

RAPPORT ANNUEL D'EXPLOITATION ANNÉE 2009

PARC À RÉSIDUS MINIERS DE LA KWÉ OUEST

Vale Inco Nouvelle-Calédonie Février 2010

TABLE DES MATIERES

1		IN I	RODUCTION	1
	1.1	(Contexte et objectifs du rapport	1
	1.2	(Contenu du rapport	1
2		BIL	AN DES SOLIDES DÉPOSÉS	2
3		BIL	AN HYDRIQUE	3
	3.1	E	au de procédé	3
	3.2	E	au provenant du drainage aval	3
	3	.2.1	Description des apports d'eau	3
	3	.2.2	Organisation du drainage	4
	3	.2.3	Drains sous la géomembrane	4
	3	.2.4	Drains aval (fossés) nord, central et sud	6
	3.3	F	Pluie et ruissellement	7
	3.4	E	Bilan hydrique global de l'aire de stockage des résidus	8
	3.5	١	liveau du bassin d'eau de l'aire de stockage des résidus	9
	3.6	(Qualité de l'eau et rejets à l'effluent final	12
	3	.6.1	Eaux recirculées – Eaux du bassin de sédimentation	12
	3	.6.2	Rejet à l'effluent – Émissaire marin	12
	3	.6.3	Rejet à l'effluent – Eaux souterraines collectées sous la géomembrane	12
	3	.6.4	Rejet à l'effluent – Eaux internes issues du système de drainage de la berme	15
4		PL	AN DE DÉPOSITION	16
	4.1	F	Production future des résidus	16
5		INC	IDENTS ET AUTRES ÉVÉNEMENTS EXCEPTIONNELS	18
	5.1	E	Bris de la géomembrane	18
ΑI	NNEX	ŒΑ	– Données de précipitations journalières	
ΑI	NNEX	ŒΒ	- Analyse des échantillons d'eau	
ΑI	NNEX	ŒC	- Rapport d'incident 2009-KO-01 - Bris sur la géomembrane	

1. INTRODUCTION

1.1 Contexte et objectifs du rapport

Dans le cadre de ses activités d'exploitation de la mine de nickel du plateau de Goro, la société Vale Inco Nouvelle Calédonie (VINC) opère le parc à résidus de la Kwé Ouest (KWRSF) pour stocker les rejets des étapes de lixiviation et de raffinage du minerai.

Le présent rapport rend compte des activités opératoires de confinement des résidus à l'intérieur du parc à résidus de la Kwé Ouest

1.2 Contenu du rapport

Les aspects des activités de confinement des résidus présentés dans ce rapport sont :

- Déposition des solides ;
- Bilan hydrique incluant
 - L'eau de transport des résidus (eau de procédé) ;
 - Le drainage aval;
 - Les précipitations ;
 - Qualité de l'eau et rejets à l'effluent final.
- Plan de déposition ;
- Incidents ou autres événements exceptionnels.

Le rapport est publié semestriellement et contient le bilan des données d'exploitation pour l'année en cours.

Comme la conduite de déviation des eaux de l'aire de stockage des résidus a été obturée définitivement le 12 décembre 2008, les données applicables au mois de décembre 2008 sont également incluses dans les rapports 2009.

2. BILAN DES SOLIDES DEPOSES

Les installations de Vale Inco Nouvelle Calédonie sont actuellement en période de mise en marche.

Avant de démarrer le procédé de lixiviation à l'acide, des essais à l'eau claire ont d'abord été réalisés afin de mettre à l'essai les équipements et de s'assurer de leur bon fonctionnement.

De la pulpe froide (minerai et eau froide) a ensuite été utilisée dans les circuits. Ce minerai a été envoyé au parc à résidus et déposé au coin sud-ouest de l'aire actuelle de stockage à l'aide de spigot (voir figure 2.1).

De la pulpe chaude (minerai et eau chaude) a également été utilisée, et ce en préparation du futur démarrage définitif du procédé à l'acide.

Figure 2.1

Finalement, la mise en marche des filtres à ruban à l'Usine a généré 1 887 tonnes de pierre calcaire qui ont été acheminées au parc à résidus en novembre et décembre.

Le tableau 2.1 résume les quantités de solides envoyés au parc à résidus :

RÉSIDUS DÉPOSÉS	Quantités mensuelles	Quantités cumulatives	Volume estimé en	Volume cumulatif
DANS LE PARC	(tonnes	annuelles	place	estimé annuel
	sèches)	(tonnes)	(m³)	(m³)
12 au 31 Décembre 2008	-	-	-	-
Janvier	-	-	1	-
Février	-	-	-	-
Mars	-	-	-	-
Avril	-	-	-	-
Mai	-	-	-	-
Juin	-	-	-	-
Juillet	5 152	5 152	6 869	6 869
Août	13 370	18 522	17 822	24 691
Septembre	5 330	23 852	7 105	31 796
Octobre	9 753	33 605	12 998	44 794
Novembre	7 540	41 145	10 048	54 842
Décembre	1 906	43 051	2 540	57 382

Tableau 2.1 Résidus déposés mensuels

3. BILAN HYDRIQUE

3.1 Eau de procédé

Les apports d'eau reliés au procédé sont les suivants :

L'eau servant au transport des résidus de l'Usine jusqu'au parc à résidus. Cette pulpe est composée typiquement d'environ 15% en volume de particules solides et de 85 % en eau.

La pulpe est déversée (spigottage) dans le parc à résidus. Les particules solides se sédimentent au fond de l'aire de stockage des résidus en formant une plage et libère l'eau ayant servi à son transport. Par contre, de l'eau reste quand même emprisonnée entre les grains des particules solides, c'est l'eau interstitielle. Cette valeur est estimée en fonction de l'indice des vides attendu des résidus déposés.

L'eau qui a été libérée lors de la sédimentation des solides forme le bassin d'eau du parc à résidus. Dans ce bassin, une barge munie de pompes sert à ajuster le volume d'eau ainsi retenu dans le parc. L'eau pompée est retournée à l'Usine pour être réutilisée comme eau de procédé ou traitée et relâchée à l'émissaire marin en cas de surplus.

Le tableau 3.1 résume	eles apports et retraits	d'eau	provenant du	procédé.
LO tabload o. I loodille	riod apporte of rotiaite	a caa	provonant aa	procede.

EAU DE PROCÉDÉ (toutes les valeurs en m³)	Eau dans la pulpe envoyée au parc	Eau interstitelle des résidus déposés (estimé)	Eau retournée vers l'Usine par la barge
	+	-	-
12 au 31 Décembre 2008	-	-	-
Déc2008 + jan2009	8 915	-	2 800
Février	1 040		6 000
Mars	7 486	-	-
Avril	2 203	-	-
Mai	114 926	•	-
Juin	73 320	-	-
Juillet	197 142	5 299	112 416
Août	207 252	13 750	166 811
Septembre	136 780	5 482	225 886
Octobre	125 336	10 031	153 092
Novembre	158 043	7 755	726 454
Décembre	79 542	1 960	863 267

Tableau 3.1

3.2 Eau provenant du drainage aval

3.2.1 Description des apports d'eau

Sous la membrane recouvrant le fond de l'aire de stockage des résidus existe un réseau de drains perforés qui collectent l'eau du sol sous la membrane. Cette eau, sous réserve d'une qualité acceptable, est acheminée vers la rivière Kwé. Advenant une contamination de cette eau (par infiltration d'eau du parc à résidus à travers la membrane), l'eau serait pompée au parc à résidus.

La berme est composée de couches drainantes qui acheminent l'eau s'étant infiltrée dans son intérieur jusqu'à son pied aval. Cette eau, moyennant une qualité acceptable, est également acheminée vers la rivière Kwé. Advenant une contamination de cette eau, l'eau serait déviée vers le bassin de pompage aval et pompé à l'aire de stockage des résidus.

3.2.2 Organisation du drainage

Dans la partie centrale du pied aval de la berme existe le point bas du terrain naturel environnant. De par sa géométrie, cet endroit est un collecteur des différentes eaux de drainage. On y retrouve :

- Le rejet des eaux collectées par le système de drains installés sous la géomembrane de l'aire de stockage des résidus;
- L'eau ayant percolé au travers de la berme, captée par le système de drains internes et relâchée à l'extrémité aval du tapis drainant de la berme. On dénote sur le terrain 3 secteurs :
- La partie nord de la berme qui se draine dans le fossé (drain) nord (point de rejet 4r7);
- La partie centrale de la berme (point de rejet 4r6);
- La partie sud de la berme qui se draine dans un fossé temporaire (drain) sud (point de rejet 4r8).

3.2.3 Drains sous la géomembrane

Le système de drains installés sous la géomembrane est divisé en quatre secteurs distincts. Chaque secteur comporte un collecteur qui achemine l'eau vers le pied aval de la berme. Un débitmètre est installé (depuis le 12 août 2009) sur chacun des collecteurs. Pendant la période précédant l'installation des débitmètres, on procédait à une évaluation de l'ampleur du débit cumulatif des 4 secteurs (selon différentes méthodes approximatives) et les résultats ne sont donnés qu'à titre d'information. Le tableau 3.2 résume les débits observés.

L'eau acheminée par ces 4 drains peut provenir de deux sources : 1) de l'eau provenant du bassin d'eau de l'aire de stockage des résidus et qui s'infiltre à travers la géomembrane (des fuites) et 2) de l'eau de la nappe phréatique naturelle du secteur. On peut remarquer, dans le tableau 3.2, que les débits en fin d'année sont beaucoup plus faibles. Les débits observés semblent hautement influencés par les précipitations, confirmant que la majeure partie de l'eau de ces drains provient du captage de la nappe phréatique, rechargée par les précipitations.

2009		DÉBIT D	ES CONDUITI	ES (m³/h)	
	1	2	3	4	TOTAL
Janvier					± 107
Février					± 196
Mars					± 144
Avril					± 303
Mai					± 156
Juin					± 148
Juillet					± 227
Août	45,4	4,9	43,4	0,4	94
Septembre	35,0	0,0	23,8	0,1	59
Octobre	23,1	0,0	5,2	0,0	28
Novembre	30,8	0,9	18,9	0,1	51
Décembre	8,3	0,0	1,6	0,0	10

Tableau 3.2 Drainage sous la géomembrane

Cette eau est acheminée vers un puits de pompage. Quand l'eau satisfait aux critères de rejet (voir partie 3.6.3 du présent rapport), elle est évacuée par gravité vers le ruisseau de la Kwé Ouest.

Lorsque sa qualité n'est pas adéquate, elle est pompée vers l'aire de stockage des résidus. Une sonde mesurant la conductivité est installée dans le bassin de pompage, donnant en continu une indication de la qualité de l'eau.

À l'occasion, les pompes sont opérées de courtes périodes de temps afin de s'assurer de leur bon fonctionnement. De plus, au mois de juillet, des essais de pompage ont été effectués lors de la mise en marche des équipements.

Figure 3.1

Le tableau 3.3 montre les volumes d'eau pompés vers l'aire d'accumulation des résidus ainsi que les heures d'utilisation des pompes.

	Volume d'eau	Heures d'o	pération (h)	Heures d'	opération
2009	pompé du puits de pompage aval vers le parc à résidus (m³)	Pompe puits aval 285-PPP-021	Pompe puits aval 285-PPP-022	à 1 pompe	à 2 pompes
Janvier					
Février					
Mars	-	-	-	•	-
Avril	1 883	5,6	4,9	4,5	3,0
Mai	-	-	-	-	-
Juin	409	1,5	0,8	1,1	0,6
Juillet	62 141	271,3	73,1	198,3	73,0
Août	91	0,4	0,4	0,2	0,3
Septembre	60	0,2	0,2	-	0,2
Octobre	60	0,2	0,2	-	0,2
Novembre	290	0,9	0,9	-	0,9
Décembre	353	2,1	0,3	1,8	0,3
TOTAL	65 286	282,1	80,7	205,9	78,3
	Tableau 3.3	Somme	28	4,3	

Le graphique suivant illustre le pourcentage du temps d'opération selon qu'il y ait eu 1 ou 2 pompes en marche simultanément. On s'aperçoit que, sauf pour la période d'essai de mise en marche des pompes au mois de juillet, les pompes ont très peu fonctionné.

