
bloque les pompes Na*-K" cellulaires. L’action combinée de ces deux composés réduit la viabilité
cellulaire par I'entrée massive d’ions Na* dans le compartiment intracellulaire.
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Figure 27 : Structures chimiques de la vératridine (a) et de I'ouabaine (b).

Le test se déroule en trois étapes : (1) ensemencement des cellules, (2) mise en contact
avec les extraits et les toxines, (3) lecture des résultats :

Etape 1 : Ensemencement des cellules

Les cellules sont ensemencées a raison de 2,5 x 10° cellules / mL dans des microplaques
de 96 puits (Corning) et incubées 24 h a 37°C, sous atmosphére enrichie en CO, a 5%. Le volume
final des puits est de 200 pL. Les puits situés a I'extérieur sont remplis avec 200 uL d’eau afin
d’isoler les puits intérieurs et constituent les « blancs ».

Etape 2 : Préparation des plaques

Le milieu est enlevé par retournement des microplaques et renouvelé afin qu’il ne soit
pas un facteur limitant de la croissance et de la réponse cellulaire. Dans un premier temps,
100 uL de milieu sont ajoutés dans chaque puits intérieur. L'eau des puits extérieurs est
renouvelée (200 pL). Les toxines et extraits a tester sont solubilisés dans du MeOH a une
concentration de 5 mg / mL. Une gamme de 7 concentrations est réalisée par dilutions en
cascade a I'eau distillée (S1 a S7) pour les extraits liposolubles (4 a 250 ug d’extrait / mL) et les
extraits liposolubles purifiés sur Sep-Pak® exprimées en équivalent (eqv) de matiere (10 a
625 pg eqv d’extrait purifié / mL). Des préparations correspondant a chaque condition d’essai
sont préparées extemporanément dans des volumes de 100 uL, ajoutées et testées en triplicat
(n = 3). Les concentrations de O et de V appliquées sont les suivantes : 10 uL par puits de O a
10mM (soit 500 uM) et 10 pL de V a 1 mM (soit 50 uM). Les extraits sont testés soit en présence
soit en I'absence de ces potentialisateurs (respectivement (+OV) et (-0V)).

Les conditions et le nombre de réplicats sont les suivants:

— MS : cellules seules, n = 10,

— OV :cellules avec OV, n =10,

— S1-0V a S7-0V : cellules en présence de différentes concentrations d’extraits ou de

toxines, mais sans potentialisateurs, n = 3 (a I'exception de S7-OV ol n = 2),
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— S1+0V a S7+0V : cellules en présence de différentes concentrations d’extraits ou de
toxines, avec potentialisateurs, n = 3 (a I’exception de S7+0OV ol n = 2).

En pratique, si la toxicité observée en conditions (+OV) est significativement différente
de celle enregistrée en conditions (-OV), il sera possible d’aller plus avant dans I'identification
des molécules actives : une diminution de la viabilité cellulaire sera en faveur de la présence de
toxines activatrices des CSSP (ex.: CTXs ou PbTxs) alors qu’une augmentation de la viabilité
cellulaire indiquera plutot la présence de toxines inhibitrices des CSSP (ex. : STXs ou TTX). A
contrario, si une cytotoxicité identique est observée en conditions +OV et -0V, 'extrait sera
considéré comme toxique mais son effet cytotoxique non lié a une action sur les CSSP.

Le volume final de chaque puits est ajusté a 200 uL avec du RPMI complet. Le schéma de
plaque est représenté en figure 28. Les microplaques sont ensuite incubées a 37°C pendant
14 h.

1 2 3 4 5 6 7 8 9 10 11 12
A
B MS
C ov
D S1-0V S2 -0V S3-0V
S7 -0V
E S4 - OV S5 -0V S6 - OV
F S1+0V S2 +0V S3+0V
S7+0V
G S4 +0V S5+ 0V S6 + OV
H

Figure 28 : Schéma de plaque pour le test de cytotoxicité.

Etape 3 : Lecture au MTT

La viabilité cellulaire est quantifiée par la méthode colorimétrique au MTT. Le 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) est un sel de tetrazolium soluble
dans l'eau (jaune) qui se transforme en formazan (violet) sous I'action d’enzymes
déshydrogénases actives, NADP(H)-dépendantes du réticulum endoplasmique chez les cellules
vivantes (Mosman, 1983 ; Berridge et al., 1993).

Aprés 14 h d’incubation, le milieu est enlevé par retournement des microplaques. 50 pL
de solution de MTT (0,8 mg / mL en PBS) sont ajoutés dans chaque puits (extérieur et intérieur).
Les microplaques sont de nouveau incubées pendant 1 h a 37°C. Les sels se réduisent en
formazan proportionnellement au nombre de cellules vivantes.

Enfin, I'ajout de 150 pL de DMSO permet de solubiliser les cristaux de formazan, les
microplaques sont incubées une derniére fois a 37°C. Au bout d’1 h, une agitation (5 mn a 700
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rpm) permet d’homogénéiser la solution. La lecture de I'absorbance s’effectue a la longueur
d’onde de 490 nm: elle est proportionnelle au nombre de cellules vivantes et inversement
proportionnelle a la toxicité de l'extrait. Le spectrophotometre utilisé est I'Universel Plate
reader ELX 800 de Bio-tek Instruments. Par comparaison aux témoins (cellules seules, MS et
cellules avec OV), les résultats sont exprimés en pourcentage de viabilité cellulaire par rapport
au témoin.

[1.2.d.3.c Analyses et traitements des données

La concentration inhibitrice a 50% (Clso) est une mesure de l'efficacité d'un composé
donné a inhiber la viabilité cellulaire. Ces valeurs exprimées en mg d’extrait / mL ou mg
équivalent d’extrait / mL, sont retenues pour évaluer la toxicité d’un extrait. Les Clso sont
calculées a I'aide du logiciel Graphpad prism v.5, a partir des courbes de régression sigmoidale,
gamme de 7 concentrations (n = 3) testées trois fois indépendamment (N = 3 x 3). Le coefficient
de régression (R?) et le coefficient de Hill* caractérisant la régression, permettent de valider
chacune des valeurs de Clsg.

Enfin, I'effet spécifique de la toxicité pour les CSSP traduit par la « différence » entre les
courbes de régression est évalué par analyse de la variance a deux facteurs a 'aide du logiciel
Graphpad prism v.5.

11.2.d.4 Test RBA

I1.2.d.4.a Principe

Ce test est basé sur la compétition entre des composés non marqués (les compétiteurs)
et la PbTx marquée au tritium (PHIPbTX-3) (le radioligand) ayant des affinités différentes pour
un méme récepteur spécifique, le site 5 du CSSP de synaptosomes de cerveaux de rat (figure
29). La diminution de la radioactivité qui traduit le déplacement de la ([*H]PbTx-3) est mesurée
au compteur a scintillation liquide et est inversement proportionnelle a la teneur d’un extrait en
compétiteurs (ex: CTXs) se fixant sur ce site 5 des CSSP (le complexe). Les avantages et
inconvénients de ce test sont présentés dans le chapitre 1 (cf. ch1.1l.6.b.1.c).

La totalité des analyses de toxicité par test RBA présentées dans cette thése est réalisée
au laboratoire des Microalgues Toxiques de I'lILM par le Docteur Taiana H. Darius.

1 . o . T N . ;. . .
Le coefficient de Hill est défini par la tangente a la pente maximale de la courbe. Il caractérise I'inflexion de la
courbe de régression.
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/Radioligand Récepteur RadioComplexe \
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Figure 29 : Test RBA, (a) Principe du test RBA basé sur la compétition entre un radioligand et un composé
d’affinité différente pour un méme récepteur ; (b) Courbe de compétition permettant de calculer la
concentration d’inhibition a 50% (Cls,) (D’aprés Dechraoui-Bottein, 1999).

% [3H]PbTx-3

11.2.d.4.b Matériels et méthodes

Préparation des synaptosomes de cerveaux de rat.

La méthode permettant la préparation des synaptosomes de rat est décrite par
Dechraoui-Bottein (1999). Brievement, les hémispheres cérébraux du rat adulte sont extraits et
broyés au mortier dans une solution tampon. Les broyats obtenus sont centrifugés afin de
débarrasser ’lhomogénat de tissus cérébraux, des noyaux, des débris cellulaires, mitochondries,
microsomes, des ribosomes et des fragments de myéline. Trois centrifugations successives
permettent ainsi d’isoler les synaptosomes qui sont récupérés, la solution est homogénéisée et
conservée dans un tampon d’incubation a -80°C.

Dosage des protéines totales par la méthode de Bradford

La quantité de synaptosomes utilisée lors de I'expérimentation est évaluée par le dosage
de protéines selon la méthode adaptée de Bradford (Dechraoui-Bottein, 1999). En général, la
quantité de protéines finales utilisée est comprise entre 60 et 120 pug / mL.

Evaluation de la qualité des synaptosomes pour le test d’interaction ligand-récepteur

Le test RBA est réalisé en format fioles (Perkin ElImer Betaplate) selon le protocole décrit
par Darius et al. (2007). La [*H]-PbTx-3 utilisée est synthétisée par la société GE Healthcare
Europe GMBH (France) : sa radioactivité spécifique est de 14 Ci / mmol (18,5 MBq / mmol) et sa
pureté radiochimique déterminée par HPLC proche de 99%. Cette solution est conservée a -
80°C.
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Les dilutions nécessaires a I'expérimentation sont effectuées extemporanément. Les
expériences de fixation spécifique sur les synaptosomes de cerveaux de rats sont réalisées dans
un tampon d’incubation a pH 7,4 contenant 130 mM de choline chloride, 50 mM de HEPES, 5
mM de glucose, 5,4 mM de KClI, 0,8 mM de MgSQO,, de I'émulphore a 0,01%, et de la BSA a
1 mg / mL, dans un volume final de 500 pL.

Des concentrations croissantes d’extraits liposolubles sont mises a incuber en présence
de [*H]-PbTx-3 (1 nM) (gamme & partir d’un équivalent de 5 mg d’extraits liposolubles, les 8
concentrations testées varient de 3 x 10> & 1 mg / 500 pL). Aprés 1 h d’incubation a +4°C, la
réaction est déposée sur des filtres GF/C (Whatman) prétraités avec une solution de
polyéthylenimine 0,1% (polymere cationique favorisant I'attachement des membranes
cellulaires portant des charges négatives en surface). La réaction est ensuite filtrée avec du
tampon de lavage contenant 163 mM de chlorure de choline, 5 mM de HEPES/Tris (pH 7,4), 1,8
mM de CaCl, et 0,8 mM de MgSO.. Les complexes synaptosomes-[°H]-PbTx-3 et les complexes
synaptosomes-compétiteurs sont ainsi recueillis sur les filtres qui sont déposés dans des fioles
de comptage contenant 2 mL de liquide scintillant (Perkin EImer Betaplate).

Lecture
La radioactivité recueillie sur les filtres est mesurée pendant 4 mn a I'aide d’un compteur
a scintillation (Perkin Elmer Microbeta Trilux 1 450, Waltham, MA, USA).

Validation et calibration du dosage

La fixation non spécifique est déterminée par des incubations en parallele, faites en
présence d’un exces de ligand PbTx-3 non marquée (0,67 uM). Cette valeur est soustraite aux
valeurs de fixation totale afin d’obtenir la fixation spécifique. Chaque concentration d’extrait
est testée en dupliquat.

Enfin, la P-CTX-3C est utilisé comme standard interne (calibration du test) pour vérifier la
reproductibilité du test d’un essai a l'autre et permettre d’exprimer les résultats en ng
équivalent P-CTX-3C / g de chair ou d’extrait.

I1.2.d.4.c Analyse et traitement des données

La toxicité des extraits est évaluée par la concentration inhibitrice a 50% (Clso): quantité
nécessaire pour déplacer 50% de la [’H]-PbTx-3, elle est exprimée en pg / mL d’extrait de
cyanobactérie ou d’extrait de bénitier. Cette valeur est calculée par le logiciel Graphpad Prism v
4.1. Les Clsg des extraits sont également comparées a une courbe-étalon de P-CTX-3-C pure
extraite de cultures de G. polynesiensis (TB-92) afin d’exprimer les valeurs en « ug ou g eqv de P-
CTX-3C / g d’extrait ». Cette conversion permet de comparer ces résultats a des études
précédentes (Darius et al., 2007).

123 /326



Chapitre 2 : Les cyanobactéries marines

[I.3 Résultats

Afin d’avoir une vue d’ensemble de I'étude effectuée sur la zone de Lifou, certaines
données antérieures a 2007 (avant le début des travaux de thése) sont reprises dans la
présentation des résultats, notamment celles concernant le suivi écologique de 2005 a 2007 et
les échantillons récoltés lors de ces missions dont I'extraction et I’analyse toxicologique ont été
effectuées dans le cadre de cette these.

Le tableau suivant synthétise les missions effectuées a Lifou depuis 2005 a différentes
périodes de I'année : saison froide (bleu) et saison chaude (rosé) (tableau 13) avec les différents
échantillons (cyanobactéries (récolte de « masse »), bénitiers et poissons) récoltés a cette
occasion (pour identification et/ou analyses toxicologiques). Les cyanobactéries sont récoltées
en masse lorsque les quantités le permettent et les bénitiers et des poissons sont collectés
annuellement (février 2007, 2008 et 2009) selon la méthode de suivi décrite précédement.

Tableau 13 : Missions effectuées a Lifou de 2005 a 2010 : nom, date et nature de I"échantillonnage.

Echantillons récoltés

Année m'?‘sc;?;n Date Temp:ééature Cyanobactérie Bénitier Poisson
L1 15/03/2005 - U v v
2005 L2 28/04/2005 - U v v
L3 15/11/2005 26 U v v
L4 09/02/2006 28
LS 28/03/2006 26 v \4
2006 L6 29/05/2006 26 v
L7 07/08/2006 22 v
L8 22/11/2006 27
L9 19/02/2007 27 U v v
2007 L10 08/08/2007 23
L11 06/11/2007 26
L12 12/02/2008 28 Y v v
2008 L13 06/06/2008 24 Y
L14 04/11/2008 27 Y
L15 18/02/2009 27 \4 v
2009 L16 13/08/2009 23 U
L17 18/11/2009 25 U
2010 L18 06/04/2010 26 U
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II.3.a  Données épidémiologiques

Aucune intoxication n’a été déclarée au dispensaire depuis I'étude épidémiologique
initiée en 2005. Mais il est fort probable que des cas d’intoxications sévissent toujours mais ne
soient pas déclarés pour des questions de droits tribaux, le chef de la tribu ayant expressément
demandé a la population de ne plus pécher dans la ZT des le début de notre étude, et de se
cantonner a la ZNT. Ceci s’est vérifié lors de discussions ultérieures avec les habitants d’"Hunété,
qui nous ont signalé au moins deux cas d’intoxications avec recrudescence de symptomes
ciguatériques aprés consommation de poissons (espéces non définies) péchés en ZT. Comme
nous avons pu le souligner dans le premier chapitre, il est difficile d’évaluer I'impact réel des
intoxications ciguatériques sur la santé des populations.

II.3.b  Données écologiques : évolution spatio-temporelle
11.3.b.1 Description géomorphologique

L'ensemble des ZT et ZNT s’étend le long de la cOte sur pres d’1 km. Relativement
homogene sur le plan géomorphologique, elle se compose d’une large dalle corallienne de 200 a
350 m de large, d’'une profondeur de 0,5 a 5 m de profondeur (photos 24 et 26). Cette unité
géomorphologique est nommée « plate-forme de lagon d’atoll surélevé » selon la classification
recueillie dans I'atlas des récifs de Nouvelle-Calédonie (Andréfouét et Torres-Pulliza, 2004).

Le type de fond est dur et sableux (sable fin) parsemé de coraux massifs (Porites) et de
coraux branchus (Acropora) (photos 25 et 27). Ces constructions coralliennes recouvrent pres de
75% de la surface dans la bande littorale des 100 m et sont plus parsemées, avec un
pourcentage de recouvrement d’environ 25 a 30%, au-dela des 100 m et dans la limite
extérieure de la zone.

Lors des marées de grandes amplitudes, I'estran émergé est exposé a de fortes
variations de températures (figure 30) : la température moyenne minimale enregistrée est de
22,4°C en juillet (saison froide) et maximale de 30,7 °C en janvier (saison chaude). Les valeurs
maximales atteintes (31,6 °C et 38,3 °C) sont liées aux grandes marées basses, période de la
journée ou le capteur de température est émergé.

11.3.b.2 Caractéristiques des deux zones

La particularité de la ZT par rapport a la ZNT concerne les grandes étendues de coraux
branchus dégradés ou morts. La ZNT est quant a elle riche en coraux et en poissons
(quantitativement et en diversité) : visuellement elle semble plus saine.

Au niveau de la ZT, une rampe de mise a I'eau a été construite perpendiculairement a la
cOte et est exposée aux alizés. Dans cette zone, les surfaces coralliennes les plus abimées se
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trouvent au pied de cette mise a I'eau. Construite en 1999, elle a fortement été dégradée en
2005 par des pluies diluviennes (photo 28) : depuis, celle-ci a été réaménagée (photo 29).

; -

Photos 24, 25, 26 et 27 : Vues de la ZNT (24) et ZT (25) a marée haute (26) et a marée basse (27) de grande
amplitude.
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Figure 30 : Evolution annuelle (12/2008 a 12/2009) des températures moyennes quotidiennes de I'eau en ZT (5A)
(sonde immergée a 1 m de profondeur environ).
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Photos 28 et 29 : Etat de la rampe de mise a I’eau au niveau de la ZT, prises de vue en avril 2005 (28) et
en février 2009 (29).
11.3.b.3 Présence des dinoflagellés ciguatoxinogénes

Les observations microscopiques des microorganismes épiphytiques des ZT et ZNT sont
résumées dans le tableau 14. La concentration moyenne de cellules de Gambierdiscus est
exprimée en nombre par mL. A titre indicatif, une situation d’efflorescence est déclarée a partir
d’une densité cellulaire > 1 000 cellules / g d’algues supports (Chinain et al., 1999), ce qui
correspondrait dans le cas présent a des densités de I'ordre de 80000 cellules par mL
considérant la masse moyenne d’algue ou de coraux prélevée.

Des cellules de Gambierdiscus ont été observées ponctuellement sur le site de Hunété.
Un nombre maximum de 300 cellules / mL en juin 2008 (zone 4B ; T°C environ 24°C) traduit la
présence naturelle de ces dinoflagellés dans la zone. Lorsque ceux-ci sont observés, ils se
retrouvent plus fréguemment en bande cétiere (transects A et B). Cependant, aucune
efflorescence et aucune différence entre la ZNT et ZT n’a été observé.

Les photos 42 (a, b, c) illustrent les observations microscopiques effectuées en mars
2006 (L6), avec la présence de cellules de Gambierdiscus associées a des filaments
cyanobactériens en zone 2A, et en novembre 2008 (L14), avec la diversité des filaments
cyanobactériens en ZT.

En ce qui concerne, les dinoflagellés des genres Prorocentrum ou Ostreopsis, ils n’ont été
observés dans aucune des zones depuis 2005. A noter cependant qu’une efflorescence
importante d’Ostreopsis recouvrant de nombreuses Turbinaria avait été observée lors d’une
premiere mission d’observation en 2004 dans la ZNT et plus exactement en position 3A.

Dans ces échantillons, la présence de cyanobactéries est relevée régulierement. Il s’agit
majoritairement de filamenteuses benthiques de I'ordre des Oscillatoriales (trichomes non-
hétérocystés) dont les tailles sont variables : la largeur des cellules est comprise entre 0,5 a 20
um (photos 30b et 30c). Sans corrélation avec les efflorescences macroscopiques observées, les
cyanobactéries sont présentes naturellement dans cet écosystéme. Seul le genre des
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cyanobactéries majoritaires est déterminé en conditions d’efflorescence, c’est-a-dire quand des
mattes de cyanobactéries sont visibles a I’ceil nu (ch2.11.3.b.5).

Tableau 14 : Densités cellulaires de Gambierdiscus (cellules / mL) observées par transects de prélévements pendant
toute la période d’étude (mars 2005- avril 2010) (0 : absence de cellules de dinoflagellés)

ZNT T
1 2 3 4 5 6
Date A B C A B C A B C A B C A B C A B C
2005 Avril L2 0 0 o 0 O 0 O 0 0 0 0O 0 0 O O o0 0 O
Novembre L3 0 0 o 0 O 0 O 0 O 0 0O 0 0 O O o0 0 O
Février L4 0 0 0 0 O 0 ©O 0 o 0 0O 0 0O o0 O o0 0 o
Mars L5 - - - 50 0 O 50 50 50| O 50 - 50 50 0 0 O 50
2006 Mai L6 0 0 0 0 O 0 ©O 0 o 0 0O 0 0 0O O o0 0 o
Aodt L7 0 0 0 250 0 O 150 0 O |10 O O O O O O O O
Novembre L8 0 0 o 0 O 0 O 0 O 0 0O 0 0 O O o0 0 O
Février L9 0 o - 0 0 0 O 50 O 0 0O 0 0 O O o0 0 O
2007 Aodt L10 0 0 o 0 O 0 O 0 O 0 0O 0 0 O O o0 0 O
Novembre L11 - 0 0 0 O 0 oO -0 0 0O 0 0O 0O O o0 0 O
Février 12 {100 0 0 O O O 50 O O | 50 0O 0 0O 0O O o0 0 o
2008  Juin L13 {100 0 O 100 O O 100 O O |200 300 0O 50 0 O O O O
Novembre L14 0 0 0 0 O 0 oO 0 o 0 0O 0 0O 0O O o0 0 O
Février L15 0O 50 0 0 O 0 O 0 O 0 0O 0 0 O O o0 0 O
2009 Aodt L16 0O 50 0 150 0 0 O 0 50| O 0O 0 0 O O o0 0 O
Novembre L17 0 0 o 0 O 0 O 0 O 0 0O 0 0 O O o0 0 O
2010 Avril L18 0 0 0 0 O 0 oO 0 o 0 0O 0 0O 0O O o0 0 O

0u, Novembre 2008 - Ker

observées au

Photos 30 : Cellules de Gambierdiscus (a, *200) et filaments de cyanobactéries (b, *10 et c, *40)
microscope optique.

En novembre 2009 (L17), une efflorescence « inhabituelle » de diatomées centriques est
observée en zone 6A (1 m de profondeur, 25°C), celle-ci n’est plus observée en avril 2010 (L18),
et par la suite. L'algue support appartient au genre Dictyota. La fraction observée comprise
entre 45 um et 250 um (photo 31a) est dominée par deux espéces de diatomées : (i) I'une est
identifiée morphologiquement comme Isthmia enervis et (ii) I'autre est une diatomée centrique,
non identifiée, d’ornementation trés fine nécessitant un traitement particulier pour son
identification (photo 31b).

128/ 326



Chapitre 2 : Les cyanobactéries marines

sthmia enervis (Ehrenberg) o

Diatomée centrique

Photo 31 : Fraction 45 a 250 um (a) de la zone 6A récoltée en novembre 2007 (L17) dans laquelle une
efflorescence de diatomées est observée au microscope (*200) (b).

Située aux pieds de la cote constituée de roche calcaire, cette zone peut étre sujette
localement a des résurgences d’eau douce qui peuvent influencer la salinité et de ce fait
expliquer une apparition soudaine de ces diatomées qui serait de plus favorisée par des
conditions optimales de la saison chaude (température, lumiéere). D’apres les spécialistes (dont
Bruno Delesalle de 'EPHE de Perpignan), ce groupe de diatomés ne présenterait pas de risques
guant a une production toxinique, mais nous ne pouvons l'affirmer. En outre, de par cet état
d’efflorescence, elles peuvent éventuellement jouer sur I'équilibre des populations de
microorganismes avec lesquelles elles rentrent en compétition de substrat.

11.3.b.4 Evolution écologique de la zone d’étude

Les informations écologiques suivantes sont issues des observations « terrain » faites en
plongée libre. Les photographies sont des supports utilisés pour évaluer les caractéristiques de
I’état des récifs.

II.3.b.4.a De 2005 a 2007 (L1 a L9)

Les observations sous-marines de la zone d’étude ont permis de mettre en évidence une
dégradation concentrique décroissante du milieu corallien, au niveau de I'affaissement de la
route et du wharf. En effet, sur le lieu de I'effondrement, on observe une zone d’une vingtaine
de metres de diametre ou sont présents des coraux branchus cassés recouverts de gazon algal
brun. Le retour progressif de la diversité corallienne est notable au-dela des 100 m autour de
cette zone détruite.

Au milieu de la zone dégradée, le tapis de cyanobactéries constitué d’Hydrocoleum
observé des la premiére mission en mars 2005 (photo 32) et lors des missions suivantes jusqu’a
la fin de la saison chaude en 2006 (photos 33 et 34), recouvre largement le centre de la ZT (5A a
5B, de 0 a 3m).
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Photo 32 : Mattes de cyanobactéries (Hydrocoleum lyngbyaceum) observées lors de la premiére mission
en mars 2005.

& -

a 6B observée lors d

f~ . Vo - . - ‘
Photos 35 et 36 : Couvertures de cyanobactéries, Oscillatoria subuliformis recouvrant la zone 5A et 5B en mai
2006.
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Photos 37 et 38 : Couverture de Spirulina weissii en ZT (4A) observée lors de la mission de mai 2006 (L6) ; Vue
rapprochée de cette Oscillatoriale.

Cette zone dégradée est par la suite recouverte successivement de cyanobactéries
filamenteuses du genre Oscillatoria et Phormidium, tous deux appartenant a |‘ordre des
Oscillatoriales, comme Hydrocoleum (photos 35 et 36).

Il est intéressant de noter en ZT I'absence quasi-totale de macroalgues présentes lors de
la premiére mission en 2005, la faible diversité corallienne, les faibles populations de poissons
et 'absence de S. chloronotus.

[1.3.b.4.b 2008 (L12, L13 et L14)
En ZNT, I'écosysteme récifal est sain et pourvu d’une diversité corallienne et pisciaire
riche (photo 39). La présence de divers tapis de cyanobactéries dispersés et réduits est la preuve
de son équilibre (photos 40 et 41).

¢ - . 5 :
Photos 39, 40 et 41 : Vues sous-marines de la ZNT (39) et patchs localisés de cyanobactéries (non déterminées)
(40 et 41).
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Cependant, dans cette ZNT, on peut noter au pied de la mise a |I'’eau des pirogues, site 2A
(photo 25), sur un périmetre relativement limité (demi-cercle de 20 m de rayon), une fragilité
des coraux probablement due a I'impact de I’'Homme utilisant cette facilité d’accés pour mettre
a l'eau les petites embarcations. Un tapis réduit de cyanobactéries cf. Hydrocoleum (non
identifiée) recouvre les débris coralliens (photo 42).

Photos 42 : ZNT, pied de la mise a I’eau des pirogues (site 2A) ou I’'on peut observer une fragilité des coraux,
associée a un développement localisé de cyanobactéries du genre Hydrocoleum.

Quant a la ZT, sur les trois missions de I'année 2008, les surfaces dégradées restent
toujours impactées sur une zone de 50 m tendant vers le large et de 50 m de part et d’autre de
la rampe de la mise a I'eau, site 5A et 5B. Nous pouvons observer toujours de nombreux débris
coralliens recouverts de gazons encro(tant mixtes entre les massifs de Porites. La zone est riche
en poissons (diversité et quantité) : on y observe des picots, des perroquets, des becs de cane et
la réapparition d’holothuries (Stichopus sp.). Cette diversité pisciaire ainsi que le comportement
des poissons sont caractéristiques d’'une zone mise sous réserve dont la pression de péche est
guasiment nulle. En effet, la zone est coutumiérement interdite a la péche depuis environ trois
ans.

Les mattes de S. weissii et d’Hydrocoleum sont toujours présentes, localisées en zones 4B
et 5A, respectivement (photos 43 et 44). Les surfaces restent importantes et le passage a la
saison fraiche ne semble pas modifier leur présence (juin 2008, L13).
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Lors de la saison chaude, en novembre 2008 (L14), 'ensemble de ces tapis s’est
fortement clairsemé : la surface de S. weissii est alors de I'ordre de 25 m x 25 m, quant a la zone
sableuse, elle s’est complétement nettoyée de trace visible de cyanobactéries. En outre, cette
mission est marquée par une efflorescence de Trichodesmium erythraeum, Oscillatoriale
pélagique. Les conditions favorables a cette phase de développement étaient réunies:
ensoleillement, température, pas de houle, peu de vent.

Enfin, une efflorescence de cyanobactéries filamenteuses benthiques de couleur mauve,
identifiée comme Hydrocoleum glutinosum, se développe en février 2008 (L12) sur la zone 4C
en limite de recouvrement de S. weissii (photos 45 et 46). Le maximum de recouvrement de

cette derniere semble étre en saison chaude et diminuer en saison froide (juin 2008, L13).

la zone 5C envahie par S. weissii (photo 32, ligne de tiret indiquant la limite de zone).

[1.3.b.4.c Depuis 2009 (L15 a L18)
Sur la période de 2009 a début 2010 (L15, L16, L17 et L18), les observations confirment
I’état écologique des zones : la ZNT est saine (riche diversité corallienne et pisciaire) tandis que
la ZT est remarquablement dégradée, identique aux observations précédentes.

Zone réputée toxique (ZT).

Les mattes majeures observées précédement (S. weissii, 4B a 5B et « cyanobactéries
noires » en 5A et 5B) sont en régression : leur surface de recouvrement et leur densité
diminuent. Ainsi, a la saison chaude (février 2009, L15), la diversité cyanobactérienne de la ZT
semble étre retrouvée avec ces diminutions de mattes dominantes associées a I'apparition de
plagues plus clairsemées sur I'ensemble de la zone.

Cependant, deés février 2009 (L15), on peut noter la présence d’O. bonnemaisonii,
(filament vert) en zones 5B et 5C se développant localement sur fond sableux (photo 47). Puis,
ces mattes se développent largement avec un recouvrement d’environ 50 m x 50 m en zones
5B, 5C et 6B en ao(t 2009 (L16) pour atteindre une surface de 100 m x 100 m (zones 5B, 5C, 6B
et 6 C) a la saison chaude en novembre 2009 (L17) (photos 48 et 49). Ces mattes sont toujours
présentes en avril 2010 (L18).
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003 N : . . = 73
Photos 47, 48 et 49 : Recouvrement d’0. bonnemaisonii, en début de développement en février 2009 (L15) sur
substrat sableux (47) et en extension en aolt 2009 (48 et49).

Zone réputée non toxique (ZNT).
Les mattes d’Oscillatoria spp. présentées ci-dessus, sont observées également en zone
dite non toxique au niveau du site 3C, a partir d’avril 2010 (L18) (photos 50 et 51).

A5 ; . . o
Photos 50 et 51 : Apparition d’Oscillatoria spp. en 3C.

Enfin, au niveau du transect 1A, il est observé un développement d’un tapis
cyanobactérien recouvrant des débris coralliens et constitué en majorité d’especes du genre
Oscillatoria (photos 52, 53 et 54).

]
/ B e - v

Photos 52, 53 et 54 : Développement d’Oscillatoria spp. en zone (1A).
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Bilan

Sur 5 années d’observation, les éléments majeurs a retenir sont :

- La zone dite toxique conserve son aspect fortement dégradé. Une succession de tapis
cyanobactériens dominés par I'ordre des Oscillatoriales recouvre de larges surfaces de débris
coralliens et/ou substrat sableux. Cet écosytéeme est en déséquilibre avec la dominance d’un
groupe majoritaire, les cyanobactéries, qui semble maintenir cet état.

- La zone dite non toxique est saine avec une diversité pisciaire et corallienne
relativement importante. Cependant, on peut noter I'apparition de mattes localisées de
cyanobactéries, restreintes a certaines zones fragilisées (1A et 2A) ou en zone limite de la ZT
(3C).

- En début d’étude, les ZT et ZNT sont caractérisées par un recouvrement important de
champ de Turbinaria. Ces Phéophycées, connues pour constituer des supports favorables a
I'installation des dinoflagellés ciguatérigénes, ne sont plus observées dés novembre 2005 (L3) et
jusqu’en 2010, ou alors de maniere trés sporadique (quelques pieds observés ZNT).

- Les holothuries (Stichopus chloronotus) présentes en ZNT sont quasi-absentes en ZT.

- Sur I'ensemble du site d’étude de Hunété, la bande coralienne cétiére correspondant
aux transects transversaux A, apparait fragilisée. Plusieurs raisons peuvent expliquer le maintien
de cette fragilité : apport d’eau douce, fort hydrodynamisme de par la proximité avec le récif
soulevé (brisant de vagues), exposition directe aux alizés et enfin bord du platier pouvant étre
sujet aux dégradations anthropiques notamment lors de la péche a pied (photo 27).

11.3.b.5 Diversité cyanobactérienne

Le suivi environnemental du site d’étude de Hunété a permis de mettre en évidence une
diversité cyanobactérienne importante considérant la fréquence a lagquelle les prélevements ont
pu avoir lieu.

Les cyanobactéries dominant en termes de biomasse ont été prélevées pour
I'identification de la ou les espéces majoritaire(s) et pour les analyses toxicologiques. Le tableau
15 synthétise, par date, les especes collectées et identifiées selon la classification botanique
(genre et espéce). Les zones de recouvrement sont spécifiées ainsi que les cyanobactéries pour
lesquelles les quantités collectées ont permis I'analyse toxicologique.

Comme précisé précédemment, en termes de présence et de diversité de
cyanobactéries, I'ordre des Oscillatoriales domine sur 'ensemble de la zone de péche. Ainsi, la
figure 31 présente les proportions des genres d’Oscillatoriales quantifiés sur les prélevements
destinés a l'identification morphologique des mattes présentes dans la ZT. Ces valeurs ne
présentent pas les proportions réelles in natura, mais illustrent la variabilité en genre de la
communauté cyanobactérienne : Hydrocoleum, Oscillatoria, Phormidium, Trichodesmium et
Spirulina.
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Date Réf. Identification des espéces Zones tox'iAcr:)aI‘lnygsiZue
2005/03/15 L1 H. lyngbyaceum 5A 5B v
2005/04/28 L2 H. lyngbyaceum S5A 5B v
2005/11/15 L3 H. cf. glutinosum; O. bonemaisonii ; H. holdeni 4A v
2006/03/28 L5 O. subuliformis ; H. glutinosum 4A v
2006/05/29 L6 0. subuliformis ; O. cf. bonemaisonii S5A 6A v
2006/08/07 L7 S. weissii (réf. : L70) 4B/4C/5B/5C Vv

L7 P. laysanense (réf. : L7N) 5B v
2006/11/22 L8 H. cf. glutinosum 6A
2007/02/19 L9 H. lyngbyaceum ; Oscillatoria sp. ; P. laysanense 6A v
2008/02/12 L12 H. glutinosum 4C v
2008/06/06 L13 S. weissii ; H. lyngbyaceum 4B/4C/5B/5C v
2008/11/04 L14 T. erythraeum 5A
2009/02/28 L15 O cf. bonnemaisonii 5C
2009/08/13 L16 0. bonnemaisonii 5C v
2009/11/17 L17 O cf. bonnemaisonii (réf. : L17C01) 5C 5B 6A v
T. erythraeum (réf. : L17C02) 5A v
P. laysanense (réf. : L17C03) 5B v
2010/04/06 L18 Oscillatoria spp. (réf. : L18C01) 1A
0. corallinae ; O. laetevirens (réf. : L18C02) 1A
0. bonnemaisonii (réf. : L18C03) 3C
0. bonnemaisonii (réf. : L18C04) 5B 5C 6B 6C

136/ 326



Chapitre 2 : Les cyanobactéries marines

90% |
80%
70%
60% -
50% |
40%
30%

R B e R R e B I e

10%

P g e o° P ey S L o L 2 @ ® Y
* ¥ 2 c 0 o7 K o & “é\“\a W e«@ Rﬁ“‘\a 2 g 20
o

Hydrocoleum 1= Oscillatoria ™ Phormidium Trichodesmium Spirulina
Figure 31: Diversité générique des Oscillatoriales présentes en ZT (données pour aolit, novembre 2007 et février
2009 non disponibles).

Identification taxonomique des espéces de cyanobactéries dominantes en ZT

Le Professeur Stjepko Golubic est I'auteur de I'ensemble des vues microscopiques (a
I’exception de la photo 67).

Hydrocoleum lyngbyaceum (Kitzing ex Gomont, 1892) constitue avec O.
bonnemaisonnii, I'espéce la plus fréquemment observée en ZT (L1, L2, L9, L13), plus
particulierement en zones 5A, 5B, 5C et 6A recouvrant majoritairement les débris coralliens et
parfois sableux. Rencontrée indifféremment en milieu d’eau douce ou marine, les filaments de

couleur noirs sont longs de 1 a 2 cm (photo 55). Sur le plan microscopique, la population
récoltée en juin 2008 (L13) est constituée de trichomes de 12,73 + 0,47 um de large (n = 30) et

les cellules sont relativement longues avec une moyenne de 6,43 + 1,69 um (n = 19) (photo 56).
- N A

Photos 55 et 56 : Vues macroscopique (n°55) et microscopique (n°56) d’Hydrocoleum lyngbyaceum
(Barre d’échelle = 50 um).
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Hydrocoleum glutinosum (Gomont ex Gomont, 1892) se développe de maniere
relativement importante en zone 4C durant la saison chaude 2008 (L12). Ces longs filaments
rosés de 5 a 6 cm, arrangés en touffes, vivent sur les débris coralliens ou fixés sur certains
coraux vivants (photo 57). L'échantillon prélevé en février 2008 (L12) est constituée de
trichomes de 16,87 + 1,12 um de large et la longueur des cellules est de 6,1 + 1,47 um (photo

Photos 57 et 58 : Vues macroscopique (57) et microscopique (58) d’Hydrocoluem glutinosum
(Barre d’échelle = 50 um).

Oscillatoria bonnemaisonii (Crouan ex Gomont 1892) constitue majoritairement le
grand tapis cyanobactérien verdatre présent dans la ZT (5B, 5C, 6A, 6B et 6C) depuis février
2008 (L15) jusqu’a avril 2010 (L18). Localisée a 4 — 5 m de profondeur, elle se développe sur
substrat sableux et débris coralliens (photo 59). La population échantillonnée en novembre
2009 (L17) est composée de trichomes homogenes de 21,34 + 1,03 um de large (n = 15) et de
cellules de 4,64 + 1,34 um de longueur (n = 39) (photo 60).

; ‘M ‘ p ‘_/:'_ .J:‘.k ‘1 o
Photos 59 et 60 : Vues macroscopique (59) et microscopique (60) d’Oscillatoria bonnemaisonii
(Barre d’échelle = 50 pm).

Oscillatoria subuliformis (Kitzing ex Gomont 1892) est présente en zones 5A et 5B en
saison chaude 2007 (L5 et L6). Des tapis localisés, de surface restreinte, sont observés
régulierement dans la ZT Les fins filaments constituent des biofilms noiratres et ras de 2 a 3 cm
(photos 61 et 62).
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Photos 61 et 62 : Vues macroscopique (61) et microscopique (62) d’Oscillatoria subuliformis
(Barre d’échelle = 50 um).

Phormidium laysanense (Lemmermann, 1905) est rencontrée sous forme de grande
surface en aolt 2006 (L7) en zone 5B, puis en novembre 2009 (L17) en zone 5B ou la matte est
alors beaucoup plus restreinte. Constituant de longs filaments brunatres de 6 — 7cm, cette
espece, fréquente dans les eaux marines, se développe majoritairement sur substrats sableux
(photo 63). Les gammes de formes et de couleurs décrites dans la littérature sont tres variables
(orange, rouge a noire). La population échantillonnée en novembre 2009 est constituée de
trichomes de 6,25 + 0,07 um de large (n = 11) et de cellules de 8,46 + 1,93 um de longueur (n =
30) (photo 64).

Photos 63 et 64 : Vues macroscopique (63) et microscopique (64) de Phormidium laysanense
(Barre d’échelle = 50 um).

Spirulina weissii (Drouet 1942) domine les populations microbiennes benthiques sur une
grande surface en ZT (4B, 4C, 5B et 5C), elle est présente depuis 2006 avec un pic de dominance
en saison 2008 (L12 et L13). Les populations constituent de denses tapis filamenteux orange vif
de 5 a 6 cm, majoritairement sur des substrats détritiques (photos 65 et 66). Les trichomes sont
de forme spiralée de 4,52 + 0,37 de large et de 10,1 + 0,62 um de longueur (prélévement en juin
2008, L13) (photo 67).
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65

™ i

Photos 65, 66 et 67 : Vues macroscopique (65 et 66) et microscopique (67) de Spirulina weissii (*

200).

Trichodesmium erythraeum (Ehrenberg ex Gomont, 1892), Oscillatoriale pélagique, est
rencontrée a deux reprises en saison chaude, en novembre 2008 (L14) et en novembre 2009,
(L17) : a la suite d’efflorescences, les populations viennent se concentrer en surface. Dans la
zone de péche d’Hunété, les alizés repoussent ces mattes le long de la cote (photo 68). Les
trichomes associés en fagots forment des colonies de couleur rougeatre (photo 69). La
population échantillonnée en novembre 2009 est constituée de trichomes de 9, 85 + 0,69 um de
large (n = 20) et de cellules de 6,47 + 1,74 um de longueur (n = 30). L'étude de cette
Oscillatoriale fait I'objet d’un chapitre qui lui est entierement consacré (cf. ch.2.lll).

Photos 68 et 69 : Vues macroscopique (68) et microscopique (69) de Trichodesmium erythraeum
(Barre d’échelle = 50 um).

L’'ensemble des cyanobactéries rencontrées dans la zone d’étude de Hunété sont des
especes communes des lagons de I'Océan Pacifique. La particularité de cette zone est le
déséquilibre qui existe, causé par le développement massif de chacune d’entre elles (de
maniere concomitante ou successive). Des études sur I'aspect écologique, biogéochimique ou
encore génétique ont été menées pour certaines d’entre elles (Hoffmann, 1999 ; Abed et al.,
2003 ; Pringault et al., 2005 ; Camoin and Gautret, 2006 ; Charpy et al., 2007 ; Golubic et al.,
2009 ; Rodier and Le Borgne, 2010). Cependant I'aspect toxicologique a rarement été abordé
(Sellner, 1997). Les résultats suivants présentent la toxicité des mattes de cyanobactéries
dominées par ces especes. Nous présenterons également la toxicité des bénitiers et des
poissons, inféodés aux zones de prolifération de ces mattes cyanobactérienens afin de mettre
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en évidence une possible bioaccumulation des toxines cyanobactériennes au sein de la chaine
trophique.

II.3.c  Données toxicologiques
I.3.c.1 Cyanobactéries

[I.3.c.1.a Récoltes et données d’extraction

Douze mattes de cyanobactéries ont été récoltées et les especes identifiées pour
I'analyse toxicologique. L'objectif est d’évaluer le potentiel toxique qu’elles présentent, associé
au type toxinique qu’elles contiennent.

Dans un premier temps, I'extraction de masse liquide-liquide a été effectuée. Une
premiere série d’analyses (test souris, N2A et RBA) est menée sur les extraits hydrosolubles et
liposolubles issus de la premiére extraction (hydrosoluble (1) et liposoluble (1)) et de la seconde
extraction méthanolique acide (hydrosoluble (2) et liposoluble (2)). Les caractéristiques
d’extraction sont synthétisées dans le tableau 16.

Dans un second temps, 12 extraits liposolubles (1) dont les quantités sont suffisantes,
sont purifiés sur Sep-pak® selon le protocole décrit en partie Matériels et Méthodes (M et M)
(tableau 17). La purification est appliquée sur 5 mg d’échantillon. Les fractions collectées, F1, F2
et F3, étant en dega de la limite de la pesée, les valeurs obtenues sont exprimées en mg
équivalent d’extrait liposoluble de cyanobactéries (mg eqv d’extrait).
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Tableau 16 : Caractéristiques des échantillons de cyanobactéries analysés et masses d’extraits obtenues en
extraction méthanolique et extraction méthanolique acide (Mc Elhiney et al., 1998 ; Nicholson and Bruch, 2001 et
Laurent et al., 2008) ; ND : Non déterminé ; les masses d’extraits sont exprimées en g et en % par rapport la masse
lyophilisée extraite.

L ' . Extraction Extraction
Caractéristiques de I'échantillon , . . . .
méthanolique méthanolique acide
Masse Hydrosoluble Liposoluble Hydrosoluble Linosoluble 2
Date Especes majoritaires  Zone  lyophilisée 1 1 2 P g (%)
(g) g (%) g (%) g (%)
H. cf. glutinosum
2005/11 L3 0. bonnemaisonii, 4A 6,2 (1;32:) 0£846)3 ND ND
O. holdeni ! !
2006/03 15 O-subuliformis, 4A ND 0,11 ND 0,0008 0,0001
H. glutinosum
2006/05  Le O-subuliformis, - 5A ND 0,43 0,1990 0,1050 0,0120
O. cf. bonnemaisonii 6A
P. laysanense, 1,6060 2,4260 0,0100
2 L7 N 47 ND
006/08 H. lyngbyaceum >¢ 8 (0,4) (0,5) (0,01)
- 4B AC 78,70 1,8350 3,2730 0,0430
2006/08 L7 0 S. cf. weissii 5B 5C 239 (32,9) (0,8) (1,4) (0,2)

H. lyngbyaceum,
2007/08 L9  Oscillatoria sp. 6A ND 11,70 0,1330 ND ND
P. laysanense

2008/02 L12  H. glutinosum 4C 20,7 (gbz’i) 02(1)?914 Oé,737)0 (23?83)3
2008/06 L13  S. weissii :E gg 73,9 (3457',165) Oiéfl;)l ND ND
2008/11 L14  Trichodesmium sp 5A 63,6 (3532',43(; 022'912)5 1231533)7 15?1?;9
2009/11 L17  O. cf. bonnemaisonii 5B 45,5 (3872'?00) 12;?62)6 ND ND
T. erythraeum 5A 67,9 3;75"3()) Oié'Szl;.% ND ND
P. laysanense 5B ND 12,20 0,4606 ND ND
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Tableau 17 : Liste des extraits liposolubles (1) de cyanobactéries récoltées en ZT purifiés sur Sep-Pak®.

Date Réf. Espéces majoritaires Zone
2005 2005/11 L3 H. cf. glutinosum 4A
2006/03 L5 O. subuliformis, H. glutinosum 4A
2006/05 L6 O. subuliformis, O. cf. bonnemaisonii 5A / 6A
2006 2006/08 L7N P. laysanense 5C
2006/08 L70 Spirulina cf. weissii 5B 5C6B6C
2007  2007/02 L9 H. lyngbyaceum, Oscillatoria sp., P. laysanense 6A
2008/02 L12 H. glutinosum 4C
2008  2008/06 L13 S. weissii 5B 5C 6B 6C
2008/11 L14 Trichodesmium sp. 5A
2009  2009/11 L17C01 0. bonnemaisonni 5B/5C/6A
2009/11 L17C02 T. erythraeum 5A
2009/11 L17C03 P. laysanense 5B

11.3.c.1.b Données de toxicité

Etudes antérieures

Les échantillons de cyanobactéries récoltées en novembre 2005 et mai 2006 (L3, L6),

composés respectivement d’H. lyngbyaceum et de diverses Oscillatoria, ont été analysés par le
laboratoire d’études et de recherches sur la qualité des aliments et les procédés agro-
alimentaires (LERQAP) de I'AFFSA (Agence Francaise de Sécurité Sanitaire des Aliments). La
recherche de toxines paralysantes (STX et dérivés) dans les échantillons de cyanobactéries
collectées dans la ZT a été motivée par le type de symptomes décrits par les personnes
intoxiquées : ils sont similaires a ceux causés par la STX et ses analogues (paresthésies buccales,
engourdissements des levres s'étendant au visage, cf. ch1.1.1.d).

Brievement, la méthode utilisée (Lawrence et al., 2005) est basée sur une dérivation pré-
colonne de STX et de ses dérivés. Chaque extrait est purifié sur cartouche C18 puis sur
cartouche COOH afin de séparer les toxines en trois groupes : le groupe de la STX (STX, néo-STX
et dc-STX), le groupe des GTXs (GTX-1 a 6, dc-GTX-2 et 3) et le groupe des toxines C. Deux
réactions de dérivation (au peroxyde et au périodate) sont nécessaires pour rendre les
différentes toxines fluorescentes et permettre leur identification selon les produits de réaction
obtenus.

Sur la base de ces observations, il a été conclu a 'absence de STX et de ses dérivés dans
les 2 échantillons de cyanobactéries analysés.
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1.3.c.1.b.(i) Test souris

Le test souris a été utilisé pour évaluer les toxicités potentielles des extraits
hydrosolubles (1) et (2) et liposolubles (1) et (2) des cyanobactéries présentes dans la zone de
péche a Lifou de 2005 a 2009. Les résultats sont résumés dans le tableau 18. La toxicité de
chaque extrait est caractérisée par la DLsg estimée (mg / g), sa classe de toxicité et les principaux
symptomes.

Fractions hydrosolubles

11 mattes de cyanobactéries récoltées a Lifou constituant 16 extraits ont pu étre testées.
Tous les extraits hydrosolubles (1) et (2) montrent une toxicité de type paralysant de classe
Tox + et Tox ++. Les DLsg estimées sont, pour la plus toxique, de 0,75 mg / g (mattes constituées
d’H. lyngbyaceum, Oscillatoria sp. et P. laysanense ; L9 (1)) et, pour la moins toxique, supérieure
a 5 mg /g (O. subuliformis, O. cf. bonnemaisonii ; L6 (1) et S. weissii (L70(2)). La toxicité est
exprimée chez la souris par une paralysie progressive touchant I’ensemble du corps jusqu’a son
affaissement total. La mort survient plus ou moins rapidement (de 1 mn a 4 h) par détresse
respiratoire précédée éventuellement de spasmes ou de réflexes de suffocation. La paralysie
générale chez les souris fortement affectées se traduit par une phase de coma; celle-ci peut-
étre fatale mais de maniére surprenante, certaines souris ont la capacité de récupérer au bout
de 9 h. Ainsi par exemple, les souris injectées a 1 mg / g de I'extrait de T. erythraeum de
novembre 2009 (L17 C2) ont récupéré en 5 h et celles injectées a 2,5 mg / g de P. laysanense de
novembre 2009 (L17 C3) ont récupéré en 9 h. La récupération progressive de la motricité est
toujours totale.

