

RECYCLAGE DES HUILES USAGEES A LA CENTRALE ELECTRIQUE

ERS

Données de base

G. KASARHEROU 04/12/06 La SLN a confié à l'INERIS une étude des risques sanitaires relative au recyclage des huiles usagées du Territoire à la centrale électrique de Doniambo.

Le recyclage se fait généralement à un taux de 4 % du combustible consommé.

Cette étude fait suite à l'évaluation sanitaire précédente, à caractère plus général, liée aux activités de l'usine de Doniambo (Rapport INERIS. C. Mandin - L. Malherbe. Avril 2004).

Ce document complète les données mises à la disposition de l'INERIS à l'occasion de l'étude précédente.

I. DONNEES RELATIVES AUX CHEMINEES

Eléments géométriques des cheminées

Pas de modification.

Caractérisation des fumées

Les annexes A à D donnent les analyses des fumées (gaz, métaux, HAP, dioxines) des différentes campagnes annuelles de mesure réalisées de 2003 à 2005, avec ou sans huiles usagées.

Il s'agit de données brutes de mesures de la société SGS Australie débarrassées des recalculs classiques règlementaires (% O_2 , ...).

Une campagne de mesures vient d'être réalisée en 2006. Cependant, il est fort probable que les résultats d'analyse ne seront pas disponibles pour cette étude (analyses en Australie).

Les fonctionnements avec recyclage correspondent principalement à des marches à 4 % d'huiles usagées dans le combustible brûlées à la centrale.

On notera qu'en 2003, 2 campagnes de mesure ont été réalisées (la première avait servi à l'étude précédemment citée).

Date	Recyclage
13-14 8 2003 (c1)	< 5 % du combustible
19-20 2003 (c1)	Néant
15 11 2003 (c2)	Néant
16 11 2003 (c2)	Néant
17 11 2003(c2)	4 % du combustible
18 11 2003 (c2)	4 % du combustible
25 10 2004	4 % du combustible
26 10 2004	4 % du combustible
15 10 2005	Néant
17 10 2005	Néant
24 10 2005	4 % du combustible
25 10 2005	4 % du combustible

<u>Tableau 1 : Campagnes de mesure</u>.

II. DONNEES ENVIRONNEMENTALES

Agriculture et élevage

On notera l'existence d'un nouveau RGA (2002) par rapport à l'étude précédente (RGA91).

Consulter: http://www.isee.nc/recensagricol/rgaresultats.html

Cibles sensibles

Le document LMTE/03-77 du 25 février 2003 relatif aux écoles et établissements post-bac s'appliquent toujours.

Il n'y a pas de modification majeure de la répartition de ce type d'établissement dans les environs immédiats de Doniambo et en particulier dans la zone de Ducos (rue de Papeete), Montravel et la Vallée du Tir (réactualisation éventuelle des effectifs en consultant www.ac-noumea.nc).

On notera l'existence d'un nouveau collège au quartier des Portes de fer (rue Olhen) à une distance d'environ 2 km. Effectif : 815.

Figure 1 : Nouveau collège des Portes de fer.

Idem pour les maisons de retraite.

Un nouveau plateau sportif a été implanté sur le prolongement de la rue Papeete (Ducos).

L'Hôpital Gaston Bourret est toujours en activité sur le même site.

Données météorologiques

De manière à donner éventuellement à l'INERIS la possibilité de caler son modèle de dispersion, des données météorologiques Meteo France (direction de vent, vitesse de vent, ...) spécifiques aux dates de fonctionnement avec ou sans recyclage d'huiles usagées du paragraphe précédent sont fournies dans un fichier excell séparé.

De manière générale, conformément au contrat de prestation, l'INERIS pourra compléter ces données auprès de Meteo France.

Figure 2 : Nouveau plateau sportif de Ducos.

Réseau de surveillance

Le réseau de surveillance de la communauté urbaine de Nouméa n'est pas encore en exploitation.

On se basera comme précédemment sur le réseau de surveillance SLN de 3 stations (Montravel, Logicoop, Vallée du Tir).

Sont mesurés (rappels):

1/ le SO₂ (données disponibles au ¼ d'heure),

2/ le NO₂ (données disponibles au ¼ d'heure ; une chaîne métrologique déplacée d'une station à l'autre),

3/ les PM₁₀ (mesure journalière) et %Ni associé (analyse mensuelle).

4/ les retombées de poussières (données hebdomadaires) et %Ni associé (analyse mensuelle).

De la même manière, pour permettre à l'INERIS de caler éventuellement son modèle de dispersion, les données relatives aux périodes de marche du paragraphe précédent sont fournies sous forme de fichier excell séparé.

L'annexe E donne les caractéristiques de ce réseau pour les années 2003 à 2005.

Données sur les sols et végétaux

Pas de données supplémentaires par rapport à 2003.

ANNEXES

ANNEXE A

Caractéristiques des fumées Campagne 2003 n°1

Voir Annexes 3 et 4
Rapport INERIS DRC-04-44572-ERSA/CMa-ERS_SLN_R-final.doc N°69/2004
C. Mandin –L. Malherbe

ANNEXE B

Caractéristiques des fumées Campagne 2003 n°2

Source : Données brutes de mesure SGS Australia in Rapport A2EP NCE 04/03 01 de juin 2004.

Sampling location	Power Plant No 4	Power Plant No 4	Power Plant No 4	Power Plant No.4
	No Oil	No Oil	With 4 % Oil	With 4% Oil
Date tested	15.11.03	16.11.03	17.11.03	18.11.03
Flow parameters				
Stack dimensions at sampling plane, mm	2000	2000	2000	200
Velocity at sampling plane, m/s	24	24	24	25
Average temperature, °C	160	165	155	157
Moisture content, %v/v	9.9	10	11	11
Flow rate at discharge conditions, m³/min	4600	4600	4500	4700
Flow rate at wet NTP conditions, m³/min	2900	2900	2900	3000
Flow rate at dry NTP conditions, m³/min	2600	2600	2600	2700
Oxygen, %, vol/vol	5.0	3.9 – 4.6	5.5	3.9 – 4.3
Total Particulates				
Concentration, mg/m³, at NTP	200	NT	79	NT
Mass rate, g/min	520	NT	210	NT
Sulphur Dioxide	-20	- 1.4		- · · •
Concentration, mg/m³, at NTP	6000	NT	6200	NT
Mass rate, g/min	16000	NT	16000	NT
Nitrogen Oxides as NO ₂				
Concentration, mg/m³, at NTP	260	NT	310	NT
Mass rate, g/min	690	NT	810	NT
Fluorides as HF				
Concentration, mg/m³, at NTP	0.12	NT	0.11	NT
Mass rate, g/min	0.30	NT	0.29	NT
Chlorides as HCl				
Concentration, mg/m³, at NTP	3.1	NT	3.9	NT
Mass rate, g/min	8.3	NT	10	NT
Chromium VI				
Concentration, mg/m³, at NTP	< 0.005	NT	< 0.005	NT
Mass rate, g/min	< 0.01	NT	< 0.01	NT
Formaldehyde				
Concentration, mg/m³, at NTP	< 0.008	NT	< 0.008	NT
Mass rate, g/min	< 0.02	NT	< 0.02	NT
Acetaldehyde				
Concentration, mg/m³, at NTP	< 0.008	NT	< 0.008	NT
Mass rate, g/min	< 0.02	NT	< 0.02	NT
Benzene				
Concentration, mg/m³, at NTP	<1	NT	<1	NT
Mass rate, g/min	<3	NT	<3	NT
Toluene				
Concentration, mg/m³, at NTP	<0.2	NT	< 0.2	NT
Mass rate, g/min	< 0.6	NT	< 0.5	NT
Ethylbenzene				
Concentration, mg/m³, at NTP	< 0.2	NT	< 0.2	NT
Mass rate, g/min	< 0.6	NT	< 0.5	NT
o-Xylene				
Concentration, mg/m³, at NTP	<0.2	NT	< 0.2	NT
Mass rate, g/min	<0.6	NT	<0.5	NT
m-&p-Xylene				
Concentration, mg/m³, at NTP	< 0.4	NT	< 0.4	NT
Mass rate, g/min	<1	NT	<1	NT

NTP: Normal temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0° C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified. NT: Not Tested.