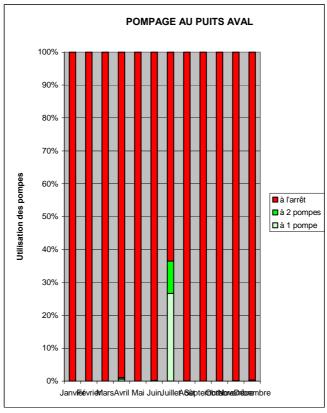


Figure 3.2

3.2.4 Drains aval (fossés) nord, central et sud

La berme est composée de couches drainantes qui acheminent l'eau s'étant infiltrée dans son intérieur jusqu'à son pied aval, par le tapis drainant. L'eau peut émerger dans la partie nord du tapis drainant, dans sa partie sud ou encore dans sa partie centrale. Chacun de ces 3 secteurs comporte un déversoir en V (v-notch) pour mesurer le débit y transitant.

Figure 3.3

Le tableau 3.4 résume les débits observés depuis la mise en place des déversoirs en août 2009. Les débits sont très variables et sont grandement influencés par les précipitations. En effet, ces drains, non seulement évacuent l'eau du système de drainage interne à la berme, mais aussi captent des eaux de ruissellement de la face aval du barrage.

Comme il y a eu des périodes de débit nul dans chacun de ces drains, et que l'eau provenant du drainage interne d'une berme est généralement assez constant, on peut déduire que l'eau de ces drains est uniquement de l'eau de ruissellement provenant des précipitations et que le débit du système de drainage interne de la berme est nul.

	4r6 Drain central		4r7 Drain nord		4r8 Drain sud	
DRAINAGE ISSU DES DRAINS INTERNES À LA BERME	Débit mensuel (m³/sec)	Volume cumulatif mensuel (m3)	Débit mensuel (m³/sec)	Volume cumulatif mensuel (m3)	Débit mensuel (m³/sec)	Volume cumulatif mensuel (m3)
12 au 31 Décembre 2008	N/D		N/D		N/D	
Janvier	N/D		N/D		N/D	
Février	N/D		N/D		N/D	
Mars	N/D		N/D		N/D	
Avril	N/D		N/D		N/D	
Mai	N/D		N/D		N/D	
Juin	N/D		N/D		N/D	
Juillet	N/D		N/D		N/D	
Août	2,78	2 029	0,02	16	0,00	0
Septembre	3,24	2 363	1,58	1 151	4,50	3 281
Octobre	0,28	203	0,00	0	0,00	0
Novembre	6,32	4 613	1,51	1 104	7,70	5 619
Décembre	0,48	350	0,00	-	0,00	-
	Total	9 557	Total	2 271	Total	8 900

Tableau 3.4 Débit mensuel

Toutes les eaux issues des drains internes à la berme ont été acheminées vers la rivière Kwé Ouest (voir partie 3.6.4 du présent rapport). Il n'y a eu aucune de ces eaux qui ait été pompée vers l'aire de stockage des résidus.

3.3 Pluie et ruissellement

Le parc à résidus de la Kwé Ouest est construit dans une vallée bordée de montagnes de la chaîne des Monts Nengone. La région reçoit annuellement des précipitations importantes.

Le tableau 3.5 résume les précipitations annuelles, mesurées par le pluviomètre situé près des bureaux de la Kwé Ouest. Le tableau en annexe A contient le détail des précipitations journalières.

PRÉCIPITATIONS	mensuelles (mm)	Cumulatif annuel (mm)
12 au 31 Décembre 2008	189	189
Janvier	323	323
Février	370	693
Mars	530	1 223
Avril	352	1 575
Mai	260	1 834
Juin	207	2 041
Juillet	235	2 276
Août	98	2 374
Septembre	134	2 507
Octobre	87	2 594
Novembre	245	2 839
Décembre	69	2 907

Tableau 3.5 Précipitations mensuelles

Une partie seulement des eaux de précipitation du bassin versant du parc à résidus ruisselle à l'intérieur de l'aire de stockage des résidus, à cause de l'évapotranspiration, de l'absorption de l'eau dans le sol, de

l'infiltration d'eau dans le sol jusqu'à la nappe phréatique, et des eaux captées et déviées par les fossés de déviation.

Le tableau 3.6 présente les volumes d'eau de ruissellement estimés qui se retrouvent dans le bassin d'eau du parc à résidus de la Kwé Ouest. Les valeurs sont estimées à partir du bilan hydrique et de l'élévation réelle observée du bassin d'eau de l'aire de stockage des résidus. Les valeurs négatives (en rouge) indiquent qu'il y a eu davantage d'évaporation et autres pertes d'eau que d'apport d'eau provenant des précipitations pendant le mois concerné.

RUISSELLEMENT	Volume mensuel (m³)	Volume cumulatif annuel (m³)
12 au 31 Décembre 2008	122 148	122 148
Janvier	134 703	134 703
Février	156 668	291 371
Mars	475 632	767 003
Avril	359 033	1 126 036
Mai	31 590	1 157 626
Juin	74 115	1 231 741
Juillet	156 533	1 388 274
Août	20 000	1 408 274
Septembre	(13 000)	1 395 274
Octobre	3 500	1 398 774
Novembre	62 000	1 460 774
Décembre	(44 000)	1 416 774

Tableau 3.6 Ruissellement dans le parc à résidus

3.4 Bilan hydrique global de l'aire de stockage des résidus

Le tableau 3.7 résume le bilan de l'eau pour l'année en cours.

BILAN D'EAU DANS LE PARC À RÉSIDUS (toutes les valeurs en m³)	Eau dans la pulpe envoyée au parc	Eau interstitelle des résidus déposés (estimé)	Eau retournée vers l'Usine par la barge	Eau des drains sous la membrane pompé dans le parc	Ruissellement coulant dans le bassin du parc	mensuel	Eau libre accumulée dans le parc
	+	-	-	+	+	=	Σ
12 au 31 Décembre 2008	-	-	-	-	122 148	122 148	122 000
Janvier	8 915	-	2 800	-	134 703	140 818	263 000
Février	1 040	-	6 000	-	156 668	151 708	415 000
Mars	7 486	-	-	-	475 632	483 118	898 000
Avril	2 203	-	-	1 883	359 033	363 119	1 261 000
Mai	114 926	•	-	-	31 590	146 516	1 407 000
Juin	73 320	-	-	409	74 115	147 844	1 555 000
Juillet	197 142	5 299	112 416	62 141	156 533	298 101	1 853 000
Août	207 252	13 750	166 811	91	20 000	46 782	1 900 000
Septembre	136 780	5 482	225 886	60	(13 000)	(107 528)	1 793 000
Octobre	125 336	10 031	153 092	60	3 500	(34 227)	1 758 000
Novembre	158 043	7 755	726 454	290	62 000	(513 876)	1 245 000
Décembre	79 542	1 960	863 267	353	(44 000)	(829 332)	415 000

Tableau 3.7 Bilan d'eau

3.5 Niveau du bassin d'eau de l'aire de stockage des résidus

Le niveau du bassin d'eau est contrôlé par les pompes de la barge qui flotte dans le bassin.

En fonction des objectifs, les pompes de la barge sont démarrées ou arrêtées.

L'eau pompée est envoyée à l'Usine où l'eau est soit réutilisée comme eau de procédé ou traitée et envoyée à l'émissaire marin.

Le graphique suivant montre l'évolution du niveau du plan d'eau depuis le début de l'exploitation. On peut remarquer l'influence précipitations sur le taux de remplissage du parc en début d'année. Le niveau d'eau a abaissé en fin d'année pour effectuer les réparations de la géomembrane (voir section 5.1 du présent rapport).

Figure 3.4

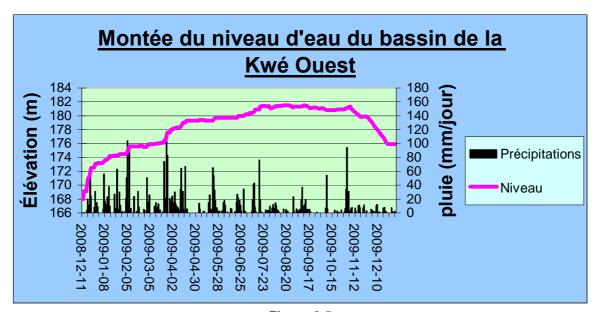


Figure 3.5

Le tableau 3.8 donne les heures d'opération des pompes de la barge.

	Volume d'eau	Heu	eures d'opération (h) Heures d'opération simultar			ıltanée (h)	
	pompé de la	Pompe	Pompe	Pompe			
2009	barge vers	barge 285-	barge 285-	barge 285-			
	l'Usine (m³)	PPP-009	PPP-010	PPP-011	à 1 pompe	à 2 pompes	à 3 pompes
Janvier	2 800 *						
Février	6 000 *						
Mars							
Avril							
Mai							
Juin							
Juillet	112 414	8,4	47,8	146,7	107,1	41,9	4,0
Août	166 811	34,7	137,8	104,5	1,8	137,6	0,0
Septembre	225 885	186,5	5,8	182,7	2,7	186,2	0,0
Octobre	153 092	113,6	114,3	46,7	0,8	67,1	46,5
Novembre	726 454	,	458,7	389,6	10,9	81,6	376,8
Décembre	863 267	544,3	551,9	517,8	60,6	0,4	517,5
TOTAL	2 256 723	1 343,8	1 316,3	1 387,8	183,8	514,8	944,8
Tableau 3.8	* Pompage par u	mpage par une pompe portative vers le				1 643,4	
pied aval du barrage							

Le graphique suivant illustre le pourcentage du temps d'opération selon qu'il y ait eu 1, 2 ou 3 pompes en marche simultanément. Sauf pour les mois de novembre et de décembre pendant lesquels le niveau d'eau du bassin a été exceptionnellement baissé (voir section 5.1 du présent rapport), les pompes ont fonctionné environ 20% du temps (80 % à l'arrêt).

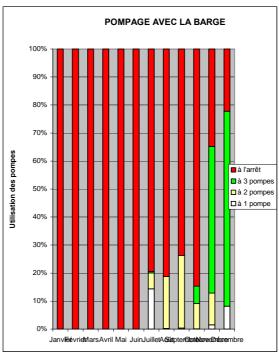


Figure 3.6

Les principaux objectifs dans la gestion du niveau de l'eau sont :

- Maintenir une profondeur d'eau d'au moins 2,6 mètres à l'endroit de la barge flottante, de manière à :
 - empêcher la barge de toucher la géomembrane au fond du bassin ;
 - éviter aux pompes d'aspirer les résidus déposés sous l'eau, au fond du bassin.

- Garder le niveau d'eau bas afin d'exposer à l'air la plage de résidus déposés afin de permettre à l'eau de s'évaporer et favoriser ainsi la densification des résidus;
- Avoir l'espace pour contenir la crue centennale à l'intérieur de l'aire recouverte par la géomembrane;
- Avoir l'espace pour contenir la crue maximale probable sans débordement par-dessus la crête de la berme, et ce jusqu'à la mise en service du déversoir de crue (pour évacuer tout événement pluvieux exceptionnel).

Le tableau 3.9 résume l'évolution du niveau du plan d'eau à l'intérieur de l'aire d'accumulation des résidus et montre le respect des objectifs quant au dégagement à l'endroit de la barge.