Les extraits MeOH (hydrosoluble 1) et MeOH acide (hydrosolubles 2) d’'un méme
échantillon montrent une toxicité s’accompagnant de symptomes similaires mais certains
extraits méthanoliques acides s’averent plus toxiques que les extraits méthanoliques (L5, L7N et
L12) alors que pour d’autres échantillons, nous notons des résultats inverses (L6 et L70). Ces
éléments suggerent que I'extraction méthanolique acide permet pour certains lots de
cyanobactéries d’extraire en sus des toxines de méme famille toxinique que celles extraites lors
de la phase d’extraction méthanolique initiale (mémes symptémes). A priori, cette étape
d’extraction complémentaire ne permettrait donc pas d’isoler de nouvelles familles toxiniques
mais permettrait de parachever I'extraction méthanolique initiale.

Les cyanobactéries collectées a Lifou contiennent donc des toxines hydrosolubles a
activité paralysante. Les symptomes sont en faveur de la présence de toxines comme I’AnTX-a,
I"'HANTX-a ou des toxines de la famille des STXs. Il est difficile de discriminer I'une ou I'autre des
toxines paralysantes tant leurs symptomes caractérisques sont proches. En revanche, nous
écartons la possibilité de la présence de I’AnTX-a (s) étant donné qu’aucune souris injectée n’a
montré de symptome d’hypersalivation, caractéristique de cette neurotoxine.
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Tableau 18 : Données de toxicité des extraits hydrosolubles (1) et (2) et liposolubles (1) et (2) de cyanobactéries analysés a I'aide du test souris : DLs, estimée en mg
d’extrait / g de souris, Classe de toxicité et Symptomes principaux ; ND : Non Déterminé, (1) : extraction méthanolique ; (2) : extraction méthanolique acide.

Fraction hydrosoluble

Fraction liposoluble

Date de
issi Especes . DL " DL -
mission spece Extraits >° Classe  Symptémes > Classe ~ Symptémes
majoritaires (mg/g) (mg/g)
L5 (1) 3 Tox+ Paralvsie aénérale 05-1 Toxt+ Paralysie arriére train, mort au bout de
O. subuliformis; 0 ysle g ’ ° 12hrs
2006-03 H. aluti
- giutinosum L5 (2) 1-3 Tox++  Mort par détresse respiratoire - - -
0. subuliformis ; L6 (1) 2.5 Toxi+ Paralysie générale, mort par détresse 10-20 Toxi+ Symptomes type CTx-like pendant
2006-05 O. cf respiratoire ! ! 20hrs, faiblesse, ataxie
bonnemaisonii L6 (2) >5,0 Tox+  Contractions - - -
L7N (1) 7.3 Tox ++ Pofralysie gén.érale{ spasmes, mort par 1,0-2,0 Tox++ Cont-raction du t'“rain arriére, spasmes,
détresse respiratoire, coma ataxie, suffocation
2006-07 P. laysanense S , ; . -
Paralysie générale, mort par détresse Contraction du train arriére, spasmes,
L7N (2) <2,0 Tox ++ . ; L 1,0-2,0 Tox+ . .
respiratoire, cyanose des extrémités ataxie, suffocation
L70 (1) 1,0-2,5 Tox ++  Paralysie générale, spasmes - Atox -
2006-07 S. weissii
L70 (2) >5,0 Tox+  Paralysie, diarrhée - Atox -
H. lyngbyaceum; paralvsie aénéral ¢ par dét Affaibli t perte de réactivité
. . ralysie générale, coma, mort par détress aiblissement, perte de réactivité,
2007-02 Oscillatoria sp.; L9 (1) 0,75-1,0 Tox++ aralysie generate, ¢ ort par aetresse ND Tox+ perte de reactivite
respiratoire tremblement, affaissement
P. laysanense
112 (1) 25-5 Tox ++ f;railry:tizigr]:nérale, coma, mort par détresse ) ) )
2008-02  H. glutinosum Pa:;I sie générale, coma, suffocation, mort
112(2) | 1,5-2,5 Tox++ ysie generate, coma, ’ - - -
par détresse respiratoire
2008-06 S. weissii 113 (1) 10-25 Tox ++ Para./y5/e 'genera/e, coma, mort par détresse ) ) )
respiratoire
2008-11 T erythraeum L14 (1) 10 Tox ++ Para./ysie .générale, coma, mort par détresse 525 Toxs Spasmes, Contractions abdominales,
respiratoire Ataxie
0. cf Paralysie générale, coma, mort par détresse spasmes, Contractions abdominales,
T L L17 (1) 2,5-3 Tox++ ysie g ’ ’ P ND ND Ataxie, Train arriére paralysé, diarrhée,
bonnemaisonii respiratoire ' e
Note : yeux boursoufflés (n = 1)
2009-11 T. erythraeum 117 (1) 10-50 Tox ++ Paranlysie 'généra/e, coma, mort par détresse ) ) i
respiratoire
P. laysanense 117 (1) 5,0 Tox ++ Paralysie générale, coma, mort par détresse ) ) i

respiratoire
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Fractions liposolubles

7 mattes de cyanobactéries constituant 9 extraits liposolubles (1) et (2) sont testés. Les
faibles quantités de matiere disponibles pour certains d’entre eux (5) n‘ont pas permis leur
analyse. En effet, un minimum d’environ 100 mg est requis pour |’analyse d’un échantillon de
cyanobactérie afin de s’assurer d’une réponse interprétable (symptomes et dose sublétale).

Les extraits liposolubles de cyanobactéries collectées en mars, mai et aoGt 2006 (L5, L6
et L7N) sont les plus toxiques (Tox++) avec des valeurs de DLso de 0,5 a 2 mg / g. Les extraits
liposolubles des mattes de cyanobactéries dominées par P. laysanense et T. erythraeum sont
moyennement toxiques (Tox + et DLso d’environ 2 mg / g). Quant aux extraits liposolubles des
mattes de cyanobactéries collectées en ao(t 2006 (L70), février 2007 (L9), aucun symptome de
toxicité n’est observé (Atox).

Pour les extraits toxiques, les mémes symptémes majeurs sont observés : paralysie du
train arriére, contractions abdominales, faiblesse générale et spasmes pour les souris les plus
affectées. Pour quelques souris, des diarrhées sont a noter, notamment celles injectées avec 2,5
mg / g d’extrait de cyanobactéries dominées par P. laysanense (L7N (1)) ; mais ce symptome
caractéristique des CTXs n’ayant pu étre reproduit lors de I'essai effectué en duplicate, il est
donc a considérer avec prudence.

Enfin, soulignons que les effets toxiques perdurent plusieurs heures chez les souris. C’'est
le cas notamment des souris injectées en concentration sub-létale de I'’échantillon dominé par
Oscillatoria spp. collecté en mai 2006 (L6) qui ne récupérent qu’au bout de 20 h.

Ainsi, l'observation de ces symptomes et leur durée sont caractéristiques des
observations faites chez la souris injectée en i.p. par des CTXs pures exceptée pour le symptome
« diarrhée » (tableau 12). Cette expérimentation démontre la présence, dans les mattes de
cyanobactéries de l'ordre des Oscillatoriales collectées a Lifou, de composés liposolubles
toxiques. Leur activité serait proche de celles des CTXs mais en I'absence de symptdéme typique
ne nous ne pouvons conclure quant a leur nature.

La conversion des valeurs de toxicité (en g de cyanobactéries fraiches ou lyophilisées) est
difficile vu les fortes variabilités qui peuvent exister entre les préléevements : les masses de
cyanobactéries fraiches et lyophilisées sont trés variables en fonction de la quantité d’eau
résiduelle. Aussi, nous choisirons de comparer les DLsp exprimées en masse d’extrait plutot
gu’en équivalent de matiere seche ou fraiche. Ces comparaisons devront tout de méme étre
envisagées avec précautions étant donné les complexes de matiére.

I.3.c.1.b.(ii)  Test de cytotoxicité sur neuroblastomes

Validation et calibration du test
Avant analyse des extraits au moyen du test N2A, I'optimisation préalable de différents
parameétres de ce test (concentration cellulaire optimale et effets du MeOH sur la viabilité
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cellulaire) ainsi que sa calibration au moyen d’une toxine standard (PbTx-3, activatrice des CSSP)

ont été nécessaires.

Concentration cellulaire.

Afin d’obtenir une sensibilité suffisante pour notre test, le nombre de cellules a

ensemencer doit étre suffisant pour obtenir un signal de détection maximum (absorbance

maximum, DO) tout en ayant une réponse linéaire. Nous avons donc vérifié la linéarité de

réponse en fonction de la densité cellulaire et sélectionné la desnité maximum pour laquelle la

réponse linéaire est observée (fiabilité de la réponse). Ainsi, dans nos conditions de culture et
de test, la densité cellulaire choisie pour le test de cytotoxicité est de 50 000 cellules par puits
soit 2,5*%10° cellules / mL (Volume total par puits = 200 pL) (figure 32).

0.8

DO (490nm)

0.9181

L} T

T
0 50 000 100 000 150 000
Nombre de cellules par puits

1

200000

Figure 32 : Absorbance (DO) a 490 nm en fonction du nombre de cellules ensemencées : La DO est
proportionnelle au nombre de cellules jusqu’a 50 000 cellules par puits (Rz =.0, 9181).

Effet du MeOH.

Le MeOH est utilisé comme solvant pour diluer les extraits testés. Les dilutions

successives s’effectuent avec de I'eau pour des raisons d’évaporation. Ainsi, la concentration

maximale de MeOH a laquelle seront exposées les cellules est de 5% (V : V). Une gamme de 0 a

8% est testée en conditions -OV et +0OV.
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Figure 33 : Effets du méthanol sur la viabilité cellulaire des neuroblastomes.
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L'expérience (figure 33), répétée indépendamment trois fois, ne montre pas d’effet
toxique du MeOH jusqu’a une concentration de 8% sur les cellules en conditions -OV et +OV (-
oV, p=0,52;+0V, p=0,45).

Vérification de la spécificité de la réponse vis a vis de la PbTx-3.

Elle a pour objet de tester I'effet spécifique de toxines agissant sur le site 5 des CSSP et la
sensibilité des cellules dans nos conditions de cultures (O : 500 uM ; V : 50 uM et incubation des
cellules en présence de toxine 14 h a 37°C). La PbTx-3 connue pour agir spécifiquement sur le
site 5 du CSSP a l'instar des CTXs et qui présente I'avantage d’étre disponible commercialement
(Latoxan, France), a donc été utilisée comme molécule modeéle, en substitut des précieuses
CTXs. Testée systématiquement en paralléle des extraits a analyser, son utilisation permet de
vérifier régulierement la validité des conditions d’essai et la sensibilité des cultures de
neuroblastomes.

—— ex1+ 0OV

o
© -0 ex1-0V
z —+ ex2+ OV
s A ex2- OV
3
8

Viabilité cellulaire

0 T T T T Tl T T T T T L
il 10 100 1000

Concentration de PbTX-3 (nM)

Figure 34 : Effets cytotoxiques de la PbTx-3 en conditions (+OV) et (-OV) (n = 3). Présentation de deux essais
indépendants (ex.1 et ex.2).

Pour exemple, la figure 34 présente deux essais d’application d’'une gamme de PbTx-3 de
0 a 500 nM (n = 3). Les cellules ne sont sensibles a I'action de la PbTx-3 qu’en présence des
potentialisateurs O et V (conditions +OV) (p < 0,001).

Ainsi, dans nos conditions environnementales, la spécificité du test pour I'action de
composés agissant sur les CSSP est donc vérifiée et la valeur moyenne des Clsq calculées par
Gaphpad Prism est de 50,1 £ 8,7 nM (n = 12). Ces valeurs sont comparables a celles recueillies
dans la littérature (Dechraoui et al., 1999 ; Bottein-Dechraoui et al., 2005).

Données de cytotoxicité

Analyses par test N2A des extraits liposolubles de cyanobactéries.
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Dans un premier temps, les extraits liposolubles (1) de cyanobactéries issus de la
séparation liquide - liquide sont testés. La figure 35a représente le type de courbe obtenue
apres régression sigmoidale avec le logiciel Graphpad. Ces courbes de régression sigmoidales
sont caractéristiques d’un effet cytotoxique dose-dépendant. Une gamme de concentration de
0 a 625 pg / mL d’extrait est testée pour chaque échantillon -OV et +0V, afin de déterminer le
type d’action cytotoxique.

a ) Effets cytotoxiques des extraits lipidiques de cyanobactéries b) Valeurs des Cls, des extraits lipidiques de cyanobactéries

—F—

[ H. ¢f. glutinosum (L3)
[ 0. subuliformis; O. cf. bonnemaisonii (L6)
E}-{ [ P. laysanense (L7N)
:'}' [ H. lyngbyaceum; O. spp.; P. laysanense (L9)
[ H. glutinosum (L12)
T

[ 5. weissi (L13)

150+ ¥
Ly

Viabilité cellulaire
(% du contréle)

0 100 1000 0 200 400 600

g5 Concentration de I'extrait (ug / mL) Concentration de |'extrait (ug / mL)

Figure 35 : Evaluation des effets cytotoxiques d’extraits liposolubles de cyanobactéries +OV, (a) courbes de
cytotoxicité, (b) valeurs des Clso en pg / mL.

A partir de ces courbes de régressions sigmoidales, il est possible de déduire les valeurs

d’Clsp propres a chaque extrait (figure 35b) ainsi que les valeurs du coefficient de Hill
correspondantes (tableau 19).

Tableau 19: Valeurs des Cls, des extraits liposolubles de cyanobactéries (ug / mL) et coefficients de Hill
correspondants.

| e ., Clso Coefficient
Especes majoritaires Date Réf. ug d'extrait / mL de Hill

H. cf. glutinosum 2005/11 L3 435+ 75 -1,0+0,2
O. subuliformis, O. cf. bonnemaisonii 2006/05 L6 88+6 -3,0+0,6
P. laysanense 2006/08 L7 274 -1,0£0,2
H. lyngbyaceum, Oscillatoria sp., 2007/08 L9 179 + 15 1,0£05
P. laysanense

H. glutinosum 2008/02 L12 1347 -2,0+£0,3
S. weissii 2008/06 L13 274 + 44 -0,8+0,1

Les valeurs de cytotoxicité -OV et +OV ne sont pas significativement différentes (p <
0,05). La cytotoxicité des extraits liposolubles de cyanobactéries analysés n’est donc pas liée a
une action spécifique (activatrice ou inhibitrice) sur les CSSP.
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Les extraits de mattes de cyanobactéries dominées par P. laysanense (L7) et Oscillatoria
spp. (L6) sont les plus cytotoxiques avec une Clsp de 27 + 4 et 88 + 6 g d'extrait / mL
respectivement. Les extraits de mattes de cyanobactéries dominées par H. lyngbyaceum,
Oscillatoria sp., P. laysanense (L9) et H. glutinosum (L12) manifestent une cytotoxicité de niveau
comparable avec une Clso de 179 + 15 et 134 + 7 ug d'extrait / mL.

Le calcul des Clsg n’a pas été possible pour tous les extraits testés. Pour certains essais en
effet, les valeurs du coefficient de Hill étaient trop élevées et aprés analyse des coefficients de
(R%), ils traduisent davantage un effet d’origine matricielle qui s’observe au-dela d’une certaine
concentration d’extrait. En pratique, cela se traduit par une viabilité cellulaire passant de 100%
a pres de 0% sans effet dose (courbe caractérisée par une pente trés abrupte).

Ainsi, dans un deuxiéme temps, nous nous sommes orientés vers la purification de ces
extraits par chromatographie en phase inverse. Les extraits de cyanobactéries sont purifiés sur
sep-pak® selon le protocole déja présenté en partie M et M et les trois fractions collectées (F1,
F2 et F3) sont testées en test N2A afin d’évaluer leur potentiel toxique.

Analyses par test N2A des extraits liposolubles de cyanobactéries purifiés sur Sep-pak®.

La séparation par cartouche de sep-pak® permet de séparer les composés les plus
polaires (F1), des composés les moins polaires (F2 puis F3). Les fractions F2 permettent de
recueillir les composés dont la polarité (MeOH : H,0, 90 : 10) est proche de celles des CTXs. Une
gamme de concentration de 0 a 625 pg eqv d’extrait / mL est testée. La figure 36 présente des
exemples de courbes de cytotoxicité de F1, F2 et F3 pour certains extraits liposolubles (1) de
cyanobactéries. L'ensemble des courbes est regroupé en annexe 1.

Ces analyses ont apporté les informations suivantes :

- Aucune des fractions F1 (les plus polaires) n’a montré de toxicité, et ce méme a
des concentrations atteignant 625 ug eqv d’extrait / mL,

- Les fractions F3 (les moins polaires) n’ont pas révélé de toxicité dans la gamme
de concentrations testées, excepté pour les échantillons dominés par
P. laysanense (L7N) et S. weissi (L70) pour lesquels une diminution dose-
dépendante de la viabilité cellulaire est observée (figure 36). Toutefois, aucune
valeur de Clsg n’a pu étre évaluée.

- Les fractions F2 provoquent une diminution de la viabilité cellulaire selon un
effet dose-dépendant de type sigmoidal. Les valeurs des Clsg calculées sont
résumées au tableau 20 et en figure 37.

Spécificité de I’action des substances cytotoxiques.

L'effet cytotoxique des extraits F2 est testé en conditions -OV et +0V, afin de
caractériser le type d’action des composés toxiques. Les valeurs des Clsg calculées -OV et +OV ne
sont pas significativement différentes pour la majorité des échantillons (8 sur 12 ; p= 0,12 a
0,80). Par contre, les Clsg (-OV) sont significativement inférieures aux Clsg +OV pour 4 extraits
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issus des mattes dominées par T. erythraeum, P. laysanense et O. bonnemaisonii collectées en
novembre 2009 (L17) et Oscillatoria spp. collectées en février 2007 (L9). Une diminution de la
toxicité d’un extrait +OV révelerait une inhibition de la toxicité CSSP-dépendante. Celle-ci
pourrait provenir soit d’'un blocage de I'entrée massive des ions Na* au niveau du CSSP, soit
d’une levée du blocage de la sortie des ions Na* induite par O ou encore par une combinaison
des deux mécanismes.
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Figure 36 : Effets cytotoxiques des fractions F1, F2, F3 d’extraits liposolubles de cyanobactéries purifiés sur Sep-

pak®.
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Tableau 20 : Valeurs des Clsq des fractions F2 des extraits liposolubles de cyanobactéries (ug eqv / mL) ; ND : non
déterminé.

-ov
N Clso . Clso =
Espéces . . . Coefficient , . Coefficient
maijoritaires Date Réf. ug eqv d'extrait / de Hill ug eqv d'extrait / de Hill
mL mL

H. cf. glutinosum 2005/11 L3 138+44 -1,1+0,3 197 +77 ND
O. subuliformis, 2006/03 LS ND ND ND ND
H. glutinosum
0. subulijormis,  — 5506/05 L6 303 £ 37 3,9£1,3 330+ 46 ND
O. cf. bonnemaisonii
P. laysanense 2006/08 L7 7+3 ND 4+3 ND
S. weissii 2006/08 L7 7+2 ND 6+2 -1,7+0,6
H. lyngbyaceum,
Oscillatoria sp., 2007/02 L9 114 £ 25 -0,9+0,2 260 27 -40+1,4
P. laysanense
H. glutinosum 2008/02 L12 320+40 -2,8+0,9 ND ND
S. weissii 2008/06 L13 125 +37 -1,1+0,3 ND ND
T. erythraeum 2008/11 L14 7216 -1,4+04 98+ 12 ND
0. bonnemaisonii 2009/11 L17 142 £ 19 -1,4+0,2 254 + 28 -42+1,5
T. erythraeum 2009/11 L17 43 +7 -1,9+0,5 92+19 -2,3+1,0
P. laysanense 2009/11 L17 368 -1,2+0,3 9712 -2,4+0,6
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Concentration des extraits de cyanobactéries en pg équivalent / mL)
0 50 100 150 200 250 300 350 400 450 500
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S. weissii (L7 O)

T. erythraeum (L17)
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T. erythraeum (L14)

M sans OV
H. cf.glutinosum (L3)

M Avec OV
O. bonnemaisonii (L17)

H.lyngbyaceum, Oscillatoria sp.,
P.laysanense (L9)

S. weissii (L13)

H. glutinosum (L12)

O. subuliformis, H. glutinosum (L5)

O. subuliformis, O. cf. bonnemaisonii (L6)

Figure 37 : Valeurs des Cls, des fractions F2 des extraits liposolubles des cyanobactéries purifiées sur sep-pak (ug équivalent / mL) ;
**p<0,01;***p<0,001.
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Les cytotoxicités individuelles.

Toutes les fractions F2 issues de la purification des extraits liposolubles de
cyanobactéries sur sep-pak® ont montré une cytotoxicité, spécifique ou non des CSSP. Les
extraits peuvent étre regroupés en 3 classes de toxicité sur la base de leurs valeurs de Clsg
calculées en conditions +OV :

- Les plus toxiques, ayant des Clsg de 4 et 6 pug eqv d’extrait / mL, sont les
échantillons issus des mattes dominées par P. laysanense et S. weiisii
collectées en aolt 2006 (L7),

- Un 2™ groupe également toxique, ayant une Clsy autour de 100 ug eqv
d’extrait / mL, est composé des échantillons issus des mattes dominées par
T. erythraeum collectées en novembre 2008 (L14) et novembre 2009 (L17) et
par P. laysanense collectée en novembre 2009 (L17),

- Un groupe moyennement toxique dont les Clso varient de 197 a 260 pg eqv
d’extrait / mL, comprend les échantillons issus des mattes dominées par
H. cf. glutinosum collectées en novembre 2005 (L3), par O. bonnemaisonii
collectées en novembre 2009 (L17), par le mélange d’Oscillatoriales collectées
en février 2007 (L9) et par S. weissii collectée en juin 2008 (L13).

Enfin les résultats concernant les trois derniers extraits de cyanobactéries (H.
glutinosum (L12), O. subuliformis et H. glutinosum (L5) et Oscillatoria spp. (L6)) ne sont pas
suffisamment concluants pour permettre d’évaluer formellement leur niveau de toxicité.
Cependant, tenant compte des courbes de cytotoxicité obtenues et des coefficients de
régression, ils seraient a priori moins toxiques que I'ensemble des autres extraits analysés.
Ceci souligne bien l'intérét dans I'analyse des résultats de toxicité de cumuler les élements
caractérisant la toxicité (résultats bruts, régression sigmoidale, écarts a la moyenne et
coefficient de Hill).

Les cytotoxicités selon les espéces.

Parmi les espéces les plus toxiques, on peut citer P. laysanense collecté en ao(it 2006
(L7) et novembre 2009 (L17) et T. erythraeum récolté lors de deux missions en saison chaude
en novembre 2008 et 2009 (L14 et L17). La spécificité d’une action toxique sur CSSP n’est pas
formellement démontrée pour ces especes puisque la différence des Clsg en conditions +OV
et -OV n’est significative que pour un seul des préléevements effectué par espéce.

S. weissii est I'espéce majoritairement représentée dans 2 prélévements effectués en
aolt 2006 (L7) et juin 2008 (L13) : or ces deux extraits ont révélé des niveaux de toxicités
relativement différents avec des Clsg d’environ 7 et 125 pg eqv d’extrait / mL,
respectivement. Une explication possible des différences observées réside dans le degré de
pureté des échantillons, variable d’un prélevement a l'autre. D’autres causes possibles
incluent : les différences de profil toxinique observables d’une lignée a I'autre y compris au
sein d’'une méme espece, la production toxinique qui peut étre stimulée ou inhibée selon la
saison, la phase de croissance ou encore l'influence de certains facteurs environnementaux
(lumiére, salinité, température, compétition entre especes...), etc. Les différences
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saisonnieres sont d’ailleurs illustrées par les résultats des analyses faites sur P. laysanense
collectée en saison froide (L7), puis chaude (L17) mais qu’il est difficile de généraliser a
I’ensemble des espéces étudiées.

Efficacité de la purification sur sep-pak®.

Sur la majorité des résultas obtenus (exceptés pour deux d’entre eux), la purification
sur sep-pak® s’est révélée efficace et adaptée. La fraction F1 qui ne contient a priori aucun
composé toxique, présente I'avantage de « nettoyer » et purifier de maniére relativement
efficace I'extrait liposoluble 1, puisqu’une quantité de matiere estimée a environ 30% est
extraite dans F1 sans conséquence notable sur la toxicité de I'extrait global. D’autre part,
I’ensemble des fractions F2 toxiques montre des effets toxiques dose-dépendant associés a
des valeurs de coefficient de Hill n’évoquant pas d’effet matriciel. En outre, les valeurs de Clsg
des fractions F2 sont inférieures a celles obtenues pour les mémes échantillons liposolubles
bruts (tableau 21). L'étape de purification sur sep-pak® a donc permis d’augmenter I'effet
cytotoxique des extraits. En d’autres termes, elle confere aux extraits F2 une qualité et un
niveau de purification particulierement bien adaptés aux conditions du test N2A.

Tableau 21 : Comparaison des valeurs moyennes, minimum et maximum, des Clsq en conditions +OV des extraits

liposolubles (1) de cyanobactéries et des fractions F2 de ces mémes extraits liposolubles prélablement purifiés
sur sep-pak®.

Extrait liposoluble (1) Fractions F2 de I’extrait liposoluble (1)
Clso Minimum Maximum Moyenne Minimum Maximum Moyenne
Mg ot mg eqV 27 435 190 4 300 149
d'extrait / L

Enfin, nous avons testé les fractions F3 afin de vérifier 'absence dans ces extraits de
cyanobactéries de composés toxiques moins polaires que les CTXs. Cela semble
effectivement le cas pour I’'ensemble des extraits testés, a I'exception des fractions purifiées
F3 de S. weissii et P. laysanense (L70 et L7N). Deux explications peuvent étre avancées : i)
étant donné la tres forte toxicité des fractions en F2, il se peut que le volume d’élution
MeOH : H,0 (90 : 10) utilisé dans nos conditions d’essais (20 mL) ne soit pas suffisant au vu
des produits extraits (qualité ou quantité) ou ii) cet échantillon contient effectivement des
composés de polarité inférieure. Afin de se soustraire de la 1% hypothése, le volume
d’élution de la fraction F2 pourra étre augmenté de 20 mL a 30 mL.

Pour résumer, les valeurs minimum, maximum et moyenne de Clsg des fractions F2 en
conditions +OV, converties respectivement en eqv. PbTx-3 et P-CTX-3C sont données a titre
indicatif dans le tableau 22 de maniéere a faciliter I'analyse comparative avec les autres
données de toxicité présentées dans le cadre de cette thése. Les Clsy sont converties sur la
base des valeurs suivantes : i) dans nos conditions de test, la Clsg de la PbTx-3 est de 50,1 +
8,7 nM et ii) les Clsp de la PbTx-3 et de la P-CTX-3C respectivement 15 nM et 146 pM
déterminées pour des mémes conditions par Dechraoui et al. (1999).
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Tableau 22 : Valeurs moyennes, minimum (min.) et maximum (max.) des Cls, des fractions F2 des extraits
liposolubles de cyanobactéries obtenues par le test N2A (+OV) ; ces valeurs sont converties en eqv de toxines
pures selon Dechraoui et al., 1999.

Clso F2 mg eqv ug eqv PbTx-3 ng eqv P-CTX-3C
Cyanobactéries d'extrait / L / g eqv d'extrait / g eqv d'extrait
Moyenne 149 301 3,4
Min — Max. 4 -300 150-11214 1,7-127,1

I.3.c.1.b.(iii)  Test RBA

Ce test de fixation spécifique permet de détecter les composés de haute affinité pour
le site 5 des CSSP. La toxicité d’un extrait est traduit par sa Clso exprimée en ug d’extrait / mL
ou convertie en ug eqv P-CTX-3C / g d’extrait sur le méme principe que pour le test N2A.

Validation du protocole d’extraction au moyen du test RBA.

Dans un premier temps, le test RBA a été utilisé pour valider le protocole d’extraction
a appliquer idéalement aux matrices cyanobactériennes. Un échantillon de cyanobactérie
composée majoritairement d’H. lyngbyaceum récoltée en avril 2005 (L2) a été soumis a trois
protocoles d’extraction différents :

- protocole A: déja décrit dans la partie M et M, qui génére un extrait de type

liposoluble (n°1),

- protocole B : décrit par Laurent et al. (2008), qui généere respectivement une phase

aqueuse (n°2), éthanolique (n°3) et méthanolique (n°4).

- protocole C: décrit dans Laurent et al. (2008), qui conduit a 2 phases méthanol

aqueuses distinctes (80 : 20 et 60 : 40) (extraits n°5 et 6, respectivement)

Les courbes de compétition RBA correspondant a ces 6 extraits sont présentées en
figure 38 et ont permis le calcul des Clso.

Les résultats obtenus (tableau 23) mettent en évidence une toxicité dans la fraction
liposoluble (1) avec une affinité de 'ordre de 2,41 pug eqv P-CTX-3C / g d’extrait. La matte d’H.
lyngbyaceum est donc toxique et contient des composés ayant une affinité plus importante
gue la PbTx-3 spécifiguement pour le site 5 des CSSP.

L'analyse des extraits 2, 3 et 4 issus du protocole d’extraction B ne permet pas de
conclure quant a une éventuelle toxicité dans ces extraits (*, tableau 23) dont les effets en
RBA évoquent davantage un effet matrice.

Le protocole d’extraction C qui correspond a une étape de purification
supplémentaire de la fraction liposoluble (1) obtenue au moyen du protocole d’extraction A.
génere deux extraits dont la toxicité cumulée (n°5 + n°6) correspond a la toxicité de la
fraction précédente (n°1), indiquant que cette étape d’extraction supplémentaire ne
présente pas de réel intérét.
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Le protocole d’extraction de type A est donc retenu pour toute la suite des analyses
de toxicité des extraits de cyanobactéries par RBA.

Hydracoleum lyngbyaceum, avril 2005 (L2)

100 A

a
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Figure 38 : Courbes de compétition du test RBA des extraits d’H. lyngbyaceum (avril 2005, L2) obtenus selon
différents protocoles d’extraction : (a) protocole A (extrait n°1), (b) protocole B (extraits n°2, 3 et 4), (c)

protocole C (extraits n°5 et 6).

Tableau 23 : Valeurs des Clso du test RBA pour les extraits d’H. lyngbyaceum (L2).

Toxicité
. . Clso équivalente .
E N° Ph ! |
xtraction ase d’extraction ug / mL ug equ P-CTX-3C Conclusion
/ g d’extrait
A 1 liposoluble 257,5+11,8 2,41+0,11 Toxique
2 aqueuse 7 998 + 1601 0,08+ 0,02 *
B 3 éthanolique 2421 +963 0,28 +0,11 *
4 méthanolique 1897 + 690 0,35+0,13 *
5 méthanolique 80/20 319+ 106 2,06 +£0,69 Toxique
C
6 méthanolique 60/40 2120 0,26 + 0,11 Atoxique
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Analyses des extraits liposolubles (1) de cyanobactéries par le test RBA.

Une gamme de 8 concentrations a été testée pour générer les courbes de régression
sigmoidale permettant de calculer les valeurs de Clsy (ug d’extrait / mL) correspondantes
(figure 39 et tableau 24).

Extraits liposolubles de cyanobactéries

100 A

= H. glutinosum, nov. 2005 (L3)
4 0. subuliformis, mars 2006 (L5)
v P laysanense, aolt 2006 (L7)

80 A

60 -

40 A

20 A

Effet relatif (% du controle)

U——h-rmq—ﬁﬂrnq—!—nﬂm'—v—!ﬂnm—v—rrmrq—l—v—rrmq—!—nﬂﬂq

10 -3.5 10 -3.0 10 -2.5 10 -2.0 10 -1.5 10 -1.0 10 -0.5 10 0.0
Concentration de I'extrait (mg/mL)
Figure 39 : Courbes de compétition des extraits liposolubles de cyanobactéries récoltées en ZT a Lifou.

Tableau 24 : Valeurs des Clsy du test RBA pour les extraits liposolubles de cyanobactéries récoltées en novembre
2005 (L3), mars et ao(t 2006 (L6 et L7).

a Toxicité équivalente
Dates Réf. Espéces majoritaires /5:nL pg equ. P-CTX-3C/ g
He d’extrait
2005/11 L3 H. glutinosum 71+3 8,87 £0,48
2006/03 L5 O. subuliformis 86+11 7,41+£0,92
2006/08 L7 P. laysanense 75+ 16 8,68 +2,09

Les valeurs de Clsg obtenues sont de I'ordre de 71 a 86 pg d’extrait / mL, ce qui
témoigne d’une toxicité élevée de ces extraits liée a la présence de composés présentant une
forte affinité pour le site 5 du CSSP. Le recours au test RBA a donc permis dans le cas de ces 3
échantillons de cyanobactéries de conclure plus avant sur la nature des toxines impliquées, la
ou le test N2A avait seulement permis de mettre en évidence un effet cytotoxique, sans autre
information sur le mode d’action des composés toxiques. L'intérét de la complémentarité de
ces 2 tests est ainsi illustré.

Analyses par test RBA des extraits liposolubles de cyanobactéries purifiés sur Sep-pak®.

Onze fractions F2 (90 :10) des extraits liposolubles des mattes de cyanobactéries
purifiées sur Sep-Pak® sont analysées par le test RBA. Les valeurs des Clso (ug eqv d’extrait /
mL) et de leur toxicité exprimée en pg eqv de P-CTX-3C / g d’extrait sont présentées dans le
tableau 25.
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Tableau 25 : Valeurs des Cls, du test RBA pour les fractions F2 purifiés sur Sep-pak® des extraits liposolubles de
cyanobactéries récoltées de novembre 2005 a novembre 2009 (L3, L6, L7, L9, 12, L13, L14 et L17).

Toxicité
Date Réf. Espéces majoritaires ug eﬁ:fo/ mL uégq:cil“lla:g_:;_

3C/g
2005/11 L3 H. cf.glutinosum 275,4 2,25
2006/05 L6 O. subuliformis, O. cf. bonnemaisonii 1108,6 0,56
2006/08 L7 P. laysanense 367,8 1,69
2006/08 L7 S. weissii 545,6 1,14
2007/02 L9 H.lyngbyaceum, Oscillatoria sp., P.laysanense 218,6 2,84
2008/02 L12 H. glutinosum - <0,31
2008/06  L13  S. weissii 723,6 0,86
2008/11 L14 T. erythraeum 122,4 5,07
2009/11 L17C1 O. bonnemaisonii 604,4 1,03
2009/11 L17C2 T. erythraeum 376,4 1,65
2009/11 L17C3 P. laysanense 566,2 1,10

L'analyse en tests RBA a montré la présence de composés ayant une affinité
spécifique du site 5 des CSSP pour 10 fractions. Les valeurs de Clsg obtenues sont de I'ordre
de 122,421 108,6 ug eqv / mL.

Les résultats concernant I'extrait purifié de mattes dominées par H. glutinosum (L12)
ne mettent pas en evidence la présence de tels composés (toxicité < 0,31 ng eqv de P-CTX-
3C).

Les résultats en N2A et en RBA indiquent que les mattes dominées par les
cyanobactéries collectées en ZT contiennent a la fois :

i) des composés liposolubles agissant spécifiquement sur le site 5 des CSSP (test RBA
+) et dont la polarité est inférieure a celle des CTXs et

ii) des composés liposolubles cytotoxiques de polarité similaire a celle des CTXs mais
dont I'action n’est pas spécifiques des CSSP.

11.3.c.2 Bénitiers

[l.3.c.2.a Récoltes et données d’extraction
Des bénitiers ayant provoqué les intoxications a Lifou, ont été récoltés en 2005 et
2006 dans la ZT. Les spécimens (n = 2 a 3) ont été rassemblés par date de collecte afin de
constituer des « pools » de biomasse suffisante pour I'évaluation du type de toxicité (tableau
26). Des bénitiers « témoin » (n = 3) ont également été collectés a I'extérieur de la barriere
récifale a I'ouest de la Grande Terre dans une zone réputée indemne de ciguatéra. Les tests
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furent effectués en paralléle sur les extraits de bénitiers collectés dans la zone de péche de
Lifou (ZT et ZNT) afin d’évaluer I'effet de la matrice sur les réponses aux différents tests de
toxicité (souris, N2A et RBA).

Cette premiere série d’analyse a ainsi permis i) de déterminer le type de toxicité
présente dans ces échantillons de bénitiers et ii) d’affiner le protocole expérimental le mieux
adapté a ce type de matrice (modes d’extraction et fractions d’intérét, en fonction des tests
utilisés).

Tableau 26 : Caractéristiques des lots de bénitiers récoltés a Lifou de 2005 a 2006 et bénitiers « témoins »,

masses d’extraits obtenues en extraction méthanolique et extraction méthanolique acide (Mc Elhiney et al.,
1998 ; Nicholson and Bruch, 2001 et Laurent et al., 2008) ; MF : masse des lots de bénitiers frais.

Caractéristiques I?xtractif)n . Extra.ction .
méthanolique méthanolique acide
Date Code Zone f,\%?g:; Iy;\:l)jrf)lsi:ée :y((i/:(“)/l(lzl)) gLi(F;:“;lF)) Zy(c:/:(l\)/l(Fz)) :'(D‘Vil\(/le))
2005/04 L2 Toxique - - 0,356 0,015 - -
N 247 1
2005/11 13 toxi(:qnue 257,6 - ?1"96) (66,2? - -
2005/11 L3 Toxique 483,0 215,3 3(06,575)6 0(69,32;;; (26,1; f) ?6?0322)
2006/03 L5 Toxique 326,0 - 1(031’002)8 (06’20717) - -
0002 15 Towe | sme - | WU 0I5y, om0
e e I I B
oogos TN SRS Jesrwmez |Gl G0 o

A partir de 2008, un second échantillonnage a permis de collecter des individus de
bénitiers dans les ZT et ZNT de Hunété. La méthodologie d’extraction étant établie, notre
objectif était alors d’évaluer la toxicité inter-zone et dans le temps. Le tableau 27 liste
I'ensemble des bénitiers collectés en 2008 (L12) et 2009 (L15) ainsi que les données
d’extraction caractérisant chacun de ces lots.
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Tableau 27 : Bénitiers récoltés en 2008 et 2009, caractéristiques : masses d’extraits obtenues a I'issue des extractions méthanoliques et des extractions méthanoliques
acides (Mc Elhiney et al., 1998 ; Nicholson and Bruch, 2001 et Laurent et al., 2008) ; ND : non disponible ; MF et ML : masse des lots de bénitiers frais et lyophilisés
respectivement.

Extraction méthanolique

Extraction méthanolique acide

f'\r/;;z ch:\:l)?\?;sée Hydrosoluble (1) Liposoluble (1) Hydrosoluble (2) Liposoluble (2)
Code Espéce T(jr':‘; (g) %MF g | %MF %ML g %MF %ML g | %MF %ML g  %MF %ML g
B1 T. maxima 21,5 172,3 22,3 385 399 1786 6,8755 0,04 0,18 0,0691 | 0,16 0,74 0,2837 0,0 0,1 0,0321
B2 T. maxima 20,1 197,4 49,2 97,1 | 2,18 4,42 4,2946 0,07 0,15 0,1465 | 0,41 0,83 0,8052 0,0 0,0 0,0371
B3 T. maxima 17,2 186,7 22,8 42,5 3,14 13,79 5,8628 0,18 080 10,3396 | 0,50 2,21 0,9389 0,0 0,1 0,0635
g B4 T. maxima 17,0 160,7 21,6 34,7 | 556 25,73 8,9273 0,12 0,56 10,1954 | 0,28 1,32 0,4577 0,0 0,2 0,065
o B5 T. maxima 17,0 80,8 21,3 17,2 | 400 1880 3,2332 0,16 0,76 0,1301 | 1,40 6,60 1,1346 0,1 0,5 0,0837
§ B6 T. maxima 21,0 104,4 22,8 23,8 | 4,65 20,39 4,8523 0,15 0,64 0,1517 | 0,32 1,42 0,3376 0,0 0,1 0,0216
B7 T. maxima 21,1
B8 T. maxima 12,5 356,4 20,0 71,2 ND ND ND 0,10 0,50 0,3542 ND ND ND 0,0 0,1 0,1057
B9 T. squamosa 24,3
B1 T. maxima ND 112,0 25,4 285 | 4,21 16,53 4,7106 0,08 0,30 0,0855 - - - - - -
B2 T. maxima 22,4 142,5 20,7 29,5 | 4,89 23,61 6,9663 0,10 0,50 0,1465 - - - - - -
B3 T. maxima 23,5 82,1 19,1 15,7 | 6,98 36,51 5,7327 0,10 0,50 0,0787 - - - - - -
B4 T. maxima 20,2 156,8 18,2 28,5 | 4,79 26,33 7,504 0,07 0,36 0,1028 - - - - - -
LA B5 T. maxima 17,5 131,5 18,5 24,3 | 2,73 14,76  3,5863 0,09 049 0,1201 - - - - - -
:=" B6 T. maxima 18,6 396,0 186 73,8 | 3,20 17,18 12,6781 0,15 0,78 10,5771 - - - - - -
§ B7 T. maxima 17,2 32,5 24,0 7,8 2,59 10,80 0,8423 0,17 0,69 0,0541 - - - - - -
N B8 T. maxima 15,4 34,4 20,9 7,2 3,37 16,12 1,1608 0,22 1,04 0,0752 - - - - - -
B9 T. maxima 17,6 8,6 22,1 1,9 4,83 21,87 0,4155 0,40 1,81 0,0344 - - - - - -
B10 T. maxima 18,7 19,0 30,5 5,8 518 16,97 0,9843 0,21 0,68 0,0395 - - - - - -
B11 T. maxima 19,4 27,7 19,1 5,3 3,35 17,53 0,9293 0,21 1,11 0,0587 - - - - - -
B12 T. maxima 19,3 19,7 19,3 3,8 4,63 24,02 0,9128 0,18 0,94 0,0358 - - - - - -
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[1.3.c.2.b Purification

Le lot de bénitiers collectés en ZT en novembre 2005 (L3) a permis d’aller plus en avant
dans les investigations en appliquant le protocole de purification selon Hamilton et al. (2002)
présenté en section M et M. L'extrait liposoluble 1 (ici nommé E1) est fractionné sur colonne de
Florisil® (E1Fx) puis sur colonne de Sephadex LH20 (E2Fx). Le bénitier « témoin » récolté a
I'ouest de la Grande Terre en avril 2006 (« témoin A ») est également fractionné sur colonne de
Florisil® mais sa purification sur colonne Sephadex LH20 n’a pu étre menée par manque de
matiere.

Les colonnes de chromatographie sont mises en place manuellement, les parameétres de
la purification sont donnés dans le tableau 22.

Tableau 28 : Données des purifications sur colonne de Florisil® et de Sephadex LH20 des bénitiers péchés a Lifou
dans la ZT en novembre 2005 (L3) et du bénitier « témoin » récolté en 2006.

Dépot Colonne
Volume
M L Diamé
Extrait liposoluble (1) Référence asse Matrice ongueur lametre d'élution
(mg) (cm) (cm) (
mL)
e E1l 933 Florisil® 23,5 1,7 53,0
Lot de bénitiers
2005 /11
ZT (L3) Sephadex
E1F5 + E1F6 108 17,0 1,2 8,0
LH20
2006 / 04 Benitier E1 255 Florisil® 18,0 1,2 20,3
« témoin » A

Le tableau 29 donne le détail des masses des fractions E1F1 a E1F9 issues du
fractionnement sur colonne de Florisil® de I’extrait liposoluble (1) du bénitier « témoin »A . La
figure 40 synthétise les données de purification de I'extrait liposoluble (1) du lot de bénitiers
récoltés en ZT

Tableau 29 : Masses (mg) des fractions purifiées de I'extrait liposoluble du bénitier « Témoin » (2006), collectées
apres purification sur colonne de Florisil® (Hamilton et al., 2002).

Benitiers E1 | EIF1  E1F2  E1F3  E1F4  EIF5  E1F6  E1F7  EIF8  E1F9
« témoin » A
Masse des

255 91,7 193 6,3 3,5 1,5 9,9 2,5 36 86,7

fractions (mg)

Les fractions susceptibles de contenir les composés d’intérét sont analysées a 'aide des
tests N2A et RBA (rouge, figure 40).
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Bénitier frais: 483 g

Lyophilisation

Masse lyophilisée : 215,3 g

Extraction méthanolique

CH2C|2 MeOH : Hzo
60:40

CeH1 MeOH : H,0; 80: 20
933 mg

F1:1539mg E1l = 0,2 % Masse lyophilisée

Colonne de Florisil

| Purification 1 :

E1FO E1F1 E1F2 E1F3 E1F4 E1F5 E1F6 E1F7 E1F8 E1F9 E1F6=3%de E1

718 564 93 34 28 79 49 311 123 371

I_|_I
108 mg Purification 2 :

| Colonne LHy,

‘ | ‘ ‘ | E2F2 = 58% de E1F5 + E1F6

E2F1  E2F2 E2F3 E2F4 E2F5
4 58 16 14 18

Figure 40 : Données d’extraction et des deux purifications (Hamilton et al., 2002) effectuées sur le lots de
bénitiers récoltés en novembre 2005 (L3) dans la ZT de Hunété.
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11.3.c.2.c Données de toxicité

I.3.c.2.c.(i) Etudes antérieures

Détection d’activités neurophysiologiques.

Des analyses préliminaires en électrophysiologie (test sur les jonctions
neuromusculaires) menées au laboratoire de Gif-sur-Yvette ont mis en évidence dans les
extraits liposolubles de bénitier des composés dont I'activité est similaire a celle des CTXs
(augmentation des MEPPs (miniature end plaque potential), dépolarisation de membranes).
Quant a I'extrait hydrosoluble testé sur I’hémidiaphragme de souris au méme laboratoire, les
résultats sont en faveur de la présence de substances similaire aux STXs (toxines paralysantes
ou PST).

Détection des STXs.

La recherche de toxines paralysantes (STX et analogues) dans les bénitiers collectés dans
la ZT a été réalisée par le LERQAP de I’AFSSA selon la méthodologie décrite précédemment
(ch.211.3.c.1.b). Lextrait hydrosoluble (1) des bénitiers collectés en novembre 2003 (L3) est
extrait en hydrolyse acide. De faibles teneurs de STX ont été détectées a raison de 112 ng/ g
d’extrait (soit 7,1 ng / g de matiére fraiche). Aucun autre analogue analysé par cette méthode
n’a été détecté.

Si I'on considére leurs faibles teneurs en STX, les bénitiers (L3) ne constituent pas de
risque pour la santé humaine puisque le seuil sanitaire en vigueur en France pour les coquillages
est de 80 pg / g de chair (Frémy et Lassus, 2001). La toxicité des bénitiers ayant causée les
intoxications dans la tribu d’Hunété serait donc liée a d’autres composés toxiques.

L’ensemble de ces résultats (analyses neurophysiologiques et chromatographiques) bien
gu’obtenus sur des lots distincts de bénitiers issus de la méme ZT a Lifou, confirment donc la
présence chez ces bénitiers d’'un complexe toxinique que nous nous proposons de caractériser
plus avant.

I1.3.c.2.c.(ii) Test souris

Le test souris a été utilisé pour évaluer les toxicités des extraits hydrosolubles (1) et (2)
et liposolubles (1) et (2) de bénitiers collectés dans la ZT de Lifou de 2005 a 2009 et des bénitiers
considérés comme témoin (de 2006 et 2008). Les résultats sont résumés dans le tableau 30. La
toxicité de chaque extrait est caractérisée par sa DLsg estimée (mg d’extrait / g de souris), sa
classe de toxicité et les principaux symptomes observés. Les données concernant les bénitiers
récoltés lors des missions de 2008 et 2009 (L12, L15) regroupent les observations faites pour les
bénitiers testés individuellement. Les quantités disponibles de certains extraits liposolubles
(L12, L15 et Témoin A et B) ne sont pas suffisantes pour mener I'analyse.

165/ 326



Chapitre 2 : Les cyanobactéries marines

Tableau 30 : Données de toxicité des extraits hydrosolubles (1) et (2) et liposolubles (1) et (2) de bénitiers analysés a I'aide du test souris : DLs, estimée en mg
d’extrait / g de souris, Classe de toxicité et principaux symptdmes observés (ND : Non déterminée).

Fraction hydrosoluble

Fraction liposoluble

Date Extraits DL DL
50 A 50 A
Classe Symptomes Classe Symptomes
(mg/g) (mg/g)
9005-03 L2 5-10 Tox + Para./ySIe'generale, mort par détresse ND ND  ND
respiratoire
2005-11 L3 5.10  Tox++ aralysie générale, mort par détresse 0,5-1,0 Tox++ Affaiblissement, perte de réactivité,
respiratoire diarrhée, tremblement, affaissement
Paralysie générale, spasmes, mort par . .
2006-03 L5 2-5 Tox ++ i ysie g . ’ P ’ p 1-2 Tox ++ Contractions abdominales, spasmes
détresse respiratoire
. L9 (,1) . 50-75 Tox++ Pc?ra/ySIe genfera/ef spasmes, mort par <1 Tox ++ Contrqct/onﬁ abdominales, paralysie
(extraction méthanolique) détresse respiratoire du train arriére
2007-02
L9 (2) L, . . .
. Paralysie générale, spasmes, mort par Contractions abdominales, paralysie
(extraction 5 Tox ++ , . . >3 Tox + ) N
. . . détresse respiratoire du train arriére
méthanolique acide)
Paralysie général
2008-02 112 50-75 Tox++ CIII’G ysie genfera ef spasmes, mort par i i i
détresse respiratoire
2009-02 L15 4.5 Toxt+ Para!ysie .générale, mort par détresse i i i
respiratoire
Témoi
'emomlA (1) . - Atox - - - -
(extraction méthanolique)
2006 Témoin A (2)
(extraction - Atox - - - -
méthanolique acide)
Témoin B (1) Diarrhée, faiblesse, récupération rapide
. . . <75 Tox - - _
(extraction méthanolique) en3h
2008 Témoin B (2) Paralysie générale, mort par détresse
(extraction <25 Tox++ ysie g ’ P - - -

méthanolique acide)

respiratoire
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Les fractions hydrosolubles

Tous les extraits hydrosolubles de bénitiers collectés a Lifou et testés sur souris ont
révélé des toxicités classées Tox + (L2) ou Tox ++ (L3, L5, L9, L12 et L15), avec des DLs, moyennes
de 4 a 5 mg d’extrait / g de souris. Les bénitiers collectés dans la ZT en mars 2006 (L5) sont les
plus toxiques : DLsg estimée a 2 a 5 mg /g (soit environ 65 a 160 mg eqv de chair / g de souris).
Les symptomes sont de type paralysant, avec une phase de coma possible et la mort par
détresse respiratoire. La paralysie, progressive, touche d’abord les membres postérieurs puis
antérieurs et enfin I'ensemble du corps. Les récupérations peuvent étre rapides : par exemple,
I'injection de 4 mg / g d’extrait hydrosoluble provoque chez les souris une paralysie générale
proche du coma suivie par une récupération aprés une phase de transition de 20 min. Certaines
souris injectées peuvent parfois mettre plusieurs heures avant de récupérer 'ensemble de leur
motricité.