Sampling location	Power Plant No. 4 (Centrale Thermique) – No Oil			
Date tested	16.11.03			
Time tested				
	Particulate Metals	Gaseous Metals	Total Metals	Total Metals
	mg/m³, at NTP	mg/m³, at NTP	mg/m³, at NTP	Mass rate, g/min
Antimony	< 0.004	< 0.004	< 0.008	< 0.02
Arsenic	0.007	< 0.007	<0.01	<0.04
Barium	<0.03	< 0.0010	<0.03	<0.09
Beryllium	<0.006	< 0.007	<0.01	< 0.03
Cadmium	< 0.003	<0.0008	<0.004	<0.01
Chromium	<0.01	0.0052	0.0052	0.013
Cobalt	< 0.003	< 0.0007	<0.004	<0.01
Lead	0.035	< 0.006	0.034	0.090
Manganese	<0.008	< 0.017	< 0.03	<0.07
Nickel	0.71	0.0034	0.71	1.9
Selenium	<0.007	< 0.006	<0.01	<0.03
Thallium	< 0.003	< 0.003	<0.007	< 0.02
Zinc	0.084	<0.02	0.084	0.22
Vanadium	3.9	0.0007	3.9	10
Tin	<0.001	<0.5	<0.5	<1
Molybdenum	0.013	<0.001	0.013	0.032
Mercury	<0.00007	0.000045	0.000045	0.00012
Copper	<0.01	<0.009	< 0.02	<0.06
Titanium	<0.1	< 0.003	<0.1	<0.3

Metals

Sampling location	Power Plant No. 4 (Centrale Thermique) – 4% Oil			
Date tested	18.11.03			
Time tested				
	Particulate Metals	Gaseous Metals	Total Metals	Total Metals
	mg/m³, at NTP	mg/m³, at NTP	mg/m³, at NTP	Mass rate, g/min
Antimony	<0.002	< 0.004	<0.006	<0.02
Arsenic	0.0039	< 0.007	0.0039	0.010
Barium	<0.01	< 0.001	<0.01	< 0.04
Beryllium	< 0.003	< 0.007	<0.01	<0.03
Cadmium	0.00074	<0.0008	0.00074	0.0020
Chromium	0.0074	0.00065	0.0081	0.022
Cobalt	0.0015	< 0.0007	0.0015	0.0040
Lead	0.035	< 0.005	0.035	0.095
Manganese	0.0048	0.0014	0.0063	0.017
Nickel	0.48	0.0021	0.49	1.3
Selenium	0.0039	< 0.005	0.0039	0.010
Thallium	< 0.002	< 0.003	< 0.005	<0.01
Zinc	0.39	0.0021	0.39	1.0
Vanadium	2.6	<0.0008	2.6	7.1
Tin	<0.0006	<0.2	<0.2	<0.6
Molybdenum	0.016	< 0.001	0.016	0.043
Mercury	<0.00003	< 0.00007	<0.0001	< 0.0003
Copper	< 0.002	< 0.004	<0.03	< 0.07
Titanium	<0.08	<0.003	<0.09	<0.2

Metals

Sampling location	Pow	ver Plant No. 4 (Central	le Thermique) – 4% C	Dil
Date tested	18.11.03			
Time tested				
	Particulate Metals	Gaseous Metals	Total Metals	Total Metals
	mg/m³, at NTP	mg/m³, at NTP	mg/m³, at NTP	Mass rate, g/min
Antimony	< 0.002	< 0.004	<0.006	< 0.02
Arsenic	0.0039	< 0.007	0.0039	0.010
Barium	<0.01	< 0.001	<0.01	<0.04
Beryllium	<0.003	< 0.007	<0.01	<0.03
Cadmium	0.00074	<0.0008	0.00074	0.0020
Chromium	0.0074	0.00065	0.0081	0.022
Cobalt	0.0015	< 0.0007	0.0015	0.0040
Lead	0.035	< 0.005	0.035	0.095
Manganese	0.0048	0.0014	0.0063	0.017
Nickel	0.48	0.0021	0.49	1.3
Selenium	0.0039	<0.005	0.0039	0.010
Thallium	<0.002	<0.003	< 0.005	<0.01
Zinc	0.39	0.0021	0.39	1.0
Vanadium	2.6	<0.0008	2.6	7.1
Tin	<0.0006	<0.2	<0.2	<0.6
Molybdenum	0.016	<0.001	0.016	0.043
Mercury	<0.00003	<0.00007	<0.0001	< 0.0003
Copper	<0.002	<0.004	<0.03	<0.07
Titanium	<0.08	<0.003	<0.09	<0.2

PAH's

Sampling location Date tested	Power Plant Stack No. 4 (Centrale Thermique) No Oil 16 th November 2003			
Time tested				
	Concentration μg/m³, at NTP	Rate mg/min, at NTP		
Naphthalene	0.77	2.0		
2-Methylnaphthalene	0.39	1.0		
Acenaphthylene	<0.06	<0.2		
Acenaphthene	<0.06	<0.2		
Fluorene	<0.06	<0.2		
Phenanthrene	0.17	0.44		
Anthracene	<0.06	<0.2		
Fluoranthene	0.12	0.31		
Pyrene	0.066	0.039		
Benzo(a)anthracene	<0.06	<0.2		
Chrysene	<0.06	<0.2		
Benzo(b)fluoranthene	<0.06	<0.2		
Benzo(k)fluoranthene	<0.06	<0.2		
Benzo(e)pyrene	<0.06	<0.2		
Benzo(a)pyrene	<0.06	<0.2		
Perylene	<0.06	<0.2		
Dibenzo(a,h)anthracene	<0.06	<0.2		
Indeno(1,2,3-cd)pyrene	<0.06	<0.2		
Benzo(g,h,I)perylene	<0.06	<0.2		

Sampling location	Power Plant Stack No. 4 (Centrale Thermique) With 4% Oil 18 th November 2003		
Date tested	18 th Nover	nber 2003	
Time tested	Concentration	Rate	
	μg/m³, at NTP	mg/min, at NTP	
Naphthalene	0.52	1.4	
2-Methylnaphthalene	0.27	0.73	
Acenaphthylene	<0.06	<0.2	
Acenaphthene	<0.06	<0.2	
Fluorene	<0.06	<0.2	
Phenanthrene	0.11	0.30	
Anthracene	<0.06	<0.2	
Fluoranthene	<0.06	<0.2	
Pyrene	<0.06	<0.2	
Benzo(a)anthracene	<0.06	<0.2	
Chrysene	<0.06	<0.2	
Benzo(b)fluoranthene	<0.06	<0.2	
Benzo(k)fluoranthene	<0.06	<0.2	
Benzo(e)pyrene	<0.06	<0.2	
Benzo(a)pyrene	<0.06	<0.2	
Perylene	<0.06	<0.2	
Dibenzo(a,h)anthracene	<0.06	<0.2	
Indeno(1,2,3-cd)pyrene	<0.06	<0.2	
Benzo(g,h,I)perylene	<0.06	<0.2	