BILAN DU NIVEAU D'EAU DANS LE PARC À RÉSIDUS	Eau libre accumulée dans le parc	Niveau d'eau d'opération	Elévation du fond du bassin à l'endroit de la barge	Profondeur à la barge (minimum 2,6m)
	m ³	m	m	m
12 au 31 Décembre 2008	122 000	173,2	N/A	N/A
Janvier	263 000	174,5	N/A	N/A
Février	415 000	175,6	N/A	N/A
Mars	898 000	178,0	N/A	N/A
Avril	1 261 000	179,3	N/A	N/A
Mai	1 407 000	179,8	N/A	N/A
Juin	1 555 000	180,2	N/A	N/A
Juillet	1 853 000	181,1	178,3	2,8
Août	1 900 000	181,3	178,3	3,0
Septembre	1 793 000	181,0	178,3	2,7
Octobre	1 758 000	181,0	178,3	2,7
Novembre	1 245 000	179,4	172,2	7,2
Décembre	415 000	175,8	172,2	3,6

Tableau 3.9 Profondeur d'eau à l'endroit de la barge

Le tableau 3.10 résume l'allocation d'espace à l'intérieur de l'aire d'accumulation des résidus afin de contenir les crues, soit :

- La crue centennale à contenir à l'intérieur de l'aire recouverte de géomembrane ;
- La crue maximale probable étant donné qu'il n'existe pas pour l'instant de déversoir de crue advenant un événement pluvieux exceptionnel.

BILAN DU NIVEAU D'EAU DANS LE PARC À RÉSIDUS	Crue centennale + eau déjà accumulée	Niveau d'eau de la crue centennale	Niveau max (élévation de la géo- membrane)	Crue maximale probable + eau déjà accumulée	Niveau d'eau de la crue maximale probable	Niveau max (élévation de la berme)
	m ³	m	m	m ³	m	m
12 au 31 Décembre 2008	2 255 148	184,3	N/A	3 092 148	203,3	203,5
Janvier	2 252 866	182,2	N/A	3 232 966	203,5	205,5
Février	2 061 674	181,7	N/A	3 384 674	203,7	205,5
Mars	2 485 392	182,8	N/A	3 867 792	204,3	205,5
Avril	4 117 511	186,6	N/A	4 230 911	204,7	205,5
Mai	2 698 026	183,3	N/A	4 377 426	204,9	205,5
Juin	3 221 170	184,6	N/A	4 525 270	205,1	205,5
Juillet	2 752 472	183,5	185,0	4 823 372	205,5	205,6
Août	2 707 453	183,4	185,0	4 870 153	205,5	205,8
Septembre	2 651 225	183,3	185,0	4 762 625	205,4	206,0
Octobre	2 535 999	183,1	185,0	4 728 399	205,4	206,5
Novembre	2 802 423	183,7	185,0	4 214 523	204,8	206,5
Décembre	2 548 191	183,1	185,0	3 385 191	203,7	206,5

Tableau 3.10 Allocation d'espace pour contenir les crues

Note : Les contraintes reliées à la crue centennale ne s'appliquent pas avant juillet 2009 puisque le bassin ne contenait que de l'eau de pluie à ce moment.

3.6 Qualité de l'eau et rejets à l'effluent final

Un suivi est effectué sur l'eau à l'intérieur de l'aire de stockage des résidus ainsi que sur les eaux rejetées à l'effluent final.

3.6.1 Eaux recirculées – Eaux du bassin de sédimentation

Des échantillons hebdomadaires sont prélevés non loin de la station de pompage (barge) du bassin d'eau de l'aire de stockage des résidus. Les échantillons sont analysés au laboratoire VINC de l'Usine. Les paramètres analysés et la moyenne mensuelle des résultats d'analyse sont présentés au tableau 3.11. On retrouve à l'annexe B tous les résultats individuels d'analyse. Ces paramètres sont présentés à titre indicatif car ils ne font l'objet d'aucune limite de concentration.

							Va	aleur r	nensu	elle m	oyeni	ne			
Eaux du															
bassin de															
décantation		Limite	Limite												
(4R2)	unité	inf.	sup.	Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aoû	Sep	Oct	Nov	Déc
Température	°C										21	23	23	23	26
Conductivité															
électrique	μS/cm						87	116	99	238	277	372	401	482	600
рН	0						7,4	7,3	7,4	9,1	8,5	8,2	7,9	7,9	8
MES	mg/l								5	7	5	6	5	6	62
SO4	mg/l						18	18	19	63	86	120	139	175	250
Mn	mg/l						0,01	0	0	0	0,02	0,02	0,02	0,01	0,01
Mg	mg/l						7	7	7	7	8	10	11	12	13

Tableau 3.11

3.6.2 Rejet à l'effluent – Émissaire marin

Un rejet se fait dans le canal de la Havannah par l'émissaire marin, après traitement par le secteur « 285 – Traitement des effluents » de l'Usine. Ces activités ne font pas partie du présent rapport.

3.6.3 Rejet à l'effluent – Eaux souterraines collectées sous la géomembrane

Un rejet se fait dans le ruisseau de la Kwé Ouest à partir du puits de pompage au pied aval de la berme. Les eaux alimentant ce puits de pompage proviennent exclusivement des drains installés sous la géomembrane. Les débits sont présentés dans la section 3.2.3 du présent rapport.

Des échantillons hebdomadaires sont prélevés à chacun des drains lorsque le débit est non nul. Les échantillons sont analysés au laboratoire VINC de l'Usine. Les paramètres analysés et la moyenne mensuelle des résultats d'analyse sont présentés aux tableaux 3.12 à 3.15. On retrouve à l'annexe B tous les résultats individuels d'analyse.

Valeur mensuelle moyenne

Drain no 1															
		Limita	Limita												
sous la	11.4	Limite	Limite	1	- 4	N 4	Δ	N 4 - '	1	11	۸ - ۵	0	0-1	Nime	D.
membrane	unité	inf.	sup.	Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aoû	Sep	Oct	Nov	Déc
Température	ç		30								22	22	22	22	22
Conductivité	μS/c														
électrique	m						110	148	114	145	146	160	182	175	385
рН	0	5,5	8,5				7,3	7,2	7,1	7,4	7,3	7,3	7,4	7,5	7,9
MES	mg/l		35						5	5	5	5	5	5	5
Р	mg/l		10								1				
SO4	mg/l						9	10	9	15	22	26	35	32	92
As	mg/l		0,05				0,1	0,1	0,1	0,1	0,5	0,2	0,16	0,05	0,05
Cr+6	mg/l		0,1				0,04				0,04	0,04	0,04	0,04	0,07
Cr	mg/l		0,5				0,03	0,03	0,03	0,03	0,05	0,04	0,03	0,04	0,06
Pb	mg/l		0,5				0,1	0,1	0,1	0,1	0,5	0,13	0,11	0,01	0,01
Cu	mg/l		0,5				0,04	0,03	0,03	0,03	0,2	0,06	0,03	0,01	0,01
Ni	mg/l		2				0,03	0,03	0,03	0,03	0,2	0,06	0,03	0,01	0,01
Zn	mg/l		2				0,1	0,1	0,1	0,1	0,5	0,2	0,2	0,1	0,1
Mn	mg/l		1							0,01	0,02	0,01	0,02	0,01	0,01
Fe	mg/l		5				0,2	0,2	0,2	0,6	1	0,3	0,3	0,1	0,1
Со	mg/l						0,03	0,03	0,03	0,03	0,2	0,06	0,03	0,01	0,01
Mg	mg/l						9	9	9	9	9	9	10	9	12
Ca	mg/l						0,8	1	0,8	0,8	0,9	1,2	1,8	1,3	3
Si	mg/l									0,01	0,02	0,01	0,02	0,01	0,01

Note : Les analyses en arsenic (As) n'avaient pas la précision voulue avant Novembre 2009

Tableau 3.12

Valeur mensuelle moyenne

Drain no 2															
sous la		Limite	Limite												
membrane	unité	inf.	sup.	Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aoû	Sep	Oct	Nov	Déc
Température	°C		30								22	23			22
Conductivité	μS/c														
électrique	m						128	162	137	126	131	143		145	385
рН	0	5,5	8,5				7,2	7,1	7,2	7,2	7,2	7,4		7,6	7,9
MES	mg/l		35							5	5	5		5	5
Р	mg/l		10								1				
SO4	mg/l						7	3	6	5	7	11		22	92
As	mg/l		0,05				0,1	0,1	0,1	0,1	0,5	0,3		0,05	0,05
Cr+6	mg/l		0,1				0,04				0,02	0,03		0,05	0,07
Cr	mg/l		0,5				0,02	0,01	0,03	0,02	0,05	0,04		0,05	0,06
Pb	mg/l		0,5				0,1	0,1	0,1	0,1	0,5	0,25		0,01	0,01
Cu	mg/l		0,5				0,03	0,03	0,03	0,03	0,2	0,11		0,01	0,01
Ni	mg/l		2				0,03	0,03	0,03	0,03	0,2	0,11		0,01	0,01
Zn	mg/l		2				0,1	0,1	0,1	0,1	0,5	0,3		0,1	0,1
Mn	mg/l		1								0,02	0,02		0,01	0,01
Fe	mg/l		5				0,2	0,2	0,2	0,2	1	0,6		0,1	0,1
Co	mg/l						0,03	0,03	0,03	0,03	0,2	0,11		0,01	0,01
Mg	mg/l						11	11	11	11	11	11		12	12
Ca	mg/l						0,5	0,4	0,8	0,3	0,5	0,8		3	3
Si	mg/l										0,02	0,02		0,01	0,01

Note : Les analyses en arsenic (As) n'avaient pas la précision voulue avant Novembre 2009 Note : Aucun débit en Octobre et Décembre

Tableau 3.13

Valeur mensuelle moyenne

											CIIC III	• , •				
Drain																
sous			Limite	Limite												
memb		unité	inf.	sup.	Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aoû	Sep	Oct	Nov	Déc
Tempéi	rature	°C		30								22	22	22	22	22
Conduc	ctivité	μS/c														
électri	ique	m						126	158	125	125	129	140	131	149	132
p⊦	ł	0	5,5	8,5				7,3	7,2	7,2	7,3	7,2	7,4	7,6	7,6	7,7
ME	S	mg/l		35							5	5	5	5	5	5
Р		mg/l		10								1				
SO	4	mg/l						5	4	4	5	5	7	6	9	6
As	3	mg/l		0,05				0,1	0,1	0,1	0,1	0,5	0,2	0,16	0,05	0,05
Cr+	-6	mg/l		0,1				0,04				0,03	0,04	0,04	0,05	
Cr	•	mg/l		0,5				0,04	0,02	0,02	0,03	0,05	0,04	0,03	0,04	0,04
Pb)	mg/l		0,5				0,1	0,1	0,1	0,1	0,5	0,13	0,11	0,01	0,01
Cı	ı	mg/l		0,5				0,03	0,03	0,03	0,03	0,2	0,06	0,03	0,01	0,01
Ni		mg/l		2				0,03	0,03	0,03	0,03	0,2	0,06	0,03	0,01	0,01
Zr)	mg/l		2				0,1	0,1	0,1	0,1	0,5	0,2	0,2	0,1	0,1
Mr	n e	mg/l		1								0,02	0,01	0,02	0,01	0,01
Fe)	mg/l		5				0,2	0,2	0,2	0,2	1	0,3	0,3	0,1	0,1
Co)	mg/l						0,03	0,03	0,03	0,03	0,2	0,06	0,03	0,01	0,01
Μç	3	mg/l						11	11	11	11	11	12	11	12	11
Ca	a	mg/l						0,4	0,3	0,3	0,3	0,5	1,3	0,9	1,3	1
Si		mg/l										0,02	0,01	0,02	0,01	0,01
				. ()												

Note: Les analyses en arsenic (As) n'avaient pas la précision voulue avant Novembre 2009