Le test n’a pas mis en évidence de différences de toxicité entre les bénitiers collectés en
ZT et ceux collectés en ZNT.

Par contre, les bénitiers « témoin » ont montré des résultats différents : le bénitier de
2006 est atoxique aux concentrations testées, alors que le bénitier de 2008 a fortement affecté
les souris qui ont exhibé des symptomes similaires a ceux induits par les autres extraits de
bénitiers provenant de Lifou. Le bénitier de 2008 ne peut donc étre considéré comme témoin.
Cela indique qu’il faut étre prudent dans le choix des organismes a considérer comme témoin et
gu’une zone initialement réputée indemne peut changer de statut toxique au fil du temps.

Les fractions liposolubles

Seules 4 fractions liposolubles ont pu étre analysées. Elles montrent une forte toxicité
(Tox ++), avec des valeurs de DLso de I'ordre de 0,5 a 1 mg / g (soit environ 15 a 65 mg eqv de
chair / g de souris).

Les symptomes majoritaires sont une grande faiblesse générale accompagnée de la
paralysie du train arriére et de contractions abdominales. La mort survient soit tres rapidement
dans les 15 premieres minutes lorsque des doses supérieures a 5 mg / g sont injectées, ou alors
les souris mettent plusieurs heures a agoniser lorsque des doses sublétales leur sont
administrées. Ces symptomes rappellent ceux induits par I'injection de CTXs pures notamment
la CTX-4, a la différence que les diarrhées profuses ne sont pas observées.

Enfin, afin d’évaluer l'efficacité de I'étape de délipidation, nous avons injecté les
fractions cyclohéxaniques des bénitiers collectés en ZT et en ZNT a Lifou en novembre 2005 (L3).
Testés a 2 et 5 mg/ g, 'injection n’a eu aucun effet sur le comportement des souris. L’étape de
délipidation des extraits liposolubles de bénitiers permet donc bien de « nettoyer » la fraction
liposoluble sans lui enlever de composés toxiques.
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I.3.c.2.c.(iii)  Test N2A

Toxicité des lots de bénitiers

Dans un premier temps, nous avons analysé les extraits liposolubles (1) issus des lots de
bénitiers collectés en 2005, 2006 et 2008 a Lifou et les bénitiers « témoin » provenant de la
Grande Terre. La figure 41 illustre le type de courbes obtenues pour I'analyse des extraits
liposolubles des bénitiers en conditions +OV et -OV, et le tableau 31, les valeurs de Clsp,
coefficients de Hill et coefficient de régression R? correspondants.

Bénitier témoin (2008)

—o- Extrait liposoluble (+OV)
-®- Extrait liposoluble (-OV)

Viabilité cellulaire
(% du contrdle)

Extrait liposoluble (+OV)
Extrait liposoluble (-OV)

¢ ¢

Fraction CgH,, (+OV)
=- Fraction CgHq, (-OV)

Viabilité cellulaire
(% du controle)

0 S —
1 10 100 1000

Concentration de I'extrait (ug / mL)

Figure 41 : Effets cytotoxiques des extraits liposolubles des lots de bénitiers « témoin » B (2008) et collectés a
Lifou en ZT en février 2007 (L9).
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Tableau 31: Valeurs des Cls, (en pg d’extrait / mL et g de chair fraiche / mL) des extraits liposolubles et
cyclohéxaniques du lot de bénitiers « témoin » B (08/2008) et du lot de bénitiers de la ZT péchés en février 2007,
L9, en conditions -OV et +0OV.

. (,:Iso . Clso Coefficient 2
Extrait ug d’extrait geqv de de Hill R
/ mL. chair / mL.
L. +0V 229+8 4,6 £0,2 -4,5+0,9 0,9573
Témoin B .
2008 liposoluble
-0V 1599 3,2+0,2 -2,5+0,3 0,9611
+0OV 123+13 3,8+0,4 -4,6 £ 3,0 0,8609
lipidique
L9 -ov 132+12 4,1+0,4 -5,5+5,0 0,8523
2007 . . +0V ND ND ND 0,6072
cyclohéxanique

(Cottao) -0V ND ND ND 0,5479

Ces résultats indiquent que :
- Le bénitier collecté en 2008 sur la Grande Terre en tant que « témoin » est en
réalité toxique (Clso = 3,9 g eqv de chair / mL) avec une activité non spécifique des
CSSP.
- Les bénitiers collectés a Lifou en février 2007 (L9) sont plus toxiques avec une
activité non spécifique des CSSP (p = 0,717).
- Lafraction de délipidation (CsH12) ne contient pas de composés cytotoxiques.

Lots de bénitiers « témoin »

Le bénitier B (2008) « témoin » est toxique : le test N2A montre qu’il contient des
composés liposolubles cytotoxiques et le test souris a mis en évidence la présence de
substances a activité paralysante (tableau 30). A contrario, le bénitier collecté en 2006
(« ttmoin A ») s’est révélé atoxique en test souris (tableau 30) et en test N2A. Ce dernier
atoxique dans les gammes de concentrations testées est donc utilisé comme « témoin » dans
I’étude du fractionnement.

Evaluation de I’applicabilité de I’extraction rapide pour les bénitiers.

Le protocole d’extraction liquide-liquide appliqué aux bénitiers s’avére relativement
fastidieux. Aussi compte tenu de la polarité des substances toxiques liposolubles proches des
CTXs évaluée précedemment, nous avons voulu tester I'applicabilité de I'extraction rapide pour
la matrice bénitiers.

Cette évaluation est menée sur les bénitiers récoltés a Lifou en février 2008 (L12) : 6
spécimens récoltés en ZT (B1 a B6) et 3 spécimens récoltés en ZNT et regroupés en un lot (B7 a
B9). Des aliquotes de 5g de chair par spécimen sont broyés et extraites selon le protocole
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d’extraction rapide utilisé pour la matrice chair de poissons. Les effets cytotoxiques de la
fraction F2 (MeOH : H,0, 90 : 10) et des extraits liposolubles issus du partage liquide — liquide
sont comparés (figure 42). Les valeurs des Clso, calculées a partir de 3 expérimentations
indépendantes (n = 3), ont été converties en mg équivalent de chair de bénitier (lyophilisée et
fraiche) afin de pouvoir comparer les résultats entre eux.

Extraction rapide Extraction liquide / liquide
500 500-

400+ 4004 %

Valeurs Clg

B2

300- 300 5
2001 { § 200 o}
100 % % { % 1001 y o
§ = = o = L g g o ° ¢
B3 B4 B4

0 ? T T
B1 B5 B6 B7+8+9 B1 B2 B3

) ]
B5 B6 B7+8+9

® en mg chair lyophilisée / mL O en mg chair fraiche / mL

Figure 42 : Valeurs des Cls, (en mg eqv de chair lyophilisée ou fraiche) des extraits de bénitiers récoltés en février
2008, issus de I’extraction rapide (F2) ou de I'extraction liquide / liquide (extrait liposoluble 1).

On note une différence entre les valeurs de Clsg (en mg de chair fraiche / mL) obtenues
selon les deux techniques d’extraction (p = 0,025) et les écarts a la moyenne sont plus
importants avec la technique d’extraction rapide. Ces résultats suggerent que le protocole
d’extraction rapide pourtant bien adaptée a la matrice poisson, n’est en revanche pas applicable
a celle beaucoup plus complexe et riche en lipides des bénitiers vraisemblablement a I'origine
d’une saturation tres rapide de la cartouche Sep-pak®. Dans la suite de cette étude, le protocole
de partage liquide-liquide sera donc systématiquement privilégié pour évaluer le potentiel
toxique des bénitiers collectés dans la zone d’étude de d’Hunété.

Evaluation de la toxicité individuelle des bénitiers collectés en 2008 et 2009 (L12 et L15)

La figure 43 représente les valeurs des Clsg individuelles des extraits liposolubles de
bénitiers récoltés dans les ZT et ZNT d’Hunété en février 2008 (L12) et février 2009 (L15), les
bénitiers collectés en 2008 en ZNT sont regroupés en lot (B7 + B8 + B9).

Les valeurs des Clso du test N2A sont comprises entre 40 et 215 ug d’extrait / mL pour
2008 (L12) et entre 6 et 281 pg d’extrait / mL pour 2009 (L15). Ces analyses de cytotoxicité
indiguent que les bénitiers sont toxiques sur I'ensemble de la zone de péche de Hunété (ZT et
ZNT) (p = 0,234 (2008, L12) et p = 0,183(2009, L15), présentant une toxicité dont I'action est non
spécifique des CSSP (p = 0,450 (2008, L12) et p = 0,338 (2009, L15) et constante sur les années
2008 et 2009 (p = 0,7649).
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B2 - - (] Février 2008 (L12)

[ Février 2009 (L15)

0 100 200 300 400 500
Concentration de I'extrait (ug / mL)

Figure 43 : Valeurs des Clso (en pg / mL) des extraits liposolubles de bénitiers récoltés en février 2008 (L12) et
2009 (L15) ; les barres pointillées représentent les valeurs Cls, de bénitiers collectés en ZNT.

En outre, on observe des diférences significatives interindividuelles qui ne s’expliquent
pas par la taille des individus: L12, moyenne = 19,1 + 3,5 cm et L15, moyenne = 19,1 + 2,3 cm.
Notre hypothese était que les bénitiers les plus toxiques étaient ceux se situant a proximité des
mattes de cyanobactéries mais en raison d’une localisation du prélevement par zone (ZT vs ZNT)
et non de maniére plus précise (par coordonnées GPS par exemple), il ne nous a pas été possible
de vérifier cette hypothése.

Effets cytotoxiques des extraits liposolubles de bénitiers purifiés en chromatographie basse
pression.

Différentes fractions susceptibles de contenir les composés d’intérét, issues des deux
purifications en chromatographie sur colonne de Florisil® et de Sephadex® LH20 des extraits
liposolubles des lots de bénitiers sont testées sur test N2A :

- Purifications du lot de bénitiers (ZT, L3) (figure 40): fractions E1 (ou extrait
liposoluble 1), E1F4, E1F5 et E2F2 (figure 44),

- Purifications du lot de bénitiers « témoins » A (2006) (tableau 29) : fractions E1
(ou extrait liposoluble 1), E1F5, E1F6 (figure 45).

Les figures 44 et 45 représentent les effets cytotoxiques des différentes fractions testées
selon une gamme de 0 a 208 pg d’extrait / mL.
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Figure 44 : Effets cytotoxiques des extraits de bénitiers collectés a Lifou en ZT en novembre 2005 (L3) ; E1 : extrait
liposoluble (1), E1F4 et E1F5 : fractions obtenues par purification sur colonne de Florisil®, E2F2 : étape 2 de

Viabilité cellulaire

purification sur colonne de Sephadex® LH20.
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Figure 45 : Effets cytotoxiques des extraits liposolubles de lot de bénitiers « témoin » A (2006) ; E1 : extrait
liposoluble (1), E1F5 et E1F6 : fractions obtenues par purification sur colonne Florisil®.

Les fractions E1 et E2F2 du bénitier toxique ont provoqué des effets cytotoxiques +OV et
-0V similaires (p > 0,05) (courbes -OV non présentées), cela indique qu’ils n’ont pas une activité
spécifique des CSSP. La fraction E1 a induit une forte cytotoxicité équivalente a celle induite par
la fraction E2F2 : Clso = 38,8 et 55,7 mg d’extrait / mL respectivement.
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L’étape de purification n’a donc pas eu d’influence sur la toxicité de la fraction E2F2 alors
gu’on pouvait s’attendre a une augmentation de celle-ci (augmentation de la pureté de
I’extrait). Quant aux fractions E1F5 et E1F4, elles démontrent respectivement une faible toxicité
et un effet atoxique. Les composés de polarité plus faible sont donc extraits en faible quantité
par E1F5 et majoritairement par E1F6. Cette derniére n’a pas pu étre testée en N2A, étant
données les faibles quantités extraites, nous avons voulu privilégier la 2eme étape de
purification ou les fractions E1F5 et E1F6 sont rassemblées et purifiées.

En ce qui concerne le lot de bénitiers « témoin » A (2006), aucune des fractions testées
n’a révélé de toxicité, particulierement la fraction E1F6 censée étre la fraction contenant les
substances toxiques (figure 45). Ceci est donc en faveur de I'innocuité de cet échantillon qui
comparé a l'analyse des fractions équivalentes pour le bénitier toxique, nous permet de
s’assurer de I'effet spécifique de ces composés toxiques.

I.3.c.2.c.(iv)  Test RBA

Les fractions ayant montré un important effet cytotoxique sont ensuite testées en RBA
afin de tenter de préciser le mode d’action des composés présents dans ces fractions.

Evaluation de la toxicité des bénitiers collectés en ZT.

L’extrait liposoluble (E1) ainsi que les fractions E1F6 et E2F2 issues de la purification par
chromatographie basse pression sur Florisil® et Sephadex® respectivement, du pool de bénitiers
collectés en ZT (L3) ont été analysés. La figure 46 illustre les courbes de compétition de chacun
de ces extraits ; le tableau 32 donne les valeurs de Clsg correspondantes. A titre de comparaison,
les valeurs obtenues précédemment pour le pool de bénitiers collectés en début d’étude (avril
2005, L2) sont également indiquées (Laurent et al., 2008).

Bénitiers purifiés, novembre 2005 (L3)

100 ~ v Y

= BenTox E1
80 A
4o BenTox E1F6

60 A v Ben Tox E2F2
40 A

20 A

Effet relatif (% du contrdle)

10-3.5 10-3.0 10-2.5 10-2.0 10-1.5 10-1.0 10-0‘5 100‘0
Concentration de I'extrait (mg/mL)

Figure 46 : Courbes de compétition du test RBA des extraits (mg / mL) de bénitiers de Lifou collectés en
novembre 2005 (L3).
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Tableau 32 : Toxicité exprimée en mg eqv de P-CTX-3C / g d’extrait des extraits et fractions analysés par le test RBA.

Traitement chimique Référence me eqv’ P-CT)f-3C /
g d’extrait
Béniti llecté ZT,
énitiers collectés en E1 10,4+33
Séparation L2
liquide - liquide
E1l 15,65 +£5,78
. .. Béniti llecté T,
Purlflc,atlon Florisil énitiers collectés en E1F6 3,04 +0,25
(étape 1) L3
Purification Seph LH2
urifica |o? ephadex 0 E2F2 4,04 +0,01
(étape 2)

Les extraits liposolubles de bénitiers collectés en novembre 2005 (L3) sont plus toxiques
(15,65 + 5,78 mg eqv P-CTX-3C / g d’extrait) que ceux collectés en avril 2005 (L2) (10,4 + 3,3 mg
eqv P-CTX-3C / g d’extrait). En d’autres termes, la concentration de composés de haute affinité
pour le site 5 des CSSP bioaccumulés dans les bénitiers de ZT est devenue plus importante apres
un délai de sept mois.

En ce qui concerne les fractions E1F6 et E2F2, le test RBA démontre une forte diminution
de l'activité toxique spécifique du site 5 des CSSP : les fractions E1F6 et E2F2 possédent une
méme toxicité (= 3 a 4 mg eqv P-CTX-3C / g d’extrait). Cela suggere que lors de I'étape 1 de
purification, la toxicité n’a pas été séparée dans la fraction supposée. Il est envisageable que la
forte toxicité évaluée en E1 se soit retrouvée au niveau de la fraction E1F7. Par contre, la
purification sur Sephadex® semble étre efficace puisque le rendement de toxicité est de 130%
pour E2F2 démontrant |'efficacité de I'étape 2 de purification avec une augmentation de la
toxicité.

Enfin, on constate que les données obtenues par RBA versus test N2A ne montrent pas
une bonne corrélation entre elles ce qui semble indiquer que les pools de bénitiers de la ZT
contiennent a la fois :

i) des composés liposolubles agissant spécifiqguement sur le site 5 des CSSP (test RBA +)
et dont la polarité est inférieure a celle des CTXs et

ii) des composés liposolubles cytotoxiques de polarité similaire a celle des CTXs mais
dont I'action n’est pas spécifiques des CSSP.

11.3.c.3 Poissons

II.3.c.3.a Récoltes et données d’extraction
Un total de 25 poissons (22 perroquets, 2 loches saumonées et 1 murene) a été collecté
dans la zone de péche de Lifou de 2007 a 2009 (L9, L12 et L15). Chaque poisson est extrait
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individuellement sur Sep-pak® en vue de son analyse par test N2A. L’'identification des espéces,
les caractéristiques morphométriques et les données d’extraction sont synthétisées dans le
tableau 33.

Les perroquets sont les especes-sentinelles que nous avons choisi de cibler dans cette
étude. Rappelons que l'apparition d’une ciguatoxicité au niveau de ce premier maillon de la
chaine trophique serait le signe de I'émergence de la ciguatéra dans la zone d’étude considérée
(cf. ch1.1.7).

Scarus schlegeli (Bleeker, 1861) est le perroquet le plus fréqguemment péché dans la
zone. D’apreés les données de la littérature, ce perroquet dénommé perroquet a bande jaune est
signalé comme exempt de CTXs. Scarus rivulatus (Valenciennes, 1840) est un perroquet
également commun dans les lagons calédoniens. Appelé encore perroquet a museau rayé, il est
lui aussi réputé exempt de CTXs. Ces deux espéces de perroquet principalement corallivores ont
un comportement alimentaire comparable (niveau trophique de 2,0 selon Fishbase). S. schlegeli
est inféodé aux zones récifales jusqu’a 50 m, tandis que S. rivulatus reste plutot dans la zone
lagonaire jusqu’a 10 m.

Plectropomus leopardus (Lacepéde, 1802), appelée encore loche saumonée ou loche a
petits points, est tres fréquente dans les eaux calédoniennes. Son niveau trophique est de 4,49.
Appréciée des consommateurs, elle est généralement considérée comme non ciguatérique
localement, bien que la base de données Fishbase la répertorie comme ayant provoqué des
intoxications ciguatériques.

Gymnothorax javanicus (Bleeker, 1859) collectée en 2007 (L9), est reconnue pour étre
fortement ciguatérique. Ichtyophage, la muréne javanaise est située en haut de la chaine
alimentaire avec un niveau trophique de 3,87.

I1.3.c.3.b Données de toxicité

L’évaluation de la toxicité des poissons collectés dans la zone de péche de la tribu
d’Hunété sur trois années (2007, 2008 et 2009) est présentée sous la forme de courbes de
cytotoxicité en fonction d’'une gamme de concentrations d’extraits de chair (exprimées en mg
eqv de chair / mL) des perroquets (S. schlegeli et S. rivulatus) (figure 47), de la muréne
(Gymnothorax javanicus) et de la saumonée (Plectropomus leopardus) (figure 48). Seules les
valeurs de cytotoxicité obtenues en conditions (+OV) sont indiquées.

Les Clso observées en conditions (+OV) sur I'ensemble des extraits de poissons sont
significativement différentes de celles obtenues en conditions (-OV) (p moyen < 0,01). Ceci
indique que les composés toxiques présents chez les poissons ont une action spécifique sur les
CSSP, typique de I'action des CTXs.

La ciguatoxicité des poissons a été estimée a partir des valeurs de Clsg exprimées en mg
eqv de chair de poisson / mL (tableau 34) et des caractéristiques de la courbe de régression
(coefficient de Hill et R?) (données non présentées).
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Tenant compte de I'effet toxique chez 'Homme (100 pg éqv de P-CTX-1B / g de chair;
Hamilton et al., 2009) et des Clsg de toxines pures obtenues dans des conditions expérimentales
similaires (O, 10 mM et V, 1 mM) (Dechraoui, 1999), nous pouvons estimer la limite de toxicité
pour ’'Homme, dans nos conditions a 540 pg éqv d'extrait / mL.

Tableau 33 : Caractéristiques et données d’extraction rapide des poissons récoltés en 2007, 2008 et 2009 a Lifou
(ZT (rose), ZNT (bleu) ; MF : masse de chair fraiche.

Fraction 2 Fraction 2

Réf. Espece LO?fnl:‘;ur Mzags)se Masse (g) %MF masse (g) %MF
L9 Février 2007

LS Plectropomus leopardus 46 1300 0,000 0,00 - -
M Gymnothorax javanicus 75 690 0,003 0,05 - -
P1 Scarus sp. 28 500 0,001 0,03 - -
P2 Scarus sp. 28 460 0,001 0,03 - -
P3 Scarus sp. 28 460 0,001 0,01 - -
P4 Scarus sp. 27 400 0,000 0,01 - -
P5 Scarus sp. 29 420 0,000 0,01 - -
L12 Février 2008

P1 Scarus sp. - 150 0,137 2,75 0,148 2,95
P2 Scarus schlegeli 23 108 0,038 0,76 0,095 1,90
P3 Scarus schlegeli 28 120 0,052 1,05 0,306 6,12
P4 Scarus schlegeli 36 230 0,080 1,60 0,014 0,27
P5 Scarus schlegeli 32 185 0,307 6,14 0,019 0,37
P6 Scarus schlegeli 27 141 0,350 7,00 0,026 0,53
P7 Chlorurus sordidus 22 68 0,002 0,05 - -
L15 Février 2009

P1 Scarus schlegeli 28 56 0,005 0,10 0,007 0,14
P2 Scarus schlegeli 34 94 0,007 0,14 0,010 0,20
P3 Scarus schlegeli 28 131 0,007 0,14 0,009 0,18
P4 Scarus schlegeli 30 54 0,007 0,13 0,010 0,20
P5 Scarus schlegeli 24 31 0,009 0,18 0,015 0,31
P6 Scarus schlegeli 31 89 0,009 0,19 0,015 0,31
P7 Scarus schlegeli 29 73 0,009 0,18 0,014 0,28
P8 Scarus rivulatus 23 31 0,008 0,15 0,012 0,25
P9 Scarus rivulatus 21 54 0,009 0,19 0,009 0,18
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Figure 47 : Effets cytotoxiques en conditons (+OV) des extraits (en mg eqv / mL) de chair de perroquets collectés
dans la zone de péche de Hunété en 2007, 2008 et 2009.
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Tableau 34 : Valeurs des Cls, en mg eqv de chair / mL et toxicité des poissons collectés dans la zone de péche de
Hunété en 2007, 2008 et 2009 (L9, L12 et L15). Toxicité : Atoxique > 540 mg eqv de chair de poisson / mL ; Toxique

< 540 mg eqv de chair de poisson / mL.

Espéces de poissons mg eqvﬁléochair de Toxicité
poisson / mL.
L9 Février 2007
P1 Scarus sp. 533 +27 Toxique
P2 Scarus sp. 331 +29 Toxique
P3 Scarus sp. 781 £194 Atoxique
P4 Scarus sp. 318 £39 Toxique
P5 Scarus sp. 813 +£476 Atoxique
S Plectropomus leopardus 1380 Atoxique
M chair Gymnothorax javanicus 146 + 24 Toxique
M foie Gymnothorax javanicus 63 Toxique
L12 Février 2008
P1 Scarus sp. 400 + 145 Toxique
P2 Scarus schlegeli 479 £ 32 Toxique
P3 Scarus schlegeli 672 + 182 Atoxique
P4 Scarus schlegeli 314 +39 Toxique
P5 Scarus schlegeli 293 + 25 Toxique
P6 Scarus schlegeli 517 £ 107 Toxique
P7 Chlorurus sordidus 341 +123 Toxique
L15 Février 2009
P1 Scarus schlegeli ND Atoxique
P2 Scarus schlegeli ND Atoxique
P3 Scarus schlegeli ND Atoxique
P4 Scarus schlegeli ND Atoxique
P5 Scarus schlegeli 328 Effet matrice?
P6 Scarus schlegeli 335 Effet matrice?
P7 Scarus schlegeli 339 Effet matrice?
P8 Scarus rivulatus 332 Effet matrice?
P9 Scarus rivulatus 516+ 72 Effet matrice?
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En 2007, les poissons perroquets du genre Scarus (P1, P2 et P4) sont ciguatoxiques
(valeurs de Clsp = 318 a 533 mg eqv /mL), tandis que les perroquets P3 et P5 n’ont pas démontré
de ciguatoxicité. En 2008, les perroquets péchés dans la ZT sont quasiment tous ciguatoxiques
(excepté P3, 672 + 182 mg eqv /mL), les Clso sont de I'ordre de 293 + 25 (L12, P5) a 517 + 107
(L15, P6). En 2009, 4 perroquets sur 6 sont atoxiques dans la ZT. Par contre, il n’a pas été
possible d’évaluer les Clsg des 5 autres perroquets qui montre a priori un effet matrice. En effet,
la régression sigmoidale des données de cytotoxicité n’est pas satisfaisante (coefficient de Hill >
5, 0 et R? < 0,6), ceci est clairement visible en figure 47 (2009) ou I'on peut noter des courbes
avec des pentes trés abruptes (P4 a P9), non caractéristiques d’un effet cytotoxique dose-

dépendant.
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Figure 48 : Effets cytotoxiques des extraits (en mg eqv / mL) de saumonée (S), de chair (M chair) et de foie (M
foie) de muréne collectés dans la ZT en 2007 (L9).

La saumonée (Plectropomus leopardus) n’a pas révélé de toxicité (figure 48). En
revanche, la muréne péchée dans la ZT est fortement toxique : I'extrait de foie a induit une
toxicité de 100% deés 10 mg eqv de foie / mL (la plus faible concentration testée). La chair est
également fortement ciguatoxique (Clsp = 146 + 24 mg eqv de chair / mL). Les résultats de
cytotoxicité concernant ces deux espéces sont en accord avec les connaissances locales, a savoir
gue la saumonée est réputée indemne de ciguatéra tandis que la muréne présente un fort
risque ciguatérique.

Les perroquets péchés dans la zone sont ciguatoxiques durant la saison 2007 avec un pic
de toxicité sur notre échantillonnage en 2008 et la toxicité des poissons semble diminuer en
20009. Il est possible que cela soit d aux faibles teneurs présentes alors dans les chairs de
poissons.

Sur I'ensemble des résultats de cytotoxicité, il n’a pas été possible d’observer une
différence entre les poissons péchés dans la ZT et ZNT vu le faible nombre d’échantillons
représentatifs de la ZNT qui ont pu étre analysés. En tout état de cause, il semble difficile de
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délimiter de maniere stricte une zone toxique d’'une zone indemne, puisque les poissons et plus
particulierement le perroquet ont un comportement alimentaire qui les rend peu sédentaires.

I.3.d Identification des toxines

Fractions liposolubles : détection des CTXs

Certains extraits issus de la purification du pool de bénitiers toxiques collectés en
novembre 2005 (L3) (figure 40) ont été analysés par HPLC-MS/MS a I'Université de Queensland
dans le laboratoire de Richard Lewis pour la détection spécifique des CTXs.

Brievement, les conditions HPLC-MS/MS appliquées consistaient en l'utilisation d’une
colonne C18 (Phenomenex, 50 x 2 mm, 5 um) associée a une pré-colonne C18 (Phenomenex
C18, 4 x 2,1 mm, 5 um) et l'utilisation de solvants A: H,O: 0,1% acide formique et B: 90%
acétonitrile : 10% H,0 : 0,1% acide formique selon un gradient programmé (A de 80 - 90% a 10 -
0% pendant 30 mn) a 350 pL / min, couplée a un spectromeétre de massse APl 2000, Triple
Quadrupole (AB Sciex Instruments).

La qualité des fractions chargées en lipides, bien qu’ayant subi une étape de purification
supplémentaire sur cartouche SPE en phase normale, ne s’est pas révélée suffisante pour
I'obtention de chromatogrammes exploitables. L’analyse des fractions E1F3, E1F4 et E2F2 n’a
pas permis non plus de mettre en évidence la présence de composés proches des CTXs dans ces
extraits.

Fractions hydrosolubles : détection de composés hydrosolubles

Les extraits hydrosolubles des cyanobactéries et des bénitiers collectés en novembre
2005 (L3) dans la ZT ont été analysés en GC-MS. Ces analyses ont été réalisées dans I'Unité des
Cyanobactéries de I'Institut Pasteur de Paris par Annick Méjean et Caroline Peyraud-Thomas.

L'analyse des séquences ITS des mattes de cyanobactéries a confirmé la présence
majoritairement de H. lyngbyaceum.

Pour la premiere fois chez une cyanobactérie marine et en particulier chez Hydrocoleum,
la présence de ’'HANTX-a et des traces d’AnTX-a sont détectées par GC-MS. La présence de cette
cyanotoxine a également pu étre identifiée dans les chairs de bénitier avoisinant les
efflorescences. La détection de cette toxine a la fois dans les cyanobactéries et les bénitiers
avoisinants appuie I'hypothése de la contamination de la chaine trophique par cette
cyanotoxine.

Ces données ont fait I'objet d’une publication dans la revue Toxicon :

Méjean A., Peyraud-Thomas C., Kerbrat A.S., Golubic S., Pauillac S., Chinain M., Laurent
D. 2009. First identification of the neurotoxin homoanatoxin-a from mats of Hydrocoleum
lyngbyaceum (marine cyanobacterium) possibly linked to giant clam poisoning in New
Caledonia. Toxicon, doi:10.1016/j.toxicon.2009.10.029.
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Fractions hydrosolubles et liposolubles : analyse multi-toxines marines

Le recours a I'analyse multi-toxinique par LC-MS/MS mise au point au labotoire des
Phycotoxines de I'lFREMER dirigé par Zouher Amzil a permis le criblage des différentes familles
de cyanotoxines et de phycotoxines suivantes dans nos échantillons de cyanobactéries et de
bénitiers:

- Neurotoxines : AnTX-a, HAnTX-a,

- Hépatotoxines : cylindrospermospine, nodularine-R et microcystines (LR),

- Toxines paralysantes: carbamates (STX, NEO-STX, GTX-1 a GTX-4) ; N-
sulfocarbamoyle (GTX-5, GTX-6 et C1 a C4), décarbamoyles (dc-STX, dc-NEO, dc-
GTX-1 a dc-GTX-4),

- PTXs:PTX, 42-OH PTX, ovatoxin-A, ostreocin-D, mascarenotoxins A et B,

- Toxines diarhéiques : AO, DTXs, pectenotoxines, azaspiracides, yessotoxines et

- Toxines a action rapide (FATs) : gymnodimines, spirolides.

L'analyse des extraits hydrosolubles des bénitiers collectés en novembre 2005 (L3),
février 2007 (L9) et février 2008 (L12), et celle des mattes de cyanobactéries collectées en
novembre 2009 (Oscillatoria cf. bonnemaisonii, T. erythraeum et P. laysanense) n’a révélé la
présence d’aucune des toxines sus-citées.

II.3.e  Synthese : évolution de la toxicité sur le site d’étude de Hunéte

Afin d’avoir une vue d’ensemble de I’évolution de la toxicité sur le site de Hunété
pendant toute la période d’étude, le tableau 35 synthétise 'ensemble des données de toxicité
des organismes collectés par mission. Seules les données concernant les extraits issus de
I’extraction méthanolique (extrait hydrosoluble (1) et liposoluble (1)) sont présentées. Pour le
test N2A, toutes les Clsg calculées sont les valeurs obtenues en conditions +OV.
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Tableau 35 : Synthese des toxicités mises en évidence a I'aide des tests souris, N2A et RBA, sur les échantillons de cyanobactéries, bénitiers et poissons collectés
de 2005 a 2008 dans la zone de péche dite toxique de Lifou : test N2A : Clsy exprimée en ug eqv d’extrait / mL (ou pg d’extrait liposoluble / mL) et test RBA :
toxicité exprimée en pg eqv. P-CTX-3C / g eqv d’extrait liposoluble (ou en pg eqv. P-CTX-3C / g d’extrait liposoluble

Pool de cyanobactéries Pool de bénitiers .
Poisson
Cyanobactéries T Zr
L . Zones
Date majoritairement presentes Test Composés Composés Composés Composés
hydrosolubles liposolubles hydrosolubles liposolubles
Souris Tox ++ Tox ++ Tox ++ Tox ++
2005/04 L2  H.lyngbyaceum ?g‘ N2A 4+
RBA (3,05) 10,4 +3,21
H. cf. glutinosum Souris Tox + Tox ++ Tox ++ Tox ++
2005/11 L3 O. bonnemaisonii, 4A N2A 197 (43) 38,8
O. holdeni RBA 2,25 (8,87) 15,6 £ 0,31
i i Souris Tox + Tox ++ Tox ++ Tox ++
2006/03 L5 0. SUbl{/lfOl’mIS, AA
H. glutinosum RBA (7,41)
Souris Tox ++ Tox ++
O. subuliformis,
2006/05 L6 L 6A N2A 330 (88)
O. cf. bonnemaisonii .
RBA 0,56
Souris Tox ++ Tox ++
P.
L7N | lavsanense, 5C N2A 4(27)
H. lyngbyaceum
RBA 1,69 (8,68)
2006/08
Souris Tox ++ Atox
L7 O S. cf. weissii 5B N2A 6
RBA 1,14
H. lyngbyaceum Souris Tox ++ Tox + Tox ++ Tox +
2007/08 L9 Oscillatoria sp., 6A . )
P. laysanense N2A 260 (179) 129 60% ciguatoxique
2,84
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RBA
Souris Tox ++ Tox ++ Tox ++
2008/02 L12 H. glutinosum 4C N2A ND (134) 40-125 85% ciguatoxique
RBA <0,31
S souns | Tox++
2008/06 L13 S. weissii 5C N2A ND (274)
RBA 0,86
S sours | Tox++ Tox+
2008/11 L14 Trichodesmium sp. 5A N2A 98
RBA 5,07
Souris Tox ++ Tox ++
2009/02 L15 O. cf. bonnemaisonii 5C N2A 6281 50?0?)/20?,(?]?%
S souns | Tox++
O. cf. bonnemaisonii SIZBSC N2A 254
RBA 1,03
Souris Tox ++
2009/11 L17 T. erythraeum 5A N2A 92
RBA 1,65
Souris Tox ++
P. laysanense 5B N2A 97
RBA 1,10
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En résumé, les points importants a retenir sont :

Toxicité des cyanobactéries

L’ensemble des cyanobactéries de I'ordre des Oscillatoriales montre un potentiel toxique
similaire d’'un point de vue qualitatif sur I'ensemble des prélevements (tableau 36). En
comparant les mémes niveaux d’extractions (extrait liposoluble 1 et extrait hydrosoluble 1), les
valeurs de toxicité des extraits liposolubles obtenues par le test N2A sont de I'ordre de 0,6 a 9,4
ug eqv de P-CTX-3C / g d’extrait (Clso) contre 3 a 8 pug eqv P-CTX -3 C / g d’extrait lorsque
analysées au moyen du test RBA.

Le test N2A indique que les substances responsables de ces effets cytotoxiques ont une
polarité similaire a celle des CTXs et qu’elles n"agissent pas spécifiqguement sur les CSSP.

Tableau 36 : Valeurs de Clsq des extraits liposolubles des cyanobactéries évaluées par le test N2A.

mg ou mg eqv ugeqvPbTx-3/g ngeqvP-CTX-3C/g
d'extrait / L eqv d'extrait eqv d'extrait

Moyenne 190 0,1 1,3

E1 Toxicite 435 0,1 0,6
minimum

Tox'|C|te 27 0,8 9,4
maximum

E1 Moyenne 149 0,2 1,7

ifie | Tox 0 it ettt ettty

purifié T'o>.(|C|te 300 0,1 0,8

F2 minimum
1 s

(90/ 10) Tox.|C|te 4 56 63,6

maximum

Les mattes dominées par P. laysanense et S. weiisii montrent la plus forte toxicité. Le
complexe cytotoxique en cause semble impliquer a la fois des substances de méme polarité que
les CTXs et des composés moins polaires (test N2A : toxicité de la fraction F2 et F3). Les mattes
les plus toxiques sont collectées en ao(it 2006 (L7), période a laquelle le risque semble donc le
plus élevé.

Enfin, les tests souris réalisés sur les cyanobactéries collectées de 2005 a 2009 ont
également mis en évidence une toxicité dans les fractions hydrosolubles s’accompagnant de
symptémes de type paralysant (DLsp = 1 a 2 mg / g de souris).

Toxicité des bénitiers

A I'exception du témoin (2006), tous les bénitiers analysés individuellement ou par lot
semblent présenter un complexe toxinique composé a la fois de toxines de type CTX et
paralysante.
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Ces résultats sont cohérents avec ceux obtenus par analyses neurophysiologiques des
bénitiers collectés en ZT qui démontraient une activité CTX-like associé a une activité de type
PSP, et la détection de traces de STX en faibles quantités.

Les tests souris effectués sur les bénitiers collectés de 2005 a 2009 ont mis en évidence
la toxicité des fractions hydrosolubles avec des symptomes de type paralysant (DLsg=4 a5 mg/
g de souris), et celle des extraits lipidiques de type CTX-like. Aucune différence n’est relevée
entre les bénitiers collectés en ZT et en ZNT.

Les analyses des extraits liposolubles et des fractions issues des deux purifications a
permis d’isoler des composés agissant spécifiquement sur le site 5 des CSSP de polarité plus
faible que les CTXs (test RBA) et des composés cytotoxiques non spécifiques des CSSP et de
polarité similaire aux CTXs (test N2A). Les toxicités en test RBA des extraits liposolubles de
bénitiers non purifiés sont de I'ordre de 10 a 15 ug eqv P-CTX-3C / g d’extrait. Leur toxicité (Clsg)
en test N2A vont de 6 a 281 pg d’extrait / mL (moyenne = 96,9 ug d’extrait / mL).

Les béniters les plus toxiques sont collectés en 2009 et aucune tendance (diminution ou
augmentation) de la toxicité sur les 5 années d’analyses qu’a duré I'étude n’est observée.

Toxicité des poissons

Les poissons de la zone d’étude sont ciguatoxiques sur 'ensemble de la zone en 2007
(L9) (60% des poissons perroquets récoltés), cette toxicité est de 85% en 2008 (L12) et au
maximum a 50% en 2009 (50% atoxique et 50% non déterminé).

Les analyses de toxicité des poissons sur trois ans montrent une toxicité de type
ciguatérique. Cependant, les données obtenues sur les 3 années d’échantillonnage (2007 a
2009) ne permettent pas de conclure quant a une tendance a I'augmentation ou la diminution
de la contamination des poissons dans la zone de péche d’Hunété.

[1.4 Discussion
Il.4.a Caractérisation de la toxicité

Attribution de la toxicité a une espéce de cyanobactéries.

Dans le cadre de cette thése, les analyses réalisées sur les échantillons de mattes de
cyanobactéries dominant en ZT ont permis d’évaluer leur potentiel toxique global. Toutefois les
échantillons de cyanobactéries récoltés étant rarement purs (souvent associés a des organismes
du phytoplancton et zooplancton ou a des débris coralliens), il convient de rester prudent quant
a I’hypothése de I'origine cyanobactérienne des toxicités observées. Pour tenter de répondre
formellement a cette question, plusieurs essais de mise en culture en milieu liquide ou gélosé
des filaments isolés in situ ont été tentés. Ces essais indiquent que ces filaments peuvent se
maintenir jusqu’a cing semaines, mais des progres restent a faire notamment en ce qui
concerne la sélection des milieux appropriés et les conditions de culture axénique.
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Identification des toxines impliquées
L’'ensemble des données toxicologiques et des données épidémiologiques confirme la
présence d’'un complexe toxinique a la fois dans les mattes de cyanobactérie et dans les
bénitiers récoltés dans la ZT. A ces deux niveaux de la chaine trophique, les résultats sont en
faveur de composés hydrosolubles a activité paralysante et liposolubles a activité de type CTX.
En termes quantitifs, les potentiels toxiques des bénitiers semblent étre supérieurs
laissant suggérer un phénomeéne de bioaccumulation.

Composés toxiques hydrosolubles

Les substances hydrosolubles présentes dans les mattes de cyanobactéries ont montré
une toxicité aiglie chez les souris avec une action rapide caractéristique des STXs ou des AnTXs.
L'absence de symptome d’hypersalivation exclue la présence de I’AnTX-a (s). Lidentification
formelle de I'AnTX-a et de I’'HAnTX-a chez H. lyngbyaceum (Méjean et al., 2009) suggére
fortement que les Oscillatoriales collectées a Lifou, a I'origine des mémes symptomes chez la
souris, synthétisent ces neurotoxines. Les alignements des séquences ITS 165-23S montrent une
forte proximité génétique au sein de ces Oscillatoriales (H. lyngbyaceum, H. glutinosum, et deux
especes d’Oscillatoria, O. sancta et O. formosa). On peut donc raisonnablement penser qu’elles
peuvent synthétiser de ’AnTX-a et de 'HAnTX-a. Cette hypothese est également appuyée par la
présence de ces neurotoxines chez 15 Oscillatoriales d’eau douce dont les genres sont communs
avec ceux rencontrés a Lifou (Cadel-Six et al., 2007). De plus, ces éléments rejoignent les
hypothéses émises précédement par Yasumoto et al. (1977) qui avaient mis en évidence dans le
contenu intestinal de perroquet (Scarus gibbus) la présence d’une substance paralysante sur
souris a action rapide, de faible poids moléculaire et soluble a I'acétone. Hawser et al. (1991)
citent I’AnTX-a comme probable toxine présente chez Trichodesmium, enfin Endean et al. (1993)
démontrent la présence d’un alcaloide chez cette méme Oscillatoriale.

En outre, la présence concomitante de 'HAnTX-a chez H. lyngbyaceum et dans les chairs
de bénitiers (Méjean et al., 2009) associés aux symptomes rapides observés a la consommation
des poissons et des bénitiers supporte I'occurrence de ces neurotoxines hydrosolubles dans
I'ensemble des bénitiers récoltés durant I'étude qui, d’apres la population, causeraient les
mémes symptomes.

Composés toxiques liposolubles

Dans les cyanobactéries et les bénitiers, nous avons pu détecter la présence de
composés cytotoxiques d’action non spécifique des CSSP (test N2A) de polarité inférieure a celle
des CTXs, ainsi que de composés liposolubles de haute affinité pour le site 5 des CSSP de
polarité similaire a celle des CTXs (test RBA).

En tenant compte de ces résultats, nous pouvons émettre |I'"hypothése suivante : la
cytotoxicité observée et analysée comme non spécifique des CSSP est une résultante d’actions :
I'action activatrice de composés agissant spécifiqguement sur les CSSP serait contrebalancée par
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la présence concomitante d’'un ou de plusieurs composés non-spécifiques des CSSP, mais
inhibant leur activité. Ces derniers ne sont pas détectés par le test RBA, ils n’agissent donc pas
spécifiguement sur le site 5 du CSSP, mais agissent soit sur le CSSP (autre que le site 5) ou sur la
pompe Na'/K*-ATP-ase, c’est-a -dire un des effets des potentialisateurs O et V.

L’analyse préliminaire en LC-MS/MS n’a pas mis en évidence de CTXs, mais ces analyses
mériteraient d’étre réitérées sur une biomasse plus importante et traitée selon des protocoles
d’extraction et de purification encore améliorés. En effet, de nombreux auteurs ont également
suspecté chez les mollusques ou les herbivores des composés similaires aux CTXs (en activité et
en propriétes chimiques) (Yasumoto et al., 1976 ; 1977 ; Chungue, 1977).

Par ailleurs, I'analyse muti-toxines par LC-MS/MS n’a montré la présence d’aucune des
toxines ciblées par cette méthode (PTXs, STXs, AnTXs, DSTs et FATs), ni dans les échantillons de
cyanobactéries (Oscillatoria spp., T. erythraeum et P. laysanense collectés en novembre 2009) ni
dans les fractions hydrosolubles de bénitiers testés (lots collectés en 2007 et 2008 ; « Témoin »
B de 2008).

Ciguatoxicité des poissons

L’analyse des populations de perroquets échantillonnés a montré une cytotoxicité avec
une activité spécifigue des CSSP (test N2A). De 2007 a 2008, la proportion de spécimens
toxiques est passée de 60% des spécimens analysés a 100%, avec toutefois une amélioration
observée en 2009 ou prés de la moitié sont apparus atoxiques (les autres spécimens ayant
donné des résultats ambigs).

Selon les dires de la population, avant les premiers cas déclarés en 2001, les poissons
pouvaient étre consommés sans risque. Nos travaux ont montré que la ciguatéra était bien
installée dans la zone d’étude en 2007. Parallelement, le suivi des populations de dinoflagellés
initié dés 2005 n’indique I'occurrence d’aucune efflorescence jusqu’en avril 2010. Si les CTXs
détectées dans les poissons de Hunéte ont pour origine les Gambierdiscus, soit ces
efflorescences sont intervenues avant 2005, soit notre stratégie d’échantillonnage (fréquence et
distribution) n’a pas permis de les détecter. Une autre explication possible de la présence de
ciguatéra dans la zone d’étude est l'existence d’une autre source microbienne pour ces
composés, en particulier les populations cyanobactériennes observées en permanence dans ce
site.

L’analyse des composés hydrosolubles de la chair ou du contenu intestinal pourrait étre
menée afin de vérifier si ces poissons également sont contaminés par le méme type de toxines
hydrosolubles d’activité paralysante détectées chez les cyanobactéries, ce qui permettrait
d’expliquer les symptémes d’engourdissement de la bouche et de la gorge rapportés lors de la
consommation de poisson toxique.
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Les bénitiers : Vecteurs potentiels de toxines

Les bénitiers peuvent constituer des supports ou des hotes pour de nombreux
organismes. Cette relation de commensalisme bénéficie par exemple a des petits crustacés
comme les Lithophaga et Gastrochaena mais aussi a des algues ou encore aux cyanobactéries
(Bagnis, 1967). Les valves calcaires et résistantes apportent un substrat de fixation idéal sessile
(facteurs environnementaux non variants).

Tridacna et Hippopus ont causé de séveéres intoxications pouvant engendrer la mort
(Bagnis, 1967). Une étude menée en 1974 (Bagnis) aux lles gambiers a montré que 4% des cas
d’intoxications déclarées ciguatériques sont causés par des bénitiers.

Ces mollusques filtreurs sont de potentiels accumulateurs de divers composés, dont le
nombre et la diversité peuvent étre importants dans un systeme complexe comme |'écosystéeme
récifal.

En 1976, Kanno a mis en évidence la toxicité de différentes fractions extraites de turbos
(Turbo) et de bénitiers (Tridacna) récoltés dans la région d’Okinawa (Japon). Les quatre fractions
(liposoluble (CH,Cl,), acétonique, hydrosoluble et le résidu) obtenues a partir de ces mollusques
ont été testées sur souris. Tridacna squamosa et T. crocea ainsi que trois des especes de
gastéropodes n’ont pas montré de toxicité lors de ces essais. Par contre, Tridacna maxima et
Turbo marmorata se sont révélés fortement toxiques la fraction acétonique de 7. maxima et la
fraction hydrosoluble de T. marmorata possédant des toxines de type amines quaternaires
(Kanno et al., 1976). En 1999, les turbotoxines A et B (figure 49), dérivés de la diiodotyramine,
sont caractérisés dans la fraction hydro-éthanolique de T. marmorata (Kighoshi et al., 1999). Ces
deux composés sont toxiques sur souris et la turbotoxine-A montre une activité anti-
acétylcholinestérasique (Kighoshi et al., 2000).
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Figure 49: Structure des turbotoxines-A et -B extraites des viscéres du gastéropodes Turbo marmorata (Kighoshi
et al., 2000).

Les bivalves, organismes filtreurs, sont responsables de nombreuses intoxications a
travers le monde (Frémy et Lassus, 2001). Par le phénoméneme de bioccumulation, ces bivalves
sont capables de concentrer des quantités de toxines (phycotoxines le plus souvent) jusqu’a des
teneurs présentant un risque sanitaire pour I’'Homme. C’est pourquoi dans certaines régions,
des réseaux de surveillance se sont développés afin de contréler la salubrité des coquillages
destinés a la vente (ex. le Réphy francais ou Réseau de surveillance du phytoplancton et des
phycotoxines). Le bénitier, ressource trés prisée par les populations des états insulaires du
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Pacifique et dont la consommation n’a jamais été soumise a réglementation en termes de santé
publique, doit donc également étre considéré comme un vecteur potentiel des biotoxines
marines présentes dans son environnement.

I.4.b  Environnement

Dominance cyanobactérienne et impact sur I’environnement

Les coraux fragilisés soit naturellement (par hydrodynamisme, par exemple), soit par
I'action de 'Homme, constituent un terrain favorable a la prolifération de cyanobactéries
naturellement présentes dans le milieu, a l'occasion de conditions environnementales
favorables. Ces organismes résistants et compétitifs peuvent détruire progressivement les
colonies coralliennes (photos 70 et 71) en les étouffant et en les privant de leur ressource
lumineuse. Cette destruction génére ainsi des « substrats vierges » supplémentaires propices au
développement de ces cyanobactéries, selon un systeme de « cercle vicieux » qui contribue a
maintenir I'écosystéme dans cet état de déséquilibre et de stress. Le corail trouve alors
difficilement sa place dans cette compétition entre des organismes relativement fragiles face
aux cyanobactéries, organismes ancestraux dotés d’un arsenal de stratégies leur permettant de
s’adapter a des conditions méme difficiles.
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Photos 70 et 71 : Destruction de corail du genre Acropora entre la zone 4A et 5A, laissant place au
développement progressif de cyanobactérie du genre Hydrocoleum dans le zone au pied de la mise a I’'eau a
Lifou.

Toxicité des cyanobactéries

Comme nous |'avons vu en introduction, la présence a Lifou de plusieurs espéces de
cyanobactéries benthiques marines, parfois en populations trés abondantes, peut représenter
un risque sanitaire pour ’'Homme, au regard du potentiel toxinique déja bien décrit chez leurs
cousines d’eau douce.