DIOXINS & FURANS

Sample Location		nt Stack No. 4,	
Date Tested	16 th	November 200	3
Time Tested		No Oil	
Compound	Concentration	TEF	TEQ
	(ng/Nm^3)		(ng/Nm^3)
2,3,7,8-TCDF	< 0.0011	0.1	< 0.00011
2,3,7,8-TCDD	< 0.00057	1	< 0.00057
1,2,3,7,8-PeCDF	< 0.0011	0.05	< 0.000055
2,3,4,7,8-PeCDF	< 0.0011	0.5	< 0.00055
1,2,3,7,8-PeCDD	< 0.0011	0.5	< 0.00055
1,2,3,4,7,8-HxCDF	< 0.0014	0.1	< 0.00014
1,2,3,6,7,8-HxCDF	< 0.0014	0.1	< 0.00014
2,3,4,6,7,8-HxCDF	< 0.0014	0.1	< 0.00014
1,2,3,7,8,9-HxCDF	< 0.0014	0.1	< 0.00014
1,2,3,4,7,8-HxCDD	< 0.0014	0.1	< 0.00014
1,2,3,6,7,8-HxCDD	< 0.0014	0.1	< 0.00014
1,2,3,7,8,9-HxCDD	< 0.0014	0.1	< 0.00014
1,2,3,4,6,7,8-HpCDF	< 0.0057	0.01	< 0.000057
1,2,3,4,7,8,9-HpCDF	< 0.0057	0.01	< 0.000057
1,2,3,4,6,7,8-HpCDD	< 0.0057	0.01	< 0.000057
OCDF	< 0.029	0.001	< 0.000029
OCDD	< 0.029	0.001	< 0.000029
Total			< 0.0032

The TEQ values have been calculated using the toxicity equivalence factors according to J.A. Zorge et al. (Chemosphere 19 (1989), 1881-1895). As an indication of the uncertainty of the analysis the relative standard deviation (RSD) of the control sample was used. The RSD of the control sample is less than 10%.

DIOXINS & FURANS

Sample Location		t Stack No. 4,	
Date Tested Time Tested		November 200 With 4% Oil)3
Compound	Concentration	TEF	TEQ
Compound	(ng/Nm ³)	ILI	(ng/Nm^3)
2,3,7,8-TCDF	0.0019	0.1	0.00019
2,3,7,8-TCDD	0.0014	1	0.0014
1,2,3,7,8-PeCDF	< 0.0011	0.05	< 0.000057
2,3,4,7,8-PeCDF	< 0.0011	0.5	< 0.00055
1,2,3,7,8-PeCDD	< 0.0011	0.5	< 0.00055
1,2,3,4,7,8-HxCDF	< 0.0014	0.1	< 0.00014
1,2,3,6,7,8-HxCDF	< 0.0014	0.1	< 0.00014
2,3,4,6,7,8-HxCDF	< 0.0014	0.1	< 0.00014
1,2,3,7,8,9-HxCDF	< 0.0014	0.1	< 0.00014
1,2,3,4,7,8-HxCDD	< 0.0014	0.1	< 0.00014
1,2,3,6,7,8-HxCDD	< 0.0014	0.1	< 0.00014
1,2,3,7,8,9-HxCDD	< 0.0014	0.1	< 0.00014
1,2,3,4,6,7,8-HpCDF	< 0.0057	0.01	< 0.000057
1,2,3,4,7,8,9-HpCDF	< 0.0057	0.01	< 0.000057
1,2,3,4,6,7,8-HpCDD	< 0.0057	0.01	< 0.000057
OCDF	< 0.029	0.001	< 0.000029
OCDD	< 0.029	0.001	< 0.000029
Total			0.0015 - 0.0039

The TEQ values have been calculated using the toxicity equivalence factors according to J.A. Zorge et al. (Chemosphere 19 (1989), 1881-1895). As an indication of the uncertainty of the analysis the relative standard deviation (RSD) of the control sample was used. The RSD of the control sample is less than 10%.

RECOVERIES 13C EXTRACTION STANDARDS FOR DIOXINS & FURANS

	Power Plant	Power Plant	
	Stack No. 4	Stack No. 4	
	No Oil	With 4% Oil	
	Reco	overy Sampling Standards	
13C-2,3,4,7,8-PeCDF (%)	107.3	111.7	
13C-1,2,3,4,7,8-HxCDF (%)	101	100.9	
13C-1,2,3,4,7,8,9-HpCDF (%)	93.8	89.6	
13C-2,3,7,8-TCDD (%)	96.1	95.1	
13C-1,2,3,4,7,8-HxCDD (%)	113	112	
	Reco	very Extraction Standards	
13C-2,3,7,8-TCDF (%)	67.0	58.5	
13C-1,2,3,7,8-PeCDF (%)	61.3	52.2	
13C-1,2,3,6,7,8-HxCDF (%)	59.5	52.7	
13C-1,2,3,4,6,7,8-HpCDF (%)	53.2	47.4	
13C-2,3,7,8-TCDD (%)	64.6	55.7	
13C-1,2,3,7,8-PeCDD (%)	60.9	51.8	
13C-1,2,3,6,7,8-HxCDD (%)	54.4	49	
13C-1,2,3,4,6,7,8-HpCDD (%)	43.6	40.9	
13C-OCDD (%)	30.6	24.9	

ANNEXE C

Caractéristiques des fumées Campagne 2004

Source : Données brutes de mesure SGS Australia in Rapport A2EP NCE 05/01 04 de février 2005

Sampling location	Power Plant No 1	Power Plant No 1
	With 4% Oil	With 4% Oil
Date tested	25.10.04	26.10.04
Flow parameters	2000	2000
Velocity at sampling plane, m/s	27	25
Average temperature, °C	176	178
Moisture content, %v/v	11	10
Flow rate at discharge conditions, m³/min	5000	4800
Flow rate at wet NTP conditions, m³/min	3100	2900
Flow rate at dry NTP conditions, m³/min	2700	2600
Oxygen, %, vol/vol		
Range (min-max), % vol/vol	$4.8~lpha~4.9~^{(2)}$	4.3 α 4.6
Average, % vol/vol	4.9	4.5
Carbon dioxide		
Range (min-max), % vol/vol	13 α 13 ⁽²⁾	13-13
Average, % vol/vol	13	13
Total Particulates	-5	
Concentration, mg/m³, at NTP	180	NT
Mass rate, g/min	500	NT
Sulphur Dioxide		
Concentration, mg/m³, at NTP	4200	NT
Mass rate, g/min	11000	NT
Nitrogen Oxides as NO ₂		
Concentration (min-max), mg/m³, at NTP	NT	530-560
Concentration (average), mg/m³, at NTP	NT	540
Mass rate, g/min	NT	1400
Carbon Monoxide		
Concentration (min-max), mg/m³, at NTP	NT	< 4-7.3
Concentration (average), mg/m³, at NTP	NT	< 4
Concentration (average), mg/m ³	NT	< 0.0003
Mass rate, g/min	NT	< 10
Fluorides as HF		
Concentration, mg/m³, at NTP	0.52	NT
Mass rate, g/min	1.4	NT
Chlorides as HCl		
Concentration, mg/m³, at NTP	4.6	NT
Mass rate, g/min	13	NT
Chromium VI		
Concentration, mg/m³, at NTP	< 0.002	NT
Mass rate, g/min	< 0.005	NT
Formaldehyde	_	\
Concentration, mg/m³, at NTP	< 8	NT
Mass rate, g/min	< 22	NT
Acetaldehyde	2.2). To
Concentration, mg/m³, at NTP	< 0.2	NT
Mass rate, g/min VOC (1)	< 0.6	NT
	NT	_ 1
Concentration, mg/m³, at NTP	NT	< 1
Mass rate, g/min (1) VOC - Volatil Organic Compound which in	NT	< 4