Tableau 3.14

Valeur mensuelle moyenne

Drain no 4															
sous la		Limite	Limite												
membrane	unité	inf.	sup.	Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aoû	Sep	Oct	Nov	Déc
Température	°C		30								22	22	22	23	24
Conductivité	μS/c														
électrique	m						129	165	121	132	147	168	180	194	213
pН	0	5,5	8,5				7,3	6,7	7,1	7,2	7,3	7,3	7,6	7,5	7,7
MES	mg/l		35							5	5	5	5	5	5
Р	mg/l		10								1				
SO4	mg/l						16	19	16	17	20	33	35	42	49
As	mg/l		0,05				0,1	0,1	0,1	0,1	0,5	0,2	0,08	0,05	0,05
Cr+6	mg/l		0,1				0,11				0,06	0,07	0,1	0,07	
Cr	mg/l		0,5				0,08	0,05	0,05	0,05	0,06	0,06	0,1	0,07	0,09
Pb	mg/l		0,5				0,1	0,1	0,1	0,1	0,5	0,13	0,01	0,01	0,01
Cu	mg/l		0,5				0,03	0,03	0,03	0,03	0,2	0,06	0,01	0,01	0,01
Ni	mg/l		2				0,04	0,03	0,03	0,03	0,2	0,06	0,01	0,01	0,01
Zn	mg/l		2				0,1	0,1	0,1	0,1	0,5	0,2	0,1	0,1	0,1
Mn	mg/l		1								0,02	0,01	0,01	0,01	0,01
Fe	mg/l		5				0,2	0,2	0,2	0,2	1	0,3	0,1	0,1	0,1
Co	mg/l						0,03	0,03	0,03	0,03	0,2	0,06	0,01	0,01	0,01
Mg	mg/l						11	11	10	10	11	10	10	11	10
Ca	mg/l						0,7	0,9	0,7	0,6	0,8	1,1	1	1,3	1
Si	mg/l										0,02	0,01	0,01	0,01	0,01

Note: Les analyses en arsenic (As) n'avaient pas la précision voulue avant Novembre 2009

Tableau 3.15

Avant le mois de novembre, le seuil de détection des analyses pour l'arsenic au laboratoire VINC était supérieur à la limite permise. La méthode d'analyse a été améliorée et donne maintenant la précision nécessaire.

A l'exception d'un échantillon prélevé au mois d'avril où on note un léger dépassement au niveau du chrome hexavalent (0,11 mg/l versus la limite permise de 0,10 mg/l), aucun paramètre ne dépasse les limites permises. Il est à noter que ce dépassement survient bien avant tout pompage de pulpe à l'intérieur du parc à résidus, le parc ne contenant uniquement de l'eau de pluie à ce moment. Ce chrome est donc de source naturelle, contenu dans les sols environnants.

3.6.4 Rejet à l'effluent – Eaux internes issues du système de drainage de la berme

Un rejet se fait dans le ruisseau de la Kwé Ouest à partir des stations 4R6, 4R7 et 4R8.

Les débits sont présentés dans la section 3.2.4 du présent rapport.

Des échantillons hebdomadaires sont prélevés à chacune de ces stations lorsque le débit est non nul. Les échantillons sont analysés au laboratoire VINC de l'Usine. Les paramètres analysés et la moyenne mensuelle des résultats d'analyse sont présentés aux tableaux 3.16 à 3.18. On retrouve à l'annexe B tous les résultats individuels d'analyse. Aucun paramètre ne dépasse les limites permises. Il est à noter que les résultats ne sont donnés qu'à titre indicatif puisqu'il a été démontré (voir section 3.2.4) que les eaux ne proviennent pas du drainage interne à la berme.

Valeur mensuelle moyenne Limite Limite Jul unité inf. Fév Mar **4R6** sup. Jan Avr Mai Jun Aoû Sep Oct Nov Déc Température °C 30 25 25 Conductivité électrique µS/cm 236 196 221 185 195 204 189 215 213 рН 0 5,5 8,5 7,2 7,5 7,1 7,2 7.4 7,5 7,7 7,5 7,8 **MES** mg/l 35 6 5 5 5 6 5 SO4 42 28 37 31 mg/l 34 42 34 33 27 Mn mg/l 1 0 0 0.01 0.01 0.02 0.01 0.02 0.01 0,01

Mg **Tableau 3.16**

SO₄

Mn

mg/l

mg/l

mg/l

Limite Limite Fév 4R7 unité Mar Jul Aoû Oct Nov Déc sup. Jan Avr Mai Jun Sep 30 Température °C 0 20 Conductivité µS/cm électrique 149 169 рΗ 0 5,5 8.5 7,7 7,9 **MES** mg/l 35

17

16

19

22

0,02

Valeur mensuelle moyenne

Tableau 3.17

1

							Va	aleur r	nensu	ielle n	noyen	ne			
		Limite	Limite												
4R8	unité	inf.	sup.	Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aoû	Sep	Oct	Nov	Déc
Température	°C		30										26	26	24
Conductivité															
électrique	μS/cm												260	291	221
рН	0	5,5	8,5										7,6	7,4	7,6
MES	mg/l		35										5	5	6
SO4	mg/l												59	59	52
Mn	mg/l		1										0,01	0,01	0,01
Mg	mg/l												25	25	20
Tableau 3.18															

4. PLAN DE DEPOSITION

4.1 Production des résidus

Le tableau 4.1 présente la production de minerai réalisée.

					Densité		
Date révisée	Minerai	Rapport	Résidus	Rés. Cumul	déposée	Résidus	Rés. Cumul
	tonne/mois	rés./minerai	tonne/mois	tonne	t/m³	m³/mois	m³
janv-2009	0	1	0	0	0,750	0	0
févr-2009	0	1	0	0	0,750	0	0
mars-2009	0	1	0	0	0,750	0	0
avr-2009	0	1	0	0	0,750	0	0
mai-2009	0	1	0	0	0,750	0	0
juin-2009	0	1	0	0	0,750	0	0
juil-2009	5 152	1	5 152	5 152	0,750	6 869	6 869
août-2009	13 370	1	13 370	18 522	0,750	17 822	24 691
sept-2009	5 330	1	5 330	23 852	0,750	7 105	31 796
oct-2009	9 753	1	9 753	33 605	0,750	12 998	44 794
nov-2009	7 540	1	7 540	41 145	0,750	10 048	54 842
déc-2009	1 906	1	1 906	43 051	0,750	2 540	57 382

Tableau 4.1 Bilan de production de résidus

À l'aide des courbes Volume-élévations développées pour les différentes étapes de déposition, le programme de déposition est préparé et est illustré à la figure 4.1. Le phasage des étapes de construction (installation de la géomembrane et rehaussement de la berme) y est indiqué en fonction des contraintes concernant :

- Le niveau d'eau minimum à maintenir ;
- L'accumulation de la crue centennale à l'intérieur de la géomembrane ;
- L'accumulation de la crue maximale probable à l'intérieur de l'aire de stockage jusqu'à l'achèvement du déversoir d'urgence.

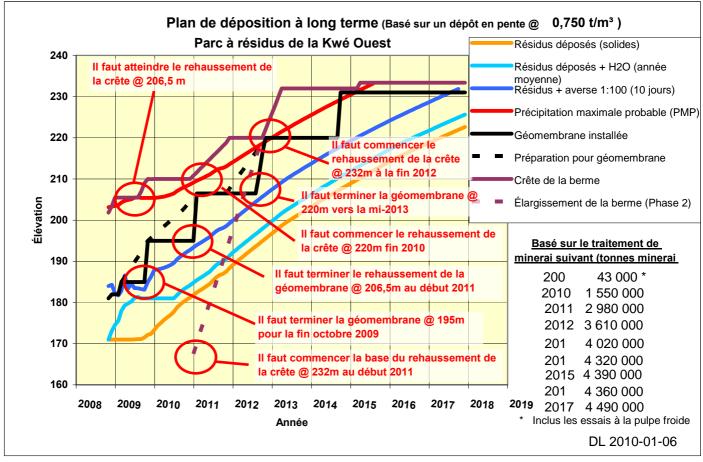


Figure 4.1

Le programme de construction est ajusté en fonction des dates jalons qui en ressortent.

5. INCIDENTS ET AUTRES EVENEMENTS EXCEPTIONNELS

Il n'y a eu qu'un seul incident au parc à résidus en 2009 relié aux activités d'exploitation du parc à résidus.

Bris de la géomembrane

Au cours de l'hiver, on remarque une légère hausse en conductivité et en concentration de sels (Ca, Na, SO₄) dans un des secteurs couvert par les drains de captage installés sous la géomembrane de l'aire d'accumulation des résidus.

Après inspection des lieux, des perforations sont constatées dans la géomembrane, le long du pied amont de la berme et particulièrement dans le coin sud-est de l'aire d'accumulation des résidus. Ces perforations auraient été causées par des cailloux de cuirasse de fer dévalant la pente amont du barrage lors des travaux de rehaussement de la crête du barrage.

Un rapport d'incident (no 2009-KO-01) a été rédigé et contient les détails de cet incident ainsi que le plan d'action pour y remédier (voir annexe C). Actuellement, le niveau d'eau a été abaissé et on procède aux travaux de nettoyage et de réparation des perforations par thermo-fusion.

Préparé par : Daniel Lang

Ingénieur sénior parc à résidus Vale Inco Nouvelle Calédonie

2010-02-09

ANNEXE A – Données de précipitations journalières

Jour	Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Oct	Nov	Dec
1	0	0	51	24	0	3	0	2	6	0	34	0
2	0	2	15	2	0	0	0	7	3	0	94	5
3	0	21	16	15	0	15	0	12	3	0	6	4
4	0	51	26	30	14	18	0	7	0	0	31	3
5	0	104	0	14	6	11	0	2	5	0	3	0
6	6	14	0	10	0	0	0	15	0	0	3	2
7	56	91	0	9	0	0	0	10	19	7	6	0
8	17	6	0	8	0	2	3	2	37	54	8	10
9	13	7	0	2	0	0	19	4	2	6	0	12
10	8	0	10	4	2	0	41	2	10	0	0	2
11	23	0	2	34	3	0	43	0	12	0	0	0
12	8	0	15	64	0	7	9	0	19	0	7	2
13	38	24	8	27	0	6	2	0	0	0	3	0
14	10	0	1	31	0	0	0	0	5	0	0	0
15	0	0	13	6	0	0	0	0	2	0	0	0
16	0	2	4	0	15	0	0	6	5	0	10	1
17	0	3	4	67	26	2	76	0	5	0	11	7
18	0	31	0	2	5	2	19	0	2	4	8	8
19	0	9	0	6	5	16	0	5	0	0	0	0
20	27	0	0	0	3	27	1	0	0	0	0	2
21	7	0	2	0	65	22	0	3	0	3	0	0
22	0	0	74	0	54	9	0	0	0	0	8	0
23	63	0	16	0	33	18	0	0	0	1	12	0
24	0	0	21	0	18	11	0	0	0	0	0	0
25	5	5	117	0	0	3	4	0	0	0	0	0
26	30	4	83	0	8	0	3	0	1	4	3	0
27	11	1	0	0	3	0	0	0	0	0	0	8
28	1	0	0	0	0	34	4	23	0	0	0	2
29	0	-	21	0	3	3	3	2	0	0	0	0
30	3	-	17	0	0	2	10	0	0	2	0	1
31	0	-	15	-	0	-	0	0	-	7	-	3
Total Mois	323	370	530	352	260	207	235	98	134	87	245	69
Cumul	323	693	1 223	1 575	1 834	2 041	2 276	2 374	2 507	2 594	2 839	2 907
Année	323	693	1 223	1 5/5	1 034	2 041	2 2 7 6	2 3/4	2 507	2 554	2 039	2 907
Mois	374	200	363	440	242	276	142	440	128	69	440	261
(prévision)	3/4	300	303	410	243	276	142	142	128	69	146	201
Cumul												
Année	261	561	924	1 334	1 577	1 853	1 995	2 137	2 265	2 334	2 480	2 741
(prévision)												