Actuellement, il n’existe aucune réglementation visant a définir des seuils de salubrité a
appliquer aux cyanotoxines potentiellement présentes dans les eaux ou les coquillages, la
réglementation frangaise ne concernant en effet que les phycotoxines.
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Nos résultats indiquent une variabilit¢ dans la production toxinique chez les
cyanobactéries toxinogeénes, mise en évidence par I'analyse de la toxicité de Spirulina weissii
récoltée en mai 2006 (L6) et en juin 2008 (L13) (valeurs des Clsg évoluant de 7 a 125 ug eqv
d’extrait / ml). Comme nous I'avons abordé dans I'introduction, la production toxinique varie
selon la souche ou les facteurs environnementaux (facteurs favorables ou stress); leurs
caractéristiques et impacts ne sont pas encore bien documentés. Cependant, il existe en
premier lieu, avant d’évaluer I'impact de I'un ou l'autre des ces parameétres d’aléas, une
variabilité liée au stade physiologique. En effet, selon la phase de développement a laquelle les
mattes de cyanobactéries sont récoltées (période de I'année), la production toxinique peut étre
variable. De méme, il peut exister une variabilité de stade de développement au sein méme
d’un tapis cyanobactérien. Schématiquement, se développant de maniére a priori exentrique,
les populations extérieures a la matte seraient plus jeunes et il y aurait donc un gradient de
production toxinique de I'extérieur vers lintérieur. Il serait intéressant d’évaluer cette
hypothése a travers une méthodologie de prélevement adéquate.

Approche moléculaire pour I’analyse des cyanobactéries et la prévention du risque.

Chaque échantillon de cyanobactérie collecté a Lifou a été conditionné en vue de leur
analyse moléculaire a l'Institut Pasteur de Paris dans I'Unité des Cyanobactéries. Aprés
détermination du morphotype de chaque échantillon par observation microscopique,
I'approche moléculaire a pour objectif i) de caractériser la diversité génétique inter-spécifique
(locus ARNr 16S) et intra-spécifique (région ITS) des mattes de cyanobactéries et ii) d’évaluer
leur potentiel toxique par amplification de régions géniques codant pour des cyanotoxines
connues.

Jusgu’a présent, nos essais de mises en culture sur les échantillons de Lifou n’ont pas été
couronnés de succes. Les clusters de genes associés a la synthése de 5 cyanotoxines connues
ont été recherchés. Seule la présence des genes d’une saxitoxine a été détectée dans certains
échantillons.

La présence de cyanobactéries n’implique pas nécessairement une toxicité ; afin de
discriminer une souche toxinogene d’une autre ne présentant aucun risque, I'outil moléculaire
est une solution d’avenir pour les programmes visant a la gestion du risque. La connaissance des
voies de biosynthése des cyanotoxines permettrait de cibler des métabolites ou des enzymes
spécifiques. Ainsi, par exemple, il a été mis en évidence I'implication d’enzymes remarquables
comme les PolyKétide Synthases (PKs) dans la biosynthése de nombreux métabolites de
cyanobactéries. La détection des génes codant pour ces PKs dans les échantillons de Hunéte
permettrait d’investiger plus avant sur le potentiel toxique des souches présentes a Lifou.

Toxicité liée aux efflorescences de Trichodesmium
Lors de deux missions en saison chaude (novembre 2008 et 2009), nous avons pu
récolter en grande quantité des efflorescences de Trichodesmium dans la zone. Les analyses ont
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révélé la méme forme de toxicité que les cyanobactéries benthiques. Une étude plus compléte
menée sur cette cyanobactérie pélagique est présentée dans la partie suivante. En ce qui
concerne, le cas de toxicité a Lifou, nous pouvons nous poser la question également du lien
existant entre la toxicité de Trichodesmium (complexe toxinique) et les contaminations des
bénitiers et des poissons.

Il est fréquent que dans la zone de péche de Hunéte, exposée aux alizés, des
efflorescences de Trichodesmium soient observées (observations personnelles et des
populations de Lifou). Ces efflorescences viennent se concentrer contre la cbéte et les toxines
sont relarguées progressivement dans I’environnement. Il est donc possible que les populations
de bénitiers puissent concentrer les toxines a I'état libre dans |'eau contribuant a leur
contamination. En tout état de cause, ce phénomene d’efflorescence naturel n’est pas nouveau,
il est observé par les populations locales depuis des années. Aussi, méme si Trichodesmium
contribue a la contamination des bénitiers et poissons, ces efflorescences ne peuvent expliquer
a elles seules le phénomene de type ciguatérique de la zone d’étude. Ces mémes efflorescences
sont présentes tout le long de la cote de la baie de Santal, or toute la zone littorale n’est pas
ciguatérique.

Présence d’holothuries : réle fonctionnel de régénération d’un écosystéme ?

Une population relativement importante de I'holothurie Stichopus chloronotus (Brandt,
1835) est rélevée dans la ZNT depuis le début de I'étude (photo 72). Cet invertébré est absent
dans la ZT jusqu’en fin 2008, ou il fait progressivement réapparition.

Stichopus chloronotus (Ordre des Aspidochirotida) est une holothurie fréquente dans les
eaux récifales de la zone sud du Pacifique. Présente dés la zone de surface, a faible profondeur,
elle vit le plus souvent sur fond dur au niveau des platiers de récif. Ce détritivore d’environ 30
cm peut ingérer de grandes quantités de sédiments avec un transit de 2 a 36 h pour un taux
d’assimilation de 50% de la matiere organique. Il constitue ainsi dans sa niche écologique
marine I'équivalent du ver terrestre.

Photos 72 : Stichopus chloronotus présent en grande quantité dans la ZNT de Hunété pendant touta la période
d’étude.
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D’aprés nos observations sur la zone d’étude a Hunété, ces détritivores sont présents en
ZNT ou la présence de tapis de cyanobactéries est faible. Tandis qu’en ZT, la présence de
grandes quantités de tapis cyanobactériens s’accompagne de I'absence de S. chloronotus
jusqu’a ce que la ZT regagne progressivement en diversité et se régénere. Il est plausible
d’imaginer que ce détritivore puisse ingérer des filaments cyanobactériens mélangés au
substrat sableux. Notre hypothése est que cet organisme pourrait permettre une détoxification
voire une régénération d’'une zone dégradée grace a son fort potentiel d’ingestion du sédiment
et de la matiere organique associée. Les holothuries sont les organismes détritivores les plus
importants de la faune récifale et posseédent un role fonctionnel majeur dans cet écosystéme.
D’apres la littérature qui reste pauvre sur le sujet, le tégument des holothuries pourrait contenir
des toxines appelés holothurines, forme de protection que certaines especes auraient
développé (Halstead, 1965 ; Conand, 1989).

Une étude de ces organismes pourrait permettre de savoir s’ils accumulent les toxines
produites par les cyanobactéries ou s’ils ingérent les filaments cyanobactériens agissant par la
méme comme des destructeurs des organismes progéniteurs de toxines.

Relation environnement et actions anthropiques

La ZT a fortement été endommagée dés 1999 a l'occasion de la mise en place de la
rampe de mise a I'eau dans la tribu d’Hunété ; elle a ensuite été régulierement soumise a
différentes pressions : cyclone (2003), pluies diluviennes et tempétes cycloniques (2005 et
2008). Par la suite, les premiers cas d’intoxications séveres seraient apparus dans la zone en
2001. Sans pouvoir conclure de maniere formelle, il semble donc qu’il y ait un lien entre la
dégradation massive des coraux et la contamination progressive des poissons inféodés a la zone
agressée. Ainsi, le délai serait de deux ans entre les premiéres dégradations et |'apparition des
premiers poissons contaminés.

Dans le cas de notre site d’étude, le fait que la ZT ait été la cible de pressions successives,
qui plus est, aggravées par l'apparition de populations cyanobactériennes qui contribuent
fortement a maintenir I’écosysteme dans un état dégradé, expliquerait pourquoi ce site peine a
retrouver une situation d’équilibre caractérisée par la réapparition de coraux et une diversité au
niveau de la faune, bien visible dans la ZNT.

Facteurs favorisant le développement des mattes de cyanobactéries

Les cyanobactéries benthiques sont présentes a I'état naturel dans les zones récifales.
Dans une zone dite saine, elles vont étre retrouvées de maniére trés localisée et avec une
relative diversité ; a l'inverse, leur prolifération en masse va engendrer un déséquilibre dans
I’écosystéme. Nous avons pu voir en introduction quelques exemples de facteurs favorisants ces
situations d’efflorescence (apport en sels nutritifs ou facteurs abiotiques : température, salinité,
ensoleillement...).
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Voici une proposition de schéma des conditions favorables a I'entretien des tapis
cyanobactériens :

Les cyanobactéries sont susceptibles de se développer en masse lorsqu’est mis a leur
disposition un substrat propice ol les phénomeénes de compétition pour I'espace sont moindres
(e.g. mort des coraux, s’Taccompagnant d’une diminution des substances mucilagineuses qui, en
temps normal empéchent la fixation des filaments cyanobactériens). Par la suite, cette
prolifération est régulierement entretenue grace au maintien de substrats vierges a la suite de
dégradations répétées, en association avec de faibles pressions extérieures (absence de
prédateurs, compétition pour la lumiére...), des apports terrigénes, etc.... (Sprachta et al., 2001).

Ainsi, globalement, depuis une vingtaine d’années, les proliférations de cyanobactéries
sont favorisées par des facteurs d’origine naturelle ou anthropique. Ces développements en
masse sont néfastes pour les structures coralliennes et algales. Les modifications climatiques
provoquant le blanchiment corallien peuvent aussi constituer un facteur indirect favorisant le
développement des communautés cyanobactériennes (Sprachta et al., 2001 ; Frémy et Lassus,
2001 ; Humbert, 2001).

II.4.c  Comparaison avec les sites d’études du Vanuatu et de Raivavae

Des cas d’intoxications similaires associés a ce phénomene écotoxicologique particulier
impliquant des cyanobactéries benthiques et des bénitiers, ont également été rapportés dans
certaines iles de Polynésie Francaise comme a Bora Bora (Archipel de la Société), a Fangatau et
a Pukarua (Tuamotu) (Bagnis, 1967 ; Laurent et al., 2008) sans qu’aucune étude n’ait pu élucider
I'origine du phénomene.

Ainsi, deux autres sites identifiés au Vanuatu et dans l'archipel des Australes en
Polynésie frangaise et présentant les mémes probléemes d’intoxications que ceux observés a
Lifou sont actuellement a I'étude.

1.4.c.1 L’ile d’Emao au Vanuatu

En novembre 2008, au cours du colloque « Ciguatéra et Biotoxines Associées » organisé
conjointement par I'IRD, I'IPNC, I'ILM et la CPS a Nouméa, un représentant du service des
péches du Vanuatu a attiré I'attention de l'assistance sur de séveres intoxications dans l'ile
d’Emao, a proximité d’Efate (figure 50). Alors que six villages composent I'lle d’Emao, le village
de Lausake (situé sur la cote sud-est) était le seul touché par la flambée toxique. Les habitants
tombaient gravement malades a la suite de la consommation de poissons et de bénitiers péchés
dans le lagon, avec des symptomes de type ciguatérique.
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Figure 50: Localisation et vue de I'lle d’Emao, Vanuatu.

Pour aider les services sanitaires du pays et la population d’Emao a comprendre le
phénoméne mais également afin de le comparer a celui étudié a Lifou, notre équipe y a mené
une étude écotoxicologique. Deux missions auxquelles j'ai pu participer, furent réalisées en mai
et novembre 2009. La premiére a permis de prendre contact avec la population du village de
Lausake et de s’informer sur les cas d’intoxications et I'état écologique des zones incriminées
(Yeeting, 2009). La deuxieme a été consacrée a I'étude écotoxicologique proprement dite du
phénoméne. Brievement, voici les informations majeures et préliminaires recueillies lors de
cette étude.

Informations générales

La zone contaminée semble se limiter a la zone récifale adjacente au village de Lausake,
s’étendant de la plage jusqu’a la barriére récifale. Cela fait dix ans que les poissons de récif sont
toxiques, mais les bénitiers, les trocas, les gastéropodes (comme Nerita polita), les crabes et les
autres crustacés (comme Atactodea striata) présentent également une certaine toxicité
remontant a environ trois a quatre ans. lls peuvent pécher uniquement hors du lagon. Seuls les
poulpes peuvent étre consommeés.

Les cas d’intoxications déclarés a Port-Vila sont en augmentation depuis 2008 et sont
pour la plupart causés par des poissons provenant d’Emao. Ceux-ci sont désormais évités au
marché de Port-Vila.

Données épidémiologiques

Sur I'ensemble des personnes de la population du village de Lausake interrogées
(environ 40), toutes ont été intoxiquées au moins une fois soit par les poissons, soit par les
mollusques ou par les 2. Les villageois disent souffrir de symptdmes distincts selon qu’ils
ingerent du poisson toxique ou des crustacés toxiques. Le tableau clinique associé a la
consommation de poisson toxique est typique de la ciguatéra : fatigue intense, nausées,
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diarrhées, douleurs articulaires et inversion des sensations de chaud et de froid. Les symptémes
provoqués par l'ingestion de crustacés surgissent rapidement : picotement des lévres et
sensations de brllure dans la bouche, suivis de problémes gastro-intestinaux (diarrhée et
vomissements) au cours de la premiére heure suivant lingestion, et de symptomes
neurologiques qui perdurent plusieurs semaines (tandis qu’ils persistent pendant plusieurs mois
avec la ciguatéra).

Données écologiques

La zone récifale contaminée couvre environ 1 000 m de la plage au récif-barriere. Elle se
compose principalement d’Acropora spp., dont la plupart étaient morts ou trés fragilisés et
recouverts de tapis de cyanobactéries filamenteuses (photos 73 et 74). Ces cyanobactéries sont
majoritairement de l'‘ordre des Oscillatoriales mais aussi de I'ordre des Nostocales
(Hydrocoleum, Lyngbya et Anabaena), et forment de vastes ou de petits tapis de formes
diverses selon les espéces.

cyanobactériennes du genre Anabaena.

Les prélevements de macro-algues pour vérifier la présence ou non de dinoflagellés
ciguatoxinogénes dans la zone incriminée indiquent I'absence de dinoflagellés du genre
Gambierdiscus.

En outre, a une distance de 10 - 20 m de la plage et le long celle-ci, sur une bande
d’environ 100 m, on a observé des jardins de coraux mous du genre Sinularia. Les eaux cotieres
étaient tres turbides, en particulier a 50 m du rivage.

Premiers éléments toxicologiques.

Les especes de cyanobactéries dominant la zone ont été prélevées en quantité suffisante
pour I'analyse de leur toxicité selon la méme méthodologie que celle employée a Lifou ; il s’agit
entre autre d’Anabaena spp (photo 74), Hydrocoleum glutinosum et Lyngbya sordida (photos 75
et 76). Pour cette derniere, les résultats indiquent i) une toxicité similaire aux Oscillatoriales de
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Lifou, qui inclue des symptdmes de type paralysant observés sur souris (DLsp = 3 a 4 mg d’extrait
/ g de souris) et ii) une activité cytotoxique non spécifique des CSSP (p = 0,936) (test N2A) (Clsg =
99,8 + 21,5 meg eqv d’extrait / mL). Les Lyngbya sordida d’Emao montrent donc le méme type

de toxicité que leurs « cousines » analysées a Lifou.
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Photos 75 et 76: Tapis cyanobactériens dominés par Lyngbya sordida in natura (75) et vue microscopique (76).

Des analyses toxicologiques réalisées sur des bénitiers (Hippopus hippopus) collectés
dans la zone de Lausake ont mis en évidence le méme type de toxicité que les bénitiers
contaminés a Lifou : toxicité de type paralysante (test souris) et cytotoxicité non spécifique des
CSSP (test N2A).

Photos 77, 78 et 79 : Espéces de poissons collectées lors de la premiére mission a Emau et déclarées fortement a
risque par la population : Lethrinus harak, Hipposcarus longiceps et Ctenochaetus striatus.

Enfin, en ce qui concerne les poissons, trois spécimens appartenant aux 3 espéces
déclarées comme les plus a risque par la population (photos 77, 78 et 79) ont été analysés selon
la méthodologie utilisée a Lifou (protocole d’extraction rapide suivi du test N2A). Les résultats
préliminaires ont montré une forte toxicité pour ces trois espéces, Ctenochaetus striatus
s’avérant plus toxique que Lethrinus harak et Hipposcarus longiceps.

Conclusions

Les analyses du matériel biologique collecté en novembre 2009 (6 échantillons de
cyanobactéries, 18 bénitiers et 53 poissons) sont en cours d’analyse. Cependant, les premieres
données toxicologiques laissent entrevoir de fortes similitudes entre le phénomeéne
d’intoxication qui sévit a Emao et celui auquel la population d’Hunété est confrontée.

196/ 326



Chapitre 2 : Les cyanobactéries marines

Les fortes dégradations observées de |'écosytéme lagonaire, la présence en masse des
cyanobactéries, la contamination de vecteurs (bénitier et poisson de bas niveau trophique) avec
la présence d’'un complexe toxinique (substances hydrosolubles paralysantes et substances
liposolubles cytotoxiques) associée aux premiéres données épidémiologiques sont des éléments
en faveur du nouveau schéma ciguatérique que nous proposons: le Ciguatera Shellfish
Poisoning.

11.4.c.2 L’ile de Raivavae en Polynésie Frangaise

D’autres cas d’intoxications liées a I'ingestion de chair de bénitiers ont été signalés a
Raivavae (Australes, Polynésie francaise). Dans cet ile, ou de nombreuses perturbations
anthropiques ont pu étre observées, sévit également des cas d’intoxications ciguatériques
classiques causées pas l'ingestion de poissons (Chinain et al., 2010a). L’intoxication par les
bénitiers y fait actuellement I'objet d’'une étude toxicologique similaire a celle menée a Lifou.

En particulier a Raivavae, la présence en masse d’Oscillatoria est observée dans des
zones ayant subi de fortes pressions anthropiques. Leur criblage toxicologique a pu mettre en
évidence une activité de type paralysante des composés hydrosolubles (test souris, DLsg = 1 mg
d’extrait / g de souris) associée a une activité toxique spécifique des CSSP (test RBA, fraction
liposoluble purifiée : 1,14 ug eqv de PCTX-3C / g d’extrait et test N2A, Clso = 7,1 pg d’extrait /
mL). En outre, les bénitiers de la ZT ont révélé une forte toxicité de type paralysante (test souris,
Tox ++, DLsg = 5 - 7,5 mg d’extrait / g de souris) et spécifique des CSSP (test RBA, fraction
liposoluble purifiée, 60 ng eqv. P-CTX-3C par g de chair).

Les résultats de cette étude font I'objet d’une publication en cours de rédaction :

Giant clam poisoning: a new ecotoxicological phenomenon related to marine benthic
Oscillatoriales (cyanobacteria) blooms. Laurent D., Kerbrat A.S., Rosssi F., Darius H.T., Haddad
M., Golubic S., Pauillac S., Chinain M., en préparation.

I.4.d Etablissement d’'un nouveau schéma de transmission

L'ensemble des données épidémiologiques, environnementales et écotoxicologiques
obtenu a Lifou, également appuyé par les données en provenance d’Emao et de Raivavae, est
en faveur d’'un phénomene plus complexe que la ciguatéra classique.

Ce schéma implique a la fois des toxines liposolubles de type CTXs et des toxines
hydrosolubles de type AnTXs ou STXs. Ainsi, a la lumiére de ces données récentes, il nous parait
souhaitable de reprendre le schéma de transmission des neurotoxines impliquées dans les
intoxications ciguatériques classiques ou « Ciguatera Fish Poisoning » rappelé dans le chapitre 1
(cf. chl1.ll.7.c), en le modifiant. Un nouveau schéma est proposé, que nous désignerons sous
I'appellation de « Ciguatera Shellfish Poisoning » (figure 51).
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Figure 51: Proposition d’'une nouvelle voie de bioaccumulation des biotoxines de la chaine trophique de la
ciguatéra impliquant les cyanobactéries et les bénitiers, ou « Ciguatera Shellfish Poisoning ».

Cette voie de bioaccumulation permettrait de comprendre le profil inédit de certaines
intoxications par organismes marins survenues dans le passé, comme c’est le cas a Hunété ou a
Bora Bora en 1967 (Bagnis, 1967).

Associées aux Gambierdiscus dont le role dans la biogenese de la ciguatéra est
formellement établi, les cyanobactéries de I'ordre des Oscillatoriales sont productrices d’un
complexe toxinique. Les voies de transfert de ces toxines impliquent de nouveaux vecteurs
comme les mollusques bivalves ou gatéropodes (bénitier, trocha, ...) et contaminent certains
poissons de bas étage trophique (comme les perroquets ou les chirurgiens). Ceci est cohérent
avec les données épidémiologiques de Lifou ou la majorité des cas séveres résulte de I'ingestion
de perroquets, et pour certains des patients, de bénitiers.

Les voies de transfert des cyanotoxines vers le réseau trophique ne sont pas encore bien
connues. Le mode d’intégration de ces toxines dans la chaine alimentaire via les herbivores
pourrait se faire par broutage lors de la consommation directe des filaments cyanobactériens
benthiques. Cependant, les cyanobactéries ne faisant pas partie de I'alimentation de base de
cette catégorie d’herbivores, elles pourraient constituer une source de nourriture par défaut.
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Par ailleurs, les principaux prédateurs des cyanobactéries sont constitués du zooplancton
herbivore (ex.: copépodes) ou des organismes comme les limaces de mer (mollusques
opistobranches) qui ont la capacité de détoxifier les métabolites secondaires (Capper et al.,
2006 ; Capper and Paul, 2008). Ces crustacés et ces mollusques pourraient donc constituer un
maillon intermédiaire entre les cyanobactéries et les poissons molluscivores.

Outre lingestion des cellules cyanobactériennes par des herbivores, une autre voie
possible d’intégration des toxines dans le réseau trophique pourrait s’opérer via I'accumulation
directe des toxines libres dans I'’eau (Humbert et al., 2001). Si les effets des cyanotoxines sur le
métabolisme sont de plus en plus documentés, ceux concernant le mode de transfert des
cyanotoxines dans le réseau trophique restent encore mal connus tant il est complexe.

Enfin, il est intéressant de rappeler que I'origine du mot ciguatéra vient du nom espagnol
du turbo a l'origine de fortes intoxications a Cuba, et dont les symptémes majoritaires sont
typiques des intoxications paralysantes (brilure de la bouche et de la gorge) (cf. ch1.11.2).

[1.5 Conclusion

Sur le site de Lifou, nous avons pu mettre en évidence une relation entre une action
anthropique, la présence de cyanobactéries du groupe des Oscillatoriales, une flambée de
ciguatéra classique et des empoisonnements concomitants par des bénitiers. Les bénitiers
comme les cyanobactéries se sont avérés toxiques avec la présence d’un complexe toxinique
d’activité CTX-like et paralysante. A Lifou, comme ce qui a été observé a Emao et a Raivavae, les
analyses toxicologiques des poissons ont montré que ce sont des espéces de début de chaine
alimentaire qui semblent plus particulierement impliquées, ainsi que certains mollusques
comme les bénitiers. Ces données sont a relier avec les observations rapportées en 1955, dans
I'atoll de Palmyra, ou I'apparition de poissons ciguatériques concernait plus particulierement les
especes consommatrices de cyanobactéries (Dawson et al., 1955). La relation entre I'émergence
de ciguatéra dans des zones caractérisées par le développement intensif de populations
cyanobactériennes et des phénomeénes d’intoxications par bénitiers avait déja été suggérée
précédemment (Bagnis, 1967 ; Banner, 1967).

Les populations de Trichodesmium spp. ont été dans le passé fortement suspectées dans
la contamination des poissons ciguatériques (Endean et al., 1992). Egalement présente a Lifou,
Trichodesmium spp. est un genre trés communément rencontré dans les eaux calédoniennes. Il
nous parait donc essentiel d’évaluer le risque que peuvent encourir les populations vis-a-vis des
développements saisonniers de cette cyanobactérie pélagique, et de préciser leur role potentiel
dans ce nouveau phénomeéne que représente le« Ciguatera Shellfish Poisoning».
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lll. Etude de la toxicité de Trichodesmium sp.
1.1 Introduction
lll.L1.a Trichodesmium : une Oscillatoriale pélagique

Les aviateurs survolant les zones tropicales peuvent apercevoir de longues trainées
rougeatres a blanchatres qui parsément les eaux du lagon ou du large; les navigateurs les
surnomment les « sea sawdust » (traduire littéralement par sciure de mer). Les images
satellitales réveélent des mattes pouvant atteindre prés de 90 000 km? entre la Nouvelle
Calédonie, les archipels du Vanuatu, de Fidji et de Tonga (Dupouy, 1992 ; Dupouy et al., 2010).
Ces taches sont constituées de cyanobactéries pélagiques du genre Trichodesmium
(Oscillatoriales). Organisme microscopique, il est visible a I'ceil nu durant ces phases
d’efflorescence (Photo 80).

- WL _._.;_-,_, = - ]
Photo 80 : (a) et (b) Efflorescences de Trichodesmium erythraeum a Lifou (lle Loyauté).

Selon la nomenclature botanique, huit especes marines ont été décrites a ce jour, et
deux d’eau douce (Carpenter et al., 1993; Janson et al., 1995; Janson et al., 1999). T.
erythraeum (Ehrenberg ex Gomont 1892) et T. thiebautii (Gomont ex Gomont 1892) sont les
especes les plus fréquemment rencontrées dans les eaux calédoniennes (Rodier and Le Borgne,
2008 ; 2010).

Durant I'été austral (de septembre a mars), les Trichodesmium sont capables de former
d’'importantes efflorescences. Plus exactement, c’est au moment de la phase de sénescence,
alors que les pigments photosynthétiques sont relargués, que les mattes de Trichodesmium sont
visibles en surface. Les conditions favorables a ce développement soudain et massif ne sont pas
encore bien caractérisées mais certains facteurs physico-chimiques apparaissent étre
nécessaires (Bhat et al. ; 2006; Tendrio et al. ; 2005; Rodier and Le Borgne, 2008 ; 2010) :

- Une température supérieure a 26°C,

- La stratification de la masse d’eau par densité (mer calme),

- Des eaux tres pauvres en sels nutritifs,

- Des teneurs spécifiques en phosphore et en fer.
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I1.L1.b Mise en évidence de la toxicité

Peu d’auteurs se sont penchés sur le potentiel toxique de Trichodesmium alors que de
nombreuses études traitant de I'aspect écologique existent (Sellner, 1997). Ce manque de
connaissances peut étre expliqué par le coté aléatoire des efflorescences et les difficultés de
mise en culture (Chen et al., 1996 ; Bell et al., 2005). Les conséquences de ces proliférations sur
le milieu sont peu connues et sont d’ordre écologique, économique et sanitaire. Les
communautés phytoplanctoniques dominées par Trichodesmium peuvent étre affectées par le
potentiel toxique de ces cyanobactéries, notamment le zooplancton, un de leurs prédateurs
naturel.

Comme nous l'avons présenté dans le chapitre 1 (cf. ch1.ll.7.a.2) et en introduction de ce
chapitre (cf. ch2.1.1.b), certains auteurs ont mis en évidence la présence de différents types
toxiniques chez cette cyanobactérie pélagique: (i) toxines paralysantes par Hawser et al. (1991
et 1992) et (ii) toxines de type CTXs par Hahn and Capra (1992) et Endean et al. (1993). Cette
toxicité a également été tenue pour responsable de problemes de développement de crevettes
en milieu naturel, dans le Golfe de Carpentaria en Australie du Nord (Preston et al. 1998).
Toutefois, hormis des irritations cutanées et oculaires décrites chez des personnes nageant dans
les mattes de Trichodesmium qui se concentrent en bord de sites récréatifs (Sato et al., 1963 ;
communications personnelles), aucun effet délétere par ingestion n’a encore été rapportée
chez I’'Homme, vraisemblablement faute d’observations permettant de les différencier de ceux
provoqués par les dinoflagellés. Leur toxicité reste donc a étre caractérisée, et leur lien avec la
ciguatéra a prouver.

Récemment, Ramos et al. (2005) ont montré par analyse chromatographique, la
présence de microcystine-LR chez T. erythraeum. Proenca et al. (2009) ont détecté également
des traces de microcystines associées a la présence de congéneéres de STXs. Cependant, au vu
des concentrations estimées, ces études concluaient a I'innocuité des populations analysées.

Trichodesmium est proche phylogénétiquement des Oscillatoriales benthiques toxiques
étudiées a Lifou (Abed et al., 2006 ; Méjean et al., 2009). Aussi, nous suspectons fortement le
risque de la contamination de la chalne alimentaire par les toxines produites par
Trichodesmium, comme cela I'a déja été suggéré.

Lors des missions menées a Lifou, nous avons pu a deux reprises collecter en quantité
Trichodesmium. En novembre 2008 et 2009 (L14 et L17), d’importantes mattes
cyanobactériennes de surface ont été observées dans la zone de péche a I'origine de sévéres
intoxications de type ciguatérique.

Les populations de Trichodesmium pourraient-elles avoir un lien avec la contamination
des poissons et des bénitiers péchés dans cette zone ? A travers cette étude, nous souhaitions
confirmer la toxicité de Trichodesmium et le cas échéant, caractériser le type toxinique en jeu.
Les efflorescences de cette cyanobactérie pélagique étant fréquentes en saison chaude dans les
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eaux calédoniennes, nous avons vu la I'opportunité de disposer de matériel biologique suffisant
pour répondre a cette problématique.

L'ensemble des résultats de cette étude a fait I'objet d’une publication dans la revue
Marine Pollution Bulletin, et d’un article en cours de rédaction, mettant respectivement en
évidence un complexe toxinique et la présence de palytoxine chez Trichodesmium :

Article 2 : Kerbrat A.S., Darius H.T., Pauillac S., Chinain M., Laurent D., 2010. Detection of
ciguatoxin-like and paralysing toxins in Trichodesmium spp. from New Caledonia lagoon. Special
issue, Marine Pollution Bulletin —Article, DOI : 10.1016/j.marpolbul.2010.06.017.

Article 3 : Kerbrat A.S., Amzil Z., Pawlowiez R., Golubic S., Sibat M., Chinain M., Laurent D.
First evidence of palytoxin in Trichodesmium cyanobacteria: Possible implication in
clupeotoxism. En préparation.

.2 Matériels et méthodes
I1.2.a Site d’étude et méthode de collecte

Les échantillons de Trichodesmium sont récoltés durant I'été austral, période pendant
laquelle la fréquence des efflorescences est la plus importante (photos 81 et 82). Ces
cyanobactéries pélagiques sont collectées en sub-surface (0 - 1 m) a I'aide d’un filet a plancton
de 35 um de maille ou a l'aide de l'aspirateur sous-marin utilisé pour la collecte des
cyanobactéries benthiques. Chaque collecte se fait délicatement pour éviter le relargage du
contenu cellulaire et notamment des toxines. En effet, les trichomes en phase finale
d’efflorescence venant se désagréger en surface sont particulierement fragiles.

Lors des collectes de masse, les propriétés de flottabilité des trichomes de
Trichodesmium dues aux vacuoles et/ou lipides sont utilisées pour concentrer le matériel
biologique : les mattes sont rassemblées dans des flacons d’1 L qui, bouchon fermé, sont
ensuite retournés pour permettre une concentration en surface des trichomes (photo 83). L'eau
de mer est alors régulierement évacuée. Chaque spécimen est aliquoté et fixé dans une solution
de 5% de formaldéhyde en eau de mer filtrée a 0,45 um pour l'identification morphologique.
Les mattes de cyanobactéries concentrées dans les flacons de collecte sont alors congelées puis
lyophilisées avant extraction.
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o

: 2005~11, Lifou - Roind

Photos 81, 82 et 83: Vues d’une efflorescence de Trichodesmium atteignant la surface dans la Baie de Santal a
Lifou et se concentrant sur la rive (81, 82) ; technique de récolte utilisant la flottabilité des trichomes pour se
concentrer en surface (83).

I11.2.b  Extraction et analyses toxicologiques

Les échantillons de Trichodesmium sont traités et analysés selon la méthodologie utilisée
a Lifou et décrite précédemment (cf. ch.2.1.2). Brievement, apres extraction méthanolique des
extraits lyophilisés, les composés hydrosolubles et liposolubles sont séparés par extraction
liguide-liquide.

Dans un premier temps, les analyses toxiniques sont menées sur les extraits
hydrosolubles (test souris) et les extraits liposolubles (test souris et N2A) (cf. ch2.1l.2.d). Puis, les
extraits hydrosolubles qui ont manifesté des résultats positifs de toxicité, sont analysés en LC-
MS/MS, tandis que les extraits liposolubles sont purifiés par chromatographie en phase inverse
et les fractions recueillies analysées par test N2A et RBA (cf. ch2.11.2.d).

lll.2.c  Analyses chromatographiques des extraits hydrosolubles

Les analyses chromatographiques présentées dans cette partie ont été réalisées au
laboratoire des phycotoxines de I'lFREMER a Nantes, sous la responsabilité de Zouher Amzil.

Elles visent a détecter, dans les extraits hydrosolubles de Trichodesmium, la présence de
différentes toxines proches de la palytoxine :

- PTX, isolée de Palythoa spp. et d’Ostreopsis spp.,

- 42 - OH PTX: analogue de la PTX récemment isolé d’un corail mou (Palythoa),
- Ovatoxine - A : analogue de la PTX isolé d’Ostreopsis cf. ovata,

- Ostreocine - D : analogue de la PTX isolé de O. siamensis,

- Mascarenotoxines A et B : analogues de la PTX isolé de O. mascarensis.

Les analyses LC-MS/MS sont conduites sur la fraction hydrosoluble diluée dans du
méthanol aqueux a 80%. Des aliquots de 300 pL sont filtrés (0,2 um whatman® vectaspin
filtration) puis 5 pL du filtrat sont injectés pour analyse.

Les analyses sont menées selon la méthode décrite par Ciminiello et al. (2006) avec un
systeme de chromatographie liquide (HP 1 200, Agilent) couplée a un spectrométre de masse
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hybride triple-quadripole a trappe d’ions (API-4 000Qtrap, PE/SCIEX) équipé d’une interface
turbo spray®. Une colone C18 Gemini de 5 um (150*2.0 mm, Phenomenex) est utilisée a 20°C et
a 200 pL / mn. Les éluants sont I’'H,O (A) et un mélange d’acétonitrile / H,O a 95%, A et B
contiennent 2 mM de formiate d’ammonium et 50 mM d’acide formique. Le gradient de B
augmente de 20 a 100% en 10 mn, maintenu durant 4 mn avant de revenir aux conditions
initiales. Le contréle de I'appareillage, du traitement des données et de I'analyse est géré par le
logiciel Analyst.

Le systéeme de détection du spectrométre (en mode positif) est optimisé grace a une
solution standard de PTX avec utilisation du Multiple Reaction Monitoring (MRM). L’énergie de
collision émise est de 45 eV pour les ions bi-chargés [M+2H]?*, [M+2H-H,0]*" et de 33 eV pour
les ions tri-chargés [M+3H]**, pour I'ionisation du produit caractéristique a 327. Les transitions
sont les suivantes : m/z 1 340, 1332, 1324, 1315, 896, 327 pour la PTX; m/z 889, 327 pour
I’ovatoxine-a et m/z 1 348.7, 1 339.7, 899.7, 327 pour la 42-OH PTX.

.3 Résultats
lll.3.a Récolte et Identification morphologique

Les échantillons récoltés lors des différentes efflorescences sont listés en tableau 37 en
spécifiant la date, le lieu, ainsi que I'espéce constituant majoritairement la matte
cyanobactérienne ; les masses des fractions obtenues sont également indiquées.

Deux especes ont été formellement identifiées sur la base de critéres morphologiques,
T. erythraeum et T. thiebautii. Les trichomes de T. erythraeum (Ehrenberg ex Gomont, 1892)
sont typiquement arrangés en paralléle pour constituer les nombreux fagots caractéristiques
des efflorescences de cette espece (Photo 84). La population échantillonnée en novembre 2009
(L17) est constituée de trichomes de 9,85 + 0,69 um de large (n = 20) et de cellules de 6,47
1,74 um de longueur (n = 30) (photo 85).

Photos 84, 85: Vues des trichomes arrangés en fagots (84), et vue microscopique de T. erythraeum collectés a
Lifou en novembre 2009 (L17) (barre d’échelle = 5 um) (85).
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Tableau 37 : Echantillons de Trichodesmium spp. : Numéro de référence (réf.), date, nom et site de collecte, identification de I'espéce majoritaire et rendement
de I'extraction (extrait hydrosoluble et liposoluble) donné en % de matiere lyophilisée (ML).

Extrait Extrait
Réf. Date Nom Site Latitude Longitude Especes dominantes hydrosoluble liposoluble
% ML % ML
1a 2007/02 Tricho Ouinné 1 Baie de la Ouinné -21,983056  166,699255 T. erythraeum 52,0 5,2
1b 2007/02 Tricho Quinné 2 Baie de la Ouinné -22,000000 166,780000 T. erythraeum 20,5 2,7
1c 2007/02 Tricho Ouinné 3 Baie de la Ouinné -22,000000 166,780000 T. thiebautii 28,4 9,0
. +
1d 2007/02  TrichoOuinné4  Baie de la Ouinné  -22,000000  166,780000 T. erythraeum 38,9 5,0
T. thiebautii
. . Lagon Sud Ouest
2 2007/03 Tricho 5iles «51les » -22,771900 166,800995 T. erythraeum 64,3 2,2
3 2007/09 Tricho BD 2007 Baie des citrons -22,297600 166,438004 T. erythraeum 51,6 0,8
4 2008/02 Tricho BD 2008 Baie des citrons -22,295700 166,436005 T. erythraeum 68,8 1,0
5 2008/02 Tricho Db Passe de Dumbéa -22,349501 166,274994 T. erythraeum 26,2 2,8
6 2008/02 Tricho R Récif Ricaudy -22,306900 166,460210 T. erythraeum 21,5 2,2
7 2008/11 Tricho L14 Lifou — Hunéte -20,767310 167,093006 T. erythraeum 52,5 1,1
8 2009/02 Tricho 02-2009 Passe de Dumbéa -22,349501 166,274994 T. erythraeum 49,7 0,2
9 2009/11 Tricho L17 C2 Lifou - Hunété -20,767310 167,093006 T. erythraeum 55,4 0,2
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T. thiebautii a été échantillonné a une seule occasion (2 prélevements) a I'Est de la
Grande Terre au niveau de la Baie de Ouinné (n°1c et 1d). Cette espéce est le plus souvent
rencontrée a I'extérieur du lagon dans des eaux plus oligotrophes (Rodier and Le Borgne, 2010).
Les mattes majoritairement constituées de T. erythraeum ont été récoltées dans le lagon Sud
Ouest et plus particulierement en face de Nouméa, moins exposé aux alizés.

Tous les échantillons de cyanobactéries étaient majoritairement mono-spécifiques.
Cependant ces mattes sont récoltées en surface ol de nombreux autres organismes s’aggrégent
constituant les laisses des mers, visibles sur le littoral a marée basse. En observations plus fines,
on peut vérifier la diversité de composition de ces mattes qui comprennent des copépodes, des
diatomées mais également des bactéries ou des champignons ; les cyanobactéries restent la
composante, en biomasse majeure, des préléevements. Lors de la collecte, les mattes sont
nettoyées manuellement en retirant les organismes visibles, tels les phéophycées ou les
halophytes en détritus. Au laboratoire, par observation microscopique, |'absence
d’efflorescence de dinoflagellés qui pourrait induire de la toxicité, est vérifiée dans les
échantillons.

I11.3.b  Test souris

Fractions hydrosolubles

Les 4 extraits hydrosolubles de Trichodesmium testés se sont avérés toxiques sur souris
(Tox + et Tox++, DLsg = 0,5 — 2,5 mg d’extrait /g de souris ; tableau 38). Les symptomes observés,
trés similaires a ceux des extraits de cyanobactéries benthiques récoltées a Lifou, sont de type
paralysant : ils incluent une faiblesse générale, une paralysie progressive qui atteint I'ensemble
du corps pouvant passer par une phase de coma transitoire ou fatale aux animaux. Cette
paralysie s’accompagne de cyanoses des extrémités, de spasmes et également de difficultés
respiratoires a l'origine des mortalités observées. Aucun symptome d’hypersalivation n’est
visible. Sur la base du tableau 12 qui résume les principaux symptémes observés chez les souris
apres injection de différentes toxines pures, 'activité toxique présente dans ces échantillons de
Trichodesmium évoquerait donc plutot I'action de la PTX ou de la PbTx, a la différence pres
gu’aucune diarrhée n’est observée.

Fractions liposolubles

Deux (2) extraits liposolubles ont été testés, leurs injections entrainent des symptomes
d’affaiblissement, de perte de réactivité, de tremblements, de contractions abdominales et
ponctuellement de spasmes; une forme d’ataxie est également observée (tableau 38). Ces
symptdmes associés a la longue récupération qui peut durer 24 h, pourraient étre assimilés aux
symptoémes de type ciguatérique. Cependant aucun symptéme de diarrhée ou de cyanose n’est
observé.
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A l'issue du test souris, aucune différence n’est visible au niveau des toxicités des
populations de T. erythraeum collectées dans des zones géographiques distinctes.

Tableau 38 : Données de toxicités des extraits hydrosolubles et liposolubles de Trichodesmium spp. analysés pas le
test souris : DLsy estimée en mg d’extrait / g de souris, Classe de toxicité et Symptomes principaux.

Toxicité de I’extrait hydrosoluble Toxicité de I'extrait liposoluble
Réf. Date Référence Blso  (lasse Symptdmes DLso Classe Symptdmes
) (mg/g) (mg/g)

Paralysie générale du
la  2007/02 Tricho Ouinné1 | 1,0-2,0 Tox+ CO'PS cvanose des - - -
membres, mort par
paralysie respiratoire
Affaiblissement,
perte de réactivite,
tremblement,

affaissement

1d 2007/02 Tricho Ouinné 4 - - - - Tox +

Paralysie générale du
. Tox
3 2007/09 Tricho BD 2007 | 0,5-2,5 corps, cyanose des - - -
++ membres et mort par

paralysie respiratoire

Tox Paralysie générale, Spasmes,
7 2008/11 Tricho L14 1,0 ++ coma, mort par >2,5 Tox+  contractions
détresse respiratoire abdominales, ataxie
Tox Paralysie générale,

9 2009/11 TricholL17 C2 1,0-3,0 ++ coma, mort par - - -
détresse respiratoire

I11.3.c  Résultats des tests N2A et RBA

Les extraits liposolubles bruts puis les fractions F1, F2 et F3 issues du fractionnement sur
cartouche sep-pak® ont été analysés a I'aide des tests N2A et RBA.

Evaluation de la toxicité des extraits liposolubles (1).

Les 9 extraits liposolubles testés ont révélé une activité cytotoxique. Les valeurs de Clsg
exprimées en ug eqv d’extrait / mL pour le test N2A et RBA sont présentées dans le tableau 39.
Les valeurs des Clsg pour le test N2A sont celles évaluées en condition (+OV).

Pour le test N2A, les valeurs de Clsy des extraits liposolubles (1) varient de 142 a
212 pug / mL. Pour les extraits n°2 et n°5, les valeurs trop faibles du coefficient de Hill associées
au coefficient de corrélation évoquent un effet matriciel (pente abrupte de la courbe). Comme
pour les cyanobactéries benthiques, I'étape complémentaire de purification sur sep-pak® de ces
extraits liposolubles (1) s’avére nécessaire. A un méme niveau d’extraction, les valeurs de Clsg
calculées sont comparables aux valeurs moyennes de toxicité des extraits liposolubles des
cyanobactéries benthiques (tableau 19). Ces valeurs restent néanmoins supérieures aux
échantillons les plus toxiques (27 pg d’extrait / mL pour P. laysanense dominant les mattes en
ao(t 2006 (L7), tableau 19). Les analyses des tests N2A ne montrent pas de différence entre les
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cytotoxicités obtenues en conditions -OV et +OV (p < 0,05), traduisant une activité toxique non
spécifique des CSSP

Tableau 39 : Toxicités des extraits liposolubles (1) de Trichodesmium évaluées par des tests N2A et RBA ; ND: valeur
non déterminée.

Test N2A Test RBA
Réf. Date Nom .
Clso (+OV) Coefficient Clso
ug eqv d'extrait / mL de Hill ug d’extrait / mL
la 2007/02  Tricho Ouinné 1 184 +24 570,6 +£105,6
1b 2007/02  Tricho Ouinné 2 183+92 -3,3+43 287,5+13,4
1c 2007/02  Tricho Ouinné 3 164 £5 ND 997,9+121,3
1d 2007/02  Tricho Ouinné 4 164 £+ 8 -2,5+1,3 309,6 £ 71,3
2 2007/03  Tricho 5iles - -4,4+0,8 ND
3 2007/09  Tricho BD 2007 212 £ 27 - 549+0,4
5 2008/02 Tricho Db 142 £ 18 -3,1+1,2 ND
6 2008/02  Tricho R ND -5,5+3,8 41,08 £9,3
7 2008/11  Tricho L14 - -1,6+1,3 -

Dans l'analyse des échantillons de cyanobactéries benthiques, associée a cette
cytotoxicité, une toxicité spécifique des CSSP avait été mise en évidence avec le test RBA. Ainsi,
avant de purifier les extraits, nous avons voulu évaluer le potentiel des extraits liposolubles a
déplacer la [*H]PbTx-3 traduisant une haute affinité pour le site 5 du CSSP. Les courbes de
compétition obtenues par le test RBA sont représentées en figure 52.

Les 8 extraits liposolubles testés contiennent des composés a haute affinité pour le site 5
des CSSP. Les valeurs de Clsp sont reportées dans le tableau 40 : la gamme de toxicité varie de
41 a 997 ug d’extrait / mL démontrant un potentiel toxique relativement élevé pour tous les
extraits testés, plus particulierement pour les extraits échantillonnés dans la Baie de Ouinné (1a
a 1b).

L’ensemble de ces résultats est en faveur de la présence d’'un complexe toxinique chez
Trichodesmium composé a la fois de toxines lipophiles se fixant sur les CSSP (test RBA) et de
composés cytotoxiques non spécifiques des CSSP (test N2A).
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Figure 52 : Courbes de compétition obtenues au moyen du test RBA sur les extraits liposolubles de
Trichodesmium.

Toxicité des extraits liposolubles purifiés sur Sep-pak®.

Neuf (9) extraits liposolubles (1) de Trichodesmium sont purifiés sur cartouche en phase
inverse Sep-pak®. Les trois fractions obtenues F1, F2 et F3 sont analysées en test N2A pour
évaluer leur cytotoxicité.

Aucune des fractions F1 et F3 n’a révélé d’effet cytotoxique dose—dépendant pour lequel
une Clsg a pu étre calculée (annexe 2). Ces données indiquent que ces fractions sont atoxiques
pour la gamme de concentrations testées (0 a 625 pg eqv d’extrait / mL).

Les fractions F2 (MeOH:H,0, 90:10) sont toxiques pour I'ensemble des échantillons de
Trichodesmium récoltés (annexe 2). Les valeurs de Clsy correspondantes, déterminées en
conditions -OV et +OV sont indiquées dans le tableau 40. Excepté pour I’extrait n°8, aucune
différence significative n’est observée en -OV versus +OV (p > 0,05). Ces valeurs de Clsg varient
de 96 a 270 ug eqv d’extrait / mL en conditions +OV, et de 45 a 192 pg eqv d’extrait / mL en
conditions -OV. Elles sont du méme ordre de grandeur que celles des fractions F2 des
cyanobactéries benthiques de Lifou (cf. tableau 20 et figure 37) et se classent parmi les
cytotoxicités moyennes (pour rappel, les échantillons les plus toxiques, P. laysanense et
S. weissii (L7), avaient des valeurs de Clsg de 7 ug eqv d’extrait /mL).

Seul I'extrait de T. erythraeum collectée a Lifou en novembre 2009 (n°9, Tricho L17 C2) (p
< 0,001) montre une différence de cytotoxicité en condtions +OV et —OV (OV ayant une activité
inhibitrice). Ceci indique que pour la majorité des extraits la cytotoxicité globale observée est
non spécifique des CSSP. Mais comme démontrée précédement, cette toxicité pourrait étre une
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résultante de composés dont les actions respectives sont antagonistes, |I'un activateur et 'autre
inhibiteur des CSSP.

Tableau 40 : Cytotoxicité des fractions F2 (MeOH : H,0; 90 : 10) d’extraits liposolubles (1) de Trichodesmium :
valeurs des Cls, (pg eqv d'extrait / mL) et coefficients de Hill.

+0V -ov
+ +
) Clso £ SEM Coefficient Clsot SEM Coefficient
Réf. Date Nom ug eqv de Hil ug eqv de Hil
d'extrait / mL d'extrait / mL

1la 2007/02 Tricho Ouinné 1 27026 ND 192 £ 26 -3,1+1,1
2 2007/03 Tricho 5iles 126 £ 29 -2,8+1,7 137 +18 -2,6+0,8
3 2007/09 Tricho BD 2007 ND ND ND ND

5 2008/02 Tricho Db ND ND ND ND

6 2008/02 Tricho R ND ND ND ND

7 2008/11 Tricho L14 127 £19 -3,1+1,1 101 £ 16 -1,6+0,4
8 2009/02 Tricho 02-2009 ND ND ND ND

9 2009/11 Tricho L17 C2 96 + 23 -2,6+1,5 45+ 8 -2,0+£0,6

L'analyse en test RBA des 2 fractions F2 purifiées sur Sep-pak® des cyanobactéries
récoltées a Lifou (n°7 et 9) révelent, la encore, la présence de composés activateurs des CSSP
spécifiques du site 5 avec une activité équivalente a 5,07 et 1,65 ug de P-CTX-3C / g eqv d’extrait

respectivement, démontrant une forte toxicité pour I'extrait collecté en novembre 2008 (L14).