[:] VOC = Volatil Organic Compound which include Benzene, Toluene, Ethylbenzene, Xylene(οαp) : Results of simples collected in two simples bags

NTP: Normal temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0° C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified. NT: Not Tested.

Metals

With 4% Oil

Sampling location Date tested	Power Plant No. 1 (Centrale Thermique) 26.10.04				
Time tested	0915 – 1115				
	Particulate Metals	Gaseous Metals	Total Metals	Total Metals	
	mg/m³, at NTP	mg/m³, at NTP	mg/m³, at NTP	Mass rate, g/min	
Mercury	0.00031	<0.01	0.00031	0.00080	
Antimony	0.013	<0.004	0.013	0.033	
Arsenic	<0.01	<0.01	< 0.02	<0.05	
Barium	0.019	0.0010	0.020	0.054	
Beryllium	<0.01	<0.01	< 0.02	<0.05	
Cadmium	0.00054	<0.001	0.00054	0.001	
Chromium	0.0083	<0.0007	0.0083	0.022	
Cobalt	0.0064	<0.0007	0.0064	0.017	
Lead	0.064	<0.006	0.064	0.17	
Manganese	0.012	0.00024	0.012	0.032	
Nickel	0.75	0.00073	0.75	2.0	
Selenium	<0.01	<0.01	<0.01	<0.04	
Thallium	<0.005	<0.004	<0.01	<0.02	
Ziuc	0.44	0.00048	0.44	1.2	
Vanadium	3.4	<0.001	3.4	8.8	
Tin	0.0091	<0.1	0.0091	0.024	
Molybdenum	0.016	<0.001	0.016	0.042	
Copper	0.031	<0.001	0.031	0.08	
Titanium	<0.03	<0.003	<0.03	<0.1	
Tellerium	<0.004	<0.001	<0.005	<0.01	

PAH's

With 4% Oil

with 4% Oil			
Sampling location	Power Plant No. 1		
	(Centrale Thermique)		
_			
Date tested Time tested	26.10		
Time tested	1222 - Concentration	Rate	
	μg/Nm³, at NTP	mg/min, at NTP	
Naphthalene	1.7	4.5	
2-Methylnaphthalene	0.61	1.6	
Acenaphthylene	<0.06	<0.2	
Acenaphthene	<0.06	<0.2	
Fluorene	0.11	0.29	
Phenauthrene	0.76	2.0	
Anthracene	<0.06	<0.2	
Fluoranthene	0.54	1.4	
Pyrene	0.41	1.1	
Benzo(a)anthracene	<0.06	<0.2	
Chrysene	0.28	0.74	
Benzo(b)fluoranthene	0.16	0.42	
Benzo(k)fluoranthene	0.071	0.19	
Benzo(e)pyrene	0.11	0.29	
Benzo(a)pyrene	<0.06	<0.2	
Perylene	<0.06	<0.2	
Dibenzo(a,h)anthracene	< 0.06	<0.2	
Indeno(1,2,3-cd)pyrene	<0.06	<0.2	
Benzo(g,h,I)perylene	<0.06	<0.2	

RECOVERY SAMPLING STAND	DARDS
	Power Plant No1
D12-2-6 Dimethylnaphthalene (ng/ml)	4.9
D14 – Terphenyl (ng/ml)	102.8
D12 – Benzo(e)pyrene (ng/ml)	13.2
RECOVERY EXTRACTION STAN	IDARDS
D8 – Naphthalene (%)	48.3 (*)
D8 - Acenaphthylene (%)	79.7
D10 - Acenaphthene (%)	76.6
D10 – Fluorene (%)	93.6
D10 – Phenanthrene (%)	121.4
D10 – Anthracene (%)	113.1
D10 – Fluoranthene (%)	142.2
D10 - Pyrene (%)	156.3 (*)
D12 - Benzo(a)anthracene (%)	110.3
D12 – Chrysene (%)	99.0
D12 - Benzo(b)fluoranthene (%)	130.4
D12 - Benzo(k)fluoranthene (%)	109.3
D12 - Benzo(a)pyrene (%)	103.2
D12 – Indeno (1,2,3-cd)pyrène (%)	111.9
D14-Dibenzo(a,h)anthracene (%)	120.1
D12 - Benzo(g,h,i)perylene	96.2

 $[\]overline{(*)}$: do not meet the quality criteria

DIOXINS a FURANS

With 4% Oil

Sample Location	Power Plant 1	No. 1, (Centrale	Thermique)
Date Tested		26.10.04	
Time Tested		122 - 1535	
Compound	Concentration	TEF	TEQ
	(ng/Nm³)		(ng/Nm³)
2,3,7,8-TCDF	0.0019	0.1	0.00019
2,3,7,8-TCDD	<0.00064	1	<0.00064
1,2,3,7,8-PeCDF	<0.0013	0.05	<0.000064
2,3,4,7,8-PeCDF	<0.0013	0.5	<0.00064
1,2,3,7,8-PeCDD	<0.0016	0.5	<0.00064
1,2,3,4,7,8-HxCDF	<0.0016	0.1	<0.00016
1,2,3,6,7,8-HxCDF	<0.0016	0.1	<0.00016
2,3,4,6,7,8-HxCDF	<0.0016	0.1	<0.00016
1,2,3,7,8,9-HxCDF	<0.0016	0.1	<0.00016
1,2,3,4,7,8-HxCDD	<0.0016	0.1	<0.00016
1,2,3,6,7,8-HxCDD	0.0030	0.1	0.00030
1,2,3,7,8,9-HxCDD	<0.0016	0.1	<0.00016
1,2,3,4,6,7,8-HpCDF	<0.0064	0.01	<0.000064
1,2,3,4,7,8,9-HpCDF	<0.0064	0.01	<0.00064
1,2,3,4,6,7,8-HpCDD	0.021	0.01	0.00021
OCDF	<0.032	0.001	<0.000032
OCDD	0.11	0.001	0.00011
Total			0.00080 - 0.0039

The TEQ values have been calculated using the toxicity equivalence factors according to J.A. Zorge et al. (Chemosphere 19 (1989), 1881-1895). As an indication of the uncertainty of the analysis the relative standard deviation (RSD) of the control sample was used. The RSD of the control sample is less than 10%.