ANNEXE B - Analyse des échantillons d'eau

QUALITÉ DES EAUX DE SURFACE DIRECTEMENT EN AMONT ET EN AVAL DE LA BERME PARC À RÉSIDUS DE LA KWÉ OUEST - 2009 ANALYSE DES ÉCHANTILLONS

DECANT	Eaux d	u bassin de	décantation ((4R2)			
	Tempé		Conductivité				
Date	rature	pН	électrique	MES	SO₄	Mg	Mn
unité	v		μS/cm	mg/l	mg/l	mg/l	mg/l
Limite inférieure	_						
Limite supérieure	30						
2009-04-09		7,3	81.7		16,5	6.18	0.008
2009-04-16		7.6	88.7		17.6	6.77	0.008
2009-04-23		7,8	88,9		18	7,22	< 0.004
2009-04-30		7	87,7		18,2	6,83	< 0,004
2009-05-08		7.3	91,8		18.4	6,93	< 0.004
2009-05-14		7.2	140		18,5	7,16	< 0.004
2009-08-04		7.4	92,4		16,7	7,35	< 0.004
2009-08-11		7,2	92,5		18,1	6,76	< 0.004
2009-06-18			52,5		20,5	6,88	< 0.004
2009-08-25		7.5	113	< 5	22,1	7.01	< 0.004
2009-07-02		7.9	148	< 5	32,5	6.84	< 0.004
2009-07-09		8.6	188	17	47	6,96	< 0.004
2009-07-20		9,4	251	6,1	69	6,78	< 0.004
2009-07-21		9.5	273	< 5	68,5	6,75	< 0.004
2009-07-22		9.2	261	< 5	68,3	6.54	< 0.004
2009-07-25		9.2	249	< 5	68.3	6.8	< 0.004
2009-07-26		9,4	252	< 5	68,2	6,85	< 0.004
2009-07-27		9.2	251	8.8	65,5	6.8	< 0.004
2009-07-28		9,3	254	< 5	72,2	7,88	< 0,004
2009-07-30		9.6	249	< 5	68,9	6,88	< 0,004
2009-08-03		8,5	253	< 5	73,1	7,78	< 0.004
2009-08-10		8.5	277		70,1	7.2	< 0.02
2009-08-12	21.01	8.8	272	< 5	83.6	9.2	< 0.02
2009-08-17	21,01	8,3	278		84,8	8	< 0.02
2009-08-18	20,31	8,4	278	< 5	87,2	8,2	< 0.02
2009-08-26	20,49	8.3	301	< 5	98.9	9.2	< 0.02
2009-09-01	24.53	7.7	318	< 5	101	9.3	< 0.02
2009-09-10	20.59	7,7	338	< 5	111	10,2	< 0.01
2009-09-15	22.01	7.8	358	7.4	119	10,2	< 0.01
2009-09-23	23.52	7,8	377	< 5	135	10,1	< 0.01
2009-09-25	23,32	9.9	467	\ U	136	11	< 0.05
2009-09-20	22.82	7.8	390	< 5	134	10,8	< 0,03
2009-10-02	23.18	7.9	400	< 5	141	11,1	< 0.01
2009-10-14	25,10	7,8	401	< 5	138	10,9	< 0.01
2009-10-14	22,69	7.9	401	< 5	141	11,3	< 0,01
2009-10-21	22,48	1,0	414	< 5	141	11,3	< 0.05
2009-10-28	22,70	7.9	396	< 5	133	12,2	< 0.01
2009-11-12	22.13	7,9	454	8.5	165	10.5	< 0.01
2009-11-12	23,12	7,8	524	< 5	194	11,7	< 0,01
2009-11-25	24,61	7,8	555	< 5	206	11,8	< 0,01
2009-11-23	26.32	7,5	593	< 5	228	12,1	< 0.01
2009-12-02	25,17	8.2	596	< 5	234	12,1	< 0.01
2009-12-09		8	670	290	253	12,7	< 0.01
2009-12-13	20,73	8.4	692	< 5	253	12,3	< 0.01
			450				
2009-12-30		7,8	400	< 5	282	12,8	< 0,01

QUALITÉ DES EAUX DE SURFACE DIRECTEMENT EN AMONT ET EN AVAL DE LA BERME PARC À RÉSIDUS DE LA KWÉ OUEST - 2009ANALYSES DES ÉCHANTILLONS

GEO1	Drain n	o 1 sous la n	nembra	ne															
	Tempé	Conductivité																	
Date	rature	électrique	pН	MES	Р	SO ₄	As	Cr ⁺⁶	Cr	Pb	Cu	Ni	Zn	Mn	Fe	Co	Mg	Ca	Si
unité	ಭ	μS/cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Limite inf.			5,5																
Limite sup.	30		8,5	35	10		0,05	0,1	0,5	0,5	0,5	2	2	1	5				
2009-04-09		111	7,1		< 0,1	7,6	< 0,1		0,04	< 0,1	0,05	< 0,03	< 0,1	0,006	< 0,2	< 0,03	8,44	0,7	0,006
2009-04-16		109	7,5		< 0,1	11	< 0,1	0,04	0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	8,46	0,9	< 0,004
2009-04-23		110	7,7		< 0,1	8,2	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	8,76	8,0	< 0,004
2009-04-30		109	6,8		< 0,1	8,9	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	8,53	0,9	< 0,004
2009-05-08		119	7,2		< 0,1	9,9	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	8,78	0,9	< 0,004
2009-05-14		176	7,1		< 0,1	10,1	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	9,33	1	< 0,004
2009-06-04		112	7		< 0,1	8,3	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	8,62	0,9	< 0,004
2009-06-11		111	7,2		< 0,1	9,6	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	8,5	0,8	< 0,004
2009-06-18					< 0,1	10,8	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	8,86	8,0	< 0,004
2009-06-25		120	7,2	< 5	< 0,1	6,3	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,3	0,6	< 0,004
2009-07-02		167	7,9	< 5	< 0,1	12,2	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	8,46	0,9	< 0,004
2009-07-09		142	7,2	< 5	< 0,1	21,5	< 0,1		0,04	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	8,39	1	< 0,004
2009-07-30		126	7,2	< 5	< 0,1	12	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	0,01	1,5	< 0,03	9,64	0,4	0,01
2009-08-12	21,72	142	7,5	< 5	< 0,5	18,5	< 0,5	0,04	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	9	0,7	< 0,02
2009-08-18	21,4	146	7	< 5	< 0,5	23,6	< 0,5	0,04	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	8,6	1	< 0,02
2009-08-26	21,84	150	7,5	< 5	< 0,5	24,3	< 0,5	0,04	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	9,2	1	< 0,02
2009-09-01	22,92	155	7,2	< 5	< 0,5	24,8	< 0,5	0,04	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	9	1,2	< 0,02
2009-09-10	20,98	161	7,4	< 5	< 0,1	26,4	< 0,1	0,04	0,04	< 0	< 0,01	0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,25	1,5	< 0,01
2009-09-15	22,08	156	7,2	< 5	< 0,1	25,4	< 0,1	0,04	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,1	1	< 0,01
2009-09-23	21,86	166	7,4	< 5	< 0,1	27,7	< 0,1	0,04	0,04	< 0,01	< 0,01	0,02	< 0,1	< 0,01	< 0,1	< 0,01	9,5	1	< 0,01
2009-10-02	21,92	168	7,4	< 5	< 0,1	29	< 0,1	0,04	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,4	1	< 0,01
2009-10-07	21,89	175	7,4	< 5	< 0,1	32,3	< 0,1	0,04	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,6	2	< 0,01
2009-10-14	21,75	178	7,5	< 5	< 0,1	32,1	< 0,05	0,03	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,3	2	< 0,01
2009-10-21	22,36	187	7,5	< 5	< 0,1	35,8	< 0,05	0,04	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,6	2	< 0,01
2009-10-28	21,92	201	7,4	< 5	< 0,5	44,4	< 0,5	0,04	< 0,05	< 0,5	< 0,1	0,1	< 0,5	< 0,05	< 1	< 0,1	10	1,9	< 0,05
2009-11-04		172	7,4	< 5	< 0,1	32,7	< 0,05	0,04	0,04	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9	2	< 0,01
2009-11-12	22,13	163	7,4	< 5	< 0,1	27,4	< 0,05	0,03	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	8,8	1	< 0,01
2009-11-17	22,23	172	7,6	< 5	< 0,1	31	< 0,05	0,04	0,04	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,5	1	< 0,01
2009-11-25	22,34	192	7,4	< 5	< 0,1	38,8	< 0,05		0,04	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,9	1	< 0,01
2009-12-02	22,36	213	7,6	< 5	< 0,1	45,2	< 0,05		0,04	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,2	1	< 0,01
2009-12-09	22,54	230	7,8	< 5	< 0,1	53,4	< 0,05		0,05	< 0,01	< 0,01	0,01	< 0,1	< 0,01	< 0,1	< 0,01	11,2	2	< 0,01
2009-12-23		369	7,9	< 5	< 0,1	88,1	< 0,05	0,06	0,07	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	12,9	3	< 0,01
2009-12-27		399	7,8	< 5	< 0,1	122	< 0,05	0,08	0,07	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	12,7	4	< 0,01
2009-12-30		713	8,3	< 5	< 0,1	149	< 0,05		0,09	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	13,3	5	< 0,01

QUALITÉ DES EAUX DE SURFACE DIRECTEMENT EN AMONT ET EN AVAL DE LA BERME PARC À RÉSIDUS DE LA KWÉ OUEST - 2009ANALYSES DES ÉCHANTILLONS

GEO2	Drain n	o 2 sous la n	nembr	rane															
Date	Tempé rature	Conductivité électrique	рН	MES	Р	SO ₄	As	Cr ⁺⁶	Cr	Pb	Cu	Ni	Zn	Mn	Fe	Со	Mg	Ca	Si
unité	ರೆ	μS/cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Limite inf.			5,5																
Limite sup.	30		8,5	35	10		0,05	0,1	0,5	0,5	0,5	2	2	1	5				
2009-04-09		132	7,1		< 0,1	7,3	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	0,005	< 0,2	< 0,03	11,1	0,4	0,005
2009-04-16		132	7,5		< 0,1	9,6	< 0,1	0,04	0,02	< 0,1	< 0,03	< 0,03	< 0,1	0,004	< 0,2	< 0,03	11,3	0,6	0,004
2009-04-23		127	7,6		< 0,1	6,5	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	0,004	< 0,2	< 0,03	11,4	0,5	0,004
2009-04-30		122	6,7		< 0,1	3,8	< 0,1		0,01	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,8	0,3	< 0,004
2009-05-08		130	7,2		< 0,1	3,3	< 0,1		0,01	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	11,1	0,3	< 0,004
2009-05-14		193	7		< 0,1	3,5	< 0,1		0,01	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	11,5	0,4	< 0,004
2009-06-04		136	7,1		< 0,1	9,3	< 0,1		0,06	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	11,9	0,5	< 0,004
2009-06-11		137	7,3		< 0,1	3,7	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,8	1,6	< 0,004
2009-06-18					< 0,1	4	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,9	0,3	< 0,004
2009-07-02		126	7,3	< 5	< 0,1	< 3	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,9	0,3	< 0,004
2009-07-09		126	7,1	< 5	< 0,1	4,1	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,9	0,3	< 0,004
2009-07-30		126	7,3	< 5	< 0,1	7,3	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	9,84	0,3	< 0,004
2009-08-12	21,74	130	7,4	< 5	< 0,5	6,2	< 0,5	0,03	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	10,9	< 0,5	< 0,02
2009-08-18	21,71	128	6,9	< 5	< 0,5	5,4	< 0,5	0,01	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	11,2	< 0,5	< 0,02
2009-08-26		135	7,2	< 5	< 0,5	10,4	< 0,5	0,03	0,06	< 0,5	< 0,2	< 0,2	< 0,5	0,02	< 1	< 0,2	10,7	< 0,5	0,02
2009-09-01	23,07	137	7,3	< 5	< 0,5	6,3	< 0,5	0,03	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	11,85	0,5	< 0,02
2009-09-08		149	7,5		< 0,1	15	< 0,1	0,03	0,03	< 0	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,72	< 1	< 0,01
2009-11-04		145	7,6	< 5	< 0,1	21,6	< 0,05	0,05	0,05	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	12,2	3	< 0,01