I1.3.d Analyses LC-MS/MS

Sur les 8 échantillons de Trichodesmium spp. (7 extraits hydrosolubles et 1 échantillon
lyophilisé) analysés en HPLC-MS/MS pour la détection des toxines citées plus haut, seules la PTX
et la 42-OH-PTX ont été clairement détectées chez 4 échantillons a raison de 1,08 a 1,70 ug eqv
de PTX total / g d’extrait (soit 0,28 a 1,10 ug eqv de PTX total / g de cyanobactérie lyophilisée)
(tableau 41 et figure 53). Pour 3 échantillons de Trichodesmium collectés en 2007 a Nouméa
(n°3), en 2009 a la Passe de Dumbéa (n°8) et a Lifou en 2009 (n°9), aucune de ces toxines n’a été
détectée (limite de détection < 0,01 ug/ g).
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Tableau 41 : Concentrations de PTX et son analogue en ug / g d’extrait hydrosoluble et en ug eqv de PTX / g de

matériel lyophilisé dosées par analyses LC-MS/MS ; LD: Limite de détection: 0,01 ug/g; *:

faite sur le matériel lyophilisé (ML).

analyse directement

PTX 42-OH-PTX Total PTX eqv.
Réf. Date Nom / / q
, : Mg/ g Mg/ geqv.de

hg /g d'extrait d’extrait ML
2 2007/03 Tricho 5iles 0,82 0,87 1,70 1,10
3 2007/09 Tricho BD 2007 <LD <LD <LD <LD
5 2008/02 Tricho Db 0,57 0,52 1,08 0,28
6 2008/02 Tricho R 0,89 0,64 1,53 0,33
7 2008/11 Tricho L14 0,86 0,59 1,45 0,76
8 2009/02 Tricho 02-2009 <LD <LD <LD <LD
9 2009/11 Tricho L17 C2* <LD <LD <LD <LD
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Figure 53 : Mise en évidence par analyse LC-MS/MS de la présence de 42-OH-PTX (a) et PTX (b) dans les

PTX (d) (Wako).

échantillons de Trichodesmium erythraeum. Chromatogramme des standards de 42-OH-PTX (c), et

Pour la premiere fois, la PTX et la 42-OH-PTx sont détectées dans des cyanobactéries

marines.

L’analyse au moyen de la méthode multi-toxininique LC-MS/MS du laboratoire des

phycotoxines a I'lFREMER a également été réalisée sur les extraits hydrosolubles et liposolubles

de Trichodesmium. Les résultats montrent qu’aucune hépatotoxine, toxine diarrhéique, toxine

paralysante ou FAT n’a pu étre détectée. Cependant, des traces de cyanotoxines neurotoxiques

(HANTX-a) ont été suspectées. Des analyses complémentaires sont en cours.
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.4 Discussion

Les échantillons récoltés en saison chaude, en période de floraison des Trichodesmium,
étaient majoritairement constitués de I'espéce T. erythraeum, espéce la plus fréquente dans le
lagon calédonien, et dans une moindre mesure de I'espéce T. thiebautii (Rodier and Le Borgne,
2010).

L'utilisation combinée des tests souris, N2A et RBA et de la LC-MS/MS a permis d’évaluer
leur potentiel toxique respectif ainsi que le risque qu’elles représentent pour les populations
exposées a ces efflorescences.

lll.4.a Complexe toxinique de Trichodesmium

Variabilité du profil toxinique en fonction de I’age et du degré de pureté de I’efflorescence.

Compte tenu du protocole d’échantillonnage appliqué a ces cyanobactéries pélagiques, il
est vraisemblable que les échantillons analysés différaient les uns des autres au niveau de I'age
des efflorescences. Or, c’est un critére qui peut avoir son importance, en raison des risques de
relargage du contenu cellulaire des trichomes au sein de ces efflorescences a un stade avancé
de sénescence.

En outre, comme souligné précédemment pour les cyanobactéries benthiques, il faut
rester prudents quant a l'origine exacte des composés toxiques mis en évidence dans les
extraits analysés : en effet, bien que largement dominées par les espéces de T. erythraeum voire
parfois T. thiebautii, les mattes ayant servi a la préparation de ces extraits formaient
manifestement des communautés biotiques complexes (Sheridan et al., 2002). Seule I'obtention
de cultures axéniques de Trichodesmium pourrait permettre de répondre formellement a cette
guestion. En attendant, I'analyse globale permet en tout cas d’évaluer le risque que ces mattes
représentent pour I’'Homme et I'environnement (Ohki et al., 1992 ; Chen et al., 1996).

Composés liposolubles.

En 1992 et 1993, Hahn puis Endean et leurs co-auteurs étaient les premiers a signaler la
présence concomitante chez Trichodesmium de composés hydrosolubles et de substances
liposolubles similaires aux CTXs en terme d’activité (test souris), et d’'un point de vue chimique.

Nos résultats sont en complet accord avec ces observations antérieures : ils indiquent en
effet que les populations de Trichodesmium collectées en Nouvelle-Calédonie de 2007 a 2009
hébergent un complexe toxinique composé i) de toxines hydrosolubles a activité paralysante
(test souris) associées a la PTX et 42-OH-PTX (LC-MS/MS), ii) de composés liposolubles d’activité
non spécifique des CSSP (test N2A) et iii) de composés liposolubles d’activité spécifique du site 5
des CSSP (test RBA).

Ces composés ne sont pas tous présents en quantités équivalentes dans les échantillons
analysés. L'une des explications aux différents profils toxiniques est exposée ci-dessus, mais ces
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différences peuvent également étre dues a des productions toxiniques dépendantes du
génome. Au-dela de ces facteurs génétiques, le potentiel toxinogénique de Trichodesmium peut
dépendre aussi des pressions liées aux facteurs abiotiques (température, lumiére, salinité) ou de
facteurs biotiques (prédation, associations avec des bactéries) (Guo et al., 1994; Qiqin et al.,
1997; Negri et al., 2004; Thacker et al., 2004; Wiegand et al., 2005).

Par ailleurs, et contrairement a ce qui a été observé par Ramos et al. (2005) et Proenca
et al. (2009) dans des populations de T. erythraeum collectées sur les cotes brésiliennes et aux
lles Canaries dans lesquelles des traces de microcystines et de STXs avaient été détectées,
aucune des phycotoxines et cyanotoxines connues (cylindrospermospine, nodularine-R et
microcystines, toxines diarhéiques (DSTs), toxines paralysantes (STXs) et FATs) n’a été trouvée
dans les Trichodesmium des lagons néo- calédoniens.

Présence des neurotoxines AnTX-a et HAnTX-a

Dans l'une des espéces d’Oscillatoriales benthiques récoltées a Lifou, H. lyngbyaceum, la
présence de I'HANnTX-a et de faibles teneurs d’AnTX-a ont été clairement détectées en GC-MS
(Méjean et al., 2009). Le séquencage de la région ITS ARNr 16S - 23S et leurs alighements
montrent de fortes similitudes phylogénétiques entre I'espece analysée H. lyngbyaceum et
T. eythraeum 79 (99% de séquence identique) ainsi qu’avec T. eythraeum IMS 101 (98% de
séquence identique) (annexe 3).

La toxicité des extraits hydrosolubles de Trichodesmium se manifeste chez la souris a
travers des symptoémes fortement similaires a ceux observés lors de I'injection de toxines pures
d’AnTX-a et HAnTX-a (tableau 12). Ainsi, on peut raisonablement émettre I'hypothése que
Trichodesmium est capable de produire de I’AnTX-a et/ou de 'HANTX-a. Les derniéres analyses
LC-MS/MS montrent la présence, dans la plupart des échantillons analysés, d’'une substance de
méme poids moléculaire et de méme fragmentation que I’"HANnTX-a mais caractérisée par un
temps d’élution légerement différent. Lisolement de cette substance devrait permettre de
confirmer s’il s’agit d’'un composé proche de méme activité.

I11.4.b Caractérisation de la PTX

Pour la premiére fois, la PTX et un de ses homologues (42-OH-PTX) ont été détectés chez
une cyanobactérie (figure 3c ; figure 53). La PTX décrite précédemment est une des plus grandes
molécules naturelles (Vale and Ares, 2007; Katikou, 2008; Wu, 2009). Ses mécanismes d’action
expliquent les différents symptomes neurotoxiques (Katikou, 2007).

Les intoxications causées par la PTX (ou palytoxicose) s’averent souvent fatales. Ces
intoxications résultent soit de I'inhalation ou du contact direct avec la PTX, soit le plus souvent
de la consommation d’organismes concentrateurs de PTX comme les poissons et les crabes. Les
symptdémes sont des irritations cutanées, vomissements, fievre, diarrhées séveres, paresthésies
des extrémités, spasmes musculaires importants et la mort survient par détresse respiratoire. La
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diversité de ces symptomes peut expliquer les assimilations a la ciguatéra classique (Kodama et
al.,, 1989). Cependant, méme si les tableaux sont proches, la prédominance des signes
neurologiques centraux et l'altération de I'état de conscience sont particulieres a la
palytoxicose. Les traitements chez 'THomme sont uniquement symptomatiques.

Originellement isolée d’'un Zoantharia, cette toxine est retrouvée chez de nombreux
organismes marins comprenant, les dinoflagellés du genre Ostreopsis, les Zoantharia (genre
Palythoa et Zoanthus), les anémones, les poissons (Decapterus macromosa et Melichtys vidua)
ou encore les crabes (Lyphozozymus pictor) mais jamais dans le groupe des cyanobactéries
(Gleibs et al., 1995; Katikou, 2007 ; 2008 ; Wu, 2009). Ostreopsis produit de nombreux
analogues de la PTX : ostréocines, ostréotoxines, mascarénotoxines. Cependant peu d’éléments
sont encore disponibles quant a la biogenéese de la PTX, confirmant le lien entre les analogues
produits par Ostreopsis et la PTX, prouvant alors qu’Ostreopsis est a I'origine des intoxications
dues a la PTX (Taniyama et al., 2003 ; Lenoir et al., 2004 ; Katikou, 2008).

lll.4.c  Impact sur 'environnement par voie bioaccumulative

Phénomeéne de bioaccumulation.

Les colonies de Trichodesmium constituant de véritables complexes écologiques (Sellner,
1997 ; Sheridan et al., 2002) sont utilisées comme substrats physiques ou/et de nourritures
pour certains organismes. Comme mentionné précédemment, cette prédation rendant
rapidement le zooplancton toxique peut étre le point d’entrée de l'incorporation des toxines
produites par Trichodesmium dans la chaine alimentaire. Ainsi, Trichodesmium peut étre
potentiellement impliquée dans deux phénomenes connus : le clupéotoxisme et la ciguatéra.

Lien avec le clupéotoxisme

Comme nous I'avons exposé dans le 1% chapitre, le clupéotoxisme est une intoxication a
la PTX liée a la consommation de poissons pélagiques planctonophages de la famille des
Clupéidés, sardines ou d'anchois des mers tropicales. C'est donc une forme de palytoxicose dont
le vecteur principal est un poisson. Elle est plus fréquente dans les eaux tropicales et sub-
tropicales (Kodama et al., 1989; Onuma et al., 1999).

Les poissons microphages vivant souvent en banc peuvent ainsi accumuler des toxines
en se nourrissant dans les efflorescences de Trichodesmium. En Nouvelle-Calédonie, ces faits
ont été rapportés des 1877 : des mattes nommées green monad colorant les eaux et
provoquant des érythémes et des conjonctivites, servent de nourriture aux sardines
responsables de cas d’intoxications (Randall, 2005 ; Deeds and Schwartz, 2009). Ces derniéres
sévissent également a Fiji et dans les mers des Caraibes et peuvent s’avérer fatales a la suite de
symptomes violents (Randall, 1958). Ces intoxications saisonniéres sont suspectées d’étre
causées par les Trichodesmium.

215/326



Chapitre 2 : Les cyanobactéries marines

Des cas d’intoxications de type ciguatérique provoqués par les mullets nous ont été
rapportés (communications personnelles de pécheurs locaux). Ces mugilidés sont des
planctonophages et sont connus pour venir se nourrir de mattes constituées majoritairement de
Trichodesmium. Nous avons pu personnellement observer ces mullets se nourrir dans les mattes
de Trichodesmium dans la zone de péche de Hunété en novembre 2008 et 2009

Lien avec la ciguatéra

Les mattes de Trichodesmium récoltées contiennent des PTXs mais également des
composés liposolubles cytotoxiques d’action non spécifiques des CSSP ainsi que des métabolites
toxiques spécifiques du site 5 des CSSP. A l'instar de beaucoup d’oscillatoriales benthiques,
Trichodesmium peut donc potentiellement contribuer aux intoxications de type ciguatérique. En
1993, Endean l'avait déja suggéré apres analyse de thazards du large (Scomberomorus
commerson) et de Trichodesmium. Nous apportons donc ici des éléments supplémentaires
quant a l'implication de Trichodesmium dans la chaine de contamination ciguatérique des
poissons et autres organismes (Randall, 1958 ; Hahn and Capra, 1992 ; Endean et al., 1993 ;
Deeds and Schwartz, 2009).

Ces deux intoxications sont-elles communes ?

Le clupéotoxisme a longtemps été considéré comme une forme de ciguatéra (Deeds and
Schwartz, 2009). Or, la rapidité et la sévérité des symptomes du clupéotoxisme associé aux
nombres élevés de cas mortels (20%) le différencient de la ciguatéra classiquement provoquée
par I'accumulation des CTXs produites par Gambierdiscus.

Cependant, les poissons pourraient accumuler des toxines d’origines différentes :
produites par les dinoflagellés et les cyanobactéries benthiques ou pélagiques. Des cas
d’intoxications séveres de type ciguatérique sont parfois difficilement attribuables aux
intoxications aux PTXs ou aux CTXs (Deeds and Schwartz, 2009). Or, étant donné que ces toxines
sont produites dans les mémes zones (Litaker et al, 2010; Rhodes, 2010), on peut
raisonnablement penser que les poissons peuvent accumuler I'une et/ou l'autre et se constituer
ainsi un complexe toxinique d’origines différentes et dont le potentiel toxique s’en trouverait
accru. Ainsi, nous pouvons proposer pour ce phénomeéne touchant les poissons, a travers un
complexe toxinique (CTX-like, PST-like et PTXs) d’origine cyanobactérienne et/ou microalgale, la
qualification de Ciguatera Shellfish Poisoning.

Risque sanitaire associé aux efflorescences a Trichodesmium

De par leur toxicité, ces efflorescences de Trichodesmium représentent un risque
potentiel pour les populations qui y sont exposées, soit par contact direct soit par voie
bioaccumulative. Il nous a été rapporté des formes de conjonctivites ou de démangeaisons chez
des enfants se baignant dans des mattes de Trichodesmium, qui rappellent le phénomene
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d’irritation par inhalation connu sous le nom de Tamandaré fever ou Trichodesmium fever dans
le nord-est du Brésil (Sato et al., 1963).

Or, a ce jour, il n"existe aucune réglementation, ni politique de prévention vis a vis des
risques liés aux efflorescences a Trichodesmium, pourtant fréquentes dans les régions
tropicales, qui traduit une méconnaissance des oscillatoriales et des cyanobactéries benthiques
marines en général. Par ailleurs, jusqu’en 2005, les quantités maximales de PTX dans les
mollusques n’étaient pas réglementées. Depuis cette date, la commission des laboratoires de
référence a fixé la limite sanitaire a 0,250 pg de PTX / g de chair (Ledreux et al., 2009).

Dans notre cas, les concentrations estimées étaient de I'ordre de 0,3 a 1,1 pug eqv de PTX
total / g de matériel biologique lyophilisé (tableau 41), indiquant que le seul risque lié au
développement de Trichodesmium chez 'Homme réside, non pas au niveau des eaux de
baignade, mais dans la consommation de mollusques ou de poissons ayant bioaccumulé les
toxines produites par cette cyanobactérie pélagique.

lll.4.d Impact direct sur I’environnement

Trichodesmium est naturellement présent dans I’environnement, et seules quelques
études font état de ses impacts sur I'écosystéme (Sellner, 1997). Il a notamment été démontré
gue certaines de ces efflorescences avaient des effets négatifs en aquaculture (Preston et al.,
1998 ; Negri et al., 2004 ; Krishnan et al., 2007). Mais indépendamment de sa toxicité, les
efflorescences de Trichodesmium ont un impact certain sur les écosystémes lagonaires,
notamment par la réduction de la pénétration de la lumiére qui entraine une mortalité accrue
des récifs de coraux ou des populations d’huitres perlieres (Pinctada maxima) (Negri et al.,
2004), par des phénomeénes d’anoxie ou encore par I'augmentation anormale des teneurs en
métaux ou en éléments nutritifs (Jones, 1992) provoqués par la dégradation excessive de la
matiere organique.

1.5 Conclusions

L'ensemble de ces données écotoxicologiques confirme la toxicité des mattes de
Trichodesmium et apporte des éléments sur le complexe toxinique que T. erythraeum et
T. thiebautii représentent. En outre, pour la premiere fois, la PTX et son homologue 42-OH-PTX
ont été détectées chez une cyanobactérie marine.

Trichodesmium est donc wune actrice potentielle dans les phénoménes de
bioaccumulation du clupéotoxisme et de la ciguatéra.

Des analyses sont en cours pour caractériser les toxines de ce complexe. Ceci permettra
par la suite de mettre en évidence les voies de contamination pour ainsi identifier clairement les
organismes a risque pour I’'Homme.
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IV. Conclusions du chapitre 2

L'ensemble de ces éléments (implication des cyanobactéries associant un complexe
toxinique et de nouveaux vecteurs comme les bénitiers) apporte une meilleure connaissance du
phénoméne écotoxicologique environnemental qu’est la ciguatéra au sens large et doit
permettre de mieux appréhender le systéme d’évaluation et de gestion du risque
d’intoxications par les produits de la mer dans les régions coralliennes. Les dinoflagellés
ciguatoxinogenes et les cyanobactéries sont des indicateurs de I'état des récifs et sont des
composants essentiels a une stratégie de surveillance environnemental ciguatérique, véritables
outils d’'une veille sanitaire.

Jusqu’a présent, la plupart des études de phénomeéne ciguatérique sont des études
rétrospectives menées a la suite de déclarations d’intoxications. Une zone est ainsi déclarée
« ciguatérique » lorsqu’il est possible d’identifier I'origine de péche et de vie des poissons
contaminés. La geneése du complexe ciguatérique pouvant mettre 1 a 3 ans pour s’établir : a
partir d’une efflorescence de microorganismes toxinogénes (1 maillon de la chaine) jusqu’a son
accumulation aux poissons incriminés atteignant le seuil de toxicité pour I’'Homme,
I'intervention d’une équipe de recherche ou le démarrage d’une étude écotoxicologique sera
tres tardive pour bien apprécier I'origine du phénomene.

En revanche, I'implantation dans la baie de Prony de 'usine d’extraction de Nickel et de
Cobalt de Vale (ex GoroNickel) engendrant des changements dans I'écosysteme récifal fut une
opportunité pour notre équipe de mener une étude prospective.

A travers ces travaux de thése, nous avons souhaité évaluer |'état de référence
« ciguatérique » des poissons de la baie et des alentours. Pour ce faire, nous avons mis en place
un plan de surveillance de la zone de Prony, en développant des outils de veille sanitaire, qui
pourra nous permettre une meilleure compréhension de 'apparition de zones ciguatériques;
une étude écotoxicologique de I'atoll d’Ouvéa, réputé indemne de ciguatéra, est réalisée en
paralléle. Il est évident que le suivi de I'évolution de ces cyanobactéries filamenteuses en
termes de présence et de toxicité est primordial et doit donc étre intégré, a part entiére, a un
suivi environnemental.
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Chapitre 3 : La ciguatéra et les facteurs environnementaux : Etudes a
Ouvéa et en baie de Prony

. Introduction

Dans le chapitre 2, nous avons pu mettre en évidence I'implication des cyanobactéries
dans certaines formes d’intoxications qui peuvent étre assimilées a la ciguatéra. Au stade de nos
recherches, nous ne pouvons affirmer que les cyanobactéries produisent des CTXs. Cependant,
elles produisent des composés proches qui peuvent se bioaccumuler dans la chaine alimentaire
et contaminer certains organismes marins comme les bénitiers ou les autres mollusques.
Porteurs de toxines, ils provoquent des intoxications jusqu’alors inexpliquées, similaires en
certains points au syndrome ciguatérique classique mais dont les vecteurs peuvent étre
différents. Nous avons proposé de nommer I'ensemble de ces intoxications Ciguatera Shellfish
Poisoning ou Intoxication ciguatérique par produits de la mer.

Qu’il s’agisse d’intoxication ciguatérique classique induite par les dinoflagellés ou d’une
ciguatéra similaire causée par les cyanobactéries, le déterminisme du phénomene
écotoxicologique n’est pas clairement caractérisé. Dans le premier chapitre, nous avons fait état
des facteurs naturels ou anthropiques connus pour favoriser le développement de zones
ciguatoxinogenes (cf. ch.1.11.7). La survenue d’une flambée ciguatérique est souvent soudaine et
intervient sans que le ou les facteurs déclencheurs n’ai(-en)t pu étre caractérisé(-s). Les études
scientifiques qui tentent d’étudier ce phénomeéne sont souvent rétrospectives faisant suite a des
déclarations d’intoxications ou des interviews qui permettent de localiser la zone incriminée. Or,
dés lors que les toxines sont a des niveaux de concentrations suffisants pour affecter I’'Homme,
on peut estimer que les efflorescences de micro-organismes ont eu lieu de 6 a 18 mois avant
d’atteindre I'étage trophique « Homme » (Chinain et al., 1999a ; Chateau-Degat et al., 2005).

Dans ce troisieme chapitre, les résultats de deux études écotoxicologiques sont
présentés : 'une sur Ouvéa, réputée indemne de ciguatéra, et I'autre dans le Sud de la Grande
Terre a Prony, constituant pour la premiere fois une étude prospective (figure 54). L'étude
menée sur un site réputé indemne de ciguatéra (site témoin) a pour objectif d’évaluer le niveau
de ciguatoxicité de différents maillons pisciaires sur des sites considérés comme sans, ou avec
faible pression anthropique. De maniére générale, les perturbations programmées d’un
environnement récifal sont considérées comme de potentiels facteurs favorisant
potentiellement la naissance de flambée ciguatérique. Aussi afin d’anticiper et de tenter de
caractériser les facteurs de développement de ciguatéra dans une zone dite a « risque », nous
avons mis en place un plan d’étude permettant a la fois d’évaluer et de prévenir le risque.
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Dans ce chapitre, apres un bref apercu de travaux antérieurs, nous présenterons les deux
suivis écotoxicologiques effectués a Ouvéa et en Baie de Prony, les méthodologies mises en

ceuvre en justifiant nos choix adaptés a I'un et a I'autre des sites, les résultats et la discussion.
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Figure 54: Carte de la Nouvelle-Calédonie : situations d’Ouvéa et de I'implantation de l'usine de Vale NC dans le
sud de la Grande Terre.

.1 Contexte

I.1.a La ciguatéra et son déterminisme

Nous avons vu dans le chapitre 1 que les modifications de certains parameétres
environnementaux peuvent favoriser le développement de zones ciguatériques. La création de
«nouvelles surfaces» résultant de la destruction corallienne d’origine naturelle (tsunami,
cyclone, pluies exceptionnelles...) ou anthropique (eutrophisation, dragage, construction de
digue ...), favorise la prolifération de microorganismes ciguatoxinogenes. En effet, ces substrats
vierges peuvent étre colonisés par des macroalgues opportunistes, supports privilégiés des
dinoflagellés, ou directement par les cyanobactéries. Si ces microorganismes sont constitués de
souches toxinogénes, les toxines produites peuvent rentrer dans la chaine alimentaire via les
poissons herbivores ou les mollusques pour étre bioaccumulées et biotransformées le long de la
chaine trophique.

Le déterminisme du phénomene ciguatérique a toujours été un enjeu majeur pour les
populations et les institutions des pays des zones endémiques. Afin de pouvoir évaluer et
prévenir les zones a risque mais aussi dans une optique de développement durable, il est
important de pouvoir prédire les effets des constructions littorales ou des activités humaines de
maniére générale sur le récif. Or, les études environnementales s’orientent toutes vers des
zones ciguatériques pour comprendre I'origine du phénomeéne qui est alors antérieure. Retracer
I’histoire écologique d’une zone (données météorologiques, physico-chimiques, inventaire des
impacts anthropiques...) ainsi que recueillir des données épidémiologiques, peut étre parfois
difficile. Ainsi I'étude menée a Lifou suggere fortement que les perturbations liées a la
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construction de la rampe de mise a I'’eau en 1999 furent la cause premiére de I'installation des
cyanobactéries reconnues toxiques. Cependant, ces hypothéses ne peuvent étre approuvées
formellement.

l.1.a.1 Exemple d’études écologiques : Hao, Tuamotu en Polynésie Frangaise (Bagnis,
1969)

En 1969, une étude écotoxicologique relativement complete est menée dans I'atoll de
Hao aux Tuamotu en Polynésie francaise (Bagnis, 1969). Hao, indemne de ciguatéra avant 1965,
est subitement touchée par des intoxications graves. En 1965, la construction d’un aérodrome
et d’'un port nécessite d'importants travaux de dynamitage, d’endiguement, de terrassement ;
ceux-ci sont associés a une augmentation brutale de la population dans la partie nord-est de
I’'anneau corallien. Les premiéres hospitalisations pour des cas d’intoxications ciguatériques sont
relevées en novembre 1966. Les cas de ciguatera prennent naissance dans les zones d’accostage
des bateaux approvisionnant les travaux en matériaux puis, un a deux ans apres, s’étendent
progressivement aux aménagements du récif. Il est a noter que les premiers cas d’intoxications
sont dus a des poissons corallivores ou herbivores. Les poissons incriminés dans les années
suivantes sont des poissons de régime piscivore.

Cette étude a permis de tirer des conclusions significatives de corrélations entre les
perturbations de zones récifales procurant de nouvelles surfaces vierges et la contamination de
poissons. Les données ont permis également de noter une progression spatiale et temporelle de
la zone toxique ainsi qu’une affectation progressive des poissons vers le haut de la chaine
trophique.

En terme de temps, d’aprés le nombre de cas d’intoxications recensés, la toxicité a
touché les poissons de bas de chaine dés I'année suivant les travaux et il semble que le facteur
risque fut le plus important en 1968 (2 ans apres les travaux) pour diminuer sensiblement
ensuite. Cependant, les intoxications affectent encore la population en 1973 (7 ans apreés,
dernieres données disponibles). Une étude écologique approfondie aurait permis de dire si
cette diminution correspond réellement a un retour a I'’équilibre de I'écosystéme. Il est en effet
probable que la population soit moins affectée suite a un changement de comportement
alimentaire en évitant tout simplement les poissons connus pour étre ciguatoxiques.

Les données statistiques recueillies prennent en compte également les
empoisonnements causés par d’autres organismes que les poissons tels les échinodermes, les
crustacés ou les mollusques, tout en donnant une symptomatologie ciguatérique typique.
Cependant, il apparait que les cas les plus graves soient dus a la consommation de poisson de la
famille des carangidés qui sont devenus toxiques 18 mois apres les perturbations liées aux
constructions.

Cette étude a permis de suivre la croissance du phénoméne a un stade récent et en
extension durant lesquels les herbivores ou corallivores sont dans un premier temps les plus
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toxiques, puis quelques temps plus tard les carnivores. Le degré de toxicité par espece de
poissons selon leur niveau trophique permettrait donc de dater I’'évolution du phénomeéne
toxique dans une zone et déterminer ainsi si celui-ci est en phase de croissance, d’extension ou
de sénescence. Par ailleurs, lors de I'extension d’'une zone ciguatérique, les zones de péche
éloignées du point de « hot-spot » de ciguatoxicité, présenteront des poissons toxiques de bas
de chaine (chirurgiens, perroquets, mulets).

l.1.a.2 Exemples de facteurs favorisants

Impact des activités humaines sur le récif

Les diverses atteintes de l'intégrité physique et biologique de I’écosysteme corallien
entrainent des dysfonctionnements qui peuvent étre a |'origine de la perte de ressources riches
et diversifiées. Ces perturbations peuvent étre de divers ordres que I'on observe fréquemment
dans les iles du pacifiques :

Techniques de péches

Dans les iles, les activités traditionnelles, actuelles ou ancestrales, sont trés riches et sont
parfois difficiles a caractériser. En ce qui concerne l'activité traditionnelle de la péche, les
différentes techniques utilisées constituent une pression importante voire destructrice sur les
zones ciblées et en particulier sur les zones récifales facilement accessibles.

Les péches traditionnelles a pied (retournement des coraux et piétinement) peuvent
également de maniére plus discréte mais répétée détruire les massifs coralliens et étre la cause
de dégradations suffisantes de zones coralliennes pour entrainer le développement de zones
toxiques. Ainsi des flambées ciguatériques ont été observées dans les atolls polynésiens
fortement impactés par I'activité perliére : cycliguement, une a deux années apreés les saisons
de récolte perliere, les zones de péches regorgeaient de poissons ciguatoxiques (Bagnis, 1974).

L'utilisation de la dynamite, courante dans certaines tribus de Nouvelle-Calédonie, a été
une méthode de péche facile et ce, pendant de nombreuses années. Trés destructrice de
I’écosystéme corallien, cette pratique qui procurait de « belles » surfaces vierges propices au
développement des micro-organismes ciguatoxinogénes, est a ce jour condamnée par les
autorités tribales.

De nouvelles surfaces artificielles : Epaves ou immersion de matériaux

De nombreux exemples rapportent également la création de nouvelles surfaces
artificielles. Dans les fles, a la suite d’'immersion d’épaves ou de matériaux divers notamment
apres la guerre dans certaines régions du Pacifique, il a été observé le développement de zones
ou les poissons étaient ciguatoxiques 12 a 18 mois aprés I'action humaine (Halstead, 1965 ;
Bagnis, 1974).
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Dans certaines fles du Pacifique, de véritables dépotoirs sous-marins ont été créés faute
de traitement adéquat des « nouveaux » déchets (emballage plastique, aluminium, batteries
etc...) comme ce fut le cas a Manihi (Archipel des Tuamotu en Polynésie Frangaise) a la suite
d’une « opération de propreté » de I’atoll. Ces dépotoirs constituent ainsi des substrats vierges
et induisent également des pollutions détruisant le corail (pile, essence...). Ces substrats vierges
peuvent provenir d’activités plus récentes comme les plates-formes pétrolieres qui offrent de
nouvelles zones d’extension des proliférations de dinoflagellés (Villareal et al., 2007).

Aménagement du littoral

L'extraction massive de coraux et de sable corallien pour les constructions ou les
remblais dégrade de maniére irrémédiable le lagon. A Fidji, par exemple, plus d’1,2 millions de
tonnes de matériaux ont été extraits des lagons en moins de 20 ans. En 1983, 17,5 hectares de
récifs barrieres avaient été supprimés. A Tahiti, 1,6 millions de tonnes de matériaux coralliens
avaient déja été extraits avant que le gouvernement régularise ces pratiques. En plus de ces
dégradations par excavation, la turbidité engendrée par de tels travaux de construction peut
provoquer des mortalités massives de colonies coralliennes comme ce fut le cas lors de la
construction de l'aéroport de Faaa. Les aménagements du littoral peuvent donc changer
I’équilibre de I’écosysteme corallien et entrainer la mort des polypes par I'augmentation de la
turbidité, par la diminution des échanges avec 'océan et en favorisant I'envasement.

Urbanisation en bande récifo-lagonaire

De nombreux cas d’aménagement des zones récifales ont été rapportés de mémoire,
perturbant I’environnement recifo-lagonaire en procurant de nouvelles surfaces ou changeant
I’hydrodynamisme local comme c’est le cas dans les deux études présentées en chapitre 2 a
Lifou et a Raivavae (Chinain et al., 2010a).

Impact climatique et changement climatique global

En 1990, le rapport du groupe de travail n°2 du comité intergouvernemental sur le
changement climatique (IPCC/WMO —UNEP -1990) prévoit : (i) un doublement de la teneur en
CO, d’ici 2025 a 2050, (ii) une augmentation du niveau de la mer de 30 a 50 cm d’ici 2050 et (iii)
une augmentation des températures moyennes de surface de 0,2 a 2,5°C d’ici 2050 (Dupon,
1993). Ces conséquences peuvent favoriser sur divers plans les flambées ciguatériques :
I'augmentation du CO, entrainant des mortalités coralliennes favorisera les substrats vierges,
les montées des eaux vont induire la construction d’infrastructures sur le littoral donc
également des substrats vierges et enfin I'augmentation des températures pourra provoquer
des mortalités coralliennes ou favorisera directement les proliférations de micro-organismes
participant ainsi a I'extension de leurs zones de répartition.
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De plus, les prévisions du changement climatique iraient de pair avec une augmentation
des phénoménes météorologiques majeurs (cyclone, tsunami), facteurs favorisants des
dégradations coralliennes (Hales et al., 1999 ; Lehane and Lewis, 2000).

Afin d’expliquer les liens existant entre les dégradations du milieu et les développements
de zones ciguatérigenes, deux sites d’études ont été sélectionnés pour leurs caractéristiques, le
site d’Ouvéa et celui de la baie de Prony, qui font I'objet des travaux présentés dans cette partie.
Mais quelles sont les caractéristiques de ces milieux et, en tenant compte des connaissances
actuelles et des études précédentes sur le sujet, quelles sont les zones subissant des pressions
anthropiques ?

I.1.b Ouvéa : atoll réputé indemne de ciguatéra

Ouvéa est I'lle la plus septentrionale de I'archipel des lles Loyauté, située a environ 100
km a l'est de la grande terre. Elle se distingue de ses consceurs par son grand lagon d’une
superficie de 872 km? (figure 55). Il est protégé des alizés SE sur 50 km, par un croissant corallien
de 132 km?. Constitué a 96% de fonds de lagon (le reste de récifs émergeants), la profondeur
moyenne du lagon est de 15 a 20 m, avec un fond incliné en pente douce. Il est délimité par les
Pléiades Sud et les Pléiades Nord formant des falaises élevées sur toute la partie océanique au
sud-est et au nord.

La vie d’Ouvéa (3 390 habitants au recensement 2009) est tournée vers la mer et les
ressources qu’elle offre (péche vivriere et tourisme essentiellement). Depuis le 8 juillet 2008,
certaines régions en Nouvelle-Calédonie dont I'atoll d’Ouvéa sont classées sur la Liste du
Patrimoine Mondial de 'Humanité.
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Figure 55 : Carte d’Ouvéa, délimitation de la zone inscrite au Patrimoine Mondial de I’'Humanité.

La Province des Tles Loyauté enregistre de nombreux cas de ciguatéra dans les fles de
Lifou et de Maré. En revanche, le poisson d’Ouvéa semble aujourd’hui épargné par ce
phénoméne et continue de bénéficier d’une excellente réputation, représentant de ce fait une
perspective de développement des plus intéressantes pour la péche artisanale lagonaire. La
Province des Tles travaille actuellement sur la relance du secteur de la péche par la
redynamisation de ses acteurs et par la mise en place de structures de conditionnement. Afin
d’évaluer scientifiquement le niveau ciguatérique des populations présent a Ouvéa, la Province
des Tles a fait appel aux compétences de I'IRD. Jusqu’en 2007, les principales pressions
anthropiques subies par I’environnement que nous avons pu identifier sont les constructions du
guai de Wadrilla et les rampes de mise a I'eau présentes a différents sites de I'atoll. Les résultats
de ces travaux permettent de constituer un témoin négatif.

I.1.c La baie de Prony

I.1.c.1 La baie de Prony : un écosysteme singulier

La baie est située dans le sud de la Grande Terre. Elle présente un paysage rouge
caractéristique de la terre latéritique du sud (photo 86). Les reliefs alentours sont relativement
accentués : elle posséde de multiples ramifications des bras de mers. La riviere blanche et bleue
ainsi que de nombreux autres cours d’eau se jettent dans la baie.
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Photo 86 : La baie de Prony, baie calme et enclavée aussi appelée la baie anticyclonique.

La baie de Prony est un site trés particulier de par son enclavement, la protection qu’elle
procure et les formations géologiques connues encore nulle part ailleurs (sources
hydrothermales a petites profondeurs). C’est une baie fermée, trés calme et profonde, avec des
apports terrigénes importants. Elle abrite une faune et une flore qui peuvent étre trés
particuliéres. Les constructions coralliennes sont de grandes tailles et fines constituées
d’especes adaptées aux eaux turbides et aux arrivées d’eau douce.

La pointe de la Grande Terre constitue une des zones inscrites au Patrimoine Mondial de
I'THumanité. Impliqué dans le suivi environnemental de la zone, Vale NC a mis en place 18 points
de contréle marin et de suivi des écosystemes coralliens dans le canal de la Havannah (sur les
récifs coralliens les plus proches du diffuseur, dans la réserve Merlet, a I'Est et a I'QOuest du
diffuseur, a I’entrée de Port boisé...), en baie de Prony et dans le canal Woodin.

La faune ichthyologique de la baie de Prony reste relativement limitée. Les
Pomacentridae (poissons clown ou demoiselles) sont présents avec une quinzaine de taxa. La
saumonée Plectropomus leopardus domine en biomasse la baie comme au niveau du canal
Woodin (Données de I'analyse éco-régionale de NC 2006).

1.1.c.2 Implantation de I'usine de Vale Nouvelle-Calédonie

I.1.c.2.a Le projet

Vale Nouvelle-Calédonie (Vale NC) du groupe Vale (anciennement Goro Nickel NC puis
Vale-Inco NC) est une entreprise d’extraction de minerai et de production de nickel et de cobalt.
Le complexe minier et industriel est situé dans le sud de la Grande Terre pour exploiter le
gisement latéritique du plateau de Goro (figure 56).
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Figure 56 : Carte de la zone du sud de la Grande Terre et de I'implantation des différentes infrastructures de
Vale NC.

Historique

Les débuts de I'exploration miniére du gisement ont été entrepris par COFIMPAC, une
filiale d'Inco, en 1969. En 1992, Inco récupere des droits miniers sur le gisement de Goro mais
les teneurs en nickel le rendent encore inexploitable par les procédés d’extraction chimique
disponibles. L'usine pilote est construite en 1998 pour mettre en place un procédé adapté aux
faibles teneurs de nickel et cobalt du gisement. C’est a partir de 2000 qu’un programme minier
intensif est mené dans la zone de Goro Sud en vue de sa future exploitation. En 2004, le projet
actuel est mis en route.

Le gisement

Le plateau de Goro est un gisement classique constitué de latérites en surface (oxydes de
fer), de saprolite en profondeur (silicates magnésiens) et de la roche mere péridotique. Le
gisement de nickel et de cobalt de la couche latéritique jaune (limonite) et de la couche
saprolitique sont quantitativement I'un des plus importants du monde (120 millions de tonnes)
mais les teneurs relativement faibles en nickel (moyenne de 1,48%) et en cobalt (moyenne de
0,11%) ont conduit Vale a étudier et a développer le procédé d’extraction en hydrométallurgie.
Le cobalt n’étant pas encore exploité dans les mines de Nouvelle-Calédonie, c’est ce procédé qui
va permettre de le valoriser. L'objectif de Vale NC est de produire annuellement 60 000 tonnes
de nickel et 4 500 tonnes de cobalt, soit 10% de I'offre mondiale en cobalt.
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Le procédé hydro-métallurgique

L’ensemble du procédé, consiste a réduire (i) le minerai en pulpe (broyage et ajout
d'eau), (ii) extraire en milieu acide a haute pression le nickel et le cobalt (lixiviation) et (iii) a la
suite de différentes étapes de purification, solidifier ces deux éléments sous forme d’oxyde de
nickel et de carbonate de cobalt respectivement.

A l'issue de ces opérations, deux formes de résidus sont produites, solides et liquides.
Les résidus solides sont constitués du matériau dont le cobalt et le nickel ont été extraits et
auquel du calcaire a été ajouté pour sa neutralisation (29%). lls seront stockés dans des bassins
de stockage prévus a cet effet par recouvrement d’'une géo membrane (photo 87). L'arrété de
I’exploitation de la zone de stockage des résidus solides est obtenu en octobre 2008. Quant aux
résidus liquides, un traitement physico-chimique permet de les neutraliser et de ramener leurs
teneurs en métaux a des valeurs respectant les normes environnementales obligatoires pour
pouvoir les rejeter en mer. Une usine de traitement est dédié a ce travail

Photo 87 : Vallée de la Kwe Ouest ou se construisent les bassins de stockage des résidus solides.

Le projet et la société

Une étude des impacts socio-économiques et socioculturels de la construction du projet
menée en 2007 avec les populations mentionne en premier lieu I'inquiétude des populations
face a l'impact potentiel de Il'usine sur l'environnement: « La possible détérioration de
I’environnement marin par le rejet en mer, et I'impact potentiellement négatif sur la péche qui
en découle, est la premiéere préoccupation environnementale de la population. ». Or, Vale NC,
responsable de ce projet de grande envergure, travaille de plus en plus avec les populations
locales afin que ce projet grandisse en partenariat avec tous pour un développement durable
tenant compte de I'écologie, de I’économie et de I’"humain.

Les obligations et les engagements de Vale NC pour I’environnement

Les arrétés relatifs aux autorisations ICPE (Installation Classée pour la Protection de
I’Environnement) de l'usine et de I'aire de stockage des résidus sur la Kwe Quest ont été signés
avec la Province Sud en octobre 2008. Ces deux arrétés prescrivent les régles a suivre en
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matiere d’exploitation, de surveillance des émissions et de suivi environnemental afin de
préserver au mieux I’environnement, ainsi que la santé et la sécurité publique.

Afin de concilier la sauvegarde de la biodiversité et ce projet de construction d’usine et
de mine d’extraction de minerai, Vale NC a entrepris une démarche de prise en considération et
de sauvegarde de la biodiversité. Ses engagements sont de :

1. Eviter le plus possible les zones sensibles au moment de la conception,

2. Minimiser I'empreinte en réduisant les installations ou leurs émissions,

3. Restaurer les zones d’empreinte dés que possible,

4. Compenser les effets résiduels (en dernier lieu, aprés atténuation maximale de ces
effets).

Cette démarche est prise en compte pour chacune des infrastructures mises en place
dans le cadre de ce projet et a chaque étape de progression temporelle de ce projet.

I.1.c.2.b Les infrastructures

L’usine

Une usine pilote expérimentale a d’abord été testée en 2000 et 2001. La construction de
I"'usine industrielle a démarré en 2002 (photos 88 et 89). L'arrété d’exploitation de l'usine est
obtenu en octobre 2008. Au premier trimestre 2010, sa construction est achevée. Elle est
actuellement en phase de test (phase de commissioning) et doit entrer en production avant
2011.

o

s 3

Photos 88 et 89 : Usine en travaux en 2002 et en 2006.
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La base vie

La base vie, implantée a proximité de 'usine, a eu une capacité maximale d’accueil de
4500 personnes; en période de production, elle sera limitée a 1500 lits (photo 90).
L'installation de cette petite ville peut avoir des conséquences quant aux rejets domestiques
gu’elle génére. Les rejets étant intégralement traités par des stations d’épuration mises en
place sur le site, ils ne devraient pas perturber le lagon. Les seules perturbations éventuelles sur
le lagon liées a I'arrivée massive de cette population de travailleurs seraient dues aux activités
récréatives de la population (activités plaisancieres, péche, bateau, ancrage...) qui a priori,
restent limitées. Il parait donc raisonnable d’estimer que I'impact direct de cette population sur
I’environnement marin reste faible, et dans tous les cas, elle n’est pas prise en compte dans
notre étude d’'impact potentiel pour présenter un risque ciguatérique dans la zone de la baie de
Prony.

Photo 90 : Vue aérienne de la base vie de 'usine du sud.

Le port de Prony

Construit a partir de 1999 dans les premiéres étapes du chantier afin de permettre la
construction de l'usine (photos 91 et 92), le Port de Prony permet I'importation de matériaux de
construction sur mines ainsi que celle des divers matériaux nécessaires au procédé d’extraction
(2 millions de tonnes de matériaux (solides et liquides) par an en transit). Il a également
vocation a l'exportation du nickel et du cobalt a raison de 4 500 conteneurs par an. Ceci
constitue un trafic de 2 a 3 navires par semaine géré par prés de 150 personnes lors de la
production a plein régime. L’arrété de son exploitation date de juillet 2007.

Le Port est constitué de deux quais de 90 m et 180 m de longueur montés sur pieux afin
d’éviter au maximum les remblais et les dragages (photos 93 et 94), cette technique dite du
tablier a permis d’éviter de remblayer une partie de la baie pour construire une structure sur
fondations traditionnelles. En outre, de par la géomorphologie de la baie, il n"a pas été
nécessaire de creuser un chenal ni de remblayer. Lors de la construction du Port et de la mise en
place des piliers de soutenement des pontons en pleine eau, le tonnage du dragage fut limité
mais il a tout de méme donné lieu a une turbidité passagere. Durant les travaux d’endiguement,
des « barrages flottants » ont été installés afin de diminuer la dispersion des apports terrigénes.
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Photos 93 et 94 : Vues aériennes du port constitué de ses deux quais montés sur pieux (93) dont I'un est relié a
I'usine par un convoyeur (94).

Le tuyau et son effluent

Composition de I’effluent

L'effluent, rejet traité des résidus liquides, est constitué de divers sels (magnésium,
calcium, sulfate, chlorure de sodium ou manganeése) dont les concentrations sont controlées
afin de ne pas dépasser les seuils réglementaires environnementaux. Le traitement de ce résidu
liguide consiste a ajuster ses parametres physico-chimiques afin qu’ils se rapprochent de ceux
de I'eau de mer.

Le mode d’acheminement : le tuyau, son tracé

Le déversement s’effectue en mer au niveau du chenal de la Havannah grace a un tuyau
immergé de 80 cm de diameétre et de 23 km de long. Son tracé le fait passer par le Port de
Prony, plonger dans la Baie de Prony, contourner le cap N'Doua, et se diriger vers le nord-est
pour rejoindre le Canal de la Havannah (figure 56). Des observations des fonds marins ont été
effectuées par robot et/ou par plongeurs, tout le long du trajet prévu par I'émissaire, afin
d’évaluer les zones les plus appropriées et d’éviter les récifs coralliens et les zones de haute
sensibilité écologique. Au niveau cotier et dans le Port de Prony, I’émissaire est placé dans une
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tranchée pour assurer sa sécurité. Installé en fin 2008, son parcours s’étend sur des zones
majoritairement sableuses et vaso-détritiques, avec dans certaines zones des colonies de coraux
éparses. Une fois posé au fond, sa profondeur moyenne est de 35 a 40 m de fond. La zone
d’'immersion située au port a nécessité le creusement et I'aménagement d’une digue
d’enrochement, a partir d’octobre 2008 (photo 95).

Photo 95 : Zone d'immersion du tuyau, avril 2008

L'extrémité de cet émissaire, située en face de la baie Kwé a 4 km de la cOte et par 35 m
de fond (figure 56), est constituée d’un diffuseur de 1 km comportant 200 orifices. L'objectif de
cette structure est de permettre une dilution rapide et efficace de cet effluent afin de ne pas
perturber I'environnement proche de I’émissaire. La zone d’'immersion a été validée par
expertises indépendantes, pour étre la plus efficace pour la diffusion de I'effluent. Des essais a
I'aide de traceurs colorés ont permis d’évaluer la dynamique du rejet et la dilution de I'effluent
a l'extrémité de I'émissaire afin de valider sa conception et la modélisation. Au premier
semestre 2010, il est toujours en « phase d’essai » par utilisation de colorant injecté en amont
du tuyau.

.2 Bilan et synthése du contexte

Ouvéa

Jusqu’a présent, en ce qui concerne le risque ciguatérique, aucune étude n’a été menée
a Ouvéa. A notre connaissance et d’aprés les populations, il n’y a jamais eu de flambée
ciguatérique nécessitant une étude écotoxicologique, méme si quelques cas d’intoxications
nous ont été rapportés. Il s’avere donc intéressant d’évaluer le potentiel ciguatoxique de ces
populations de poissons de cette ile et de déterminer si, comme le propose Bagnis et Vernoux
(1986), les poissons possédent tous un niveau de CTXs résiduels en deca du seuil
symptomatique chez ’'Homme (Dickey and Plakas, 2010).
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La baie de Prony

L'implantation de l'usine de Vale NC dans le Grand Sud de la Nouvelle-Calédonie
constitue un terrain d’étude privilégié pour observer la succession possible d’étapes précurseurs
des intoxications ciguatériques. Nos études devraient nous permettre de confirmer d’une part
gue les changements environnementaux liés aux impacts anthropiques peuvent étre considérés
comme perturbateurs et favoriser le développement des dinoflagellés et des cyanobactéries et
d’autre part d’analyser I’évolution au cours du temps du taux résiduel éventuel de toxines dans
la chaine alimentaire de cette baie.

En effet, étant donné i) les infrastructures liées a l'implantation de l'usine, ii) les
éléments qui jouent un réle dans le déterminisme de la ciguatéra et iii) le contexte particulier de
la baie de Prony, certaines zones sont susceptibles d’étre modifiées et de présenter des facteurs
favorisant le développement des micro-organismes.

Deux types de zones peuvent présenter un terrain favorable a ce développement, et
entrainer un risque potentiel de ciguatera:

- Les zones dont I'environnement physique change de maniere immédiate comme
les digues ou les creusements de chenaux,

- Les zones susceptibles d’étre perturbées par l'activité ou les changements
environnementaux, notamment par de fortes pluies (apport sédimentaires et
apports d’eau douce).

La zone du Port de Prony et plus particulierement les zones d’endiguement répondent a
ces criteres et méritent donc une surveillance continue. En effet, a court terme (quelques mois a
2 ans), les micro-organismes peuvent proliférer sur ces zones vierges (effet direct). Et, l1a ou les
zones coralliennes peuvent subir des pressions potentielles comme la turbidité liée a 'activité
portuaire ou la sédimentation accrue causée par les pluies diluviennes lessivant les faciés
ravalées peuvent a plus ou moins long terme affecter la santé des coraux et donc I'apparition de
surfaces disponibles pour les micro-organismes (effet indirect).

Dés 2005, I'’équipe de I'IRD de 'UMR 152 s’est penchée sur les risques potentiels liés a
I'implantation des infrastructures en réalisant un suivi environnemental de différentes stations
dans la baie de Prony et en recherchant plus particulierement les populations microbiennes. De
2005 a 2007, ce suivi mensuel en saison chaude et tous les deux mois en saison fraiche n’a pas
mis en évidence la présence de dinoflagellés (15 missions). En outre, aucune information
formelle n’a été recueillie quant au risque ciguatérique par consommation des poissons péchés
dans la baie. D’aprés les populations locales, ces sites de péche ne seraient pas connus pour
étre a risque (source des pécheurs locaux).
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1.3 Objectifs

Ouvéa et la baie de Prony sont des sites d’étude privilégiés, I'un pour évaluer la toxicité
de population pisciaire reconnue indemne, I'autre pour analyser le devenir d’'une population
dans un milieu en cours de perturbation.