RECOVERIES 13C EXTRACTION STANDARDS FOR DIOXINS & FURANS

	Power Plant No 1
	With 4% oil
13C-2,3,4,7,8-PeCDF (%)	156.3
13C-1,2,3,4,7,8-HxCDF (%)	150.7
13C-1,2,3,4,7,8,9-HpCDF (%)	168.2
13C-2,3,7,8-TCDD (%)	135.6
13C-1,2,3,4,7,8-HxCDD (%)	160.6

Recovery Extraction Standards

13C-2,3,7,8-TCDF (%)	56.3
13C-1,2,3,7,8-PeCDF (%)	54.1
13C-1,2,3,6,7,8-HxCDF (%)	40.7 (*)
13C-1,2,3,4,6,7,8-HpCDF (%)	38.8 (*)
13C-2,3,7,8-TCDD (%)	55.1
13C-1,2,3,7,8-PeCDD (%)	59.4
13C-1,2,3,6,7,8-HxCDD (%)	38.6 (*)
13C-1,2,3,4,6,7,8-HpCDD (%)	33.9 (*)
13C-OCDD (%)	27.1 (*)

^{(*):} do not meet the quality criteria

ANNEXE D

Caractéristiques des fumées Campagne 2005

Source : Données brutes de mesure SGS Australia in Rapport A2EP NCE 050/05/E/LB-01 de mars 2006

Sampling location	Power Plant No 1	Power Plant No 2	Power Plant No 3	Power Plant No 4	Power Plant No 4
	No Oil	No Oil	With 4% Oil	With 4% Oil	With 4% Oil
Date tested	15.10.05	15.10.05	17.10.05	24.10.05	25.10.05
Flow parameters					
Stack dimensions at sampling plane, mm	2150	2150	2150	2150	2150
Velocity at sampling plane, m/s	22	27	25	27	27
Average temperature, °C	150	180	175	179	184
Moisture content, %v/v	10	11	9.2	17	12
Flow rate at discharge conditions, m³/min	4700	5800	5400	5800	5900
Flow rate at wet NTP conditions, m³/min	2900	3600	3300	3500	3500
Flow rate at dry NTP conditions, m³/min	2600	3200	300	2900	3100
Oxygen, %, vol/vol					
Range (min-max), % vol/vol	NT	NT	NT	4.9 - 5.2	NT
Average, % vol/vol	NT	NT	NT	5	NT
Carbon dioxide					
Range (min-max), % vol/vol	NT	NT	NT	13 - 13	NT
Average, % vol/vol	NT	NT	NT	13	NT
Total Particulates					
Concentration, mg/m³, at NTP	130	170	290	53	NT
Mass rate, g/min	330	550	880	160	NT
Sulphur Dioxide					
Concentration, mg/m³, at NTP	NT	NT	NT	2300	NT
Mass rate, g/min	NT	NT	NT	6600	NT
Nitrogen Oxides as NO ₂					
Concentration (min-max), mg/m³, at NTP	NT	NT	NT	690-790	NT
Concentration (average), mg/m³, at NTP	NT	NT	NT	750	NT
Mass rate, g/min	NT	NT	NT	2200	NT
Carbon Monoxide					
Concentration (min-max), mg/m³, at NTP	NT	NT	NT	< 4	NT
Concentration (average), mg/m³, at NTP	NT	NT	NT	< 4	NT
Concentration (average), mg/m³	NT	NT	NT	< 0.0003	NT
Mass rate, g/min	NT	NT	NT	< 11	NT
Fluorides as HF					
Concentration, mg/m³, at NTP	NT	NT	NT	NT	NT
Mass rate, g/min	NT	NT	NT	NT	NT
Chlorides as HCl					
Concentration, mg/m³, at NTP	NT	NT	NT	NT	NT
Mass rate, g/min	NT	NT	NT	NT	NT
Chromium VI					
Concentration, mg/m³, at NTP	NT	NT	NT	NT	< 0.005
Mass rate, g/min	NT	NT	NT	NT	< 0.02
Formaldehyde					
Concentration, mg/m³, at NTP	NT	NT	NT	NT	NT
Mass rate, g/min	NT	NT	NT	NT	NT
Acetaldehyde					
Concentration, mg/m³, at NTP	NT	NT	NT	NT	NT
Mass rate, g/min	NT	NT	NT	NT	NT
VOC (1)					
Concentration, mg/m³, at NTP	NT	NT	NT	NT	NT
Mass rate, g/min	NT	NT	NT	NT	NT
Hydrocarbons C1-5					
Methane					
Concentration, mg/m³, at NTP	NT	NT	NT	NT	NT
Mass rate, g/min	NT	NT	NT	NT	NT

^{(1) :} VOC = Volatil Organic Compound which include Benzene, Toluene, Ethylbenzene, Xylene(οαρ)

NTP : Normal temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0° C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified. NT : Not Tested

Metals With 4% oil

	VV 1111	4 /0 OII		
Sampling location		Power Plant No.4 (C	entral Thermique)	
Date tested Time tested		24.10 1142 -		
Velocity at sampling plane, m/s		27		
Average temperature, °C		178		
Moisture content, %w/v		6.4		
Flow rate at discharge conditions,		590		
Flow rate at wet NTP conditions, m³/min		360	0	
Flow rate at dry NTP conditions, m ³ /min		340	0	
METALS	Particulate Metals mg/m³, at NTP	Gaseous Metals mg/m³, at NTP	Total Metals mg/m³, at NTP	Total Metals Mass rate, g/min
Mercury	0.00030	< 0.0002	0.00030	0.00098
Antimony	0.011	< 0.005	0.011	0.035
Arsenic	0.0045	<0.005	0.0045	0.015
Cadmium	< 0.00009	< 0.0002	< 0.0003	< 0.0009
Chromium	< 0.008	0.0011	<0.006	<0.02
Cobalt	0.029	<0.0009	0.029	0.097
Lead	0.0078	0.0046	0.012	0.041
Manganese	0.016	0.00062	0.016	0.054
Nickel	0.62	0.0040	0.62	2,1
Selenium	< 0.002	<0.004	<0.006	<0.02
Zinc	0.32	< 0.0005	0.32	1.1
Vanadium	2.2	0.0035	2.2	7.4
Tin	< 0.005	<0.6	<0.6	<2
Copper	0.016	0.0019	0.018	0.062
Thallium	< 0.002	< 0.004	<0.006	<0.02
Titanium	< 0.03	0.0011	< 0.03	<0.1
Tellerium	0.0064	< 0.005	0.0064	0.022

PAH's

Sampling location Date tested Time tested	25.1	Power Station # 4 25.10.05 1030 – 1343		
	Concentration µg/Nm³, at NTP	Rate mg/min, at NTP		
Naphthalene	1.3	3.5		
2-Methylnaphthalene	0.61	1.7		
Acenaphthylene	< 0.09	<0.2		
Acenaphthene	< 0.09	<0.2		
Fluorene	< 0.09	<0.2		
Phenanthrene	0.21	0.59		
Anthracene	<0.09	<0.2		
Fluoranthene	<0.09	<0.2		
Pyrene	<0.09	<0.2		
Benzo(a)anthracene	<0.09	<0.2		
Chrysene	< 0.09	<0.2		
Benzo(b)fluoranthene	< 0.09	<0.2		
Benzo(k)fluoranthene	<0.09	<0.2		
Benzo(e)pyrene	<0.09	<0.2		
Benzo(a)pyrene	<0.09	<0.2		
Perylene	<0.09	<0.2		
Dibenzo(a,h)anthracene	<0.09	<0.2		
Indeno(1,2,3-cd)pyrene	<0.09	<0.2		
Benzo(g,h,l)perylene	< 0.09	<0.2		