QUALITÉ DES EAUX DE SURFACE DIRECTEMENT EN AMONT ET EN AVAL DE LA BERME PARC À RÉSIDUS DE LA KWÉ OUEST - 2009ANALYSES DES ÉCHANTILLONS

GEO3	Drain n	o 3 sous la n	nembr	ane															
	Tempė	Conductivité						_											
Date	rature	électrique	pН	MES	Р	SO ₄	As	Cr ⁺⁶	Cr	Pb	Cu	Ni	Zn	Mn	Fe	Co	Mg	Ca	Si
unité	ပ	μS/cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Limite inf.			5,5																
Limite sup.	30		8,5	35	10		0,05	0,1	0,5	0,5	0,5	2	2	1	5				
2009-04-09		128	7,2		< 0,1	5,6	< 0,1		0,03	< 0,1	< 0,03	0,03	< 0,1	< 0,004	< 0,2	< 0,03	11,1	0,3	< 0,004
2009-04-16		129	7,5		< 0,1	7,4	< 0,1	0,04	0,04	< 0,1	< 0,03	0,04	< 0,1	< 0,004	< 0,2	< 0,03	11,4	0,5	< 0,004
2009-04-23		125	7,6		< 0,1	5	< 0,1		0,04	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	11,3	0,4	< 0,004
2009-04-30		120	6,8		< 0,1	3,9	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,4	0,3	< 0,004
2009-05-08		124	7,2		< 0,1	3,7	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,7	0,3	< 0,004
2009-05-14		192	7,2		< 0,1	3,5	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	11,1	0,3	< 0,004
2009-06-04		125	7,2		< 0,1	3,7	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	11,1	0,4	< 0,004
2009-06-11		124	7,2		< 0,1	4,6	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,4	0,3	< 0,004
2009-06-18					< 0,1	4	< 0,1		0,01	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	11	0,3	< 0,004
2009-07-02		124	7,3	< 5	< 0,1	4	< 0,1		0,02	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,8	0,3	< 0,004
2009-07-09		126	7,2	< 5	< 0,1	4,6	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,9	0,3	< 0,004
2009-07-30		126	7,3	< 5	< 0,1	7,7	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	9,8	0,3	< 0,004
2009-08-12	21,58	129	7,5	< 5	< 0,5	5,1	< 0,5	0,03	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	10,8	< 0,5	< 0,02
2009-08-18	21,66	128	7	< 5	< 0,5	5,6	< 0,5	0,03	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	10,9	< 0,5	< 0,02
2009-08-26	21,66	130	7,2	< 5	< 0,5	5,7	< 0,5	0,03	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	11,2	< 0,5	< 0,02
2009-09-01	22,1	137	7,3	< 5	< 0,5	3,7	< 0,5	0,03	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	10,9	< 0,5	< 0,02
2009-09-10	20,54	158	7,5	5,7	< 0,1	17,2	< 0,1	0,06	0,05	< 0	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	13,3	2,7	< 0,01
2009-09-15	21,71	131	7,3	< 5	< 0,1	4,9	< 0,1	0,03	0,02	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	11,3	< 1	< 0,01
2009-09-23	21,77	132	7,4	< 5	< 0,1	3,2	< 0,1	0,03	0,03	0,02	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	11,1	< 1	< 0,01
2009-10-02	21,9	131	7,5	< 5	< 0,1	5,6	< 0,1	0,03	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	11	< 1	< 0,01
2009-10-07	21,72	133	7,6	< 5	< 0,1	6,3	< 0,1	0,03	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	11	< 1	< 0,01
2009-10-14	21,76	131	7,6	< 5	< 0,1	5,8	< 0,05	0,03	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,8	< 1	< 0,01
2009-10-21	21,52	128	7,7	< 5	< 0,1	5,3	< 0,05	0,04	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,9	< 1	< 0,01
2009-10-28	21,97	130	7,7	< 5	< 0,5	6,7	< 0,5	0,05	< 0,05	< 0,5	< 0,1	< 0,1	< 0,5	< 0,05	< 1	< 0,1	11	< 0,5	< 0,05
2009-11-04		157	7,8	< 5	< 0,1	18,2	< 0,05	0,08	0,07	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	13	2	< 0,01
2009-11-12	21,94	137	7,5	< 5	< 0,1	6,2	< 0,05	0,03	0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	11,4	< 1	< 0,01
2009-11-17	22,05	172	7,5	< 5	< 0,1	5,6	< 0,05	0,03	0,02	< 0,01	< 0,01	0,01	< 0,1	< 0,01	< 0,1	< 0,01	11,4	< 1	< 0,01
2009-11-25	22,41	130	7,6	< 5	< 0,1	5,6	< 0,05		0,02	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	11	< 1	< 0,01
2009-12-02	22,25	130	7,6	< 5	< 0,1	6,4	< 0,05		0,03	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	11,3	< 1	< 0,01
2009-12-09	22,62	133	7,7	< 5	< 0,1	5,8	< 0,05		0,05	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	11,6	< 1	< 0,01

QUALITÉ DES EAUX DE SURFACE DIRECTEMENT EN AMONT ET EN AVAL DE LA BERME PARC À RÉSIDUS DE LA KWÉ OUEST - 2009ANALYSES DES ÉCHANTILLONS

GEO4	Drain n	o 4 sous la r	nembr	ane															
	Tempé				_			- +6	_		_					_			
Date	rature	électrique	pН	MES	Р	SO ₄	As	Cr ⁺⁶	Cr	Pb	Cu	Ni	Zn	Mn	Fe	Co	Mg	Ca	Si
unité	ပ္	μS/cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Limite inf.			5,5																
Limite sup.	30		8,5	35	10		0,05	0,1	0,5	0,5	0,5	2	2	1	5				
2009-04-09		132	7,2		< 0,1	17,4	< 0,1		80,0	< 0,1	< 0,03	0,05	< 0,1	0,005	< 0,2	< 0,03	10,6	0,6	0,005
2009-04-16		142	7.4		< 0.1	16,9	< 0,1	0,11	0,11	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	12,2	0,9	< 0,004
2009-04-23		125	7,7		< 0,1	15,5	< 0,1		80,0	< 0,1	< 0,03	< 0,03	< 0,1	0,005	< 0,2	< 0,03	10,6	0,6	0,005
2009-04-30		116	6,8		< 0.1	15,6	< 0,1		0,06	< 0,1	< 0.03	< 0,03	< 0,1	0,004	< 0,2	< 0.03	9,53	0,6	0,004
2009-05-08		130	7,2		< 0,1	17,9	< 0,1		0,05	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,3	0,8	< 0,004
2009-05-14		200	6,2		< 0,1	20	< 0,1		0,04	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	11	1	< 0,004
2009-06-04		118	7,1		< 0,1	13,8	< 0,1		0,05	< 0,1	< 0,03	< 0,03	< 0,1	0,006	< 0,2	< 0,03	9,66	0,6	0,006
2009-06-11		124	7,1		< 0,1	15,8	< 0,1		0,05	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	9,72	0,6	< 0,004
2009-06-18					< 0,1	19,7	< 0,1		0,04	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	10,4	0,9	< 0,004
2009-07-02		125	7,2	< 5	< 0,1	17,4	< 0,1		0,06	< 0,1	< 0,03	< 0,03	< 0,1	0,004	< 0,2	< 0,03	9,7	0,6	0,004
2009-07-09		144	7,1	< 5	< 0,1	24,4	< 0,1		0,07	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	9,89	0,9	< 0,004
2009-07-30		127	7,3	< 5	< 0.1	8,1	< 0,1		0,03	< 0,1	< 0,03	< 0,03	< 0,1	< 0,004	< 0,2	< 0,03	9,7	0,3	< 0,004
2009-08-12		137	7,5	< 5	< 0,5	11,5	< 0,5	0,05	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	11,5	0,5	< 0,02
2009-08-18	,	162	7	< 5	< 0,5	32,1	< 0,5	0,08	80,0	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	10	1	< 0,02
2009-08-26		142	7.4	< 5	< 0,5	16,8	< 0,5	0,04	< 0,05	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	10,3	0,8	< 0,02
2009-09-01	22,85	166	7,2	< 5	< 0,5	33	< 0,5	0,08	80,0	< 0,5	< 0,2	< 0,2	< 0,5	< 0,02	< 1	< 0,2	9,7	1,1	< 0,02
2009-09-10		172	7,5	< 5	< 0,1	33,8	< 0,1	80,0	0,06	< 0	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,3	1,3	< 0,01
2009-09-15		172	7,2	< 5	< 0.1	35	< 0,1	80,0	0,06	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10	1	< 0,01
2009-09-23	-	160	7,4	< 5	< 0,1	30,1	< 0,1	0,05	0,05	< 0,01	< 0,01	0,02	< 0,1	< 0,01	< 0,1	< 0,01	9,4	1	< 0,01
2009-10-02	22,07	169	7,5	< 5	< 0,1	32,5	< 0,1	80,0	0,06	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	9,7	1	< 0,01
2009-10-07	21,83	178	7,5	< 5	< 0.1	35,5	< 0,1	0,06	0,07	< 0,01	< 0.01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,1	1	< 0,01
2009-10-14		182	7,7	< 5	< 0.1	35,9	< 0,05	0,13	0,12	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,2	1	< 0,01
2009-10-21		191	7,7	< 5	< 0.1	37,6	< 0,05	0,14	0,13	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,5	1	< 0,01
2009-11-12	,_	215	7,5	< 5	< 0.1	48,5	< 0,05	0,08	80,0	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	11,7	2	< 0,01
2009-11-17	22,93	183	7,5	< 5	< 0,1	37	< 0,05	0,06	0,06	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,9	1	< 0,01
2009-11-25		185	7,4	< 5	< 0,1	39,8	< 0,05		0,06	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,3	1	< 0,01
2009-12-02	23,7	213	7,7	< 5	< 0,1	49,2	< 0,05		0,09	< 0,01	< 0.01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	10,3	1	< 0,01

QUALITÉ DES EAUX DE SURFACE DIRECTEMENT EN AMONT ET EN AVAL DE LA BERME PARC À RÉSIDUS DE LA KWÉ OUEST - 2009 ANALYSE DES ÉCHANTILLONS

4R7	Drain i	nterne nord					
	Tempé		Conductivité	Matières en			
Date	rature	pН	électrique	suspension	SO ₄	Mg	Mn
unité	೦		μS/cm	mg/l	mg/l	mg/l	mg/l
Limite inférieure		5,5					
Limite supérieure	30	8,5		35			1
2009-07-30		7,7	149	< 5			
2009-08-12	20,42	7,9	169	< 5	22,3	16,9	< 0,02

QUALITÉ DES EAUX DE SURFACE DIRECTEMENT EN AMONT ET EN AVAL DE LA BERME PARC À RÉSIDUS DE LA KWÉ OUEST - 2009 ANALYSE DES ÉCHANTILLONS