Ainsi, afin d’évaluer le risque ciguatérique pour chacun des sites d’études et en tenant
compte des connaissances exposées dans le chapitre 2, les questions auxquelles devra répondre
cette étude sont :

- Trouve-t-on des micro-organismes (micro-algues ou cyanobactéries) ciguatoxinogenes?
- Les poissons sont-ils ciguatoxiques ?
- Etsioui, quelle est 'ampleur du phénomene ?

- Dans la baie de Prony, la méthodologie étant établie en tenant compte des zones plus
particuliéres a surveiller, I'impact anthropique entraine-t-il des flambées ciguatériques ?

Il. Matériels et méthodes

L'un des objectifs des travaux présentés dans ce chapitre est de mettre en place une
méthodologie permettant le développement a plus long terme d’un plan de surveillance de la
ciguatéra en tenant compte des facteurs potentiels de risque mis en évidence. Ainsi, dans cette
partie M et M, la méthodologie est décrite et les choix justifiés afin de répondre aux criteres de
faisabilité (technique, biologique) avec un compromis entre la valeur scientifique de I'étude et
son co(t financier.

II.1 Plan de suivi : zonation et fréquence

I.1.a Site d’Ouvéa

Une étude menée a Ouvéa par le programme Zoneco a permis de répertorier 72 familles
et 675 especes de poissons cotiers, parmi lesquelles 48 espéeces n’étaient pas encore signalées
en Nouvelle-Calédonie. L'inventaire ne tient pas compte des poissons des herbiers, des
mangroves et du récif extérieur mais, a priori le nombre d’espéces cbtieres a Ouvéa reste
inférieur a 1 000. Les pécheurs, selon la situation de tribu, interviennent majoritairement dans
les Pléiades Nord, Pléiades Sud et dans le lagon. Ainsi, afin d’évaluer la toxicité des espéces
péchées, nous avons collecté un maximum d’especes représentatives de celles qui sont
habituellement consommées, dans les zones les plus fréquentées.
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II.1.b  Micro-organismes et poissons

Zones de suivi

Afin de couvrir les zones habituelles de péche vivriere, cing sites ont été définis (tableau
42 et figure 57) : le nord-est, le nord-ouest, le sud-est, le sud-ouest et le lagon. Les zones de
prélevements des micro-organismes (dinoflagellés et cyanobactéries) sont réparties sur
I’ensemble de I'atoll en fonction de ces zones de péche. Les points d’échantillonnage et leurs
caractéristiques (coordonnées GPS, biotope, type de substrat) sont reportés en annexe 4 pour
les deux missions d’observations en ao(t 2007 et en mai 2008.

Tableau 42 : Définition des 5 sites regroupant les zones de péches a Ouvéa

Sites Code Détails « Lieu dit »
Nord Est NE District de St Joseph - Baie d’Ognat Houlijeous, Ognat, Hoony
Nord Ouest NW Pléiades Nord 116t de la Table, Wenvook
Sud Est SE District de Mouli Mouli
Sud Ouest SW Pléiades Sud Pléiades Sud, lle de Sou
Lagon LA Zone lagon - plage milieu lagon, wharf

Bléiades Nogllh

1

Pléiades Sud

a . ©2007, o
I obe

Pointeur 201351051087 8. (166:27%:52103:E. slév. _Oim M int 11111111 900%: Altitude 5250 km

Figure 57 : Les 5 Sites de péche a Ouvéa pour I’étude menée en septembre 2007.
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Fréquence

Deux missions ont été menées en septembre 2007 et en mai 2008 : la premiére d’une
semaine en fin de saison fraiche a permis de collecter les poissons et les populations de micro-
organismes ciguatoxinogenes. La seconde de 3 jours en mai 2008, saison froide a eu pour but de
suivre les populations de micro-organismes. Initialement prévue en saison chaude pour couvrir
les deux saisons, celle-ci n’a pu avoir lieu en temps voulu pour des raisons logistiques.

Pour chacune des missions, la logistique sur place a été supportée par la Province des
fles en faisant appel aux pécheurs locaux, ceci permettant de tendre au maximum vers les
habitudes de péche.

Il.1.c La baie de Prony
I.1.c.1 Micro-organismes

Zones de suivi
L’ensemble des sites de suivi des micro-organismes et des zones de collecte des poissons
est reporté sur la carte marine (figure 58).

Les sites de préléevements ont été sélectionnés en fonction de différentes particularités

dans la baie de Prony et a I’extérieur (tableau 43) :

— Un site dans la baie de prony ne subissant aucune pression directe liée a 'usine : n°1,

— Quatre sites entourant les zones d’implantation des infrastructures portuaires : n°3,
4,5,6,

— Trois sites en baie du creek Nord, témoins de I'écosysteme particulier de la baie,
soumis aux apports d’eau douce et terrigénes de la riviere, mais ne subissant pas de
perturbations directes liées au port : n°7, 8, 9,

— Trois sites dans la baie de Prony en zone extérieure : n°2, 10, 11,

— Trois sites extérieurs a la baie en face de Port Boisé, a quelques km de I'extrémité du
tuyau :n°®12, 13, 14.

Fréquence

Au vu des dynamiques des populations des micro-organismes, les sites de 1 a 9 sont
suivis selon une fréquence mensuelle. Les prélevements des sites n°10 a 14 sont effectués
annuellement lors des collectes de poissons.

236 /326
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Tableau 43 : Site d’observation des micro-organismes : référence, nom et coordonnées GPS et zones de péche
correspondantes, référence et nom.

Site d’observation des micro-organismes Zone de péche

Réf. Nom Coordonnées GPS Réf. Nom

1 Face a I'llot Casy $22°21,980' E 166°49,782' -

2 Baie de Bonne Anse S$22°23,285' E 166°53,515' Z2 Bonne Anse

3 Face au port $22°21,551'E 166°53,772' 71 Port

4 Port $22°21,391'E 166°53,579' Z1 Port

5 Tuyau $22°20,920’ E 166°53,390’ Z1 Port

6 Vieux wharf $22°20,682' E 166°52,956' Z1 Port

7 Plage $22°20,434' E 166°52,593' 74 Rade du Nord

8 flot Gabriel $22°19,993'E 166°52,124' 4 Rade du Nord

9 Rade Nord $22°20,694' E 166°51,888' 4 Rade du Nord
10 Bonne anse, extérieur $22°23,869'E 166°53,012' Z2 Bonne Anse
11 Bonne anse, intérieur $20°23,700' E 166°52,928' Z2 Bonne Anse
12 Port Boisé, passe extérieur $22°21,503' E 166°58,141' Z3 Port Boisé
13 Port Boisé, passe récif extérieur $22°21,624' E 166°58,095' Z3 Port Boisé
14 Port Boisé, passe Intérieur $22°21,437' E 166°58,072' Z3 Port Boisé
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I.1.c.2 Poissons

Zones de collecte
Trois zones ont été délimitées pour faire I'objet des suivis ciguatériques annuels des
populations de poissons :
— 71, au niveau du Port : « zone du Port »
— Z2, au niveau du récif Prony : « zone de Bonne Anse »
— 73, a la pointe de la Conception, passe extérieure de Port Boisé : « zone de Port
Boisé ».

Zone du port (Z1)

La zone de péche est située sur une bande cétiere de 100 m de large de part et d’autre
des deux quais jusqu’a 15 m de profondeur. Entre 0 et 5 m, la zone est parsemée de pinacles
coralliens puis au-dela de 5 m de substrat sableux. La zone peut subir d’'importantes variations
liées aux fortes pluies qui affectent notamment la salinité et les apports sédimentaires. Sur une
partie du port, une zone d’endiguement dont la largeur reste limitée en bord de rive constitue la
bande cotiére (photo 96). Ces blocs rocheux affectent directement le paysage récifal en
apportant des substrats nouveaux ; les digues peuvent perturber dans une certaine mesure

I’hydrodynamisme cétier. Ce sont donc des zones dont I’évolution est surveillée.

r

Photo 96 : Zone de péche du port Z1, vue de I'’enrochement cotier.

Zone du récif Prony (22)

La zone de péche 72 est située a I'entrée de la baie de Prony au niveau de la baie de
Bonne Anse. La pente externe est exclusivement constituée de structures coralliennes riches et
diversifiées. La péche s’effectue jusqu’a 20 m de profondeur de part et d’autre de la pointe :
coté extérieur et intérieur de la baie. Le récif est soumis a des courants et a des apports
sédimentaires importants, particulierement en marée descendante.
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Zone de Port Boisée (Z3)

Cette zone de péche est située au niveau de la passe extérieure droite (face a la cote) sur
le récif plongeant rapidement de 5 a 32 m de profondeur. La zone est exclusivement
corallienne. Au cceur du canal de la Havannah, le faciés est soumis a un fort hydrodynamisme et
des apports sédimentaires potentiels provenant de la baie de Port Boisé.

Le tuyau rejette les effluents liquides traités en face de la baie de Kwé a 35 m de fond et
a 4 km au large. La zone de péche cotiére ne subit donc pas directement de changement dans
son paysage récifal.

Lors de la premiére année en 2008, trois individus ont été collectés sur une 4°™ zone
(Z4) au niveau de I'llot Gabriel en baie du Creek nord (Rade du Nord), mais le suivi ne s’est pas
poursuivi afin de concentrer nos efforts sur les 3 zones définies.

Fréquence

Les poissons sont collectés une fois par an a la fin de la saison chaude. Ainsi, deux
missions de prélevement de poissons d’une durée d’'une semaine ont eu lieu du 14 au 18 avril
2008 et du 20 au 24 avril 2009.

II.2 Echantillonnage et analyse des prélevements

I1.2.a Micro-organismes

Dinoflagellés

Le protocole de suivi des micro-organismes décrit dans le chapitre 2 (cf. ch2.11.2.b) est
repris (Chinain et al., 1999a). Sur chaque site suivi, deux prélevements de macroalgues sont
effectués. Dans un souci de comparaison, sur chaque site, la méme algue support est collectée
afin de se soustraire des éventuelles variabilités inter-h6tes. Chaque échantillon est stabilisé en
solution de formaldéhyde a 5% en eau de mer filtrée a 0,45 um.

En cas d’efflorescence importante de microalgues (i.e. plus de 1000 cellules de
dinoflagellés / g d’algue), une récolte plus abondante est effectuée en vue d’analyses
toxicologiques.

Dans une optique d’utilisation de la méthode comme un outil de surveillance en baie de
Prony, le suivi des micro-organismes de tous les sites peut se programmer en une journée.

Cyanobactéries

Lorsque des tapis cyanobactériens sont observés en grande quantité (surface > 2 m?), les
cyanobactéries sont récoltées en quantité suffisante pour pouvoir évaluer leur potentiel toxique
(conservation a -20° jusqu’au traitement d’extraction spécifique). Comme précédemment, pour
chaque échantillon, trois prélévements sont pratiqués en triplicat et conservés : i) stabilisé en
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solution de formaldéhyde a 5% en vue de l'identification morphologique, ii) stabilisé a 50% en
éthanol absolu pour les analyses moléculaires et iii) lyophilisé pour des analyses
chromatographiques complémentaires.

Les especes de dinoflagellés (genre Gambierdiscus, Ostreopsis ou Prorocentrum) et de
cyanobactéries sont identifiées sur la base de criteres morphologiques. Leurs protocoles
d’extraction et d’analyse de toxicité (test souris, N2A et RBA) sont identiques a ceux décrits
précédemment (cf. ch2.11.2.c).

11.2.b Poissons

1.2.b.1 Sélection des espéces dites sentinelles : méthode spécifique a la baie de Prony

Afin d’évaluer la toxicité de la chaine pisciaire des trois zones suivies en baie de Prony,
des especes indicatrices de I'ampleur et de I’évolution du phénoméne ciguatérique pour un
temps donné ont été sélectionnées selon les critéres suivants :

1) Trois régimes alimentaires différents (bas et haut de chaine)

Des niveaux trophiques différents sont ciblés afin de connaitre les variabilités inter-
régimes alimentaires. La variabilité de la toxicité entre les niveaux inférieurs et supérieurs de la
chaine alimentaire pouvant donner des indications sur I'évolution du phénomene ciguatérique
comme cela est décrit précédement.

Nous ciblerons donc les herbivores, les molluscivores en bas de chaine alimentaire et les
carnivores aux niveaux supérieurs.

2) Espéces représentatives des sites sélectionnés
Les especes ciblées doivent constituer la population qui se trouve majoritairement sur la
zone afin de représenter au mieux la chaine trophique associée a cet écosysteme.

3) Espéces consommées par les populations

Le but final de I'étude étant d’un enjeu sanitaire, I’étude doit apporter des informations
sur les espéces de poissons consommeées par les populations. Les espéces ciblées sont donc des
espéeces péchées pour la consommation.

4) Espeéces présentes dans chacune des zones

Dans la mesure du possible, les especes sélectionnées sont communes aux trois zones
afin de pouvoir évaluer les variations spatiales. Ceci nous permet de nous soustraire de la
variabilité interspécifique. En effet, le comportement alimentaire, le métabolisme, la
physiologie propre d’une espece leur conferent des profils toxiniques pouvant étre tres
variables (cf. ch.1.11.7.a.1). Les potentiels toxiques peuvent donc étre différents.
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5) Espéces présentes en nombre suffisant (n = 5).

Afin de valider un taux de toxicité par espéce, la collecte d’au moins cing individus par
espéce est nécessaire. Ce nombre tient compte des différents niveaux de variabilité identifiés
dans la méthode : variabilité interindividuelle et variabilité liée a la méthode d’analyse
(extraction, analyse par le test N2A). Le risque d’erreur sur le résultat est alors considéré
acceptable pour le suivi. Il doit cependant étre pris en compte pour le facteur risque définissant
les marges de précaution pour déclencher une alerte. En outre, ce nombre est contraint a un
maximum de spécimens péchés en raison de la préservation de la ressource, du colt et du
facteur temps (récolte, analyse de cytotoxicité).

Ainsi, sur chacune des zones et pour chaque campagne, nous ciblerons un minimum de 5
spécimens par niveau trophique, si possible appartenant a une méme espéce, soit 15 poissons,
constituant un total de 45 poissons a analyser (3 zones).

1.2.b.2 Analyse de la toxicité

La toxicité d’un poisson est évaluée sur la chair extraite selon le méme protocole que
celui utilisé pour I'analyse des poissons a Hunété. L’analyse de I'extrait est menée a I'aide du
test N2A. Répondant aux critéres de sensibilité et de fiabilité, il permet une utilisation en
routine pour évaluer le potentiel de ciguatoxicité de la zone d’étude. Pour rappel, son seuil de
détection de I'ordre du pg de toxines est inférieur aux teneurs en toxines minimales estimées
pour déclencher les premiers symptomes ciguatériques chez ’'Homme qui sont de I'ordre de 0,1
ng / g de chair (Hamilton et al., 2009). Certes, cette valeur est discutable selon la sensibilité des
personnes et selon la quantité de toxines qu’elles ont éventuellement accumulé mais elle
correspond a un niveau de précaution pour évaluer la sensibilité d’un test utilisable dans le
cadre d’une veille sanitaire.

Aussi, toujours dans I'optique de son utilisation en routine, il a également été choisi pour
ses avantages techniques présentés en chapitre 1. Nous retiendrons ici, les techniques de
laboratoire relativement simples de culture associées a une extraction rapide qui permettent le
criblage de la toxicité de nombreux spécimens de poissons de maniére sensible et fiable en un
temps relativement rapide.

Le test N2A tel qu’il a été décrit précédemment, est quelque peu modifié afin de
I’adapter a un usage en routine. Les changements concernent (i) le nombre de concentrations
testées et donc la répartition des extraits en microplaques et (ii) la classification des toxicités.

Schéma de plaque utilisé

La fraction F2 (90 : 10) issue de I'extraction de 5 g de chair de poisson permet de tester
une gamme de concentrations de 156 ; 313 ; 625 ug éqv de chair / mL au minimum en duplicat
et chaque concentration est testée en triplicat (N = 2 x 3). Pour chaque plaque, trois
concentrations de PbTx-3 permettent de controler la réponse cellulaire : 10 ; 35 ; 140 nM (n = 2)
par comparaison aux courbes de calibration. Les tests sont validés par différents contréles
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(cellules seules, n =9 ; cellules avec OV, n =9 ; gamme de 3 concentration de PbTx-3, n = 2). La
spécificité de la toxicité pour les CSSP est validée par I'effet des extraits avec et sans OV.

La répartition des différentes conditions (témoins, gammes de concentrations des
poissons (ex. du poisson n°1 : P1 avec et sans OV : P1+0V et P1-OV a 3 concentrations (a, b et c))
est établie selon le schéma de plaque représenté en figure 59. Deux poissons sont testés par

plaque.
1 2 3 4 5 6 7 8 9 10 11 12

A

B MS PbTx3a

C oV +0V

D Pla- OV P1b - OV Plc- OV PbTx3b

E Pla+ 0V P1b + OV Plc +OV *ov

F P2a -0V P2b - OV P2c - OV PbTX3c

G P2a + 0OV P2b + OV P2c +OV +ov

H

Figure 59 : Schéma de plaque pour 'analyse de toxicité des poissons (Test N2A) : exemple donné pour le test des

poissons P1 et P2 a 3 concentrations (a, b et ¢ ; n = 3) avec et sans OV (+OV et -OV) ; les témoins sont les cellules

seules (MS ; n = 9), les cellules seules en présence d’OV (OV ; n = 9) et les cellules en présence d’OV et de la PbTx-
3 a 3 concentrations (PbTx-3 +OV ; n=2).

Calibration et classes d’activité toxique

Jusqu’a présent, la toxicité d’un extrait avait été exprimée en Clso. Afin de caractériser le
potentiel toxique d’un poisson dans le cadre d’un usage en routine du test N2A, nous leur
attribuons des degrés d’activité toxique déterminés grace a l'activité de poissons « témoins »
qui ont permis de calibrer le test N2A. Le tableau 44 présente les poissons herbivores (Scaridés)
et carnivores (Serranidés) utilisés pour la calibration et leur toxicité évaluée par les tests souris
et RBA réalisés a I'ILM. Pour le test RBA, la toxicité des poissons est classée selon trois groupes,
les atoxiques pour les valeurs inférieures a 0,31, Tox+ pour les valeurs entre 0,31 et 0,8 et Tox++
pour les valeurs supérieures a 0,8.

Dans les conditions du test N2A, nous avons testé une gamme de 6 concentrations de 40
a 1250 pg éqv de chair / mL afin d’évaluer I'effet cytotoxique de ces poissons (figure 60, a
herbivores et b, carnivores) et ainsi de calculer leur Clso dans nos conditions d’expérimentation
(tableau 45).
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Tableau 44 : Caractéristiques des poissons « témoins » utilisés et valeurs de toxicité obtenues a I'aide des tests

souris et RBA réalisées a I'lLM.

Régime Origine Nom Poids Taille Test souris Test RBA Conclusion du
alimentaire & commun (kg) (cm) us/g éqv ng P-CTX- test RBA
3C /g de chair
1,9 48 - 5,58 Tox ++
Rai
Herbivore al(\F/)aF\)/ae perroquet 2,2 46 - 0,56 Tox +
2,7 52 - <0,31 ATox
13,0 - 2 2,64 Tox ++
. Moruroa loche
Carnivore , 8,0 - 0,20 0,95 Tox ++
(PF) saumonée
20,0 110 <0,1 <0,31 ATox
a) Témoin, poissons herbivores
—4&— ATox
% T -8 Tox+
S ©
% ‘E —©- Tox ++
O o
w ©
xS
= T
a8
>
b) Témoin, poissons carnivores
—4— Atox
-8 Tox+
—©- Tox ++

Viabilité cellulaire
(% du controle)

0+———rrrr——rrrry
1 10 100

T

1000

Concentration en pg eqv de chair / mL

Figure 60 : Courbes de cytotoxicité du test N2A des poissons « témoins » : a, poissons de régime herbivore et b,
poissons de régime carnivore (n = 3).

Les herbivores et les carnivores atoxiques et toxiques en test RBA n’ont pas montré de

toxicité dans la gamme de concentrations testées (maximum de 1 250 pg éqv de chair / mL). Les
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herbivores et les carnivores Tox ++ ont révélé une toxicité spécifique des CSSP (p < 0,001) dont
les Clsq calculés sont de 327 et 439 ug éqv de chair / mL respectivement (tableau 45).

Tableau 45 : Valeurs de Clso des poissons « témoins » obtenus par le test N2A dans nos conditions expérimentales.

Herbivores (Perroquet) Carnivores (Saumonée)
Clso Coefficient Clso Coefficient
(ug éqv de chair / mL) de Hill (ng éqv de chair / mL) de Hill
Atoxique > 1250 ND > 1250 ND
Tox+ > 1250 ND > 1250 ND
Tox++ 32796 -1,2 439+ 121 -1,5

Ainsi, d’apres les valeurs de Clsg évaluées pour les poissons de calibration, associées a la
valeur de toxicité définie pour I’'Homme qui est de 540 pg éqv d'extrait / mL (cf. chap 11.3.c.3.b),
nous avons défini une gamme propre de toxicité comprenant trois classes de toxicité : (i) non
toxique (atoxique), (ii) moyennement toxique (Tox+) et (iii) fortement toxique (Tox++) au-dela
du seuil symptomatique chez I’'Homme. Le tableau 46 décrit ces 3 classes en prenant en compte
les valeurs de la cytotoxicité obtenues pour 313 pg de chair/ mL.

Tableau 46 : Classes de toxicité des poissons attribuées par le test N2A, par évaluation des valeurs de cytotoxicité
provoquées par 313 ug eqv de chair / mL : Atoxique (Atox), moyennement toxique (Tox+) et fortement toxique
(Tox++).

o Viabilité cellulaire
Classe de toxicité Code 5313 g equ de chair / mL
Atoxique ATox >80 %
Moyennement toxique Tox + [50% — 80%]
Fortement toxique Tox ++ <50%

I1l. Résultats
1.1 Site d’Ouvéa

ll.L1.a  Micro-organismes

I.1.a.1 Récolte

En ao(t 2007, 33 sites ont été prospectés et 44 échantillons d’algues ont été prélevés et
analysés (figure 61). En mai 2008, début de la saison fraiche, 23 échantillons d’algues et de
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coraux branchus ont été prélevés pour I'observation de la microflore associée. Sur certains sites,
des mattes de cyanobactéries ont été observées (photo 97), constituant pour certaines de
larges couvertures (surface > 2 m?) (tableau 47).

Pléiades Nord

o

16}

Pléiades Sud

Figure 61 : Points d’observations des micro-organismes a Ouvéa (08/2007 et 05/2008).

Tableau 47 : Points de prélevement de cyanobactéries observées sous forme de mattes (surface > 2 m?).

Date Site Zone Lieu dit Coorg(;:nées T\;gi:e Type de prélevement
2007/08/27 SE Cco1 Mouli 12((5)(;?22;5362;;"5!5 platier cyanobactéries filamenteuses
2007/08/27 SE Co2 F;aaslzzgsif 12((5)62?227'?301;;"5!5 sazl;::;l( * cyanobactéries filamenteuses
2007/08/28 SE Cco9 Passe de Lifou 122;22;57113;,5'5 sable cyanobactéries filamenteuses
ooz ez e STTOS e oo
2007/08/30 LA C24 milieu lagon 122;?2211,1;70(;,,1 sable cyanobactéries filamenteuses
2007/08/30 LA C25 milieu lagon, 20°42'180" S sable cyanobactéries filamenteuses

plateau

166°24'970"E
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Photo 97 : Exemple de cyanobactéries observées a Ouvéa en aoit 2007, Pléiades Nord a Angeu (C12).

I.1.0.2 Données d’observations

Aolt 2007

La présence de dinoflagellés n’a pas été relevée sur |'ensemble des points
d’observations ; a I’exception de cellules de Gambierdiscus observées sur le site Wadrilla (photo
98) : prélevements référencés C16 a C18, C21, C28 a C30 et C32) (n < 50 cellules/g d’algues). Les
Rhodophycées prélevées prés du quai de Wadrilla sont identifiées comme Digenea simplex
(photos 99 et 100). Elles sont présentes en bord de plage et constituent le support majoritaire
des Gambierdiscus observés.

Photos 98, 99, 100 : Quai de Wadrilla (98), site de prélevement de Digenea simplex (99), support des cellules de
Gambierdiscus observées au microscope optique (100) (diameétre = 60um).

L'espéce de Gambierdiscus n’a pas été identifiée. Naturellement présent dans les
écosystémes, ce genre peut constituer un risque avéré si I'espéce est reconnue toxinogene et
trouve des facteurs favorables a un développement en masse pouvant contaminer la chaine
trophique.

Les cyanobactéries filamenteuses benthiques appartiennent a I'ordre des Oscillatoriales,
elles ont été rencontrées a Lifou et ont fait I'objet de tests de toxicité. Deux prélévements de
cyanobactéries (C02 et C09) ont été collectés en quantité suffisante pour permettre des
analyses préliminaires. Elles ont été identifiés morphologiquement : la population C02 est
constituée majoritairement de Phormidium cf. laysanense (photos 101 et 102) et celle collectée
en C09 d’Hydrocoleum cf. lyngbyaceum associée a H. glutinosum (photos 103 et 104).
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Photos 101, 102 : Tapis de cyanobactéries observés a Ouvéa en ao(it 2007, Passe de la Calédonie dit chenal de
Fayawa (C02).

Photos 103 et 104 : Tapis de cyanobactéries observés a Ouvéa en aoit 2007, Passe de Lifou, au pied des falaises
de Lékiny (C09).

Mai 2008

Sur les 23 prélévements effectués pour I'observation des micro-organismes en mai 2008,
la présence de cellules de Gambierdiscus n’a été observée sur aucun des sites échantillonnés.
Nous n'avons pas de recul sur I'ensemble de la saison pour vérifier leur présence lorsque les
températures leur sont favorables. Malheureusement, la deuxieme mission prévue initialement
en période chaude en début d'année 2008, n'a pu avoir lieu. Menée a la fin du mois de mai, la
température s'était déja nettement rafraichie.

Les tapis de cyanobactéries de la zone de Lekiny (pied des Falaises et passe de Fayawa)
sont toujours présents.

I.1.a.3 Analyse de toxicité des cyanobactéries

Des analyses préliminaires ont été menées uniquement en test souris sur les fractions
hydrosolubles des mattes de cyanobactéries dominées par P. cf. laysanense (C02) et H. cf.
lyngbyaceum et H. glutinosum (C09). Les rendements d’extraction sont pour les fractions
hydrosolubles de 2,17% et 2,25% par rapport a la masse lyophilisée extraite.
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Test Souris

Les extraits hydrosolubles des mattes de cyanobactéries collectées dans les Passes de la
Calédonie et de Lifou sont analysés par test souris. Ces 2 mattes, C02 et CO9 dominées par P. cf.
laysanense et H. cf. lyngbyaceum, ont montré de fortes toxicités dont les DLsg respectives sont
estimées a 2,5 et 4,0 mg d’extrait par g de souris. Les symptomes sont similaires a ceux
observés pour les mattes d’Oscillatoriales collectées a Lifou : les souris injectées démontrent
des paralysies séveres provoquant la mort par détresse respiratoire.

I1.L1.b  Poissons

1.1.b.1 Récolte

Un total de 90 poissons ont été péchés durant la mission d’ao(it 2007. Le tableau en
annexe 5 résume I'ensemble des données : le site, la zone de collecte, et I'identification. Les
détails biométriques y sont également reportés (longueur a la fourche et poids du poisson). Les
planches photo sont également en annexe 5.

Le tableau 48 montre la variété d’especes collectées classées par sites: 40 espéces
différentes ont été collectées. L'objectif est de tendre vers une population d’individus
représentative des poissons péchés par les pécheurs locaux tant en diversité d’espece qu’en
taille.

Les différents régimes trophiques rencontrés sont les herbivores, les poissons se
nourrissant essentiellement d’invertébrés benthiques, les omnivores, les zooplanctonophages
et les carnivores. La répartition des poissons collectés selon leur régime alimentaire et les sites
est représentée en figure 62.
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Tableau 48 : Poissons péchés a Ouvéa en septembre 2007 : nombre de spécimens par espece et par site de collecte

rangés par ordre croissant de niveau trophique.

SITE Espéce Total SITE Espece Total
LA Acanthurus blochii 1 SE Chlorurus microrhinos 1
(lagon) Chlorurus microrhinos 2 (sud-Est) Epinephelus cf. maculatus 1
Scarus ghobban 1 Epinephelus polyphekadion 1
Scarus oviceps 1 Lutjanus bohar 1
Lethrinus nebulosus 3 Plectropomus laevis 1
Platax sp. 1 Total SE 5
Plectrorhincus chaetodonoides 2 SW Acanthurus blochii 1
Pseudobalistes fuscus 2 (sud - ouest)  Acanthurus dussumieri 3
Sufflamen sp 1 Naso tonganus 1
Aprion virescens 1 Scarus altipinnis 1
Epinephelus cyanopodus 3 Scarus ghobban 2
Epinephelus maculatus 3 Carangoides ferdau 1
Plectropomus laevis 2 Carangoides orthogrammus 1
Sphyraena flavicauda 2 Lethrinus rubrioperculatus 2
Total LA 25 Macolor niger 1
NE Cetoscarus bicolore 1 Plectrorhincus lineatus 2
(nord — est) Chlorurus microrhinos 4 Epinephelus maculatus 1
Scarus altipinnis 2 Epinephelus polyphekadion 2
Siganus cf. vermiculatus 2 Epinephelus sp. 1
Siganus punctatus 4 Lutjanus bohar 1
Siganus spinus 1 Plectropomus leopardus 2
Gnathodentex aurolineatus 1 Variola louti 1
Kyphosus sp. 1 Total SW 23
Monotaxis grandoculis 1
Cephalopholis argus 1
Epinephelus cf. maculatus 1
Plectropomus laevis 2
Trachinotus blochii 1
Total NE 22
NW Acanthurus dussumieri 2
(nord - ouest)  Chlorurus microrhinos 2
Naso tonganus 1
Naso unicornis 1
Scarus niger 1
Siganus punctatus 1
Macolor niger 1
Plectrorhincus chaetodonoides 1
Epinephelus maculatus 1
Gymnothorax javanicus 1
Plectropomus laevis 3
Total NW 15
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Figure 62 : Poissons péchés a Ouvéa en septembre 2007 : nombre de spécimens par régime trophique et par site
de collecte.

1.1.b.2 Analyses toxicologiques, Test N2A

Sur ’'ensemble de la récolte de poissons

La répartition des spécimens pisciaires analysés par classe de toxicité définie
précédemment est résumée dans le tableau 49. Sur les 90 poissons testés, 84% n’ont pas
montré de cytotoxicité (Atox), 1% avec une faible toxicité (Tox +) et 14% sont fortement

toxiques (Tox ++).

Tableau 49 : Nombre d’individus par classe de toxicité évalué par le test N2A des poissons péchés a Ouvéa en

septembre 2007.

Classe de toxicité Nb d'individus %

ATox 76 84

Tox + 1 1

Tox ++ 13 14
Total général 90

Afin de faciliter I'interprétation, étant donné le nombre important d’espéces identifiées,

nous avons regroupé les données de toxicité par poissons selon leur nom vernaculaire.
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Différence selon le nom vernaculaire et le niveau trophique

La figure 63 représente le nombre d’individu par classe de toxicité Tox+ et Tox++ ou
atoxique (ATox) selon le nom vernaculaire et le régime trophique : herbivore, « divers »
(zooplanctonophage, mangeur d’invertébrés benthiques, omnivore) et carnivore.

M ATox © Tox+ M Tox++

Anglais
Bécune
Carangue
Loche
Mékoua
Muréne
~ Saumonée
Baliste

Bec
Bossu
Carangue
Casteix
Platax
Vivaneau
o Wiwa
Chirurgien
Dawa
Nason
Perroquet
Picot

Carnivore

Divers

Herbivore

! 1]
T T T T T T T

4 6 8 10 12 14 16 18 20

o
N

Figure 63 : Cytotoxicité des poissons collectés a Ouvéa en 2007 selon les noms vernaculaires classés par niveau
trophique : herbivore, « divers » (zooplanctonophage, mangeur d’invertébrés benthiques, omnivore) et
carnivore.

Sur I'ensemble de la collecte, nous ne pouvons conclure quant au statu toxique d’une
« espece » que pour celles dont le nombre de spécimens collectés est suffisant (n > 5). Nous
pouvons citer les loches dont 88% sont Atox (Epinephelus spp., n = 16), les saumonées dont 80%
sont Atox (Plectropomus spp., n = 10) et les perroquets dont 81% sont Atox (Scarus spp. ou
Chlorurus spp., n = 18). Les effectifs des autres « espéces » collectées est trop faible pour
pouvoir conclure quant a leur niveau de toxicité par « espéce ».

La toxicité par espece est inférieure a 20% (moyenne = 17%) et touche indifférement les
herbivores (perroquet) et les carnivores (loches et saumonée). En outre, il est interessant de
noter la forte cytotoxicité induite par I'extrait de murene (Gymnothorax javanicus ; n = 1).
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Variabilité spatiale et régimes trophiques

Tox + Tox ++
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Figure 64 : Cytotoxicité des chairs de poissons en fonction du régime alimentaire et de la zone de péche

En ce qui concerne les zones de péche, toutes présentent quelques individus toxiques
(Tox++, majoritairement) a I’exception de la zone lagonaire (figure 64). Exceptée cette zone (LA),
pour les zones de péche ou le nombre de spécimens péchées est supérieur a 5, la moyenne de
poissons toxiques est de 4 individus par site (zones NE, NW et SW) et elles ne présentent pas de
degré de toxicité différent (p > 0,05).

Les résultats sur les proportions d’individus ne montrent donc pas de différence entre les
zones ol des poissons sont toxiques et la zone du lagon présenterait moins de risque
ciguatérique (aucun poisson toxique, n = 25).

Les résultats de toxicité ne révelent pas de différences significatives entre les poissons
selon leur régime alimentaire. On peut noter cependant : (i) qu’aucune toxicité n’a été montré
pour les poissons omnivores, les zooplanctonophages et ceux qui se nourrissent d’invertébrés
(Classe « Divers ») et que (ii) les brouteurs et les herbivores pourtant réputés non toxiques par
la population (perroquet, picot ou chirurgien), peuvent révéler une certaine toxicité.

Différence de taille et de poids

Le nombre d’individus classés Tox+ et Tox++ par rapport a la totalité des individus
péchés par especes de poissons (nom vernaculaire) est réparti par classe de taille et classes de
poids (figures 65 et 66 respectivement). Le poids moyen des individus est de 1,94 + 0,98 kg et la
taille moyenne est de 44 + 12 cm (sans la murene). Les individus les plus gros (en taille et en
poids) sont les saumonées et la murene péchées en dehors du lagon aux Pléiades Nord (NW) et
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Sud (SW). La toxicité touche donc indifféremment les poissons selon leur taille (p = 0,117) et
leur poids (p = 0,352).

Tox + Tox++ H Nombre total d'indidividu

0 5 10 15 20 25 30 35 40

15-25
25-35
35-45
45-55
55-65
65-75

Classe de taille (cm)

85-95
95-105
165-175

Figure 65 : Nombre de poissons cytotoxiques par classe de taille (cm)

Ces résultats ne montrent pas de corrélation entre la toxicité d’un individu et son poids
ou sa taille. Pour évaluer ces deux critéres, il faudrait effectuer un échantillonnage plus complet
en termes de distribution de poids et de taille de population ainsi qu’en termes de nombre
d’individu par espéce. |l serait aussi intéressant de comparer la toxicité d’'un poisson en fonction
de son age par I’étude de ses otolites.
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Tox + Tox ++ H Nombre total d'individu
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Figure 66 : Nombre de poissons cytotoxiques par classe de poids (kg)

l1l.2 Site de Prony

lll.2.a  Parametres physico-chimiques

Température

A chaque mission mensuelle, les températures de surface sont relevées sur les sites
d’observation des micro-organismes (figure 67). Les données enregistrées de variations de
températures, de minima et de maxima, ne révélent pas d’anomalies de température. En outre,
elles sont plus favorables au développement des dinoflagellés du genre Gambierdiscus en saison
chaude (décembre a avril), T°C = [27 a 31 °C].
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Figure 67 : Valeurs des températures des stations de suivi des micro-organismes.

Données sels nutritifs — pH

Des analyses physico-chimiques sont effectuées par I'IRD pour Vale sur différents sites
dans la baie de Prony et en dehors de la baie. Le tableau 50 recueille les données de mars 2007
et ao(t 2008 disponibles pour les stations du Port de Prony, de Port Boisé, de la Baie Nord et de
I'llot Casy.

Ces données mettent en évidence les différences de paramétres entre la saison chaude
et la saison fraiche. Cependant, pour une méme période, il n’y a pas de différence majeure
entre les stations, a I'exception de plus importantes teneurs en apports azotés en relevé de
surface, en ao(it 2008 dans la Baie Nord.

255/326



Chapitre 3 : Les facteurs environnementaux

Tableau 50 : Analyses physico-chimiques des stations du Port de Prony, de Port Boisé, de la Baie Nord et de I'llot
Casy effectuées en mars 2007 et ao(t 2008.

. . Baie Nord .
Port de Prony Port Boisé Embouchure creek 116t Casy
2007/03 2008/08 2007/03 2008/08 2007/03 2008/08 2007/03 2008/08
] Surface 26,69 2222 2653 2261 2676 2232 2642 22,26
Tem':fcr)at“re Mi-profondeur | 26,39 22,05 26,45 22,61 26,42 22,14 26,49 22,18
Fond 2537 21,96 2561 2261 2578 21,95 2599 21,93
~ surface 0376 1,294 0,258 1,225 0226 139 0327 1,323
T“(rF:'S;te Mi-profondeur | 0,348 1,288 0,405 1237 0,469 127 0262 1,289
Fond 1,499 1531 0295 1286 5893 1468 0,863 1,888
Nitrates et Surface 0,032 008 0099 0038 1212 0011 0041 0,102
nitrites  Mi-profondeur | 0,028 0,019 0,037 0,032 0052 0,006 0,019 0,098
(rmol/L) Fond 0,099 0,016 0,13 0,059 0,032 0,016 0,049 0,106
Surface 0,027 0017 0031 003 0014 001 0,024 0,019
P(r:::’;'l‘/a:)e Mi-profondeur | 0,036 0,019 0,018 0,039 0,04 0014 0,029 0,039
Fond 0,058 0,024 0,023 003 0053 0025 0051  0.019
Surface 0,111 - 0,085 - 0,104 - 0,136 -
(ug;L) Mi-profondeur 0,126 - 0,071 - 0,095 - 0,052 -
Fond 0,087 - 0,107 - 0,049 - 0,126 -
Surface 0,29 0,28 0,23 0,11 0,43 0,45 0,29 0,24
($7L) Mi-profondeur | 0,19 0,27 0,19 0,12 0,2 0,26 0,23 0,23
Fond 0,24 0,25 0,22 0,1 0,17 0,24 0,2 0,26
Masses de  Surface - 0,5 - 0,5 - - - 0,5
particules Mi-profondeur - 0,5 - 0,5 - 0,6 - 0,2
(mg/L) Fond - 0,5 - 0,5 - 0,2 - 0,3
ll.2.b Micro-organismes

11.2.b.1

Dinoflagellés

Récolte et observations

Le suivi de 2007 a 2010 des populations de micro-organismes épiphytiques des 14 sites

est résumé dans le tableau 51. La concentration moyenne de cellules de Gambierdiscus est

exprimée en nombre de cellules par mL. Nous rappelons qu’une concentration de 1 000 cellules

/ g d’algues supports traduit un stade d’efflorescence (Chinain et al., 1999a). Pour chaque

prélevement, les algues sont du genre Turbinaria (Phéophycée) ou du genre Halimeda

(Chlorophycée) a I’exception des sites 10, 11, 12, 13 suivis annuellement lors de la campagne de

péche pour lesquels les supports sont des débris coralliens. En effet, ces 5 sites situés en pente

externe ne présentent aucune macroalgue support potentiel des dinoflagellés benthiques.
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Tableau 51: Données d’observations par sites des prélevements de micro-organismes épiphytiques a Prony depuis 2007 : 0: absence de cellules de
dinoflagellés et nombre de cellules de Gambierdiscus spp. / g d’algues ; case vertes : présence de trichomes de cyanobactéries.

Baie de Prony Port Bonne Anse Port Boisé
1 7 8 9 3 4 5 6 2 10 11 12 13 14
N Face .
Casy Plage Ga”l;)rtiel 22::3 au Port Tuyau x‘:::; Baie Ext. Int. P:::'e iZ?: Passe Int.
port
~ Aolt P14 0 0 0 0 0 0 0 0 0 - - - - -
S Octobre P15 0 0 0 0 0 0 0 0 0 - - - - .
Novembre P16 - - - - - - - - - - - - R -
Janvier P17 0 0 0 0 0 0 0 0 0 - - - - -
Avril P18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mai P19 0 0 0 0 0 0 0 0 0 - - - - -
x Juin P20 0 0 0 0 0 <50 0 0 0 - - - - -
& AoGt P21 0 0 0 0 0 0 0 <50 0 - - - - -
Octobre P22 0 0 0 0 0 0 0 0 0 - - - - -
Novembre P23 0 0 0 0 0 0 0 0 0 - - - - -
Décembre P24 0 0 0 0 0 0 0 0 0 - - - - -
Janvier P25 0 - 0 0 0 - - - 0 - - - - -
Mars P26 0 0 0 0 0 0 0 0 0 - - - - -
Avril P27 0 0 0 0 0
3 Juin P28 0 0 0 0 0 0 0 0 0 - - - - -
R Aodt P29 | O 0 0 0 0 0 0 0 0 ; ] ] ) ]
Octobre P30 <50 0 0 0 0 0 0 0 0 - - - - -
Novembre P31 0 0 0 0 0 0 0 0 0 - - - - -
décembre P32 0 0 0 0 0 0 0 0 0 - - - - -
janv-10 P33 0 0 0 0 0 0 0 0 0 - - - - -
S févr-10 P34 0 0 0 0 0 0 0 0 0 - - - - -
& avr-10 P35 0 0 0 0 0 0 0 0 0 . - ] ] ]
mai-10 P36 <50 0 0 0 0 0 0 0 0 0 0 0 0 0
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Cyanobactéries

La présence de cyanobactéries majoritairement filamenteuses est observée
régulierement en plongée sur les sites d’observations (photos 105, 106, 107 et 108). Constituant
des tapis restreints, de quelques cm? & maximum 1m?, elles sont naturellement présentes en

- o

baie de Prony (Baie Nord, llot Casy, Bonne Anse) et a la passe de Port Boisé.

Photos 105, 106, 107, 108: Vues in situ de différentes Oscillatoriales observées entre 2008 et 2009 a Port Boisé

(105), Bonne Anse (106) et I'ilot Gabriel (107 et 108). Naturellement présentes, leurs étendues ne dépassent pas

1m%

A partir de juin 2009 et jusqu’en févier 2010, des tapis composés majoritairement
d’Hydrocoleum lyngbyaceum (Kitzing) et d’H. glutinosum (Gomont ex Gomont, 1892) (photos
109 et 110) sont observés dans la zone du port (site 4). La superficie est importante dans les
premiers mois (environ 20 m?) jusqu’en décembre 2009, date a partir de laquelle la population
diminue progressivement (photo 111) pour ne plus étre visible a partir de février 2010 (photo
112). Le tapis recouvre un substrat détritique et rocheux di a la construction de la zone
portuaire sur une pente douce de 3 a 5 m de profondeur.
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Photos 109, 110, 111, 112: Vues in situ du tapis cyanobactérien dominé par H. lyngbyaceum et H. glutinosum
recouvrant des débris coralliens en juin 2009 (109 et 110), en octobre 2009 (111) et en diminution a partir de
décembre 2009 (112).

La population d’H. lyngbyaceum récoltée en novembre 2009 est constituée de trichomes
de largeur 12,2 £ 0,96 um (n = 15) et de cellules de 3,28 £ 0,5 um (n = 4) (photos 113 et 114).

Photos 113 et 114 : Vues microscopiques de trichomes d’H. lyngbyaceum (113) et d’H. glutinosum (114) récoltées
en novembre 2009 en site 4 a Prony (barre d’échelle = 50 um).

Des tapis cyanobactériens de surface importante sont observés a partir d’ao(t 2009 sur
le site dit de Bonne Anse (site 2) (photos 115 et 116). La superficie du tapis est difficile a
caractériser tant celui-ci est discontinu, mais il est présent sur une zone d’environ 500 m
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longeant la cote. Ce tapis recouvrant des débris branchus coralliens est dominé par I'espéece

filamenteuse H. cantharidosmium (photos 117).

. P o o 5 S R0 y—ﬂr;:;!Anne;So;l:[ . s X ‘. y 2 oL ;\ 3 ¢

Photos 115, 116, 117 : Vues in situ du tapis cyanobactérien dominé majoritairement par H. cantharidosmium
recouvrant des débris coralliens en décembre 2009 (115) et avril 2004 (116) et vue microscopique (117), barre
d’échelle = 50 um).

Pour ces deux sites (port, n°4 et Bonne anse, n°2), aucune saisonnalité des tapis dominés
par Hydrocoleum spp. n’a été mise en évidence jusqu’a présent (suivi de leur présence sur une
année). Les trois espéces ont été rencontrées a Lifou et ont démontré des toxicités similaires a
celles démontrées par les analyses effectuées sur les mattes récoltées au port (n°4). Leur suivi
pourrait permettre de caractériser la dynamique de ces populations ou du moins, suivre les
toxicités présentes sur les sites.

D’autre part, un suivi écosystémique est mené par Vale NC sur 12 stations localisées en
baie de Prony et dans le canal de la Havannah selon une méthode d’observation de couloir
(annexe 6). Le suivi des stations comprend I'identification et la quantification des communautés
biotiques (les coraux scléractiniaires, les macrophytes et les invertébrés) et le substratum.
Depuis octobre 2008, la présence et la quantification des cyanobactéries ont été intégrées a ce
suivi (figure 68). De I'ensemble des observations relevées, on peut noter les abondances en
cyanobactérie supérieures de 5 (> 15% du couloir considéré) au niveau du port en juin 2009.
L'identification de ces cyanobactéries n’est pas disponible mais ces observations corréleraient
avec nos résultats : absence en 2008 et présence en grande quantité en 2009. En outre, il est
intéressant de noter la présence de tapis cyanobactériens a I'llot Casy (au niveau de la zone des
mouillages) et a Port Boisé (Pointe Puka), face a notre zone de péche en abondance 2
caractérisée de « faible » (0,5% a 5% du couloir). D’autres stations notamment dans la réserve
Merlet (station 10, annexe 6), en dehors de pressions caractérisées, montrent également des
proliférations de tapis cyanobactériens (données non présentées). L’'ensemble des observations
montre la présence de cyanobactéries plutdt centrée dans la zone des 10 m.
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Figure 68 : Relevés des abondances des cyanobactéries sur 5 sites en octobre 2008 et juin 2009 (données
Vale NC, voir annexe pour les sites et le détail de la méthodologie).

11.2.b.2 Analyses toxicologiques

Les analyses toxicologiques sont menées sur les mattes de cyanobactéries collectées au
niveau du port (site 4, H. lyngbyaceum et H. glutinosum) récoltées en octobre 2009 (P30). Le
caractere dispersé des tapis cyanobactériens observés a Bonne Anse en site 2
(H. cantharidosmium) n’a pas permis, avec les moyens disponibles au moment des
efflorescences, de récolter suffisamment de matiere : I'aspirateur sous-marin n’avait pas été
encore mis en place.

Rendement d’extraction
Les rendements d’extraction des mattes collectées en site 4 (P30) sont pour la fraction
hydrosoluble de 41% par rapport a la masse lyophilisée et pour la fraction liposoluble de 0,18%.

Test Souris, extrait hydrosoluble

Le test souris a permis de démontrer que les mattes dominées par H. lyngbyaceum et
H. glutinosum (port, n°4) possedent des composés hydrosolubles provoquant une toxicité de
type paralysante chez les souris injectées en i.p. La toxicité est classée en Tox++ et la DLsg est
estimée a 1,5 a 2,0 mg d’extrait par g de souris. Les symptomes sont une paralysie générale du
corps, une diminution de la réactivité et une réaction de type allergique au niveau des yeux ; la
mort survient par détresse respiratoire.
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Tests N2A et Test RBA, extrait liposoluble

Les trois fractions (F1, F2 et F3) issues de la purification sur Sep-pak® de I'extrait
liposoluble sont analysées par test N2A. Les courbes de cytotoxicité sont présentées en figure
69.

Effets cytotoxiques des extraits de cyanobactéries purifiés

F1 F3
1201 1201
N L. E0 ok + 135 3 o +OV
1008 — ¢ W0F——————— @ 1o0¥T=~~__
------ it ~-3..o o o o -ov
© o o5 - e
o % TTeea
60 604
o]
40 401
20 204
GI T T 1 1 c T T 1
1 10 100 1000 1000 1 10 100 1000

Concentration de I'extrait (ug equivalent / mL)

Figure 69 : Courbes de cytotoxicité des fractions F1, F2 et F3 des extraits liposolubles de cyanobactéries récoltées
en octobre 2009 en baie de Prony (site 4, P30).

Les fractions F1 et F3 n’induisent pas de cytotoxicité dose-dépendante -OV et +OV. Par
contre, la fraction F2 (90 : 10) est cytotoxique en conditions +OV et -QV, les Clsg calculées sont
de 192 et 102 ug eqv d'extrait / mL respectivement. Ces effets cytotoxiques (n = 2) démontrent
une toxicité non spécifique des CSSP (toxicité en conditions +OV et —OV).

Cette fraction F2 analysée a I'aide du test RBA induit une toxicité équivalent a 1,06 pg
éqv de P-CTX-3C / g d’extrait.

L’'ensemble de ces analyses démontre la présence dans ces mattes collectées dans la
zone du port (site 4) en octobre 2009 et dominées par H. lyngbyaceum et H. glutinosum :
- De composés hydrosolubles toxiques d’activité paralysante sur souris, et
- D’un complexe de composés liposolubles de polarité proche des CTXs avec des activités
propres :
(i) d’action cytotoxique non spécifique du CSSP (test N2A),
(iii) d’'une action toxique spécifique du site 5 des CSSP (test RBA).