	Power Station 4
D12-2-6 Dimethylnaphthalene (%)	56.0
D14 – Terphenyl (%)	118.9
D12 – Benzo(e)pyrene (%)	103.3
D8 – Naphthalene (%)	109.4.
D8 - Acenaphthylene (%)	98.2
D10 - Acenaphthene (%)	97.8
D10 – Fluorene (%)	96.9
D10 – Phenanthrene (%)	96.6
D10 – Anthracene (%)	92.1
D10 – Fluoranthene (%)	90.9
D10 - Pyrene (%)	85.0
D12 - Benzo(a)anthracene (%)	127.6
D12 – Chrysene (%)	121.9
D12 - Benzo(b)fluoranthene (%)	108.2
D12 - Benzo(k)fluoranthene (%)	100.2
D12 - Benzo(a)pyrene (%)	97.9
D12 – Indeno (1,2,3-cd)pyrène (%)	93.1
D14-Dibenzo(a,h)anthracene (%)	93.3
D12 - Benzo(g,h,I)perylene	81.1

DIOXINS & FURANS

With 4% oil

Sample Location Date Tested Time Tested	Power Station # 4 25.10.05 1030 – 1343		
Compound	Concentration (ng/Nm³)	TEF	TEQ (ng/Nm ^s)
2,3,7,8-TCDF	<0.002	0.1	<0.0002
2,3,7,8-TCDD	<0.0009	1	<0.0009
1,2,3,7,8-PeCDF	<0.002	0.05	<0.00009
2,3,4,7,8-PeCDF	<0.002	0.5	< 0.0009
1,2,3,7,8-PeCDD	<0.002	0.5	<0.0009
1,2,3,4,7,8-HxCDF	<0.002	0.1	<0.0002
1,2,3,6,7,8-HxCDF	<0.002	0.1	< 0.0002
2,3,4,6,7,8-HxCDF	< 0.002	0.1	< 0.0002
1,2,3,7,8,9-HxCDF	< 0.002	0.1	< 0.0002
1,2,3,4,7,8-HxCDD	<0.002	0.1	<0.0002
1,2,3,6,7,8-HxCDD	<0.002	0.1	<0.0002
1,2,3,7,8,9-HxCDD	< 0.002	0.1	< 0.0002
1,2,3,4,6,7,8-HpCDF	<0.009	0.01	<0.00009
1,2,3,4,7,8,9-HpCDF	<0.009	0.01	<0.00009
1,2,3,4,6,7,8-HpCDD	<0.009	0.01	<0.0009
OCDF	<0.04	0.001	<0.00004
OCDD	<0.04	0.001	<0.00004
Total			<0.005

The TEQ values have been calculated using the toxicity equivalence factors according to J.A. Zorge et al. (Chemosphere 19 (1989), 1881-1895). As an indication of the uncertainty of the analysis the relative standard deviation (RSD) of the control sample was used. The RSD of the control sample is less than 10%.

	Power Station #4
13C-2,3,4,7,8-PeCDF (%)	125.8
13C-1,2,3,4,7,8-HxCDF (%)	120.7
13C-1,2,3,4,7,8,9-HpCDF (%)	118.6
13C-2,3,7,8-TCDD (%)	111.1
13C-1,2,3,4,7,8-HxCDD (%)	120.2

13C-2,3,7,8-TCDF (%)	79.7
13C-1,2,3,7,8-PeCDF (%)	68.2
13C-1,2,3,6,7,8-HxCDF (%)	64.1
13C-1,2,3,4,6,7,8-HpCDF (%)	81.3
13C-2,3,7,8-TCDD (%)	80.5
13C-1,2,3,7,8-PeCDD (%)	73.5
13C-1,2,3,6,7,8-HxCDD (%)	62.7
13C-1,2,3,4,6,7,8-HpCDD (%)	79.5
13C-OCDD (%)	70.8

ANNEXE E

Données réseau 2003 à 2005

RETOMBEES DE POUSSIERES

				2003							
Mois	Semaine		g/m2/mois			%Ni		Moyen	ne		
IVIOIS	Semanie	VdT	Mont	Log	VdT	Mont	Log	g/m2/mois	%Ni		
	1	5,4	3,0	2,8							
	2	4,8	3,0	1,7	_						
Janvier	3	5,6	3,1	2,7	1,18 0,	0,6	0,37	4,1	0,72		
	5	3,2 2,8	7,6 2,3	10,7 2,9	_			,			
	Moyenne	4,4	3,8	4,2	1						
	6	2,8	3,0	3,5							
	7	5,5	6,3	5,2							
Février	8	3,3	4,3	4,8	0,86	0,86 0,20	0,20	0,36	0,36	4,1	0,47
	9	7,0	2,3	0,9							
	Moyenne	4,7	4,0	3,6							
	10	1,7 0,9	1,0	2,0 1,0	_						
Mars	11	3,7	1,4 2,0	2,0	1,26	1,13	0,99	1,9	1,13		
iviais	13	3,1	1,5	3,0	1,20	1,13	0,99	1,9	1,13		
	Moyenne	2,4	1,5	2,0							
	14	2,7	1,8	1,4							
	15	1,9	0,9	1,6							
Avril	16	2,7	1,2	2,9	0,79	0,45	0,87	1,8	0,70		
	17	1,8	1,5	1,0							
	Moyenne	2,3	1,4	1,7							
	18	2,7	1,0	1,9	4						
	19 20	7,5 3,6	3,0 1,5	1,7 2,2	_		0,69 0,58	2,9			
Mai	21	2,3	3,7	3,6	1,02	0,69			0,76		
	22	3,3	3,4	1,9	1						
	Moyenne	3,9	2,5	2,3							
	23	1,8	2	1,4							
	24	3,6	4,5	1,3		0,49	0,74	3,0			
Juin	25	4,3	3,2	2,7	0,98				0,74		
	26	5	2,8	3,4	_						
	Moyenne	3,7	3,1	2,2							
	27	10,2 2,5	3,7	6,6	_		0,35	3,8			
Juillet	29	1,3	1,1	1,5	1,49	0,54			0,79		
Junier	30	3,2	3,3	4,9	1,17	0,51	0,33	0,55	0,77		
	Moyenne	4,3	3,0	4,0							
	31	3,2	1,5	1,7							
	32	5,4	3,2	1,8				3,3	0,77		
Aout	33	4,3	2,7	1,7	0,97	0,84	0,5				
	34	6,7	4,6	1,1	1	.,-		- ,-	.,		
	35 Mayanna	5,0	2,7	4,2	_						
	Moyenne 36	4,9 4,7	2,9 2,4	2,1 1,4							
	37	15,5	15,1	2,0	1						
Septembre	38	10,1	4,5	30,9	1,61	0,52	0,22	8,7	0,78		
•	39	5,8	6,0	5,7							
	Moyenne	9,0	7,0	10,0							
	40	1,6	2,3	1,7							
	41	3,5	3,7	3,8							
Octobre	42	1,9	1,7	3,2	0,87	0,75	0,49	2,8	0,70		
	43 Moyenne	5,2 3,1	2,9 2,7	2,0 2,7							
	44	9,2	4,6	2,7							
	45	3,7	3,9	8,7	0,58						
Na1	46	2,9	2,7	4,7		0.20	0.22	4.6	0.20		
Novembre	47	4,0	3,4	4,5		0,28	0,32	4,6	0,39		
	48	4,6	3,6	6,9							
	Moyenne	4,9	3,6	5,4							
	49	4,5	3,5	6,0	4						
Décembre	50 51	5,5	4,2 3,5	5,5 3,2	0,56	0,37	0,83	3,9	0,59		
Decembre	52	3,6 1,7	1,6	3,2	0,50	0,57	0,03	3,9	0,59		
	Moyenne	3,8	3,2	4,7	†						
Moyen		4,3	3,2	3,7	1,01	0,57	0,55	3,74	0,71		
		, ,-			, ,				,		