4R6	Drain i	nterne centra	al				
	Tempé		Conductivité	Matières en			
Date	rature	pН	électrique	suspension	SO ₄	Mg	Mn
unité	ರೆ		μS/cm	mg/l	mg/l	mg/l	mg/l
Limite inférieure		5,5					
Limite supérieure	30	8,5		35			1
2009-04-09		7,1	232		38,1	19,1	< 0,004
2009-04-16		7,3	243		39,7	21,9	< 0,004
2009-04-23		7,5	203		31,4	15,1	< 0,004
2009-04-30		6,7	181		27,7	13,4	< 0,004
2009-05-08		7,5	236		41,8	15,9	< 0,004
2009-06-04		7,3	198		35,2	14,8	0,005
2009-06-11		7	181		27,4	13,3	0,008
2009-06-25		6,9	208	5,8	38,2	17,6	< 0,004
2009-07-30		7,2	221	< 5	41,8	18,5	0,008
2009-08-12	23,36	7,6	190	6	29,5	15,9	0,02
2009-08-18	22,03	7,2	183	< 5	26,8	14,6	< 0,02
2009-08-26	22,75	7,5	182	< 5	28,4	14,8	< 0,02
2009-09-01	25,65	7,6	188	< 5	27,4	15,2	< 0,02
2009-09-10	20,71	7,5	262	5,8	55,4	24,9	< 0,01
2009-09-15	22,99	7,3	215	< 5	36,4	18,8	< 0,01
2009-09-23	24,64	7,5	186	< 5	26,9	15,2	< 0,01
2009-10-02	22,03	7,7	186	< 5	26,7	15,3	< 0,01
2009-10-07	21,72	7,6	214	7,8	46,4	18,9	< 0,01
2009-10-14	24,68	7,6	194	< 5	27,6	15,1	< 0,01
2009-10-21	24,28	7,8	192	< 5	27,3	15,4	< 0,01
2009-10-28	21,85	7,8	191	< 5	28,8	15	< 0,05
2009-11-04		7,6	276	< 5	50,7	27,6	< 0,01
2009-11-12	24,69	7,4	184	< 5	28,6	14,3	< 0,01
2009-11-17	24,26	7,4	181	< 5	26,8	14,6	< 0,01
2009-11-25	25,22	7,5	175	< 5	25,2	14	< 0,01
2009-12-02	24,57	7,6	176	< 5	24,8	13,8	< 0,01
2009-12-09	24,61	8	202	< 5	30,1	16,6	< 0,01

QUALITÉ DES EAUX DE SURFACE DIRECTEMENT EN AMONT ET EN AVAL DE LA BERME PARC À RÉSIDUS DE LA KWÉ OUEST - 2009 ANALYSE DES ÉCHANTILLONS

4R8	Drain i	nterne sud					
Date	Tempé rature	pН	Conductivité électrique	Matières en suspension	SO ₄	Mg	Mn
unité	ಧಿ		μS/cm	mg/l	mg/l	mg/l	mg/l
Limite inférieure		5,5					
Limite supérieure	30	8,5		35			1
2009-10-14	28,35	7,6	263	< 5	61,7	23,8	< 0,01
2009-10-21	24,6	7,6	257	< 5	57,1	26,6	< 0,01
2009-11-04		7,2	385	5	64,7	29,4	< 0,01
2009-11-12	26,95	7,5	257	< 5	63,5	24,4	< 0,01
2009-11-25	24,76	7,4	230	< 5	50,2	21	< 0,01
2009-12-09	24,14	7,6	221	5,6	51,5	19,8	< 0,01

ANNEXE C - Rapport d'incident 2009-KO-01 - Bris sur la géomembrane

Parc à résidus de la Kwé Ouest

Rapport d'incident no 2009-KO-01

Bris sur la géomembrane

C.\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc

Page 1 sur 11

TABLE DES MATIERES

1	INTRODUCTION	3
1.1	Historique	3
2	Situation actuelle	4
2.1	Bris au dessus du niveau d'eau	4
2.2	Bris sous le niveau d'eau	5
3	Plan d'action	9
3.1		
3.2	Abaissement du niveau d'eau	10
3.3	Réparation de la géomembrane	10
3.4	Remise en service	10

LISTE DES ANNEXES

Annexe 1 – Plan de localisation – Déplacement de la barge en eau profonde

C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc

Page 2 sur 11

1 INTRODUCTION

1.1 Historique

La Compagnie Vale-Inco Nouvelle Calédonie procède au cours de 2009 au rehaussement de la crête du barrage de la Kwé Ouest. Ces travaux sont exécutés à l'aide de bouteurs et de camions hors-route d'une capacité nominale de 28 tonnes.

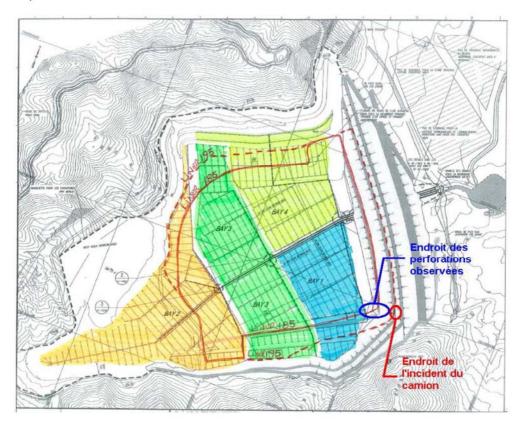
À partir de la zone d'emprunt où une pelle hydraulique remplit les camions, ces derniers transportent les matériaux jusqu'à l'endroit du rehaussement. Ils y déversent leur contenu à l'endroit spécifié par le superviseur. De là, un bouteur sur chenille étend le matériau en couche mince, selon les spécifications.

Durant de tels travaux au mois de juillet 2009, un camion se recule un peu trop près du bord de la crête. À cause de la plasticité du matériau sous-jacent et de la proximité du bord de la crête, le sol sous les roues arrière du camion se déforme, ce qui précipite une partie du chargement du camion au-delà du bord de la crête, sur la face amont du barrage. Le chargement contient un mélange de latérite et de gros cailloux de cuirasse de fer. Les cailloux, de par leur forme et de leur poids, dévalent la pente du barrage. En descendant à grande vitesse, ils poinçonnent dans leur parcours, des trous dans la géomembrane. Ils finissent leur course dans l'eau du bassin où ils s'arrêtent dans le fond du bassin, peu profond à cet endroit.

Durant le mois d'août suivant, on enregistre une légère tendance à la hausse dans la mesure de conductivité au puits de pompage aval situé au pied aval du barrage de la Kwé Ouest. L'eau à cet endroit provient de la collecte des eaux sous-jacentes à la géomembrane. Divisé en quatre secteurs, un seul enregistre une hausse et correspond au secteur dans lequel l'incident du camion s'est produit. Ceci suggère que la membrane ait bel et bien été endommagée sous le niveau de l'eau.

C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc

Page 3 sur 11


2 Situation actuelle

2.1 Bris au dessus du niveau d'eau

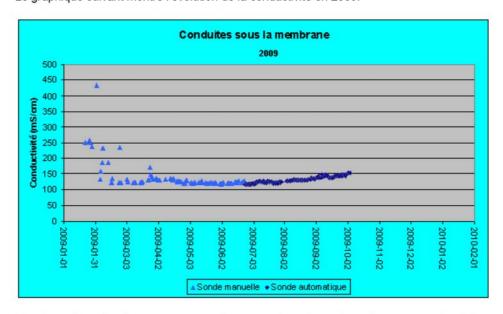
Suite à une inspection minutieuse de la géomembrane, des perforations de la membrane sont notées dans le secteur de l'incident du camion au dessus du niveau d'eau actuel.

Les perforations suivent généralement un même patron, c'est-à-dire une série de perforations en ligne suivant la pente de talus. Chaque série de performations auraient été causées chacune par un caillou en rotation, dévalant la pente par bonds successifs à cause de leur forme inégale.

Le plan de localisation suivant montre l'endroit de l'incident.

C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc

Page 4 sur 11

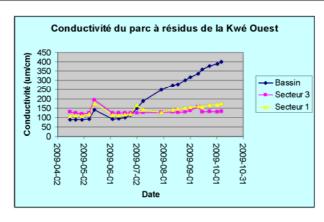


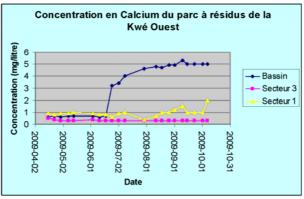
2.2 Bris sous le niveau d'eau

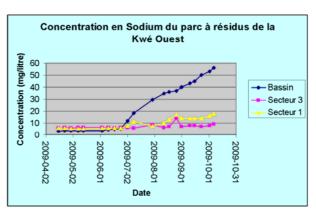
Depuis l'incident du camion, une légère augmentation de la conductivité et de la concentration en sels (Sodium et Calcium) est observée dans l'eau du puits de pompage aval, puits qui collecte l'ensemble des eaux captés par le système de drains installés sous la géomembrane et destinés à intercepter les eaux pouvant s'infiltrer au travers de la membrane.

Le graphique suivant montre l'évolution de la conductivité en 2009.

L'analyse des données montre que l'augmentation n'est observée que par le drain sous la membrane du secteur concerné par l'incident du camion. Les autres drains des autres secteurs montrent à l'opposé une conductivité et une concentration en sels assez constantes depuis leur installation.


Les graphiques suivants montrent la conductivité et les concentrations en sels du bassin d'eau du parc à résidus ainsi que les drains des secteurs 1 et 3 (les secteurs 2 et 4 ne montrant plus aucun débit depuis quelques mois à cause de l'absence de précipitations).


Page 5 sur 11


C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc

Page 6 sur 11

C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc

Avec ces données de concentration, on peut estimer le débit d'infiltration à travers la géomembrane à l'aide des équations suivantes :

QC =
$$q_1c_1 + q_2c_2$$
 (1)

ou

$$Q = q_1 + q_2 \tag{2}$$

Q= Débit total du drain contaminé (secteur 1)

C= Concentration du drain contaminé (secteur 1)

q₁= Débit provenant du bassin de résidus (fuite)

c₁= Concentration de l'eau du bassin de résidus

q₂= Débit provenant du terrain naturel (secteur 3)

c₂= Concentration du terrain naturel (secteur 3)

On trouve ainsi les débits suivants pour la période concernée, soit depuis le début août, après l'incident du camion :

	Conductivité													
		CONCENTRATION			DÉBIT DE									
	CONCENTRATION	NAPPE	CONCENTRATION	DÉBIT DE	FUITE									
DATE	DE LA SOURCE	PHRÉATIQUE	DEL'EFFLUENT	L'EFFLUENT	ESTIMÉ									
	C1	C2	С	Q	q1									
	mg/l	mg/l	mg/l	m³/h	m³/h									
2009-08-12T10:00:00	272	129	142	15	1,4									
2009-08-18T10:50:00	278	128	146	14,5	1,7									
2009-08-26T09:35:00	301	130	150	13,7	1,6									
2009-09-01T16:10:00	318	137	155	13,2	1,3									
2009-09-10T10:00:00	338	158	161	13,3	0,2									
2009-09-15T13:10:00	358	131	156	13,4	1,5									
2009-09-23T14:40:00	377	132	166	12,5	1,7									
2009-10-02T10:15:00	390	131	168	11,9	1,7									
2009-10-07T13:37:00	400	133	175											

S		Na			
DATE	CONCENTRATION DE LA SOURCE	CONCENTRATION NAPPE PHRÉATIQUE C2	CONCENTRATION DEL'EFFLUENT C	DÉBIT DE L'EFFLUENT Q	DÉBIT DE FUITE ESTIMÉ
	C1 mg/l	mg/l	mg/l	m³/h	q1 m³/h
2009-08-12T10:00:00	35	6	10	15	2,1
2009-08-18T10:50:00	36	7	13	14,5	3,0
2009-08-26T09:35:00	37	14	17	13,7	1,8
2009-09-01T16:10:00	40	7	14	13,2	2,8
2009-09-10T10:00:00	43	8	14	13,3	2,3
2009-09-15T13:10:00	45	8	14	13,4	2,2
2009-09-23T14:40:00	50	7	14	12,5	2,0
2009-10-02T10:15:00	53	8	16	11,9	2,1
2009-10-07T13:37:00	56	9	18		

Page 7 sur 11

C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc

		Ca			
		CONCENTRATION			DÉBIT DE
	CONCENTRATION	NAPPE	CONCENTRATION	DÉBIT DE	FUITE
DATE	DE LA SOURCE	PHRÉATIQUE	DEL'EFFLUENT	L'EFFLUENT	ESTIMÉ
	C1	C2	С	G	q1
	mg/l	mg/l	mg/l	m³/h	m³/h
2009-08-12T10:00:00	4,8	0,3	0,7	15	1,3
2009-08-18T10:50:00	4,7	0,3	1	14,5	2,3
2009-08-26T09:35:00	4,9	0,3	1	13,7	2,1
2009-09-01T16:10:00	4,9	0,3	1,2	13,2	2,6
2009-09-10T10:00:00	5,3	0,3	1,5	13,3	3,2
2009-09-15T13:10:00	5	0,3	1	13,4	2,0
2009-09-23T14:40:00	5	0,3	1	12,5	1,9
2009-10-02T10:15:00	5	0,3	1	11,9	1,8
2009-10-07T13:37:00	5	0,3	2		

Toutes les valeurs s'accordent pour montrer que le débit de fuite est d'environ 2 m³/h et ne représente qu'environ 15% du débit véhiculé par le drain de ce secteur (environ 13 m³/h pour le secteur 1).