Identification des toxines

La recherche de cyanotoxines ou phycotoxines par la méthode multi-toxinique du
laboratoire des phycotoxines de I'lFREMER a été utilisée pour I'analyse toxinique de ce tapis de
cyanobactéries. La méthode par LC-MS/MS permet de détecter un large spectre de toxines
détaillé dans la partie précédente (cf. ch.2.1l.3.d). L'analyse de I’échantillon lyophilisé de
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cyanobactéries dominé par Hydrocoleum lyngbyaceum n’a montré la présence d’aucun des
composés détectables par la méthode multi-toxinique.

I1l.2.c  Poissons

1.2.c.1 Récolte

Deux campagnes de prélevements ont permis de collecter 53 individus en 2008 et 46 en
2009 (tableau 52) avec un minimum de 15 poissons par zones de péche. L'ensemble des
données de préléevements est reporté en annexe 7 : la zone de péche, la référence, la famille,
I'espéce (nom scientifique et vernaculaire), le régime alimentaire, les paramétres biométriques
et les planches photos.

Tableau 52 : Nombre de poissons prélevés par zone en 2008 et 2009.

Nombre d’individus
Zones Coordonnées GPS

2008 2009

$22°20,682' / E166°52,956'
’ ’ 1 1
Zone 1l Port de Prony $22°21391' / E166°53 579" 9 5

$22°23,869' / E166°53,012'
Zone 2 Bonne Anse $20°23,700' / E166°52,928' 15 15

$22°21,624' / E166°58,095'

Zone 3 Port Boisé $22°21 437" / E166°58,072" 16 16

Zone 4 [16t Gabriel $22°19,993' E166°52,124' 3 -

53 46

Espéces récoltées

Tenant compte des criteres définissant les espéces sentinelles spécifiques a la
méthodologie appliquée dans I'étude de Prony, un nombre restreint de 12 espéces est
répertorié sur les 99 spécimens péchés en 2008 et 2009. La figure 70 représente le nombre
d’individus par espéces péchées et par zone et la figure 71 répertorie les espéces les plus
fréquentes.
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Figure 71 : Espéces récoltées sur les zones du port de Prony, Bonne Anse et Port Boisé en 2008 et 2009.
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Voici un bref descriptif des espéces rencontrées en commencant par les niveaux
trophiques inférieurs. Le niveau trophique (ou indice) est défini par la base de données
« Fishbase » gérée par neuf instituts de recherche dont le Muséum National d’Histoire
Naturelle :

- Scarus altipinis et Scarus rivulatus

Scarus altipinis (Steindachner, 1879) et Scarus rivulatus (Valenciennes, 1840) déja
rencontré a Lifou, sont des poissons perroquets corallivores vivant en banc. Les perroquets
vivent du littoral a la pente externe mais selon les espéces, possedent des comportements
ubiquistes ou plutét inféodés a un faciés. S. rivulatus serait plutot de comportement ubiquiste
du lagon avec une préférence pour la zone 5 a 15 m. Quant a S. altipinis, il fréquente plutoét les
récifs coralliens sous influence océanique (typique de la zone de péche 2). Ces poissons sont
trés appréciés des consommateurs. Généralement reconnus pour étre sans risque, nous avons
pu nous rendre compte a travers les intoxications séveres a Lifou que le genre Scarus n’est pas
épargné par I'accumulation de toxines, méme si son potentiel de risque peut étre considéré plus
faible. Leur niveau trophique est de 2,0.

- Chlorurus microrhinos (Bleeker, 1854)

Chlorurus microrhinos est un Scaridae reconnaissable a sa bosse frontale, il est parfois
nommé perroquet bleu. Ubiquiste, il vit dans le lagon et affectionne les pentes externes.
Herbivore de niveau trophique 2,0, Fishbase I'indique comme poissons a risque ciguatérique.

Ces trois espéces de poissons-perroquets sont ici associées au régime herbivore et
constituent un indicateur d’un phénomeéne ciguatérique en émergence.

- Kyphosus sydneyanus

Kyphosus sydneyanus de la famille des Kyphosidae est connu en Nouvelle-Calédonie sous
le nom wi-wa. Ce poisson a petite téte vit en banc dans des eaux peu profondes au niveau des
zones récifales agitées. C'est un omnivore méme si les algues constituent la majorité de son
alimentation. Fishbase le sighale comme non ciguatérique et de niveau trophique 2,0.

- Naso unicornis (Forsskal, 1775)

Ce poisson-chirurgien de la famille des Acanthuridae, nommé Dawa en Nouvelle-
Calédonie, se distingue par sa proéminente corne, redoutable arme défensive. Il vit
habituellement en groupe et est ubiquiste de la zone corallienne de 3 a 30 m, il est rencontré
plus fréguemment dans les zones de déferlement des vagues. Herbivore, il consomme
majoritairement les phéophycées du genre Sargassum et Turbinaria. Ce poisson dont la chair
est savoureuse (particulierement les individus du sud de la Grande Terre) est localement réputé
indemne de ciguatéra. Le site Fishbase le déclare pourtant a risque ; son indice trophique est de
2,17.

- Cheilinus chlorourus (Bloch, 1791)

Cheilinus chlorourus de la famille des Cheilininae est nommé vieille tachetée ou labre
maori. Cette espéce vit a proximité des algueraies et des herbiers, dans des zones mixtes des
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lagons (sables, éboulis, coraux) et des récifs cotiers de 2 a 30 m de profondeur. Il se nourrit
majoritairement d’invertébrés benthiques comme les mollusques et les crustacés. Son niveau
trophique est de 3,42.

- Choerodron graphicus (Devis, 1855)

Choerodron graphicus est un labre de la famille des Lethrinidae connu localement sous le
nom de perroquet wallis. Il vit plutdt en solitaire au niveau des étendues de sable ou d’éboulis
des lagons et des pentes externes jusqu’a la zone des 20 m. Relativement commun et facile a
approcher, il se nourrit de coquillages, de crustacés ou d’oursins, il est classé sous le régime de
molluscivore. D’aprés Fishbase, son niveau trophique est de 3,54 et ce labre est réputé sans
risque ciguatérique.

- Lethrinus harak (Forsskal, 1775)

Lethrinus harak est connu sous le nom de bossu d’herbe en Nouvelle-Calédonie. Ce
poisson de la famille des Lethrinidae affectionne les fonds meubles des herbiers et des
algueraies. Il se nourrit d’'une diversité d’organismes comprenant les vers, les mollusques, les
oursins de sable, les crustacés et les poissons, il est donc qualifié d’'omnivore. Apprécié des
consommateurs, des cas d’intoxications ciguatériques parfois sévéres ont été signalés sur le
territoire. Son niveau trophique est 3,56.

- Plectropomus leopardus (Lacepéde, 1802)

Plectropomus leopardus de la famille des Serranidae est une espéce bien connue en
Nouvelle-Calédonie sous le nom de Saumonée. Espéce ubiquiste, on la retrouve depuis le
littoral jusqu’au récif barriere a 50 m de profondeur, tant au niveau des récifs coralliens que des
pinacles ou des algueraies. Elle est tres présente dans la baie de Prony jusqu’a Port Boisé.
Carnivore, son alimentation est variée se nourrissant de crustacés, de mollusques et de
poissons. Son niveau trophique est de 4,49. Déja collectée a Lifou, elle est reconnue en
Nouvelle-Calédonie pour étre indemne de toxicité. Elle se distingue de la saumonée dite gros
points (P. laevis) dont le risque ciguatérique est reconnue localement indiscutable !

- Scomberomorus commerson (Lacepéde, 1800)

Scomberomorus commerson de la famille des Scombridae est nommé thazard du lagon
en Nouvelle-Calédonie. Grand pélagique, il est plutét solitaire vivant au niveau des pentes
externes, des passes et des grandes étendues lagonaires. Il est connu pour effectuer de grandes
migrations mais certaines populations resteraient plutét sédentaires. Carnivore, il se nourrit
d’aiguillettes, d’anchois, de fusiliers, de sardines et de calmars. Son niveau trophique est de 4,5.
Ce poisson est tres recherché pour sa chair appréciée mais les gros spécimens sont susceptibles
de provoquer des intoxications, comme nous avons déja pu le préciser précédemment (Hahn
and Capra, 1992).

Le nombre d’espéece par zone et par année associant la valeur du niveau trophique est
reporté en tableau 53.

266 /326



Chapitre 3 : Les facteurs environnementaux

Distribution de taille et de poids.

Afin de se soustraire des variabilités de toxicité par individu liées a sa taille et son poids,
les poissons ont été péchés de telle sorte que les distributions de taille et de poids varient peu.
Pour certaines especes, les distributions en poids peuvent étre relativement importantes (ex. les
individus C. graphicus collectés en zone du port en 2009 : m = 835 g + 732) ; mais en tout état
de cause, le nombre d’individus reste trop faible pour pouvoir conclure quant a la variabilité de
réponse liée a ces deux parametres biométriques.

Afin d’étudier la variabilité de la toxicité des individus selon leur taille ou le poids, un
échantillonnage beaucoup plus conséquent permettant d’avoir une distribution de taille et de
poids a plus large spectre serait nécessaire. Cette étude constituerait un suivi a part entiére et,
de maniere a évaluer les toxicités des individus par espece, I’association de I'information « age »
du spécimen (par I'analyse des otolithes) permettrait d’avoir une réelle idée du phénomene de
bioaccumulation des toxines.
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Tableau 53 : Espéces de poissons collectées au Port de Prony, a Bonne Anse, a Port Boisé et a I'llot Gabriel en 2008 et 2009 : Régime alimentaire et indice
trophique, nombre d’individus, moyenne de taille + ET (en cm) et de poids + ET (en g) par espéce.

2008 2009
Nom de la ) Régime Indice Masse Longueur Masse Longueur
one Espeéce alimentaire trophique Nombre Moy *+ ET Moy + ET | Nombre Moy *+ ET Moy *+ ET
(g) (cm) (g) (cm)
Port de Prony  Scarus rivulatus Herbivore 2,00 470 + 147 27+3 5 564 + 126 272
Kyphosus sydneyanus Omnivore 2,00 753 +£129 312
Cheilinus chlorourus Brouteur IB 3,42 1 - 21
Choerodron graphicus Molluscivore 3,54 700 30 4 835+732 2919
Lethrinus harak Omnivore 3,56 2 280+ 28 24+1
Plectropomus leopardus Carnivore 4,49 10 729 +396 35+7 990 + 525 37+
Bonne Anse Scarus rivulatus Herbivore 2,00 6 613 + 103 28+ 1
Chlorurus microrhinos Herbivore 2,00 3 1253 + 383 38+5
Naso unicornis Herbivore 2,17 5 1376 £ 413 40+4 5 2200 £ 596 4212
Choerodron graphicus Molluscivore 3,54 2 750+ 212 32+3
Plectropomus leopardus Carnivore 4,49 5 1242 + 275 43 +3 5 1040 £ 167 38+2
Scarus altipinnis Herbivore 2,00 1 1300 39
Port Boisé Acanthurus xanthopterus Herbivore 2,87 1 1300 39
Chlorurus microrhinos Herbivore 2,0 3 1100 + 100 362 1380 + 342 37+3
Naso unicornis Herbivore 2,17 4 2075 = 250 46 +£2 2700 £ 903 45 +
Choerodron graphicus Molluscivore 3,54 3 1033 + 404 35+5
Plectropomus laevis Carnivore 4,14 3 2000 + 819 506
Plectropomus leopardus Carnivore 4,49 2 1750 + 778 48+8 5 982 + 333 38+4
Scarus altipinnis Herbivore 2,00 1 500 31
flot Gabriel Plectropomus leopardus Carnivore 4,49 1 500 32
Scomberomorus commerson  Carnivore 4,50 2 3490 £ 721 78+ 4
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1.2.c.2 Analyses toxicologiques, Test N2A

Au total 99 poissons ont été analysés par le test N2A: 53 en 2008 et 46 en 2009.
L'annexe 7 donne I'ensemble des classes de toxicité obtenues par poisson.

Toxicité globale

Le nombre de spécimens en pourcentage par zone et par classe de toxicité, ATox, Tox+
et Tox++ est synthétisé dans le tableau 54. D’apres le test N2A, en 2008, 79% des poissons
péchés sont atoxiques et 21% toxiques (17% moyennement toxiques et 4% fortement toxiques).
En 2009, 93% sont atoxiques et 6% toxiques (4% faiblement et 2% fortement toxiques). On ne
peut conclure quant a I'évolution de la toxicité entre 2 années de suivi et entre les zones et
particulierement en tenant compte des incertitudes liées a la réponse du test. Cependant, les
valeurs de toxicité restent faibles et comparables a un écosysteme reconnu pour étre indemne
de ciguatéra comme a Ouvéa. Seul 4% et 2% des individus collectés en 2008 et 2009 présentent
un niveau de toxicité pour lequel I’'Homme serait sensible (Tox++).

Tableau 54 : Nombre d’individus toxiques (Tox+ et Tox++ ; en %) péchés en 2008 et en 2009 par zone, en baie de
Prony et a Port Boisé.

! Atox Tox+ Tox++
Année Nom de la zone % % %
2008 Port de Prony n=19 68 26 5
Bonne Anse n=15 80 13 7
Port Boisé n=16 88 13 0
flot Gabriel n=3 100 0 0
n=53 79 17 4
2009 Port de Prony n=16 80 13 7
Bonne Anse n=15 100 0
Port Boisé n=15 100 0
n =46 93 4 2
n=99 86 11 3

Toxicité par zone et par espéce

Le nombre de spécimens par classe de toxicité par espéce est présenté en tableau 55.
Pour les espéeces dont le nombre est supérieur a 5, les données indiquent que les espéces C.
graphicus et P. leopardus sont les plus touchées (50% et 15% respectivement). Quant aux
especes S. rivulatus, C. microrhinos et Naso unicornis, aucun individu péché n’a montré de
toxicité (100% Atox) sur les deux années.

Tableau 55 : Nombre d’individus par classe de toxicité (Atox, Tox+ et Tox++) et par espece péchés en 2008 et en
2009 par zone, en Baie de Prony et a Port Boisé.
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2008 2009
Nom de la zone Espece Atox Tox+ Tox++ | Atox Tox+  Tox++
Port de Prony Scarus rivulatus 3 5
Lethrinus harak 1
Cheilinus chlorourus
Choerodron graphicus 1 2 1 1
Kyphosus sydneyanus 2
Plectropomus leopardus 8 1 4
Total Port de Prony 13 5 12 2 1
Bonne Anse Scarus altipinnis
Chlorurus microrhinos
Naso unicornis
Scarus rivulatus 6
Choerodron graphicus 1
Plectropomus leopardus 2 5
Total Bonne Anse 12 1 16
Port Boisé Scarus altipinnis 1
Chlorurus microrhinos 3
Naso unicornis 4
Acanthurus xanthopterus 1
Choerodron graphicus 2 1
Plectropomus leopardus 2 5
Plectropomus laevis 1
Total Port Boisé 14 15
flot Gabriel Plectropomus leopardus 1
Scomberomorus commerson 2
Total flot Gabriel 3

Toxicité par régime alimentaire

La figure 72 représente le nombre d’individus Tox+ et Tox++ selon leur niveau trophique

et leur zone de récolte. Tous les régimes trophiques présentent des spécimens toxiques excepté

les herbivores (Scarus, Chlororous ou Naso unicornis). Ces poissons sont situés au plus bas de la

chaine trophique (indice 2,00 et 2,17) et leur atoxicité pourrait indiquer qu’aucun phénomene

ciguatérique n’est en émergence dans les zones de péche considérées.
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Figure 72 : Nombre d’individus toxiques (Tox+ et Tox++) péchés en 2008 et en 2009 selon leur zone (Port, Bonne

Anse et Port Boisé) et leur régime alimentaire.

Afin de faciliter I’'analyse des toxicités, les especes sont regroupées en trois classes de

niveaux trophiques: A (2,00) regroupant les perroquets, B (]2; 3]) regroupant les autres

herbivores, les molluscivores et les omnivores et C (]3; 5]) regroupant les carnivores. Les

données pour 2008 et 2009 sont présentées en figure 73.
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Figure 73 : Nombre d’individus par classe de toxicité (Atox, Tox+ et Tox++) péchés en 2008 et 2009 selon le
régime alimentaire groupé par classe : A (2,00) regroupant les perroquets, B (]2 ; 3]) regroupant les autres
herbivores, les molluscivores et les omnivores et C (]3 ; 5]) regroupant les carnivores.

Toxicité par zone de préléevement

Les données de toxicité par espéce et selon la zone de péche sont représentées en figure
74. En 2008, des individus toxiques ont été péchés dans toutes les zones de péche (2 poissons,
classés Tox++ uniquement en zone du Port de Prony et a Bonne Anse). En 2009, seuls trois
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individus toxiques (2 Tox+ et 1 Tox ++) ont été péchés en zone du Port de Prony. Le Port de
Prony présente les individus les plus toxiques par rapport aux deux autres zones mais il possible
gue cette variation soit liée au prélevement de poissons K. sydneyanus et L. harak et C.
graphicus au port de Prony. On peut conclure que les taux de toxicité des populations péchées
dans les trois zones en 2008 et 2009 restent faibles.
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Figure 74 : Nombre d’individus péchés en 2008 et 2009 par classe de toxicité (Tox+ et Tox++) selon I'espéce et la
zone de prélevement.

IV. Discussion
IV.1 Avant propos : la méthode de suivi

Les deux études présentées suivent une méthodologie commune a des études
écotoxicologiques antérieures prenant en compte a la fois les organismes toxinogenes et la
chaine pisciaire. En baie de Prony, nous avons amélioré la méthodologie d’approche en
I'adaptant a I’'environnement dans une optique de suivi sanitaire pour un développement d’outil
spécifique et utilisable en routine.

Les résultats des deux études présentent certaines limites et les informations doivent
étre prises avec précaution en raison des différents facteurs de variabilités possibles :
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Variabilités au niveau des micro-organismes

La variabilité spatiale et temporelle de la dynamique des dinoflagellés et des
cyanobactéries doit étre prise en compte lors de I'échantillonnage. La fréquence et la zonation
des points d’échantillonnage tendent a étre le plus exhaustif possible. Mais il est évident que le
suivi spatial tant a Ouvéa qu’a Prony ne permet pas I'obtention d’une carte compléte des
populations benthigques a un moment donné.

Ainsi, nous avons ciblé des sites d’observations en fonction de caractéristiques définies
qui sont présentées en méthodologie. Quant a la variabilité temporelle, au vu des dynamiques
de populations, il est possible pour Prony, et fort probable a Ouvéa, que nous soyons passés a
coté d’efflorescences pourtant présentes. En tenant compte de la difficulté de suivre 'ensemble
des zones considérées a une fréquence beaucoup plus grande, nous avons établi a Prony une
fréquence mensuelle qui semble étre un bon compromis.

Variabilités au niveau de la chaine pisciaire
e Délimitation de la zone de péche

Pour suivre la toxicité des populations pisciaires a Ouvéa et a Prony, nous avons défini
des zones selon différents critéres : zone de péche vivriere, zone potentiellement impactée,
zone sans perturbations... Les limites de ces zones peuvent étre considérées étendues ou
restreintes suivant que I'on consideére (i) la zone de péche vis-a-vis du pécheur (ex : plusieurs
hectares dans le lagon d’Ouvéa), (ii) un impact localisé (rampe de mise a I'eau) ou encore (iii) la
zone de vie et de déplacement d’un poisson. La délimitation des zones doit donc tenir compte
de I'ensemble de ces critéres.

En outre, I'association des points de prélévements d’algues avec ces zones peut étre
sujette a discussion : le poisson péché dans cette zone se nourrit-il effectivement a cet endroit ?
e Période et fréquence de récolte

Les deux études présentées évaluent la toxicité des poissons annuellement, en
septembre a Ouvéa et en avril en baie de Prony. Les potentielles variabilités saisonnieres des
toxicités ne sont donc pas prises en compte. De méme, selon la période de l'année, les
populations de poissons présentes dans les zones peuvent varier notamment en fonction des
migrations durant I'année.

e Choix des espéces dites sentinelles

L’échantillonnage effectué a Ouvéa a permis de collecter 40 espéces différentes.
L'interprétation des résultats pour des espéces dont le nombre de spécimens est trop faible
(n < 5) n"est guére possible. Il est donc nécessaire de diminuer le nombre d’espéces en faveur
du nombre de spécimens collectés par espece. Cet effort a pu étre effectué et amélioré a
travers les campagnes menées a Prony en 2008 (11 espéces) puis en 2009 (6 espéeces).

Pour les résultats de toxicité de Prony, les régimes alimentaires sont rassemblés en trois
classes. Nous avons pu voir que le regroupement des herbivores (A) et des carnivores (C)
constituent des groupes homogenes en termes trophiques (gamme d’indice trophique < 1) et
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ainsi reste cohérent. Par contre, le régime intermédiaire B regroupe des espéces dont la gamme
d’indice trophique est plus large de 2,17 a 3,56 (tableau 53 et figures 73).

Par exemple, le dawa (Naso unicornis) (indice trophique 2,17) est une espece de bas
niveau qui présente l'intérét d’étre indicatrice d’'une émergence ciguatérique. Elle est présente
en zone 2 et 3, mais trés peu présente en zone 1 (Port) ol elle est remplacée par des espéeces de
régimes trophiques supérieurs. Afin d’étre plus précis dans la comparaison de ce groupe
trophique B, une solution pourrait étre d’identifier une espéce en zone 1 de niveau trophique
plus proche du Naso unicornis.

La toxicité des poissons est établie grace a I'analyse du test N2A, pour une zone donnée
et une période de I'année. Les fluctuations dans le temps et dans I'espace sont a prendre en
compte dans le cadre d’un suivi puisqu’il est important de le rappeler: le phénomeéne
ciguatérique est un phénomeéne transitoire pour une zone considérée.

Ainsi dans le cadre d’un suivi, pour caractériser I'état d’une zone, les nombreuses
composantes du phénomene doivent étre identifiées, ou tout au moins les plus importantes
d’entre elles. En tenant compte des variabilités énumérées ci-dessus, dans le cas du suivi a
Prony, voici les éléments que nous avons décidé de fixer :

— Collecter les micro-organismes a la méme fréquence, sur les mémes zones et les

mémes algues supports,

— Effectuer les campagnes de prélevement a la méme période dans I'année,

— Suivre les mémes zones de péches définies,

— Collecter les mémes especes définies comme sentinelles,

— Collecter des poissons de méme distribution de taille et de poids,

— Utiliser les mémes techniques de péche,

— Analyser les poissons de maniere identique (prélevement du filet, extraction, test

N2A).

IV.2 Micro-organismes, a la base de la toxicité

Dinoflagellés

Les observations des populations de dinoflagellés faites en 2007 et 2008 a Ouvéa et
depuis 2005 a Prony ont mis en évidence la présence naturelle de Gambierdiscus sur divers
sites. Au vu des faibles teneurs, leur toxicité n’a pas été évaluée avec les outils d’analyse
disponibles. Ces populations, en faible densité, ne présentent cependant pas de risque de
contamination de la chaine pisciaire.

Cyanobactéries

A Prony comme a Ouvéa, des tapis cyanobactériens ont été observés recouvrant des
surfaces plus ou moins importantes. Dans la Baie de Prony, H. lyngbyaceum et H. glutinosum
sont apparus au niveau du port (site 4) en saison froide et H. cantharidosmium a Bonne Anse
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(site 2) durant toute une année. A Ouvéa, différents tapis composés de P. laysanense ou H.
lyngbyaceum sont observés en saison froide a divers endroits.

La présence de ces cyanobactéries filamenteuses est naturelle. Dans certaines zones ou
le corail est dégradé, des développements massifs peuvent étre observés. Au niveau des sites
ou nous avons pu observer de tels développements, il est possible d’émettre des hypothéses
guant a la dégradation du milieu :

Par exemple, a Ouvéa, le chenal de Fayawa qui est la voie d’accés a I'llot Fayawa est une
zone de corail fragilisé (site C02). Ce chenal peut donc étre dégradé par le passage de personnes
a pied ou a bateaux, mais aussi par le fort hydrodynamisme ou les arrivées d’eau douce. Ces
facteurs plus ou moins importants favoriseraient I'implantation de cyanobactéries.

De méme, les ancrages a répétition peuvent constituer des pressions suffisantes pour
détruire le corail et voir se développer des tapis cyanobactériens. Cette pression pourrait étre
présente a Ouvéa au chenal de Wenwook ou H. lyngbyaceum (C09) a été observée en grande
guantité. Cette zone est un chenal olu I'"hydrodynamisme est important et répertorié par les
plaisanciers pour pouvoir s’y mettre a I'abri. Les pécheurs du nord mouillent également a cet
endroit. En baie de Prony, a Bonne Anse (site 2), nous avons pu observer des développements
de cyanobactéries identifiés comme H. cantharidosmium. Cette zone subirait probablement le
méme type de pression extérieure.

Enfin, la zone du Port a Prony (site 4) a vu se développer de larges tapis cyanobactériens
sur des surfaces fragilisées par I'implantation des infrastructures portuaires. A ce jour, ces tapis
ne sont plus visibles (photo 118) et le substrat détritique est recouvert de Phéophycées du
genre Dictyota (photo 119). Il est probable que les cyanobactéries constituent une population
pionniere de transition avant la recolonisation du substrat par les macrophytes qui tendrait vers
un retour a I'équilibre, ou pourquoi pas vers un phénomene écotoxicologique de type ciguatéra
avec un développement de dinoflagellés.

Photos 118 et 119 : Vues in situ de la zone du port en mai 2010, site 4 ou a été observé de juin 2009 a février
2010 les tapis composés d’H. lyngbyaceum : les débris coralliens se recouvrent de macrophytes dont la
Phéophycée du genre Dictyota (119).
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Il est donc important de surveiller ces zones fragilisées qui sont des sites propices au
développement des populations de dinoflagellés et de tapis cyanobactériens. Ce suivi permet, en
cas de présence de souches toxiques en nombre suffisant, de prévenir la potentielle
contamination potentielle de la chaine pisciaire. Les concentrations en toxines dans les chairs de
poisson peuvent atteindre un seuil symptomatique chez les herbivores en quelques mois apreés
une efflorescence ciguatoxinogéne (chapitre 1).

IV.3 Toxicité des poissons, vecteurs de toxicité

Toxicité globale

Sur Ouvéa, les analyses révelent globalement une toxicité des poissons inférieure a 20%.
Considérant les échantillonnages effectués, ces résultats ne mettent pas en évidence de
variabilité en fonction des espéces de poissons, du régime alimentaire, du poids ou de la taille et
de la zone de péche.

Dans la baie de Prony et jusqu’a Port Boisé, les analyses de toxicité démontrent une
toxicité de 21% en 2008 et 7% en 2009. Ces valeurs sont comparables a celles obtenues a
Ouvéa. L'ensemble de la zone prospectée peut donc étre définie comme étant a faible risque
ciguatérique méme si localement en zone du port le pourcentage de poissons toxiques est de
32 % en 2008 et 20% en 2009. Il est a noter que les poissons dont les valeurs de toxicité sont
sensibles pour I’'Homme (Tox++) restent faibles avec 4% en 2008 et 2% en 2009 (maximum de
5% de Tox++ pour le port).

L’ensemble des observations faites sur les zones suivies de la Baie de Prony ne met pas en
évidence de risque ciguatérique pour les zones observées.

Régime alimentaire et espéces

A Ouvéa, ou il n'y a pas de différence significative entre les especes, un niveau résiduel
constant de toxicité peut étre défini chez les populations de poisson comme Bagnis le suggérait
(1986).

En Baie de Prony jusqu’en Port Boisé, aucun herbivore n’est toxique, ceci pouvant
traduire un phénomeéne toxique de faible ampleur touchant encore quelques individus aux
maillons supérieurs.

Dans les zones ol aucune efflorescence de dinoflagellés, ni de cyanobactéries n’a été
enregistré et sans perturbations anthropiques majeures futures, I'absence de risque pour les
deux ans a venir peut étre envisagé.

Par contre, dans les zones ou la présence de cyanobactéries toxiques (site 4) et
potentiellement toxique (site 2) a été observée I'année derniére, il est possible que les poissons
inféodés a ces zones présentent dans les deux années a venir un certain niveau de
contamination. Il serait donc intéressant d’évaluer la toxicité des poissons pour cette année,
2010 et I'année suivante, 2011.
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Nous voyons donc ici l'intérét de suivre la toxicité des populations pisciaires chaque
année. Par ailleurs, un suivi biannuel permettrait de suivre cette évolution en tenant compte du
caractére saisonnier, facteur important dans le phénoméne ciguatériques.

IV.4 Facteurs ciguatoxinogenes

Ouvéa est considérée indemne de ciguatéra par les populations. Or, a travers cette
étude, nous avons montré que certains sites présentent un certain nombre d’individus toxiques
mais ce risque reste trés faible par rapport aux autres iles des loyautés. Ceci peut étre expliqué
par la configuration de I'atoll associée aux faibles pressions existantes. Les pressions
anthropiques et les pressions naturelles semblent avoir un impact restreint sur un lagon ouvert
mais protégé par l'atoll. Enfin, les Pléiades n’offrent que peu de biotopes favorables au
développement des micro-organismes.

La baie de Prony présente un écosysteme protégé de certaines pressions naturelles
comme les cyclones et les tempétes, mais un écosysteme somme toute particulier et a ce jour
certaines pressions anthropiques sont manifestent. Méme si les dinoflagellés y sont présents,
les conditions trés changeantes de turbidité ou de salinité sont-elles favorables a leur
développement ?

Les changements prévus et que nous avons identifiés comme pressions potentielles sont
le port et la mise en place du tuyau en termes de perturbations physiques. Ce dernier ne
constitue pas a ce jour de risque quant a son implantation, tant il reste éloigné des zones
favorables au développement des micro-organismes. Quant au port, les zones perturbées sont a
surveiller méme si la phase de mise en place ne semble pas avoir induit jusqu’a présent de
risque ciguatérique dans la zone considérée ; en effet le pourcentage de poisson toxique est
similaire a celui observé a Ouvéa et aucune prolifération de dinoflagellés n’est observée dans la
zone depuis 2005. Cependant, les cyanobactéries toxiques sont apparues dans la zone en juin
2009 jusqu’a février 2010, un terrain favorable ayant permis leur développement. La dynamique
de leur population est fonction de divers facteurs qui ne sont pas caractérisés a ce jour. Leur
réapparition potentielle est a surveiller a la fois en termes de biomasse et de toxicité. Mais,
nous n’avons pas de certitude quant au transfert de cette toxicité vers les divers maillons de la
chaine trophique pisciaire. L'étude de la toxicité des populations de poissons de la zone
permettra de préciser ce risque.

Enfin, en vue des pressions ciblées, nous avions donc a juste titre envisagé les
infrastructures du port. Mais, a travers le suivi d’observations de I'ensemble des points dans la
baie, il a été possible de mettre en évidence I'apparition de tapis cyanobactériens dans une
autre zone de Bonne Anse (site 2), site considéré comme témoin. Comme nous I'avons précisé
plus haut, au vu de I'état du récif, on peut s’apercevoir que celui-ci présente des zones de
souffrance qui peuvent expliquer I'apparition des cyanobactéries a certains endroits. En
I'absence de perturbations formellement établies, il est suggéré que les pressions liées aux
activités récréatives (ancres de bateau, péche, plongée libre) dégradent de maniere diffuse mais
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tout de méme conséquente certaines zones. En tout état de cause, ce type d’activités
récréatives est une pression qui peut étre maitrisée, par exemple par la mise en place de corps
mort ou I'éducation des plongeurs.

IV.5 Evaluation du risque

L’évaluation du risque ciguatérique est a envisager aux niveaux des populations de
microorganismes (dinoflagellés et cyanobactéries) et a des maillons sélectionnés de la chaine
pisciaire. Véritables indicateurs du risque ou de I'état de la toxicité d’'une zone, ces deux niveaux
de suivi (micro-organimes et poissons-sentinelles) constituent un véritable outil de suivi
sanitaire. lls sont également de bons indicateurs de I'état de santé de ces milieux sensibles et
vulnérables.

Proposer des outils aux décideurs ou aux acteurs d’aménagement du littoral est un enjeu
majeur pour la communauté scientifique. Nous espérons a travers ces travaux avoir donné des
outils dans un premier temps pour une méthode de suivi éco-toxicologique adaptée et avoir
mis a la disposition des décideurs, un outil d’aide a la décision.

Une chose semble essentielle a noter, c’est que méme si nous avons pu apporter
certaines réponses en termes de connaissance du phénomeéne ciguatérique, nous n’avons pas
encore, de par sa complexité, toutes les clés pour répondre aux décideurs, mais aujourd’hui, la
guestion se pose !!! Ce qui avant n’était pas le cas. Prendre en compte les impacts de nos
activités sur I'environnement est un enjeu pour le préserver et pour limiter les déséquilibres
provoquant pour la santé humaine des risques ciguatériques. Le simple fait de poser cette
guestion est une avancée dans la prise en compte de I'environnement et dans le
développement économique du pays, particulierement dans des pays insulaires.

V. Conclusions et perspectives

A travers cette étude, nous avons fait état des faibles niveaux de ciguatoxicité a Ouvéa et
a Prony. Au vue des populations de micro-organismes présentes dans chacun des écosystemes,
certaines zones restent a surveiller, notamment la zone du wharf du Wadrilla a Ouvéa et la zone
du Port a Prony, afin d’anticiper le risque. De méme, les populations de poissons sont a suivre
pour évaluer le risque d’accumulation des toxines, notamment a la suite du risque identifié en
2009 par la présence des cyanobactéries a potentiel de risque en site 2 et 4.

Enfin, ces études nous ont permis de développer une méthodologie de suivi
environnemental, véritable outil de veille sanitaire, en tenant compte a la fois des micro-
organismes et des poissons afin de faire état du risque ciguatérique présent et surtout de
prévenir le risque.
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Les études présentées dans ce manuscrit ont apporté des éléments de compréhension
du phénomeéne écotoxicologique de la ciguatéra et des outils d’évaluation du risque.

Alors que I'implication des dinoflagellés dans le phénomeéne de la ciguatéra est établie
depuis 1980 (Bagnis et al.), celle des cyanobactéries est tout a fait nouvelle et est un enjeu
majeur dans la compréhension du phénoméne. Il est en effet indispensable de tenir compte des
cyanobactéries et de leur potentiel de production en toxines de type ciguatérique et
paralysante les rendant particulierement dangereuses. Au sein de la chaine alimentaire, ces
cyanobactéries sont susceptibles de contaminer des poissons brouteurs (perroquets) ou des
poissons molluscivores (becs-de-cane) ainsi que des mollusques bivalves filtreurs (bénitiers)
voire certains crustacés ou échinodermes (oursins).

Il est fort probable que de nombreuses intoxications aient été attribuées a la ciguatéra
classique impliquant les CTXs. En tout état de cause, étant donné que nous sommes face a un
complexe toxinique, les symptomes caractéristiques sont présents avec une augmentation de
leur sévérité et I'association de symptomes paralysants dus aux toxines hydrosolubles.

Aussi, pour la premiére fois, nous avons mis en évidence :

— un complexe toxinique de nature hydro- et liposoluble chez certains genres marins

d’Oscillatoriales, notament Hydrocoleum, Phormidium, Spirulina et Oscillatoria,

— la présence de cyanotoxines neurotoxiques (AnTX-a et HAnTX-a) dans le milieu marin
et plus particulierement chez les cyanobactéries, leur conférant ainsi un potentiel
risque en contact direct et un risque croissant par phénomeéne de bioaccumulation.

— La présence de PTX et de 42-OH-PTX sont identifiées chez Trichodesmium
erythraeum. Ces toxines sont parmi les substances naturelles les plus complexes et
surtout les plus toxiques connues a ce jour apres les MTXs. Les teneurs évaluées dans
les mattes de Trichodesmium prélevées ne présentent heureusement pas de risque
en contact direct, mais méritent également une surveillance du risque potentiel lié a
un phénomene nouveau de bioaccumulation dans le réseau trophique, a travers le
phénomeéne de clupéotoxisme et/ou la ciguatéra.

Ces études menées a Lifou apportent une meilleure connaissance du phénomene
environnemental et permet d’améliorer la gestion des risques ciguatériques dans les régions
coralliennes. L’écosystéeme marin est complexe et les composantes des phénomeénes associant
un organisme source, un vecteur et une intoxication alimentaire, comme nous I'avons décrit
dans le premier chapitre, ne s’averent pas si cloisonnées. Ainsi, pour définir cette intoxication
impliquant les cyanobactéries et les dinoflagellés, mettant en cause les poissons (le plus
fréquemment) mais également d’autres organismes marins comme les bénitiers ou d’autres
mollusques, la dénomination de CSP pour Ciguatera Shellfish Poisoning, ou Intoxication
Ciguatérique par les produits de la mer nous parait plus approprié; cette intoxication est
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décrite par i) un complexe toxinique, ii) deux principaux modes d’actions (toxines paralysantes
et CTX-like) et iii) les symptoOmes associés: rapidité des symptomes de type paralysant
(engourdissement de la bouche et de la gorge), apparition de symptomes neurologiques apres
plusieurs heures (état de faiblesse, courbatures, inversion des sensations, picotements).

L'implication des cyanobactéries dans le phénomeéne ciguatérique a été prise en compte
a travers les études écotoxicologiques menées a Ouvéa et dans la Baie de Prony. Pour cette
derniére, au sein de laquelle des pressions anthropiques clairement identifiées se mettent en
place (infrastructures et activités portuaires), nous avons pu développer une méthodologie
d’étude ciguatérique adaptée a I'environnement, fiable et utilisable en routine. L'objectif de
cette méthode est de pouvoir suivre de maniere exhaustive I'évolution de I'apparition
potentielle du risque ciguatérique (étude prospective) a des fins de veille sanitaire. Les
populations de micro-organismes (dinoflagellés et cyanobactéries) et le suivi en paralléle de la
toxicité des poissons sentinelles sont des indicateurs du risque ciguatérique et, de maniere plus
générale de |'état de I'écosystéme.

A travers ces études, nous avons montré que ces deux sites présentent, au moment de
I’étude, de faibles risques ciguatériques (populations de micro-organismes restreintes) et que le
niveau de toxicité des populations pisciaires est faible : le nombre de poissons ciguatoxiques est
globalement inférieur a 20%. Cependant, certaines zones, tant a Ouvéa qu’a Prony, sont a
surveiller au vu des populations cyanobactériennes présentes, identifiées comme toxiques et
dont les dynamiques restent a étre caractérisées. En affectant I'équilibre écosystémique, les
facteurs anthropiques et les changements naturels peuvent favoriser leur prolifération tout
comme celles des populations de dinoflagellés pouvant donc entrainer des biotopes
ciguatériques.

La ciguatéra peut étre considérée comme une réponse de l'environnement a une
pression. Si la capacité de |'écosystéeme a tamponner cette pression n’est pas suffisante, a court
terme (quelques mois a 2 ans), les populations pisciaires risquent d’étre contaminées par les
CTXs. Pour une zone affectée, la résilience de I’environnement sera d’autant plus rapide que les
conditions naturelles le permettront. Nous avons pu le constater pour la zone de Lifou ou le
phénoméne ciguatérique est entretenu : la zone corallienne en transect 1 reste fragilisée par
I’hydrodynamisme, les apports d’eau douce, les marées basses (exposition aux températures
élevées), les poissons corallivores voire les efflorescences saisonnieres de Trichodesmium et
enfin les successions des populations d’Oscillatoriales benthiques toxiques.

Ainsi, ces travaux qui ont permis de mieux comprendre le phénomeéne de la ciguatéra
permettent de poser les outils de base d’une veille sanitaire. En effet, le développement d’un
réseau de surveillance du risque ciguatérique est un enjeu important pour les populations et
particulierement celles des pays insulaires pour un développement durable.

Mieux connaitre pour mieux gérer !
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Annexe 1 : Courbes de cytotoxicité obtenues a 'aide des fractions F1, F2 et F3 des extraits liposolubles des mattes purifiées sur sep-pak® de cyanobactéries
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Annexe 2 : Courbes de cytotoxicité obtenues & I'aide du test N2A des fractions F1, F2 et F3 des extraits liposolubles des mattes purifiées sur sep-pak® de
Trichodesmium (échantillons n°1 a 9).
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Annexe 3 : Alignements des séquences nucléotiques de la région ITS amplifiée par PCR (460 pb) des aliquots de
mattes de cyanobactéries dominées par H. lyngbyaceum de Lifou (avril 2005, L2) et des cyanobactéries de
référence, du genre Trichodesmium (29 et IMS 101), Oscillatoria (PCC 7515) et Phormidium (OLO5_phorm)

H_Lifou
T Lifou

z9

IMS101
PCC7515
OLO5_phorm

H Lifou
T_Lifou

z9

IMS101
PCC7515
OLO5_phorm

H_Lifou

T Lifou

z9

IMS101
PCC7515
OLO5_phorm

H Lifou
T_Lifou

z9

IMS101
PCC7515
OLO5_phorm

H_Lifou
T_Lifou

z9

IMS101
PCC7515
OLO5_phorm

H Lifou
T_Lifou

z9

IMS101
PCC7515
OLO5_phorm

(Méjean et al., 2009).

AGGGAGACCAACCGGATCAASACAGTAAGATTAAAAATAGTGTTGTGAAGGTCAAACCCTGGTCCGAGCAAGCATAAATAAARAAAGT
AGGGAGACCAACCGGATCAASACAGTAAGATTAARAATAGTGTTGTGAAGGTCAAACCCTGGTCGAGCAAGGATARATAARRAAAGT)
AMGGGAGACCAACCGGATCARMACAGTAAGATTAARAAATAGTGTTGTGAAGGTCAAACCCTGGTCGAGCAAGGATAAATARARAAAGT)

ACAGTAAGATTAAAAATAGTGTTGTGAAGGTCAAACCCTGGTCGAGCAAGGATAAATAARARAAAGT)
AGH

* 100 * 120 * 140 * 160 *
AGTAAAGTAAACTTTCAAACTAGAGTTAAGGTTCGATAAATGGGCTATTAGCTCAGGTGGTTAGAGCGCACCCCTGATAAGGGTGAGH
AGTAAAGTAAACTTTCAAACTAGAGTTAAGGTTCGATAAATGGGCTATTAGCTCAGGTGGTTAGAGCGCACCCCTGATAAGGGTGAGH
AGTAAAGTAAACTTTCAAACTAGAGTTAAGGTTCGATAAATGGGCTATTAGCTCAGGTGGTTAGAGCGCACCCCTGATAAGGGTGAG!
AGTAAAGTAAACTTTCAAACTAGAGTTAAGGTTCGATAAATGGGCTATTAGCTCAGGTGEGTTAGAGCGCACCCCTGATAAGGGTGAGH

AR = A

180 * 200 * 220 * 240 * 260
TCCCTGGTTCAAGTCCAGGATAGCCCACCTAAGAAGGGTAAGGGGGTATAGCTCAGTTGGTAGAGCGCTGCCTTTGCAAGGCAGAAGT
TCCCTGGTTCAAGTCCAGGATAGCCCACCTAAGAAGGGTAAGGGGGTATAGCTCAGT TGGTAGAGCGCGCCTTTGCMGGCAGAAGT
TCCCTGGTTCAAGTCCAGGATAGCCCACCTARAGAAGGGTAAGGGGGTATAGCTCAGTTGGTAGAGCGCTGCCTTTGCAAGGCAGAAGT
TCCCTGGTTCRAAGTCCAGGATAGCCCACCTAAGAAGGGTAAGGGGGTATAGCTCAGTTGGTAGAGCGCTGCCTTTGCAAGGCAGAAGT

* 320 * 340 *

CAGCGGTTCGAGTCCGC T TACCTCCAGGAA T AR A A N A GG T Rt Ll Tkt 7 GAAATCAGCAACARAGACCT
CAGCGGTTCGAGTCCGCTTACCTCCAGGAATARAAR A GG T ittt bbbt 7 GAAATCAGCAACAAGACCT
CAGCGGTTCGAGTCCGCT TACCT CCAGGAA TARA A AR AG G T ittt b b 7 GAAATCAGCAACAAGACCT!
CAGCGGTTCGAGTCCGCT TACCTCCAGGAA T AR AA N AGG T ikl Ll 7 GBAATCAGCBACBAGACCT

360 * 380 *
AAGCAAGTCATGCTGCTGGTATTCTTAAATACCAGTAAY

AGCAAGTCATGCTGCTGGTATTCTTAAATACCAGTAAY

AGCAAGTCATGCTGCTGGTATTCTTARATACCAGTAAY

A THEFEICAAGTCATGCTGCTGG RIS TS T ARNERC CAGEEAE
Ak AGCTGCTCCRRIAT e T AR NGICA CGHT

* 460 * 480 * 500
GAACCAGAGGTTAAGTAARACCTT. : 467
GAACCAGAGGTTAAGTARARACCTT. : 467

. : 468
468
449
449
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Annexe 4 : Récolte des micro-organismes en septembre 2007 et mai 2008 a Ouvéa.

Caractéristiques des points de préléevements pour le suivi des micro-organismes en septembre 2007 et mai 2008 et données d’observations des dinoflagellés :
données en nombre de cellules par dép6t de 20 pL de la fraction 45 — 250 um, la présence de cyanobactéries dans la fraction est spécifiée par le surlignage de
la cellule en bleu.

Date Zone N° Lieu de préléevement Coordonnées GPS Type de biotope Support Observations
Septembre 2007
2007/08/27  SE €Ol Mouli 1226422352962501 platier débr’fajzzz“sns * 0
2007/08/27  SE  CO1 Mouli 1226422352962501 platier Halimeda 0
2007/08/27 SE co1 Mouli 1286422353622801 platier Halimeda 0
2007/08/27  SE €02 Pa?iﬁ::a'laézgev‘:;’)”'e S sy sableux + corail Halimeda 0
2007/08/27  SE  co2 'osse ﬁlfti?')édome s platier sain Halimeda 0
2007/08/27  SE  co2 osse O:;Lat;ar')édmie 1226422732013565& platier sain Chlorodesmis 0
2007/08/27  NE  co2 ' osse ‘thlzfaall)e‘jon'e E sable Halimeda 0
2007/08/27 NE Cco3 Ognat 12(?62362‘:304093;“1 dalle sableuse C’_(;:A.ZZZ; 0
2007/08/27 NE co3 Ognat 12:62??:3?40;;"SE dalle sableuse C::;ZZZ; 0
2007/08/27 NE Cco4 Ognat (escalier) 1226238:5197:;?5 sable Caulerpa 0
2007/08/27 NE co4 Ognat (escalier) 126(5)6238835197:95E sable Caulerpa 0
2007/08/27 NE C05 Ognat (rampe) 12262??8(‘)3132163“5E sable Caulerpa 0
2007/08/28 LA CO6 Hanawa 20°31'19.117 S Platier Halimeda 0

166°34'32.81"E
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2007/08/28
2007/08/28
2007/08/28
2007/08/28
2007/08/29
2007/08/29
2007/08/29
2007/08/29

2007/08/29

2007/08/29

2007/08/29
2007/08/29
2007/08/29
2007/08/29
2007/08/29

2007/08/29

2007/08/29

SE

SE

SE

SE

NW

NW

NW

NW

LA

LA

LA

LA

LA

LA

LA

LA

LA

co7

C0o8

C10

C11

C12

C12

C13

Ci4

C15

C16

C17

C18

C19

C20

C21

C22

C23

Passe de Lifou (platier)

Passe de Lifou (sous
vo(te)

Gece
Gee
Angeu
Angeu
Wenvook (est)
Wenvook (ouest)

Digue Lekiny-Fayaoué

plage avant Wadrilla

Wharf (droite)

Wharf (gauche)

Hanawa (rampe de
mise a |'eau)
Col du casse-cou coté
sud-est

Takidji
Col du casse-cou coté

sud-ouest

Face gite

20°42'28.77" S
166°28'54.39"E

20°42'25.21" S
166°28'44.45"E
20°41'09.93" S
166°22'21.15"E
20°40'08.37" S
166°22'09.21"E
20°27'07.95" S
166°24'01.20"E
20°27'07.95" S
166°24'01.20"E
20°26'41.25" S
166°27'44.53"E
20°26'16.88" S
166°28'34.70"E
20°41'16.89" S
166°29'34.35"E

20°36'12.05" S
166°33'27.71"E

20°32'58.19" S
166°33'48.96"E
20°32'59.30" S
166°33'48.84"E
20°31'18.50" S
166°34'16.83"E
20°30'23.80" S
166°34'40.31"E
20°28'37.78" S
166°35'36.65"E
20°32'58.63" S
166°34'15.89"E

20°37'20.37" S
166°33'05.54"E

dalle corallienne

sable

sable

sable

sable

dalle sableuse

sable-débris
coralliens

sable

sable

dalle corallienne

sable

sable

dalle corallienne

sable

dalle corallienne

dalle corallienne

sable

Coralines,
Halimeda,

Halimeda
Halimeda
Halimeda
Halimeda
Halimeda
débris coralliens

Halimeda

Rhodophycées
réticulées+
Acanthophora
Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)
Phéophycées
(dont sargasses)
Phéophycées +
Halimeda

Phéophycées

Phéophycées

herbiers+
phéophycées +
Rhodophycées

<10

<10
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2007/08/30

2007/08/30

2007/08/30

2007/08/30
2007/08/30
2007/08/30
2007/08/30
2007/08/30

2007/08/30

2008/05/26
2008/05/26
2008/05/26
2008/05/27
2008/05/27

2008/05/27

2008/05/27

LA

LA

LA

LA

LA

LA

LA

LA

LA

SE

SE

SE

SE

NE

NE

NE

C24

C25

C26

C27

C28

C29

C30

C31

C32

Cco1

Cco1

Cco1

Cco2

Co3

Cco4

C05

Milieu lagon

Milieu lagon, plateau

"ancrage"

Wadrilla wharf
Wadrilla wharf
Wadrilla wharf
Wadrilla wharf
Wadrilla wharf

Wadrilla wharf

Mouli
Mouli
Mouli
Chenal de Fayawa
Ognat
Ognat (escalier)

Ognat (rampe)

20°42'180" S
166°24'970"E
20°42'180" S
166°24'970"E

20°42'180" S
166°24'970"E

20°32'42.07" S
166°33'53.77"E

20°32'50.64" S
166°33'53.29"E

20°32'58.19" S
166°33'48.96"E

20°32'59.30" S
166°33'48.84"E

20°33'02.30" S
166°33'47.50"E

20°34'47.33"S
166°33'38.31"E

Mai 2008

20°42'59.28" S
166°23'26.20"E

20°42'59.28" S
166°23'26.20"E
20°42'59.28" S
166°23'26.20"E
20°42'30.15" S
166°27'50.36"E
20°26'30.03" S
166°38'34.92"E
20°28'31.76" S
166°38'59.69"E

20°28'01.26" S
166°38'33.13"E

sable

sable

dalle sableuse

dalle sableuse

dalle sableuse

dalle sableuse

dalle sableuse

dalle sableuse

dalle sableuse

dalle sableuse
corallienne

dalle sableuse
corallienne

zone sableuse

dalle sableuse

sable

sable

Halimeda

débris coralliens et
coquilliers
Halimeda +
Chorophycées
filamenteuse
Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)

Halimeda

Halimeda + débris
coralliens

Halimeda
débris coralliens

Rhodophycées

Halimeda -
Rhodophycées
Halimeda -
Rhodophycées

<10

<10

<10

<10
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2008/05/26
2008/05/26
2008/05/27
2008/05/27
2008/05/28
2008/05/30
2008/05/29
2008/05/27
2008/05/26
2008/05/27
2008/05/27
2008/05/26
2008/05/26
2008/05/26

2008/05/26

2008/05/27

LA

SE

SE

SE

NW

NW

NW

LA

LA

LA

LA

LA

LA

LA

LA

LA

C0o6

C0o8

C10

C11

C12

C13

Ci14

C16

C19

C20

C21

C22

C30

C31

C32

C33

Col casse-cou coté est-
Hanawa

Lekiny
Gece
Gee
Angeu
Wenvook Est
Wenvoo6k Ouest

Ognat (escalier)

Hanawa (rampe de
mise a |'eau)

Plage

Héo -Takiji

Col du casse-cou coté
sud ouest
Wadrilla wharf (Sud,
au pied)
Wadrilla wharf (Nord,
au pied)
Wadrilla wharf (Nord,
100m du pied)

Wadrilla wharf (Nord)

20°31'19.11" S
166°34'32.81"E
20°42'25.21" S
166°28'44.45"E
20°41'09.93" S
166°22'21.15"E
20°40'08.37" S
166°22'09.21"E
20°27'07.95" S
166°24'01.20"E
20°26'41.25" S
166°27'44.53"E
20°26'16.88" S
166°28'34.70"E
20°36'12.05" S
166°33'27.71"E
20°31'18.50" S
166°34'16.83"E
20°30'23.80" S
166°34'40.31"E
20°28'37.78" S
166°35'36.65"E
20°32'58.63" S
166°34'15.89"E

20°32'59.30" S
166°33'48.84"E
20°33'02.30" S
166°33'47.50"E
20°34'47.33" S
166°33'38.31"E
20°34'47.33"S
166°33'38.31"E

platier cuvette
sable
sable
sable
sable
sable
sable
sable

dalle corallienne

sable

dalle sableuse

dalle corallienne
dalle sableuse
dalle sableuse
dalle sableuse

sable

Caulerpa-
Halimeda-

Halimeda
débris coralliens
débris coralliens

Halimeda sur sable
Halimeda sur sable
débris coralliens

Caulerpa

Phéophycées
Rhodophycées

Rhodophycées

Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)
Rhodophycées
(Digenea simplex)
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Annexe 5 : Récolte des poissons de septembre 2007 a Ouvéa et données de toxicité.