				2004					
Mois	Semaine		g/m2/mois	Y		%Ni	•	Moyen	
		VdT	Mont	Log	VdT	Mont	Log	g/m2/mois	%Ni
	1 2	3,0	2,6 2,9	2,0	-				
	3	2,4	13,0	11,5 4,0	-				
Janvier	4		5,4	6,0	0,10	0,33	0,29	,29 5,1	0,24
	5		3,7	5,2	1				
	Moyenne	2,7	5,5	5,7	=				
	6		3,0	3,6					
	7	6,0	3,6	5,4					
Février	8	2,4	2,1	24,0	0,60	0,55	0,22	5,2	0,46
	9	1,9	2,5	3,0	-				
	Moyenne 10	3,4 1,0	2,8 2,8	9,0 2,7					
	11	4,8	4,9	4,1	-				
Mars	12	3,0	2,7	3,0	0,18	0,19	0,27	3,0	0,21
Mais	13	2,7	1,9	2,6	0,10	0,17	0,27	3,0	0,21
	Moyenne	2,9	3,1	3,1	1				
	14	3,7	1,8	7,2					
	15	2,4	2,4	2,3					
Avril	16	3,1	2,4	4,1	0,26	0,09	0,30	3,8	0,22
714111	17	4,5	4,5	4,5	0,20	0,07	0,50	3,50	0,22
	18	4,6	5,0	4,3	4				
	Moyenne	3,7	3,2	4,5					
	19	3,6 9,7	4,4 3,5	2,8 1,9	-				
Mai	21	4,4	3,6	2,7	0,92	0,23	0,20	3,9	0,45
iviai	22	5,5	2,7	2,7	0,52	0,23	0,20	2,2	0,15
	Moyenne	5,8	3,6	2,4	1				
	23	3,1	3,1	2,2			1		
	24	2,5	4,1	2,9					
Juin	25	3,6	2,3	1,8	0,68	0,14	0,23	3,1	0,35
	26	3,3	3,6	5,1					
	Moyenne	3,1	3,3	3,0					
	27	6,3	4,1	1,9	4		0,47	3,0	0,63
Juillet	28 29	3,0 3,7	2,1 2,3	2,7	0,90	0,53			
Junice	30	3,3	2,3	2,2	0,90	0,55			
	Moyenne	4,1	2,7	2,2	1				
	31	8,1	4,4	5					
	32	8,0	4,3	2,3			0,26		
Aout	33	6,6	3,8	5	0,83	0,45		5,5	0,51
	34	7,8	5,4	5,4					
	Moyenne	7,6	4,5	4,4					
	35	4,1	3,6	5,7	-				
	36	5,7 3,9	4,4 3,1	2,5 2,9	-				
Septembre	38	9,2	6,0	6	0,67	0,29	0,26	5,0	0,41
	39	10,1	4,6	3,5					
	Moyenne	7,2	4,5	3,7	1				
	40	8,7	3,7	6,2					
	41	16,0	13,1	5,4					
Octobre	42	3,8	2,2	3,1	0,56	0,18	0,27	7,1	0,34
	43	12,0	4,4	6,7					
	Moyenne	10,1	5,9	5,4					
	44	6,9 2,2	5,1	3,7 3,2	- - -			1	
Novembre	45	3,7	8,0 3,2	2,4				4,2	
1,0vembre	47	6,3	3,2	2,4				7,2	
	Moyenne	4,8	4,9	2,9	1				
	48	8,9	5,4	8,9					
	49	2,3	2,3	2,2]]			
Décembre	50	4,4	2,3	2,7	1]		4,2	
Decemble	51	8,8	3,7	3,6	1]		7,2	
	52	2,6	1,5	3,4	4]			
3.4	Moyenne	5,4	3,0	4,2	0.57	0.20	0.20	4.44	0.20
Moyen	ne An	5,2	3,9	4,3	0,57	0,30	0,28	4,44	0,38

				2005					
Semaine	Mois		g/m2/mois	I		%Ni	.	Moyen	
		VdT	Mont	Log	VdT	Mont	Log	g/m2/mois	%Ni
	1 2	5,2	3,1	2,3	-				
Janvier	3	2,0 6,3	0,8 5,3	6,9	0,55	0,32	0.18	0,18 3,7	0,35
Janvici	4	4,9	2,7	3,7	0,55	0,32	0,10	3,7	0,55
	Moyenne	4,6	3,0	3,5					
	5	6,2	3,7	2,8					
	6	3,6	3,6	3,6					
Février	7	8,0	5,4	8,2	0,61	0,24	0,27	5,0	0,37
	8	4,3	4,3	6,3					
	Moyenne	5,5	4,3	5,2					
	9	5,0	4,3	7,9					
Mars	10	5,4 3,7	3,3 2,7	5,3 3,7	1,01	0,3	0,11	4,1	0,47
iviais	11	4,4	1,7	1,9	1,01	0,3	0,11	4,1	0,47
	Moyenne	4,4	3,0	4,7	1				
	13	4,1	1,8	2,9					
	14	2,2	1,8	2,8	1				
A:1	15	2,6	2,7	2,7	0.41	0.2	0.10	2.4	0.26
Avril	16	1,0	1,5	1,5	0,41	0,2	0,18	2,4	0,26
	17	2,7	2,9	2,9					
	Moyenne	2,5	2,1	2,6					
	18	4,1	2,1	2,7	4				
	19	3,5	1,8	2,3	1 11	0.2	0.25	2.0	0.50
Mai	20	3,7	3,3	2,1	1,11	0,3	0,35	3,0	0,59
	Moyenne	2,8 3,5	4,5 2,9	2,8 2,5	-				
	22	3,6	3,6	3,5					
	23	2	2	2,7	1	0,34	0,64	3,2	
Juin	24	3,7	2,3	2,8	0,9				0,63
	25	5,6	3,5	3,3					·
	Moyenne	3,7	2,9	3,1					
	26	3,3	4,2	2,7			0,98		
	27	8,6	3,2	4,0				98 4,0	0,99
Juillet	28	5,1	3,6	2	1,50	0,49			
	29 30	2,4	1,8	4,6		0,.,			
	Moyenne	5,3 4,9	3,7 3,3	6,1 3,9	-				
	31	5,1	1,8	3,8					
	32	3,2	2,0	1,6					
	33	4,2	2,8	2,4	0.7	0.70	0.40	2.1	0.65
Aout	34	3,2	2,7	1,9	0,7	0,78	0,48	3,1	0,65
	35	3,9	4,2	3,7					
	Moyenne	3,9	2,7	2,7					
	36	4,5	2,8	1,8					
	37	8,2	4,0	3		4.60	0.25		
Septembre	38	5,4	4,4	11,0	1,15	1,62	0,35	6,0	1,04
	39 Mayanna	8,9	7,6	10,5					
	Moyenne 40	6,8 8,3	4,7 4,7	6,6 5,1					
	41	7,3	5,4	11					
Octobre	42	8,4	3,0	2	0,93	0,49	0,12	5,6	0,51
	43	5,9	2,9	3,2	1	0,77	-,		-,
	Moyenne	7,5	4,0	5,3					
	44	4,3	2,8	5,0					
	45	13,4	16,1	14,9	0,11				
Novembre	46	-				0,26	0,44	9,4	0,27
1.0veinble	47					0,20	0,	7,7	0,27
	48								
	Moyenne	8,9	9,5	10,0	1				
	49	14,2	7,2	11,0	-				
Décembre	50 51	6,6 8,1	4,9 4,0	3,7 20,0	0,33	0,2	0,22	13,0	0.25
Decembre	52	11,1	7,1	58,5	0,55	0,2	0,22	13,0	0,25
	Moyenne	10,0	5,8	23,3	1				
Moyen		5,5	4,0	6,1	0,78	0,46	0,36	5,22	0,53
.,,,,,,,,		٥,٥	.,	· · · · · ·	٥,,,	5,.5	0,20		5,00