Malgré la fuite suspectée, la contamination engendrée demeure faible. Le tableau suivant montre les principaux paramètres de suivi de la qualité de l'eau avec les valeurs limites imposées par l'ICPE pour l'eau issu du secteur 1 seulement :

		AI MG/L	As MG/L	Cr MG/L	CrVI MG/L	Cu MG/L	Fe MG/L	MES MG/L	Mn MG/L	Ni MG/L	P MG/L	Pb MG/L	pH	Zn MG/L
Exigence ICPE	limite ===>	5	0,05	0,5	0,1	0,5	5	35	1	2	10	0,5	5,5 à 8,5	2
Endroit	Date													
140-GEO1-A	2009-04-167	< 0.100	< 0.100	0,03	0,04	< 0.030	< 0.200		< 0.004	< 0.030	< 0.100	< 0.100	7,5	< 0.100
140-GEO1-A	2009-04-237	< 0.100	< 0.100	0,03		< 0.030	< 0.200		< 0.004	< 0.030	< 0.100	< 0.100	7,7	< 0.100
140-GEO1-A	2009-04-307	< 0.100	< 0.100	0,03		< 0.030	< 0.200	***	< 0.004	< 0.030	< 0.100	< 0.100	6,8	< 0.100
140-GEO1-A	2009-05-087	< 0.100	< 0.100	0,02		< 0.030	< 0.200	***	< 0.004	< 0.030	< 0.100	< 0.100	7,2	< 0.100
140-GEO1-A	2009-05-147	< 0.100	< 0.100	0,03		< 0.030	< 0.200	***	< 0.004	< 0.030	< 0.100	< 0.100	7,1	< 0.100
140-GEO1-A	2009-06-047	< 0.100	< 0.100	0,03	***	< 0.030	< 0.200	***	< 0.004	< 0.030	< 0.100	< 0.100	7	< 0.100
140-GEO1-A	2009-06-117	< 0.100	< 0.100	0,03		< 0.030	< 0.200	***	< 0.004	< 0.030	< 0.100	< 0.100	7.2	< 0.100
140-GEO1-A	2009-06-187	< 0.100	< 0.100	0,02	***	< 0.030	< 0.200		< 0.004	< 0.030	< 0.100	< 0.100	***	< 0.100
140-GEO1-A	2009-06-251	< 0.100	< 0.100	0,03		< 0.030	< 0.200	<5.000	< 0.004	< 0.030	< 0.100	< 0.100	7,2	< 0.100
140-GEO1-A	2009-07-027	< 0.100	< 0.100	0,03		< 0.030	< 0.200	<5.000	< 0.004	< 0.030	< 0.100	< 0.100	7,9	< 0.100
140-GEO1-A	2009-07-097	< 0.100	< 0.100	0,04		< 0.030	< 0.200	<5.000	< 0.004	< 0.030	< 0.100	< 0.100	7,2	< 0.100
140-GEO1-A	2009-07-307	< 0.100	< 0.100	0,03	***	< 0.030	1,5	< 5.000	0,01	< 0.030	< 0.100	< 0.100	7,2	< 0.100
140-GEO1-A	2009-08-127	< 0.500	< 0.500	< 0.050	0,04	< 0.200	<1.000	<5.000	< 0.020	< 0.200	< 0.500	< 0.500	7,5	< 0.500
140-GEO1-A	2009-08-187	< 0.500	< 0.500	< 0.050	0,04	< 0.200	<1.000	<5.000	< 0.020	< 0.200	< 0.500	< 0.500	7	< 0.500
140-GEO1-A	2009-08-267	< 0.500	< 0.500	< 0.050	0,04	< 0.200	<1.000	<5.000	< 0.020	< 0.200	< 0.500	< 0.500	7.5	< 0.500
140-GEO1-A	2009-09-017	< 0.500	< 0.500	< 0.050	0,04	< 0.200	<1.000	<5.000	< 0.020	< 0.200	< 0.500	< 0.500	7.2	< 0.500
140-GEO1-A	2009-09-107	< 0.100	< 0.100	0.04	0,04	< 0.010	< 0.100	<5.000	< 0.010	0,01	< 0.100	< 0.000	7.4	< 0.100
140-GEO1-A	2009-09-157	< 0.100	< 0.100	0,03	0,04	< 0.010	< 0.100	<5.000	< 0.010	< 0.010	< 0.100	< 0.010	7,2	< 0.100
140-GEO1-A	2009-09-237	< 0.100	< 0.100	0.04	0.04	< 0.010	< 0.100	<5.000	< 0.010	0.02	< 0.100	< 0.010	7.4	< 0.100
140-GEO1-A	2009-10-027	< 0.100	< 0.100	0,03	0,04	< 0.010	< 0.100	<5.000	< 0.010	< 0.010	< 0.100	< 0.010	7.4	< 0.100
140-GEO1-A	2009-10-077	< 0.100	< 0.100	0.03	0,04	< 0.010	< 0.100	<5.000	< 0.010	< 0.010	< 0.100	< 0.010	7.4	< 0.100

On remarque que tous les paramètres de qualité de l'eau sont respectés, et ce malgré la fuite supposée.

Page 8 sur 11

C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc

3 Plan d'action

Malgré que la superficie des bris dans la géomembrane soit suspectée petite, que le débit engendré au travers de celle-ci soit faible et que la contamination chimique de l'eau soit également très faible, que les bris soient sous le niveau de l'eau et finalement que l'on s'attende à ce que le débit au travers les perforations et la contamination résultante des eaux sous la géomembrane diminue dans le futur avec le recouvrement des orifices par les résidus, Vale-Inco Nouvelle Calédonie désire quand même procéder à la réparation de la géomembrane.

Deux options ont été considérées pour la réparation de la portion de la géomembrane sous l'eau (la réparation de la géomembrane hors de l'eau sera réalisée par la méthode actuelle éprouvée de thermo-fusion) :

Option 1 : Localisation et réparation des perforations à l'aide de plongeurs sousmarins. Des sections légèrement plus grandes que les perforations trouvées seraient enduites de colle ou de scellant compatible avec l'usage et déposés sur les perforations. Un sac de sable serait déposé sur la réparation afin de garantir un bon contact entre la pièce de réparation et la membrane originale;

Option 2 : La barge serait déplacée dans un endroit plus profond du bassin d'eau de l'aire d'accumulation des résidus. Le niveau de l'eau serait abaissé afin d'exposer l'ensemble des perforations. Les réparations seraient effectuées

selon la méthode actuelle éprouvée de thermo-fusion.

Après analyse des avantages et des inconvénients des deux options, l'option 2 avec le déplacement de la barge en eau profonde a été retenue.

3.1 Déplacement de la barge en eau profonde

Afin d'exposer l'ensemble des perforations suspectées sous le niveau de l'eau, la barge sera déplacée à un endroit plus profond du bassin d'eau. Pour ce faire, deux nouveaux ancrages seront temporairement installés plus au sud, de part et d'autre du bassin d'eau (voir plan de localisation des nouveaux ancrages en annexe 1).

Ces ancrages seront installés selon les mêmes spécifications que les ancrages permanents de la barge. Ceux-ci seront récupérés une fois les réparations terminées.

Des cordages de longueurs appropriés seront installés entre les nouveaux ancrages et la barge.

C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport Page 9 sur 11 d'incident VINC KWRSF 2009-01.doc

3.2 Abaissement du niveau d'eau

Une fois la barge en place en eau plus profonde, les 3 pompes de celle-ci seront démarrées et opérées pendant le temps nécessaire afin d'exposer l'ensemble des perforations. Ceci pourrait prendre plus de 30 jours.

L'eau ainsi pompée sera envoyée à l'Usine où elle sera réutilisée comme eau de procédé ou traitée et relâchée à l'émissaire marin du canal de la Havannah, ce qui permettra la tenue du test traceur complémentaire prévu ce mois.

3.3 Réparation de la géomembrane

Une fois les perforations exposées à l'air, elles seront nettoyées et obturées par le procédé actuel éprouvé de thermo-fusion pour des bris de ce genre.

La réparation fera l'objet d'un contrôle qualité afin de garantir son étanchéité.

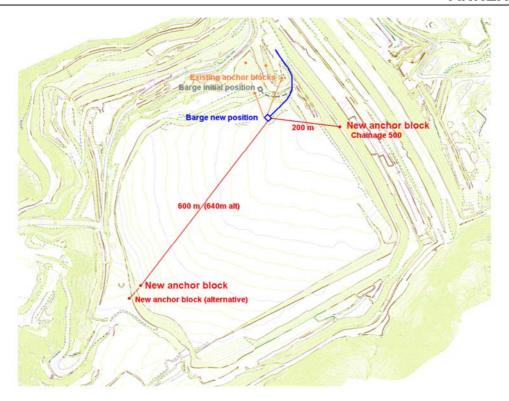
3.4 Remise en service

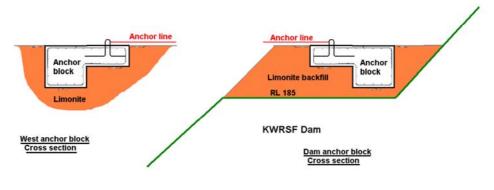
Aussitôt les réparations terminées, le niveau de l'eau sera réajusté au niveau d'opération normal, compatible avec le plan de déposition des résidus.

Lorsque le niveau du bassin aura atteint l'élévation 180, la barge sera replacée à l'endroit actuel et ré-attachée aux ancrages correspondants. Les ancrages additionnels installés temporairement pour le déplacement de la barge en eau profonde seront récupérés. Le sol aux endroits de ces ancrages temporaires sera régalé de façon compatible avec l'usage.

Rédigé par : Daniel Lang, ing.

Ingénieur sénior – parc à résidus Vale-Inco Nouvelle Calédonie 2009-11-04


C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc


Page 10 sur 11

ANNEXE 1

DL 2009-11-28

C:\Documents and Settings\dlang\My Documents\Data\Résidus\Kwé Ouest\Gestion\Incidents\Rapport d'incident VINC KWRSF 2009-01.doc

Page 11 sur 11