Annexes

Récolte de poissons a Ouvéa : référence, lieu de péche, identification, régime alimentaire et caractéristiques

biométriques et résultats de toxicité donnés par classe (Atox, Tox+ et Tox++).

N° SITE ZONE Lieu dit Espéce Nom Régime alimentaire (CL:‘) P?gu):ls Toxicité
1 NE Z01 Houlijeous Siganus punctatus Picot herbivore 32 1000 Tox++
2 NE Z01 Houlijeous Trachinotus blochii Carangue carnivore 46 2800 ATox
3 NE Z01 Houlijeous Plectropomus laevis Saumonée carnivore 65 ND ATox
4 NE 202 Ognat Epinephelus cf.. maculatus Loche carnivore 36 650 ATox
5 NE 202 Ognat Cephalopholis argus Loche carnivore 39 1100 ATox
6 NE 202 Ognat Siganus punctatus Picot herbivore 35 1100 ATox
7 NE 202 Ognat Siganus cf.. vermiculatus Picot herbivore 35 900 ATox
8 NE Z02 Ognat Cetoscarus bicolore Perroquet herbivore 45 1880 ATox
9 NE 202 Ognat Chlorurus microrhinos Perroquet herbivore 38 1240 ATox
10 NE 202 Ognat Monotaxis grandoculis Bossu invertébrés 39 1440 ATox
11 NE 202 Ognat Gnathodentex aurolineatus Bossu invertébrés 28 500 ATox
12 SE Z03 Mouli Lutjanus bohar Anglais carnivore 53 3000 ATox
13 SE 203 Mouli Clorurus microrhinos Perroquet herbivore 43 1540 ATox
14 NE 204 Hoony Chlorurus microrhinos Perroquet herbivore 48 2350 ATox
15 NE 204 Hoony Scarus altipinnis Perroquet herbivore 47 1900 Tox++
16 NE 204 Hoony Chlorurus microrhinos Perroquet herbivore 45 2000 ATox
17 NE 204 Hoony Scarus altipinnis Perroquet herbivore 48 2000 Tox++
18 NE 204 Hoony Chlorurus microrhinos Perroquet herbivore 41 1500 ATox
19 NE 204 Hoony Siganus punctatus Picot herbivore 38 1500 ATox

20 NE 204 Hoony Siganus punctatus Picot herbivore 33 1100 Tox++

21 NE 204 Hoony Siganus cf.. vermiculatus Picot herbivore 37 1100 ATox

22 NE 204 Hoony Siganus spinus Picot herbivore 19 100 Tox++

23 NE 204 Hoony Kyphosus sp. Wiwa omnivore 37 1150 ATox

24 NE 204 Hoony Plectropomus laevis Saumonée carnivore 48 1530 ATox

25 SE 203 Mouli Plectropomus laevis Saumonée carnivore 65 5620 Tox++

26 SE 203 Mouli Epinephelus polyphekadion Loche carnivore 51 2200 Tox++

27 SE 203 Mouli Epinephelus cf.. maculatus Loche carnivore 43 2000 ATox

28 SW 205 Pléiade Sud Epinephelus sp. Loche carnivore 48 1850 Tox+

29 SW 205 Pléiade Sud Epinephelus maculatus Loche carnivore 48 1440 ATox

30 SW 205 Pléiade Sud Lutjanus bohar Anglais carnivore 57 3680 Tox++

31 SW 205 Pléiade Sud Scarus altipinnis Perroquet herbivore 41 1650 ATox

32 SW 208 lle de Sou Plectrorhincus lineatus Castex invertébrés 66 3620 ATox

33 SW 208 lle de Sou Variola louti Loche carnivore 51 2200 ATox

34 SW 208 Ile de Sou Carangoides ferdau Carangue omnivore 49 2500 ATox

35 SW 208 Ile de Sou Naso tonganus Nason herbivore 50 1800 ATox

36 SW 208 Ile de Sou Macolor niger Vivaneau zooplanctonophage 46 1800 ATox

37 SW 208 Ile de Sou Carangoides orthogrammus Carangue omnivore 35 800 ATox

38 SW 208 Ile de Sou Lethrinus rubrioperculatus Bossu invertébrés 39 1000 ATox

39 SW 208 Ile de Sou Lethrinus rubrioperculatus Bossu invertébrés 33 650 ATox

40 SwW 208 Ile de Sou Acanthurus blochii Chirurgien herbivore 38 1600 ATox

41 SW 208 Ile de Sou Acanthurus dussumieri Chirurgien herbivore 40 1400 ATox
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N° SITE ZONE Lieu dit Espéce Nom Régime alimentaire (CL;) P?gu)is Toxicité
42 SW 208 Ile de Sou Acanthurus dussumieri Chirurgien herbivore 36 1000 ATox
43 SW 208 lle de Sou Acanthurus dussumieri Chirurgien herbivore 42 1900 ATox
4 SwW 208 Ile de Sou Scarus ghobban Perroquet herbivore 54 2900 ATox
45 SW 208 lle de Sou Scarus ghobban Perroquet herbivore 47 2100 ATox
46 SW 208 lle de Sou Epinephelus polyphekadion Loche carnivore 54 3050 ATox
47 SW 208 Ile de Sou Epinephelus polyphekadion Loche carnivore 54 2740 ATox
48 SW 208 lle de Sou Plectropomus leopardus Saumonée carnivore 65 4320 Tox++
49 SwW 208 Ile de Sou Plectrorhincus lineatus Castex invertébrés 43 1330 ATox
50 SW 208 lle de Sou Plectropomus leopardus Saumonée carnivore 70 6000 ATox
51 NW 206 llot de la Table  Chlorurus microrhinos Perroquet herbivore 44 1920 ATox
52 NW 206 llot de la Table  Chlorurus microrhinos Perroquet herbivore 55 4000 ATox
53 NW 206 llot de la Table  Plectropomus laevis Saumonée carnivore 47 1600 ATox
54 NW 206 llot de la Table  Acanthurus dussumieri Chirurgien herbivore 32 860 ATox
55 NW 206 llot de la Table  Acanthurus dussumieri Chirurgien herbivore 33 780 Tox++
56 NW 206 llot de la Table  Naso unicornis Dawa herbivore 37 940 Tox++
57 NW 206 llot de la Table  Naso tonganus Nason herbivore 54 2040 Tox++
58 NW 206 llot de la Table  Plectrorhincus chaetodonoides  Castex invertébrés 47 1880 ATox
59 NW 206 llot de la Table  Macolor niger Vivaneau zooplanctonophage 43 1740 ATox
60 NW 207 Wenvook Gymnothorax javanicus Murene carnivore 170 Tox++
61 NW 207 Wenvook Plectropomus laevis Saumonée carnivore 100 15000 ATox
62 NW 207 Wenvook Plectropomus laevis Saumonée carnivore 85 10000 ATox
63 NW 207 Wenvook Epinephelus maculatus Loche carnivore 39 1140 ATox
64 NW 207 Wenvook Siganus punctatus Picot herbivore 25 340 ATox
65 NW 207 Wenvook Scarus niger Perroquet herbivore 30 660 ATox
66 LA Z09 milieu lagon Epinephelus cyanopodus Loche carnivore 50 2000 ATox
67 LA Z10 milieu lagon Aprion virescens Mékoua carnivore 37 780 ATox
68 LA 710 milieu lagon Pseudobalistes fuscus Baliste invertébrés 50 2700 ATox
69 LA 711 milieu lagon Plectropomus laevis Saumonée carnivore 44 1300 ATox
70 LA 711 milieu lagon Plectrorhincus chaetodonoides  Castex invertébrés 43 1530 ATox
71 LA 711 milieu lagon Plectropomus laevis Saumonée carnivore 36 720 ATox
72 LA 711 milieu lagon Plectrorhincus chaetodonoides  Castex invertébrés 34 820 ATox
73 LA 711 milieu lagon Epinephelus cyanopodus Loche carnivore 54 2500 ATox
74 LA Z11 milieu lagon Epinephelus cyanopodus Loche carnivore 48 1700 ATox
75 LA 711 milieu lagon Chlorurus microrhinos Perroquet herbivore 38 1320 ATox
76 LA Z11 milieu lagon Chlorurus microrhinos Perroquet herbivore 41 1700 ATox
77 LA 711 milieu lagon Lethrinus nebulosus Bec invertébrés 25 200 ATox
78 LA 711 milieu lagon Lethrinus nebulosus Bec invertébrés 30 520 ATox
79 LA Z11 milieu lagon Pseudobalistes fuscus Baliste invertébrés 48 4000 ATox
80 LA 711 milieu lagon Scarus oviceps Perroquet herbivore 34 800 ATox
81 LA 212 ancrage Sufflamen sp Baliste invertébrés 31 700 ATox
82 LA 7212 ancrage Epinephelus maculatus Loche carnivore 45 1250 ATox
83 LA 212 ancrage Epinephelus maculatus Loche carnivore 52 1820 ATox
84 LA 7213 ancrage Scarus ghobban Perroquet herbivore 42 1460 ATox
85 LA 713 ancrage Acanthurus blochii Chirurgien herbivore 33 1040 ATox
86 LA 7213 ancrage Epinephelus maculatus Loche carnivore a4 1100 ATox
87 LA 214 wharf Platax sp. Platax omnivore 33 1340 ATox
88 LA 214 wharf Sphyraena flavicauda Bécune carnivore 40 370 ATox
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wharf Sphyraena flavicauda Bécune carnivore 40 350 ATox
wharf Lethrinus nebulosus Bec invertébrés 43 1160 ATox
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Annexe 6 : Parametres du suivi biosystémique mené en 2008 et 2009 par Vale dans le cadre
de son suivi environnemental.

Zone Station N° Coordonnées (RGNC 91)
llot Casy 1 166°51,033 22°21,799
Baie de prony Creek Baie Nord 2 166°52,546 22°20,356
Port 3 166°53,639 22°21,312
Canal de la Havannah Récif Pointe Puka 8 166°58,554 22°21,264
Classe
, Recouvrement Abondance
d’abondance
1 Rare < 0,5% (soit <0,5 m?*/100 m?)
2 Faible 0,5% a 5% (soit 0,5 & 5 m>/100 m’)
3 Moyen 5% & 10% (soit 5 a 10 m*/100 m?)
4 Fort 10% a 15% (soit 10 2 15 m>/100m’)
5 Important > 15% (soit > 15 m>/100m?)
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Figure 75 : Localisation des stations du suivi mené par Vale (données Vale).
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Annexe 7 : Récolte des poissons d’avril 2008 et 2009 a Prony et données de toxicité.

Annexes

Poissons collectés en 2008 et 2009 au Port de Prony (1), a Bonne Anse (2) et a Port Boisé (3): caractéristiques de
chaque spécimen (Identification, données biométriques) et classe de toxicité évaluée par le test N2A.

Régime

Masse

Taille

Zone Réf Famille Espece Nom . . Toxicité
alimentaire g cm
2008

1 P04 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 820 36 Atox
1 PO5 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 500 31 Atox
1 PO6 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 500 32 Atox
1 PO7 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 1270 45 Atox
1 PO8 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 1540 47 Atox
1 P53 Lethrinidae Lethrinus harak Bossu IB 300 24 Tox+
1 P58 Lethrinidae Lethrinus harak Bossu IB 260 23 Atox
1 P45 Scaridae Scarus rivulatus Perroquet Herbivore 550 29 Atox
1 P48 Scaridae Scarus rivulatus Perroquet Herbivore 300 23 Atox
1 P59 Scaridae Scarus rivulatus Perroquet Herbivore 560 29 Atox
1 P51 Labridae Choerodron graphicus Perroquet wallis Molluscivore 700 30 Tox+
1 P46 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 580 33 Atox
1 P47 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 800 38 Atox
1 P50 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 340 27 Atox
1 P52 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 340 28 Tox++
1 P55 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 600 33 Tox+
1 P54 Kyphosidae Kyphosus sydneyanus Ui-Ua Omnivore 660 29 Atox
1 P56 Kyphosidae Kyphosus sydneyanus Ui-Ua Omnivore 900 32 Tox+
1 P57 Kyphosidae Kyphosus sydneyanus Ui-Ua Omnivore 700 31 Tox+
2 P30 Acanthuridae  Naso unicornis Dawa Herbivore 900 35 Atox
2 P32 Scaridae Chlorurus microrhinos Perroquet Herbivore 1660 43 Atox
2 P28 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 1650 47 Atox
2 P29 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 1060 42 Tox+
2 P31 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 1100 43 Tox+
2 P38 Acanthuridae  Naso unicornis Dawa Herbivore 980 36 Atox
2 P42  Acanthuridae Naso unicornis Dawa Herbivore 1700 43 Atox
2 P43  Acanthuridae  Naso unicornis Dawa Herbivore 1500 42 Atox
2 P44  Acanthuridae  Naso unicornis Dawa Herbivore 1 800 42 Atox
2 P35 Scaridae Chlorurus microrhinos Perroquet Herbivore 1200 38 Atox
2 P39 Scaridae Scarus altipinnis Perroquet Herbivore 1300 39 Atox
2 P40 Scaridae Chlorurus microrhinos Perroquet Herbivore 900 34 Atox
2 P36 Labridae Choerodron graphicus Perroquet wallis Molluscivore 600 30 Tox++
2 P41 Labridae Choerodron graphicus Perroquet wallis Molluscivore 900 34 Atox
2 P33 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 1400 41 Atox
2 P34 Serranidae Plectropomus leopardus ~ Saumonée Carnivore 1000 40

3 P12 Acanthuridae  Acanthurus xanthopterus Chirurgien Herbivore 1300 39 Atox
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P14
P17
P18
P20
P16
P19
P21
P22
P24
P26
P27
P09
P23
P25
P13
P15
P03

PO1

P02

P35
P38
P40
P41
P42
P36
P32
P33
P34
P37
P39
P46
P43
P44
P45
P16
P19
P23
P24
P25
P26
P27

Acanthuridae
Acanthuridae
Acanthuridae
Acanthuridae
Scaridae
Scaridae
Scaridae
Scaridae
Labridae
Labridae
Labridae
Serranidae
Serranidae
Serranidae
Serranidae
Serranidae
Serranidae

Scombridae

Scombridae

Scaridae
Scaridae
Scaridae
Scaridae
Scaridae
Labridae
Serranidae
Serranidae
Serranidae
Serranidae
Serranidae
Labridae
Labridae
Labridae
Labridae
Acanthuridae
Acanthuridae
Acanthuridae
Acanthuridae
Acanthuridae
Scaridae
Scaridae

Naso unicornis

Naso unicornis

Naso unicornis

Naso unicornis
Chlorurus microrhinos
Chlorurus microrhinos
Chlorurus microrhinos
Scarus altipinnis
Choerodron graphicus
Choerodron graphicus
Choerodron graphicus
Plectropomus laevis
Plectropomus laevis
Plectropomus laevis
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus
Scomberomorus
commerson

Scomberomorus
commerson

Scarus rivulatus

Scarus rivulatus

Scarus rivulatus

Scarus rivulatus

Scarus rivulatus
Choerodron graphicus
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus
Cheilinus chlorourus
Choerodron graphicus
Choerodron graphicus
Choerodron graphicus
Naso unicornis

Naso unicornis

Naso unicornis

Naso unicornis

Naso unicornis

Scarus rivulatus

Scarus rivulatus

Dawa

Dawa

Dawa

Dawa

Perroquet
Perroquet
Perroquet
Perroquet
Perroquet wallis
Perroquet wallis
Perroquet wallis
Saumonée
Saumonée
Saumonée
Saumonée
Saumonée
Saumonée

Thazard du lagon

Thazard du lagon

2009

Perroquet
Perroquet
Perroquet
Perroquet
Perroquet
Perroquet wallis
Saumonée
Saumonée
Saumonée
Saumonée
Saumonée
Labre

Perroquet wallis
Perroquet wallis
Perroquet wallis
Dawa

Dawa

Dawa

Dawa

Dawa

Perroquet
Perroquet

Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Molluscivore
Molluscivore
Molluscivore
Carnivore
Carnivore
Carnivore
Carnivore
Carnivore
Carnivore

Carnivore

Carnivore

Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Molluscivore
Carnivore
Carnivore
Carnivore
Carnivore
Carnivore

IB
Molluscivore
Molluscivore
Molluscivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore

2400
2100
2000
1 800
1200
1100
1000
500
1100
600
1400
2900
1800
1300
2300
1200
500

2980

4000

500
600
560
410
750
1000
1400
300
1600
700
950

1800
200
340

3000

2100

2500

1400

2000
600
600

48
47
43
45
38
37
34
31
36
30
40
57
49
45
54
42
32

75

80

26
30
26
25
30
33
44
26
43
35
37
21
40
20
23
45
42
43
39
42
27
27

Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Tox+
Atox
Atox

Tox+
Atox
Atox
Atox

Atox

Atox

Atox
Atox
Atox
Atox
Atox
Tox++
Atox
Atox
Atox
Tox+
Atox
Atox
Atox
Tox+
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
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P28
P29
P30
P31
P17
P18
P20
P21
P22
PO1
P04
P11
P12
P13
P02
PO5
P10
P14
P15
P03
P06
P07
P08
P09

Scaridae
Scaridae
Scaridae
Scaridae
Serranidae
Serranidae
Serranidae
Serranidae
Serranidae
Acanthuridae
Acanthuridae
Acanthuridae
Acanthuridae
Acanthuridae
Scaridae
Scaridae
Scaridae
Scaridae
Scaridae
Serranidae
Serranidae
Serranidae
Serranidae
Serranidae

Scarus rivulatus

Scarus rivulatus

Scarus rivulatus

Scarus rivulatus
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus
Naso unicornis

Naso unicornis

Naso unicornis

Naso unicornis

Naso unicornis
Chlorurus microrhinos
Chlorurus microrhinos
Chlorurus microrhinos
Chlorurus microrhinos
Chlorurus microrhinos
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus
Plectropomus leopardus

Perroquet
Perroquet
Perroquet
Perroquet
Saumonée
Saumonée
Saumonée
Saumonée
Saumonée
Dawa

Dawa

Dawa

Dawa

Dawa

Perroquet
Perroquet
Perroquet
Perroquet
Perroquet
Saumonée
Saumonée
Saumonée
Saumonée
Saumonée

Herbivore
Herbivore
Herbivore
Herbivore
Carnivore
Carnivore
Carnivore
Carnivore
Carnivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Herbivore
Carnivore
Carnivore
Carnivore
Carnivore
Carnivore

640
600
780
460
1200
1000
800
1000
1200
3500
3500
2200
2900
1400
1100
1100
1800
1700
1200
900
700
710
1500
1100

28
28
30
26
39
38
35
38
40
48
48
43
48
39
35
35
40
40
37
36
35
35
45
38

Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
Atox
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Zone du Port (Zone 1) ~ Zone de Bonne Anse (Zone 2) ~ Zone de Port Boisée (Zone 3)

316 /326



Annexes

2009
Zone du Port (Zone 1) Zone de Bonne Anse (Zone 2) Zone de Port Boisée (Zone 3)
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Annexe 8 : Diffusion de l'information scientifique

Publications écrites a comité de lecture

Kerbrat A.S., Amzil Z., Pawlowiez R., Golubic S., Sibat M., Chinain M., Laurent D. First evidence of palytoxin in

Trichodesmium cyanobacteria: Possible implication in clupeotoxism. Marine Drugs, en préparation.

Laurent D., Kerbrat A.S., Darius H.T., Haddad M., Golubic S., Pauillac S., Chinain M. Giant clam poisoning: a new

ecotoxicological phenomenon related to marine benthic Oscillatoriales (cyanobacteria) blooms. Special issue,
Toxicon, en préparation.

Kerbrat A.S., Darius H.T., Pauillac S., Chinain M., Laurent D., 2010. Detection of ciguatoxin-like and paralysing toxins
in Trichodesmium spp. from New Caledonia lagoon. Special issue, Marine Pollution Bulletin,
doi : 10.1016/j.marpolbul.2010.06.017.

Meéjean A., Peyraud-Thomas C., Kerbrat A.S., Golubic S., Pauillac S., Chinain M., Laurent D., 2009. First identification
of the neurotoxins anatoxin-a and homoanatoxin-a from Hydrocoleum spp. marine cyanobacterium. Special
issue, Toxicon, doi : 10.1016/j.toxicon.2009.10.029.

Laurent D., Kerbrat A.S., Darius H.T., Girard E., Golubic S., Benoit E., Sauviat M.P, Chinain M, Molgé J., Pauillac S.,
2008. Are cyanobacteria involved in Ciguatera Fish Poisoning-like outbreaks in New Caledonia? Harmful Algae
7(6), 827-838.

Laurent D., Kerbrat A.S., De Fremicourt |., Darius H.T., Chinain M., Pauillac S. Involvement of cyanobacteria in the
tropical ecotoxicological phenomenon of ciguatera fish poisoning.12th international conference on Harmful
Algae, Copenhagen, Danemark.

Publications écrites sans comité de lecture

Kerbrat A.S., Videault A., Pauillac S., Chinain M., Laurent D. Ciguatera and man's influence in New Caledonia.
Doctoriales UNC UPF 2009, Tahiti, Polynésie Frangaise (ISBN: 978-2-9534554-0-3).

Communications aux congres, doctoriales (présentations orales, affiches)

Kerbrat A.S., Chinain M., Laurent D. Phénomene écotoxicologique de la ciguatéra: Implication des cyanobactéries et
impact anthropique, vers une meilleure gestion des risques. Présentation orale - Doctoriales UNC 2009,
Nouméa, Nouvelle-Calédonie, 14 octobre 2009.

Kerbrat A.S., Darius H.T., Golubic S., Pauillac S., Chinain M., Laurent D. Ciguatera Shellfish Poisoning: a new
ecotoxicological phenomenon related to marine Oscillatoriales (cyanobacteria) blooms? — Oral presentation-
11" Pacific Science Inter-Congress, Tahiti, Polynésie Frangaise; 2-6 March, 2009

Kerbrat A.S., Darius H.T., Pauillac S., Chinain M., Laurent D., Detection of ciguatoxin-like and paralysing toxins in
Trichodesmium spp. from New Caledonian lagoon. - Octobre 2008 Oral presentation - Ciguatera and related

biotoxins workshop, Nouméa, New Caledonia; 27-31 October, 2008.

Kerbrat A.S., Videault A., Pauillac S., Chinain M., Laurent D. Ciguatera and man's influence in New Caledonia. —
Poster - Ciguatera and related biotoxins workshop, Nouméa, New Caledonia; 27-31 October, 2008.
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Kerbrat A.S., Chinain M., Laurent D. Vers une meilleure gestion du phénoméne écotoxicologique de la ciguatéra :
Etude des micro-organismes toxiques associés et des facteurs favorisant le développement des zones
ciguatérigénes. — Présentation orale - Doctoriales UNC 2008, Nouméa, Nouvelle-Calédonie, 10 octobre 2008.

Kerbrat A.S., Darius H.T., Golubic S., Palinska K., Pauillac S., Chinain M., Laurent D. - Involvement of Osci//atoriq/es
(cyanobacteria) in the ecotoxicological phenomenon of Ciguatera Fish Poisoning (CFP) - Poster - 15°™
Rencontres en toxinologie “Toxines émergentes: nouveaux risques”, MNHN, Paris.

Peyraud-Thomas C., Kerbrat A.S., Golubic S., Pauillac S., Chinain M., Méjean A., Laurent D. - First identification of
marine anatoxin-a producing cyanobacteria from South Pacific - Poster 15" Rencontres en toxinologie
“Toxines émergentes: nouveaux risques”, MNHN, Paris.

Communications de vulgarisation sous forme d’affiche ou de présentation orale
- Participations a divers manifestations locales (2 posters): Féte du Wajuyu (du vivaneau) a Maré en
novembre 2007 ; Féte de la science a Nouméa en octobre 2008 et a Poindimié en octobre 2009,
- Réunion de restitution des travaux a la tribu d’Hunété (Lifou) aux Journées de I’Environnement en juin
2008,
- Réunion d’informations a Emao, Vanuatu (Poster en anglais et bichlamar) en Mai 2009,

- Réunion de restitution des travaux a Ouvéa en juillet 2010.
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Harmful Algae

journal homepage: www.elsevier.com/locate/hal

Annexes

Are cyanobacteria involved in Ciguatera Fish Poisoning-like outbreaks
in New Caledonia?

Dominique Laurent®*, Anne-Sophie Kerbrat? H. Taiana Darius ®, Emmanuelle Girard €,
Stjepko Golubic ¢, Evelyne Benoit ¢, Martin-Pierre Sauviat €, Mireille Chinain®,

Jordi Molgo€, Serge Pauillac’®

* Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, UMR152 IRD - Université Paul Sabatier Toulouse I,

centre IRD de Nouméa, BPAS, 98848 Noumnéa, New Caledonia

" Laboratoire des Microalgues Toxigues, Institut Louis Malardé, BP30, 98713 Papeete, Tahiti, French Polynesia

“CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire - UPR9040, Gif sur Yvette F-91198, France
 Biological Science Center, Boston University, 5 Cummington Street, Boston, MA 02215, USA

“Laboratoire d'Optique et Biosciences, INSERM U 696-CNRS UMR 7645-X ENSTA, Ecole Polytechnique, 91128 Palaiseau, France

"Laboratoire des Biotoxines, Institut Pasteur de Nouvelle-Calédonie, BPG1, 98845 Nouméa, New Caledonia

ARTICLE INFO

Article history:
Received 17 April 2008
Accepted 18 April 2008

Keywords:

Ciguatera Fish Poisoning
Cyanobacteria
Epidemiology
Hydrocoleum

Toxicology

ABSTRACT

From 2001 to 2005, numerous cases of seafood poisonings were reported in a tribe from Lifou (Loyalty
Islands Province, New Caledonia) of which 35 were thoroughly examined. Observations outlined by the
epidemiological and clinical data (including severity and rapid onset of certain symptoms following
consumption of either giant clams (Tridacna spp.) or grazing and molluscivorous fish together with the
apparent inefficacy of traditional remedies, were not in favour of a classical Ciguatera Fish Poisoning
(CFP) outbreak. From 2005 onwards, an environmental offshore survey of the affected area was
conducted. Screening of the damaged coral area revealed the presence of large populations of
cyanobacteria identified as Hydrocoleum Kitzing, but the absence of Gambierdiscus spp., the well-known
dinoflagellate causative agent of CFP. In vivo and in vitro toxicological studies of extracts obtained from
cyanobacteria and giant clams, strongly suggested the co-occurrence of ciguatoxin-like, anatoxin-like
and paralytic shellfish toxins in these samples.

These new findings shed new light on the complexity of the CFP symptomatology and treatment and
also on the diversity and origin of the CFP toxins. Furthermore they provide new evidence of the overall
variability of seafood poisonings following the ingestion of different sea products living in a marine
environment where significant harmful populations of microalgae and cyanobacteria coexist.

This is the first report on the involvement of cyanobacteria in CFP-like outbreaks following the
consumption of giant clams or fish specimens. Consequently, it is recommended that CFP risk assessment
programs now include monitoring of cyanobacteria besides the obvious screening of CFP-promoting
dinoflagellates.

@ 2008 Elsevier B.V. All rights reserved.
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Toxicon

journal homepage: www.elsevier.com/locate/toxicon

First identification of the neurotoxin homoanatoxin-a from mats
of Hydrocoleum lyngbyaceum (marine cyanobacterium) possibly linked
to giant clam poisoning in New Caledonia

Annick Méjean -, Caroline Peyraud-Thomas 2, Anne Sophie Kerbrat %€, Stjepko Golubic,
Serge Pauillac®, Mireille Chinain ™, Dominique Laurent d.x

2Unite des Cyanobacteries (CNRS URA 2172), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France

® Laboratoire de Biochimie des microorganismes: enzymologie, métabolisme et antibiotiques (UMR CNRS 7223), ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris
Cedex 05, France

© Universite Paris Diderot-Paris 7, 75013 Paris, France

4 Université de Toulouse; UPS; UMR 152 (Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox), 118, rte de Narbonne, F-31062
Toulouse Cedex 9, France

®IRD; UMR 152; F-98 848 Nouméa, New Caledonia

FBio!ogiccr! Science Center, Boston University, 5 Cummington Street, Boston, MA 02215, USA

& Institut Pasteur de Nouvelle-Calédonie, Laboratoire des Biotoxines, BPG1, 98845 Nouméa, New Caledonia

" Institut Louis Malardé, Laboratoire des Microalgues Toxiques, BP30, 98713 Papeete, Tahiti, French Polynesia

ARTICLE INFO ABSTRACT
Article history: We report the first identification of homoanatoxin-a from benthic marine cyanobacteria
Received 31 March 2009 (Hydrocoleum lyngbyaceum) samples collected in Lifou (Loyalty Islands, New Caledonia),

Received in revised form 22 October 2009
Accepted 26 October 2009
Available online 4 November 2009

where cases of giant clams (Tridacna maxima) intoxications were recorded during a severe
ciguatera fish poisoning outbreak. Homoanatoxin-a was also detected in extracts of giant
clams harvested in the surroundings of the contaminated area suggesting the possible link
between these poisoning events and the occurrence of potentially neurotoxic

Keywords:
Mari . Hydrocoleum.
arine cyanobacteria . .
Anatoxin-a © 2009 Elsevier Ltd. All rights reserved.

Homoanatoxin-a
Hydrocoleum spp.
Seafood poisoning
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Contents lists available at ScienceDirect

Marine Pollution Bulletin

journal homepage: www.elsevier.com/locate/marpolbul

Detection of ciguatoxin-like and paralysing toxins in Trichodesmium spp. from
New Caledonia lagoon

Anne-Sophie Kerbrat®P, H. Taiana Darius ¢, Serge Pauillac d Mireille Chinain®, Dominique Laurent *P

* Université de Toulouse, UPS, UMR152 (Laborateire Pharmacochimie des Substances Naturelles et Pharmacophores Redox), 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France
bIRD, UMR152, 98848 Nouméa, Nouvelle-Calédonie, France

“Laboratoire des Micro-algues Toxiques, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti, French Polynesia
9 Laboratoire des Biotoxines, Institut Pasteur de Nouvelle-Calédonie, BP 61, 98845 Nouméa, Nouvelle-Calédonie, France

ARTICLE INFO ABSTRACT

Keywords: Marine pelagic cyanobacteria Trichodesmium are widespread in the New Caledonia lagoon. Blooms of
Cyanobacteria these Oscillatoriales are suspected to be a potential source of toxins in the ciguatera food chain and were
Irichodesmium spp. previously reported to contain certain types of paralysing toxins. In the present study, toxicity experi-
Cignataxin-like compounds ments were conducted on lipid- and water-soluble extracts of freeze-dried samples of these cyanobacte-

Paralysing toxins

New Caledonia ria. Lipid-soluble fractions revealed a ciguatoxin-like activity in both in vive (mouse bioassay) and in vitre

(mouse neuroblastoma cells assay and receptor binding assay using tritiated brevetoxin-3) assays. The
water-soluble fractions tested on mice exhibited neurotoxicity with paralytic symptoms. These toxicities
have also been observed with benthic filamentous cyanobacteria within the Oscillatoriales order, also
collected in New Caledonia. This study provides an unprecedented evidence of the toxicity of Trichodes-
mium species from the New Caledonia lagoon. This survey also demonstrates the possible role of these
cyanobacteria in ciguatera fish poisoning.

© 2010 Elsevier Ltd. All rights reserved.
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Involvement of Oscillatoriales (cyanobacteria) in the
ecotoxicological phenomenon of Ciguatera Fish Poisoning (CFP)
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Ciguatera is a form of seafood poisoning caused by eating tropical coral
reef fish that are carriers of the Ciguatoxins (CTX). Since 30 years,
scientific community discovered a benthic dinoflagellates belonging to the
genus Gambierdiscus identified as a primary causative agents!. These
unicellular microphytic algae synthesize toxins that are concentrated and
biotransformed by hydroxylation along the food chain?.

‘During 2005 to 2007, following public health alert, on the island Lifou

| {Loyalty Islands, New-Caledonia) and in Raivavae (Australes Archipelago,
French Polynesia), ecotoxicological surveys were carried out. In the

| affected areas, Gambierdiscus spp. cells were either absent or present at
very low density. In contrast, some large mat-forming benthic
cyanobacteria were observed in both areas and were suspected as
sources of toxins3.

The aim of this study is to identify these organisms and to test them for
toxicity. Concurrently, the toxicity of the pelagic cyanobacterium
Trichodesmium, common in the New Caledonian lagoon was also tested.

» Morphological analysis revealed that these cyanobacteria belong to different genera
within the order Oscillatoriales: Hydrocoleum, Oscillatoria and Phormidium in Lifou, and
Oscillatoria in Raivavae. Populations of the planktonic oscillatorialean genus Trichodesmium
genetically close to Hydrocoleum® were sampled in the South-Eastern New Caledonian
lagoon.

» In vitro toxicity tests (cytotoxicity assay and RBA) conducted with lipid-soluble extracts of
these cyanobacteria are consistent with the presence of “ciguatoxin-like” compounds.

Cytoxicity assay RBA Affinity

Receptor binding assay (RBA) Samples
ICxo (HE ML) (ug eqv CTX-3C g* d'extrait)

Phormidium sp. + 868+2.09
Oscillatoria sp. (Raivavae) 340+ -
Oscillatoria spp. (Lifou) + -
Hydrocoleum spp. 3.05+0.68
Trichodesmium spp. 190+ 10 2.05+046

The mouse bioassay revealed symptoms differents from typical ciguatoxin effects consisting
of an onset of quiescence, dyspnea, reduced-reflex, lachrymation and hind-limb paralysis
during 48 h of observation.

v These new findings suggest that besides the current screening for dinoflagellates as obvious indicators of CFP,
CFP risk assessment programs should now include monitoring of cyanobacteria.

¥ Further investigations are currently underway by liquid chromatography coupled with mass spectrometry
(LC/MS) to resolve the chemical nature of these toxins.
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First identification of marine anatoxin-a producing cyanobacteria from south Pacific
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(1) Unité des Cyanobactéries, URA CNRS 2172, Institut Pasteur, CNRS URA 2172, 28 rue du Docteur Roux,75724 Paris cedex 15
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INTRODUCTION Dead com 2o

In 2002, 30 severe human intoxications occurred after eating tropical
reef fish and giant clams in Lifou a Loyalty’s Island of New Caledonia.
Signs of intoxication indicated acute poisoning due to a neurotoxin.
Benthic cyanobacteria were found over the rubble of dead corals in
the fishing area but no dinoflagellate Gambierdiscus spp. The presence
of the cyanobacterial neurotoxic alkaloid anatoxin-a (ANTX) and/or
its methyl homolog, homoanatoxin-a (HANTX), was examined by using
gas chromatography-mass spectrometry in extracts of cyanobacteria
samples collected from the affected areas in Lifou.

Risky zone

Figure 1 : Localisation of the fishing area where intoxications occurred

METHODS

Benthic cyanobacteria samples were collected from fishing area. Samples fixed in 5% formaldehyde were examined by light microscopy, for morphological
identification of cyanobacterial representatives. Anatoxin-a content was analysed by using Gas Chromatography coupled to Mass Spectrometry. A PCR
amplification of the ITS (Intergenic Transcribed Spacer) region was performed on samples in 50% ethanol (v/v) . The nucleotide sequences obtained were
aligned using ClustalX in bioedit-software version 1.83.

RESULTS
Microscopic observations 6C/MS Analysis ITS sequence Analysis

N

Figure 4: Aligs of the ITS nucleotid

H_Lifou and T_Lifou correspond to ITS sequences from
cyanobacterial  natural  samples. IMSIO1 is the
Trichodesmium reference strain. Z9 is a strain of
Trichodesmium from Zanzibar. PCC7515 is the reference
Figure 3 : 6C/MS chromatogram of extracts from mats of strain of Oscillatoria cluster 1 according to Castenholz et
= Extensive mats were observed in the fishing area on Hydrocoleum spp. EL mass spectrum ot a refention time (TR) of ol. (2001) OL 05 is @ Phormidium strain from the North sea.

: i 27.3 min characteristic of anatoxin-a (molecular ion m/z 165 and
dead branched corals during the warm period from fragments m/z150, 136, and 122). EI mass spectrum at retention

Figure 2 : (A) Massive mats of Hydrocoleum spp. over a
rubble of dead corals. (B) Photomicrograph of trichomes of
Hydrocoleum spp. Scale bar is 10 pm long.

November to April 2006. They are dominated by time of 29.3 min istic of h lecular ion » The genetic relatedness of Lifou's
species of Hydrocoleum Kiitzing ex Gomont (= M/z173 and frogments miz 164,180,136, ond 122). cyanobacterial samples was evaluated by
Blennothrix Kiitzing ex Anagnostidis and Komdrek comparison of the ITS sequences (460 bp)
1988). with those of strains belonging to different
: e Anatoxin-a and Homoanatoxin-a were both detected ~ genera within the order Oscillatoriales :

" The most common organism H. lyngbyaceum Kiitzing —{ 3 i p "
is characterized by trichomes of fairly constant M exfracts from mats of Hydrocoleum collected. Z{’;“’,”i’lﬁ‘j‘:/u’ﬂ, Oscillatoria and

diameter of 1152 + 0.79 ym. This species is
characterized by short cells, 2 - 5 ym length, by

ITS sequence analysis showed that

straight and shortly attenuated trichome ends with CY‘;"”““”‘:' S_G'T\PI';\SSIQ;"‘ l;ifil:l and the
capitated, hourglass-shaped end cells, covered by a rerecence sirain o) €, jgenus
thickened cell wall (calyptra). Trichodesmium have almost identical

nucleotide sequence.

CONCLUSION

For the first time, anatoxin-a was detected in marine sample and could possibly be related to the poisoning episodes. Furthermore, a new marine
anatoxin-a producing cyanobacterium belonged to the Oscillatoriales order is suggested.
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Ciguatera is a common marine intoxication, caused by the consumption of

coral reef fish which accumulate toxins through their diet. It is an
ecotoxicological phenomenon induced by natural or man-made disturbances of
coral reef ecosystems. This is followed by the proliferation of macro-algae
which are ideal substrates of micro-organisms. Among these, certain strains of
the dinoflagellate Gambierdiscus spp. are known to produce ciguatoxins
(CTXs), responsible for human intoxications. More recently, benthic
cyanobacteria were also incriminated as potential progenitors of CTX-like

compounds’.

Environmental and anthropics factors enhancing the proliferation of these
micro-organisms, resulting in ciguatera outbreaks, are still unclear. In order to
improve the management of the risk of ciguatera outbreaks, large-scale
surveys in New Caledonia were undertaken in two sites chosen for their
particular situation: (i) the Bay of Prony, currently in development of port
facilities for mining construction and (ii) the lagoon of Ouvea reputed to be free
of ciguatera. Here, we present the methodology of our on-going survey and
some of the preliminary results obtained.

organisms Fish
observations Sampling

Extraction

Analysis of ciguatoxicity
Neuroblastoma cytotoxicity assay

The Bay of Prony The monthly monitoring undertaken over 4 last years has not revealed any efflorescence neither of
Gambierdiscus nor of cyanobacteria.

Ouvea From the two sampling missions conducted in the cold season, no blooms of Gambierdiscus were observed,
although, their presences were detected under the microscope in the samples collected near the wharf of Wadrilla. From
two other sampling sites, mat-forming filamentous cyanobacteria belonging to the genus of Hydrocoleum and Phormidium
were collected. Ciguatoxicity analysis on this sample is currently underway.

Potential ciguatoxicity in the marine food web in fishes collected from different sites of Ouvea and of Bay of Prony is in

course of analysis.
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[ CIGUATERA

Ciguatera is an intoxication caused by tropical fishes or shellfishes contaminated with ciguatoxins.

1. Accumulation of toxins through the food chain 2. The illness

Healthy coral reef ——> Disturbances —> Destroyed corals —> Micro-organisms —>  Fish - Shellfish

Institut de recherche
pour le développement

Symptoms : within 30mn to 30hrs that can last several months

Persistent general weakness, joint and muscle pain,

Genetel headaches, dizziness, tremors and severe perspiration

Gastro-intestinal Abdominal pain, vomiting and severe diarrhoea 5 ! L L
Itching, reversal sensation (feeling of burning or electric Different symptoms depending

Netlrologieat shocks when {0 ccfntact with cold waters or object), on individual susceptibility, type
numbness and tingling, Burning sensation of the tongue of fish or molluscs and region
and the throat . " "

(Caribbean sea, Pacific or Indian
Cardiovascular Irregular pulse, decreased blood pressure, bradycardia Ocea n)

3. How to prevent

4. Facts to know

Occidental remedies Traditional medicine y fbi fien . * There is no fish poisoning season;
Treating the symptoms = 100 plants from South Pacific - El’eez:::g(,) Clitg::(ll'nlgs, S::_:)l:::;s does i hot * Get advice from fishermen about ciguatera-
* Mannitol *Heliotrope Tree - Decoction of yellowed leaves eliminate the toxins free fishing grounds
* Vitamins B1, B6, B12 * Pink pepper - Infusion of leaves + Do not eat the head, liver, which are more * Do not rely on flies, ants or coins to detect a
U Calciu.m gluconate * Coconuts - Decoction of roots poisonous than the fillet poisonous fish — these techniques have
Heliotrope Tree il Pinkpepper = After an intoxication, avoid eating seafood ::isle: many ;::opl:. Ca:; areatn:or: S?I'I‘Sitivi
an humans, thererore the c est will worl
At IRD (Nouméa) and ILM (Papeete), work is underway on traditional herbal medicine in order to put forward forsevert mert e but this is not recommended as cruelty to
a new remedy against the ciguatera as an effective alternative to the supportive occidental therapy. animals will then become an issue.,

5. Monitoring and research

1) Collect information from 2) Micro-organisms
inhabitants P 5 - g 2 RAE: : For further

information
Laurent D. et al, 2005.
In: SPC and IRD (Eds),
Ciguatera : un guide
pratique. Laurent D.,
1993.

ORSTOM (Eds), La
gratte ou ciguatera. Ses
remedes traditionnels
dans le Pacifique sud.
Or contact Vanuatu
Fisheries Department
long Tel. 23119 or
23621

o Anne-Sophie KERBRAT, IRD - kerbrat@noumea.ird.nc / Being YEETING, SPC Coastal Fisheries — BeingY@spc.int
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Titre de la thése : Réle des cyanobactéries dans le développement des zones ciguatérigénes en lien avec les impacts

anthropiques, pour une meilleure gestion du risque ciguatérique (Résumé long)

Introduction. La ciguatéra est I'intoxication par produits marins la plus fréquente au monde. Elle est consécutive a I'ingestion
de poissons récifaux porteurs de toxines et se manifeste chez ’'Homme par des désordres neurophysiologiques (symptomes
digestifs, neurologiques, cardiovasculaires, généraux). Bien connue des populations des régions intertropicales, elle désigne
également le phénomeéne écologique lié aux perturbations naturelles ou anthropiques des écosystémes coralliens. Le
développement de zone ciguatérique est trés souvent induit par des modifications de facteurs environnementaux. La création de
«nouvelles surfaces» due a la destruction corallienne d’origine naturelle (tsunami, cyclone, pluies exceptionnelles...) ou
anthropique (eutrophisation, dragage, construction de digue ...), favorise la prolifération de microorganismes ciguatoxinogéenes.
Ces substrats vierges peuvent étre colonisés par des macroalgues opportunistes, supports privilégiés des dinoflagellés du genre
Gambierdiscus. Ces micro-organismes naturellement présents sont connus pour étre de potentiel producteur de ciguatoxines,
molécules polyéthérées accumulées et biotransformées le long de la chaine trophique. Récemment, il a été montré que certaines
especes de cyanobactéries pouvaient également étre impliquées dans des cas d’intoxications de type ciguatérique. Ces micro-
organismes, les facteurs favorisant leur prolifération et donc les potentielles flambées ciguatériques ne sont pas encore bien
connus.

Dans ce contexte, I'objectif général de la thése est de mieux comprendre le déterminisme ciguatérique afin de mieux le
prévenir. L'étude a donc constitué en un suivi de la toxicité potentielle des zones a risque et de leur évolution, ainsi que de
caractériser le type toxinique des organismes contaminés.

Méthodologie. Différents sites d’étude ont été sélectionnés en Nouvelle-Calédonie selon leurs particularités : (i) a Lifou (tribu
de Hunété), zone de péche réputée toxique qui nous a permis de mettre en évidence une forme de ciguatoxicité chez des
cyanobactéries benthiques de I'ordre des Oscillatoriales, (ii) la baie de Prony, site en cours d’anthropisation avec I'implantation
d’une usine métallurgique, et (iii) I'atoll d’Ouvéa, réputé non ciguatérique.

Une méthodologie d’étude spécifique est développée incluant le suivi de la diversité microbienne et I’évaluation de la toxicité
de certains maillons de la chaine trophique (cyanobactéries, bénitiers et poissons). Le travail de laboratoire s’est porté sur le
traitement des échantillons récoltés (extraction des toxines par séparation liquide-liquide et/ou extraction rapide sur colonne de
chromatographie en phase inverse) puis des analyses de toxicité des extraits obtenus ont été réalisées. Les tests sur souris, de
cytotoxicité et de compétition radio ligand ont été utilisés afin de déterminer le type de toxines impliquées et quantifier le
potentiel toxique.

Résultats. Le suivi écotoxicologique de la zone de péche de Lifou a mis en évidence la dualité de toxicité chez d’autres
cyanobactéries de I'ordre des Oscillatoriales dominant et maintenant I'écosysteme dégradé. Les résultats des tests sur cellules
mettent en évidence la toxicité de type ciguatoxique de certains poissons, des bénitiers et des cyanobactéries. Les tests sur souris
révelent la présence de toxines de type paralysant probablement produites par les cyanobactéries et transmises aux bénitiers. Les
études chromatographiques ont permis de caractériser, pour la premiére fois une neurotoxine paralysante (homoanatoxine-a) a la
fois chez une cyanobactérie (Hydrocoleum lyngbyaceum) et chez un bénitier (Tridacna maxima) récolté dans la méme zone
récifale.

D’autre part, afin d’appuyer I’hypothése du réle des cyanobactéries benthiques dans la contamination de la chaine
alimentaire, I’étude d’une Oscillatoriale pélagique, Trichodesmium, a révélé une toxicité de type ciguatoxique et paralysant. Et,
pour la premiére fois, la palytoxine a été caractérisée chez Trichodesmium erythraeum.

Enfin, le suivi environnemental dans la baie de Prony, zone d’installation d’une usine de production de nickel et d’'une base
portuaire, associée a celle d’'Ouvéa, zone reconnue indemne de ciguatéra, a permis la mise en place d’un outil de surveillance
sanitaire et écologique opérationnel en considérant également les cyanobactéries. Compte tenu des populations de micro-
organismes présentes et du nombre de poissons toxiques, ces deux sites présentent un faible risque ciguatérique.

Conclusions. Notre étude menée en Nouvelle-Calédonie s’oriente vers une approche plus globale des micro-organismes
vecteurs (dinoflagellés et cyanobactéries) et par [a méme, une meilleure connaissance des facteurs influengant leur prolifération.
Ces travaux qui apportent une meilleure compréhension du phénomene écotoxicologique permettent de proposer une
redéfinition du schéma de transmission de la ciguatéra dont la dénomination anglo-saxonne pourrait étre Ciguatera Seafood
Poisoning.

Mots Clés : Ciguatéra - Cyanobactérie - Bénitier - Déterminisme - Ciguatoxine - Cyanotoxine
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