PM10

	Vallée du	ı Tir	Montra	vel	Logico	ор	Résea	iu
2003	Pouss. en	Teneur						
2003	suspension	en Ni						
	µg/m3	%	µg/m3	%	µg/m3	%	µg/m3	%
janvier	22,3	0,68	18,8	0,37	17,1	0,36	19,4	0,47
février	32,9	0,15	35,3	0,21	26,5	0,27	31,6	0,21
mars	30,5	0,25	38,6	0,33	29,9	0,47	33,0	0,35
avril	25,3	0,19	24,8	0,50	25,1	0,20	25,1	0,30
mai	24,0	0,43	24,9	0,27	22,2	0,20	23,7	0,30
juin	22,8	0,29	21,3	0,37	24,0	0,31	22,7	0,32
juillet	28,0	0,28	28,4	0,39	23,7	0,47	26,7	0,38
août	41,2	0,28	49,0	0,44	28,6	0,29	39,6	0,34
septembre	40,0	0,67	53,1	0,43	36,6	0,29	43,2	0,46
octobre	34,0	0,35	41,0	0,30	31,0	0,22	35,3	0,29
novembre	34,0	0,19	39,0	0,16	42,0	0,23	38,3	0,19
décembre	43,0	0,11	52,0	0,07	40,0	0,24	45,0	0,14
Moy. Arith.	31,50	0,32	35,53	0,32	28,89	0,30	31,97	0,31
Moy. Pond.		0,31		0,31		0,29		0,30

	Vallée di	u Tir	Montra	vel	Logico	ор	Résea	au
2004	Pouss. en	Teneur						
2004	suspension	en Ni						
	µg/m3	%	µg/m3	%	µg/m3	%	µg/m3	%
janvier	40,5	0,15	47,0	0,08	41,7	0,37	43,0	0,20
février	39,9	0,18	43,6	0,13	48,6	0,20	44,0	0,17
mars	36,7	0,10	36,9	0,09	40,0	0,27	37,9	0,15
avril	36,4	0,28	41,6	0,19	44,7	0,13	40,9	0,20
mai	40,2	0,35	45,1	0,25	36,0	0,07	40,4	0,22
juin	35,5	0,20	37,2	0,13	28,3	0,19	33,7	0,17
juillet	40,9	0,19	40,0	0,19	33,2	0,14	38,0	0,17
août	36,8	0,44	39,2	0,45	25,8	0,27	33,9	0,39
septembre	32,5	0,19	34,0	0,24	31,7	0,14	32,7	0,19
octobre	40,6	0,35	41,5	0,32	37,5	0,31	39,8	0,33
novembre	42,7	0,18	42,2	0,18	39,7	0,24	41,5	0,20
décembre	29,9	0,14	35,6	0,10	33,8	0,45	33,1	0,23
		•		•	•	•	•	-
Moy. Arith.	37,71	0,23	40,32	0,20	36,75	0,23	38,26	0,22
Moy. Pond.		0,23		0,20		0,23		0,22

Résultats des concentrations en dioxyde de soufre en μg/m3

Année 2003	-	Moyenne mensuelle	SO ₂ (μg/m ³)	Moyenne
Allilee 2003	VDT	Montravel	Logicoop	Réseau
janvier	2	12	18	11
février	3	20	18	14
mars	6	34	27	22
avril	16	25	43	28
mai	25	16	10	17
juin	28	14	23	22
juillet	39	29	42	37
août	44	83	35	54
septembre	69	68	36	58
octobre	36	38	27	34
novembre	21	13	12	15
décembre	17	2	10	10
Moyenne arithmétique	25	30	25	27

Résultats des concentrations en dioxyde de soufre en μg/m3

Année 2004	1	Moyenne mensuelle S	SO ₂ (μg/m ³)	Moyenne
Allilee 2004	VDT	Montravel	Logicoop	Réseau
janvier	12	3	14	10
février	8	10	10	9
mars	24	1	50	25
avril	31	3	32	22
mai	4	17	25	15
juin	4	5	11	7
juillet	8	13	30	17
août	37	24	13	25
septembre	19	17	15	17
octobre	19	10	14	14
novembre	20	9	14	14
décembre	13	3	11	9
Moyenne arithmétique	17	10	20	15

Résultats des concentrations en dioxyde de soufre en µg/m3

Année 2005		Moyenne mensuelle S	SO ₂ (μg/m³)	Moyenne
Affilee 2005	VDT	Montravel	Logicoop	Réseau
janvier	2	3	4	3
février	8	3	6	6
mars	12	3	6	7
avril	6	2	2	4
mai	10	3	7	7
juin	31	12	12	18
juillet	25	8	13	15
août	33	8	27	23
septembre	24	36	30	30
octobre	12	17	31	20
novembre	9	6	15	10
décembre	4	4	24	11
Moyenne arithmétique	15	9	15	13

NO2

1 seul appareil utilisé en alternance.

Résultats des concentrations en dioxyde d'azote en μg/m3

Année	Mo	oyenne mensuelle NO ₂ (μ	g/m ³)
2003	VDT	Montravel	Logicoop
janvier	19,67		
février	13,09		
mars	17,23		
avril	21,38		
mai	6,94		5,57
juin			9,11
juillet			8,77
août			5,74
septembre		16,44	0,07
octobre		10,11	
novembre		3,05	_
décembre		0,88	

Résultats des concentrations en dioxyde d'azote en μg/m3

Année	М	oyenne mensuelle NO ₂ (μ	g/m ³)
2004	VDT	Montravel	Logicoop
janvier		2,56	
février		4,76	
mars		2,11	
avril		0,42	
mai	18,64	7,98	
juin	12,56		
juillet	17,29		
août	17,10		
septembre			2,48
octobre			2,43
novembre		_	1,92
décembre	_		2,50

Résultats des concentrations en dioxyde d'azote en μg/m3

Année 2005	Moyenne mensuelle NO ₂ (μg/m ³)						
Affilee 2005	VDT	Montravel	Logicoop				
janvier			1,48				
février			2,42				
mars			3,15				
avril	-	<u>-</u>	5,54				
mai		8,05	0,24				
juin		7,50					
juillet		6,45					
août		6,20					
septembre	10,81	0,17					
octobre	10,67	<u>-</u>					
novembre	5,30	·					
décembre	4,36						

